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Abstract

We sketch how to construct confidence sets for extrinsic and intrinsic means using mass
concentration inequalities which are non-asymptotic, and universal in the sense that they
guarantee coverage of the entire set of means without making distributional assumptions
except that the observations are independent and identically distributed.
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1 Extrinsic means

Starting point. Assume we are given a random variable X taking values in a topological
space S. For example, think of data on a circle, a sphere, or some projective space occurring
when considering landmark-based shapes. We would like to define a midpoint of the distribution
of X, but since S does not (necessarily) carry the structure of an affine or even linear space the
mean EX is not defined. So what to do?

Embedding. Often, there is a (natural) embedding S ↪→ Rd of S into some Euclidean space
Rd (endowed with the standard inner product) of dimension d ∈ N so S may be identified with
a subset S ⊆ Rd, e.g. with a unit circle or unit sphere (around the origin 0 ∈ Rd). In
case of CP (k − 1) which occurs as the space of k + 1 landmarks in the plane modulo similarity
transformations, the so-called Veronese-Whitney embedding is given by representing a one-
dimensional subspace spanned by a unit vector y ∈ Ck by the orthogonal projection yy∗ ∈ Ck×k ∼=
R2k2 onto that subspace.

Extrinsic means. After identfying S with a subspace of Rd, X takes values in Rd, too, hence
EX is well-defined. We will call a = EX the ambient (or Euclidean) mean of X, since
typically, EX /∈ S but in the ambient space Rd, e.g. this will happen for the unit sphere unless
the distribution is a Dirac measure. The obvious resolution of this problem is to project the
ambient mean a back onto S. To be precise, let

π : Rd 3 x 7→ π(x) = argmin
y∈S

‖y − x‖ ⊆ S (1)

be this (orthogonal) projection mapping a point x to its set of closest points in S. Then, the
extrinsic mean set M is defined to be

M = π(a) = argmin
µ∈S

‖µ−EX‖ ⊆ S . (2)
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Existence and uniqueness. If S is a closed subset of Rd, π(x) 6= ∅ for any x ∈ Rd since π
is continuous, coercive, and bounded from below. So, under this mild condition, there will exist
an extrinsic mean. Uniqueness of the projection, i.e. whether π(x) contains only a single point,
will often depend on x. E.g., see (Mardia und Jupp 2000), when S is the unit sphere, then π(x) is
unique iff x 6= 0 in which case π(x) = x

‖x‖ whereas π(0) = S, in particular uniqueness fails if X is

uniformly distributed on the sphere; if a 6= 0, π(a) is called spherical mean or mean direction
(or circular mean for d = 2). When S = CP (k−1), then a = EX will be a positive semi-definite
Hermitian matrix as it is a mean of such (forming a convex cone), and an easy calculation shows
that π(a) will comprise all one-dimensional subspaces of the eigenspace associated to the largest
eigenvalue of a. If π(x) is unique, one calls x a non-focal point of S, else a focal point.

Confidence sets. Given i.i.d. random variables X = X1, . . . , Xn, n ∈ N, we aim to construct
a confidence set K = K(X1, . . . , Xn) which will cover all of M with probability at least 1 − α
for some predetermined α ∈ (0, 1), i.e. we want

P(K ⊇M) ≥ 1− α . (3)

This can be easily achieved: just construct a (1− α)-confidence set B for the ambient mean a, so
that P(B 3 a) ≥ 1− α, and define

K = π(B) . (4)

One could in fact approximate B using asymptotics by the central limit theorem for X̄n =
1
n

∑n
i=1Xi combined with Slutsky’s lemma using a consistent estimator of the covariance of X;

note that this differs from the textbook approach which uses the delta-method to obtain a central
limit theorem for π(X̄n) under the assumption that π(a) is a singleton.

Non-asymptotic and universal confidence sets. Asymptotics may be unreliable, however,
as one does not know in advance whether the sample size is large enough such that the approxima-
tion is sufficiently good. Consider e.g. a distribution composed of two point masses on the same
hemisphere, one of which carrying probability p < 1 − α 1

n . Then, with probability (1 − p)n > α
all observations coincide with the other point, leading to a degenerate confidence set composed
only of the latter point, i.e. it contains the true spherical mean with probability less than 1− α.
Therefore, we want the confidence sets to be non-asymptotic, guaranteeing coverage for any
(fixed) sample size n. Also, we do not want to make any assumptions about the distribution of
X, e.g. that π(a) is a singleton. In that sense, we want the confidence sets to universal. In order
to be able to construct such confidence sets, we will assume that S is bounded; this is fulfilled for
the examples above.

2 Mass concentration inequalities

Markov’s inequality. The idea is to put a in B if its deviation from the sample mean X̄n =
1
n

∑n
i=1Xi is not too large, and then set K = π(B). To make this precise, we need to determine

ta > 0 such that (under the hypothesis a = EX)

P(‖X̄n − a‖ > ta) ≤ α . (5)

For this, recall Markov’s inequality: if Y is a real-valued, nonnegative random variable, then
for any t > 0

P(Y > t) ≤ EY

t
. (6)

Choosing Y = ‖X̄n − a‖2 gives Chebyshev’s inequality:

P(‖X̄n − a‖ > t) = P
(
‖X̄n − a‖2 > t2

)
≤ E ‖X̄n − a‖2

t2
=

E ‖X − a‖2

n2t2
. (7)

In the special case where ‖X‖ = 1 a.s., which holds in the examples above, in particular for
the complex projective space since for a unit vector x ∈ Ck we have ‖xx∗‖2 = trxx∗(xx∗)∗ =
tr(x∗x)(x∗x) = 1, we get the total variance

σ2 = E ‖X − a‖2 = E(X −EX)∗(X −EX) = EX∗X − (EX)∗(EX) = 1− ‖a‖2 (8)

which is small if the so-called mean resultant length ‖a‖ is close to one since the distribution
must then be more concentrated. We thus obtain the simple formula

P(‖X̄n − a‖ > t) ≤ σ2

n2t2
. (9)
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Rosenthal type inequalities. Chebyshev’s inequality is often quite conservative; it can be
improved by going to higher moments which, however, are more difficult to calculate. Using the
bound in equation (10) of (Pinelis 2015) we obtain

P(‖X̄n − a‖ > t) ≤ (bσ +
√

3σ)2

n4t4
(10)

which decreases faster in t and n; here, b = 1 + ‖a‖ is the a.s. bound for the centred random
variable X − a.

The Cramér-Chernoff method. If Z = Z1, . . . , Zn are i.i.d. real-valued random variables
with |Z| ≤ b a.s., one can employ Markov’s inequality for Z̄n = 1

n

∑n
i=1 Zi and h > 0 to get

P(Z̄n −EZ ≥ t) = P
(
eh(Z̄n−EZ) ≥ eht

)
≤ e−ht E eh(Z̄n−EZ) = e−ht

(
E e

h
n (Z−EZ)

)n
(11)

by independence. Estimating z 7→ eh(z−EZ) by a linear function over [−b, b] and optimising over
h > 0 leads to Hoeffding’s inequality, (Hoeffding 1963),

P(Z̄n −EZ ≥ t) ≤ exp

(
−nt

2

2b2

)
(12)

which decreases exponentially fast in t and n; estimating it by a quadratic function gives rise to
the Bennett-Hoeffding inequality

P(Z̄n −EZ ≥ t) ≤ exp

(
−nτ

2

b2
φ

(
bt

τ2

))
(13)

where τ2 ≥ VarZ and φ(s) = (1+s) log(1+s)−s for s > 0. Extending this to higher dimensions is
non-trivial, since e‖X̄n−a‖ no longer factorises but Pinelis und Sakhanenko (1986) have nontheless
derived the multivariate Bennett-Hoeffding inequality

P(‖X̄n − a‖ > t) ≤ 2 exp

(
−nτ

2

b2
φ

(
bt

τ2

))
(14)

for τ2 ≥ E ‖X − a‖2.

Critical values. Note that none of these inequalities (Chebyshev, 4th moment Rosenthal,
Bennett-Hoeffding) is strictly superior to any of the others. Setting the right hand side equal
to α and (numerically, if necessary) solving for t in all cases yields an upper bound to the critical
value ta which we ideally seek; we thus may work with the smallest of these critical values which
we will denote by ta; it will only depend on the mean resultant length ‖a‖. We then get indeed

P(‖X̄n − a‖ > ta) ≤ α . (15)

3 Confidence sets for extrinsic means

Assumptions. We assume X = X1, . . . , Xn are i.i.d. random variables taking values in a closed
set S ⊆ Rd which is bounded by 1, i.e. S is contained in the unit ball of Rd. These assumptions
are fulfilled in the examples above.

Construction of the confidence set. For any a in the convex hull C of S (i.e. a is a possible
ambient mean), (numerically) determine ta using the above inequalities such that, if a were EX,
P(‖X̄n − a‖ > ta) ≤ α. Now set

B = {a ∈ C : ‖X̄n − a‖ ≤ ta} , K = π(B) . (16)

Then P(K ⊇M) ≥ 1− α, i.e. K is a (1− α)-confidence set for the entire set M . Note that, if S
is a subset of the unit sphere, it will be enough to calculate the maximal angle formed by a ∈ B
and X̄n to get K as the intersection of S with the corresponding ball around π(X̄n). Details on
this construction using Chebyshev’s inequality may be found in (Hotz und Kelma 2016).

Question. As opposed to the asymptotic approach were B is an ellipsoid, here it is a ball – does
that matter? are ellipsoids “better” than balls? Note that we did take the trace of the covariance
into account, but not the individual eigenvalues – should we rather do that?
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4 Intrinsic means

Assumptions. We again assume that X = X1, . . . , Xn are i.i.d. random variables taking values
in some set S but now S is a (connected) compact Riemannian manifold. The examples above
all consitute embedded manifolds, and a (natural) Riemannian metric is given by the restriction
of the standard Riemannian metric on Rd to the tangent spaces of the regular submanifold. The
Riemannian metric then induces a distance d : S × S → [0, D], the so-called intrinsic metric,
where D = max d(S,S) <∞ is the diameter of the manifold.

Intrinsic means. Now, there no longer is a notion of averaging points on the manifold. The
idea of Fréchet (1948) is to generalise the characterisation of a Euclidean mean as the minimiser
of expected squared distances, and define the set of intrinsic means as

M = argmin
y∈S

E d(X, y)2 . (17)

This definition is in fact reasonable for any metric, leading to so-called Fréchet means. In fact, for
the Euclidean distance restricted to an embedded manifold, the bias-variance decomposition
implies that the corresponding Fréchet means are the extrinsic means considered earlier. But the
distance was then measured across the ambient space, possibly outside of S, which is why they
are called extrinsic, while the intrinsic distance is defined as the minimal length of paths within
the manifold, hence leading to intrinsic means.

Existence and uniqueness. By compactness of S and continuity of d, intrinsic means do exist,
i.e. M 6= ∅. The question of uniqueness is non-trivial but it definitely does not hold in general:
consider e.g. the uniform distribution on a Riemannian homogeneous space like the examples
above.

5 Confidence sets for intrinsic means

Aim. Again, we would like to construct a confidence set K covering all of M with at least
probability 1−α. Since asymptotic distributions for intrinsic sample means are difficult to derive
and to estimate, and even less reliable for finite sample sizes, we again would like our confidence
sets to be non-asymptotic and universal.

Empirical process approach. Let

F : S → [0, D2] , y 7→ F (y) = E d(X, y)2 (18)

be the Fréchet functional, so that M is the set of minimisers of F . Then F can be estimated
by its empirical analogue, the empirical Fréchet functional

F̂ : S → [0, D2] , y 7→ F̂ (y) =
1

n

n∑
i=1

d(Xi, y)2 . (19)

Then, for any fixed y ∈ S, E F̂ (y) = F (y), and the deviations F̂ (y) − F (y) can be controlled
by the mass concentration inequalities discussed above since F is bounded. If we now could
control the deviation between F̂ from F in the supremum norm, we could draw conclusions about
the minimisers of F from F̂ . Indeed, assume τ > 0 has been determined such that

P
(

sup
y∈S
|F̂ (y)− F (y)| > τ

)
≤ α , (20)

then on the event {|F̂ (y)− F (y)| ≤ τ}

max
y∈M

F̂ (y) ≤ max
y∈M

F (y) + τ = min
y∈S

F (y) + τ ≤ min
y∈S

F̂ (y) + 2τ , (21)

so

K =
{
y ∈ S : F̂ (y) ≤ min

z∈S
F̂ (z) + 2τ

}
(22)

is a (1− α)-confidence set for M .
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Covers. For finitely many points y1, . . . , yN ∈ S, N ∈ N, we can use the union bound (or
Bonferroni approach) to get

P

(
sup

j=1,...,N
|F̂ (yj)− F (yj)| > t

)
≤

N∑
j=1

P(|F̂ (yj)− F (yj)| > t) ≤ 2N exp

(
− nt2

2D4

)
(23)

where we used Hoeffding’s inequality (12) (and the union bound for the two signs) in the last step.
Note that N enters the exponential as logN so that using many points is not too problematic but
N needs of course to be finite. If for some given ε > 0 the points y1, . . . , yN give an ε-cover of
S, i.e. the (closed) balls of radius ε around the points cover S, then any point in S is at most ε
from one of the points where we control F̂ −F . Now both F and F̂ are Lipschitz-continuous with
constant 2D, so their difference F̂ − F is Lipschitz-continuous with constant 4D, giving

sup
y∈S
|F̂ (y)− F (y)| ≤ sup

j=1,...,N
|F̂ (yj)− F (yj)|+ 4Dε . (24)

The smallest number Nε ∈ N such that there exists cover of S with Nε balls of radius ε is called
the ε-covering number. Hence, setting

t =

√
−2D4

n
log

α

2Nε
, and τ = t+ 4Dε (25)

in (22) gives the desired confidence set.

Chaining. One might (in advance) optimise τ in (24) over ε > 0, thus ensuring a good estimate
on each ball without using too many balls. However, one can do much better by using the fact
that due to its Lipschitz continuity, F̂ −F will differ very little at nearby points, i.e. for y, z ∈ S,∣∣F̂ (z)− F (z)−

(
F̂ (y)− F (z)

)∣∣ ≤ 4Dd(y, z), (26)

leading to better estimates in Hoeffding’s inequality, and thus a better control of

|F̂ (z)− F (z)| ≤
∣∣F̂ (z)− F (z)−

(
F̂ (y)− F (z)

)∣∣+ |F̂ (y)− F (y)| . (27)

This suggests to start with a coarse cover, using the Lipschitz-estimate on a finer cover, and again
on an even finer cover, continuing ad infinitum, or using the crude estimate (25) on the last, small
balls. In any case, one obtains confidence sets which will converge to M when n tends to infinity
(question: in what sense?), i.e. they are consistent.

Controlling the derivative. Unfortunately, t, and thus also τ , will be at best of order n−
1
2 ,

while F will increase away from M at best quadratically, so the convergence rate will at best be
n−

1
4 ! We address this by looking at the derivative which should increase linearly. The problem

is that y 7→ d(x, y)2 is not differentiable if x is at the cut-locus of y. However, if y ∈ M is an
intrinsic mean then F is differentiable at y with vanishing gradient, and furthermore the cut-locus
of y carries no mass, so y 7→ d(X, y)2 is a.s. differentiable at y. But we cannot use chaining since
neither do the centres of the balls forming an ε-cover have to be intrinsic means, nor does the
derivative have to be continuous outside M . Nonetheless, we may assume that some ε-balls around
y1, . . . , yN cover M , and every such ball contains some zj ∈ M , i.e. d(zj , yj) ≤ ε, j = 1, . . . , N .

Then, setting ‖∇F̂ (y)‖ =∞ if F̂ is not differentiable at y,

P
(
∃j : inf

x∈S : d(x,yj)≤ε
‖∇F̂ (x)‖ > t

)
≤ P(∃j : ‖∇F̂ (zj)‖ > t) ≤

N∑
j=1

P(‖∇F̂ (zj)‖ > t) . (28)

The latter probabilities can now be estimated using the multivariate Bennett-Hoeffding inequality
(14), since zj ∈ M we have E∇F̂ (zj) = ∇F (zj) = 0, ∇d(·, zj)2 is a.e. bounded by 2D, and

E ‖∇F̂ (zj)‖2 = F (zj). By choosing t appropriately, we thus can ensure the right hand side of (28)
to be at most α. For such t, and ε-balls around y1, . . . , yNε

providing an ε-cover of S,

K =
{
z : ∃j = 1, . . . , Nε : d(z, yj) ≤ ε ∧ inf

x∈S : d(x,yj)≤ε
‖∇F̂ (x)‖ > t

}
(29)

is an (1− α)-confidence set for M .
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Combining and iterating. In fact, we need to control both F̂−F and its derivative: the former
to ensure consistency by excluding local minima and other critical points, the latter to obtain a
good convergence rate. This can be achieved by constructing the two as

(
1− α

2

)
-confidence sets,

and then calculating their intersection. In fact, a little thought shows that one needs to control
those empirical processes only on M , so after constructing K one only has to consider ε-covers of
K, and one can iterate the procedure until convergence. This is admissible because one obtains
upper estimates for the correct critical values of the suprema of the empirical processes as long as
K covers M – which will be the case unless at least one of the suprema is larger than the correct
critical value corresponding to α

2 .

Notes and questions. Note that in order to construct such confidence sets, one needs to be
able to construct the necessary ε-covers, and the confidence set itself will be described by such an
ε-cover as well. Since M does not have to be connected (e.g. if S is a circle and X is equal to any
of the three points forming some equilateral triangle with probability 1

3 , M comprises those three
points), it is unclear whether one can in general obtain a confidence set with a description that is
easier to interpret. Also, there is room for generalisations, e.g. the Fréchet mean with respect to
the extrinsic metric, i.e. the extrinsic mean could be treated like this as well, although the F is
differentiable in that case, so chaining is possible for ∇F as well, but the result is worse than the
one obtained by the direct, geometrical approach. Hence, there is a need for better concentration
equalities, and for some kind of chaining for the derivative in the general case. Details on this
construction on the circle without chaining may be found in Glock und Hotz (2017).
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