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Natural Riemannian Metrics on Transformations

Transformation are Lie groups: Smooth manifold G compatible with 
group structure
 Composition g o h and inversion g-1 are smooth
 Left and Right translation Lg(f) = g ○ f    Rg (f) = f ○ g
 Conjugation   Conjg(f) = g ○ f ○ g-1

 Symmetry: Sg(f) = g o f-1 o g

Natural Riemannian metric choices
 Chose a metric at Id: <x,y>Id

 Propagate at each point g using left (or right) translation
<x,y>g = < DLg

(-1) .x , DLg
(-1) .y >Id

Implementation 
 Practical computations using left (or right) translations
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General Non-Compact and Non-Commutative case

No Bi-invariant  Mean for 2D Rigid Body Transformations

 Metric at Identity: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐼𝐼𝐼𝐼, 𝜃𝜃; 𝑡𝑡1; 𝑡𝑡2 )2 = 𝜃𝜃2 + 𝑡𝑡12+ 𝑡𝑡22

 𝑇𝑇1 = 𝜋𝜋
4

; − 2
2

; 2
2

𝑇𝑇2 = 0; 2; 0 𝑇𝑇3 = −𝜋𝜋
4

; − 2
2

;− 2
2

 Left-invariant Fréchet mean: 0; 0; 0

 Right-invariant Fréchet mean: 0; 2
3

; 0 ≃ (0; 0.4714; 0)

Questions for this talk:
 Can we design a mean compatible with the group operations?
 Is there a more convenient structure for statistics on Lie groups?
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Existence of bi-invariant (pseudo) metrics

[Miolane, XP, Computing Bi-Invariant Pseudo-Metrics on Lie Groups for 
Consistent Statistics. Entropy, 17(4):1850-1881, April 2015.]
 Algorithm: decompose the Lie algebra and find a bi-inv. pseudo-metric
 Test on rigid transformations SE(n): bi-inv. ps-metric for n=1 or 3 only
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1-dim. compact

[Cartan 50’s]:
Bi-invariant metric on 𝐺𝐺

𝐺𝐺

or

Lie groups with 
bi-invariant metric

All 
Lie groups

[Medina, Revoy 80’s]:
Bi-invariant pseudo-metric on 𝐺𝐺

Dual structure Recursivity1-dim. simple

𝐺𝐺

Lie groups with 
bi-invariant 
pseudo-metric
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Basics of Lie groups

Flow of a left invariant vector field �𝑋𝑋 = 𝐷𝐷𝐷𝐷. 𝑥𝑥 from identity
 𝛾𝛾𝑥𝑥 𝑡𝑡 exists for all time
 One parameter subgroup: 𝛾𝛾𝑥𝑥 𝑠𝑠 + 𝑡𝑡 = 𝛾𝛾𝑥𝑥 𝑠𝑠 . 𝛾𝛾𝑥𝑥 𝑡𝑡

Lie group exponential
 Definition: 𝑥𝑥 ∈ 𝔤𝔤 𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥 = 𝛾𝛾𝑥𝑥 1 𝜖𝜖 𝐺𝐺
 Diffeomorphism from a neighborhood of 0 in g to a 

neighborhood of e in G (not true in general for inf. dim)

3 curves parameterized by the same tangent vector

 Left / Right-invariant geodesics, one-parameter subgroups

Question: Can one-parameter subgroups be geodesics?
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Affine connection spaces:
Drop the metric, use connection to define geodesics

Affine Connection (infinitesimal parallel transport)
 Acceleration = derivative of the tangent vector along a curve
 Projection of a tangent space on 

a neighboring tangent space

Geodesics = straight lines
 Null acceleration: 𝛻𝛻𝛾̇𝛾𝛾̇𝛾 = 0
 2nd order differential equation:

Normal coordinate system
 Local exp and log maps, well 

defined in a convex neighborhood
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[Lorenzi, Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for 
Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013. ]



Canonical Affine Connections on Lie Groups
A unique Cartan-Schouten connection

 Bi-invariant and symmetric (no torsion) 
 Geodesics through Id are one-parameter subgroups (group 

exponential)
 Matrices : M(t) = A exp(t.V)
 Diffeos : translations of Stationary Velocity Fields (SVFs)  

Levi-Civita connection of a bi-invariant metric (if it exists)
 Continues to exists in the absence of such a metric

(e.g. for rigid or affine transformations)

Symmetric space with central symmetry 𝑺𝑺𝝍𝝍 𝝓𝝓 = 𝝍𝝍𝝓𝝓−𝟏𝟏𝝍𝝍
 Matrix geodesic symmetry: 𝑆𝑆𝐴𝐴 𝑀𝑀 𝑡𝑡 = 𝐴𝐴 exp −𝑡𝑡𝑡𝑡 𝐴𝐴−1𝐴𝐴 = 𝑀𝑀(−𝑡𝑡)
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[Lorenzi, Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for 
Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013. ]



Statistics on an affine connection space

Fréchet mean: exponential barycenters
 ∑𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥 𝑦𝑦𝑖𝑖 = 0 [Emery, Mokobodzki 91, Corcuera, Kendall 99]

 Existence local uniqueness if local convexity [Arnaudon & Li, 2005]

Covariance matrix & higher order moments
 Defined as tensors in tangent space

Σ = ∫𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥 𝑦𝑦 ⊗ 𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥 𝑦𝑦 𝜇𝜇(𝑑𝑑𝑑𝑑)

 Matrix expression changes with basis

Other statistical tools
 Mahalanobis distance, chi2 test
 Tangent Principal Component Analysis (t-PCA)
 Independent Component Analysis (ICA)?
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[XP & Arsigny, 2012, XP & Lorenzi, Beyond Riemannian Geometry, 2019]



Statistics on an affine connection space

For Cartan-Schouten connections  [Pennec & Arsigny, 2012]

 Locus of points x such that ∑𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥−1.𝑦𝑦𝑖𝑖 = 0
 Algorithm: fixed point iteration (local convergence)

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 ∘ 𝐸𝐸𝐸𝐸𝐸𝐸
1
𝑛𝑛
�𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥𝑡𝑡−1.𝑦𝑦𝑖𝑖

 Mean stable by left / right composition and inversion 

Matrix groups with no bi-invariant metric
 Heisenberg group: bi-invariant mean is unique (conj. ok for solvable) 
 Rigid-body transformations: uniqueness if unique mean rotation 
 SU(n) and GL(n): log does not always exist (need 2 exp to cover)
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[XP and V. Arsigny. Exponential Barycenters of the Canonical Cartan Connection and 
Invariant Means on Lie Groups. In Matrix Information Geometry. 2012 ]
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Example mean of 2D rigid-body transformation

𝑇𝑇1 =
𝜋𝜋
4

; −
2

2
;

2
2

𝑇𝑇2 = 0; 2; 0 𝑇𝑇3 = −
𝜋𝜋
4

; −
2

2
;−

2
2

 Metric at Identity: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐼𝐼𝐼𝐼, 𝜃𝜃; 𝑡𝑡1; 𝑡𝑡2 )2 = 𝜃𝜃2 + 𝑡𝑡12+ 𝑡𝑡22

 Left-invariant Fréchet mean: 0; 0; 0

 Log-Euclidean mean: 0; 2−𝜋𝜋/4
3

; 0 ≃ (0; 0.2096; 0)

 Bi-invariant mean: 0; 2−𝜋𝜋/4
1+𝜋𝜋/4( 2+1)

; 0 ≃ (0; 0.2171; 0)

 Right-invariant Fréchet mean: 0; 2
3

; 0 ≃ (0; 0.4714; 0)
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Cartan Connections vs Riemannian

What is similar
 Standard differentiable geometric structure [curved space without torsion] 
 Normal coordinate system with Expx et Logx [finite dimension]

Limitations of the affine framework
 No metric (but no choice of metric to justify)
 The exponential does always not cover the full group

 Pathological examples close to identity in finite dimension
 In practice, similar limitations for the discrete Riemannian framework

What we gain with Cartan-Schouten connection 
 A globally invariant structure invariant by composition & inversion 
 Simple geodesics, efficient computations (stationarity, group exponential)
 Consistency with any bi-invariant (pseudo)-metric
 The simplest linearization of transformations for statistics on Lie groups? 

X. Pennec -Geometric Statistics workshop, 04/09/2019
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Riemannian Metrics on diffeomorphisms
Space of deformations

 Transformation y=φ (x)
 Curves in transformation spaces: φ (x,t)
 Tangent vector = speed vector field 

Right invariant metric 
 Eulerian scheme 
 Sobolev Norm Hk or H∞ (RKHS) in LDDMM  diffeomorphisms [Miller, 

Trouve, Younes, Holm, Dupuis, Beg… 1998 – 2009]

Geodesics determined by optimization of a time-varying vector field
 Distance

 Geodesics characterized by initial velocity / momentum
 Optimization for images is quite tricky (and lenghty)

dt
txdxvt
),()( φ

=

Idttt vv
t

1−= φ
φ



)(minarg),(
1

0

2
10

2 dtvd
tt

tv ∫=
φ

φφ
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Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007]
 Exponential of a smooth vector field is a diffeomorphism
 Parameterize deformation by time-varying Stationary Velocity Fields

Direct generalization of numerical matrix algorithms
 Computing the deformation: Scaling and squaring [Arsigny MICCAI 2006]

recursive use of exp(v)=exp(v/2) o exp(v/2)
 Computing the Jacobian: Dexp(v) = Dexp(v/2) o exp(v/2) . Dexp(v/2)

 Updating the deformation parameters:  BCH formula [Bossa MICCAI 2007]
exp(v) ○ exp(εu) = exp( v + εu + [v,εu]/2 + [v,[v,εu]]/12 + … )
 Lie bracket       [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p)

The SVF framework for  Diffeomorphisms

X. Pennec -Geometric Statistics workshop, 04/09/2019
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ϕ

M
id

v

ϕ
SVF setting

• v stationary velocity field
• Lie group Exp(v) non-metric 

geodesic wrt Cartan connections

LDDMM setting
• v time-varying velocity field
• Riemannian expid(v) metric 

geodesic wrt Levi-Civita connection
• Defined by intial momentum

Transporting trajectories:

Parallel transport of initial 
tangent vectors

•[Lorenzi et al, IJCV 2012]

Parallel transport of deformation trajectories

X. Pennec - Geometric Statistics workshop, 04/09/2019

LDDMM: parallel transport along geodesics
using Jacobi fields [Younes et al. 2008]



Parallel transport along arbitrary curves
A numerical scheme to integrate for symmetric connections: 

Schild’s Ladder [Elhers et al, 1972]
 Build geodesic parallelogrammoid
 Iterate along the curve 
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τ

τ

C
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u

P’NΠ(u)

[ Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series
of Images: from Schild's to pole Ladder, JMIV 50(1-2):5-17, 2013 ]



Parallel transport along geodesics
Simpler scheme along geodesics: Pole Ladder
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[ Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series
of Images: from Schild's to pole Ladder, JMIV 50(1-2):5-17, 2013 ]
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Parallel transport along geodesics
Simpler scheme along geodesics: Pole Ladder
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P0
P’0

P1

u

−Π(u)
P’1

Pole ladder is exact in 1 step in 
symmetric space

• Symmetry preserves geodesics: 
𝑆𝑆𝑚𝑚 𝛾𝛾 𝑡𝑡 = 𝛾𝛾𝛾(𝑡𝑡)

• Parallel transport is differential of 
symmetry

m

𝛾𝛾 𝑡𝑡 = exp𝑃𝑃0 𝑡𝑡 𝑢𝑢

𝛾𝛾𝛾 𝑡𝑡

𝛾𝛾𝛾 𝑡𝑡 = exp𝑃𝑃1 −Π(𝑢𝑢)

[ XP. Parallel Transport with Pole Ladder: a Third Order Scheme in Affine 
Connection Spaces which is Exact in Affine Symmetric Spaces. Arxiv 1805.11436 ]



Accuracy of pole ladder
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ℎ𝑥𝑥 𝑣𝑣,𝑢𝑢 = log𝑥𝑥(Π𝑥𝑥
exp𝑥𝑥(𝑣𝑣) 𝑢𝑢)

= 𝑣𝑣 + 𝑢𝑢 + 1
6
𝑅𝑅 𝑢𝑢, 𝑣𝑣 𝑣𝑣 + 1

3
𝑅𝑅 𝑢𝑢, 𝑣𝑣 𝑢𝑢 + 1

24
𝛻𝛻𝑣𝑣𝑅𝑅 𝑢𝑢, 𝑣𝑣 2𝑣𝑣 + 5𝑢𝑢 + 1

24
𝛻𝛻𝑢𝑢𝑅𝑅 𝑢𝑢, 𝑣𝑣 𝑣𝑣 + 2𝑢𝑢 + 𝑂𝑂(5)

𝑢𝑢′ = 𝑢𝑢 +
1

12𝛻𝛻𝑣𝑣𝑅𝑅 𝑢𝑢, 𝑣𝑣 5𝑢𝑢 − 2𝑣𝑣 +
1

12𝛻𝛻𝑢𝑢𝑅𝑅 𝑢𝑢, 𝑣𝑣 𝑣𝑣 − 2𝑢𝑢 + 𝑂𝑂(5)

Find u’ that satisfies: 
ℎ𝑀𝑀 𝑣𝑣,−𝑢𝑢′ + ℎ𝑀𝑀 −𝑣𝑣,𝑢𝑢 = 0

Gavrilov’s double exponential series (2006):

• Error term is of order 4 in general affine manifolds
• Error is even zero for symmetric spaces: pole ladder is exact in one step!

[ XP. Parallel Transport with Pole Ladder: a Third Order Scheme in Affine 
Connection Spaces which is Exact in Affine Symmetric Spaces. Arxiv 1805.11436 ]



The Stationnary Velocity Fields (SVF)
framework for diffeomorphisms

 SVF framework for diffeomorphisms is algorithmically simple
 Compatible with “inverse-consistency”
 Vector statistics directly generalized to diffeomorphisms.
 Exact parallel transport using one step of pole ladder [XP arxiv 1805.11436 2018]

Longitudinal modeling of AD: 70 subjects extrapolated from 1 to 15 years

X. Pennec - CEP 19-02-2019 22

[Lorenzi, XP. IJCV, 2013 ]

Patient A

Patient B

? ?Template



The Stationnary Velocity Fields (SVF)
framework for diffeomorphisms

 SVF framework for diffeomorphisms is algorithmically simple
 Compatible with “inverse-consistency”
 Vector statistics directly generalized to diffeomorphisms.
 Exact parallel transport using one step of pole ladder [XP arxiv 1805.11436 2018]

Longitudinal modeling of AD: 70 subjects extrapolated from 1 to 15 years
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[Lorenzi, XP. IJCV, 2013 ]

ObservedExtrapolated Extrapolated

year



Modeling longitudinal atrophy in AD from images
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Study of prodromal Alzheimer’s disease 
Linear regression of the SVF over time: interpolation + prediction
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0*))(~()( TtvExptT =

Multivariate group-wise comparison 
of the transported SVFs shows 
statistically significant differences 
(nothing significant on log(det) )

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]



Mean deformation / atrophy per group 
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M Lorenzi, N Ayache, X Pennec G B. Frisoni, for ADNI. Disentangling the normal aging from the pathological Alzheimer's disease 
progression on structural MR images. 5th Clinical Trials in Alzheimer's Disease (CTAD'12), Monte Carlo, October 2012. (see also 
MICCAI 2012)



References for Statistics on Manifolds and Lie Groups
Statistics on Riemannnian manifolds 

 Xavier Pennec. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric
Measurements. Journal of Mathematical Imaging and Vision, 25(1):127-154, July 2006. 
http://www.inria.fr/sophia/asclepios/Publications/Xavier.Pennec/Pennec.JMIV06.pdf

Invariant metric on SPD matrices and of Frechet mean to define manifold-
valued image processing algorithms
 Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian Framework for 

Tensor Computing. International Journal of Computer Vision, 66(1):41-66, Jan. 2006. 
http://www.inria.fr/sophia/asclepios/Publications/Xavier.Pennec/Pennec.IJCV05.pdf

Bi-invariant means with Cartan connections on Lie groups
 Xavier Pennec and Vincent Arsigny. Exponential Barycenters of the Canonical Cartan 

Connection and Invariant Means on Lie Groups. In Frederic Barbaresco, Amit Mishra, 
and Frank Nielsen, editors, Matrix Information Geometry, pages 123-166. Springer, 
May 2012. http://hal.inria.fr/hal-00699361/PDF/Bi-Invar-Means.pdf

Cartan connexion for diffeomorphisms: 
 Marco Lorenzi and Xavier Pennec. Geodesics, Parallel Transport & One-parameter

Subgroups for Diffeomorphic Image Registration. International Journal of Computer 
Vision, 105(2), November 2013 https://hal.inria.fr/hal-00813835/document
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