Non-asymptotic, universal confidence sets for intrinsic means by mass concentration

Joint work with M. Glock, T.Hotz

Stefan Heyder TU Ilmenau

Fréchet means for circular data

- consider i.i.d. circular data $\theta, \theta_1, \ldots, \theta_n \in S^1 \cong (-\pi, \pi]$
- equip S¹ with arc-length metric d and recall the definition of the set of Fréchet means

$$M = rgmin_{\mu\in \mathbf{S}^1} \mathbf{E} d^2(heta,\mu) = rgmin_{\mu\in \mathbf{S}^1} F(\mu)$$

- Fréchet means might be non-unique, i.e. multiple minimizers
- goal: confidence set C for M: $P(C \supseteq M) \ge 1 \alpha$
- asymptotics in the form of a CLT exist (see talks of Huiling, Stephan and Xavier) but come at the cost of
 - constraints on the distribution of θ ,
 - these are difficult to check and
 - in application only finite sample size *n* available.

Example — Equilateral Triangle

 consider three equidistant point masses with equal weight ¹/₃

•
$$M = \left\{-\frac{2\pi}{3}, 0, \frac{2\pi}{3}\right\}$$

but: for big n empirical mean

$$\operatorname*{arg\,min}_{\mu\in \mathbf{S}^1}\hat{F}_n(\mu) = \operatorname*{arg\,min}_{\mu\in \mathbf{S}^1}\frac{1}{n}\sum_{i=1}^n d^2(\theta_i,\mu)$$

is unique with high probability

asymptotics appear applicable even though they are not!

Confidence sets for M

Call $C \subseteq \mathbf{S}^1$ a level $1 - \alpha$ confidence set for M if

 $\mathbf{P}(C \supseteq M) \ge 1 - \alpha$

Desirable properties:

- non-asymptotic: coverage guaranteed for any sample size,
- universal: require only i.i.d. data and
- constructible.

Confidence sets for MCall $C \subseteq S^1$ a level $1 - \alpha$ confidence set for M if

 $\mathsf{P}(\mathsf{C}\supseteq\mathsf{M})\geq 1-\alpha$

Desirable properties:

- non-asymptotic: coverage guaranteed for any sample size,
- universal: require only i.i.d. data and
- constructible.

Basic idea: bound deviations of

$$\hat{F}_n(\mu) = \frac{1}{n} \sum_{i=1}^n d^2(\theta_i, \mu)$$

from

$$F(\mu) = \mathbf{E}d^2(\theta, \mu)$$

given \$\alpha\$ and \$\Delta\$ such that \$\mathbf{P}\left(\sup_{\mu\in\mathbf{S}^1}\left|\hat{F}_n(\mu) - F(\mu)\right| \ge \Delta\right) \le \frac{\alpha}{2}\$
1 - \frac{\alpha}{2}\$ confidence set \$C_1 = \left{\mathcal{L}} \varepsilon \mathbf{S}^1 : \$\hat{F}_n(\mu) < \inf_{\mu'}\mathbf{S}^1 \$\hat{F}_n(\mu') + 2\Delta\right{\left{\left{S}}}\$

Figure: Band around empirical Fréchet functional

• given α and Δ such that $\mathbf{P}\left(\sup_{\mu\in\mathbf{S}^{1}}\left|\hat{F}_{n}(\mu)-F(\mu)\right|\geq\Delta\right)\leq\frac{\alpha}{2}$ • $1-\frac{\alpha}{2}$ confidence set $C_{1}=\left\{\mu\in\mathbf{S}^{1}:\hat{F}_{n}(\mu)<\inf_{\mu'\in\mathbf{S}^{1}}\hat{F}_{n}(\mu')+2\Delta\right\}$

Figure: Band around empirical Fréchet functional

• given α and Δ such that $\mathbf{P}\left(\sup_{\mu\in\mathbf{S}^{1}}\left|\hat{F}_{n}(\mu)-F(\mu)\right|\geq\Delta\right)\leq\frac{\alpha}{2}$ • $1-\frac{\alpha}{2}$ confidence set $C_{1}=\left\{\mu\in\mathbf{S}^{1}:\hat{F}_{n}(\mu)<\inf_{\mu'\in\mathbf{S}^{1}}\hat{F}_{n}(\mu')+2\Delta\right\}$

Figure: Band around empirical Fréchet functional

• given α and Δ such that $\mathbf{P}\left(\sup_{\mu\in\mathbf{S}^{1}}\left|\hat{F}_{n}(\mu)-F(\mu)\right|\geq\Delta\right)\leq\frac{\alpha}{2}$ • $1-\frac{\alpha}{2}$ confidence set $C_{1}=\left\{\mu\in\mathbf{S}^{1}:\hat{F}_{n}(\mu)<\inf_{\mu'\in\mathbf{S}^{1}}\hat{F}_{n}(\mu')+2\Delta\right\}$

Figure: Band around empirical Fréchet functional

Aim:

$$\mathbf{P}\left(\sup_{\mu\in\mathbf{S}^{1}}\left|\hat{F}_{n}(\mu)-F(\mu)\right|\geq\Delta\right)\leq\frac{\alpha}{2}$$

$$\mathbf{P}\left(\sup_{\mu\in G}\left|\hat{F}_n(\mu)-F(\mu)\right|\geq \Delta_1\right)\leq 2\exp\left(-\frac{2n\Delta_1^2}{\pi^4}\right)$$

μ

Recall Hoeffdings inequality for a single point $\mu \in S^1$ using $\mathbf{E}\hat{F}_n(\mu) = F(\mu)$ and $0 \le d^2(\theta, \mu) \le \pi^2$

$${\sf P}\left(\left|\hat{F}_n(\mu)-F(\mu)
ight|\geq \Delta_1
ight)\leq 2\exp\left(-rac{2n\Delta_1^2}{\left(\pi^2
ight)^2}
ight)$$

$$\mathbf{P}\left(\sup_{\mu\in G}\left|\hat{F}_{n}(\mu)-F(\mu)\right|\geq\Delta_{1}+\Delta_{2}\right)\leq2\exp\left(-\frac{2n\Delta_{1}^{2}}{\pi^{4}}\right)+2\cdot2\exp\left(-\frac{Cn\Delta_{2}^{2}}{d^{2}(\mu,\mu')}\right)$$

Figure: Grid G

As $\begin{aligned} \left|\hat{F}_{n}(\mu') - F(\mu')\right| &\leq \left|\hat{F}_{n}(\mu) - F(\mu)\right| + \left|\left(\hat{F}_{n}(\mu') - F(\mu')\right) - \left(\hat{F}_{n}(\mu) - F(\mu)\right)\right|, \\ \text{extending to points } \mu' \text{ close to } \mu \text{ ,,does not cost much " (Chaining) as} \\ \hat{F}_{n} - F \text{ is Lipschitz:} \end{aligned}$ $\mathbf{P}\left(\left|\left(\hat{F}_{n}(\mu') - F(\mu')\right) - \left(\hat{F}_{n}(\mu) - F(\mu)\right)\right| \geq \Delta_{2}\right) \leq 2\exp\left(-C\frac{n\Delta_{2}^{2}}{d^{2}(\mu,\mu')}\right) \end{aligned}$

Figure: Grid G

Cost of adding points close to grid *G* decreases exponentially.

Figure: Grid G

Cost of adding points close to grid G decreases exponentially.

$$\mathbf{P}\left(\sup_{\mu\in G} \left|\hat{F}_{n}(\mu) - F(\mu)\right| \geq \Delta_{1} + \Delta_{2} + \Delta_{3} + \Delta_{4} + \cdots\right) \leq 2 \exp\left(-\frac{2n\Delta_{1}^{2}}{\pi^{4}}\right) + 4 \exp\left(-\frac{Cn\Delta_{2}^{2}}{d^{2}(\mu,\mu')}\right) + 8 \exp\left(-\frac{Cn\Delta_{3}^{2}}{d^{2}(\mu',\mu'')}\right) + 16 \exp\left(-\frac{Cn\Delta_{4}^{2}}{d^{2}(\mu'',\mu''')}\right) + \cdots + \frac{1}{\mu} + \frac{1}{\mu}$$

Figure: Grid G

Cost of adding points close to grid *G* decreases exponentially.

$$\mathbf{P}\left(\sup_{\mu\in\mathbf{S}^{1}}\left|\hat{F}_{n}(\mu)-F(\mu)\right|\geq\Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{4}+\cdots+\frac{L}{2\left|G\right|}\right)\leq 2\exp\left(-\frac{2n\Delta_{1}^{2}}{\pi^{4}}\right)+4\exp\left(-\frac{Cn\Delta_{2}^{2}}{d^{2}(\mu,\mu')}\right)+8\exp\left(-\frac{Cn\Delta_{3}^{2}}{d^{2}(\mu',\mu'')}\right)+16\exp\left(-\frac{Cn\Delta_{4}^{2}}{d^{2}(\mu'',\mu''')}\right)+\cdots\right)$$

$$-\frac{1}{\mu}\mu$$

Figure: Grid G

Cover remainder of ${\bf S}^1$ using L - Lipschitz continuity of \hat{F}_n-F and solve right hand side for $\frac{\alpha}{2}$

Bounding the derivative

- problem: *F̂_n* behaves like a quadratic function near global minimizers → large confidence sets
- solution: also take derivative \hat{F}'_n into account
- choose ε -cover of **S**¹, i.e. N_{ε} balls of radius $\varepsilon > 0$ with centers $\mu_1, \ldots, \mu_{N_{\varepsilon}}$
- for $\mu \in M \mathbf{E} \hat{F}'_n(\mu) = F'(\mu) = 0$ holds, thus $\operatorname{Var}(\hat{F}'_n(\mu)) = F(\mu) \leq \min_{\mu \in \mathbf{S}^1} \hat{F}_n(\mu) + \Delta =: \sigma^2$ with probability $1 - \frac{\alpha}{2}$ \rightsquigarrow use Bennett-Hoeffding inequality:

$$\mathbf{P}\left(\exists \mu \in M : \left|\hat{F}'_{n}(\mu)\right| > \delta\right) \leq \sum_{j=1}^{N_{\varepsilon}} \mathbf{P}\left(\left|\hat{F}'_{n}(\mu_{j})\right| > \delta\right)$$

problem: Chaining does not work as \hat{F}'_n may be discontinuous

Bounding the derivative

- problem: *F̂_n* behaves like a quadratic function near global minimizers → large confidence sets
- solution: also take derivative \hat{F}'_n into account
- choose ε -cover of **S**¹, i.e. N_{ε} balls of radius $\varepsilon > 0$ with centers $\mu_1, \ldots, \mu_{N_{\varepsilon}}$
- for $\mu \in M \mathbf{E} \hat{F}'_n(\mu) = F'(\mu) = 0$ holds, thus $\operatorname{Var}(\hat{F}'_n(\mu)) = F(\mu) \leq \min_{\mu \in \mathbf{S}^1} \hat{F}_n(\mu) + \Delta =: \sigma^2$ with probability $1 - \frac{\alpha}{2}$ \rightsquigarrow use Bennett-Hoeffding inequality:

$$\mathbf{P}\left(\exists \mu \in M : \left|\hat{F}'_{n}(\mu)\right| > \delta\right) \leq 2N_{\varepsilon} \exp\left(-\frac{n\sigma^{2}}{\left(2\pi\right)^{2}}\phi\left(\frac{2\pi\delta}{\sigma^{2}}\right)\right)$$

problem: Chaining does not work as \hat{F}'_n may be discontinuous

Putting everything together

• construct $1 - \frac{\alpha}{2}$ confidence set using chaining

$$\mathcal{C}_1 = \left\{ \mu \in \mathbf{S}^1 \middle| \hat{\mathcal{F}}_n(\mu) \leq \min_{\mu' \in \mathbf{S}^1} \hat{\mathcal{F}}_n(\mu') + 2\Delta
ight\}$$

• construct $1 - \frac{\alpha}{2}$ confidence set using derivative:

$$\mathcal{C}_2 = \left\{ \mu \in \mathbf{S}^1 \bigg| \exists j : d(\mu, \mu_j) \leq arepsilon \wedge \inf_{\mu \in \mathbf{S}^1: d(\mu, \mu_j)} \left| \hat{\mathcal{F}}'_n(\mu) \right| \leq \delta
ight\}$$

- intersection $C_1 \cap C_2$ is a 1α confidence set
- iterate covering only $C_1 \cap C_2$

Simulation 1: equilateral triangle

$$\mathbf{P}(\theta = -\frac{2}{3}\pi) = \mathbf{P}(\theta = 0) = \mathbf{P}(\theta = \frac{2}{3}\pi) = \frac{1}{3}$$

$\frac{2\pi}{3}$	
	0
$-\frac{2\pi}{3}$	

Figure: one simulation for $n = 10^4$: $C_1 \cap C_2 \supseteq M$

	n	$\lambda(C_1 \cap C_2)$	Coverage %
10	2	6.21 (±0.13)	100
10	3	$1.93 (\pm 0.01)$	100
10	4	$0.56~(\pm 0.00)$	100
10	5	$0.18~(\pm 0.00)$	100

- 1000 repetitions per sample size n
- 1 − α = 90%
- $\lambda(C_1 \cap C_2)$: Lebesgue measure

Simulation 1: equilateral triangle

$$\mathbf{P}(\theta = -\frac{2}{3}\pi) = \mathbf{P}(\theta = 0) = \mathbf{P}(\theta = \frac{2}{3}\pi) = \frac{1}{3}$$

$\frac{2\pi}{3}$	
$-\frac{2\pi}{3}$	

Figure: one simulation for $n = 10^4$: $C_1 \cap C_2 \supseteq M$

 $\begin{array}{c|ccc} n & \lambda(C_1 \cap C_2) & {\rm Coverage} \ \% \\ \hline 10^2 & 6.21 \ (\pm 0.13) & 100 \\ 10^3 & 1.93 \ (\pm 0.01) & 100 \\ 10^4 & 0.56 \ (\pm 0.00) & 100 \\ 10^5 & 0.18 \ (\pm 0.00) & 100 \\ \hline \end{array}$

- 1000 repetitions per sample size n
- 1 − α = 90%
- $\lambda(C_1 \cap C_2)$: Lebesgue measure

Simulation 2: partly uniform density

$$\theta \sim 0.6 \, \delta_0 + rac{1}{2\pi} \, \mathbf{1}_{(-\pi, -0.6\pi] \cup [0.6\pi, \pi]} \, \boldsymbol{\lambda}$$

п	$\lambda((C_1 \cap C_2) \setminus M)$	Coverage %
10 ²	2.44 (±0.32)	100
10 ³	$0.62 (\pm 0.11)$	100
10 ⁴	0.18 (±0.03)	100

•
$$M = [-0.4\pi, 0.4\pi]$$

- 100 repetitions per sample size n
- 1 − α = 90%
- $\lambda((C_1 \cap C_2) \setminus M)$: excess length

Stefan Heyder TU Ilmenau September 5th 2019

Figure: one simulation for

 $n = 10^4$: $C_1 \cap C_2 \supset M$

Simulation 2: partly uniform density

$$\theta \sim 0.6 \, \delta_0 + rac{1}{2\pi} \, \mathbf{1}_{(-\pi, -0.6\pi] \cup [0.6\pi, \pi]} \, \boldsymbol{\lambda}$$

п	$\lambda((C_1 \cap C_2) \setminus M)$	Coverage %
10 ²	2.44 (±0.32)	100
10 ³	$0.62 (\pm 0.11)$	100
10 ⁴	0.18 (±0.03)	100

Figure: one simulation for $n = 10^4$: $C_1 \cap C_2 \supseteq M$

- $M = [-0.4\pi, 0.4\pi]$
- 100 repetitions per sample size n
- 1 − α = 90%
- $\lambda((C_1 \cap C_2) \setminus M)$: excess length

Summary

constructed non-asymptotic, universal for Fréchet means on the circle

- no distributional assumptions
- automatically adapts to smeariness
- guaranteed coverage for every sample size
- excess length typically $\mathcal{O}\left(\sqrt{\log n/n}\right)$
- can be generalized to compact Riemannian manifolds

future research

can one extend chaining to derivative?

Thank you for your attention!

- M. Glock and T. Hotz. Constructing Universal, Non-asymptotic Confidence Sets for Intrinsic Means on the Circle. In International Conference on Geometric Science of Information, pages 477–485. Springer, 2017.
- T. Hotz and S. Huckemann. Intrinsic means on the circle: uniqueness, locus and asymptotics. Annals of the Institute of Statistical Mathematics, 67(1):177–193, Feb. 2015.

