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Equivalent classes of shapes
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Shape of XT is the equivalent class
X] = {CRXT +7]ceRY,Re SO(m),Te R’”}
Size-and-shape of X' is the equivalent class
X]* = {Rx‘f +7|ReSO(m),Te R’”}

If reflection invariance is required then SO(m) is replaced by O(m)



Geometry of shapes

We will focus on the shapes of /abelled planar configurations.
Bookstein shape coordinates

Pre-form
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Shape distances and mean shapes

Bookstein shape coordinates are not appropriate for describing
shape differences.

Baseline ab Baseline bc
. ‘

-2 -1 0 1 2 -2 -1 0 1 2
If X and Y°< are two configurations such that their centres are at (0, 0)
and |X¢| = |Y€¢| = 1, the partial procrustes shape distance is obtained as
dp(XS,YS) =  inf  |X—RYS| = Hx “RYS||  RYX!—symmetric

R € SO(m)
Alternative procrustes distances p and dr are defined as

2sin(p/2) =dp and dr =sin(p)



Procrustes mean shapes
Partial procrustes mean shape of X{, ..., X{ is defined as

p€ = argmin Z d3(X¢,Z°).
Z° =1

s
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Figure: Landmark space and quotient space
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Figure: Marginal regression in (quotient) size-and-shape space
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Figure: Marginal regression in size-and-shape space
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Human movement data

Landmarks for a particular individual during the pointing action.
Each landmark follows a nearly closed curved trajectory.

Figure: A representation of the four landmarks: shoulder, elbow, index
finger tip and the lower back, during the pointing action while coloured
as black, red, green and blue respectively.



Connections between two approaches

Procrustes mean shape
* 2 . Shape of
Y* =0k oty

@ Procrustes mean shape is a consistent estimator for the shape
of p only for m = 2.
@ Procrustes tangent space inference is valid for small o2,
If % % 02k
@ Procrustes mean shape is not a consistent estimator for the
shape of pu.

@ Approximation: Procrustes mean shape and tangent inference
is valid for small values of X.

o MLE?
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@ Translation invariance
Yi=Xl+7= (xJ{ —|—T,X£—|—7‘,...,X}:+1+7') T €R"

Standardize translation: 7 = —x]i

YT = (0,x£ — XJ{,...,XLrl — XD =(0,X)

Alternatively: X = HX where H is Helmert sub-matrix.
We call X pre-form.
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@ Rotation invariance

Y = (X" +7)R Re SO(m)
=(0,XR) if 7=—x|

Standardise Translation and Rotation (size-and-shape

variables):
Apply the singular-values-decomposition of
V1 .. 0
X =RAO =R ?_ f; % o
0 0 - m

=Rdiag(\/M1, ..., /Am)O

where R € SO(m), 0 € V(k, m) and A1, \a.., Ay are the m
eigen values of XX7. We can use AO as size-and-shape
variables.
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Shape distributions

Distribution of AQ if X = RAO = \/sRAO ~ Nyt Im ® 021).
dX oc dRAAJO or dX o s*™2"1dRdAdOds

where dA = [T, XS D2 T (N — M) TI7y dA;, dR and
dO represent the Haar measures in the respective orthogonal
groups SO(m) and O € O(k).
vec(X— p)vec(X—p)t
(X = RAO; i, 02 ) x €™ 207 )

stlp]?  tr(RAOLY)

xe 2 e o s=|aP =X

s 2 tr(RAOLY)
F(AO; 11, 0% i) dAO = =5 / e 7 dRIAJO
50(m)

tr(RAOp,

~ 2 S
f(AO; 1, 0% I )dADO = el skm/2=1e 2,2 / eV* 27 R
R+ 50(m)
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Particular cases

ind
X,"Z,'m <P kam § ZI_] s m(gz

@ lIDcase,z;=1pu,=p

e z; =(1,0) or z; = (0, 1) regressor for gender
pi = zi1B1 + z;2B»
e Polynomial regression z; = (1, t;,- - , t{’_l)

p;=B1+ By + t?Bs +---tP 'B,
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For i=1,...,n define

R\ = E[R;|0;, A;; B"), x()), (1)
where O;, A; and R; are determined using SVD. Write

X7 =R,p0;, i=1,...,n, ()

and define the n x p matrix Z = (z;;), the p x n matrix A = (aj;)
and the n x n matrix P = (p;;) by
=[z1,--,z3]", A=(2'Z)7'2" and P=1,-2(2'2)71Z".
) 3)
Also, for r > 0, define the k x (mn) matrix Y(") and the k x (mp)
matrix B(") by

YO =[Xy,...,X,] and BO =B .. BY. (4
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Theorem 2. Assume that n > p and that Z in (3) has full rank p.
Then, given a starting value for B(O) as defined in (4), the EM
updating rule for calculating the sequence (B(’), Z(’)) is given by

Vee(BU 1) = (A @ L) Vec(Y(") (5)
and _ _
T = Ve YN T(P @ lign) Vee(Y (). (6)
Moreover, the updating rules (5) and (6) are equivalent to
r+1) Zaﬂ iy j:]-)"'apv (7)
and

) = (Z X]X; ) Z fjpfjf(?)’(j . (8)

i=1 j=1

where the aji and pj; are, respectively, the components of the
matrices A and P defined in (3)
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MLE using EM in IID case X; ~ N(, I, ® X)

(A;,0;) have density fi(A,O|p,X)

n
pl = %ZﬁiAioi Ri = E(R|A;,0; ut), =00)
i=1
1 o T
(+1) _— = TA20; — (rt1) ", (r+1)
b p ;0, A0, —p ©
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Expected rotation R = -4~ [ Ref(RM)gR

R = U,diag <vq> Iog/ e"(R‘I’)dR> U: M=uU,oU}
50(m)

and

E(X|A,0; 1, ) = R(IM)AO with M=A0x1u’
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D /1(¢1 + ¢2) t
R= lo(b1 + ¢2) Ui
m=3
R = U,QU!
06(§iéj(§g(£3) 0 0
Q=15— 0 06(5;221‘(656)(53) 0 (9)
0 0 Co(£1)+Cs(£2)

mC4(€)
S4a=¢1+P2+¢3 and & =2¢;-& =123 (10)

C4(€) _ / e—vfﬁvdS3(v) and 66(51) — / e—vfc(ﬁvfi-,fi)vdst;(v)
wit=1;veR* wit=1;veR0

Evaluate C; and €2 using Saddle point approximation or Holonomic
gradient method.
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A comparison between HG and SPA

Q =diag [ Vs Iog/ e"(R®)gR
50(3)

O Qe Qspa| ®] Qe Uspal] O] Qe Qspa]] ®] Qe Usea
216|0.99576 0.99576/1343/0.99729 0.99729|/512|0.99817 0.99817|729/0.99870 0.99870

36(0.98599 0.98604|| 49(0.989700.98975|| 64/0.992100.99216|| 81|0.993740.99381
6/0.985720.98577|| 7|0.98954 0.98960|| 8|0.992010.99207|| 9/0.99368 0.99375
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|

Isotropic covariance X = ¢

EM implementation

o

y _
Hre1 = — Z UiR(¢i/a?)U{,A;0; A;0ipuf = Uy;¢;U];

i=1

1

r+1 k

We get the Procrustes algorithm if above R(¢ /o) = I,.
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Isotropic covariance and IID model m =3

50 0 0 O
p=|[0 10 0 0] WN(mc’lz®l) k=4
0 0 10

n P(ﬂproc, ,U) p(ﬂmlev l") a'proc G mle
1500| 0.105 0.021 |0.156/0.199
2000 0.102 0.011 |0.156/0.199
3000 0.105 0.009 |0.157/0.201
3500 0.101 0.011 |0.157|0.201
1500 0.205 0.047 ]0.229/0.299
2000 0.199 0.031 |0.229|0.297
3000] 0.200 0.029 |0.230/0.299
3500 0.201 0.032 |0.229|0.299
1500| 0.373 0.053 |0.368|0.495
2000 0.379 0.077 |0.373|0.501
3000 0.375 0.055 |0.371|0.498
3500 0.390 0.064 |0.369|0.496
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Bookstein data of rat skulls

Figure: Linear(red) and quadratic(green) polynomial regression
Reproduced from Bookstein (1991)

Data consists of 18 individual rats observed at 8 different time
points when they are 7, 14, 21, 30, 40, 60, 90, and 150 days old.
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Figure: The fitted polynomial mean paths (qubic-left and quadratic-right)
in green, observations are in red; the rotation standartisation is obtained
by fixing landmark 1 to the origin, landmark 2 is allowed to vary only
along a chosen axis and landmark 3 is varying only in the standardizing
plane (the shaded region), landmark 4 is allowed to freely vary in 3-d
space. Simulated data from the fitted models are shown in black.
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Figure: Quadratic polynomial fit Figure: Cubic polynomial fit in
in red and the observations in red and the observations in
black. black.
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Concluding remarks

@ Models in Landmark Space are relatively easy to interpret in
Euclidean space.

e Computationally challenging but the complexity is only due to
m-dimensional expectations.

e Guaranteed consistency for our (ML) estimates.

o Flexibility in modelling complex data (more general
covariance, regression models).

@ The approach could be seen as an adopted version of
Procrustes algorithm.
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