Feature Selection \&

the Shapley-Folkman Theorem.

Alexandre d'Aspremont,
CNRS \& D.I., École Normale Supérieure.

With Armin Askari, Laurent El Ghaoui (UC Berkeley) and Quentin Rebjock (EPFL)

Jobs

Postdoc positions in ML / Optimization.

At INRIA / Ecole Normale Supérieure in Paris.

Introduction

Feature Selection.

- Reduce number of variables while preserving classification performance.
- Often improves test performance, especially when samples are scarce.
- Helps interpretation.

Classical examples: LASSO, ℓ_{1}-logistic regression, RFE-SVM, . . .

Introduction

Feature Selection. Toy example: text classification in 20 newsgroup.

Classify sci.med versus sci.space.

Space features. 'commercial', 'launches', 'project', 'launched', 'data', 'dryden', 'mining', 'planetary', 'proton', 'missions', 'cost', 'command', 'comet', 'jupiter', 'apollo', 'russian', 'aerospace', 'sun', 'mary', 'payload', 'gravity', ...

Med features. med', 'yeast', 'diseases', 'allergic', 'doctors', 'symptoms', 'syndrome', 'diagnosed', 'health', 'drugs', 'therapy', 'candida', 'seizures', 'lyme', 'food', 'brain', 'foods', 'geb', 'pain', 'gordon', patient', ...

Introduction: feature selection

RNA classification. Find genes which best discriminate cell type (lung cancer vs control). 35238 genes, 2695 examples. [Lachmann et al., 2018]

Best ten genes: MT-CO3, MT-ND4, MT-CYB, RP11-217012.1, LYZ, EEF1A1, MT-CO1, HBA2, HBB, HBA1.

Introduction: feature selection

Applications. Mapping brain activity by $\mathbf{f M R I}$.

Encoding and decoding models of cognition

From PARIETAL team at INRIA.

Introduction: feature selection

fMRI. Many voxels, very few samples leads to false discoveries.

Scanning Dead Salmon in fMRI Machine Highlights Risk of Red Herrings

Wired article on Bennett et al. "Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple Comparisons Correction" Journal of Serendipitous and Unexpected Results, 2010.

Introduction: linear models

Linear models. Select features from large weights w.

- LASSO solves $\min _{w}\|X w-y\|_{2}^{2}+\lambda\|w\|_{1}$ with linear prediction given by $w^{T} x$.
- Linear SVM, solves $\min _{w} \sum_{i} \max \left\{0,1-y_{i} w^{T} x_{i}\right\}+\lambda\|w\|_{2}^{2}$ with linear classification rule $\operatorname{sign}\left(w^{T} x\right)$.

In practice.

- Relatively high complexity on very large-scale data sets.
- Recovery results require uncorrelated features (incoherence, RIP, etc.).
- Cheaper featurewise methods (ANOVA, TF-IDF, etc.) have relatively poor performance.

Outline

- Sparse Naive Bayes
- The Shapley-Folkman theorem
- Duality gap bounds
- Numerical performance

Naive Bayes

Naive Bayes. Predict label of a test point $x \in \mathbb{R}^{n}$ via the rule

$$
\hat{y}(x)=\arg \max _{i \in\{-1,1\}} \operatorname{Prob}\left(C_{i} \mid x\right) .
$$

Use Bayes' rule and then use the "naive" assumption that features are conditionally independent of each other

$$
\operatorname{Prob}\left(x \mid C_{i}\right)=\prod_{j=1}^{m} \operatorname{Prob}\left(x_{j} \mid C_{i}\right)
$$

leading to

$$
\begin{equation*}
\hat{y}(x)=\arg \max _{i \in\{-1,1\}}\left\{\log \operatorname{Prob}\left(C_{i}\right)+\sum_{j=1}^{m} \log \operatorname{Prob}\left(x_{j} \mid C_{i}\right)\right\} . \tag{1}
\end{equation*}
$$

$\operatorname{In}(1)$, we need to have an explicit model for $\operatorname{Prob}\left(x_{j} \mid C_{i}\right)$.

Multinomial Naive Bayse

Multinomial Naive Bayse. In the multinomial model

$$
\log \operatorname{Prob}\left(x \mid C_{ \pm}\right)=x^{\top} \log \theta^{ \pm}+\log \left(\frac{\left(\sum_{j=1}^{m} x_{j}\right)!}{\prod_{j=1}^{m} x_{j}!}\right) .
$$

Training by maximum likelihood

$$
\left(\theta_{*}^{+}, \theta_{*}^{-}\right)=\underset{\substack{1^{\top} \top \theta^{+}=1^{\top} \theta^{-}=1 \\ \theta^{+}, \theta^{-} \in[0,1]^{m}}}{\operatorname{argmax}} f^{+\top} \log \theta^{+}+f^{-\top} \log \theta^{-}
$$

Linear classification rule from (1): for a given test point $x \in \mathbb{R}^{m}$, we set

$$
\hat{y}(x)=\boldsymbol{\operatorname { s i g n }}\left(v+w^{\top} x\right),
$$

where

$$
w \triangleq \log \theta_{*}^{+}-\log \theta_{*}^{-} \quad \text { and } \quad v \triangleq \log \operatorname{Prob}\left(C_{+}\right)-\log \operatorname{Prob}\left(C_{-}\right),
$$

Sparse Naive Bayse

Naive Feature Selection. Make $w \triangleq \log \theta_{*}^{+}-\log \theta_{*}^{-}$sparse.

Solve

$$
\begin{array}{ll}
\left(\theta_{*}^{+}, \theta_{*}^{-}\right)=\underset{\text { subject to }}{\operatorname{argmax}} & f^{+\top} \log \theta^{+}+f^{-\top} \log \theta^{-} \\
& \left\|^{+}-\theta^{-}\right\|_{0} \leq k \tag{SMNB}\\
& \theta^{+} \theta^{+}=\mathbf{1}^{\top} \theta^{-}=1 \\
& \theta^{+} \geq 0
\end{array}
$$

where $k \geq 0$ is a target number of features. Features for which $\theta_{i}^{+}=\theta_{i}^{-}$can be discarded.

Nonconvex problem.

- Convex relaxation?
- Approximation bounds?

Sparse Naive Bayse

Convex Relaxation. The dual is very simple.

Sparse Multinomial Naive Bayes [Askari, A., El Ghaoui, 2019]

Let $\phi(k)$ be the optimal value of (SMNB). Then $\phi(k) \leq \psi(k)$, where $\psi(k)$ is the optimal value of the following one-dimensional convex optimization problem

$$
\begin{equation*}
\psi(k):=C+\min _{\alpha \in[0,1]} s_{k}(h(\alpha)) \tag{USMNB}
\end{equation*}
$$

where C is a constant, $s_{k}(\cdot)$ is the sum of the top k entries of its vector argument, and for $\alpha \in(0,1)$,
$h(\alpha):=f_{+} \circ \log f_{+}+f_{-} \circ \log f_{-}-\left(f_{+}+f_{-}\right) \circ \log \left(f_{+}+f_{-}\right)-f_{+} \log \alpha-f_{-} \log (1-\alpha)$.

Solved by bisection, linear complexity $O(n+k \log k)$. Approximation bounds?

Outline

- Sparse Naive Bayes
- The Shapley-Folkman theorem
- Duality gap bounds
- Numerical performance

Shapley-Folkman Theorem

Minkowski sum. Given sets $X, Y \subset \mathbb{R}^{d}$, we have

$$
X+Y=\{x+y: x \in X, y \in Y\}
$$

(CGAL User and Reference Manual)
Convex hull. Given subsets $V_{i} \subset \mathbb{R}^{d}$, we have

$$
\mathbf{C o}\left(\sum_{i} V_{i}\right)=\sum_{i} \mathbf{C o}\left(V_{i}\right)
$$

Shapley-Folkman Theorem

The $\ell_{1 / 2}$ ball, Minkowsi average of two and ten balls, convex hull.

Minkowsi sum of five first digits (obtained by sampling).

Shapley-Folkman Theorem

Shapley-Folkman Theorem [Starr, 1969]

Suppose $V_{i} \subset \mathbb{R}^{d}, i=1, \ldots, n$, and

$$
x \in \mathbf{C o}\left(\sum_{i=1}^{n} V_{i}\right)=\sum_{i=1}^{n} \mathbf{C o}\left(V_{i}\right)
$$

then

$$
x \in \sum_{[1, n\rceil \backslash \mathcal{S}_{x}} V_{i}+\sum_{\mathcal{S}_{x}} \mathbf{C o}\left(V_{i}\right)
$$

where $\left|\mathcal{S}_{x}\right| \leq d$.

Shapley-Folkman Theorem

Proof sketch. Write $x \in \sum_{i=1}^{n} \mathbf{C o}\left(V_{i}\right)$, or

$$
\binom{x}{\mathbf{1}_{n}}=\sum_{i=1}^{n} \sum_{j=1}^{d+1} \lambda_{i j}\binom{v_{i j}}{e_{i}}, \quad \text { for } \lambda \geq 0
$$

Conic Carathéodory then yields representation with at most $n+d$ nonzero coefficients. Use a pigeonhole argument

Number of nonzero $\lambda_{i j}$ controls gap with convex hull.

Shapley-Folkman: geometric consequences

Consequences.

- If the sets $V_{i} \subset \mathbb{R}^{d}$ are uniformly bounded with $\operatorname{rad}\left(V_{i}\right) \leq R$, then

$$
d_{H}\left(\frac{\sum_{i=1}^{n} V_{i}}{n}, \mathbf{C o}\left(\frac{\sum_{i=1}^{n} V_{i}}{n}\right)\right) \leq R \frac{\sqrt{\min \{n, d\}}}{n}
$$

where $\operatorname{rad}(V)=\inf _{x \in V} \sup _{y \in V}\|x-y\|$.

- In particular, when d is fixed and $n \rightarrow \infty$

$$
\left(\frac{\sum_{i=1}^{n} V_{i}}{n}\right) \rightarrow \mathbf{C o}\left(\frac{\sum_{i=1}^{n} V_{i}}{n}\right)
$$

in the Hausdorff metric with rate $O(1 / n)$.

- Holds for many other nonconvexity measures [Fradelizi et al., 2017].

Outline

- Sparse Naive Bayes
- The Shapley-Folkman theorem
- Duality gap bounds
- Numerical performance

Nonconvex Optimization

Separable nonconvex problem. Solve

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} f_{i}\left(x_{i}\right) \\
\text { subject to } & A x \leq b, \tag{P}
\end{array}
$$

in the variables $x_{i} \in \mathbb{R}^{d_{i}}$ with $d=\sum_{i=1}^{n} d_{i}$, where f_{i} are lower semicontinuous and $A \in \mathbb{R}^{m \times d}$.

Take the dual twice to form a convex relaxation,

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} f_{i}^{* *}\left(x_{i}\right) \tag{CoP}\\
\text { subject to } & A x \leq b
\end{array}
$$

in the variables $x_{i} \in \mathbb{R}^{d_{i}}$.

Nonconvex Optimization

Convex envelope. Biconjugate $f^{* *}$ satisfies epi $\left(f^{* *}\right)=\overline{\operatorname{Co}(\operatorname{epi}(f))}$, which means that

$$
f^{* *}(x) \text { and } f(x) \text { match at extreme points of epi }\left(f^{* *}\right) .
$$

Define lack of convexity as $\rho(f) \triangleq \sup _{x \in \operatorname{dom}(f)}\left\{f(x)-f^{* *}(x)\right\}$.

Example.

The l_{1} norm is the convex envelope of $\operatorname{Card}(x)$ in $[-1,1]$.

Nonconvex Optimization

Writing the epigraph of problem (P) as in [Lemaréchal and Renaud, 2001],

$$
\mathcal{G}_{r} \triangleq\left\{\left(r_{0}, r\right) \in \mathbb{R}^{1+m}: \sum_{i=1}^{n} f_{i}\left(x_{i}\right) \leq r_{0}, A x-b \leq r, x \in \mathbb{R}^{d}\right\},
$$

we can write the dual function of (P) as

$$
\Psi(\lambda) \triangleq \inf \left\{r_{0}+\lambda^{\top} r:\left(r_{0}, r\right) \in \mathcal{G}_{r}^{* *}\right\},
$$

in the variable $\lambda \in \mathbb{R}^{m}$, where $\mathcal{G}^{* *}=\overline{\mathbf{C o}(\mathcal{G})}$ is the closed convex hull of the epigraph \mathcal{G}.

Affine constraints means (P) and (CoP) have the same dual [Lemaréchal and Renaud, 2001, Th. 2.11], given by

$$
\begin{equation*}
\sup _{\lambda \geq 0} \Psi(\lambda) \tag{D}
\end{equation*}
$$

in the variable $\lambda \in \mathbb{R}^{m}$. Roughly, if $\mathcal{G}^{* *}=\mathcal{G}$ then there is no duality gap.

Nonconvex Optimization

Epigraph \& duality gap. Define

$$
\mathcal{F}_{i}=\left\{\left(f_{i}^{* *}\left(x_{i}\right), A_{i} x_{i}\right): x_{i} \in \mathbb{R}^{d_{i}}\right\}
$$

where $A_{i} \in \mathbb{R}^{m \times d_{i}}$ is the $i^{\text {th }}$ block of A.

- The epigraph $\mathcal{G}_{r}^{* *}$ can be written as a Minkowski sum of \mathcal{F}_{i}

$$
\mathcal{G}_{r}^{* *}=\sum_{i=1}^{n} \mathcal{F}_{i}+(0,-b)+\mathbb{R}_{+}^{m+1}
$$

- Shapley-Folkman at any point $x \in \mathcal{G}_{r}^{* *}$ shows $f^{* *}\left(x_{i}\right)=f\left(x_{i}\right)$ for all but at most $m+1$ terms in the objective.
- As $n \rightarrow \infty$, with $m / n \rightarrow 0, \mathcal{G}_{r}$ gets closer to its convex hull $\mathcal{G}_{r}^{* *}$ and the duality gap becomes negligible.

Bound on duality gap

A priori bound on duality gap of

$$
\begin{array}{ll}
\underset{i n i m i z e}{m} & \sum_{i=1}^{n} f_{i}\left(x_{i}\right) \\
\text { subject to } & A x \leq b,
\end{array}
$$

where $A \in \mathbb{R}^{m \times d}$.

Proposition [Aubin and Ekeland, 1976, Ekeland and Temam, 1999]

A priori bounds on the duality gap Suppose the functions f_{i} in (P) satisfy Assumption (...). There is a point $x^{\star} \in \mathbb{R}^{d}$ at which the primal optimal value of (CoP) is attained, such that

$$
\underbrace{\sum_{i=1}^{n} f_{i}^{* *}\left(x_{i}^{\star}\right)}_{C o P} \leq \underbrace{\sum_{i=1}^{n} f_{i}\left(\hat{x}_{i}^{\star}\right)}_{P} \leq \underbrace{\sum_{i=1}^{n} f_{i}^{* *}\left(x_{i}^{\star}\right)}_{C o P}+\underbrace{\sum_{i=1}^{m+1} \rho\left(f_{[i]}\right)}_{\text {gap }}
$$

where \hat{x}^{\star} is an optimal point of (P) and $\rho\left(f_{[1]}\right) \geq \rho\left(f_{[2]}\right) \geq \ldots \geq \rho\left(f_{[n]}\right)$.

Bound on duality gap

General result. Consider the separable nonconvex problem

$$
\begin{array}{rll}
\mathrm{h}_{P}(u):= & \min . & \sum_{i=1}^{n} f_{i}\left(x_{i}\right) \tag{P}\\
& \text { s.t. } & \sum_{i=1}^{n} g_{i}\left(x_{i}\right) \leq b+u
\end{array}
$$

in the variables $x_{i} \in \mathbb{R}^{d_{i}}$, with perturbation parameter $u \in \mathbb{R}^{m}$.

Proposition [Ekeland and Temam, 1999]

A priori bounds on the duality gap Suppose the functions $f_{i}, g_{j i}$ in problem (P) satisfy assumption (...) for $i=1, \ldots, n, j=1, \ldots, m$. Let

$$
\bar{p}_{j}=(m+1) \max _{i} \rho\left(g_{j i}\right), \quad \text { for } j=1, \ldots, m
$$

then

$$
\mathrm{h}_{P}(\bar{p})^{* *} \leq \mathrm{h}_{P}(\bar{p}) \leq \mathrm{h}_{P}(0)^{* *}+(m+1) \max _{i} \rho\left(f_{i}\right)
$$

where $\mathrm{h}_{P}(u)^{* *}$ is the optimal value of the dual to (P).

Naive Feature Selection

Duality gap bound. Sparse naive Bayes reads

$$
\begin{array}{ll}
\mathrm{h}_{P}(u)= & \min _{q, r} \quad \\
& -f^{+\top} \log q-f^{-\top} \log r \\
\text { subject to } & \mathbf{1}^{\top} q=1+u_{1}, \\
& \mathbf{1}^{\top} r=1+u_{2}, \\
& \sum_{i=1}^{m} \mathbf{1}_{q_{i} \neq r_{i}} \leq k+u_{3}
\end{array}
$$

in the variables $q, r \in[0,1]^{m}$, where $u \in \mathbb{R}^{3}$. There are three constraints, two of them convex, which means $\bar{p}=(0,0,4)$.

Theorem [Askari, A., El Ghaoui, 2019]

NFS duality gap bounds. Let $\phi(k)$ be the optimal value of (SMNB) and $\psi(k)$ that of the convex relaxation (USMNB). We have

$$
\psi(k-4) \leq \phi(k) \leq \psi(k)
$$

for $k \geq 4$.

Naive Feature Selection

Primalization. Given optimal dual variable α_{*} that solves (USMNB), reconstruct point $\left(\theta^{+}, \theta^{-}\right)$.

For α^{*} optimal for (USMNB), let \mathcal{I} be complement of the set of indices corresponding to the top k entries of $h\left(\alpha_{*}\right)$, set $B_{ \pm}:=\sum_{i \notin \mathcal{I}} f_{i}^{ \pm}$, and

$$
\theta_{* i}^{+}=\theta_{* i}^{-}=\frac{f_{i}^{+}+f_{i}^{-}}{\mathbf{1}^{\top}\left(f^{+}+f^{-}\right)}, \forall i \in \mathcal{I}, \quad \theta_{*_{i}}^{ \pm}=\frac{B_{+}+B_{-}}{B_{ \pm}} \frac{f_{i}^{ \pm}}{\mathbf{1}^{\top}\left(f^{+}+f^{-}\right)}, \forall i \notin \mathcal{I} .
$$

k largest coefficients in (USMNB) give support of the solution.

Outline

- Sparse Naive Bayes
- Approximation bounds \& the Shapley-Folkman theorem
- Numerical performance

Naive Feature Selection

Data.

Feature Vectors	Amazon	IMDB	Twitter	MPQA	SST2
COUNT VECTOR	31,666	103,124	273,779	6,208	16,599
TF-IDF	31,666	103,124	273,779	6,208	16,599
TF-IDF WRD BIGRAM	870,536	$8,950,169$	$12,082,555$	27,603	227,012
TF-IDF CHAR BIGRAM	25,019	48,420	17,812	4838	7762

Number of features in text data sets used below.

	AmAZON	IMDB	Twitter	MPQA	SST2
COUNT VECTOR	0.043	0.22	1.15	0.0082	0.037
TF-IDF	0.033	0.16	0.89	0.0080	0.027
TF-IDF WRD BIGRAM	0.68	9.38	13.25	0.024	0.21
TF-IDF CHAR BIGRAM	0.076	0.47	4.07	0.0084	0.082

Average run time (seconds, plain Python on CPU).

Naive Feature Selection.

Accuracy versus run time on IMDB/Count Vector, MNB in stage two.

Naive Feature Selection.

Duality gap bound versus sparsity level for $m=30$ (left panel) and $m=3000$ (right panel), showing that the duality gap quickly closes as m or k increase.

Naive Feature Selection.

Run time with IMDB dataset/tf-idf vector data set, with increasing m, k with fixed ratio k / m, empirically showing (sub-) linear complexity.

Naive Feature Selection.

Criteo. Conversion log data. Large-scale: $45 \mathrm{~GB}, 45$ million rows, 15000 columns.

- Preprocessing (NaN , encoding categorical features) takes 50 minutes.
- Computing f^{+}and f^{-}takes 20 minutes.
- Computing the full curve below takes 2 minutes (solving 15000 problems).

Standard workstation. Preprocessing can be distributed.

Conclusion

Naive Feature Selection.

For naive Bayes, we get sparsity almost for free.

- Linear complexity.
- Nearly tight convex relaxation.
- Feature selection performance comparable to LASSO or ℓ_{1} logistic regression, but NFS is $100 \times$ faster. . .
- Requires no RIP assumption (only the naive one behind NB).

References

Jean-Pierre Aubin and Ivar Ekeland. Estimates of the duality gap in nonconvex optimization. Mathematics of Operations Research, 1(3): 225-245, 1976.
Ivar Ekeland and Roger Temam. Convex analysis and variational problems. SIAM, 1999.
Matthieu Fradelizi, Mokshay Madiman, Arnaud Marsiglietti, and Artem Zvavitch. The convexification effect of minkowski summation. Preprint, 2017.
Alexander Lachmann, Denis Torre, Alexandra B Keenan, Kathleen M Jagodnik, Hoyjin J Lee, Lily Wang, Moshe C Silverstein, and Avi Ma'ayan. Massive mining of publicly available rna-seq data from human and mouse. Nature communications, 9(1):1366, 2018.
Claude Lemaréchal and Arnaud Renaud. A geometric study of duality gaps, with applications. Mathematical Programming, 90(3):399-427, 2001.

Ross M Starr. Quasi-equilibria in markets with non-convex preferences. Econometrica: journal of the Econometric Society, pages 25-38, 1969.

