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INndex

Object Oriented Data Analysis: Population of Networks

Structure Spaces: Graph Space as a particular case

Summary Statistics: Mean and Geodesic PCA




Population of Networks




Network Analysis
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Marron, J. Steve, and Andrés M. Alonso. "Overview of object oriented data analysis." Biometrical Journal56.5 (2014): 732-753.



Network Analysis: from one to many

Objects are Networks X, X5, ...

«2° Generation Approach»

Marron, J. Steve, and Andrés M. Alonso. "Overview of object oriented data analysis." Biometrical Journal56.5 (2014): 732-753.



Network Analysis: from one to many

Many new questions arise:

How can we describe these networks?

How can we relate nodes in networks?

Along which relations/features are
different?

Can we do any statistical analysis and
how?




OODA for Networks




OODA for Networks: State of the Art

OODA for trees Wang and Marron (2007), Aydin, et al. (2009), Feragen et al. (2013), Nye, et al. (2017),

Hypothesis Testing Simpson, et al. (2013), Ginestet, et al. (2017), Lovato, et al. (2017)

Bayesian Generative Models Durante et al. (2017), Durante and Dunson (2018)

Graph Embedding Duvenaud et al. (2015)

Structure Spaces  Jainetal (2009)




Structure Spaces

A-attributed R-structure: x = (P, R, o)

NnO N1

P- set of nodes

R € P" - set of relations (edges if r=2).
n2

a:R — M -function assigning attributes
to edges

Jain, Brijnesh J., and Klaus Obermayer. "Structure spaces." Journal of Machine Learning Research10.Nov (2009): 2667-2714.



Structure Spaces
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Graph Spaces
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A-attributed R-structure: x = (P, R, o)
P={0,1,2}- set of nodes

R € P?, R = {(0,1),(0,2)} - set of relations
a:R — R -weights

a((0,1)) =300
a((0,2)) =121



Graph Spaces
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Graph Spaces
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Graph Spaces
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Space: X = R



Graph Spaces
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Graph Spaces
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X2 = X3

Allowing permutation of nodes




Graph Spaces
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ﬂ={Tx1:TET}

xz ={TX2:T ET}

Space: X

T : Permutation Action
Permuting nodes

Graph Space: X/T



Graph Space Properties




Metric Space
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X/T

Metric Space
INvariant with respect to
permutation

v

Metric Space
Given two equivalent classes, find
the permuted elements that have
mMinimum distance



Geodesic Space
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X/T

Geodesic Space
Euclidean Space, complete,
locally compact.

T: Finite Group Action

Geodesic Space



Properties and Conseguences

Not a Manifold (Not Free Action):
— Can't use all the literature about Manifold statistics



Properties and Conseguences

Unbounded:
— No unigueness of the geodesic even locally.



Properties and Conseguences

Isometric and Finite Dimension Action:
— Allows to transfer computations from X to X/T



Properties and Conseguences

Isometric and Finite Dimension Action:
— Allows to transfer easily computation from X to X/T

l

Align All and Compute Algorithm to be able
to compute statistics on this space.




Align All and Compute




Align All and Compute
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X/T

Based on the Generalized Procrustes Algorithm:

1) Select a random candidate point « elﬂin X/T



Align All and Compute
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Based on the Generalized Procrustes Algorithm:

1) Select a random candidate point » € | x,in X/T

2) Align all the points to » obtaining x4, x,, ...,

X, IN X



Align All and Compute

0
/ I \ Based on the Generalized Procrustes Algorithm:
X1 X2 X3

X/T

1) Select a random candidate point » €| x,|in X/T
2) Align all the points to » obtaining x4, x,, ..., x, IN X
3) Compute the Statistics 6 in X




Align All and Compute

X
0
Based on the Generalized Procrustes Algorithm:
X1 X2 X3
1) Select a random candidate point x~ €| Xy in X/T
2) Align all the points to x” obtaining x4, x,, ..., x, IN X
X/T 3) Compute the Statistics 6 in X
4) Set theun =06
\ 5) Do 1- 4 until the algorithm converge
X1
1] | 6 ] xy
[*2]




AAC In Action

Align All and Compute Algorithm to be able to compute statistics on this
space:

—— Fréchet Mean

— (Geodesic Principal Components Analysis: following the framework
iIntroduced in Huckemann, Hotz, & Munk (2010)



Example




Example: Attributes and Topology
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Example: Letters

> Presence of a drawn line




Example: Letters




Example: Letters




A mean

[1.52, 2.50]

[0.90, 1.47] [2.11,1.4]

[0.71, 0.74] [2.28, 0.69]



Geodesic Principal Component Analysis

Eigen vectorlletters O

Capturing 18% of the total variance



Geodesic Principal Component Analysis

Eigen vector2letters 0

Capturing 16% of the total variance



Geodesic Principal Component Analysis

Eigen vector3letters O

Capturing 14% of the total variance



Conclusion and Further Developments

Starting from Strcuture Spaces defined by Jain and Obermayer (2009), we
Introduced:

——— the GPCA for the Graph Space
—— AAC Algorithm for computing statistics such as the Fréchet Mean
——— Python Package

Next Step:

 Pure Topological Geodesic Principal Component
 Network on Network Regression Model|
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Example 1: Topological Variation

N




A Mean




Geodesic Principal Component Analysis

Capturing 60% of the total variance



