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Statistical structures

M – connected manifold, g – metric tensor field on M (positive definite)
∇ – affine torsion-free connection (always torsion-free in this lecture)
(g ,∇) – statistical structure if the cubic form ∇g is symmetric

∇g(X ,Y ,Z ) = (∇Xg)(Y ,Z )

∇ – statistical connection
∇ – dual (conjugate) connection, that is,

X (g(Y ,Z )) = g(∇XY ,Z ) + g(Y ,∇XZ )

∇̂ – Levi-Civita connection for g
K – difference tensor: KXY = ∇XY − ∇̂XY , K (X ,Y ) = KXY symmetric
for X ,Y
A – cubic form: A(X ,Y ,Z ) = g(K (X ,Y ),Z ) – symmetric for X ,Y ,Z

∇g = −2A

(g ,∇) – trivial ⇔ ∇ = ∇̂ ⇔ K = 0 ⇔ C = 0 ⇔ A = 0
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On affine connections, in general

Geodesics

By a geodesic we mean a parametrized curve γ(t), where t ∈ (a, b),
a, b ∈ R or a = −∞ or b =∞, such that

∇γ̇ γ̇ = 0.

Such a parametrization is called affine. It is unique up to affine changes of
the parameter. A geodesic is maximal if it cannot be extended as a
geodesic beyond the interval (a, b). A geodesic is complete if the affine
parameter runs from −∞ to ∞.
By a pregeodesic we’ll mean either the image of a geodesic or any of its
parametrizations. For a pregeodesic (parametrized) we have

∇γ̇ γ̇ = ργ̇,

where ρ is a function.
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Lemma 1
Let M be equipped with a connection. If γ : (a, b)→ M is a geodesic and
there is the limit of γ(t) in M for t → b then γ can be extended as a
geodesic beyond b.

Lemma 2

Let M be equipped with a connection. If γ : (a,∞)→ M is a geodesic
then there is no limit of γ(t) in M for t →∞.

Lemma 3

Let M be equipped with a connection. If γ(t) for t ∈ (a, b), where b ∈ R
or b =∞ is a pregeodesic and there is p = limt→b γ(t) in M then the
pregeodesic can be extended as a pregeodesic beyond p.
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Geodesics of affine connections on Riemannian manifolds

Assume now that we also have a metric tensor g on M but our connection
∇ is not related with the metric g in any sense. Again we can define the
difference tensor K = ∇− ∇̂ and the cubic form A (non- symmetric, in
general):

A(X ,Y ,Z ) = g(K (X ,Y ),Z )

If ∇ is torsion-free, A(X ,Y ,Z ) is symmetric for X ,Y . We also have the
cubic form ∇g and the relation

∇g(X ,Y ,Z ) = −A(X ,Y ,Z )− A(X ,Z ,Y ).

In particular,
∇g(X ,X ,X ) = −2A(X ,X ,X ).
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For a connection ∇ on a Riemannian manifold one can consider the
arc-length parametrization r(s) of a ∇-geodesic and the scalar speed
l(t) = ‖γ̇(t)‖ of the affine paramatrization of a ∇-geodesic. The following
formulas hold

∇ṙ ṙ = A(ṙ , ṙ , ṙ)ṙ ,(
1
l

)′
= A(u, u, u),

where u = γ̇l ,

A(ṙ , ṙ , ṙ) = − d
ds
ln ‖γ̇ ◦ ϕ‖,

where ϕ(s) = t(s) is the change between the arc-length parameter s and
the affine parameter t of the geodesic.
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Lemma 4
Let (M, g) be a complete Riemannian manifold and ∇ be a connection on
M. If r(s) is an arc-length parametrization of a maximal ∇-geodesic then
the parameter s runs from −∞ to ∞. In particular, every maximal
∇-geodesic has infinite length.

Example

M = R× (−
√
π
2 ,
√
π
2 ) ⊂ R2, g - standard metric

G ′(t) = e−t
2
with G (0) = 0

(U,V ) – canonical frame on M. Each point of M has the coordinates
(x ,G (t)) for some t ∈ R. Define K (symmetric) as follows

K(x ,G(t))(V ,V ) = 2te
t2U, K (U,U) = 0, K (U,V ) = 2tet

2
V .

∇ := ∇̂+ K . The piece of the straight line γ(t) = (0,G (t)) for
t ∈ (−∞,∞) is a complete ∇-geodesic. It has finite length

√
π.
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Lemma 5
Let (M, g) be a complete Riemannian manifold and r(s), s ∈ R, be an
arc-length parametrization of a maximal geodesic of some affine
connection ∇ on M. Let ∇ṙ ṙ = Λ′ṙ where Λ is a function bounded from
below on the whole R. Then the geodesic is complete.

Lemma 6
Let (M, g) be a complete Riemannian manifold and ∇ a connection on M.
If a maximal ∇-geodesic has scalar speed bounded from above then the
geodesic is complete.
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statistical structures – continuation

If (g ,∇) is statistical, so is (g ,∇).
For (g ,∇) the difference tensor equals to −K .
More generally, one can define ∇α by using the difference tensor αK ,
where α ∈ R.
∇α - α-connection
We have the family of statistical structures (g ,∇α) – α-family of
statistical structures
In particular, ∇0 = ∇̂, ∇−1 = ∇
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νg − the volume form determined byg

A statistical structure is called trace-free if ∇νg = 0. This condition is
equivalent to the condition tr gK = 0 or, equivalently, trKX = 0 for every
X .
More generally, we set

τ(X ) = trKX .

A statistical connection ∇ is Ricci-symmetric if and only if dτ = 0. Hence
∇ and ∇ (in general ∇α )are simultaneously Ricci-symmetric.
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For a statistical structure (g ,∇,∇) we set
R, R, R̂ – curvature tensors for ∇, ∇, ∇̂. The corresponding Ricci tensors:
Ric , Ric , R̂ic .
The function

ρ = tr gRic (1)

is the scalar curvature of ∇. Similarly one can define the scalar curvature
ρ for ∇, but ρ = ρ. We also have the scalar curvature ρ̂ of g . For a
trace-free statistical structure the following formula holds (called
”theorema egregium”)

ρ̂ = ρ+ g(A,A). (2)
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Conjugate symmetric statistical structures

The (0, 4)-tensor field defined by g(R(X ,Y )Z ,W ) is not, in general,
skew-symmetric for Z ,W , but we have

g(R(X ,Y )Z ,W ) = −g(R(X ,Y )W ,Z ) (3)

Lemma 7
Let (g ,∇) be a statistical structure. The following conditions are
equivalent:
1) R = R,
2) ∇̂K is symmetric as a (1, 3)-tensor field (equiv. ∇̂A is symmetric as a
(0, 4)-tensor field),
3) g(R(X ,Y )Z ,W ) is skew-symmetric for Z ,W .

If a statistical structure satisfies one of the above conditions, it is called
conjugate symmetric.
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Sectional ∇-curvature

The sectional curvature is attributed to Riemannian geometry in a strong
way, but it can be also defined for statistical structures. First, we can
consider the average of the tensors R and R:

R = R + R
2

(4)

It has all symmetries needed for defining a sectional curvature. In
particular, we have the skew-symmetry for the last arguments in
g(R(X ,Y )Z ,W ).
If π is a vector plane in the tangent space TxM, e1, e2 is an orhonormal
basis of π, then we set

k(π) = g(R(e1, e2)e2, e1) (5)

and we call this sectional curvature the sectional ∇-curvature.
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Sectional ∇-curvature on conjugate symmetric statistical manifolds

In general, Schur’s lemma does not hold for the sectional ∇-curvature.
Schur’s lemma holds if a statistical structure is conjugate
symmetric.
If a conjugate symmetric statistical structure has constant sectional
∇-curvature k, then

R(X ,Y )Z = k(g(Y ,Z )X − g(X ,Z )Y ) (6)

If dim M=2 and the given statistical structure is conjugate symmetric
then the above formula always holds with k being a function. Of course, if
the above formula holds then the statistical structure is conjugate
symmetric. Moreover, if n > 2 and (6) holds, then both connections ∇
and ∇ are projectively flat. More generally, we have

Proposition 8
For a conjugate symmetric statistical structure the statistical connection
and its dual are simultaneously projectively flat.
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Statistical structures on equiaffine hypersurfaces

f : M → Rn+1 - locally strongly convex hypersurface with an equiaffine
transversal vector field ξ, that is, DX ξ is tangent to f for every tangent
vector X ∈ TM, where D is the standard flat connection on Rn+1. The
Weingarten formula

DX ξ = −f∗(S(X ))

for X ∈ TM, defines the shape operator S . By the Gauss formula

DX f∗Y = f∗(∇XY ) + g(X ,Y )ξ

we define the induced (torsion-free) connection ∇ and the second
fundamental form g (symmetric (0,2)-tensor field). Since our hypersurface
is locally strongly convex, g is a definite. We usually choose the sign of a
transversal vector field ξ in such a way that the second fundamental form
is positive definite.
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For a hypersurface equipped with a transversal vector field we have four
fundamental equations (Gauss, Codazzi I, Codazzi II, Ricci). If a
transversal vector field is equiaffine then the first Codazzi equation says
that the cubic form ∇g is symmetric. For a locally strongly convex
hypersurface the pair (g ,∇) is a statistical structure. On an equiaffine
hypersurface the induced statistical structure is Ricci-symmetric.
Given a locally strongly convex immersion f endowed with a transversal
vector field ξ we also have the conormal map

f : M → (Rn+1)∗ \ {0}

defined by the conditions

f (x)(ξx) = 1, (f (x))|f∗(TxM) ≡ 0

If f is locally strongly convex then f is an immersion. For each x ∈ M the
conormal vector f x =

−→
0fx is transversal to f . We equip the immersion f

with this equiaffine transversal vector field −f . Again, we receive the
induced objects on M. In particular, the induced connection turns out to
be the dual connection for ∇ relative to g .
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Theorem 9 (Berwald)

The induced statistical structure on a locally strongly convex equiaffine
hypersurface is trivial if and only if the hypersurface is a locally strongly
convex quadric.

Centroaffine normalizations, proper equiaffine spheres

f : M → Rn+1 l.s.c. hypersurface, p ∈ Rn+1,
−−−→
pf (x) is transversal to f for

every x ∈ M. Equip f with the transversal vector field ξ = −
−→
pf . This

vector field ξ is equiaffine and the corresponding shape operator S = id .
p – the center of the centroaffine normalization.
We usually can assume that p = 0 ∈ Rn+1.
In particular, the conormal map has the natural centroaffine normalization.
Hypersurfaces with centroaffine normalization are also called proper
equiaffine spheres.
Improper equiaffine spheres are hypersurfaces equipped with a constant
transversal vector field.
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Trace-free statistical structures play a crucial role in the classical affine
differential geometry. Namely, we have the following basic theorem

Theorem 10

Let f : M → Rn+1 be a locally strongly convex hypersurface. There is a
unique (up to a constant) equiaffine transversal vector field ξ such that
the induced statistical structure is trace-free.

– Blaschke hypersurface, ξ - Blaschke affine normal, g - Blaschke metric.
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A fundamental theorem

F. Dillen, K. Nomizu, L. Vrancken, [4]

Theorem 11
Let M be a simply connected manifold and (g ,∇) be a statistical
structure on M such that ∇ is Ricci-symmetric and ∇ is projectively flat.
Then there is a locally strongly convex immersion f : M → Rn+1 and its
equiaffine transversal vector field ξ such that ∇ is the induced connection
and g the second fundamental form for f , ξ. The immersion is unique up
to an affine transformation of Rn+1.
If, moreover, the given statistical structure is conjugate symmetric, the
immersion f is an equiaffine sphere.
If the given statistical structure is trace-free, ξ is the Blaschke affine
normal (up to a constant) for f .
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Affine spheres

In the cathegory of Blaschke hypersurfaces there is a very important and
rich class of the so called affine spheres. Namely, if a Blaschke
hypersurface is an equiaffine sphere it is called an affine sphere. For an
equiaffine sphere the shape operator S is a multiple of the identity, i.e.
S = λid (λ is constant on a connected domain). For a locally strongly
convex affine sphere we always choose the sign of the affine normal in such
a way that the induced second fundamental form is positive definite. The
following names of spheres are in use:

if λ > 0, the sphere is called elliptic;

if λ < 0, the sphere is called hyperbolic.

For improper affine spheres λ ≡ 0.

If λ ≡ 0, the sphere is called parabolic.
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The only compact affine spheres are ellipsoids. An ellipsoid is a locally
strongly convex proper affine sphere (elliptic) whose center lies at the
center of the ellipsoid. Hyperboloids are proper affine spheres (hyperbolic).
Elliptic paraboloids are improper locally strongly convex affine spheres.
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Completness

For a l.s.c. hypersurface we can consider:
1) the completeness relative to the second fundamental form (for Blaschke
hypersurfaces – the Blaschke metric) (affine completeness)
2) the completeness of the Riemannian metric induced from the Euclidean
space Rn+1 (Euclidean completeness)
3) the completeness relative to the induced connection
4) the completeness relative to the dual connection

For a statistical structure (g ,∇) we can consider
1) the completeness relative to the metric tensor g
2) the completeness relative to the statistical connection ∇
3) the completeness relative to the dual statistical connection ∇
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Completeness of the Blaschke metric and the induced metric

W. Blaschke, A. Deicke; 1917, 1918

Theorem 12
Every locally strongly convex elliptic affine sphere that is complete relative
to the Blaschke metric must be an ellipsoid with the trivial affine structure.

E. Calabi; 1971

Theorem 13
Every locally strongly convex parabolic affine sphere whose Blaschke metric
is complete must be an elliptic paraboloid with the trivial affine structure.
For a locally strongly convex hyperbolic or parabolic affine sphere whose
Blaschke metric is complete the Ricci tensor of the metric is negative
semi-definite.
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affine completeness ⇒ Euclidean completeness

S.Y. Cheng, S.T. Yau; 1986, A-M Li; 1990

Theorem 14
Every locally strongly convex hyperbolic affine sphere that is complete
relative to the Blaschke metric is complete relative to the induced
Riemannian metric.

N.S. Trudinger, X.-J. Wang; 2002

Theorem 15
Every locally strongly convex hypersurface that is complete relative to the
Blaschke metric is complete relative to the induced Riemannian structure.
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Euclidean completeness ⇒ affine completeness

S.Y. Cheng, S.T. Yau; 1986

Theorem 16
Every locally strongly convex affine sphere that is complete relative to the
induced Riemannian metric is complete relative to the Blaschke metric.

A-M Li; 1990

Theorem 17
Every locally strongly convex hypersurface that is complete relative to the
induced Riemannian metric and whose eigenvalues of the affine shape
operator are bounded from above is also complete relative to the Blaschke
metric.
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Versions of Theorems 6 and 7 (Blaschke, Deicke, Calabi) for statistical
manifolds.

Theorem 18
Let (g ,∇) be a conjugate symmetric trace-free statistical structure on M.
Assume that g is complete and the sectional ∇-curvature is constant and
non-negative. Then the statistical structure on M is trivial, that is ∇ = ∇̂.
Consequently, by Myers’ theorem, if the sectional ∇-curvature is positive,
M is compact and its first fundamental group is finite.

Theorem 19
Let (g ,∇) be a conjugate symmetric trace-free statistical structure on M.
Assume that g is complete and the sectional ∇-curvature is constant and
non-positive. Then the Ricci tensor of the metric is negative semi-definite.

Since the structures from the above theorems are conjugate symmetric
with constant sectional ∇-curvature both statistical connections ∇ and ∇
are projectively flat and therefore the statistical structures are locally
realizable on affine spheres. In general, the realizations cannot be global.
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Curvature bounded conjugate symmetric trace-free statistical
structures with complete metric

Theorem 20
Let (g ,∇) be a trace-free conjugate symmetric statistical structure on a
manifold M. Assume that g is complete on M. If the sectional
∇-curvature is non-negative everywhere then the statistical structure is
trivial, that is, ∇ = ∇̂. If the sectional ∇-curvature is bounded from 0 by
a positive constant then, additionally, M is compact and its first
fundamental group is finite.

Theorem 21
Let (g ,∇) be a trace-free conjugate symmetric statistical structure on a
manifold M. Assume that g is complete on M. If the sectional
∇-curvature is bounded from below and above on M then the Ricci tensor
of g is bounded from below and above on M. If H − ε < k(π) < H then
ρ̂ ¬ n

2(n−1)
2 ε.
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Completeness of the induced connections on equiaffine hypersurfaces
and statistical connections

In general, statistical connections are not necessarily complete on compact
manifolds.

Example

Let g be the standard flat metric on R2. Let U,V be the canonical frame
field on R2. Define the statistical connection ∇ as follows

∇UU = U, ∇UV = −V , ∇VV = −U. (7)

The statistical structure can be projected on the standard torus T 2. Here
we have ∇̂A = 0, ∇ is Ricci-symmetric and projectively flat.The curve

γ(t) = (ln(1− t), y0) (8)

for t ∈ [0, 1), is a ∇-geodesic. We have ‖γ̇(t)‖ = 1
1−t → +∞ if t → 1.

Hence this geodesic cannot be extended beyond 1.
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The above example can be generalized to the following negative result

Theorem 22

Let (g ,∇) be a non-trivial statistical structure such that

∇̂A(U,U,U,U) ¬ 0

for every U ∈ UM, where UM is the unit sphere bundle over M. The
statistical connection ∇ is not complete.
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In particular, we may have ∇̂A = 0. The fact that ∇̂A = 0 does not
trivialize the situation. Even in the theory of affine hypersurfaces one
knows examples (non-compact) of non-trivial statistical structures for
which ∇̂A = 0. The most famous is the hypersurface of Rn+1 given by the
equation

x1 · ... · xn+1 = 1
for x1 > 0, ..., xn+1 > 0. It is a hyperbolic locally strongly convex affine
sphere with ∇̂A = 0. It is not a quadric (hence the induced statistical
structure is non-trivial), its Blaschke metric is complete, the induced
metric is complete, the induced connection is not complete, the dual
connection is not complete. Other examples with ∇̂A = 0 can be found in
[5] and [7]. For instance, one has the following affine sphere in R4

(y2 − z2 − w2)3x2 = 1

and the following affine spheres in R5

(y2 − z2 − w2 − v2)2x = 1,

(z2 − w2 − v2)3(xy)2 = 1.
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The following positive result is due to Noguchi (1992)

Theorem 23
Let (M, g) be a complete Riemannian manifold and A be a cubic form
given by

A = sym(dσ ⊗ g) (9)

for some function σ on M. Assume that the function σ is bounded from
below on M. Then the statistical connection of the statistical structure
(g ,A) is complete.

The theorem is a consequence of Lemma 6 because the scalar speed of any
geodesic (relative to the statistical connection determined by A) is here
bounded from above.
Remark In a similar way one can produce complete affine connections, not
necessarily statistical for the metric g . Namely, one can define the cubic
form :

A(X ,Y ,Z ) = βg(X ,Y )dσ(Z ) + δ[g(X ,Z )dσ(Y ) + g(Y ,Z )dσ(X )],

where β, δ are real numbers such that β + δ > 0.
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Corollary 24
Let (M, g) be a compact Riemannian manifold. Each function σ on M
gives rise to an α-family of statistical structures whose all statistical
connections are complete.
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Theorem 25

On a centroaffine ovaloid in Rn+1 the induced connection and its dual
relative to the second fundamental form of the given centroaffine ovaloid
are complete.

Theorem 26

For an ovaloid in Rn+1 equipped with any equiaffine transversal vector
field, for which the affine Gauss curvature detS is nowhere zero, the dual
connection is complete.

Theorem 27
Let (g ,∇) be a statistical structure on a manifold M diffeomorphic to a
Euclidean sphere. If the structure is conjugate symmetric and the
connection ∇ is projectively flat then ∇ and its dual connection ∇ are
complete on M.

In Theorem 27 the assumption that M is diffeomorphic to a Euclidean
sphere is important, see the example on page 30.
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