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Part | : Shape Analysis

© Shape spaces as Quotient versus Sections of fiber bundles

© 3 different ways of putting a intrinsic Riemannian metric on
Shape space

Part Il : Moving Frames

@ Cartan’s method of moving frames

© Resampling using structural invariants of shapes

Part Il : Infinite-dimensional Geometry

© What are the Model spaces of infinite-dimensional geometry?
@ What are the Tools from Functional Analysis?
© Which Geometric structures can we consider?

© What are the Traps of infinite-dimensional geometry?
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Quotient versus Fiber bundle

Part | : Shape analysis

Shape spaces
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:

Pre-shape space % := {f immersion :S! — R?} C (S, R?)
Shape space . := 1-dimensional immersed submanifolds of R?
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Quotient versus Fiber bundle

Shape spaces

Pre-shape space 7 := {f embedding :S? — R3} C €>°(S?,R3)
Shape space .# := 2-dimensional submanifolds of R3

Alice Barbara Tumpach Shape Analysis, Moving frames and Inf -dimensional Geomet:



Quotient versus Fiber bundle

Shape spaces are non-linear manifolds

Figure: First line : linear interpolation between some parameterized ballerinas, second line :
linear interpolation between arc-length parameterized ballerinas.
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Quotient versus Fiber bundle
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Quotient versus Fiber bundle
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Quotient versus Fiber bundle

For I =[0,1] or | = Z/R ~ S!, the space of smooth immersions
e() = () C4(1) = {v € €1, R?)/R%, 7/(s) # 0,¥s € I}.
k=1

is an open set of ¥>°(/,R?)/IR? for the topology induced by the family of
norms ||-||+, hence a Fréchet manifold.

() = {yec() - /0 I/ (s)lds = 1}.

() ={yec(l) ()| =1, ¥s e I} C Cu(l).
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Quotient versus Fiber bundle

Theorem (A.B.T, S.Preston)

The subset C1(I) is a tame €°°-submanifold of C(I) and <# (1) is a tame
€ -submanifold of C(I), and thus also of C1(). Its tangent space at a
curve y is

T, o4 = {w € (S, R?),w'(s) - 7/(s) =0, VseS'}.

Proof : Uses the implicit function theorem of Nash-Moser.

< (1) = Diff " ([0,1]) or Diff*(S') is a tame Fréchet Lie group [Hamilton].J

Theorem (A.B.T, S.Preston)

The right action I': C(1) x 4(I) — C(I), T(+y,%) = vy o ¢ of the group of
reparameterizations ¢4 (1) on the tame Fréchet manifold C(I) is smooth
and tame, and preserves C1(!).
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Quotient versus Fiber bundle

Theorem (A.B.T, S.Preston)

Given a curve v € C1(1), let p(vy) € <#(l) denote its
arc-length-reparameterization, so that p(y) = v o 1) where

- 1
@)

Then p is a smooth retraction of C1(I) onto <A(!).

¥(s) $(0) = 0. (1)

Theorem (A.B.T, S.Preston)

<% ([0, 1]) is diffeomorphic to the quotient Fréchet manifold
C1([0,11)/# ([0, 1]).-
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Riemannian metrics on Shape space

Riemannian metrics on Shape space

We will consider the 2-parameter family of elastic metrics on C1(/)
introduced by Mio et al. :

Gob(w,w) = [1 (a(Daw v + b(Daw - n)?) (D)t (2)

where a and b are positive constants, 7y is any parameterized curve in
Ci1(/), w is any element of the tangent space T,Cyi(/), with Dsw = B

denoting the arc-length derivative of w, v =+'/|7/| and n = v.

Since the reparameterization group preserves the elastic metric G°, it
defines a quotient elastic metric on the quotient space

¢1([0,1])/([0, 1]), which we will denote by G=°

G (). [w]) = inf _ G**(w -+ u.w+ u)
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Riemannian metrics on Shape space
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Figure: First line : linear interpolation between some parameterized ballerinas, second line :
linear interpolation between arc-length parameterized ballerinas. Geodesic between some
parameterized ballerinas with 200 points using Qmap : execution time = 350 s.
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Riemannian metrics on Shape space

Since 2% ([0, 1]) is diffeomorphic to the quotient Fréchet manifold

C1([0,1])/9([0,1]), we can pull-back the quotient elastic metric G to
the space of arc-length parameterized curves <% ([0, 1]) and define

~a,b __ rab o a,b
G *(w,w) = G*H([wl W) = inf | G*4(w +uw+0)

where w is tangent to 24 ([0, 1]).

If T,C1([0,1]) decomposes as T,C1([0,1]) = T, & & Hor,, this minimum
is achieved by the unique vector Py(w) € [w] belonging to the horizontal
space Hor,, at . In this case:

GP(w, w) = G*P(Ph(w), Po(w)), (3)

where Py(w) € T,C1([0,1]) is the projection of w onto the horizontal
space.
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Riemannian metrics on Shape space

Theorem (A.B.T- S. Preston)

Let w be a tangent vector to the manifold <#([0,1]) at v and write

w' = ®n, where ® is a real function in €>°([0, 1], R). Then the
projection Pp(w) of w € T,2#([0,1]) onto the horizontal space Hor,
reads Py(w) = w — mv where m € €°°([0, 1], R) is the unique solution of

. Zm" +r2m=r®,  m0)=0, m(l)=0 (4)

where K is the curvature function of .

A.B.T., S. Preston, Quotient elastic metrics on the manifold of
arc-length parameterized plane curves, Journal of Geometric Mechanics.
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Riemannian metrics on Shape space
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Riemannian metrics on Shape space

Canonical parameterizations of surfaces

Genus-0 surfaces of R3 are Riemann surfaces. Since they are compact
and simply connected, the Uniformization Theorem says that they are
conformally equivalent to the unit sphere. This means that, given a
spherical surface, there exists a homeomorphism, called the
uniformization map, which preserves the angles and transforms the unit
sphere into the surface.

= This gives a canonical parameterization of the surface modulo the
choice of 3 points. (or unique modulo the action of PSL(2,C)).
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Riemannian metrics on Shape space

Gauge invariante degenerate Riemannian metrics
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Riemannian metrics on Shape space

A.B.Tumpach, H. Drira, M. Daoudi, A. Srivastava, Gauge invariant
Framework for shape analysis of surfaces, IEEE TPAMI.

A.B.Tumpach, Gauge invariance of degenerate Riemannian metrics,
Notices of AMS.
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Riemannian metrics on Shape space

Figure: Pairs of paths projecting to the same path in Shape space, but with
different parametrizations. The energies of these paths, as computed by our
program, are respectively (from the upper row to the lower row):
En = 225.3565, Ep = 225.3216, EA = 180.8444, EA = 176.8673.
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Riemannian metrics on Shape space
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Riemannian metrics on Shape space

Figure: Four Paths connecting the same shape but with a parametrization
depending smoothly on time. The energy computed by our program is
respectively Ea = 0 for the path of hands, Ea = 0.1113 for the path of horses,
Ea = 0 for the path of cats, and Ean = 0.0014 for the path of Centaurs.
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Part |l

Cartan's method of Moving frames

f = curve in an homogeneous space G/H,

f=curvein G projecting to f.

Suppose that we have a natural procedure to associate f to f. Then:
c= 7?‘1%1? is a curve in the Lie algebra of G such that

@ c remains the same if one replace f by any g - f with g € G.
© from c one can recover the initial curve f, uniquely modulo the
action of G.

= The Lie-algebra valued curve is characteristic of the orbit of  under
G , and is a geometric invariant of the G/H-valued curve.
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Curves in R3 - Frenet frame

f :1 — R3 parameterized by arc-length.
Unit tangent vector : V(s) = f'(s),
Unit normal vector : f(s) = H?::( BIE

Unit bi-normal : b(s) = ¥(s) A A(s).
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Curves in R3 : Frenet-Serret equations

Frenet-Serret equations with x = curvature and T = torsion :

D,V = kn
Dii = —kV+71h
Dsb = —7n,
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Curves in R3 : Reparameterization taking curvature and
torsion into account

Endowing the space ¥>°([0, 1],50(3)) with the L2 metric given by

(4.8) = =3 | T(As)B()es

Given a curve in R3 parameterized proportionally to arc-length, the speed
of the corresponding moving frame s+ O(s) with respect to the scalar

product {(-,-)) is \/k(s)? + 7(s)?. Now the parameterization of the 3D

curve proportlonal to curvature Iength corresponds to parameterization
proportional to arc-length of the corresponding moving frame. The
corresponding parameter is

fos VK(s)2 + 7(s)2ds
fol VE(s)2 + T(S)2dS'

r(s) =
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Curves in R?
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Model spaces

What are the Model spaces of infinite-dimensional
geometry?

Hilbert C Banach C Fréchet C Locally Convex spaces J

Hilbert space H = complete vector space for the distance given by an
inner product = (-,-) : Hx H— R*"

e symmetric :(x,y) = (y, x)

e bilinear : (x,y + Az) = (x,y) + \(x, z)
@ non-negative : (x,x) >0

e definite : (x,x)=0=x=0

H* = H (Riesz Theorem). )
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Model spaces

What are the Model spaces of infinite-dimensional
geometry?

Hilbert C Banach C Fréchet C Locally Convex spaces )

Banach space B = complete vector space for the distance given by a
norm=|[|-|| : B— R"

e triangle inequality : ||x + y|| < ||x]| + ||yl
@ absolute homogeneity : ||Ax|| = |Al||x]|-

@ non-negative : ||x|| >0

@ definite : ||x|| =0=x=0.

B* = Banach space. )
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Model spaces

What are the Model spaces of infinite-dimensional
geometry?

Hilbert C Banach C Fréchet C Locally Convex spaces |

Fréchet space F = complete Hausdorff vector space for the distance

d : F x F — RT given by a countable family of semi-norms || - || :
+o0
L lx=yln
dx,y)=» ———"——
N =2 T,

F* # Fréchet space in general, but locally convex
F** = Fréchet space.
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Model spaces

What are the Model spaces of infinite-dimensional
geometry?

Hilbert € Banach C Fréchet C Locally Convex spaces )

Locally Convex spaces = Hausdorff topological vector space whose
topology is given by a (possibly not countable) family of semi-norms.

References :

@ Klingenberg : Riemannian Geometry

o Lang : Differential and Riemannian manifolds
Fondamentals of Differential Geometry

@ Hamilton : The inverse function theorem of Nash-Moser
@ A. Kriegl and P. Michor : Convenient setting of Global Analysis
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What are the Tools from Functional Analysis?

Theorems : Hilbert | Banach Fréchet Locally Convex
Banach-Picard X

Open Mapping

Hahn-Banach
Inverse function X
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Geometric structures

Which Geometric structures can we consider?

Riemannian C Symplectic C Poisson Geometry )

Riemannian metric = smoothly varying inner product on a manifold M

g& : TMxTM — R
(U, V) —  g(U,V)

strong Riemannian metric = for every x e M, g, : TM — (T M)*
is an isomorphism

weak Riemannian metric = for every x e M, g, : T,M — (T, M)*
is just injective

Levi-Cevita connection may not exist for a weak Riemannian metric. J
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Geometric structures

Which Geometric structures can we consider?

Riemannian C Symplectic C Poisson Geometry )

Symplectic form = smoothly varying skew-symmetric bilinear form

we : TMxT,M — R
(u,Vv) = wx(U, V)

with dw = 0 and (T, M)+~ = {0}

*

strong symplectic form = for every x € M, w, : T,M — (T M)
is an isomorphism

weak symplectic form = for every x € M, wy, : TM — (T M)*
is just injective

Darboux Theorem does not hold for a weak symplectic form |
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Geometric structures

Which Geometric structures can we consider?

Riemannian C Symplectic C Poisson Geometry )

Hamiltonian Mechanics

(M, g) strong Riemannian manifold
b: WM ~ TiM b=l =4
u = gx(Uv )
o Kinetic energy = Hamiltonian
H: T*M — R
Tx = gx(nﬁ,nﬁ)
(T*M,w) strong symplectic manifold
o : T"M —> M
o w=db
o omy i TnT™M — R Liouville 1-form
X = (m.(X))
geodesic flow = flow of Hamiltonian vector field X : dH = w(Xy, -)
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Geometric structures

Which Geometric structures can we consider?

Riemannian C Symplectic C Poisson Geometry )

Poisson bracket = family of bilinear maps

{,-}u 1 €=(U) x €>(U) = €>°(U), U open in M with
o skew-symmetry {f, g}y = —{g,f}u
e Jacobi identity {f,{g, h}v}vu +{g,{h. f}u}u+{h{f,g}u}u=0
@ Leibniz rule {f,gh}y = {f,g}tuh+ g{f, h}u

A strong symplectic form defines a Poisson bracket by
{f,g} = w(Xs, Xg) where df = w(X,-) and dg = w(Xg,-)

A Poisson bracket may not be given by a bivector field J

D. Beltita, T. Golinski, A.B.T., Queer Poisson Brackets, Journal of
Geometry and Physics.
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Geometric structures

Which Geometric structures can we consider?

Riemannian
Symplectic C Kahler C hyperkidhler Geometry
Complex

Complex structure = smoothly varying endomorphism J
of the tangent space s.t. =1

Integrable complex structure : s. t. there exists an holomorphic atlas
Formally integrable complex structure : with Nijenhuis tensor = 0

Newlander-Nirenberg Theorem is not true in general :
formal integrability does not imply integrability.
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Traps

What are the traps of infinite-dimensional geometry?

"Never believe anything you have not proved yourself!"

The distance function associated to a Riemannian metric may be 0
Levi-Cevita connection may not exist for weak Riemannian metrics
Hopf-Rinow Theorem does not hold in general

Darboux Theorem does not apply to weak symplectic forms

e 6 66 o o

A formally integrable complex structure does not imply the existence
of a holomorphic atlas

o the tangent space differs from the space of derivations (even on a
Hilbert space)

@ a Poisson bracket may not be given by a bivector field (even on a
Hilbert space)

o Lie algebras may not integrate to Lie groups
@ partitions of unity may not exist

@ at least 14 differents ways to define tensor products
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A.B.Tumpach, Banach Poisson—Lie groups and the Bruhat-Poisson
structure of the restricted Grassmannian, Arxiv.

D. Beltita, T. Golinski, A.B.Tumpach, Queer Poisson Brackets, Journal of
Geometry and Physics.

A.B.Tumpach, S. Preston, Quotient elastic metrics on the manifold of
arc-length parameterized plane curves, Journal of Geometric Mechanics.

A.B.Tumpach, Gauge invariance of degenerate Riemannian metrics,
Notices of AMS.

A.B.Tumpach, H. Drira, M. Daoudi, A. Srivastava, Gauge invariant
Framework for shape analysis of surfaces, IEEE TPAMI.

D. Beltita, T. Ratiu, A.B. Tumpach, The restricted Grassmannian, Banach
Lie-Poisson spaces, and coadjoint orbits, Journal of Functional Analysis.

A.B.Tumpach, Hyperkahler structures and infinite-dimensional
Grassmannians, Journal of Functional Analysis.

A.B.Tumpach, Infinite-dimensional hyperkdhler manifolds associated with
Hermitian-symmetric affine coadjoint orbits, Annales de |'Institut Fourier.
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Traps

@ A.B.Tumpach, Classification of infinite-dimensional Hermitian-symmetric
affine coadjoint orbits, Forum Mathematicum.
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Traps

Poisson bracket not given by a Poisson tensor

 separable Hilbert space

Kinetic tangent vector X € T, ¢ equivalence classes of curves c(t),
c(0) = x, where ¢; ~ ¢, if they have the same derivative at 0 in a chart.

Operational tangent vector x € % is a linear map D : C°(s¢) — R
satisfying Leibniz rule :

D(fg)(x) = Df g(x) + f(x) Dg
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Traps

Poisson bracket not given by a Poisson tensor

Ingredients :
@ Riesz Theorem
@ Hahn-Banach Theorem
@ compact operators 2 () C () bounded operators
= 30 € B(H)" such that £(id) = 1 and £| » () = 0.

Queer tangent vector [Kriegl-Michor]

Define D, : C°(#) — R, Di(f) = £(d?f(x)), where the bilinear map
d?f(x) is identified with an operator A € %(.¢) by Riesz Theorem

d*f(x)(X,Y) = (X, AY)

Then D, is an operational tangent vector at x € 5 of order 2
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Traps

Poisson bracket not given by a Poisson tensor

Queer tangent vector [Kriegl-Michor]

d?(fg)(x) = d*f(x).g(x) + df(x) ® dg(x)
+dg(x) ® df (x) + f(x)d?g(x)(X, Y)

Di(fg) = ((d*(fg)(x))
= U(d*f(x)).g(x) + f(x){(d*g(x))
+4(df (x) ® dg(x)) + ¢(dg(x) ® df (x))
= D.f g(x)+ f(x) Dig
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Traps

Poisson bracket not given by a Poisson tensor

Theorem (Beltita-Golinski-T.)

Consider # = 7 x R. Denote points of # as (x,\). Then {-,-}
defined by

g of

£, 8306, A) i= Du (F( N) 5506, 1) — 5(

X, A)Dx (8(+, A))

a queer Poisson bracket on 7 X R, in particular it can not be represented
by a bivector field 1 : T*.# x T*.# — R. The Hamiltonian vector field
associated to h(x,\) = —\ is the queer operational vector field

Xy = {h,-} = D,

acting on f € C°() by Dy(f) = £(d*f(x)).
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