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4 / 32Inverse problems for imaging

Measuring devices have a non sharp impulse response: our
observations are blurred of a "true ideal scene".

I Geophysics,
I Astronomy,
I Microscopy,
I Spectroscopy,
I . . .

Image courtesy of S. Ladjal

Goal: Obtain as much detail as we can from given measurements.



5 / 32The Deconvolution Problem

I Consider a signal µ0 defined on Td = (R/Z)d (i.e. [0, 1)d with periodic
boundary condition).

I Perturbation model:

Original Signal

µ0

t0 1

∗

Low-pass filter

ϕ

t0.5−0.5

+

Noise

w

t0 1

=

Observation

y0 + w

t0 1

I Goal: recover µ0 from the observation y0 + w = ϕ ∗ µ0 + w (or simply
y0 = ϕ ∗ µ0)

I Ill-posed problem:
I the low pass filter might not be invertible (ϕ̂n = 0 for some

frequency n)
I even though, the problem is ill-conditioned (|ϕ̂n| � |ϕ̂0| for high

frequencies n)
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6 / 32The Deconvolution Problem

Assumption: the signal µ0 is sparse.

In other words, we want to recover point sources (amplitudes and locations)

I Spectral estimation,
I Seismic imaging,
I EEG,
I Direction of Arrival,
I Super-resolution microscopy

(PALM/STORM)
I . . .
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Widefield STORM

500 nm



6 / 32The Deconvolution Problem

Assumption: the signal µ0 is sparse.

Original Signal

µ0

t0 1
x1

x2
x3

∗

Low-pass filter

ϕ

t0.5−0.5

+

Noise

w

t0 1

=

Observation

y + w

t0 1

µ0 =
N∑
i=1

aiδxi , where


ai ∈ C,
xi ∈ T,
N ∈ N is small.

so that we observe y + w =
∑N

i=1 aiϕ(· − xi ) + w .

Idea: Look for a sparse signal µ such that ϕ ∗ µ ≈ y0 + w (or y0).



7 / 32Possible approaches

.

I Define a grid G = {gi : 0 6 i 6 G − 1} an try
to recover a signal of the form µ =

∑G−1
i=0 aiδgi

using LASSO or Matching Pursuit. . .
I Well understood algorithms
I Large and ill-conditioned problems when

using thin grids
I Discretization artifacts, basis mismatch

I Use a fully continuous approach (Prony, MUSIC,
Beurling LASSO)

I Nice theoretical properties
I Numerical resolution not straightforward

µ

xg0

g2

gG−2

µ

xx1

x2
x3



8 / 32Towards the continuous approach

Define the total variation of the measure m ∈M(Td) as:

|µ| (Td) = sup
{
Re
(∫

Td

ψ∗dm

)
;ψ ∈ C (Td ,C), ‖ψ‖∞ 6 1

}

Example : I If µ =
∑r

i=1 aiδxi , then |µ|(Td) =
∑M

i=1 |ai |.
I If µ = fdL, then |µ|(Td) =

∫
Td |f (t)|dt.

Rationale: the extreme points of {µ ∈M(Td), |µ| (Td) 6 1} are the
Dirac masses: αδx for x ∈ Td , |α| = 1.



9 / 32Continuous sparse recovery

Given a linear observation operator Φ :M(Td)→ CM , consider

I Basis Pursuit for measures [de Castro & Gamboa (12), Candès &
Fernandez-Granda (13)],

inf
µ∈M(Td )

|µ|(Td) such that Φµ = y0 (P0(y0))

I LASSO for measures, or BLASSO [Recht et al. (12), Bredies &
Pikkarainen (13), Azais et al. (13)]

inf
µ∈M(Td )

λ|µ|(Td) +
1
2
‖Φµ− (y0 + w)‖2 (Pλ(y0 + w))



10 / 32Observation framework

For the rest of the talk, we assume that Φ is a partial Fourier
operator

Φµ = FΩcµ, where Ωc =
{
j ∈ Nd : ‖j‖∞ 6 fc

}
,

(FΩcµ)j
def.
=

∫
Td

e−2iπ〈j , x〉dµ(x).

I Ideal Low-Pass Filter (convolution w/ Dirichlet kernel),
spectral estimation,

I Extensions to more general observation operators are possible.



11 / 32Identifiability for discrete measures

Minimum separation distance of µ:

∆(µ) = min
x,x′∈Suppµ,

x 6=x′

‖x − x ′‖∞

µ =
∑r

i=1 aiδxi

x
0 1

x1

x2

x3

∆(µ)

Theorem (Candès & Fernandez-Granda (2013))
There exists a constant Cd > 0 such that, for any (discrete) measure µ0
with ∆(µ0) > Cd

fc
, µ0 is the unique solution of

inf
µ∈M(Td )

|µ| (Td) such that Φµ = y0 (P0(y0))

where y0 = Φµ0.

Remark: 1 6 C 6 1.26 for d = 1.



12 / 32Robustness

Question: if w is small and λ > 0 is small, can we recover a solution µ ≈ µ0
where y0 = Φµ0?

inf
µ∈M(Td )

λ|µ|(Td) +
1
2
‖Φµ− (y0 + w)‖2 (Pλ(y0 + w))

+ Yes, provided µ0 is the unique solution to

inf
µ∈M(Td )

|µ|(Td) such that Φµ = y0 (P0(y0))

(+ technical conditions)
I Weak-* convergence results [Bredies & Pikkarainen (13)],
I Estimation on the local averages of µ [Azais et al. (13), Fernandez-Granda

(13)].



12 / 32Robustness

Consider an input measure
µ0 =

∑r
i=1 a0,iδx0,i

Theorem (D.-Peyré’15)
Assume that µ0 is “non-degenerate” .
Then there exists, α > 0, λ0 > 0 such that for 0 6 λ 6 λ0 and ‖w‖ 6 αλ,

I the solution µ(λ,w) to Pλ(y + w) is unique and has exactly r spikes,
µ(λ,w) =

∑r
i=1 ai (λ,w)δxi (λ,w),

I the mapping (λ,w) 7→ (a, x) is C 1.
I the solution has the Taylor expansion

(
a(λ,w)
x(λ,w)

)
=

(
a0
x0

)
+

(
I 0
0 diaga−1

0

)
(Γ∗x0 Γx0 )−1

[(
sign(a0)

0

)
λ− Γ∗x0w

]
+ o

(
λ
w

)
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14 / 32Numerical methods for the BLASSO

I Discretization of the domain + proximal algorithm [Donoho’92,. . . ]

I Greedy method [Bredies & Pikkarainen’13, Boyd et al.’15]

I Moment-Sum of Squares hierarchies (following [Lasserre’00])
I In [De Castro et al.’17, Josz et al. ’17]: a relaxation method taylored

for real-valued measures.
I We use a relaxation for complex-valued measures µ. Based on the

reformulation [Tang et al. ’13] in the 1D-case.



15 / 32Reformulation

min
µ∈M(Td )

λ |µ| (Td) +
1
2
‖y −FΩcµ‖

2



15 / 32Reformulation

min
z∈C(2fc+1)d

1
2
‖y − z‖2 + λ

(
min

µ∈M(Td )
|µ| (Td) s.t. (Fµ)k = zk ∀k ∈ Ωc

)
.

It is sufficient to study the problem

min
µ∈M(Td )

|µ| (Td) s.t. (Fµ)k = zk ∀k ∈ Ωc = J−fc , fcKd (Q0(z))



16 / 32Moment based relaxation (motivation)

Let ν = |µ| and consider its moment matrix M`[ν],

∀i , j ∈ J−`, `Kd , (M`[ν])i,j =

∫
Td

e−2iπ〈i, x〉e2iπ〈j, x〉dν(x)

Then,

I M`[ν] is positive semi-definite (M`[ν] � 0).

∀q ∈ C(2`+1)d, q∗M`[ν]q =

∫
Td

 ∑
‖i‖∞6`

qie
2iπ〈i, x〉

∗ ∑
‖j‖∞6`

qje
2iπ〈j, x〉

dν(x)

=

∫
Td

∣∣∣∣∣∣
∑
‖j‖∞6`

qje
2iπ〈j, x〉

∣∣∣∣∣∣
2

dν(x) > 0.

I M`[ν] is multi-level Toeplitz, a.k.a. Toeplitz-Block-Toeplitz (M`[ν] ∈ T`).
I τM`[ν]− z̃ z̃∗ � 0 where τ = ν(Td) = (M`[ν])(0,0) and z̃ = FJ−`,`Kdµ.
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∀q ∈ C(2`+1)d , q∗(zz∗)q =

∣∣∣∣∣∣
∫
Td

∑
‖j‖∞6`

qje
2iπ〈j, x〉dµ(x)

∣∣∣∣∣∣
2

6

∫
Td

∣∣∣∣∣∣
∑
‖j‖∞6`

qje
2iπ〈j, x〉

∣∣∣∣∣∣
2

d |µ| (x)

(∫
Td

12d |µ|
)

= (q∗M`[ν]q)× τ.
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Let ν = |µ| and consider its moment matrix M`[ν],

∀i , j ∈ J−`, `Kd , (M`[ν])i,j =

∫
Td

e−2iπ〈i, x〉e2iπ〈j, x〉dν(x)

Then,

I M`[ν] is positive semi-definite (M`[ν] � 0).
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I τM`[ν]− z̃ z̃∗ � 0 where τ = ν(Td) = (M`[ν])(0,0) and z̃ = FJ−`,`Kdµ.

In other words,
(
M`[ν] z̃
z̃∗ τ

)
� 0.



17 / 32Moment based relaxation

Given z ∈ C(2fc+1)d , consider the problem on measures

min
µ∈M(Td )

|µ| (Td) s.t. (Fµ)k = zk , ∀k ∈ Ωc = J−fc , fcKd

(Q0(z))

or the semi-definite program (` > fc)

min
R�0,

z̃∈C(2`+1)d

(
1

(2`+ 1)d
Tr(R) + τ

)
s.t.


∀k ∈ Ωc , z̃k = zk ,(

R z̃
z̃∗ τ

)
� 0,

R ∈ T`.
(Q(`)

0 (z))

Proposition (same as [Lasserre ’00])

minQ(`)
0 (z) 6 minQ(`+1)

0 (z) 6 minQ0(z)

and lim
`→+∞

(
minQ(`)

0 (z)
)

= (minQ0(z))



18 / 32Flatness criterion

We say that R is flat if rank
(

[R]J−`+1,`−1Kd

)
= rankR.

Proposition
If R is flat, then R has a representing measure: R = M`[ν] for some measure
ν > 0. Moreover card Supp(ν) = rank(R).

Note: Similar to [Curto & Fialkow’96], but the degree is

deg∞(i) = max(|i1| , . . . |id |)

instead of
deg1(i) = |i1|+ . . .+ |id | .

+ we rely on [Laurent & Mourrain’09] for flat extensions with general monomial
sets.
Remark: For d = 1, R already has a representing measure for ` = fc .



19 / 32Tightness of the relaxation

Let (R, z̃) be a solution to

min
R�0,

z̃∈C(2`+1)d

(
1

(2`+ 1)d
Tr(R) + τ

)
s.t.


∀k ∈ Ωc , z̃k = zk ,(

R z̃
z̃∗ τ

)
� 0,

R ∈ T`.
(Q(`)

0 (z))

Proposition
Assume that R is flat, and let ν > 0 s.t. R = M`[ν]. Then, there exists
µ ∈M(Td), such that

I card Supp(µ) = rank(R),
I z̃ = FJ−`,`Kdµ, and ν = |µ|.

I minQ(`)
0 (z) = minQ0(z) and µ is a solution to Q0(z).

Conversely, if µ is a solution to Q0(z) and minQ(`)
0 (z) = minQ0(z), then

(M`[|µ|],FJ−`,`Kdµ) is a solution to Q(`)
0 (z).
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21 / 32What we have seen so far

We want to solve the relaxation of the BLASSO:

min
R�0,

z̃∈C(2`+1)d

(
λ

(
1

(2`+ 1)d
Tr(R) + τ

)
+

1
2

∥∥∥y − z̃J−fc ,fcKd

∥∥∥2)

s.t.


(
R z̃
z̃∗ τ

)
� 0,

R ∈ T`.
(Q(`)

λ (y))

That SDP has a large size (m def.
= (2`+ 1)d + 1). But. . .

I R has low rank (sparsity of µλ, if the relaxation is tight)
I R has the (multi-level) Toeplitz property
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min
R�0,

z̃∈C(2`+1)d

(
λ

(
1

(2`+ 1)d
Tr(R) + τ

)
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1
2

∥∥∥y − z̃J−fc ,fcKd

∥∥∥2)

s.t.


(
R z̃
z̃∗ τ

)
� 0,

R ∈ T`.
(Q(`)

λ (y))

That SDP has a large size (m def.
= (2`+ 1)d + 1). But. . .

I R has low rank (sparsity of µλ, if the relaxation is tight)
I R has the (multi-level) Toeplitz property

We use
I a conditional gradient / Frank-Wolfe algorithm to exploit the low rank

property.
I the Fast Fourier Transform in the calculations involving the Toeplitz

matrix R.



22 / 32The Frank-Wolfe algorithm

Goal: Minimize a convex differentiable function f on a compact convex set
D ⊂ RP

Algorithm (Frank-Wolfe/Conditional gradient)

For all k ∈ N, iterate
1. Linear minimization:

sk ∈ argmins∈D f (xk) + 〈∇f (xk), s − xk〉
2. Line search: xk+1 ∈ argminx∈[xk ,sk ] f (x)

[W
ik
ip
ed
ia
/S

te
ph

an
ie

S
tu
tz
]

Remarks:
I If ∇f is Lipschitz, f (xk)−minD f = O

( 1
k

)
.

I At each step, xk ∈ conv(x0, s1, . . . , sk−1).
I In step 2, one may choose xk+1 ∈ D with f (xk+1) 6 minx∈[xk ,sk ] f (x)

I Minimization of a linear form: OK if we can handle the extreme points of
D.
/ What are the extreme point of T` ∩ {R � 0}?
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We truncate the PSD cone (w.l.o.g.), and we penalize the Toeplitz constraint

min
R�0,

z̃∈C(2`+1)d

(
λ

(
1

(2`+ 1)d
Tr(R) + τ

)
+

1
2

∥∥∥y − z̃J−fc ,fcKd

∥∥∥2 +
1
2ρ
‖R − PT`R‖

2
)

s.t.


(
R z̃
z̃∗ τ

)
� 0,

1
(2`+1)d

TrR + τ 6 C
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min
R�0,

z̃∈C(2`+1)d

(
λ

(
1

(2`+ 1)d
Tr(R) + τ

)
+

1
2

∥∥∥y − z̃J−fc ,fcKd

∥∥∥2 +
1
2ρ
‖R − PT`R‖

2
)

s.t.


(
R z̃
z̃∗ τ

)
� 0,

1
(2`+1)d

TrR + τ 6 C
⇐⇒ R̂

def.
=

(
R z̃
z̃∗ τ

)
∈ K

+ K is a truncated PSD cone. Its extreme points are 0 or of the form αuu∗

where u ∈ C(2`+1)d+1.

Consequence:
I If R̂0 = 0, at each iteration, R̂k is of the form

∑k−1
i=1 αiuiu

∗
i .

I Instead of storing R̂k , we store Uk ∈ Cm×k where R̂k = UkU
∗
k ,

m = ((2`+ 1)d + 1).



24 / 32Step 1: linear minimization

At each iteration k,

Find argmin
Ŝ∈K

Tr(MŜ) where M
def.
= ∇f (R̂k) ∈ Hn(C).

I A solution is given by Ŝk+1 = αvk+1v
∗
k+1, where vk+1 is obtained by

power iterations on M = ∇f (R̂k) (up to a diagonal rescaling)
I To compute Mv :

∇f (R̂k)v =
(
terms involving R̂kv

)
︸ ︷︷ ︸

use the factorization by Uk

+ (terms involving (PT`Rk)v)︸ ︷︷ ︸
use the Fast Fourier Transform (FFT)

I Complexity: O(k`d log `) (instead of O(`2d).
I Storage: we only need to store variables of size m × k (instead of m2).



25 / 32Step 2: Line-search and refinement

I Update Ũk+1
def.
= [αUk (1− α)vk+1] where α ∈ [0, 1] is chosen to

minimize f (Ũk+1Ũ
∗
k+1) (closed form expression).

I Non convex update (as in [Boyd et al.’15, Bredies & Pikkarainen’13])

Uk+1 = BFGS(U 7→ f (UU∗),Uk+1)

Remarks:
I Complexity of each BFGS inner step O(k2`d + k`d log `).
I The non convex step does not break the theoretical convergence of the

algorithm.
I It improves a lot the practical convergence of the algorithm: convergence

in r outer iterations where r is the number of Dirac masses of the
solution.



26 / 32Finite number of iterations
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over 200 trials)



27 / 32Epilogue

Once Uk (or R̂k) has converged, we need to recover the measure
µ =

∑r
i=1 αiδxi from its moments. We apply the procedure described

in [Lasserre’09] (see also [Harmouch et al.’17, Josz et al.’17]).
I Compute Ũk , the reduced column echelon form of Uk .
I From Ũk , build the “multiplication” matrices N1, . . . ,Nd (they commute).

I The eigenvalues of Nj are the e2iπ〈ej , x〉 for x ∈ Suppµ
(ej = (0, . . . , 1, 0, . . . , 0)).
→ recover each x ∈ Suppµ by jointly diagonalizing N1, . . . ,Nd .



28 / 32Impact of the Toeplitz penalization

lim
ρ→0+

1
2ρ
‖R − PT`R‖

2 = χT`(R)
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1D example (results averaged over ∼ 700 trials)



29 / 32Synthetic Data - Examples

Dirichlet, ‖w‖‖y0‖ = 10−4
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Gaussian - fc = 30, ‖w‖‖y0‖ = 10−4
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Subsampled Gaussian - fc = 30, ‖w‖‖y0‖ = 10−3, G = 64× 64



29 / 32Synthetic Data - Examples

Foveation - fc = 30, ‖w‖‖y0‖ = 10−3, G = 64× 64



30 / 32SMLM Data - Example

Observation = sampled convolution
(from the microscopy challenge http://bigwww.epfl.ch/palm)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Reconstructed

Ground Truth

Reconstruction error: ‖xrec − x0‖ / ‖x0‖ = 1.57× 10−2

http://bigwww.epfl.ch/palm


31 / 32SMLM Data - Performance

Jaccard index def.
=

True Positive
True Positive + False Positive + False Negative
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(c) Jaccard index wrt λ and ρ (up to
normalization factors). Each pixel is

obtained by averaging over 20
images.
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(d) Jaccard index (blue) and time
(red) wrt number of BFGS iterations.
Values are averaged over 20 images.
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I A SDP hierarchy to solve the BLASSO which yields large SDP
problems. . .

I A fast solver which exploits
I the low rank of the solutions
I the Toeplitz structure of moment matrices
I allows to solve the BLASSO in 2D for moderate fc .

I Ongoing/future work: apply this kind of methods to the recovery of
higher dimensional objects (curves. . . )

Thank you for your attention!

Paper:
A Low-rank Approach to Off-the-Grid Sparse Super-resolution
P. Catala, V. Duval, G. Peyré, SIIMS, 2019, Vol. 12, Issue 3.
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