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Context

Air traffic control

• Air traffic ontrollers act on flying or taxiing aircraft in such a way that separation
norms are satisfied at all time.

• The airspace is segmented in elementary cells that can be regrouped or
degrouped according to traffic complexity.

• Major concern : automatically evaluate the complexity of an air traffic situation.

What is an air traffic situation?

• A set of positions and speeds (xi,vi) ∈ R2×R2, i = 1, . . . ,N of the aircraft
present in the airspace at a given time.
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A geometric complexity indicator

• In the neighborhood of each point (xi,vi), we assume that the spatial distribution
of the speeds is Gaussian.

• We estimate its mean and covariance matrix using a kernel K, Kh(x) = 1
h K( x

h ),

mi =
∑

N
j=1 vjKh(xi− xj)

∑
N
j=1 Kh(xi− xj)

, Σi =
∑

N
j=1(vj−mi)(vj−mi)

T Kh(xi− xj)

∑
N
j=1 Kh(xi− xj)

.

• Σi measures the "local disorder" = "local complexity" of the traffic at point xi

• We neglect the mean and represent complexity at xi by N (0,Σi)
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Information geometry

• Geometric approach to probability and statistics based on the Fisher information

• The Fisher information is defined for a parametric statistical model {pθµ|θ ∈Θ}

I(θ) = Eθ[∂θ`θ(X) ·∂θ`θ(X)
t], `θ = logpθ.

• In parametric estimation, the Fisher information gives a limit to the precision of
the estimation given by an unbiased estimator T of θ function of a sample of size
n (Cramer-Rao bound)

Varθ(T)≥ (nI(θ))−1

• The Fisher information is the curvature of the Kullback-Leibler divergence
K(p,q) = Ep log(p/q)

∂θK(θ∗,θ)|
θ=θ∗ = 0, ∂θi ∂θj K(θ∗,θ)

∣∣
θ=θ∗

= I(θ∗)i,j

• The KL divergence is not symmetric and does not verify the triangular inequality.
We use the Fisher information to define a real distance.
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The Fisher information metric

• Parametric statistical model P = {Pθ = pθµ|θ ∈Θ} on X , with Θ⊂ Rd open.

• Θ is a differentiable manifold, and can be equipped with a Riemannian metric
using the Fisher information I(θ)

gθ(u,v) = utI(θ)v, u,v ∈ TθΘ' Rd

g is called the Fisher information metric or Fisher-Rao metric.
(Θ,g) is a Riemannian manifold.

• The geodesic distance induced on Θ and therefore on P

dF(Pθ,Pθ′) = dΘ(θ,θ
′) = inf

γ, γ(0)=θ,γ(1)=θ′

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt,

is called the Fisher information distance.
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Invariance properties of the Fisher information metric

• The Fisher geometry is invariant with respect to diffeomorphic parameter change
∀ϕ : Θ→ Θ̃, θ 7→ θ̃ diffeomorphism,

dΘ(θ,θ
′) = d

Θ̃
(ϕ(θ),ϕ(θ′))

→ the geometric structure does not depend on the parameter choice.

• The Fisher metric is the only invariant metric with respect to sufficient statistics
(Chentsov’s theorem) : T : X n→ Rd sufficient statistic of P , i.e.

Pθ((X1, . . . ,Xn)|T(X1, . . . ,Xn)) is independant of θ

T transforms the sampling model ({Pn
θ
}θ∈Θ,dn

F) on X into an isometric
sampling model ({T∗(Pn

θ
)}θ∈Θ,dn

F) on Rd

dn
F(P

n
θ
,Pn

θ′) = dn
F(T∗(P

n
θ
),T∗(Pn

θ′))

→ the geometry of a parametric model is preserved through transformation by a
sufficient statistic.
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Example : univariate normal distributions

X ∼N (m,σ2) has probability density function

pθ(x) =
1√

2πσ2
e−

(x−m)2

2σ2 , θ = (m,σ) ∈ R×R∗+, x ∈ R.

The Fisher information is

I(θ) =
[

1/σ2 0
0 2/σ2

]
, ‖dθ‖2 =

dm2 +2dσ2

σ2 .

The change of variables (m,σ) 7→ (m/
√

2,σ)
yields the Poincaré half-plane, i.e. hyperbolic
geometry.

The Wasserstein distance yields Euclidean geometry

‖dθ‖2 = dm2 +dσ
2.
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Example : univariate normal distributions

The geodesics yield optimal interpolations between probability distributions.

Since the curvature is negative, the Riemannian center of mass is well defined.

P̄ = argmin
P

n

∑
i=1

d2(P,Pi)
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Example : centered multivariate normal distributions

X ∼N (0,Σ), θ = Σ ∈ S+n symmetric positive definite matrix.

The tangent vectors U,V in Σ are symmetric matrices

gΣ(U,V) = tr(Σ−1UΣ
−1V).

The geodesics and geodesic distance have closed forms

Γ(t) = Σ
1/2 exp

(
tΣ−1/2UΣ

−1/2
)

Σ
1/2, U ∈ TΣS+n

d(Σ1,Σ2) =

√
n

∑
i=1

logλi

(
Σ
−1/2
1 Σ2Σ

−1/2
1

)
, λi(A) = ith eigenvalue of A.

This distance on S+n is also called affine-invariant for its invariance w.r.t. GLn

d(AT
Σ1A,AT

Σ2A) = d(Σ1,Σ2).
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Summarizing the complexity information

We can now compare the complexity level of different zones in an image.
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Optimal quantization I

• (M,〈·, ·〉) complete Riemannian manifold, µ ∈ P (M), suppµ compact

• Goal : approximate X ∼ µ by a quantized version q(X) where

q = argmin
q∈Qn

Eµ [d(X,q(X))p] ,

Qn = {q : M→M mesurable, |q(M)| ≤ n}.

• Optimal quantization is an optimal transport problem (Graf, Luschgy, 2000)

inf
q∈Qn

Eµ [d(X,q(X))p] = inf
ν∈Pn(M)

Wp(µ,ν)p,

where Pn(M) = {ν measure on M, |suppν| ≤ n} and Wp is the pth order
Wasserstein distance, i.e.,

Wp(µ,ν) = inf
P∈Π(µ,ν)

∫
M×M

d(y,z)pdP(y,z),

where Π(µ,ν) = {P ∈ P (M×M) has marginals µ and ν}.
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Optimal quantization II
• The search for an optimal quantizer q can be restricted to nearest neighbor

projections in a set α = {a1, . . . ,an} of size n

inf
q∈Qn

Eµ [d(X,q(X))p] = inf
α={a1,...,an}

Eµ [d(X,qα(X))p] ,

qα(x) =
n

∑
i=1

ai1Vi(x), x ∈M,

Vi = {x ∈M,d(x,ai)≤ d(x,aj)∀j 6= i} Voronoi cell.

• The optimal quantization problem is written

inf
q∈Qn

Eµ [d(X,q(X))p] = inf
α={a1,...,an}

Eµ

[
min

1≤i≤n
d(X,ai)

p
]
= inf

µ̂∈Pn
Wp(µ, µ̂)p,

where
Qn = {q : M→M measurable, |q(M)| ≤ n},
Pn = {ν measure on M, |suppν| ≤ n}.

• The minimizers q = qα, α = {a1, . . . ,an} and µ̂ are related by :

µ̂ = (qα)∗µ =
n

∑
i=1

µ(Vi)δai .
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Finding the optimal quantized measure I

• We choose to optimize over n-tuples α = {a1, . . . ,an}. We set

Fn,p(a1, . . . ,an) = Eµ

[
min

1≤i≤n
d(X,ai)

p
]
=

∫
M

min
1≤i≤n

d(x,ai)
pdµ(x).

• For n = 1, p = 2, optimal quantization is equivalent to approximating µ by its
Riemannian center of mass

x̄ = Eµ(X) = argmin
a∈M

∫
M

d(x,a)2dµ(x).

• Existence of a solution (LB, Puechmorel, 2019) Let M be a complete Riemannian
manifold and µ a probability distribution on M with compactly supported density.
Then the cost function Fn,p is continuous and admits a minimizer.

• The minimizer is in general not unique, e.g. in case of symmetries of µ.

• Gradient of the cost function (LB, Puechmorel, 2019) Let α = (a1, . . . ,an) ∈Mn

be a n-tuple of pairwise distinct components. Then Fn,2 is differentiable and its
gradient in α is

gradαFn,2 =

(
−2

∫
V̊i

−→
aix µ(dx)

)
1≤i≤n

=−2
(
Eµ1{X∈V̊i}

−→
aiX
)

1≤i≤n
, (1)

where
−→
xy := logx(y).
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Finding the optimal quantized measure II

• The average opposite direction of the gradient is given by
1{X∈V̊1}

−→
a1X

...

1{X∈V̊n}
−→
anX

 .

• In practice : we know µ through i.i.d. realizations X1,X2, . . .

• Algorithm (Competitive Learning Riemannian Quantization)
Initialization : α(0) = (a1(0), . . . ,an(0)), discrete steps ∑γk = ∞, ∑γ2

k < ∞

For each new observation Xk, repeat until convergence :

1. find i∗ = argmini d(Xk,ai(k)),
2. update

ai∗(k+1) = expai∗ (k)

(
γk
−−−−−→
ai∗(k)Xk

)
,

ai(k+1) = ai(k) ∀i 6= i∗.

• Theorem (LB, Puechmorel 2019, Bonnabel 2013) If the injectivity radius of M is
uniformly bounded from below by I > 0, and if (α(k))k≥0 is computed using the
above algorithm and a sample of a compactly supported distribution µ, then
Fn,2(α(k)) converges a.s. and gradα(k)Fn,2→ 0 when k→ ∞ a.s.
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Fn,2(α(k)) converges a.s. and gradα(k)Fn,2→ 0 when k→ ∞ a.s.
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Finding the optimal quantized measure II

• The average opposite direction of the gradient is given by
1{X∈V̊1}

−→
a1X

...

1{X∈V̊n}
−→
anX

 .
• In practice : we know µ through i.i.d. realizations X1,X2, . . .

• Algorithm (Competitive Learning Riemannian Quantization)
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Link with k-means clustering

• Let X1, . . . ,XN be an i.i.d. sample of empirical distribution

µ =
1
N

N

∑
k=1

δXk ,

The associated optimal quantized distribution is

µ̂n =
n

∑
i=1

|Vi|
N

δai ,

where a1, . . . ,an minimizes the sum of intra-class variance of each Voronoi cell

Fn,2(a1, . . . ,an) =
n

∑
i=1

∑
xk∈Vi

d2(xk,ai).

This is the cost function of the k-means algorithm. The clusters are given by the
Voronoi cells.

• Competitive Learning Quantization is an online version of the k-means algorithm
→ adapted to large datasets.
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geomstats

• Created by Nina Miolane and Xavier Pennec

• Python package that factorizes code for geometric statistics into a shared unit-test
library, with several backends : numpy, tensorflow and pytorch.

• Riemannian geometry is implemented in geomstats.geometry with 4 base classes

– Manifold and EmbeddedManifold
– RiemannianMetric and InvariantMetric

• The other manifold classes inherit from these 4 base classes
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Quantization in geomstats

• Machine Learning is implemented in geomstats.learning, using scikit-learn classes

– BaseEstimator
– ClassifierMixin , RegressorMixin, TransformMixin, ClusterMixin and others.

sphere = Hypersphere ( dimension =2)

data = sphere . random_von_mises_fisher ( kappa=10 , n_samples=1000)

c l u s t e r i n g = Quant iza t ion ( met r i c=sphere . metr ic , n_c lus te rs =4)
c l u s t e r i n g = c l u s t e r i n g . f i t ( data )

c l us te r_cen te r s = c l u s t e r i n g . c lus te r_cen te rs_
l a b e l s = c l u s t e r i n g . labe ls_
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Real data analysis

• Given an air traffic image, we extract N SPD matrices Σ1, . . . ,ΣN , with empirical
distribution

µ =
1
N

N

∑
i=1

δΣi

• We use optimal quantization to find a summary

µ̂ =
n

∑
i=1

wiδAi , where wi = |Vi|/N.

• In practice, we choose n = 3 because the centers can then be ordered (Loewner
order : A≥ B⇔ A−B positive definite).

• Mapping back the labels to the image, this yields a clustering of the image in
zones of homogeneous complexity.
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Three levels of complexity

Clustering of the airspace above Paris (left), Toulouse (middle) and Lyon (right).
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Comparison to Euclidean geometry

Clustering of the French airspace with Fisher-Rao (up) vs Euclidean (down) geometry.
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Comparison to human perception

mean complexity index = λ1w1 +λ2w2 +λ3w3
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Comparison of summaries

To compare summaries µ = µ1δA1 +µ2δA2 +µ3δA3 and ν = ν1δB1 +ν1δB1 +ν1δB1 , it
suffices to find the transport plan π = (πij)i,j

π11 π12 π13
π21 π22 π23
π31 π32 π33

µ1
µ2
µ3

ν1 ν2 ν3

solution of
min

π

3

∑
i=1

3

∑
j=1

πijd(Ai,Bj)
2.

Distances matrix between the summaries :

0.00 1.92 6.74 4.55
1.92 0.00 8.31 6.07
6.74 8.31 0.00 1.22
4.55 6.07 1.22 0.00
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Shape analysis

Some interesting questions :

• how can we compare two shapes?

• how can we interpolate between two shapes?

• how can we compute a mean shape?

• how can we perform clustering on shapes?

shapes in R3 shapes in S2 interpolation between shapes
in H2

→ Riemannian geometry : convenient framework to generalize

• usual statistical notions (mean, covariance, Gaussian distribution...)

• data processing algorithms (clustering, PCA...)
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Model of a curve

• We consider smooth curves in a space M (Rn or manifold) with non zero speed

M = {c : [0,1]→M C∞, c′(t) 6= 0 ∀t}
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M = {c : [0,1]→M C∞, c′(t) 6= 0 ∀t}

• The space of curves M can be seen as an (∞-dim) differentiable manifold

A tangent vector w ∈ TcM is an infinitesimal vector field along c.

• If we equip M with a Riemannian metric,

Gc(v,w), c ∈M , v,w ∈ TcM , then

→ a geodesic in M is an interpolation between two curves

→ dist(c,c1) = L(geodesic between c à c1)
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Model of a shape

• Curves are reparameterized by the action of increasing diffeomorphisms

c 7→ c◦ϕ, ϕ ∈ Γ := Diff+([0,1])

• A shape is an element of the quotient space M /Γ

• If the Riemannian metric on M is invariant w.r.t. the action of Γ

Gc(v,w) = Gc◦ϕ(v◦ϕ,w◦ϕ), ∀ϕ ∈ Γ

it induces a Riemannian metric on M /Γ for which the distance is

dist([c0], [c1]) = inf
ϕ∈Γ

dist(c0,c1 ◦ϕ).
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How to compare two shapes?

• To compare two shapes in M /Γ :

1. define a reparameterization invariant metric on M
2. find its geodesics (solve geodesic equations)
3. solve the optimal matching problem ϕ between two curves c0 et c1

dist([c0], [c1]) = inf
ϕ∈Γ

dist(c0,c1 ◦ϕ)

• (Michor, Mumford, 2005) The reparameterization invariant L2 metric yields a
vanishing distance on the quotient space

Gc(w,z) =
∫ 1

0
〈w(t),z(t)〉|c′(t)|dt

• Need to include higher order derivatives, e.g. elastic metrics

Ga,b
c (w,z) =

∫
a2〈D`w

N ,D`z
N 〉+b2〈D`w

T ,D`z
T 〉 d`

where D`w = w′/|c′|, d`= |c′(t)|dt.
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The SRV framework

• For the special case a = 1, b = 1/2, the elastic metric can be mapped to an
L2-metric through the square root velocity transform q = c′/

√
|c′| (Srivastava et al.

2011)

d2
G1, 1

2
(c0,c2) = d2

L2(q0,q1) =
∫ 1

0
|q1(t)−q0(t)|2 dt.

• Many extensions

– curves in a manifold (J.Su et al. 2014, LB 2017, Zhang et al. 2018)
– curves in a Lie group (Celledoni et al. 2016)
– curves in homogeneous spaces (Z.Su et al. 2017, Celledoni et al. 2017)
– surfaces (square root normal field, Jermyn et al. 2012)
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Examples of geodesics between curves

Geodesics between curves in the plane R2

Geodesics between curves in the Poincaré upper half-plane H2
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Are we really comparing shapes?

• At this stage, the distance between two curves does not change if we
reparameterize them the same way, but it does change if we reparameterize them
in different ways !

(c0,c1) (c0 ◦ϕ,c1 ◦ϕ) (c0 ◦ϕ,c1 ◦ψ)

• We need to solve the optimal matching problem

dist([c0], [c1]) = inf
ϕ∈Γ

dist(c0,c1 ◦ϕ).
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Comparing two shapes

• Principal bundle structure π : M →M /Γ⇒ Decomposition of the tangent space

TcM = VcM ⊕HcM
Tangent vector = Vertical part+Horizontal part

Vertical part : reparametrizes the curve without changing its shape

Horizontal part : changes the shape, and is orthogonal to the vertical part (w.r.t. G).

• The vertical deformations are of the form w(t) = m(t)v(t) where v = c′/|c′|.
• The geodesics M /Γ are projections of the horizontal geodesics of M
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More formally

• We decompose any path of curves s 7→ c(s, ·) ∈M into

c(s, t) = chor(s,ϕ(s, t)),
s 7→ chor(s, ·) horizontal path

s 7→ ϕ(s, ·) path in Diff+([0,1])

• Assuming that we know ∂sc(s, t)ver = m(s, t)v(s, t), we can show (LB 2019) :
The path of diffeomorphisms is solution of the PDE∂sϕ(s, t) =

m(s, t)
|∂tc(s, t)|

·∂tϕ(s, t),

ϕ(0, t) = t.

• (LB 2019) For elastic metrics, the vertical part m(t) of a tangent vector w(t)
verifies m(0) = m(1) = 0 and is solution of the ODE

m′′−〈∇tc′/|c′|,v〉m′− (a/b)2|∇tv|2m

= 〈∇t∇tw,v〉−
(
(a/b)2−1

)
〈∇tw,∇tv〉−〈∇tc′/|c′|,v〉〈∇tw,v〉.

→ From a path of curves c(s, t), find m(s, t) for w(s, t) = ∂sc(s, t), then ϕ(s, t) and
then

chor(s, t) = c(s,ϕ(s)−1(t)).
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Examples of matchings

Sub-optimal matching

42 / 48



Examples of matchings

Optimal matching

42 / 48



Examples of matchings

Sub-optimal matching

43 / 48



Examples of matchings

Optimal matching

43 / 48



Examples of matchings

Sub-optimal matching

44 / 48



Examples of matchings

Optimal matching
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Geodesics between curves vs between shapes
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Real data applications

• Trajectory analysis

Clustering of plane trajectories

Comparison of hurricane tracks
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Real data applications

• Mean shape of the internal ear (J. M. Loubes)
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Thank you for your attention !
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