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Introduction

P(Ω) is the space of probability distributions on some sample
space Ω.

A statistical problem consists in finding, approximating, or
estimating an unknown probability distribution on Ω, that is, an
element of P(Ω), according to which samples are drawn from Ω.
We usually go about this with some particular assumptions or prior
knowledge. In other words, we have some model.
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Such a model is a parametrized family of probability distributions
on the sample space. The parameter parametrizes the unknown
probability measures that govern the distribution of the observable.

In parametric statistics, the Fisher-Rao metric quantifies how well
the parameter can be recovered by observations on the sample
space. On the basis of the observations, one then estimates the
parameter that best fits the data, for example by using the
maximum likelihood estimator.
In Bayesian statistics, one rather starts with a prior distribution
over the unknown parameters of the model, which is meant to
capture our beliefs about the situation before seeing the data.
After observing data, Bayes’ formula yields the posterior
distribution for these unknowns. This posterior can then be used
as a new prior before seeing the next data.
Thus, in both parametric and Bayesian statistics, one needs some
structure on the space of probability distributions. And for a
general and abstract mathematical treatment, this structure should
be studied in the most general terms.
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Thus, for Bayesian statistics, one should investigate the probability
measures on P(Ω) (L.H.Duc, H.V.Lê, T.D.Tran, J.J.).
For parametric statistics, one needs a metric on P(Ω) that has
natural invariance properties. This is the Fisher-Rao metric.
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Some notation

Ω a set with a σ-algebra B.
No further structure on Ω is assumed (like a differentiable or
metric structure).

For a signed measure µ on Ω, we have the total
variation of a bounded signed measure

‖µ‖TV := sup
n∑
i=1
|µ(Ai)|, (1)

where the supremum is taken over all finite partitions
Ω = A1∪̇ . . . ∪̇An with disjoint sets Ai ∈ B. If ‖µ‖TV <∞, the
signed measure µ is called finite.
S(Ω)=Banach space of signed finite measures on Ω with the total
variation norm
M(Ω) = finite non-negative measures
P(Ω) = probability measures on Ω.

P(Ω) ⊂M(Ω) ⊂ S(Ω).
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Some notation

µ0 a σ-finite non-negative measure,
S(Ω, µ0) := {µ = φµ0 : φ ∈ L1(Ω, µ0)}

space of signed measures dominated by µ0. Canonical map

ican : S(Ω, µ0)→ L1(Ω, µ0), µ 7→ dµ

dµ0
,

the Radon–Nikodym derivative of µ w.r.t. µ0.

L1-topology ‖µ‖TV = ‖φ‖L1(Ω,µ0) =
∥∥∥∥ dµdµ0

∥∥∥∥
L1(Ω,µ0)

.

Compatible finite non-negative measures µ1, µ2 are absolutely
continuous with respect to each other, i.e., for some nonnegative φ

µ2 = φµ1, or, equivalently, µ1 = φ−1µ2. (2)
φ is the Radon–Nikodym derivative of µ2 w.r.t. µ1.

M+(Ω, µ) := {φµ : φ ∈ L1(Ω, µ), φ > 0 µ-a.e.} (3)
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Compatible finite non-negative measures µ1, µ2 are absolutely
continuous with respect to each other, i.e., for some nonnegative φ

µ2 = φµ1, or, equivalently, µ1 = φ−1µ2. (4)

Compatibility is an equivalence relation on the space of finite
non-negative measures on Ω, and that space is therefore
partitioned (stratified) into equivalence classes. The set of such
equivalence classes is quite large. For instance, the Dirac measure
at any point of Ω generates its own such class, i.e., two different
Diracs are singular w.r.t. each other. More generally, in Euclidean
space, we can consider Hausdorff measures of subsets of possibly
different Hausdorff dimensions.

If (Ω, d) is a metric space, we can consider the Wasserstein
distance between measures. Two Dirac measures δ(x), δ(y),
instead of being singular w.r.t. each other, then have Wasserstein
distance = d(x, y).
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Parametric models

p : M → P(Ω),

a parametric family of probability measures: For each ξ in the
parameter space M , we have a probability measure p(·; ξ) on
Ω.

where the parameter ξ ∈M should be estimated based on
random samples drawn from some unknown probability distribution
on Ω, so as to identify a particular p(·; ξ0) that best fits that
sampling distribution.
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Parametric models

p : M → P(Ω),

a parametric family of probability measures: For each ξ in the
parameter space M , we have a probability measure p(·; ξ) on Ω.

Definition
A statistical model is a triple (M,Ω,p) where M is a (finite or
infinite-dimensional) Banach manifold and
p : M → P(Ω) ⊂M(Ω) ⊂ S(Ω) is a C1-map.
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p : M → P(Ω). (5)

How sensitively does p(x; ξ) depend on the parameter ξ? That is,
how well can we distinguish between different values of ξ by
observing samples x? How well can we estimate ξ?

This sensitivity can be quantified by a Riemannian metric, the
Fisher-Rao metric.
On the parameter space M , it is obtained by pulling back some
universal structure from P(Ω) via (5).
When Ω is infinite, which is not an untypical situation in statistics,
however, P(Ω) is infinite-dimensional, and therefore functional
analytical problems arise.
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Invariances
How to determine the metric on P(Ω)?

Look at invariances. Consider statistics, i.e., mappings
κ : Ω→ Ω′ (6)

into some other space Ω′.
What is the possible loss of information about the parameter
ξ ∈M from the family (5) when we only observe κ(x) instead of x
itself? The statistic κ is called sufficient for the family (5) when no
information is lost at all.
The information loss quantified by the difference of the Fisher
metrics of the originally family p and the induced family κ∗p.

Theorem
The Fisher metric is uniquely characterized (up to a constant
factor) by invariance under sufficient statistics.
Remark: When Ω is a differentiable manifold, the Fisher metric is
already uniquely determined by invariance under diffeomorphisms
of Ω (Bauer-Bruveris-Michor).
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When we reparametrize the parameter space M , the Fisher metric
transforms appropriately. However, there are particular families p
with particular parametrizations that play an important role. For
that, we need to look at the structure of the space P(Ω) of
probability measures more carefully. Every probability measure is a
measure, i.e., there is an embedding

ı : P(Ω)→ S(Ω) (7)

into the space S(Ω) of all finite signed measures on Ω, which is a
linear space. p ∈ P(Ω) is characterized by

∫
Ω dp(x) = 1, and so,

P(Ω) becomes a convex subset (because of the nonnegativity
constraint) of an affine subspace (characterized by the condition∫

Ω dµ(x) = 1) of the linear space S(Ω).
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On the other hand, there is also a projection

π :M(Ω)→ P(Ω) (8)

of the space of nonnegative measures by assigning to each
m ∈M(Ω) the relative measure of subsets. For any measurable
subsets A,B ⊂ Ω with m(B) > 0, π(m) looks at the quotients
m(A)
m(B) , that is, the relative measures of those subsets. That is, a
probability measure is now considered as an equivalence class of
measures up to a scaling factor.

P(Ω) can be identified with π(M(Ω)), by simply normalizing a
measure by m(Ω).
Thus, P(Ω), can be seen as the positive part of a projective space
of the linear space S(Ω), i.e., as the positive orthant or sector of
the unit sphere in S(Ω).
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Figure: Natural inclusion and projection.
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The Fisher metric

When Ω is finite, the linear space S(Ω) is finite-dimensional, and
therefore, it can be naturally equipped with a Euclidean metric.
This metric then also induces a metric on the unit sphere. Thus,
the projection map π from (8) then induces a metric on P(Ω).
This is the Fisher metric.

When Ω is infinite, then the space S(Ω) is infinite-dimensional, but
it does not carry the structure of a Hilbert space. This is a central
problem for which the appropriate functional analytic setting has
been described above and to which we shall now return.
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Families of measures p(ξ) on Ω parametrized by ξ ∈M .

p(ξ) = p(·; ξ)µ0, (9)

for some base measure µ0 that does not depend on ξ.
p(·; ξ) ∈ L1(Ω, µ0) for all ξ.
µ0 is an auxiliary object, and the construction should not depend
on it. When we have another probability measure µ1 with
µ1 = φµ0 for some positive function φ with φ ∈ L1(Ω, µ0) and
hence φ−1 ∈ L1(Ω, µ1), then ψ ∈ L1(Ω, µ1) precisely if
ψφ ∈ L1(Ω, µ0). Thus, the L1-spaces naturally correspond to each
other, and it does not matter which base measure we choose, as
long as the different base measures are related by L1-functions.
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hence φ−1 ∈ L1(Ω, µ1), then ψ ∈ L1(Ω, µ1) precisely if
ψφ ∈ L1(Ω, µ0). Thus, the L1-spaces naturally correspond to each
other, and it does not matter which base measure we choose, as
long as the different base measures are related by L1-functions.
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The differential of p in some direction V is

dξp(V ) = ∂V p(·; ξ)µ0 ∈ L1(Ω, µ0), (10)

when this quantity exists.

but instead, we should consider the rate
of change of p(ξ) relative to the measure p(ξ) itself, i.e., the
Radon–Nikodym derivative of dξp(V ) w.r.t. p(ξ), i.e., the
logarithmic derivative

∂V log p(·; ξ) = d{dξp(V )}
dp(ξ) . (11)

This yields the Fisher metric

gξ(V,W ) =
∫

Ω
∂V log p(·; ξ) ∂W log p(·; ξ) dp(ξ). (12)
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Fisher metric

gξ(V,W ) =
∫

Ω
∂V log p(·; ξ) ∂W log p(·; ξ) dp(ξ). (13)

What if the density p is not positive almost everywhere?

Introduce
the formal square roots√

p(ξ) :=
√
p(·; ξ)√µ0, (14)

and use the formal computation

dξ
√p(V ) = 1

2∂V log p(·; ξ)
√

p(ξ) (15)

to rewrite (13) as

gξ(V,W ) = 4
∫

Ω
d
(
dξ
√p(V ) · dξ

√p(W )
)
. (16)

An L1-condition on p(ξ) becomes an L2-condition on
√

p(ξ) in
(14), and an L2-condition is precisely what we need in (16) for the
derivatives. According to (15), this means that we should now
impose an L2-condition on ∂V log p(·; ξ). Again, all this is
naturally compatible with a change of base measure.
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Sample space Ω with a σ-algebra and space of (positive) measures
on Ω. Probability measures can either be considered as measures µ
with µ(Ω) = 1, or as relative measures, that is, considering only
quotients µ(A)

µ(B) whenever µ(B) > 0. In the first case, we would
deal with an infinite dimensional simplex, in the second one with
the positive orthant or sector of an infinite-dimensional sphere.

For a base measure µ0, the space of compatible measures would be
M+(Ω, µ0) = {φµ0 : φ ∈ L1(Ω, µ0), φ > 0 almost everywhere}.
When µ1 = φ1µ0 ∈M+(Ω, µ0) and µ2 = φ2µ1 ∈M+(Ω, µ1),
then µ2 = φ2φ1µ0 ∈M+(Ω, µ0).
We do not have a multiplicative structure, because if
φ, ψ ∈ L1(Ω, µ0), then φψ need not be in L1(Ω, µ0) itself. The
exponential map f 7→ ef (defined pointwise, i.e., ef (x) = ef(x)) is
not defined for all f . In fact, the natural linear space would be
L2(Ω, µ0), but if f ∈ L2(Ω, µ0), then ef need not be in L1(Ω, µ0).
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There is a natural duality between functions f and measures φµ,

(f, φµ) =
∫

Ω
fφdµ, (17)

whenever f and φ satisfy appropriate integrability conditions.

We can turn (17) into a symmetric pairing by rewriting it as

〈f(µ)1/2, φ(µ)1/2〉 =
∫

Ω
f(dµ)1/2φ(dµ)1/2 (18)

and require that both factors be in L2, transforming like (dµ)1/2,
i.e., with the square root of the Jacobian of a coordinate
transformation (half-densities). Below, for the Amari–Chentsov
structure, we also need (1/3)-densities.
Banach spaces Sr(Ω) of formal r-th powers of (signed) measures
for 0 < r ≤ 1. S1(Ω) = S(Ω) is the Banach space of finite signed
measures on Ω with the total variation norm. S1/2(Ω) is the space
of signed half densities, a Hilbert space. Inclusions
Pr(Ω) ⊂Mr(Ω) ⊂ Sr(Ω) of r-th powers of probability measures.
Rigorous definition of the (formal) tangent bundle TPr(Ω) and
TMr(Ω), where TµMr(Ω) = Lk(Ω, µ) for k = 1/r ≥ 1.
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Definition
A statistical model p : M → P(Ω) ⊂M(Ω) ⊂ S(Ω) is called
k-integrable if the map

p1/k : M −→M1/k(Ω) ⊂ S1/k(Ω)

is a C1-map
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Affine structures

The structure induced on P(Ω) by the projection (8) is dual to the
affine structure induced the embedding (7). This dual structure is
affine.

Two possible ways in which a measure can be normalized to
become a probability measure.

1 We want to move a probability measure µ to another
probability measure ν, straight line

µ+ t(ν − µ), with t ∈ [0, 1]. (19)

When a variation µ+ tξ should remain a probability measure,
we need to subtract ξ0 := ξ(Ω),

µ+ t(ξ − ξ0). (20)

but this need no longer be nonnegative.
The geodesic µ+ t(ξ − ξ0) w.r.t. the affine structure on the
simplex may leave the simplex of probability measures. Thus,
this affine structure is not complete.
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Two possible ways in which a measure can be normalized to
become a probability measure.
2 Multiplicative variation

exp(tf)µ, with exp f ∈ L1(Ω, µ), (21)

which remains nonnegative.

We can consider a linear space of functions f here.
With normalization

exp(tf)
Z(t) µ with Z(t) :=

∫
Ω

exp(tf)dµ. (22)

Family (22) is geodesic for an affine structure. For two
probability measures µ, µ1 with µ1 = φµ for some positive φ
with φ ∈ L1(Ω, µ) and hence φ−1 ∈ L1(Ω, µ1), then exp(tf)µ
of µ corresponds to exp(tf)

φ µ1. At the level of the linear
spaces, correspondence between f and f − log φ which does
not depend on the individual f . When µ2 = ψµ1, then
µ2 = ψφµ, and the shift is by log(ψφ) = logψ + log φ. But
this is precisely what an affine structure amounts to.
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Thus, we have identified the second affine structure on the space
of probability measures. It possesses a natural exponential map
f 7→ exp f , is naturally adapted to our description of probability
measures as equivalence classes of measures, and is complete in
contrast to the first affine structure.
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The two structures are naturally dual to each other. They are
related by a Legendre transform that generalizes the duality
between entropy and free energy of statistical mechanics.

•

•

•

••

•

•• •

⇡

ı

Figure: Natural inclusion and projection.
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This pair of dual affine structures was discovered by Amari and
Chentsov, and the tensor describing it is therefore called the
Amari–Chentsov tensor. Like the Fisher metric, the
Amari–Chentsov tensor is invariant under sufficient statistics, and
uniquely characterized by this fact. Spaces with such a pair of dual
affine structures turn out to have a richer geometry than simple
affine spaces. In particular, such affine structures can be derived
from potential functions. In particularly important special cases,
these potential functions are the entropy and the free energy of
statistical mechanics.

Thus, there is a natural connection between information geometry
and statistical mechanics. Of course, there is also a natural
connection between statistical mechanics and information theory,
through the analogy between Boltzmann–Gibbs entropy and
Shannon information. In many interesting cases within statistical
mechanics, the interaction of physical elements can be described in
terms of a graph or, more generally, in terms of a hypergraph. This
leads to families of Boltzmann–Gibbs distributions that are known
as hierarchical or graphical models.
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2. The Fisher metric and the
Amari-Chentsov tensor
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A little differential geometry

Einstein summation convention aibi :=
∑d
i=1 a

ibi

Tangent vectors
are dual to 1-forms

dxi
(
∂

∂xj

)
= δij . (23)

Coordinate changes x = x(y) yield

∂

∂xi
= ∂yα

∂xi
∂

∂yα
(24)

dxi = ∂xi

∂yα
dyα. (25)

Riemannian metric
〈V,W 〉 = gijv

iwj (26)

for V = vi ∂
∂xi ,W = wi ∂

∂xi .
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A connection ∇ is a rule for differenting a vector field in the
direction of a vector, satisfying for all (smooth) vector fields
V,W1,W2 and functions f

∇V1+V2W = ∇V1W +∇V2W

∇fVW = f∇VW
∇V (W1 +W2) = ∇VW1 +∇VW2

∇V (fW ) = V (f)W + f∇VW

In local coordinates expressed through Christoffel symbols

∇ ∂

∂xi

∂

∂xj
= Γkij

∂

∂xk
. (27)
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A connection ∇ is called torsion free if

∇ ∂

∂xi

∂

∂xj
= ∇ ∂

∂xj

∂

∂xi
, (28)

that is, if
Γkij = Γkji for all i, j.

A connection ∇ is called flat if we can find local coordinates with

Γkij ≡ 0.
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Given a Riemannian metric, there is a unique connection ∇0,
called the Levi-Civita connection, that is torsion free and satisfies

X〈V,W 〉 = 〈∇0
XV,W 〉+ 〈V,∇0

XW 〉 for all X,V,W.

Its Christoffels satisfy

Γkij = 1
2g

kl
(
∂

∂xj
gil + ∂

∂xi
gjl −

∂

∂xl
gij

)
. (29)

A connection ∇ is called flat if we can find local coordinates with

Γkij ≡ 0.
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The Fisher metric

gij(ξ) = Ep(ξ)

(
∂

∂ξi
log p(·; ξ) ∂

∂ξj
log p(·; ξ)

)
,

=
∫

Ω

∂

∂ξi
log p(x; ξ) ∂

∂ξj
log p(x; ξ) p(x; ξ)dx, (29)

and so
∂

∂ξk
gij(ξ) = Ep

(
∂

∂ξk
∂

∂ξi
log p ∂

∂ξj
log p

)
+ Ep

(
∂

∂ξi
log p ∂

∂ξk
∂

∂ξj
log p

)
+ Ep

(
∂

∂ξi
log p ∂

∂ξj
log p ∂

∂ξk
log p

)
. (30)

Therefore,

Γ(0)
ijk = Ep

(
∂2

∂ξi∂ξj
log p ∂

∂ξk
log p+ 1

2
∂

∂ξi
log p ∂

∂ξj
log p ∂

∂ξk
log p

)
(31)

yields the Levi-Civita connection ∇(0) for the Fisher metric.
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The Fisher metric and its LC-connection

gij(ξ) = Ep(ξ)

(
∂

∂ξi
log p(·; ξ) ∂

∂ξj
log p(·; ξ)

)
Γ(0)
ijk = Ep

(
∂2

∂ξi∂ξj
log p ∂

∂ξk
log p+ 1

2
∂

∂ξi
log p ∂

∂ξj
log p ∂

∂ξk
log p

)
.

However, the LC-connection is not the most interesting connection
here!

A connection is flat if we can find coordinates for which its
Christoffels vanish identically.
The LC-connection is not flat, but we shall now find two natural
flat connections.
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The Amari–Chentsov tensor

More generally, we can define a family ∇(α), −1 ≤ α ≤ 1, of
connections via

Γ(α)
ijk = Ep

(
∂2

∂ξi∂ξj
log p ∂

∂ξk
log p+ 1− α

2
∂

∂ξi
log p ∂

∂ξj
log p ∂

∂ξk
log p

)

= Γ(0)
ijk −

α

2Ep

(
∂

∂ξi
log p ∂

∂ξj
log p ∂

∂ξk
log p

)
. (32)

This structure is more compactly encoded by the Amari–Chentsov
tensor

Tijk =Ep

(
∂

∂ξi
log p ∂

∂ξj
log p ∂

∂ξk
log p

)
=
∫

Ω

∂

∂ξi
log p(x; ξ) ∂

∂ξj
log p(x; ξ) ∂

∂ξk
log p(x; ξ) p(x; ξ)dx.
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Expectation value of score vanishes

Ep

(
∂

∂ξi
log p

)
= 0

(since
∫
p = 1), and

gij = Ep

(
∂

∂ξi
log p ∂

∂ξj
log p

)
, (33)

Tijk =Ep

(
∂

∂ξi
log p ∂

∂ξj
log p ∂

∂ξk
log p

)
. (34)
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Lemma

All the connections ∇(α) are torsion free.

Proof.
A connection is torsion free iff its Christoffel symbols Γijk are
symmetric in the indices i and j. (32) exhibits that symmetry.

Lemma

The connections ∇(−α) and ∇(α) are dual to each other.

Proof.

Γ(−α)
ijk + Γ(α)

ijk = 2Γ(0)
ijk

yields 1
2(∇(−α) +∇(α)) = ∇(0) which implies that the two

connections are dual to each other.
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Exponential families

p(x;ϑ) = exp(γ(x) + fi(x)ϑi − ψ(ϑ)) (35)
depending on parameters ϑi (with suitable integrability conditions).

∂

∂ϑj
log p(x;ϑ) = (fj(x)− Ep(fj))p(x;ϑ). (36)

Since Ep
(

∂
∂ϑk log p

)
= 0,

Γ(1)
ijk = Ep

(
∂2

∂ϑi∂ϑj
log p ∂

∂ϑk
log p

)

= − ∂2

∂ϑi∂ϑj
ψ(ϑ) Ep

(
∂

∂ϑk
log p

)
= 0.

Lemma

ϑ yields an affine coordinate system for the so-called exponential
connection ∇(1) which is flat.
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Mixture families

p(x; η) = c(x) +
d∑
i=1

gi(x)ηi, (37)

an affine family of probability measures depending on parameters ηi

(
∫
c(x)dx = 1,

∫
gi(x)dx = 0 for all i)

∂

∂ηi
log p(x; η) = gi(x)

p(x; η) ,

∂2

∂ηi∂ηj
log p(x; η) = −g

i(x)gj(x)
p(x; η)2 ,

∂2

∂ηi∂ηj
log p+ ∂

∂ηi
log p ∂

∂ηj
log p = 0,

Γ(−1)
ijk = 0.

Lemma
η is an affine coordinate system for the flat mixture connection
∇(−1).
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Amari-Nagaoka: Consider a triple consisting of a Riemannian
metric and two torsion-free flat connections ∇ and ∇∗ that are
dual to each other.

We choose affine coordinates ϑ1, ..., ϑd, for ∇; the vector fields
∂i := ∂

∂ϑi are then parallel. We define vector fields ∂j via

〈∂i, ∂j〉 = δji

(
=
{

1 for i = j

0 else

)
. (38)

We have for any vector V
0 = V 〈∂i, ∂j〉 = 〈∇V ∂i, ∂j〉+ 〈∂i,∇∗V ∂j〉,

and since ∂i is parallel for ∇, ∂j is parallel for ∇∗. Since ∇∗ is
torsion-free, also [∂j , ∂k] = 0 for all j and k, and we may find
∇∗-affine coordinates ηj with ∂j = ∂

∂ηj
. The position of the

indices (upper or lower) is important because it indicates the
transformation behavior under coordinate changes. For example, if
when changing the ϑ-coordinates ∂i transforms as a vector
(contravariantly), then ∂j transforms as a 1-form (covariantly).
For changes of the η-coordinates, the rules are reversed.
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∂i = ∂

∂ϑi
, ∂j = ∂

∂ηj
, ∂j = (∂jϑi)∂i and ∂i = (∂iηj)∂j (39)

as the transition rules between the ϑ- and η-coordinates.

gij := 〈∂i, ∂j〉, gij := 〈∂i, ∂j〉, (40)

we obtain from 〈∂i, ∂j〉 = δji

∂ηj
∂ϑi

= gij ,
∂ϑi

∂ηj
= gij . (41)

Theorem

There exist strictly convex potential functions ϕ(η), ψ(ϑ) with

ηi = ∂iψ(ϑ), ϑi = ∂iϕ(η),
gij = ∂i∂jψ,

gij = ∂i∂jϕ.
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Theorem

There exist strictly convex potential functions ϕ(η), ψ(ϑ) with

ηi = ∂iψ(ϑ), ϑi = ∂iϕ(η), (42)
gij = ∂i∂jψ, (43)
gij = ∂i∂jϕ. (44)

Proof.
Local solvability of first equation of (42) from symmetry

∂iηj = gij = gji = ∂jηi. (45)

Moreover, we obtain
gij = ∂i∂jψ. (46)

Thus, ψ is strictly convex. Same for ϕ.
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Duality:
ϕ := ϑiηi − ψ (47)

from which

∂iϕ = ϑi + ∂ϑj

∂ηi
ηj −

∂ϑj

∂ηi

∂

∂ϑj
ψ = ϑi.

Since ψ and ϕ are strictly convex, the relation

ϕ(η) + ψ(ϑ) = ϑiηi (48)

means that they are related by Legendre transformations,

ϕ(η) = max
ϑ

(ϑiηi − ψ(ϑ)), (49)

ψ(ϑ) = max
η

(ϑiηi − φ(η)). (50)

Of course, all these formulae are valid locally, i.e., where ψ and ϕ
are defined. In fact, the construction can be reversed, and all that
is needed locally is a convex function ψ(ϑ) of some local
coordinates.
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All can be derived from a strictly convex function ψ(ϑ): metric
gij = ∂i∂jψ

and α-connection
Γ(α)
ijk = Γ(0)

ijk −
α

2 ∂i∂j∂kψ

where Γ(0)
ijk is the Levi-Civita connection for gij . Since

Γ(0)
ijk = 1

2(gik,j + gjk,i − gij,k) = 1
2∂i∂j∂kψ, (51)

we have
Γ(α)
ijk = 1

2(1− α)∂i∂j∂kψ, (52)

and since this is symmetric in i and j, ∇(α) is torsion free. Since
Γ(α)
ijk + Γ(−α)

ijk = 2Γ(0)
ijk, ∇(α) and ∇(−α) are dual to each other.

Tijk = ∂i∂j∂kψ (53)

is the 3-symmetric tensor. In particular, Γ(1)
ijk = 0, and so ∇(1)

defines a flat structure, and the coordinates ϑ are affine
coordinates for ∇(1).
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In the ϑ -coordinates, the curvature of the LC- connection becomes

Rklij = 1
2g

kngmr(∂j∂n∂rψ ∂i∂l∂mψ − ∂j∂l∂mψ ∂i∂n∂rψ

+1
2∂j∂l∂rψ ∂i∂m∂nψ −

1
2∂j∂m∂nψ ∂i∂l∂rψ)

= 1
4(T kjrT r`i − T kirT r`j)

It can be computed from the second and third derivatives of ψ; no
fourth derivatives are involved. The curvature tensor is a quadratic
expression of coefficients of the 3-symmetric tensor.

If
gij = δij ,

we get

Rklij = 1
4(∂j∂m∂kψ ∂i∂m∂lψ − ∂j∂m∂lψ ∂i∂m∂kψ) (54)

= 1
4(TjkmTi`m − Tj`mTikm) (sum over m).

When this is 0, we have a Frobenius manifold
(Witten–Dijkgraaf–Verlinde–Verlinde condition).
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In the ϑ -coordinates, the curvature of the LC- connection becomes
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+1
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1
2∂j∂m∂nψ ∂i∂l∂rψ)
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The dual connection is ∇(−1), with Christoffels
Γ(−1)
ijk = ∂i∂j∂kψ. (55)

The dually affine coordinates η are again
ηj = ∂jψ, (56)

and so also gij = ∂iηj . (57)
The potential is again obtained by a Legendre transform

ϕ(η) = max
ϑ

(ϑiηi − ψ(ϑ)), ψ(ϑ) + ϕ(η)− ϑ · η = 0, (58)

ϑj = ∂jϕ(η), gij = ∂ϑj

∂ηi
= ∂i∂jϕ(η). (59)

Christoffels for LC connection for metric gij w.r.t. ϑ

Γ̃ijk = −Γijk = −1
2∂i∂j∂kψ, (60)

and so
Γ̃(α)ijk = Γ̃ijk − α

2 ∂i∂j∂kψ = −Γ(−α)
ijk ,

W.r.t. dual gij , α and −α reverse roles, Γ̃(1) = −Γ(−1) = 0 in η.
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Summarizing

Theorem

A dually flat structure, i.e., a Riemannian metric g together with
two flat connections ∇ and ∇∗ that are dual with respect to g is
locally equivalent to the datum of a single convex function ψ,
where convexity here refers to local coordinates ϑ and not to any
metric.
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Definition

For p, q ∈M , a differentiable parameter manifold, the canonical
divergence of Amari-Nagaoka is

D(p‖q) := ψ(p) + ϕ(q)− ϑi(p)ηi(q). (61)

D(p‖q) ≥ 0, (62)

and
D(p‖q) = 0⇐⇒ p = q. (63)
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Theorem
The divergence is characterized by the relation

D(p‖q) +D(q‖r)−D(p‖r) = (ϑi(p)− ϑi(q))(ηi(r)− ηi(q)) (64)

since ψ(q) + ϕ(q) = ϑi(q)ηi(q).

Corollary

The ∇-geodesic from q to p is tϑi(p) + (1− t)ϑi(q) (ϑi affine for
∇), and the ∇∗-geodesic from q to r is tηi(r) + (1− t)ηi(q). If the
two geodesics are orthogonal at q, Pythagoras relation

D(p‖r) = D(p‖q) +D(q‖r). (65)
Corollary

Let N ⊂M be autoparallel for ∇∗, p ∈M . Then

q = argminr∈ND(p‖r) (66)

iff the ∇-geodesic from p to q is orthogonal to N at q.
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Exponential family

p(x;ϑ) = exp(γ(x) + fi(x)ϑi − ψ(ϑ)), (67)

with
ψ(ϑ) = log

∫
exp(γ(x) + fi(x)ϑi)dx, (68)

that is,
p(x;ϑ) = 1

Z(ϑ) exp(γ(x) + fi(x)ϑi) (69)

with the expression

Z(ϑ) :=
∫

exp(γ(x) + fi(x)ϑi)dx = eψ(ϑ), (70)

zustandssumme or partition function in statistical mechanics.

∂kZ(ϑ)
∂ϑi1 . . . ∂ϑik

=
∫
fi1 · · · fik exp(γ(x) + fi(x)ϑi)dx, (71)

and hence
Ep(fi1 · · · fik) = 1

Z(ϑ)
∂kZ(ϑ)

∂ϑi1 . . . ∂ϑik
. (72)
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ηi(ϑ) :=
∫
fi(x)p(x;ϑ)dx = Ep(fi), expect. of coeff. of ϑi w.r.t.p(·;ϑ)

(73)

ηi = ∂iψ from (72) (74)
gij = ∂i∂jψ for the Fisher information metric, (75)

as computed above. Dual potential

ϕ(η) = ϑiηi − ψ(ϑ)

=
∫

(log p(x;ϑ)− γ(x))p(x;ϑ)dx,
(76)

with entropy −
∫
log p(x;ϑ) p(x;ϑ)dx. Divergence

D(p‖q) = ψ(ϑ)− ϑi
∫
fi(x)q(x; η)dx+

∫
(log q(x; η)− γ(x))q(x; η)dx

=
∫

(log q(x)− log p(x))q(x)dx,

(77)
the dual of the Kullback–Leibler divergence.
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ηij =
∫
fi(x)fj(x) exp(γ(x) + fk(x)ϑk − ψ(ϑ))dx

= exp(−ψ(ϑ)) ∂2

∂ϑi∂ϑj

∫
exp(γ(x) + fk(x)ϑk)dx

= exp(−ψ(ϑ)) ∂

∂ϑi

∫
fj(x) exp(γ(x) + fk(x)ϑk)dx

= exp(−ψ(ϑ)) ∂

∂ϑi
(exp(ψ(ϑ))ηj)

= exp(−ψ(ϑ))ηj
∂

∂ϑi

∫
exp(γ(x) + fk(x)ϑk)dx+ ∂ηj

∂ϑi

= ηiηj + gij . (78)

Theorem

gij = ηij − ηiηj . (79)

(Coordinates ϑi as weights for observables fi(x) on the basis of
γ(x), our metric gij(ϑ) is the covariance matrix of those
observables at the given weights or coordinates.
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What to remember

Exponential and mixture families are dual to each other, with
potential functions given by the entropy and the free energy, and
the canonical divergence being the Kullback-Leibler divergence.
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3. Complexity measures
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Shannon Information

H(X) = H(p1, . . . , pn) = −
∑
i

pi log2 pi (bits) (80)

is the expected reduction of uncertainty, i.e., the information gain,
if we learn which concrete value xi of the random variable X from
a known distribution p with probabilities pi = p(xi) is realized.

Mutual information of X and Y as information gain about X from
knowing Y ,

MI(X : Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = MI(Y : X)
(81)

Iteration of conditioning process

MI(X : Y |Z) = H(X|Z)−H(X|Y, Z) (82)

quantifies how much additional mutual information between X and
Y can be gained when we already know Z.
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Maximum entropy

E.Jaynes’ maximum-entropy principle: Take the least biased
estimate possible on the given information, that is, don’t put any
information into your model that is not based on the observed
data.

Look for p with maximal entropy H(p) under constraint that
expectation values of observables f be reproduced,

Epfα =
∑
i

f iαpi for α = 1, . . . , A. (83)

Solution is exponential distribution

pj = 1
Z

exp(
∑
α

λαf
j
α) with Z =

∑
i

exp(
∑
α

λαf
i
α). (84)

In particular, when there are no observations,

pj = 1
n

for j = 1, . . . , n. (85)
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Kullback-Leibler divergence

Relative entropy for two probability distributions p, q

D(p‖q)) =
{∑

i pi log2
pi
qi

if supp p ⊂ supp q

∞ else
(86)

is positive (D(p‖q)) > 0 if p 6= q), but not symmetric
(D(p‖q)) 6= D(q‖p)).
Example: The mutual information is the KL-divergence between
the joint distribution and the product of the marginals,

MI(X : Y ) = D(p(x, y)||p(x)p(y)). (87)

Among all distributions p(x, y) with the same marginals
p(x) =

∑
y p(x, y), p(y) =

∑
x p(x, y), the product distribution

p(x)p(y) has the largest entropy.
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Product distribution p(x)p(y) has largest entropy among all
distributions p(x, y) with same marginals.
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Product distribution p(x)p(y) has largest entropy among all
distributions p(x, y) with same marginals.

3-dimensional simplex for the
probability distributions on two binary variables and its
2-dimensional subfamily of product distributions. The extreme
points of the simplex are the Dirac measures δ(x,y), x, y = 0, 1.
Maximization of distance from family of product distributions leads
to distributions with support cardinality two (perfect correlation or
anticorrelation).

Project π a given distribution onto the product
family E to maximize entropy while preserving the marginals,

D(p ‖ E) := inf
q∈E

D(p ‖ q) = D(p ‖π(p)) (88)

= Hπ(p)(X,Y )−Hp(X,Y ).
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Product distribution p(x)p(y) has largest entropy among all
distributions p(x, y) with same marginals.

A family of all distributions with the same marginals is a mixture
familyM. Maximizing entropy in such a family is the projection
onto an exponential family E . The two families satisfy the
Pythagoras relation

D(p‖r) = D(p‖q) +D(q‖r) for p ∈M, r ∈ E
where q = argminr∈ED(p‖r).
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Hierarchical models

More generally, maximize entropy while preserving marginals
among subsets of variables. For instance, for a distribution on 3
variables, we could prescribe all single and pairwise marginals.

State set V ; consider hierarchy

S1 ⊆ S2 ⊆ . . . ⊆ SN−1 ⊆ SN := 2V , (89)

πSk
= projection on ESk

, p(k) := πSk
(p). Pythagorean relation

D(p(l) ‖ p(m)) =
l−1∑
k=m

D(p(k+1) ‖ p(k)), (90)

for l,m = 1, . . . , N − 1, m < l. In particular,

D(p ‖ p(1)) =
N−1∑
k=1

D(p(k+1) ‖ p(k)b). (91)
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Take configurations with correlations of order ≤ k, to get
Complexity measure:1 with weight vector
α = (α1, . . . , αN−1) ∈ RN−1

Cα(p) :=
N−1∑
k=1

αkD(p ‖ p(k)) (92)

=
N−1∑
k=1

βkD(p(k+1) ‖ p(k)), (93)

with βk :=
∑k
l=1 αl.

p(k) is the distribution of highest entropy among all those with the
same correlations of order ≤ k as p.
Weighted sum of higher order correlation structure.

Examples:
• Tononi-Sporns-Edelman complexity: αk = k

N

1Ay, Olbrich, Bertschinger, Jost, Chaos, 2011
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Examples (ctd.):
• Stationary stochastic process Xn: Conditional entropy

hp(Xn) := Hp(Xn |X1, . . . , Xn−1).

Entropy rate or Kolmogorov–Sinai entropy

hp(X) := lim
n→∞

hp(Xn) = lim
n→∞

1
n
Hp(X1, . . . , Xn), (94)

Excess entropy (Grassberger)

Ep(X) := lim
n→∞

n∑
k=1

(hp(Xk)− hp(X))

= lim
n→∞

(Hp(X1, . . . , Xn)− nhp(X)) (95)

= lim
n→∞

n−1∑
k=1

k

n− k
D(pn(k+1) ‖ pn(k)).︸ ︷︷ ︸
=:Ep(Xn)

(96)

measures the non-extensive part of the entropy, i.e. amount of
entropy of each element that exceeds the entropy rate.
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