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Anatomy

Gall (1758-1828) : Phrenology
Talairach (1911-2007) 

Vésale (1514-1564)
Paré (1509-1590)

2007

Science that studies the structure and the relationship in 
space of different organs and tissues in living systems 

[Hachette Dictionary]

Revolution of observation means (~1990):
 From dissection to in-vivo in-situ imaging
 From the description of one representative individual 

to generative statistical models of the population

Galien (131-201)

1er cerebral atlas, Vesale, 1543

Visible Human Project, NLM, 1996-2000
Voxel-Man, U. Hambourg, 2001

Talairach & Tournoux, 1988

Sylvius (1614-1672)
Willis (1621-1675)

Paré, 1585
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Statistics of organ shapes across subjects in species, 
populations, diseases… 
 Mean shape (atlas), subspace of normal vs pathologic shapes
 Shape variability (Covariance)
 Model development across time (growth, ageing, ages…)

Use for personalized medicine (diagnostic, follow-up, etc)

Computational Anatomy



Geometric features in Computational Anatomy

Noisy geometric features
 Curves, sets of curves (fiber tracts)
 Surfaces, SPD matrices
 Transformations

Statistical modeling at the population level
 Simple Statistics on non-linear manifolds?

 Mean, covariance of its estimation, PCA, PLS, ICA
 GS: Statistics on manifolds vs IG: manifolds of statistical models
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Shape of RV in 18 patients

Methods of computational anatomy
Remodeling of the right ventricle of the heart in tetralogy of Fallot

 Mean shape
 Shape variability
 Correlation with clinical variables
 Predicting remodeling effect






Morphometry through Deformations
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Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]
 Observation = “random” deformation of a reference template 
 Reference template = Mean (atlas)
 Shape variability encoded by the deformations

Statistics on groups of transformations (Lie groups, diffeomorphism)?
Consistency with group operations (non commutative)?

Patient 3

Atlas

Patient 1

Patient 2

Patient 4

Patient 5

φ1

φ2
φ3

φ4

φ5



Longitudinal deformation analysis

9

time

Dynamic obervations

How to transport longitudinal deformation across subjects?
What are the convenient mathematical settings?  
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Patient A

Patient B

? ?Template
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds

Metric and Affine Geometric Settings for Lie Groups 

Parallel Transport to Analyze Longitudinal Deformations

Advances Statistics: CLT & PCA



Part 1: Foundations
 1: Riemannian geometry [Sommer, Fetcher, Pennec]
 2: Statistics on manifolds [Fletcher]
 3: Manifold-valued image processing with SPD matrices [Pennec]
 4: Riemannian Geometry on Shapes and Diffeomorphisms 

[Marsland, Sommer]
 5: Beyond Riemannian: the affine connection setting for 

transformation groups [Pennec, Lorenzi]

Part 2: Statistics on Manifolds and Shape Spaces
 6: Object Shape Representation via Skeletal Models (s-reps) and 

Statistical Analysis [Pizer, Maron]
 7: Inductive Fréchet Mean Computation on S(n) and SO(n) with 

Applications [Chakraborty, Vemuri]
 8: Statistics in stratified spaces [Ferage, Nye]
 9: Bias in quotient space and its correction [Miolane, 

Devilier,Pennec]
 10: Probabilistic Approaches to Statistics on Manifolds: 

Stochastic Processes, Transition Distributions, and Fiber Bundle 
Geometry [Sommer]

 11: Elastic Shape Analysis, Square-Root Representations and 
Their Inverses [Zhang, Klassen, Srivastava]
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Part 3: Deformations, Diffeomorphisms and their Applications
 13: Geometric RKHS models for handling curves and surfaces in Computational Anatomy : currents, varifolds, f-

shapes, normal cycles [Charlie, Charon, Glaunes, Gori, Roussillon]
 14: A Discretize-Optimize Approach for LDDMM Registration [Polzin, Niethammer, Vialad, Modezitski]
 15: Spatially varying metrics in the LDDMM framework [Vialard, Risser]
 16: Low-dimensional Shape Analysis In the Space of Diffeomorphisms [Zhang, Fleche, Wells, Golland]
 17: Diffeomorphic density matching, Bauer, Modin, Joshi]

To appear 09-2019, Elsevier



Supports for the course

http://www-sop.inria.fr/asclepios/cours/Peyresq_2019/
 1/ Intrinsic Statistics on Riemannian Manifolds

 Introduction to differential and Riemannian geometry. Chapter 1, RGSMIA. Elsevier, 2019.
 Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements. JMIV 2006. 

 2/ SPD matrices and manifold-valued image processing 
 Manifold-valued image processing with SPD matrices. Chapter 3 RGSMIA. Elsevier, 2019.
 Historical reference: A Riemannian Framework for Tensor Computing. IJCV 2006. 

 3/ Metric and affine geometric settings for Lie groups 
 Beyond Riemannian Geometry The affine connection setting for transformation groups Chapter 5, 

RGSMIA. Elsevier, 2019.

 4/ Parallel transport to analyze longitudinal deformations 
 Geodesics, Parallel Transport and One-parameter Subgroups for Diffeomorphic Image 

Registration. IJCV 105(2), November 2013. 
 Parallel Transport with Pole Ladder: a Third Order Scheme…[arXiv:1805.11436]

 5/ Advanced statistics: central limit theorem and extension of PCA 
 Curvature effects on the empirical mean in Riemannian and affine Manifolds [arXiv:1906.07418]
 Barycentric Subspace Analysis on Manifolds. Annals of Statistics. 46(6A):2711-2746, 2018. 

[arXiv:1607.02833]
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds
 Introduction to computational anatomy 
 The Riemannian manifold computational structure 
 Simple statistics on Riemannian manifolds
 Applications to the spine shape and registration accuracy 

Metric and Affine Geometric Settings for Lie Groups 
Parallel Transport to Analyze Longitudinal Deformations
Advances Statistics: CLT & PCA



Which non-linear space?

Constant curvatures spaces

 Sphere, 

 Euclidean, 

 Hyperbolic

Homogeneous spaces, Lie groups and symmetric spaces

Riemannian or affine connection spaces

Towards non-smooth quotient and stratified spaces
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Differentiable manifolds

Computing on a manifold
 Extrinsic

 Embedding in ℝ𝑛𝑛

 Intrinsic
 Coordinates : charts
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 Measuring?
 Lengths
 Straight lines
 Volumes



Measuring extrinsic distances

Basic tool: the scalar product

wvwv t>=< ,

• Norm of a vector
><= vvv ,

p

v
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γ(t)• Length of a curve
𝐿𝐿 𝛾𝛾 = ∫ 𝛾̇𝛾 𝑡𝑡 𝑑𝑑𝑑𝑑



Bernhard Riemann 
1826-1866

Measuring extrinsic distances

Basic tool: the scalar product

wvwv t>=< ,

• Norm of a vector

pp
vvv ><= ,

Bernhard Riemann 
1826-1866

wpGvwv t
p )(, =><
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• Length of a curve
𝐿𝐿 𝛾𝛾 = ∫ 𝛾̇𝛾 𝑡𝑡 𝑑𝑑𝑑𝑑



• Geodesics
• Shortest path between 2 points

• Calculus of variations (E.L.) :
2nd order differential equation
(specifies acceleration)

• Free parameters: initial speed 
and starting point 

wpGvwv t
p )(, =><

Bernhard Riemann 
1826-1866

Riemannian manifolds

Basic tool: the scalar product

Bernhard Riemann 
1826-1866
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• Length of a curve
𝐿𝐿 𝛾𝛾 = ∫ 𝛾̇𝛾 𝑡𝑡 𝑑𝑑𝑑𝑑
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Bases of Algorithms in Riemannian Manifolds

Operation Euclidean space Riemannian

Subtraction
Addition
Distance

Gradient descent )( ttt xCxx ∇−=+ εε

)(yLogxy x=
xyxy +=

xyyx −=),(dist
x

xyyx =),(dist
)(xyExpy x=

))( ( txt xCExpx
t

∇−=+ εε

xyxy −=

Reformulate algorithms with expx and logx
Vector -> Bi-point (no more equivalence classes)

Exponential map (Normal coordinate system):
 Expx = geodesic shooting parameterized by the initial tangent
 Logx = unfolding the manifold in the tangent space along geodesics 

 Geodesics = straight lines with Euclidean distance 
 Geodesic completeness: covers M \ Cut(x)
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Cut locus
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds
 Introduction to computational anatomy 
 The Riemannian manifold computational structure 
 Simple statistics on Riemannian manifolds
 Applications to the spine shape and registration accuracy 

Metric and Affine Geometric Settings for Lie Groups 
Parallel Transport to Analyze Longitudinal Deformations
Advances Statistics: CLT & PCA



Basic probabilities and statistics

Measure:               random vector x of pdf 

Approximation:

• Mean: 

• Covariance:

Propagation:

Noise model: additive, Gaussian...

Principal component analysis

Statistical distance: Mahalanobis and

dzzpz ).(. )  E(x xx ∫==

)x( xxΣx ,  ~ 

)(zpx

[ ]T)x).(x(E −−=Σ xxxx

( ) 








∂
∂

∂
∂

=
x

..
x

, x)(
Thh h ~ h xxΣxy

χ 2
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Random variable in a Riemannian Manifold

Intrinsic pdf of x
 For every set H 

𝑃𝑃 𝐱𝐱 ∈ 𝐻𝐻 = �
𝐻𝐻
𝑝𝑝 𝑦𝑦 𝑑𝑑𝑑𝑑(𝑦𝑦)

 Lebesgue’s measure 

 Uniform Riemannian Mesure 𝑑𝑑𝑑𝑑 𝑦𝑦 = det 𝐺𝐺 𝑦𝑦 𝑑𝑑𝑑𝑑

Expectation of an observable in M
 𝑬𝑬𝐱𝐱 𝜙𝜙 = ∫𝑀𝑀𝜙𝜙 𝑦𝑦 𝑝𝑝 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑦𝑦
 𝜙𝜙 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡2 (variance) :  𝑬𝑬𝐱𝐱 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . , 𝑦𝑦 2 = ∫𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦, 𝑧𝑧 2𝑝𝑝 𝑧𝑧 𝑑𝑑𝑑𝑑(𝑧𝑧)
 𝜙𝜙 = log 𝑝𝑝 (information) :  𝑬𝑬𝐱𝐱 log 𝑝𝑝 = ∫𝑀𝑀 𝑝𝑝 𝑦𝑦 log(𝑝𝑝 𝑦𝑦 )𝑑𝑑𝑑𝑑 𝑦𝑦

 𝜙𝜙 = 𝑥𝑥 (mean) :  𝑬𝑬𝐱𝐱 𝐱𝐱 = ∫𝑀𝑀 𝑦𝑦 𝑝𝑝 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑦𝑦

X. Pennec - Geometric Statistics workshop, 04/09/2019 23



24

First statistical tools

Moments of a random variable: tensor fields
 𝔐𝔐1 𝑥𝑥 = ∫𝑀𝑀 𝑥𝑥𝑥𝑥 𝑃𝑃(𝑑𝑑𝑧𝑧) Tangent mean: (0,1) tensor field

 𝔐𝔐2(𝑥𝑥) = ∫𝑀𝑀 𝑥𝑥𝑥𝑥 ⊗ 𝑥𝑥𝑥𝑥 𝑃𝑃(𝑑𝑑𝑧𝑧) Covariance: (0,2) tensor field

 𝔐𝔐𝑘𝑘(𝑥𝑥) = ∫𝑀𝑀 𝑥𝑥𝑥𝑥 ⊗ 𝑥𝑥𝑥𝑥⊗⋯ ⊗ 𝑥𝑥𝑥𝑥 𝑃𝑃(𝑑𝑑𝑧𝑧) k-contravariant tensor field

Fréchet mean set 
 Integral only valid in Hilbert/Wiener spaces [Fréchet 44]

 𝜎𝜎2 𝑥𝑥 = 𝑇𝑇𝑟𝑟𝑔𝑔 𝔐𝔐2 𝑥𝑥 = ∫𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡2 𝑥𝑥, 𝑧𝑧 𝑃𝑃(𝑑𝑑𝑧𝑧)

 Fréchet mean [1948] = global minima
 Exponential barycenters [Emery & Mokobodzki 1991]
𝔐𝔐1 𝑥̅𝑥 = ∫𝑀𝑀 𝑥̅𝑥𝑧𝑧 𝑃𝑃(𝑑𝑑𝑧𝑧) = 0 [critical points if P(C) =0]
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Maurice Fréchet 
(1878-1973)



Fréchet expectation (1944)
Minimizing the variance

Existence

 Finite variance at one point

Characterization as an exponential barycenter (P(C)=0)

Uniqueness Karcher 77 / Kendall 90 / Afsari 10 / Le 10
 Unique Karcher mean (thus Fréchet) if distribution has support in a
regular geodesic ball with radius 𝑟𝑟 < 𝑟𝑟∗ = 1

2
min 𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀 ,𝜋𝜋/ 𝜅𝜅 (k upper

bound on sectional curvatures on M)
 Empirical mean: a.s. uniqueness [Arnaudon & Miclo 2013]

Other central primitives

[ ] [ ]( )),dist(E argmin 2xx y
y M∈

=Ε

( ) [ ] 0)().(.xxE           0  )(grad 2 ==⇒= ∫
M

M zdzpy xx xxσ

[ ] [ ]( ) ααα
1

),dist(E argmin xx y
y M∈

=Ε
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A gradient descent (Gauss-Newton) algorithm

Vector space

Manifold

vHvvfxfvxf f
TT

..2
1.)()( +∇+=+

fHvvxx ftt ∇−=+= −

+ .      with  )1(

1

),()()())((exp 2
1 vvHvfxfvf fx +∇+=

( ) [ ] ∑−
=−=∇

i
in

yx2yE 2  (y)2 xxσ

IdH 2   2 ≈
xσ

[ ]xyE     with  )(expx x1 ==+ vv
tt

Geodesic marching
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Example on 3D rotations
Space of rotations SO(3):

 Manifold: RT.R=Id  and det(R)=+1
 Lie group ( R1 o R2 = R1.R2   & Inversion: R(-1) = RT )

Metrics on SO(3): compact space, there exists a bi-invariant metric
 Left / right invariant / induced by ambient space  <X, Y> = Tr(XT Y)

Group exponential
 One parameter subgroups = bi-invariant Geodesic starting at Id

 Matrix exponential and Rodrigue’s formula: R=exp(X)  and X = log(R)

 Geodesic everywhere by left (or right) translation

LogR(U) = R log(RT U)            ExpR(X) = R exp(RT X) 

Bi-invariant Riemannian distance
 d(R,U) = ||log(RT U)|| = θ( RT U )

X. Pennec - Geometric Statistics workshop, 04/09/2019
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Example with 3D rotations

Principal chart: 

Distance:

Frechet mean:

nr .  :ectorrotation v θ=

2
)1(

121 ),dist( rrRR −=

Centered chart: 

mean = barycenter









= ∑∈ i

),dist(min arg  
3

iSOR
RRR
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Distributions for parametric tests
Uniform density:

 maximal entropy knowing X

Generalization of the Gaussian density:
 Stochastic heat kernel p(x,y,t) [complex time dependency] 
 Wrapped Gaussian [Infinite series difficult to compute]
 Maximal entropy knowing the mean and the covariance

Mahalanobis D2 distance / test:

 Any distribution:

 Gaussian:

( ) ( ) 




= 2/x..xexp.)(

T
xΓxkyN

)Vol(/)(Ind)( Xzzp X=x

( ) ( ) ( )( )rOk n /1.)det(.2 32/12/ σεσπ ++= −− Σ

( ) ( )rO /  Ric3
1)1( σεσ ++−= −ΣΓ

yx..yx)y( )1(2 −Σ= xxx

t
µ

[ ] n=)(E 2 xxµ

( )rOn /)()( 322 σεσχµ ++∝xx

[ Pennec, JMIV06, NSIP’99 ]
X. Pennec - Geometric Statistics workshop, 04/09/2019



32

Gaussian on the circle

Exponential chart:

Gaussian: truncated standard Gaussian

[. ; .]    rrrx ππθ −∈=

standard Gaussian
(Ricci curvature → 0)

uniform pdf with

(compact manifolds)

Dirac

:∞→r

:∞→γ

:0→γ
3/).( 22 rπσ =
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tPCA vs PGA
tPCA

 Generative model: Gaussian
 Find the subspace that best explains the variance

 Maximize the squared distance to the mean

PGA (Fletcher 2004, Sommer 2014)
 Generative model:

 Implicit uniform distribution within the subspace
 Gaussian distribution in the vertical space

 Find a low dimensional subspace (geodesic subspaces?) that 
minimizes the error 
 Minimize the squared Riemannian distance from the measurements to that 
sub-manifold (no closed form)

Different models in curved spaces (no Pythagore thm)
Extension to BSA tomorrow
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds
 Introduction to computational anatomy 
 The Riemannian manifold computational structure 
 Simple statistics on Riemannian manifolds
 Applications to the spine shape and registration accuracy 

Metric and Affine Geometric Settings for Lie Groups 
Parallel Transport to Analyze Longitudinal Deformations
Advances Statistics: CLT & PCA
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Statistical Analysis of the Scoliotic Spine

Database
 307 Scoliotic patients from the Montreal’s 

Sainte-Justine Hospital.
 3D Geometry from multi-planar X-rays

Mean
 Main translation variability is axial (growth?)
 Main rot. var. around anterior-posterior axis 

[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]
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Statistical Analysis of the Scoliotic Spine

• Mode 1: King’s class I or III
• Mode 2: King’s class I, II, III 

• Mode 3: King’s class IV + V
• Mode 4: King’s class V (+II)

PCA of the Covariance: 
4 first variation modes 
have clinical meaning

[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]
AMDO’06 best paper award, Best French-Quebec joint PhD 2009



Typical Registration Result
with Bivariate Correlation Ratio
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Per - Operative US ImagePre - Operative MR Image

Registered

Acquisition of images : L. & D. Auer, M. Rudolf

axial

coronal sagittal

axial

coronal sagittal



Accuracy Evaluation (Consistency)

222
/

2 2 USMRUSMRloop σσσσ ++=
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Bronze Standard Rigid Registration Validation

Best explanation of the observations (ML) :
 LSQ criterion 

 Robust Fréchet mean 

 Robust initialization and Newton gradient descent

Result

Derive tests on transformations for accuracy / consistency
X. Pennec - Geometric Statistics workshop, 04/09/2019 40
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[ T. Glatard & al, MICCAI 2006,

Int. Journal of HPC Apps, 2006 ]
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Data (per-operative US)
 2 pre-op MR (0.9 x 0.9 x 1.1 mm)
 3 per-op US (0.63 and 0.95 mm)
 3 loops

Robustness and precision

Consistency of BCR

Results on per-operative patient images

Success var rot (deg) var trans (mm)
MI 29% 0.53 0.25
CR 90% 0.45 0.17

BCR 85% 0.39 0.11

var rot (deg) var trans (mm) var test (mm)
Multiple MR 0.06 0.06 0.10

Loop 2.22 0.82 2.33
MR/US 1.57 0.58 1.65

[Roche et al, TMI 20(10), 2001 ]
[Pennec et al, Multi-Sensor Image Fusion, Chap. 4, CRC Press, 2005]
X. Pennec - Geometric Statistics workshop, 04/09/2019
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				Success		var rot (deg)		var trans (mm)

		MI		29%		0.53		0.25

		CR		90%		0.45		0.17
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Mosaicing of Confocal Microscopic in Vivo Video Sequences. 

Cellvizio: Fibered confocal fluorescence imaging

FOV 200x200 µm
Courtesy of Mike Booth, MGH, Boston, MA FOV 2747x638 µm

Cellvizio

[ T. Vercauteren et al., MICCAI 2005, T.1, p.753-760 ]
X. Pennec - Geometric Statistics workshop, 04/09/2019
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Common coordinate system
 Multiple rigid registration
 Refine with non rigid 

Mosaic image creation
 Interpolation / approximation 

with irregular sampling
MosaicFrame 6

Frame 1

Frame 2

Frame 3

Frame 4Frame 5

Mosaicing of Confocal Microscopic in Vivo Video Sequences. 

Courtesy of Mike Booth, MGH, Boston, MA FOV 2747x638 µm

[ T. Vercauteren et al., MICCAI 2005, T.1, p.753-760 ]
X. Pennec - Geometric Statistics workshop, 04/09/2019
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