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Application to brain functional connectomes

Brain functional connectomes
True submanifold 

Manifold (sphere)
Learned submanifold 
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Usual functional MRI dataset: 
• n = 400 “3D videos”
“3D videos”, size: 
• p = 256x256x192x4800 = 60B

• Datasets sizes n are relatively small & number of parameters p is relatively large, 
compared to traditional computer vision image datasets.

Data from Biomedical Images

MNIST dataset: 
• n = 70k images
2D images, size: 
• p = 28x28 = 784

…

time
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à Data preprocessing: Extract meaningful features from images: data 
are represented as elements of manifolds, i. e. of non-linear spaces.

à Data analysis: Use relatively non-flexible statistical models: eg.
equivalent of PCA.

Functional connectome
∈ manifold SPD 𝑛&'()*

of dimension 𝑛&'()* 𝑛&'()* + 1 / 2
Ex. for 𝑛&'()* = 15: p = 120

Note: Riemannian geometry on the SPD manifold usually improves performances.
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• Datasets sizes n are growing

Data from Biomedical Images
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are represented as elements of manifolds, i. e. of non-linear spaces.
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• Datasets sizes n are growing

Data from Biomedical Images

à Data preprocessing: Extract meaningful features from images: data 
are represented as elements of manifolds, i. e. of non-linear spaces.

à Data analysis: Enable the use of more flexible statistical models.

Note: Riemannian geometry on the SPD manifold usually improves performances.

MNIST dataset: 
• n = 70k images
2D images, size: 
• p = 28x28 = 784

• n = 1200 “3D videos”
• p = 60B

• n = 20k “3D videos” 
• p = 60B
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Statistical Models for Dimension Reduction

Ambient space: Euclidean ℝ. Ambient space: Manifold 𝑀
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Goal: Learn linear subspace…

ℝ. = ℝ1: 

… and (approximate) posterior distributions for the low-dimensional representation of each data point. 

Assumption: data (approximately) lies on a low-dimensional space of the ambient space
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Methodological questions:
• Can we extend traditional dimension reduction methods on Riemannian 

manifolds to learn “non-geodesic” submanifolds?
• What is the curvature of the learned submanifold: is it flat? [Shao, Kumar, 

Fletcher 2018].
Domain question:
• Do more flexible models provide new insights on brain functional connectomes: 

is there a pattern in the resting state functional connectomes?

𝑀 = 𝑆1: 𝑀 = 𝐻1: 

Learn “non-geodesic” submanifold…

… and (approximate) posterior distributions for the low-
dimensional representation of each data point. 

From 3D Functional MRI

Functional connectome
∈ manifold SPD(𝑛56)5*)

of dimension 𝑛56)5* 𝑛56)5* + 1 / 2

Questions:
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Probabilistic PCA, 
Variational autoencoders 

and manifold learning

Part 1 Part 2 Part 3

Outline: Learning submanifolds with gVAEs

Geometric variational 
autoencoders (gVAEs)

and submanifold learning

Learning the submanifold 
of functional brain 

connectomes
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Probabilistic PCA, 
Variational autoencoders 

and manifold learning

Part 1 Part 2 Part 3

Outline: Learning submanifolds with gVAEs

Geometric variational 
autoencoders (gVAEs)

and submanifold learning

Learning the submanifold 
of functional brain 

connectomes

• Probabilistic Principal Component Analysis, EM algorithm.
• Variational Autoencoders, “Amortized Stochastic Variational Gradient EM” algorithm.
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Functional connectomesGeometric VAEsVAEs

Probabilistic Principal Component Analysis

• Parameters 𝜇 ∈ ℝ.,𝑊 ∈ ℝ.×<

• Latent variables Z> ~ 𝑁(0, Id) iid
• Noise 𝜖E ∼ 𝑁(0, 𝜎1Id.) iid

Z> ~ 𝑁(0, Id) iid

𝜖E
𝑋E

𝜇 +𝑊Z>
𝜇 +

𝑊ℝ
<

ℝ<

ℝ.

Generative model of Probabilistic PCA for data in ℝ. [Tipping, Bishop 1999]: 
𝑋E = 𝜇 +𝑊Z> + 𝜖E
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Functional connectomesGeometric VAEsVAEs

Probabilistic Principal Component Analysis

Z> ~ 𝑁(0, Id) iid

𝜖E
𝑋E

𝜇 +𝑊Z>
𝜇 +

𝑊ℝ
<

ℝ<

ℝ.

Goals of Probabilistic PCA:
• Maximum likelihood (ML) estimation of parameters 𝑊, 𝜇, 𝜎

• Learn the linear subspace 𝜇 +𝑊ℝ<
• Inference on posterior distributions 𝑝J,K,L 𝑍 𝑋E

• Learn latent variables with uncertainties

Method of Probabilistic PCA: 
• Likelihood is not tractable: 𝑝J,K,L 𝑥 = ∫P 𝑝J,K,L 𝑥, 𝑧 𝑑𝑧. 
à No direct ML estimation of 𝑊, 𝜇, 𝜎 à Expectation-Maximization (EM) algorithm.

• Parameters 𝜇 ∈ ℝ.,𝑊 ∈ ℝ.×<

• Latent variables Z> ~ 𝑁(0, Id) iid
• Noise 𝜖E ∼ 𝑁(0, 𝜎1Id.) iid

Generative model of Probabilistic PCA for data in ℝ. [Tipping, Bishop 1999]: 
𝑋E = 𝜇 +𝑊Z> + 𝜖E
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Functional connectomesGeometric VAEsVAEs

Initialization: : S𝜃 U . Then, iterate until convergence:
1. E-step: At S𝜃(V) fixed, inference on Z: 

• 𝑞∗ V 𝑧 = 𝑝 𝑧 𝑥E, S𝜃(V)) closed form for posterior
2. M-step: At 𝑞∗ V 𝑧 fixed, maximize lower bound in 𝜃:

• 𝜃 → ∫P log
^ 𝑥E, 𝑧 𝜃
_∗ ` a

. 𝑞∗ 𝑧 V 𝑑𝜇 𝑧
where the inequality: 
log 𝑝 𝑥E 𝜃) = log ∫a 𝑝 𝑥E, 𝑧 𝜃 𝑑𝜇 𝑧 ≥ ∫a log

^ 𝑥E, 𝑧 𝜃
_(a)

. 𝑞 𝑧 𝑑𝜇 𝑧

is valid for any q and is tangent at S𝜃(V) for 𝑞∗ V 𝑧 .

with 𝜖E ∼ 𝑁 0, 𝜎1Id. iid.

Notation: 𝜃 = (𝜇,𝑊, 𝜎).

EM algorithm for learning and inference in PPCA:

Probabilistic Principal Component Analysis

Z> ~ 𝑁(0, Id) iid

𝜖E
𝑋E

𝜇 +𝑊Z>
𝜇 +

𝑊ℝ
<

ℝ<

ℝ.

𝜃

S𝜃 U S𝜃 e S𝜃 1

Log-likelihood log 𝑝 𝑥E 𝜃)

Generative model of Probabilistic PCA for data in ℝ. [Tipping, Bishop 1999]: 
𝑋E = 𝜇 +𝑊Z> + 𝜖E
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Functional connectomesGeometric VAEsVAEs
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Functional connectomesGeometric VAEsVAEs

Variational Autoencoders (VAEs)

• Parameters: 𝝁,𝑾
• Latent variables: Z> ~ 𝑁(0, Id) iid
• Noise 𝜖E ∼ 𝑁(0, 𝜎1Id.) iid
• Function: 𝑓K,J Z> = ΠVjek 𝜎V(𝑊V l +𝜇V) fully connected neural network, K layers.

Z> ~ 𝑁(0, Id) iid

𝜖E
𝑋E

𝑓K,J(Z>)
𝑓K,J

ℝ
<

ℝ<

ℝ.

Generative model of Variational Autoencoders for data in ℝ. [Kingma, Welling 2014]: 
𝑋E = 𝑓K,J Z> + 𝜖E
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Functional connectomesGeometric VAEsVAEs

Variational Autoencoders (VAEs)

• Parameters: 𝝁,𝑾
• Latent variables: Z> ~ 𝑁(0, Id) iid
• Noise 𝜖E ∼ 𝑁(0, 𝜎1Id.) iid
• Function: 𝑓K,J Z> = ΠVjek 𝜎V(𝑊V l +𝜇V) fully connected neural network, K layers.

Z> ~ 𝑁(0, Id) iid

𝜖E
𝑋E

𝑓K,J(Z>)
𝑓K,J

ℝ
<

ℝ<

ℝ.

Goals of Variational Autoencoders:
• Maximum likelihood (ML) estimation of parameters 𝜃

• Learn the non-linear subspace 𝑓𝝁,𝑾 ℝ<
• Inference on posterior distributions 𝑝𝝁,𝑾 𝑍 𝑋E

• Learn latent variables with uncertainties

Method of Variational Autoencoders: 
à Expectation-Maximization (EM) algorithm?

Generative model of Variational Autoencoders for data in ℝ. [Kingma, Welling 2014]: 
𝑋E = 𝑓K,J Z> + 𝜖E
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Functional connectomesGeometric VAEsVAEs

with 𝜖E ∼ 𝑁(0, 𝜎1Id.) iid

Notation: 𝜃 = (𝜇,𝑊,Ψ).

EM algorithm?

Variational Autoencoders (VAEs)

𝜃

S𝜃 U S𝜃 e S𝜃 1

Log-likelihood log 𝑝 𝑥E 𝜃)
Initialization: : S𝜃 U . Then, iterate until convergence:
1. E-step: At S𝜃(V) fixed, inference on Z? 

• 𝑞∗ V 𝑧 = 𝑝 𝑧 𝑥E, S𝜃(V)) closed form for posterior
2. M-step: At 𝑞∗ V 𝑧 fixed, maximize lower bound in 𝜃? 

• 𝜃 → ∫P log
^ 𝑥E, 𝑧 𝜃
_∗ ` a

. 𝑞∗ 𝑧 V 𝑑𝜇 𝑧
where the inequality: 
log 𝑝 𝑥E 𝜃) = log ∫a 𝑝 𝑥E, 𝑧 𝜃 𝑑𝜇 𝑧 ≥ ∫a log

^ 𝑥E, 𝑧 𝜃
_(a)

. 𝑞 𝑧 𝑑𝜇 𝑧

is valid for any q and is tangent at S𝜃(V) for 𝑞∗ V 𝑧 .

Z> ~ 𝑁(0, Id) iid

𝜖E
𝑋E

𝑓K,J(Z>)
𝑓K,J

ℝ
<

ℝ<

ℝ.

Generative model of Variational Autoencoders for data in ℝ. [Kingma, Welling 2014]: 
𝑋E = 𝑓K,J Z> + 𝜖E
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Functional connectomesGeometric VAEsVAEs

with 𝜖E ∼ 𝑁(0, 𝜎1Id.) iid

Notation: 𝜃 = (𝜇,𝑊,Ψ).

EM algorithm?

Variational Autoencoders (VAEs)

𝜃

S𝜃 U S𝜃 e S𝜃 1

Log-likelihood log 𝑝 𝑥E 𝜃)
Initialization: : S𝜃 U . Then, iterate until convergence:
1. E-step: At S𝜃(V) fixed, inference on Z? 
à Problem: The posterior does not have a closed form.
à We cannot compute the tangent lower bound.
2. M-step: At 𝑞∗ V 𝑧 fixed, maximize lower bound in 𝜃? 

• 𝜃 → ∫P log
^ 𝑥E, 𝑧 𝜃
_∗ ` a

. 𝑞∗ 𝑧 V 𝑑𝜇 𝑧

where the inequality: 
log 𝑝 𝑥E 𝜃) = log ∫a 𝑝 𝑥E, 𝑧 𝜃 𝑑𝜇 𝑧 ≥ ∫a log

^ 𝑥E, 𝑧 𝜃
_(a)

. 𝑞 𝑧 𝑑𝜇 𝑧

is valid for any q and is tangent at S𝜃(V) for 𝑞∗ V 𝑧 .

Z> ~ 𝑁(0, Id) iid

𝜖E
𝑋E

𝑓K,J(Z>)
𝑓K,J

ℝ
<

ℝ<

ℝ.

Generative model of Variational Autoencoders for data in ℝ. [Kingma, Welling 2014]: 
𝑋E = 𝑓K,J Z> + 𝜖E
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Functional connectomesGeometric VAEsVAEs

with 𝜖E ∼ 𝑁(0, 𝜎1Id.) iid

Notation: 𝜃 = (𝜇,𝑊,Ψ).

Variational EM algorithm?

Variational Autoencoders (VAEs)

𝜃

S𝜃 U S𝜃 e S𝜃 1

Log-likelihood log 𝑝 𝑥E 𝜃)
Initialization: : S𝜃 U . Then, iterate until convergence:
1. Variational E-step: At S𝜃(V) fixed, inference on Z? 
Variational Inference: Find the distribution 𝑞∗ V 𝑧 within a 
tractable variational family, that is the closest to the posterior.
2. M-step: At 𝑞∗ V 𝑧 fixed, maximize lower bound in 𝜃?
Only an approximation of the posterior:
à the lower bound at S𝜃(V) is not tangent.

Z> ~ 𝑁(0, Id) iid

𝜖E
𝑋E

𝑓K,J(Z>)
𝑓K,J

ℝ
<

ℝ<

ℝ.

Generative model of Variational Autoencoders for data in ℝ. [Kingma, Welling 2014]: 
𝑋E = 𝑓K,J Z> + 𝜖E
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Functional connectomesGeometric VAEsVAEs

Variational Inference:

• Choose a family of densities: Q = 𝑞o 𝛽 ∈ Β}.

• Find 𝑞E∗ = 𝑞os∗ ∈ 𝑄 as close as possible to 𝑝 𝑧 𝑥E where “close” is by Kullback-Leibler DV.

𝛽E∗ = argmino∈z 𝐾𝐿 𝑞o 𝑧 || 𝑝(𝑧|𝑥E)

= argmaxo∈z log 𝑝��` 𝑥E − 𝐾𝐿 𝑞o 𝑧 || 𝑝 𝑧 𝑥E

=	argmaxo∈zELBO �𝜃V, 𝛽, 𝑥E

Variational EM
• E-step: Untractable posterior à HMC approximation or Variational Inference (here)

𝑝(𝑧|𝑥E)𝑞os∗ 𝑧𝑞o 𝑧

• M-step: Only an approximation of the posterior, thus the lower bound at S𝜃(V) is not tangent.
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Functional connectomesGeometric VAEsVAEs

Variational Inference:

• Choose a family of densities: Q = 𝑞o 𝛽 ∈ Β}.

• Find 𝑞E∗ = 𝑞os∗ ∈ 𝑄 as close as possible to 𝑝 𝑧 𝑥E where “close” is by Kullback-Leibler DV.

𝛽E∗ = argmino∈z 𝐾𝐿 𝑞o 𝑧 || 𝑝(𝑧|𝑥E)

= argmaxo∈z log 𝑝��` 𝑥E − 𝐾𝐿 𝑞o 𝑧 || 𝑝 𝑧 𝑥E

=	argmaxo∈zELBO �𝜃V, 𝛽, 𝑥E

Variational EM
• E-step: Untractable posterior à HMC approximation or Variational Inference (here)

𝑝(𝑧|𝑥E)𝑞os∗ 𝑧𝑞o 𝑧

𝐿 𝜃 = log 𝑝�(𝑥E) ≥ �
a
log

𝑝 𝑥E, 𝑧 𝜃
𝑞os∗ 𝑧

. 𝑞os∗ 𝑧 𝑑𝜇 𝑧 = log 𝑝� 𝑥E − KL 𝑞os∗ 𝑧 ∥ 𝑝 𝑧 𝑥E

S𝜃 = argmax�ELBO 𝜃, {𝛽E∗}E, 𝑥E E

• M-step: Only an approximation of the posterior, thus the lower bound at S𝜃(V) is not tangent.

ELBO 𝜃, 𝛽E∗, 𝑥E

à At each iteration, (n+1) maximizations of the same criterion: ELBO 𝜃, 𝛽E E, 𝑥E E
à VAE algorithm: at each iteration, 2 gradients steps of the same criterion.
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Functional connectomesGeometric VAEsVAEs

Fix a parametric family: 𝑄 = 𝑞o; 𝛽 ∈ Β , and iterate two steps:
• ``Amortized gradient E-step”. 𝜃(V) fixed. 
Learn a function 𝑔�: 𝑥E → 𝑔�(𝑥E) that predicts the optimal parameter of the variational 
inference:  𝑔� 𝑥E = �𝛽E∗ that estimates 𝛽E∗ = argmino∈z 𝐾𝐿 𝑞o 𝑧 || 𝑝(𝑧|𝑥E)

𝜙(V�e) = 𝜙 V − 𝜂∇� 𝐾𝐿(𝑞�� �s 𝑧 || 𝑝�(`)(𝑧E|𝑥E))
= 𝜙 V + 𝜂∇� ELBO(𝜃 V , 𝜙, 𝑥E)

• Gradient M-step: 𝜙 V�e fixed. 
𝜃 V�e = 𝜃 V + 𝜂∇� ELBO 𝜃, 𝜙 V�e , 𝑥E

Where: ELBO 𝜃, 𝜙, 𝑥E = log 𝑝� 𝑥E − KL 𝑞��(�s) 𝑧 ∥ 𝑝 𝑧 𝑥E
And ELBO 𝜃, 𝜙, 𝑥E can be conveniently rewritten as:

ELBO 𝜃, 𝜙, 𝑥E = 𝔼_�� �s
log 𝑝� 𝑥E 𝑧 − KL q�� ��

z ∥ 𝑝 𝑧

Variational Autoencoders

Stochastic gradient 
ascent in (𝜙, 𝜃)

on ELBO

= “Stochastic Amortized Variational Gradient EM”

Given by the generative modeltractable via variational family
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𝑋E

Parameterization with two NNs

𝑍E ∼ 𝑞

𝑓�(𝑍E)

Train them simultaneously on: 
ELBO θ, ϕ, x = 𝔼_�� �

log p� x z − KL 𝑞�� � z ∥ 𝑝 𝑧

We can model 𝑔� and 𝑓� as neural networks with parameters 𝜙 and 𝜃.

𝜙 𝜃

𝑔� 𝑋E that parameterizes 𝑞��  s in multidimensional diagonal Gaussian

Given by the generative modeltractable via variational family

Encoder Decoder
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Training VAE
Z> ~ 𝑁(0, Id) iid

𝜖E
𝑋E

𝑓K,J(Z>)
𝑓K,J

ℝ
<

ℝ<

ℝ.
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Probabilistic PCA, 
Variational autoencoders 

and manifold learning

Part 1 Part 2 Part 3

Outline: Learning submanifolds with gVAEs

Geometric variational 
autoencoders (gVAEs)

and submanifold learning

Learning the submanifold 
of functional brain 

connectomes

• Elements of Geometric Statistics
• Geometric VAEs and geometry of learned submanifold (“latent space”)
• Is the learned submanifold flat? [Shao, Kumar, Fletcher 2018]
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Elements of Geometric Statistics
Vector space ℝ. Manifold 𝑀

• Euclidean space:
Add (global) inner product

• Riemannian manifold: 
Add local inner products = a Riemannian metric
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Elements of Geometric Statistics
Vector space ℝ. Manifold 𝑀

• Euclidean space:
Add (global) inner product

• Riemannian manifold: 
Add local inner products = a Riemannian metric

• Straight-line: minimal-length curve
dist(𝑥e, 𝑥1): length of the line

• Riemannian geodesic: minimal length curve
dist£(𝑥e, 𝑥1): length of the geodesic
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Elements of Geometric Statistics
Vector space ℝ. Manifold 𝑀

Linear subspace: 
• point 
• basis at that point

“Geodesic submanifold”: 
• point 
• basis at that point 
= Submanifold that is
geodesic at a point

Non-linear subspace Non-geodesic submanifold
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Elements of Geometric Statistics
Vector space ℝ. Manifold 𝑀

• Isotropic normal distribution:

𝑝 𝑥 =
1
2𝜋𝜎1

exp −
𝑥 − 𝜇 1

2𝜎1

• Riemannian isotropic normal distribution:

𝑝 𝑥 = 𝐶¨ 𝜇, 𝜎 exp −
dist¨1 𝑥, 𝜇

2𝜎1

• Volume measure: 𝑑𝑥 • Volume measure at 𝑥: 𝑑𝑀 𝑥 = det 𝑍 𝑥 𝑑𝑥
where 𝑍 is the matrix defining the inner product.
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Z> ~ 𝑁(0, Id) iid

𝜖E
𝑋E

ℝ<
Z> ~ 𝑁(0, Id) iid

𝜖E
𝑋E

𝑓�(Z>)
𝑓�
ℝ
<

ℝ<

𝑀

Geometric Variational Autoencoders (gVAEs)
Generative model of geometric Variational Autoencoders for data in 𝑀: 

𝑋E = Exp£ 𝑓� Z> , 𝜖E

• Parameters: 𝝁,𝑾
• Latent variables: Z> ~ 𝑁(0, Id) iid
• Noise: 𝜖E ∼ 𝑁(0, 𝜎1Id.) iid
• Function: 𝑓K,J Z> = ΠVjek 𝜎V(𝑊V l +𝜇V) fully connected neural network, K layers.
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Z> ~ 𝑁(0, Id) iid

𝜖E
𝑋E

ℝ<
Z> ~ 𝑁(0, Id) iid

𝜖E
𝑋E

𝑓�(Z>)
𝑓�
ℝ
<

ℝ<

𝑀

Geometric Variational Autoencoders (gVAEs)
Generative model of geometric Variational Autoencoders for data in 𝑀: 

𝑋E = Exp£ 𝑓� Z> , 𝜖E

• Parameters: 𝝁,𝑾
• Latent variables: Z> ~ 𝑁(0, Id) iid
• Noise: 𝜖E ∼ 𝑁(0, 𝜎1Id.) iid
• Function: 𝑓K,J Z> = ΠVjek 𝜎V(𝑊V l +𝜇V) fully connected neural network, K layers.

Goals of geometric Variational Autoencoders:
• Maximum likelihood (ML) estimation of parameters 𝜃

• Learn the non-geodesic subspace 𝑓𝝁,𝑾 ℝ<
• Inference on posterior distributions 𝑝𝝁,𝑾 𝑍 𝑋E

• Learn latent variables with uncertainties

Method of geometric Variational Autoencoders: 
à Adapt learning from Variational Autoencoders.



Nina Miolane – Learning submanifolds with geometric variational autoencoders – September 2019

Functional connectomesGeometric VAEsVAEs

𝑋E

Parameterization with two NNs

𝑍E ∼ 𝑞

𝑓�(𝑍E)

Train them simultaneously on: 
ELBO θ, ϕ, x = 𝔼_�� �

log p� x z − KL 𝑞�� � z ∥ 𝑝 𝑧

We can model 𝑔� and 𝑓� as neural networks with parameters 𝜙 and 𝜃.

𝜙 𝜃

𝑔� 𝑋E that parameterizes 𝑞��  s in multidimensional diagonal Gaussian

Given by the generative modeltractable via variational family

Encoder Decoder

à p� x z is a Riemannian normal: p� x z = 𝐶¨ 𝜇, 𝜎 exp − (>*©ª
« �,¬­(a)
1L«
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Training gVAE

Z> ~ 𝑁(0, Id) iid

𝜖E
𝑋E

𝑓K,J(Z>)
𝑓K,J

ℝ
<

ℝ<

ℝ.
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Geometry of the learned submanifold

Estimate of the submanifold: ®𝑁 = 𝑓K̄ , ®J ℝ< .

• Dimension of ®𝑵?
If the differential 𝑑𝑓K̄ , ®J is of full rank:
dim ®𝑁 = 𝐿’, dimension of the space spanned by the latent variables within ℝ<.

• Geometry of ®𝑵? [Kuhnel, Fletcher, Joshi, Sommer 2018]
®𝑵 inherits differential geometric structure from the ambient manifold, by pull-back of 
the Riemannian metric of 𝑀:

for 𝑣, 𝑤 ∈ 𝑇_𝑥( ®𝑁) , < 𝑣,𝑤 >¹� ®º = < 𝑣,𝑤 >¹� ¨
à In particular, its curvature can be computed.

• No curvature? [Shao, Kumar, Fletcher 2018].
“Our experiments show that these models represent real image data with manifolds 
that have surprisingly little curvature.[…] Further investigation into this phenomenon 
is warranted.”
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Geometry of the learned submanifold

Estimate of the submanifold: ®𝑁 = 𝑓K̄ , ®J ℝ< .

• Dimension of ®𝑵?
If the differential 𝑑𝑓K̄ , ®J is of full rank:
dim ®𝑁 = 𝐿’, dimension of the space spanned by the latent variables within ℝ<.

• Geometry of ®𝑵? [Kuhnel, Fletcher, Joshi, Sommer 2018]
®𝑵 inherits differential geometric structure from the ambient manifold, by pull-back of 
the Riemannian metric of 𝑀:

for 𝑣, 𝑤 ∈ 𝑇_𝑥( ®𝑁) , < 𝑣,𝑤 >¹� ®º = < 𝑣,𝑤 >¹� ¨
à In particular, its curvature can be computed.

• No curvature? [Shao, Kumar, Fletcher 2018].
“Our experiments show that these models represent real image data with manifolds 
that have surprisingly little curvature.[…] Further investigation into this phenomenon 
is warranted.”
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Estimating the Geometry 
of an Equivalence Class? 

The curvature of submanifold defining the 
equivalence class, at the scale of 𝜎, creates an 
asymptotic bias [Miolane, Holmes, Pennec 2017].

𝜖E
𝑋E

𝑓K,J(Z>)
𝑓K,J

ℝ
<

ℝ.

Same behavior 
for gVAE?
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Estimating the Geometry
log 𝜎1 = −10 log 𝜎1 = −5 log 𝜎1 = −2

𝑛 = 10𝑘

𝑛 = 100𝑘

Asymptotic bias of the geometry’s estimate, 
controlled by the standard deviation of the noise.
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Estimating the Geometry
log 𝜎1 = −10 log 𝜎1 = −5 log 𝜎1 = −2

𝑛 = 10𝑘

𝑛 = 100𝑘

Asymptotic bias of the geometry’s estimate, 
controlled by the standard deviation of the noise.
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Estimating the Geometry
log 𝜎1 = −10 log 𝜎1 = −5 log 𝜎1 = −2

𝑛 = 10𝑘

𝑛 = 100𝑘

Asymptotic bias of the geometry’s estimate, 
controlled by the standard deviation of the noise.
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Estimating the Geometry

dist 𝑁, ®𝑁
= ∫a dist¨ 𝑓� 𝑧 , 𝑓®� 𝑧 𝑝 𝑧 𝑑𝑧

ELBO θ,ϕ, x
= 𝔼_�� �

log p� x z

− KL 𝑞�� � z ∥ 𝑝 𝑧
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Estimating the geometry

• Geometric consistency:  ®𝑁 → 𝑁 for 𝜎 → 0 and 𝑛 → +∞
Proof: Computes the ”geometric fit” to the manifold, known to be geometric consistent.

• Statistical inconsistency: ®𝑁 does not converge to 𝑁 for 𝑛 → +∞ if 𝜎 ≠ 0
Proof: Counter-example.

• Toy PPCA model: 𝑥E = 𝑤𝑧E + 𝜖E where 𝑤 ∈ ℝ, 
𝑥E, 𝑧E, 𝜖E have values in ℝ.

• Family: 𝑄 = 𝑁(𝛽, 1) to approximate 𝑝¿ 𝑧 𝑥 . 
• One layer linear decoder, one layer linear encoder.

ELBO θ, ϕ, x
= log pÀ x − KL (q�� � z x) pÀ(z|x))

True value w = 2
Maxima of ELBO

MLEs
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Estimating the geometry

• Geometric consistency:  ®𝑁 → 𝑁 for 𝜎 → 0 and 𝑛 → +∞
Proof: Computes the ”geometric fit” to the manifold, known to be geometric consistent.

• Statistical inconsistency: ®𝑁 does not converge to 𝑁 for 𝑛 → +∞ if 𝜎 ≠ 0
Proof: Counter-example.

• Toy PPCA model: 𝑥E = 𝑤𝑧E + 𝜖E where 𝑤 ∈ ℝ, 
𝑥E, 𝑧E, 𝜖E have values in ℝ.

• Family: 𝑄 = 𝑁(𝛽, 1) to approximate 𝑝¿ 𝑧 𝑥 . 
• One layer linear decoder, one layer linear encoder.

ELBO θ, ϕ, x
= log pÀ x − KL (q�� � z x) pÀ(z|x))

True value w = 2
Maxima of ELBO

• VAE estimating a flat curvature:
• Either the submanifold is flat
• Or the noise level is high: à no submanifold representing the data. 

MLEs
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Probabilistic PCA, 
Variational autoencoders 

and manifold learning

Part 1 Part 2 Part 3

Outline: Learning submanifolds with gVAEs

Geometric variational 
autoencoders (gVAEs)

and submanifold learning

Learning the submanifold 
of functional brain 

connectomes

• Geomstats: Implementing Riemannian Geometry and Geometric Statistics on GPUs
• Geometric Variational Autoencoders for functional connectomes
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Geomstats
• Geomstats: Python package that gathers code from geometric statistics research 

into a shared unit-tested library, with backends enabling GPU computations.

Github repository: https://github.com/geomstats/geomstats
Documentation website: https://geomstats.github.io/
Contributing: https://geomstats.github.io/contributing.html + Hackathon in January.

https://github.com/geomstats/geomstats
https://geomstats.github.io/
https://geomstats.github.io/contributing.html
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Geomstats
• Geomstats: Python package that gathers code from geometric statistics research 

into a shared unit-tested library, with backends enabling GPU computations.

Github repository: https://github.com/geomstats/geomstats
Documentation website: https://geomstats.github.io/
Contributing: https://geomstats.github.io/contributing.html + Hackathon in January.

• Geomstats uses object-oriented programming (OOP) to implement two main 
modules: geomstats.geometry and geomstats.learning

https://github.com/geomstats/geomstats
https://geomstats.github.io/
https://geomstats.github.io/contributing.html
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Geometry Statistical Learning

• Geometry: mathematics API
• Learning: scikit-learn API
API: application program interface

A collaboration with: Pennec, Le 
Brigant, Mathe, Cabanes, Guigui, 
Thanwerdas, Kachan, Donnat, 
Jorda, et al. 
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Geomstats: Comparison with other libraries

• Application specific: 
• pyRiemann (Barachant 2016): 

• Riemannian geometry for covariance matrices

• Optimization: 
• Pymanopt (Townsend, Koep, Weichwald 2016): 

• Optimization on Riemannian manifolds
• McTorch (Meghwanshi et al, 2018): 

• Optimization on Riemannian manifolds for deep learning
• Geoopt (Becigneul, Ganea, Ferine, 2019): 

• Stochastic adaptive optimization on Riemannian manifolds

• Geometry focused: 
• Theanogeometry (Kuhnel, Sommer, 2017): 

• Non-linear statistics on manifolds of computational anatomy
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Functional Brain Connectomes: Geometry?
fMRI Brain connectomes data 

(Human Connectome Project)
• 812 Subjects
• Correlations between brain areas

Measuring the dissimilarity between connectomes?

https://db.humanconnectome.org/app/action/ChooseDownloadResources?project=HCP_Resources&resource=GroupAvg&filePath=HCP1200_Parcellation_Timeseries_Netmats_recon2.zip
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Functional Brain Connectomes: Geometry?

[Vemulapalli, Jacob, 2015][Donnat, Holmes, 2018][Thanwerdas, Pennec, 2019.]

fMRI Brain connectomes data 
(Human Connectome Project)

• 812 Subjects
• Correlations between brain areas

Measuring the dissimilarity between connectomes?

https://db.humanconnectome.org/app/action/ChooseDownloadResources?project=HCP_Resources&resource=GroupAvg&filePath=HCP1200_Parcellation_Timeseries_Netmats_recon2.zip
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Functional Brain Connectomes: Geometry?
Affine invariant distance representing the dissimilarity between connectomes P1, P2:

𝑑 𝑃e, 𝑃1 = log 𝑃e
Âe1𝑃1𝑃e

Âe1
Ã6'Ä

𝑃e With this distance, 
• Data space of connectomes is a cone.
• Cone borders are at infinite distance,
• Data on the borders correspond to null 

eigenvalues.

One data point 𝑋E, for 𝑖 = 1, … , 𝑛ÇÈÉÊËÌÍÇ
= One subject
= One connectome
= One SPD matrix of size 𝒏𝐧𝐨𝐝𝐞𝐬×𝒏𝐧𝐨𝐝𝐞𝐬
We choose 𝑛&'()* = 15. à D = 120
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𝜖E
𝑋E

ℝ<
Z> ~ 𝑁(0, Id) iid

𝜖E
𝑋E

𝑓�(Z>)
𝑓�
ℝ
<

ℝ<

𝑀

Geometric VAE for connectomes

𝐿 = 10
(𝐷 = 120)

If the differential 𝑑𝑓K̄ , ®J is of full rank:
dim ®𝑁 = 𝐿’, dimension of the space 
spanned by the latent variables within ℝ<.

𝐿 = 20
(𝐷 = 120)

𝐿 = 40
(𝐷 = 120)

𝐿 = 60
(𝐷 = 120)

𝐿 = 80
(𝐷 = 120)

𝐿 = 100
(𝐷 = 120)

Percentage of variances explained:
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Geometric VAE for connectomes

First 2 components 
in latent space ℝØU:
(~ 50% of variance)

Data:

Generated data on submanifold ®𝑁:

Colored by age group Colored by gender
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Probabilistic PCA, 
Variational autoencoders 

and manifold learning

Conclusion: learn submanifolds with gVAEs

Geometric variational 
autoencoders (gVAEs)

and submanifold learning

Learning the submanifold 
of functional brain 

connectomes

Our question:
• Can we extend traditional dimension reduction methods on Riemannian 

manifolds to learn “non-geodesic” submanifolds?
Yes, we used:
• Riemannian normal probability distributions for the model,
• Geomstats package for the implementation on GPUs.
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and manifold learning

Conclusion: learn submanifolds with gVAEs

Geometric variational 
autoencoders (gVAEs)

and submanifold learning

Learning the submanifold 
of functional brain 

connectomes

Our question:
• What is the curvature of the learned submanifold: is it flat? [Fletcher 2014]
It seems more probable that the curvature is generally over-estimated, and this effect 
increases with the standard deviation of the noise.
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Probabilistic PCA, 
Variational autoencoders 

and manifold learning

Conclusion: learn submanifolds with gVAEs

Geometric variational 
autoencoders (gVAEs)

and submanifold learning

Learning the submanifold 
of functional brain 

connectomes

Our question:
• Do more flexible models provide new insights on brain functional 

connectomes: are there patterns in resting state functional connectomes?
We are able to detect patterns. We are discussing with functional neuroscience 
groups to compare with the literature and understand the patterns.
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Thank you for your attention!
Do you have questions?

Brain functional connectomes
True submanifold 

Manifold (sphere)
Learned submanifold 

Learning submanifolds
with geometric variational autoencoders:

Application to brain functional connectomes


