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We have data Xj, ..., X, on manifolds or stratified
spaces.

We want to do inference: statistical testing,
controlling the error of the first kind,

P{ accept Hy|Hp is true} > 1 — a,

asymptotically exact as n — oo,
or even exact for finite n (~» Thomas’ talk at 15:30).

Here we do nonparametric asymptotics.
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Euclidean Analog

Letiid. X, X, X, ... € RP and X, = Xt

Theorem (The Strong Law)
If E[X] exists then for n — oo

Xn — E[X] a.s.

Theorem (The Central Limit Theorem)
IFE[||X||?] < oo then for n — oo

Vn (Xn = E[X]) B N(0, cov[X])
Test statistic for E[X]: cov[X]~"/2\/n (X, — E[X]) B N (0, )

plugging in =X = =15 37 4 (X; — Xn)(X; — X5)T for cov[X].
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The Bhattacharya and Patrangenaru (2005) CLT
Data X, ..., X,' %X on a Riemannian D-manifold (M, p).
Fréchet functions

F(0) = S ELX.PR. Folp) = 5= 3 p(X. P
=1

Assumptions:

(A1) unique Fréchet mean u € argmin,y F(p)
(difficult: Karcher (1977); Kendall (1990); Le (1998);
Groisser (2005); Afsari (2011), not covered here),
(A2) in alocal chart (U, ¢), ne UC M, ¢~ '(U) = V C RP,

x = p(X, 6(x))%a.s. € C3(V),
(A3) pn Em for a measurable selection of sample means

f1n € argmin Fp(p)
peM

(guaranteed by Ziezold (1977); Bhattacharya and
Patrangenaru (2003) under very general conditions).
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The Bhattacharya and Patrangenaru (2005) CLT

More assumptions:
(A4) 3G := cov [grad]xzqsq(“)pz (X, ¢(X))} :
IH.=E [H(X, o (u))}, H(X, ) = Hess|xp? (X, 6(X))

(we cannot do without, e.g. valid on compact M)
(AS) ase — 0,

E[ sup \H(X,x)—H(X,x’)\] -0
X=¢=" (1), [Ix—x||<e
(AB) H is not singular.

Theorem (Bhattacharya and Patrangenaru (2005);
Bhattacharya and Lin (2017))

Under Assumptions (A1) — (A6):

Vi (67 () = 67 () BN (0, HTTGHT)



Sketch of Proof
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Patrangenaru (2003): x,,afi'o.
e Fréchet functions:

BP/BL-CLT

1T & 2 1
Fn(X):ﬁ Zp()(ja(b(x)) 3 F(X)ZE]E[p(X7¢(X))2]7
j=1
e Taylor expansion (with suitable x between 0 and xp),
ﬁgradb{:xo Fo(x) = +/ngrad|y—oFn(x) + Hess|,_5zFn(X)vVnxo,

(A2) = holds also a.s. for random xg = X;

e generalized weak law (n — oo and xg — 0)
Hess|,_xFn(X) LE [Hess])(:op(X,X)2 =H,

(A5) = holds also for random xy = xp,, and
(AB) = E [Hess|y—op(X, X)?] >0
= BP-CLT.
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AT Corollary (2.3 from Bhattacharya and Lin (2017))
Instead of
vercuterss (A2) in @ local chart (U, ¢), p € UC M, ¢ (U) = V C RP,

x = p(X, 6(x))? is a.s. € C3(V)

it suffices to require
(C) there is a neighborhood W C M of the cut locus Cut( )

of u such thatP{X € W} = 0.
This is problematic, because
Example (Eltzner et al. (2019))
On the flat cylinder M = S' x R there is ar.v. X that satisfies
(C) but not (A2).
Theorem (Le and Barden (2014))
P{X € Cut(u)} = 0.



CLT for
Fréchet

Means Stability of the Cut Locus
Huckemann Let M be a complete, connected Riemannian D-manifold.
We say that (the cut loci of) M is (are)
topologically stable if vV p € M, neighborhoods W of
(A2CEEea Cut(p), 36 = dw p such that Cut(B(p, §)) € W;
geometrically stable if V. p € M, e > 0, 3§ = 4. p such
that Cut(B(p, §)) € B(Cut(p),e¢).



CLT for
Fréchet

Means Stability of the Cut Locus
Huckemann Let M be a complete, connected Riemannian D-manifold.
We say that (the cut loci of) M is (are)
topologically stable if vV p € M, neighborhoods W of
(A2CEEea Cut(p), 36 = dw p such that Cut(B(p, §)) € W;
geometrically stable if V. p € M, e > 0, 3§ = 4. p such
that Cut(B(p, §)) € B(Cut(p),e¢).

Theorem (Eltzner et al. (2019))
©@ M topologically stable = M geometrically stable;



CLT for
Fréchet

Means Stability of the Cut Locus
Huckemann Let M be a complete, connected Riemannian D-manifold.
We say that (the cut loci of) M is (are)
topologically stable if vV p € M, neighborhoods W of
(A2CEEea Cut(p), 36 = dw p such that Cut(B(p, §)) € W;
geometrically stable if V. p € M, e > 0, 3§ = 4. p such
that Cut(B(p, §)) € B(Cut(p),e¢).

Theorem (Eltzner et al. (2019))
©@ M topologically stable = M geometrically stable;

® M compact = M topologically stable;



CLT for
Fréchet

Means Stability of the Cut Locus
Huckemann Let M be a complete, connected Riemannian D-manifold.
We say that (the cut loci of) M is (are)
topologically stable if vV p € M, neighborhoods W of
(A2CEEea Cut(p), 36 = dw p such that Cut(B(p, §)) € W;
geometrically stable if V. p € M, e > 0, 3§ = 4. p such
that Cut(B(p, §)) € B(Cut(p),e¢).

Theorem (Eltzner et al. (2019))
© M topologically stable = M geometrically stable;
® M compact = M topologically stable;

® M topologically stable and (C) = (A2);



CLT for
Fréchet
Means

Huckemann

(A2): Cut Locus

Stability of the Cut Locus
Let M be a complete, connected Riemannian D-manifold.
We say that (the cut loci of) M is (are)
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(A2): Cut Locus

Stability of the Cut Locus

Let M be a complete, connected Riemannian D-manifold.

We say that (the cut loci of) M is (are)
topologically stable if vV p € M, neighborhoods W of
Cut(p), 36 = dw p such that Cut(B(p, §)) € W;
geometrically stable if V. p € M, e > 0, 3§ = 4. p such
that Cut(B(p, §)) € B(Cut(p),e¢).

Theorem (Eltzner et al. (2019))

© M topologically stable = M geometrically stable;

® M compact = M topologically stable;
® M topologically stable and (C) = (A2);
@ M topologically stable = Bhattacharya and Lin (2017,
Cor. 2.3) holds.
Example (Eltzner et al. (2019))
1. The flat cylinder M = S' x R is metrically stable;
2. The Beltrami trumpet (pseudosphere) is not metrically
stable.
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Means What Else Can Go Wrong?
M Gonsider (McKilliam et al. (2012), Hotz and H. 2015):
o Xiy.. . Xy W X eS' = [~ 7]/ ~
(A2): Cut Locus e Fréchet means 0 (population), x, (sample)
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2nFax) = S (G- xP+ Y (X +2r—x)P

XE[X—ﬂ' ] Xi<x—m
= Z 2 +4n Z (Xj—x +m)
Xi<x—m

Hess|xFn(Xx) = 1 a.s., but Hess|x—oF(Xx) = 1 — 2 f(—)
corresponds to H.
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o With unique (A1) population mean p = ¢(0),
measurable selection i, = ¢(x,) of sample means,
e Taylorwith2 <r, Re SO(m)and Ty,..., Ty #0,

(A5): Emp. Pr. m .
F(x) = F(0)+ ) Tj|(Rx);|" + o(lIx|"),
j=1

o Donsker cond.: 3 po(X) := grad, p(X, ¢(x))?|x=0 a.8.
with 3 cov[po(X)], m’ble function 5 : M — R such that
E[p(X)?] < oo and Vxy, X2 € V,

(X, 6(3))% = p(X, (x2))?| < H(X)IIX1 — x| a5,

e if up € E, m’ble, use some van der Vaart (2000),

Theorem (Eltzner and H. 2018)

VN Rxp| Rxa™~2 B N(0, X) (power component-wise),
1

suitable ¥ > 0. x, has rate n 20-V, js r — 2-smeary.
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« 3 arbitrary smeariness on S' (Hotz and H., 2015);

(A6): Smeary e Jr—2 = 2smeariness on S for all m € N (Eltzner and
H., 2018);

e Jr—2 = 2smeariness on S™ for all m > 5 with (C)
(Eltzner, 2019);

e smeariness is measure dependent (!);

e smeariness, although only for nullset of the parameter
space influences finite sample rates nearby.
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Table 1.5 Orientations of 76 turtles after laying eggs (Gould's data cited by

Stephens, 1969e)
Direction (in degrees) clockwise from north
8 9 13 13 1 18 22 27 30 34 O
38 38 40 44 45 4T 48 48 48 48
50 53 56 57 58 58 61 63 64 64
64 65 65 68 70 73 78 78 78 83 <
83 8 88 88 90 92 92 93 95 9% c
(A6): Smeary 98 100 103 106 113 118 138 133 153 155 >
204 215 223 226 237 238 243 24 250 251 $
257 268 285 319 343 330 2 ™ A
)
g
o N
kel

0 1 2 3 4
log10 data points

Bootstrapped variance
black = Euclidean in
[-7, 7] CR,

Flure 1.6 Cocla it of e tarls o of Tble 15 red = circular ~ n?/3?

from Mardia and Jupp (2000).
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Two-Smeariness (Eltzner and H. 2018)

r —2 = 2 smeary (dashed line)

10°

— 0.00 — 0.00
— -0.01 — -0.01
— 002 — -0.02
— -0.05 — -0.05
100 010 100 { — -0.10 10t

Variances Vn
Variances Vn
Variances Vn

10° 10°

10? 102 102

10° 10* 10° 10° 10" 10° 10° 10! 10°
Data points n Data points n Data points n

On a sphere S™ with dimension (all derivatives O(m~1/2))
m=2 m=10 m =100
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Means Separating Data from Descriptor Space
Huckemann
Generalized Fréchet Means (S.H 2011a,b):
e Random X1,...,X,,i'ir§‘X € Qon adata space Q
P = descriptor space, e.g. '(Q) = space of geodesics
on Q
p: Qx P —[0,00) continuous = link function
v € argmin,.p E[p(X, p)?] = generalized population
Fréchet mean
4 € argmin,cp 371 p( X, p)? = generalized sample
Fréchet mean
If v is unique,
e ¥ — v a.s. by S.H. (2011b) under weak regularity
conditions
o VN(6(%) — (7)) B N(0, ) by S.H. (2011a) if P is near
~ a manifold with local chart ¢, under regularity
conditions adapted from (A1) — (A6).

Generalizations
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reproduced (not even by himself). 3 nonnormal perturbation
theory proofs, e.g. Davis (1977); Watson (1983); Ruymgaart
and Yang (1997).
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Q=R", P=G(m,k) > p=span(Vks1,.-.,Vm)":
cov[X] = V/\VT,)\1 = .. =X> M1 >...2An>0;
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Application: The CLT of Classical PCA

Original CLT proof by Anderson (1963) has not been
reproduced (not even by himself). 3 nonnormal perturbation
theory proofs, e.g. Davis (1977); Watson (1983); Ruymgaart
and Yang (1997).

=W
Q=R", P=G(m,k) > p=span(Vks1,.-.,Vm)":
cov[X] = V/\VT,)\1 = .. =X> M1 >...2An>0;

cov[Xi,.... X = VAVT, Xy > ... > X > X1 > ... Am > 0;
d(p,p')? = mingco(m-k) I|W — RW'|]?

p(X,p)2 = | X — WWTX|2 = | X|2 — trace(WT XXT W);

= (A1), Taylor with r = 2;

p(X, )2 — p(X, p)? = trace(WT XXT W) — trace(W'T XXT W),
with E[||X||*] < co = Donsker;

= /n Gaussian CLT.
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More Applications

Geodesic PCA (GPCA) on Riemannian spaces by S.H
et al. (2010):
e Py =T1(Q) = all geodesics on Q,
~ ~1 and 47 = 1st geodesic PCs
e Po={pel(Q):m Lpynp#0}
Pr={pel(Q):41 Lpg1np+#0}
~+ 72 and 4. = 2nd geodesic PCs
If M is a Riemannian manifold and G a Lie group acting
properly and isometrically on G then the shape space
Q := M/G is a Riemann stratified space, so is ['(Q).
A shape space has an open and dense
top-dimensional manifold part Q* (cf. Bredon (1972)).

Manifold stability for intrinsic means (singularities are

repulsive for means) not for Procrustes means (!), cf.
S.H. (2012). Open for GPCs.
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Euclidean visualization of scores,
0.9. projection onto GPCs (H. et al, 2010)

28 tetrahedral iron-age — 0B

fibulae from a grave site in @ ‘5‘@% mn——

_ . TN ©
Munsingen, Switzerland s

(Hodson et al. (1966) and : ? ;
Small (1996)). . . 2 X
. Groups from old to
e young: filled circles,
= © stars, crosses,
. S diamonds and circles.
.
‘ PC2: Shape change;
© PC1: Stronger effect,

o diversification.
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Descriptors: pX pY e P
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(ZX=2ZY) ~ T3(k,n+m—2)
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Two-Sample Descriptor Test

Data: Xi,.... %X, Yi,....¥Ym € Q
S———— SN——r
1 il
Descriptors: pX pY e P
1 ¢! 1
Coordinates: zX zY e RP

Under Hp : X = 1Y,

nm
n+m

(m+n—2)(2X - 2" (neav(Z¥ ) + mcov(Zy )

(ZX=2ZY) ~ T3(k,n+m—2)

But how to access cov[Z | and cov[Z , ]?
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fudemam — Eor b =1,..., B, resample:
o X{ by Xipfrom Xy, ..., X, gives cov[Z{ ]
o Vb Yipfrom Yy, ..., Y, gives cov[Z) ]
o set A= ncov[Z{ |+ mcov[Z) ]
Again,forb=1,..., B, resample:
o o W1*7b,..., W;;erb from Xy,..., X0, Y1,.... Ym

Applications e set )(;:b = VVij forj =1 -
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0 ST Forb=1,...,B, resample:
© Xip.o, X3, from Xy, ... X, gives cov[Z¥ ]
° Y1*,b’ RN Yrtw,b from Yy,...,Ym gives 60\\/[21\./..m]
o set A= ncov[Z{ ]+ mcov[Z) ]
Again,forb=1,..., B, resample:
° W1*,b7"" W:er,b from Xy,.... X0, Y1,..., Ym
;S;ji/canons e set )(;:b = VV/Tb fOI’j =1 REEERL

e set Yj’jb:W.* forj=1,...,m

j+n.b
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e sSet A= n(TO\V[Z1),(..n] + mEOT/[ZX..m]
Again,forb=1,..., B, resample:
o Wiy, Wi pfrom Xy, oo X, Yy, Vi
Aoplcations e set X', =W forj=1,....n
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e compute the empirical quantile ¢j_, such that
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Bootstrapping

Forb=1,...,B, resample:

o X{ by Xipfrom Xy, ..., X, gives cov[Z{ ]

o Vb Yipfrom Yy, ..., Y, gives cov[Z) ]

o set A= ncov[Z{ |+ mcov[Z) ]
Again,forb=1,..., B, resample:

o W1*7b,..., W;;erb from Xy,..., X0, Y1,..., Ym

o seth":b: Wj’fbforj: 1,...,n

esetYi, =W, forj=1,...m

compute the empirical quantile ¢j_ , such that
P{(ZX -2")TANZX -2 < e,
X1, X, Y1,...,Ym} >1—q

Then, the test

reject Hy if (ZX — ZY)TA-W(ZX - ZY) > ¢f_,

has the asymptotic level a.
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Improved Power

Recall, for b=1,..., B/, resample:
o W1*7b,...,W;,k+m7bfromX1,...,X,,, Yi,....Ym
e set Xy =W, forj=1,....n
e set Y, =W, forj=1,....m

e compute the empirical quantile ¢j__, such that
e P{(ZX - ZV)TANZX -2") <6} 21-a
Then, reject Hy if (ZX — Z¥)TA-Y(ZX - ZY) > ¢,
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AR Then, reject Hy if (ZX — ZY)TA(ZX - Z2Y) > ¢f_,

To improve the power, resample
e X*Pfrom Xi,...,X,and Y*P from Yq,..., Ym
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compute the empirical quantile ¢j__, such that

X+ Y\T A—1(ZX* y* *
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AR Then, reject Hy if (ZX — ZY)TA(ZX - Z2Y) > ¢f_,
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e compute the empirical quantile ¢j__, such that
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Hudemamn  Recall, for b=1,..., B/, resample:
e Wiy, ... . Whmpfrom Xy, ..o, Xn, Yy, Vi
o set Xy =W forj=1,....n
¢ SV, = Wiy forj =1,

compute the empirical quantile ¢j__, such that

X+ Y\T A—1(ZX* y* *
. IP’{(Z —ZMYTANZX ~ Z )gcpa}y—a
AR Then, reject Hy if (ZX — ZY)TA(ZX - Z2Y) > ¢f_,

To improve the power, resample
e X*Pfrom Xi,...,X,and Y*P from Yq,..., Ym
o setdX =X —zv* ¥ = z7V — zn"
e compute the empirical quantile ¢j__, such that
e P{(& —d")TA (@ ~d") <6 }=1-a
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Improved Power

Recall, for b=1,..., B/, resample:
o W1*7b,...,W;,k+m7bfromX1,...,X,,, Yi,.... Ym
e set Xy =W, forj=1,....n
e set Y, =W, forj=1,....m

compute the empirical quantile ¢j__, such that
P {(ZX* —ZMYTANZX -2 < c;ga} >1-a
Then, reject Hy if (ZX — ZV)TAY(ZX - ZY) > ¢;_,

To improve the power, resample
e X*Pfrom Xi,...,X,and Y*P from Yq,..., Ym
o setdX =X —zv* ¥ = z7V — zn"
e compute the empirical quantile ¢j__, such that
e P{(& —d")TA (@ ~d") <6 }=1-a

Then, rejecting Hy if (ZX — ZY)TA-1(ZX — Z¥) > ¢}__ has
the asymptotic level a and we have simulated “close” to Hp.
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Note:

e Euclidean PCA ist canonically nested.

e non-Euclidean PCA is not.
For data on a sphere Q = S, Jung et al. (2012) define
principal nested spheres (PNS) by residual variance
minimization

e s"58™ " 5., 58" 5 {n} (great spheres).

e or even small spheres,

e backward nested.
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Sequences of Nested
Subspaces

Note:

e Euclidean PCA ist canonically nested.

e non-Euclidean PCA is not.
For data on a sphere Q = S, Jung et al. (2012) define
principal nested spheres (PNS) by residual variance
minimization

e s"58™ " 5., 58" 5 {n} (great spheres).

e or even small spheres,

e backward nested.

For more general spaces, Pennec (2018) defines
barycentric subspaces (next two days)

e forward or backward nested or all at once.
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Note:
e Euclidean PCA ist canonically nested.
e non-Euclidean PCA is not.

For data on a sphere Q = S, Jung et al. (2012) define
PCA/ principal nested spheres (PNS) by residual variance
AppIeatens — minimization

e s"58™ " 5., 58" 5 {n} (great spheres).
e or even small spheres,
e backward nested.

For more general spaces, Pennec (2018) defines
barycentric subspaces (next two days)

o forward or backward nested or all at once.
How about asymptotics of such nested random subspaces?
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Backward Nested Families of Descriptors
Q (topological separable = ts): Data space
H{P}’” (ts) with continuous d; : P; x P; — [0, c0)
vamshmg exactly on the diagonal,P,, = {Q};
(i) every pe P (j=1,...,m)is itself a topological space
giving rise to a topological space () # Sp C P;_4 with
pp P x Sp—[0,00), continuous;
(i) vpe Pi(j=1,...,m)and s € Sp 3 “projection”

Tp,s : P — S, measurable .
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) 3{P;}, (ts) with continuous dj : Pj x P; — [0, c0)
vamshmg exactly on the diagonal,P,, = {Q};
(i) every pe P (j=1,...,m)is itself a topological space
giving rise to a topological space () # Sp C P;_4 with
pp P x Sp—[0,00), continuous;
— (i) vpe Pi(j=1,...,m)and s € Sp 3 “projection”
Applications
3 Tp,s : P — S, measurable .
Forje{1,...,m},
f={p",....p} withp " €Sy I=j+1,....m

is BNFD from Pp, to P; from the space
Ty {f_{p},mp esp,,/:j+1,...,m},
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Means Backward Nested Families of Descriptors
Fluckemann Q (topological separable = ts): Data space
) 3{P;}, (ts) with continuous dj : Pj x P; — [0, c0)
vamshmg exactly on the diagonal,P,, = {Q};
(i) every pe P (j=1,...,m)is itself a topological space
giving rise to a topological space () # Sp C P;_4 with
pp P x Sp—[0,00), continuous;
— (i) vpe Pi(j=1,...,m)and s € Sp 3 “projection”

Applications
Tp,s 1 P — S, measurable .

Forje{1,...,m},

f={p",....p} withp " €Sy I=j+1,....m
is BNFD from Pp, to P; from the space

Ty {f_{p}, pte sp,,/:j+1,...,m} :
with projection along each descriptor

Tf = Tpi+1 pj © - -+ O TTpm pm—1 S,Om —>p’
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Backward Nested Families of Descriptors

For another BNFD f' = {p''V,_ € Ty, set

di(f, f) =, Zd (P!, p'")?
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Random elements Xj, ..., X,,i'i'wd' X on a data space Q
admitting BNFDs give rise to backward nested population
and sample means (BN means) recursively defined via
fM={Q}=1"ie.p"=Q=pandforj=m,... 1,

PCA/ p/_1 € argmin E[pp/(ﬂ'fj o X, 3)2], =1 = (pI)//;:n

Applications
SESPI‘

n
._1 . ‘_ ._
phleargmind p (w0 X, s)2, B = (0h),-
SGSp,‘ i—1 p£1 n
j=
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Backward Nested Fréchet Means

Random elements Xj, ..., X,,i'i'wd' X on a data space Q

admitting BNFDs give rise to backward nested population
and sample means (BN means) recursively defined via
fM={Q}=1"ie.p"=Q=pandforj=m,... 1,

P! e argminEfpy(mi0 X, s, A7 = ()],
SESPI‘

n
i—1 . j—1 j—1
o ea;ggﬂmE Py (g0 Xi 82 T = (Ph) -
p£7 i=1

If all of the population minimizers are unique, we speak of
unique BN means.
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Strong Law

Theorem (S.H. and Eltzner (2018))
If the BN population means f = (p™, ... ,p') are unique and

fn = (O, ..., p}) is a measurable selection of BN sample
means then under “reasonable” assumptions

f, — fa.s.

i.e. 3Q" C Q m’ble with P(Y') = 1 such that
Ve >0andw € ', IN(e,w) € N

d(fp,f) <e Vn> N(e,w).
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The Join’g CLT [S.H. and Eltzner (2018)]
With local chart n %= =1 py(mg 0 X, pI=1)2 := 7i(n, X):

VAH ((F ) = (f71) = N(0,By).
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VAH ((F ) = (f71) = N(0,By).

Idea of proof:
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Applications k=1 —/'H
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The Jomt CLT [S.H. and Eltzner (2018)]
With local chart n [EN/E N ppi(mg o X, p=)2 = 7l(n, X):

VaH (w57 —w(F71) = N(0,By).

Idea of proof:

n
0 = graanTj(nka

n
= grad, Y 70 X) +
k=1

Z )\f,grad ZT (nn, Xk)

—j+1

Z )\n grald77 Z

I=j+1

(', X)

n
+ (Hessn Z (7n, Xk) + Z Y n Hess,, Z
k=1

'(77/ — 1)

with 77, between 7" and 7.

I=j+1

77!77 Xk )
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The Jomt CLT [S.H. and Eltzner (2018)]

With local chart 7 v p- = ppi(mg o X, p 712 = 7l(n,
ViH (w5 = w(f71)) = N(0,By).

Idea of proof:

n
0 = graanT/(nn,Xk Z )\f,grad ZT (Mny Xk)
k=1

—/+1
n .
= grad, ZT’(n',Xk Z AL grad, Z (', Xk)
k=1 I=j+1
n
+ | Hess,, Z (7n, Xk) + Z Y n Hess,, Z
k=1 I=j+1

'(77/ — 1)

with 77, between 1’ and 7. N.B.: AL 55 )\,

X):

77!77 Xk )
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The Jomt CLT [S.H. and Eltzner (2018)]
With local chart n [EN/E N ppi(mg o X, p=)2 = 7l(n, X):

VaH ((F ) —w(f7) = N(0,By).

Idea of proof:

n

0 = grad, (0, Xi) + Z )\ﬂ,grad Z (nny Xk)
k=1 I=j+1
1 4 L

0 = \mgrad77 ZT’ (', Xx) + Z AL grad, ZT’(U',XK)
k=1 k=1

_/+1

1 n n
+ = (Hessn nn,Xk) + Z A n Hess, ZT/ nys Xk )

=1 I=j+1

\/5(77 — 1n)

with 77, between 1’ and 7. N.B.: AL 55 )\,
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The Join’g Central Limit Theorem
With local chart n %= =1 py(mg 0 X, pI=1)2 := 7i(n, X):
VaH, (W) = w(F77T)) = N(0,By)

and typical regularity conditions, where

m
H, = E {HessnTj(n/,X)—I— Z M Hess,7'(7/, X)| and

I=j+1

m
B, = cov [gradnrj(n',X)—l— Z )\IgradnTI(ﬁ/aX)
I=j+1

and \jq,...A\m € R are suitable such that

grad, E [7(n, X Z )\’grad E [7'(n, X)]
I=j+1

vanishes at n = 7'.
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fludemamn—|f the following diagram commutes we say the chart factors

Tmjot 2 71 = (Ap7) % 5 = (0,

! P ! 7T]Rdim(e)
Pi-1 > s 0
Then
o o -
op n=00,8)" 71— py(rgoX,p71)?

X, (0
Prfiops ' (€) (%‘ (e ° % (9)>
= Tj(07€7X)7
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Factoring Charts
If the following diagram commutes we say the chart factors

Tmjot 2 71 = (Ap7) % 5 = (0,
1 ﬂqu 1 7T]Rdim(e)

Py > P 4 0

—1 . .
n=(0,6)"% 771 o py(rgo X, 012
,1 2
PrFiops ! (€) (%‘ () © X ¥ (9))
= 7(0,¢, X),

Taylor expansion at ' = (¢',¢’) gives a joint Gaussian CLT,

VNHy(nn —n') = VnHy < z: B Z,

and projection to the 6 coordinate preserves Gaussianity.

) — N(0,By)
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Application: Stem Cell Diversification
(H. and Eltzner, 2018)

Actin-myosin structure of an adult stem cell after 16 hours.

Left: my = main orienation field filament pixels.
Right: m> = smaller orienation field filament pixels,
Cyan: mz = “rogue” filament pixels.

Composite data m = my + m» + m3 mapped to a sphere:

(/)
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nested mean jointly great circle and nested mean
Time <1kPa | > 10 kPa || < 1kPa > 10 kPa
.y 4h-8h 0.120 <10°® 0.308 <107°
Applications 8h-12h | <107® <1073 0.024 <1073
12h—-16h | 0.126 <10°® 0.008 <107°
16h—20h | 0.468 0.626 0.494 0.462
20h—24h | <1078 <10°® <1078 0.014




CLT for
Fréchet
Means

Huckemann

Euclidean
BP/BL-CLT
(A2): Cut Locus
(A5): Emp. Pr.
(AB): Smeary
Generalizations

PCA/
Applications

Outlook
References

References

(¢x) spjald Jo|eWS

z,

0.2 02 (gD
e{g& 04 04 &%\
St 4, 06 0.6, ,b((\?/
Sy 08 08 <N
¢ <
(// 1010 o
<

Left: <1 kPa.

Visualization

%D 10
o
5 0.8
1 06
a2
2 o4
2 02
€ oo
—  4hours 00
8 hours 02
12 hours e{g%u 1
7 . 0.6
16:ours /(79/01 0.8 0.8 Q'\\'b
~— 20hours (z// 1.01.0 g\&e’
— 24 hours QO

Right: > 10 kPa



CLT for
Fréchet
Means

Huckemann

Outlook

Wrap up and Outlook
Wrap up:
o from the BP/BL-CLT requiring (A1), (A2), (A5), (A6) we
have gone to



CLT for
Fréchet
Means

Huckemann

Outlook

Wrap up and Outlook
Wrap up:
o from the BP/BL-CLT requiring (A1), (A2), (A5), (A6) we
have gone to
e a more general CLT requiring only (A1), (Taylor),
(Donsker);



CLT for
Fréchet
Means

Huckemann

Outlook

Wrap up and Outlook
Wrap up:
o from the BP/BL-CLT requiring (A1), (A2), (A5), (A6) we
have gone to
e a more general CLT requiring only (A1), (Taylor),
(Donsker);
e smeariness may be a finite sample issue:



CLT for
Fréchet
Means

Huckemann

Outlook

Wrap up and Outlook
Wrap up:

o from the BP/BL-CLT requiring (A1), (A2), (A5), (A6) we
have gone to

e a more general CLT requiring only (A1), (Taylor),
(Donsker);

e smeariness may be a finite sample issue:

e we have dealt with generalized, nested and flag Fréchet
means and their bootstrap inference.



CLT for
Fréchet
Means

Huckemann

Outlook

Wrap up and Outlook
Wrap up:

o from the BP/BL-CLT requiring (A1), (A2), (A5), (A6) we
have gone to

e a more general CLT requiring only (A1), (Taylor),
(Donsker);

e smeariness may be a finite sample issue:

e we have dealt with generalized, nested and flag Fréchet
means and their bootstrap inference.



CLT for
Fréchet
Means

Huckemann

Outlook

Wrap up and Outlook
Wrap up:
o from the BP/BL-CLT requiring (A1), (A2), (A5), (A6) we
have gone to
e a more general CLT requiring only (A1), (Taylor),
(Donsker);
e smeariness may be a finite sample issue:
e we have dealt with generalized, nested and flag Fréchet
means and their bootstrap inference.
Open challenges:
e (A1): uniqueness of Fréchet means?



CLT for
Fréchet
Means

Huckemann

Outlook

Wrap up and Outlook
Wrap up:
o from the BP/BL-CLT requiring (A1), (A2), (A5), (A6) we
have gone to
e a more general CLT requiring only (A1), (Taylor),
(Donsker);
e smeariness may be a finite sample issue:
e we have dealt with generalized, nested and flag Fréchet
means and their bootstrap inference.
Open challenges:
e (A1): uniqueness of Fréchet means?
¢ Validity of the Taylor expansion of the Fréchet function?



CLT for
Fréchet
Means

Huckemann

Outlook

Wrap up and Outlook
Wrap up:
o from the BP/BL-CLT requiring (A1), (A2), (A5), (A6) we
have gone to
e a more general CLT requiring only (A1), (Taylor),
(Donsker);
e smeariness may be a finite sample issue:
e we have dealt with generalized, nested and flag Fréchet
means and their bootstrap inference.
Open challenges:
e (A1): uniqueness of Fréchet means?
¢ Validity of the Taylor expansion of the Fréchet function?
e Manifold stability for GPCs etc. e.g. on shape spaces?



CLT for
Fréchet
Means

Huckemann

Outlook

Wrap up and Outlook
Wrap up:
o from the BP/BL-CLT requiring (A1), (A2), (A5), (A6) we
have gone to
e a more general CLT requiring only (A1), (Taylor),
(Donsker);
e smeariness may be a finite sample issue:
e we have dealt with generalized, nested and flag Fréchet
means and their bootstrap inference.
Open challenges:
e (A1): uniqueness of Fréchet means?
¢ Validity of the Taylor expansion of the Fréchet function?
e Manifold stability for GPCs etc. e.g. on shape spaces?
e 7 arbitrary smeariness on (non?)compact spaces?



CLT for
Fréchet

Means Wrap up and Outlook
Huckemann Wrap up
o from the BP/BL-CLT requiring (A1), (A2), (A5), (A6) we
have gone to
e a more general CLT requiring only (A1), (Taylor),
(Donsker);
e smeariness may be a finite sample issue:
e we have dealt with generalized, nested and flag Fréchet
means and their bootstrap inference.
Qutioole Open challenges:
e (A1): uniqueness of Fréchet means?
 Validity of the Taylor expansion of the Fréchet function?
e Manifold stability for GPCs etc. e.g. on shape spaces?
e 7 arbitrary smeariness on (non?)compact spaces?
e N.B: 3 stickiness on all nonmanifold stratified spaces?



CLT for
Fréchet

Means Wrap up and Outlook
Huckemann Wrap up
o from the BP/BL-CLT requiring (A1), (A2), (A5), (A6) we
have gone to
e a more general CLT requiring only (A1), (Taylor),
(Donsker);
e smeariness may be a finite sample issue:
e we have dealt with generalized, nested and flag Fréchet
means and their bootstrap inference.
Qutioole Open challenges:
e (A1): uniqueness of Fréchet means?
¢ Validity of the Taylor expansion of the Fréchet function?
Manifold stability for GPCs etc. e.g. on shape spaces?
3 arbitrary smeariness on (non?)compact spaces?
N.B: 3 stickiness on all nonmanifold stratified spaces?
3 antismeariness (crispness?) n"x, = Op(1) with
v>1/27



CLT for
Fréchet

Means Wrap up and Outlook
Huckemann Wrap up
o from the BP/BL-CLT requiring (A1), (A2), (A5), (A6) we
have gone to
e a more general CLT requiring only (A1), (Taylor),
(Donsker);
e smeariness may be a finite sample issue:
e we have dealt with generalized, nested and flag Fréchet
means and their bootstrap inference.
Qutioole Open challenges:
e (A1): uniqueness of Fréchet means?
¢ Validity of the Taylor expansion of the Fréchet function?
Manifold stability for GPCs etc. e.g. on shape spaces?
3 arbitrary smeariness on (non?)compact spaces?
N.B: 3 stickiness on all nonmanifold stratified spaces?
3 antismeariness (crispness?) n"x, = Op(1) with
v>1/27



CLT for
Fréchet
Means

Huckemann

References

References

Afsari, B. (2011). Riemannian LP center of mass: existence, uniqueness, and convexity. Proceedings of the
American Mathematical Society 139, 655-773.

Anderson, T. (1963). Asymptotic theory for principal component analysis. Ann. Math. Statist. 34(1), 122—148.

Bhattacharya, R. and L. Lin (2017). Omnibus CLTs for Fréchet means and nonparametric inference on
non-Euclidean spaces. Proceedings of the American Mathematical Society 145(1), 413-428.

Bhattacharya, R. N. and V. Patrangenaru (2003). Large sample theory of intrinsic and extrinsic sample means
on manifolds I. The Annals of Statistics 31(1), 1-29.

Bhattacharya, R. N. and V. Patrangenaru (2005). Large sample theory of intrinsic and extrinsic sample means
on manifolds Il. The Annals of Statistics 33(3), 1225—-1259.

Bredon, G. E. (1972). Introduction to Compact Transformation Groups, Volume 46 of Pure and Applied
Mathematics. New York: Academic Press.

Davis, A. W. (1977). Asymptotic theory for principal component analysis: non-normal case. Australian Journal
of Statistics 19, 206-212.

Eltzner, B. (2019). Measure dependent asymptotic rate of the mean: Geometrical and topological smeariness.
arXiv preprint arXiv:1908.04233.

Eltzner, B., F. Galaz-Garcia, S. F. Huckemann, and W. Tuschmann (2019). Stability of the cut locus and a
central limit theorem for Fréchet means of Riemannian manifolds. arXiv.

Eltzner, B. and S. F. Huckemann (2018). A smeary central limit theorem for manifolds with application to high
dimensional spheres. accepted (AOS), arXiv:1801.06581.

Groisser, D. (2005). On the convergence of some Procrustean averaging algorithms. Stochastics: Internatl. J.
Probab. Stochstic. Processes 77(1), 51-60.

Hodson, F. R., P. H. Sneath, and J. E. Doran (1966). Some experiments in the numerical analysis of
archeological data. Biometrika 53, 411-324.

Hotz, T. and S. Huckemann (2015). Intrinsic means on the circle: Uniqueness, locus and asymptotics. Annals
of the Institute of Statistical Mathematics 67(1), 177—193.

Huckemann, S. (2011a). Inference on 3D Procrustes means: Tree boles growth, rank-deficient diffusion
tensors and perturbation models. Scandinavian Journal of Statistics 38(3), 424—446.

Huckemann, S. (2011b). Intrinsic inference on the mean geodesic of planar shapes and tree discrimination by
leaf growth. The Annals of Statistics 39(2), 1098—1124.

Huckemann, S. (2012). On the meaning of mean shape: Manifold stability, locus and the two sample test.
Annals of the Institute of Statistical Mathematics 64(6), 1227—1259.

Huckemann, S., T. Hotz, and A. Munk (2010). Intrinsic shape analysis: Geodesic principal component analysis
for Riemannian manifolds modulo Lie group actions (with discussion). Statistica Sinica 20(1), 1-100.

Huckemann, S. F. and B. Eltzner (2018). Backward nested descriptors asymptotics with inference on stem cell



CLT for
Fréchet
Means

Huckemann

References

References

Huckemann, S. F. and B. Eltzner (2018). Backward nested descriptors asymptotics with inference on stem cell
differentiation. The Annals of Statistics (5), 1994 — 2019.

Jung, S., I. L. Dryden, and J. S. Marron (2012). Analysis of principal nested spheres. Biometrika 99(3),
551-568.

Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Communications on Pure and
Applied Mathematics XXX, 509-541.

Kendall, W. S. (1990). Probability, convexity, and harmonic maps with small image I: Uniqueness and fine
existence. Proceedings of the London Mathematical Society 61, 371—406.

Le, H. (1998). On the consistency of Procrustean mean shapes. Advances of Applied Probability
(SGSA) 30(1), 53-63.

Le, H. and D. Barden (2014). On the measure of the cut locus of a Fréchet mean. Bulletin of the London
Mathematical Society 46(4), 698—708.

Mardia, K. V. and P. E. Jupp (2000). Directional Statistics. New York: Wiley.

McKilliam, R. G., B. G. Quinn, and I. V. L. Clarkson (2012). Direction estimation by minimum squared arc
length. IEEE Transactions on Signal Processing 60(5), 2115-2124.

Pennec, X. (2018). Barycentric subspace analysis on manifolds. The Annals of Statistics 46(6A), 2711-2746.

Ruymgaart, F. H. and S. Yang (1997). Some applications of Watson’s perturbation approach to random
matrices. Journal of Multivariate Analysis 60(1), 48-60.

Small, C. G. (1996). The Statistical Theory of Shape. New York: Springer-Verlag.
van der Vaart, A. (2000). Asympitotic statistics. Cambridge Univ. Press.

Watson, G. (1983). Statistics on Spheres. University of Arkansas Lecture Notes in the Mathematical
Sciences, Vol. 6. New York: Wiley.

Ziezold, H. (1977). Expected figures and a strong law of large numbers for random elements in quasi-metric
spaces. Transaction of the 7th Prague Conference on Information Theory, Statistical Decision Function
and Random Processes A, 591-602.



	Euclidean Statistics to be Generalized
	The BP/BL-CLT (2005/2017)
	Condition (A2) Dissected: The Cut Locus
	Condition (A5) Dissected: Empirical Processes
	Condition (A6) Dissected: Smeariness
	Generalized Fréchet Means
	PCA, Their Bootstrap Inference and Applications
	Wrap Up and Outlook

