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Quotient versus Fiber bundle
Riemannian metrics on Shape space

Part I : Shape analysis

Shape spaces

Pre-shape space F := {f immersion : S1 → R2} ⊂ C∞(S1,R2)
Shape space S := 1-dimensional immersed submanifolds of R2
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Quotient versus Fiber bundle
Riemannian metrics on Shape space

Shape spaces

Pre-shape space F := {f embedding : S2 → R3} ⊂ C∞(S2,R3)
Shape space S := 2-dimensional submanifolds of R3
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Quotient versus Fiber bundle
Riemannian metrics on Shape space

Shape spaces are non-linear manifolds

Figure: First line : linear interpolation between some parameterized ballerinas, second line :
linear interpolation between arc-length parameterized ballerinas.
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Riemannian metrics on Shape space
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Quotient versus Fiber bundle
Riemannian metrics on Shape space

For I = [0, 1] or I = Z/R ' S1, the space of smooth immersions

C(I ) =
∞⋂
k=1

Ck(I ) = {γ ∈ C∞(I ,R2)/R2, γ′(s) 6= 0,∀s ∈ I}.

is an open set of C∞(I ,R2)/R2 for the topology induced by the family of
norms ‖·‖C k , hence a Fréchet manifold.

C1(I ) = {γ ∈ C(I ) :

∫ 1

0
|γ′(s)|ds = 1}.

A1(I ) = {γ ∈ C(I ) : |γ′(s)| = 1, ∀s ∈ I} ⊂ C1(I ).
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Quotient versus Fiber bundle
Riemannian metrics on Shape space

Theorem (A.B.T, S.Preston)

The subset C1(I ) is a tame C∞-submanifold of C(I ) and A1(I ) is a tame
C∞-submanifold of C(I ), and thus also of C1(I ). Its tangent space at a
curve γ is

TγA1 = {w ∈ C∞(S1,R2),w ′(s) · γ′(s) = 0, ∀s ∈ S1}.

Proof : Uses the implicit function theorem of Nash-Moser.

G (I ) = Diff+([0, 1]) or Diff+(S1) is a tame Fréchet Lie group [Hamilton].

Theorem (A.B.T, S.Preston)

The right action Γ: C(I )× G (I )→ C(I ), Γ(γ, ψ) = γ ◦ ψ of the group of
reparameterizations G (I ) on the tame Fréchet manifold C(I ) is smooth
and tame, and preserves C1(I ).
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Quotient versus Fiber bundle
Riemannian metrics on Shape space

Theorem (A.B.T, S.Preston)

Given a curve γ ∈ C1(I ), let p(γ) ∈ A1(I ) denote its
arc-length-reparameterization, so that p(γ) = γ ◦ ψ where

ψ′(s) =
1

|γ′
(
ψ(s)

)
|
, ψ(0) = 0. (1)

Then p is a smooth retraction of C1(I ) onto A1(I ).

Theorem (A.B.T, S.Preston)

A1([0, 1]) is diffeomorphic to the quotient Fréchet manifold
C1([0, 1])/G ([0, 1]).
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Quotient versus Fiber bundle
Riemannian metrics on Shape space

Riemannian metrics on Shape space

We will consider the 2-parameter family of elastic metrics on C1(I )
introduced by Mio et al. :

G a,b(w ,w) =
∫ 1
0

(
a (Dsw · v)2 + b (Dsw · n)2

)
|γ′(t)| dt, (2)

where a and b are positive constants, γ is any parameterized curve in
C1(I ), w is any element of the tangent space TγC1(I ), with Dsw = w ′

|γ′|
denoting the arc-length derivative of w , v = γ′/|γ′| and n = v⊥.

Since the reparameterization group preserves the elastic metric G a,b, it
defines a quotient elastic metric on the quotient space
C1([0, 1])/G ([0, 1]), which we will denote by G

a,b
.

G
a,b

([w ], [w ]) = inf
u∈TγO

G a,b(w + u,w + u)
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Quotient versus Fiber bundle
Riemannian metrics on Shape space

Figure: First line : linear interpolation between some parameterized ballerinas, second line :
linear interpolation between arc-length parameterized ballerinas. Geodesic between some
parameterized ballerinas with 200 points using Qmap : execution time = 350 s.
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Quotient versus Fiber bundle
Riemannian metrics on Shape space

Since A1([0, 1]) is diffeomorphic to the quotient Fréchet manifold
C1([0, 1])/G ([0, 1]), we can pull-back the quotient elastic metric G

a,b
to

the space of arc-length parameterized curves A1([0, 1]) and define

G̃ a,b(w ,w) = G a,b([w ], [w ]) = inf
u∈TγO

G a,b(w + u,w + u)

where w is tangent to A1([0, 1]).
If TγC1([0, 1]) decomposes as TγC1([0, 1]) = TγO ⊕ Horγ , this minimum
is achieved by the unique vector Ph(w) ∈ [w ] belonging to the horizontal
space Horγ at γ. In this case:

G̃ a,b(w ,w) = G a,b(Ph(w),Ph(w)), (3)

where Ph(w) ∈ TγC1([0, 1]) is the projection of w onto the horizontal
space.
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Quotient versus Fiber bundle
Riemannian metrics on Shape space

Theorem (A.B.T- S. Preston)

Let w be a tangent vector to the manifold A1([0, 1]) at γ and write
w ′ = Φ n, where Φ is a real function in C∞([0, 1],R). Then the
projection Ph(w) of w ∈ TγA1([0, 1]) onto the horizontal space Horγ
reads Ph(w) = w −m v where m ∈ C∞([0, 1],R) is the unique solution of

− a

b
m′′ + κ2m = κΦ, m(0) = 0, m(1) = 0 (4)

where κ is the curvature function of γ.

A.B.T., S. Preston, Quotient elastic metrics on the manifold of
arc-length parameterized plane curves, Journal of Geometric Mechanics.
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Quotient versus Fiber bundle
Riemannian metrics on Shape space

Canonical parameterizations of surfaces

Genus-0 surfaces of R3 are Riemann surfaces. Since they are compact
and simply connected, the Uniformization Theorem says that they are
conformally equivalent to the unit sphere. This means that, given a
spherical surface, there exists a homeomorphism, called the
uniformization map, which preserves the angles and transforms the unit
sphere into the surface.

⇒ This gives a canonical parameterization of the surface modulo the
choice of 3 points. (or unique modulo the action of PSL(2,C)).
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Quotient versus Fiber bundle
Riemannian metrics on Shape space

Gauge invariante degenerate Riemannian metrics
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Quotient versus Fiber bundle
Riemannian metrics on Shape space

A.B.Tumpach, H. Drira, M. Daoudi, A. Srivastava, Gauge invariant
Framework for shape analysis of surfaces, IEEE TPAMI.
A.B.Tumpach, Gauge invariance of degenerate Riemannian metrics,
Notices of AMS.

Alice Barbara Tumpach Shape Analysis, Moving frames and Infinite-dimensional Geometry



Quotient versus Fiber bundle
Riemannian metrics on Shape space

Figure: Pairs of paths projecting to the same path in Shape space, but with
different parametrizations. The energies of these paths, as computed by our
program, are respectively (from the upper row to the lower row):
E∆ = 225.3565, E∆ = 225.3216, E∆ = 180.8444, E∆ = 176.8673.
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Quotient versus Fiber bundle
Riemannian metrics on Shape space
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Quotient versus Fiber bundle
Riemannian metrics on Shape space

Figure: Four Paths connecting the same shape but with a parametrization
depending smoothly on time. The energy computed by our program is
respectively E∆ = 0 for the path of hands, E∆ = 0.1113 for the path of horses,
E∆ = 0 for the path of cats, and E∆ = 0.0014 for the path of Centaurs.
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Part II

Cartan’s method of Moving frames

f = curve in an homogeneous space G/H,
f̂ = curve in G projecting to f .
Suppose that we have a natural procedure to associate f̂ to f . Then:
c = f̂ −1 d

ds f̂ is a curve in the Lie algebra of G such that
1 c remains the same if one replace f by any g · f with g ∈ G .
2 from c one can recover the initial curve f , uniquely modulo the

action of G .
⇒ The Lie-algebra valued curve is characteristic of the orbit of f under
G , and is a geometric invariant of the G/H-valued curve.
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Curves in R3 : Frenet frame

f : I → R3 parameterized by arc-length.

Unit tangent vector : ~v(s) = f ′(s),

Unit normal vector : ~n(s) = f ′′(s)
‖f ′′(s)‖ ,

Unit bi-normal : ~b(s) = ~v(s) ∧ ~n(s).
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Curves in R3 : Frenet-Serret equations

Frenet-Serret equations with κ = curvature and τ = torsion :
Ds~v = κ~n

Ds~n = −κ~v + τ~b

Ds
~b = −τ~n,

⇔ O(s)−1 d

ds
O(s) =

(
0 −κ(s) 0
κ(s) 0 −τ(s)
0 τ(s) 0

)
∈ so(3),

for O(s) =
(
~v(s) ~n(s) ~b(s)

)
.
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Curves in R3 : Reparameterization taking curvature and
torsion into account

Endowing the space C∞([0, 1], so(3)) with the L2 metric given by

〈〈A,B〉〉 = −1
2

∫ 1

0
Tr(A(s)B(s))ds.

Given a curve in R3 parameterized proportionally to arc-length, the speed
of the corresponding moving frame s 7→ O(s) with respect to the scalar
product 〈〈·, ·〉〉 is

√
κ(s)2 + τ(s)2. Now the parameterization of the 3D

curve proportional to curvature-length corresponds to parameterization
proportional to arc-length of the corresponding moving frame. The
corresponding parameter is

r(s) =

∫ s

0

√
κ(s)2 + τ(s)2ds∫ 1

0

√
κ(s)2 + τ(s)2ds

.
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Curves in R2
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Model spaces
Tools

Geometric structures
Traps

What are the Model spaces of infinite-dimensional
geometry?

Hilbert ⊂ Banach ⊂ Fréchet ⊂ Locally Convex spaces

Hilbert space H = complete vector space for the distance given by an
inner product = 〈·, ·〉 : H × H → R+

symmetric :〈x , y〉 = 〈y , x〉
bilinear : 〈x , y + λz〉 = 〈x , y〉+ λ〈x , z〉
non-negative : 〈x , x〉 ≥ 0
definite : 〈x , x〉 = 0⇒ x = 0

H∗ = H (Riesz Theorem).
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Model spaces
Tools

Geometric structures
Traps

What are the Model spaces of infinite-dimensional
geometry?

Hilbert ⊂ Banach ⊂ Fréchet ⊂ Locally Convex spaces

Banach space B = complete vector space for the distance given by a
norm = ‖ · ‖ : B → R+

triangle inequality : ‖x + y‖ ≤ ‖x‖+ ‖y‖
absolute homogeneity : ‖λx‖ = |λ|‖x‖.
non-negative : ‖x‖ ≥ 0
definite : ‖x‖ = 0⇒ x = 0.

B∗ = Banach space.
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Model spaces
Tools

Geometric structures
Traps

What are the Model spaces of infinite-dimensional
geometry?

Hilbert ⊂ Banach ⊂ Fréchet ⊂ Locally Convex spaces

Fréchet space F = complete Hausdorff vector space for the distance
d : F × F → R+ given by a countable family of semi-norms ‖ · ‖n :

d(x , y) =
+∞∑
n=0

1
2n

‖x − y‖n
1 + ‖x − y‖n

F ∗ 6= Fréchet space in general, but locally convex
F ∗∗ = Fréchet space.
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Model spaces
Tools

Geometric structures
Traps

What are the Model spaces of infinite-dimensional
geometry?

Hilbert ⊂ Banach ⊂ Fréchet ⊂ Locally Convex spaces

Locally Convex spaces = Hausdorff topological vector space whose
topology is given by a (possibly not countable) family of semi-norms.

References :
Klingenberg : Riemannian Geometry
Lang : Differential and Riemannian manifolds

Fondamentals of Differential Geometry
Hamilton :The inverse function theorem of Nash-Moser
A. Kriegl and P. Michor : Convenient setting of Global Analysis
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Model spaces
Tools

Geometric structures
Traps

What are the Tools from Functional Analysis?

Theorems : Hilbert Banach Fréchet Locally Convex
Banach-Picard

√ √ √
X

Open Mapping
√ √ √ F webbed

G limit of Baire
Hahn-Banach

√ √ √ √

Inverse function
√ √

Nash-Moser X
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Model spaces
Tools

Geometric structures
Traps

Which Geometric structures can we consider?

Riemannian ⊂ Symplectic ⊂ Poisson Geometry

Riemannian metric = smoothly varying inner product on a manifold M

gx : TxM × TxM → R
(U,V ) 7→ gx(U,V )

strong Riemannian metric = for every x ∈ M, gx : TxM → (TxM)∗

is an isomorphism
weak Riemannian metric = for every x ∈ M, gx : TxM → (TxM)∗

is just injective

Levi-Cevita connection may not exist for a weak Riemannian metric.
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Model spaces
Tools

Geometric structures
Traps

Which Geometric structures can we consider?

Riemannian ⊂ Symplectic ⊂ Poisson Geometry

Symplectic form = smoothly varying skew-symmetric bilinear form

ωx : TxM × TxM → R
(U,V ) 7→ ωx(U,V )

with dw = 0 and (TxM)⊥w = {0}

strong symplectic form = for every x ∈ M, ωx : TxM → (TxM)∗

is an isomorphism
weak symplectic form = for every x ∈ M, ωx : TxM → (TxM)∗

is just injective

Darboux Theorem does not hold for a weak symplectic form
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Model spaces
Tools

Geometric structures
Traps

Which Geometric structures can we consider?

Riemannian ⊂ Symplectic ⊂ Poisson Geometry

Hamiltonian Mechanics

(M, g) strong Riemannian manifold
[ : TxM ' T ∗x M [−1 = ]

U 7→ gx(U, ·)
Kinetic energy = Hamiltonian
H : T ∗M → R

ηx 7→ gx(η]x , η
]
x)

(T ∗M, ω) strong symplectic manifold
π : T ∗M → M

ω = dθ
θ(x,η) : Tx,ηT

∗M → R Liouville 1-form
X 7→ η(π∗(X ))

geodesic flow = flow of Hamiltonian vector field XH : dH = ω(XH , ·)
Alice Barbara Tumpach Shape Analysis, Moving frames and Infinite-dimensional Geometry



Model spaces
Tools

Geometric structures
Traps

Which Geometric structures can we consider?

Riemannian ⊂ Symplectic ⊂ Poisson Geometry

Poisson bracket = family of bilinear maps
{·, ·}U : C∞(U)× C∞(U)→ C∞(U), U open in M with

skew-symmetry {f , g}U = −{g , f }U
Jacobi identity {f , {g , h}U}U + {g , {h, f }U}U + {h, {f , g}U}U = 0
Leibniz rule {f , gh}U = {f , g}Uh + g{f , h}U

A strong symplectic form defines a Poisson bracket by
{f , g} = ω(Xf ,Xg ) where df = ω(Xf , ·) and dg = ω(Xg , ·)

A Poisson bracket may not be given by a bivector field

D. Beltita, T. Golinski, A.B.T., Queer Poisson Brackets, Journal of
Geometry and Physics.
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Model spaces
Tools

Geometric structures
Traps

Which Geometric structures can we consider?

Riemannian
Symplectic
Complex

 ⊂ Kähler ⊂ hyperkähler Geometry

Complex structure = smoothly varying endomorphism J
of the tangent space s.t. J2 = −1.

Integrable complex structure : s. t. there exists an holomorphic atlas
Formally integrable complex structure : with Nijenhuis tensor = 0

Newlander-Nirenberg Theorem is not true in general :
formal integrability does not imply integrability.
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Model spaces
Tools

Geometric structures
Traps

What are the traps of infinite-dimensional geometry?

"Never believe anything you have not proved yourself!"

The distance function associated to a Riemannian metric may be 0
Levi-Cevita connection may not exist for weak Riemannian metrics
Hopf-Rinow Theorem does not hold in general
Darboux Theorem does not apply to weak symplectic forms
A formally integrable complex structure does not imply the existence
of a holomorphic atlas
the tangent space differs from the space of derivations (even on a
Hilbert space)
a Poisson bracket may not be given by a bivector field (even on a
Hilbert space)
Lie algebras may not integrate to Lie groups
partitions of unity may not exist
at least 14 differents ways to define tensor products
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Model spaces
Tools

Geometric structures
Traps

A.B.Tumpach, Banach Poisson–Lie groups and the Bruhat-Poisson
structure of the restricted Grassmannian, Arxiv.

D. Beltita, T. Golinski, A.B.Tumpach, Queer Poisson Brackets, Journal of
Geometry and Physics.

A.B.Tumpach, S. Preston, Quotient elastic metrics on the manifold of
arc-length parameterized plane curves, Journal of Geometric Mechanics.

A.B.Tumpach, Gauge invariance of degenerate Riemannian metrics,
Notices of AMS.

A.B.Tumpach, H. Drira, M. Daoudi, A. Srivastava, Gauge invariant
Framework for shape analysis of surfaces, IEEE TPAMI.

D. Beltita, T. Ratiu, A.B. Tumpach, The restricted Grassmannian, Banach
Lie-Poisson spaces, and coadjoint orbits, Journal of Functional Analysis.

A.B.Tumpach, Hyperkähler structures and infinite-dimensional
Grassmannians, Journal of Functional Analysis.

A.B.Tumpach, Infinite-dimensional hyperkähler manifolds associated with
Hermitian-symmetric affine coadjoint orbits, Annales de l’Institut Fourier.
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Geometric structures
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A.B.Tumpach, Classification of infinite-dimensional Hermitian-symmetric
affine coadjoint orbits, Forum Mathematicum.
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Model spaces
Tools

Geometric structures
Traps

Poisson bracket not given by a Poisson tensor

H separable Hilbert space

Kinetic tangent vector X ∈ TxH equivalence classes of curves c(t),
c(0) = x , where c1 ∼ c2 if they have the same derivative at 0 in a chart.

Operational tangent vector x ∈H is a linear map D : C∞x (H )→ R
satisfying Leibniz rule :

D(fg)(x) = Df g(x) + f (x) Dg
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Model spaces
Tools

Geometric structures
Traps

Poisson bracket not given by a Poisson tensor

Ingredients :
Riesz Theorem
Hahn-Banach Theorem
compact operators K (H ) ( B(H ) bounded operators
⇒ ∃` ∈ B(H )∗ such that `(id) = 1 and `| K (H ) = 0.

Queer tangent vector [Kriegl-Michor]

Define Dx : C∞x (H )→ R, Dx(f ) = `(d2f (x)), where the bilinear map
d2f (x) is identified with an operator A ∈ B(H ) by Riesz Theorem

d2f (x)(X ,Y ) = 〈X ,AY 〉

Then Dx is an operational tangent vector at x ∈H of order 2
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Model spaces
Tools

Geometric structures
Traps

Poisson bracket not given by a Poisson tensor

Queer tangent vector [Kriegl-Michor]

d2(fg)(x) = d2f (x).g(x) + df (x)⊗ dg(x)
+dg(x)⊗ df (x) + f (x)d2g(x)(X ,Y )

Dx(fg) = `(d2(fg)(x))
= `(d2f (x)).g(x) + f (x)`(d2g(x))

+`(df (x)⊗ dg(x)) + `(dg(x)⊗ df (x))
= Dx f g(x) + f (x) Dxg

Alice Barbara Tumpach Shape Analysis, Moving frames and Infinite-dimensional Geometry



Model spaces
Tools

Geometric structures
Traps

Poisson bracket not given by a Poisson tensor

Theorem (Beltita-Golinski-T.)

Consider M = H × R. Denote points of M as (x , λ). Then {·, ·}
defined by

{f , g}(x , λ) := Dx (f (·, λ))
∂g

∂λ
(x , λ)− ∂f

∂λ
(x , λ)Dx (g(·, λ))

a queer Poisson bracket on H ×R, in particular it can not be represented
by a bivector field Π : T ∗M ×T ∗M → R. The Hamiltonian vector field
associated to h(x , λ) = −λ is the queer operational vector field

Xh = {h, ·} = Dx

acting on f ∈ C∞x (H ) by Dx(f ) = `(d2f (x)).

Alice Barbara Tumpach Shape Analysis, Moving frames and Infinite-dimensional Geometry


	part I
	Quotient versus Fiber bundle
	Riemannian metrics on Shape space

	II
	Part 1
	Model spaces
	Tools
	Geometric structures
	Traps


