Incorporating knowledge in large deformations

Barbara Gris

bgris.maths@gmail.com LJLL, UPMC, Paris

Joint work with Benjamin Charlier (Université de Montpellier), Stanley Durrleman (ICM, Paris), Leander Lacroix (UPMC, Paris), Alain Trouvé (ENS Paris-Saclay)

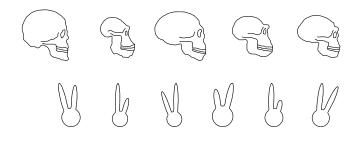
Incorporating knowledge in large deformations

Introduction

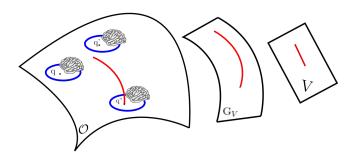
INTRODUCTION

Introduction

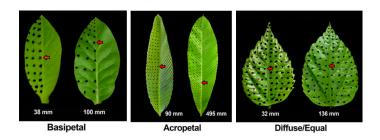
Studying populations of shapes



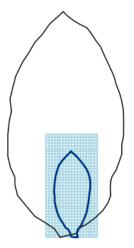
Large deformation diffeomorphic metric mapping



--- Talks of Alain Trouvé, Martin Bauer.

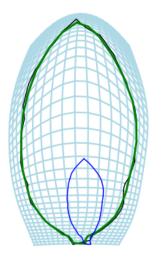


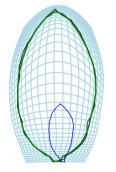
[Gupta, M. D., Nath, U. (2015). Divergence in patterns of leaf growth polarity is associated with the expression divergence of miR396. The Plant Cell, tpc-15.]



→ Talks of Alain Trouvé

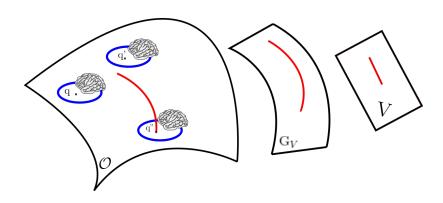
Non parametric







Basipetal



Incorporating a structure in large deformations:

- Sparse LDDMM (Deformetrica) [S. Durrleman, M. Prastawa, G. Gerig, and S. Joshi. Optimal data-driven sparse parameterization of diffeomorphisms for population analysis. In Information Processing in Medical Imaging, pages 123-134. Springer, 2011]
- Higher order momentum [S. Sommer M. Nielsen, F. Lauze, and X. Pennec. Higher-order momentum distributions and locally affine Iddmm registration. SIAM Journal on Imaging Sciences, 2013]
- ► GRID [U. Grenander , A. Srivastava , S. Saini. A pattern-theoric characerization of biological growth. IEEE, 2007]
- Poly-affine [v. Arsigny, X. Pennec, N. Ayache, 2005. Polyrigid and Polyaffine Transformations: A Novel Geometrical Tool to Deal with Non-rigid Deformations – Application to the Registration of Histological Slices. Medical Image Analysis 9, 507–523]
- Diffeons [L. Younes. Constrained diffeomorphic shape evolution. Foundations of Computational Mathematics, 2012.]
- Elastic LDDMM [Hsieh, D. N., Arguillère, S., Charon, N., Miller, M. I., Younes, L. A Model for Elastic Evolution on Foliated Shapes. 2018]

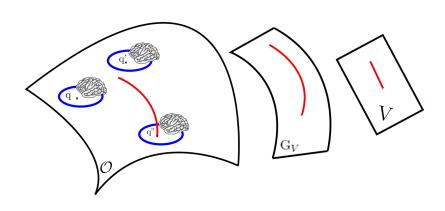
Inc	orporating knowledge in large deformations
L	Deformation module
	B 6 W

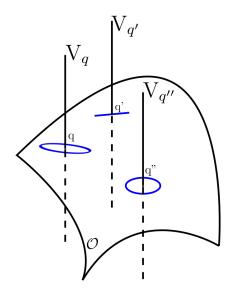
DEFORMATION MODULE

Incorporating knowledge in large deformations

Deformation module

Definition





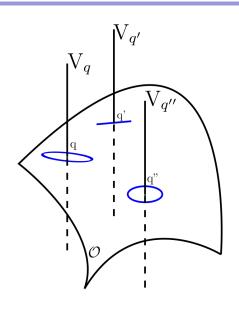
- ▶ Trajectories:
 - $ightharpoonup \dot{q}_t = v \cdot q_t, \ v \in V_{q_t}$
 - ightharpoonup Length: $\int_0^1 |\dot{q}_t|_{V_{q_t} \cdot q_t} dt$
- Model:
 - Field generator $q \mapsto V_q = \zeta_q(H)$
 - Metric $|\dot{q}|_{V_q,q}^2 \doteq \inf\{c_q(h) \mid \dot{q} = \zeta_q(h)\}$
- ► Optimal control:

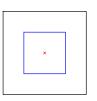
$$\inf \int_0^1 c_{q_t}(h_t) \mathrm{d}t + g(q_{t-1})$$

with $\dot{q}_t = \zeta_{q_t}(h_t) \cdot q_t$.

- Existence of minimizer
- Geodesic shooting (Hamiltonian)

Deformation module





- Extended shape space $\tilde{q} = (q, \theta)$
- $ightharpoonup V_{ ilde{q}} = V_{ heta}$
- $\dot{\tilde{q}}_t = (v \cdot q_t, v \cdot \theta_t), v \in V_{\tilde{q}}$
- ▶ Combination:
 - $\tilde{\mathbf{q}} = (\mathbf{q}, \theta, \psi)$
 - $V_{\tilde{q}} = V_{\theta} + V_{\psi}$ $\tilde{q}_t = (v \cdot q_t, v \cdot \theta_t, v \cdot \psi_t),$

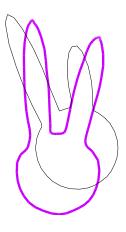
$$q_t = (\mathbf{v} \cdot \mathbf{q}_t, \mathbf{v} \cdot \mathbf{\theta}_t, \mathbf{v} \cdot \mathbf{\psi}_t)$$

 $\mathbf{v} \in V_{\tilde{a}}$

Incorporating knowledge in large deformations

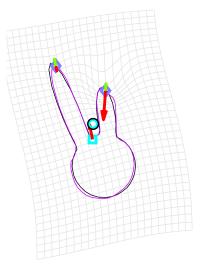
Deformation module

Example



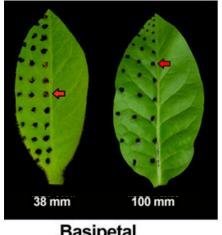
Incorporating knowledge in large deformations

Deformation module
Example



Incorporating knowledge in large deformations Deformation module

Example

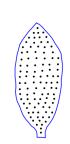


Basipetal

L A first example

IMPLICIT DEFORMATION MODULES

Implicit modules
Leaf growth



$$\bullet = (x_i)_{1 < i < N}$$

$$V_{\theta} = \{ v \in V \mid Cons_{\theta}(v, h) = 0 \}$$

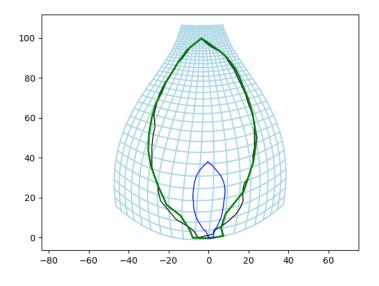
$$\longrightarrow \text{Implicit module}$$

$$\blacktriangleright \text{ With } \epsilon_{x_i}(v) = \frac{Dv(x_i) + Dv(x_i)^T}{2}, \, h \in \mathbb{R}$$

$$C_{\theta}(v,h) = \sum_{i} |\epsilon_{x_i}(v) - hS_i|^2$$

Incorporating knowledge in large deformations

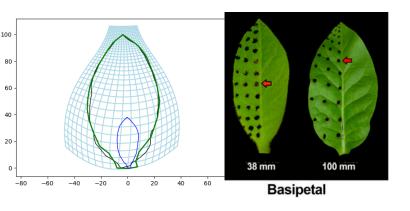
Implicit modules
Leaf growth



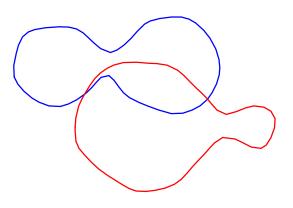
Incorporating knowledge in large deformations

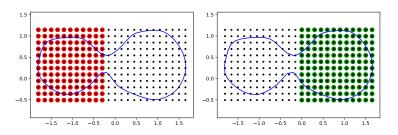
Implicit modules

Leaf growth



Incorporating knowledge in large deformations __Implicit modules

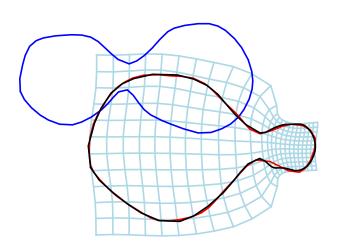




- ► Shape *q*
- $\theta = (x_i)_{1 \le i \le N}$
- ▶ $V_{\theta} = \{ v \in V \mid \frac{Dv(x_i) + Dv(x_i)^T}{2} = (h_1 \delta_{x_i \in I_1} + h_2 \delta_{x_i \in I_2}) Id \}$

Incorporating knowledge in large deformations

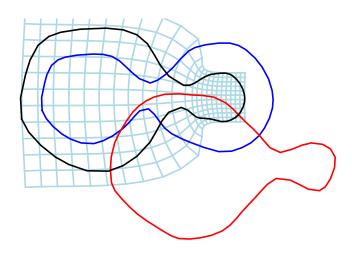
Implicit modules



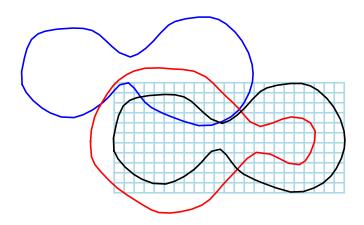
- Combination of 3 types of deformations
- Possibility to follow one of them

Incorporating knowledge in large deformations

Implicit modules

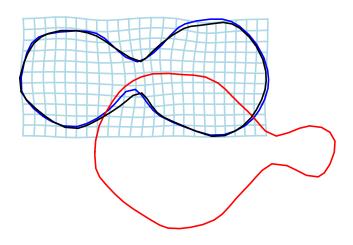


Incorporating knowledge in large deformations __Implicit modules



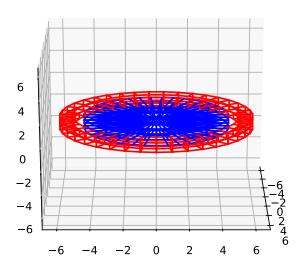
Incorporating knowledge in large deformations

Implicit modules



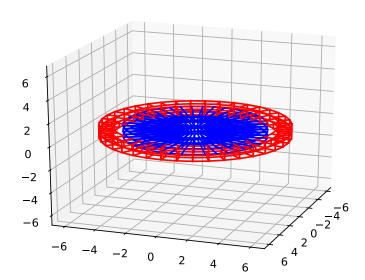
Implicit modules

Elastic behavior

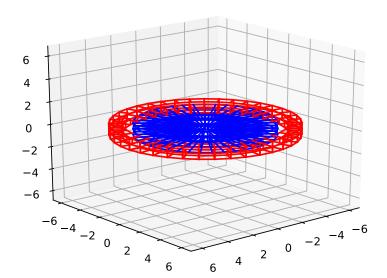


Implicit modules

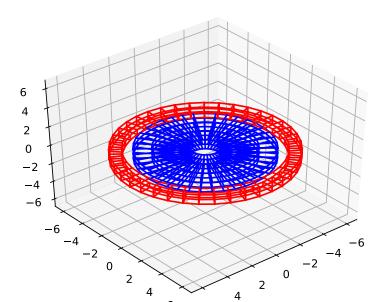
Elastic behavior



Implicit modules

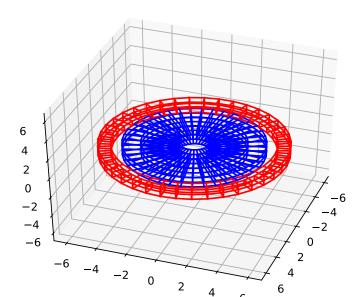


Implicit modules
Elastic behavior



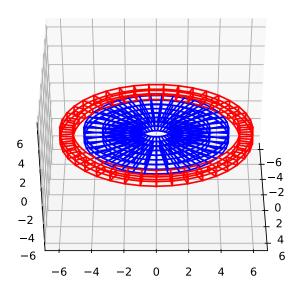
Implicit modules

Elastic behavior

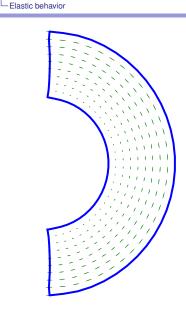


Implicit modules

Elastic behavior



Implicit modules

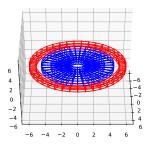


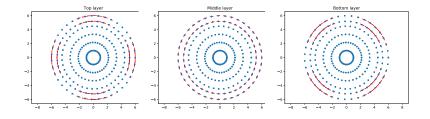
$$R_{\theta_i}(t) = \varphi_t \cdot \left(egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}
ight)$$

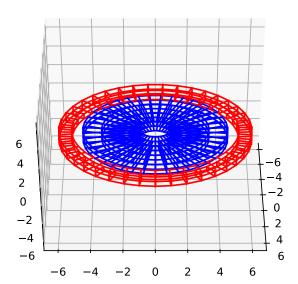
$$Cons_{\theta}(v,h) = h \begin{pmatrix} 0 & 0 \\ 0 & x_i[0] - \min x[0] \end{pmatrix}$$

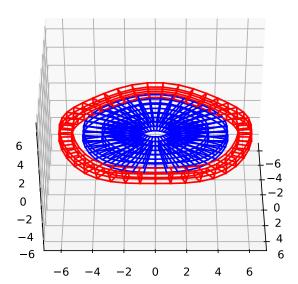
Incorporating knowledge in large deformations Implicit modules

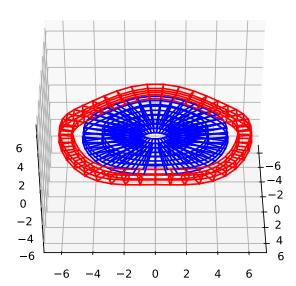
Elastic behavior

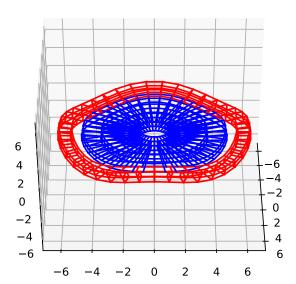


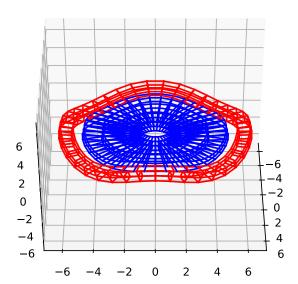


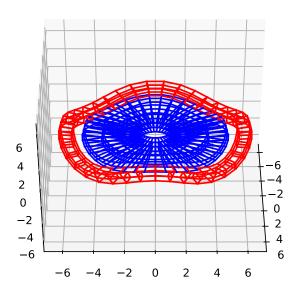


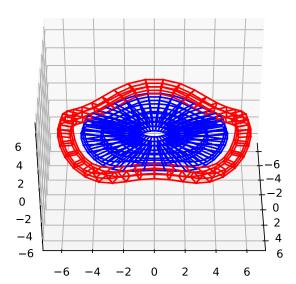


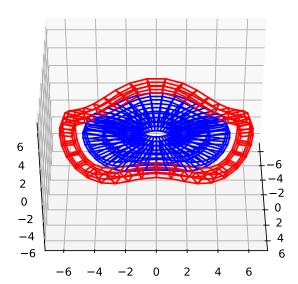


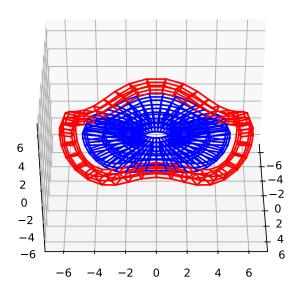






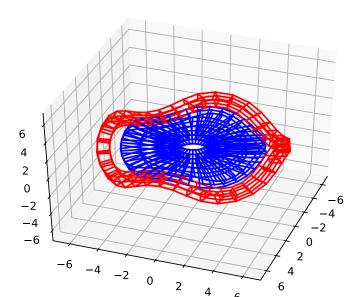


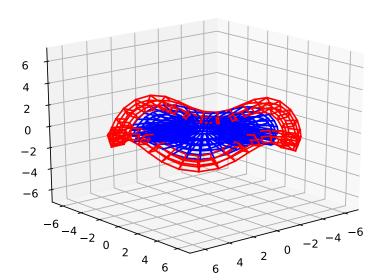


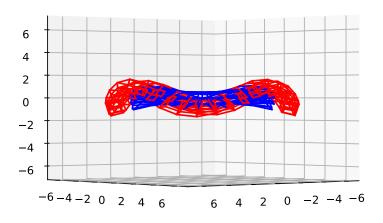


Implicit modules

Elastic behavior

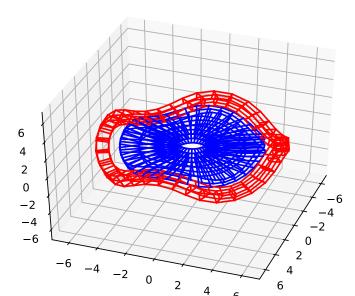






Implicit modules

Elastic behavior



CONCLUSION

- Incorporating structures in deformations
- Implicit deformation modules:
 - Structure from a biophysical model
 - Learning growth rate
- Study populations (Frechet means)
- Algorithm soon available
- KeOps https://www.kernel-operations.io (B. Charlier, J. Feydy, J. Glaunes)

Workshop *Shape analysis in biology* 21-22 November 2019, Paris

Questions?