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1. Introduction to the BLASSO



Inverse problems for imaging 4/

Measuring devices have a non sharp impulse response: our
observations are blurred of a "true ideal scene".

» Geophysics,
> Astronomy,
» Microscopy,

» Spectroscopy,

Image courtesy of S. Ladjal

Goal: Obtain as much detail as we can from given measurements.



The Deconvolution Problem 5 / 32

> Consider a signal jo defined on T¢ = (R/Z) (i.e. [0,1)? with periodic
boundary condition).

» Perturbation model:

= Yo+ w
0.5
Original Signal Low-pass filter Noise Observation

> Goal: recover po from the observation yo + w = ¢ * o + w (or simply
Yo = ¢ fio)
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> Consider a signal jo defined on T¢ = (R/Z) (i.e. [0,1)? with periodic
boundary condition).

» Perturbation model:

= Yo+ w
0.5
Original Signal Low-pass filter Noise Observation

> Goal: recover po from the observation yo + w = ¢ * o + w (or simply
Yo = ¢ fio)
> |ll-posed problem:

> the low pass filter might not be invertible (3, = 0 for some
frequency n)

> even though, the problem is ill-conditioned (|¢n| < |@o| for high
frequencies n)



The Deconvolution Problem 6/ 32
Assumption: the signal po is sparse.

In other words, we want to recover point sources (amplitudes and locations)

Widefield STORM
y /|l

> Spectral estimation,
> Seismic imaging,
> EEG,
>
>

Direction of Arrival,

[www.microscopyu.com]

Super-resolution microscopy

(PALM/STORM) o



The Deconvolution Problem 6/ 32

Assumption: the signal po is sparse.
Ho * %] —+ w =

ol” l 1t 05 YV[Vs fo 1t
Original Signal Low-pass filter Noise Observation
N ai € C,
o = Z aidx;,  where xi € T,
i=1 N € N is small.

so that we observe y + w = Z,N:1 aip(- — xi) + w.

Idea: Look for a sparse signal p such that ¢ * u = yo + w (or o).



Possible approaches 7/ 3

> DefineagridG={g : 0<i<G-—1}antry
to recover a signal of the form u = Z,G:BI aidg
using LASSO or Matching Pursuit. . .

> Well understood algorithms

> Large and ill-conditioned problems when
using thin grids

» Discretization artifacts, basis mismatch

> Use a fully continuous approach (Prony, MUSIC,
Beurling LASSO)

> Nice theoretical properties
> Numerical resolution not straightforward




Towards the continuous approach 8 /32

Define the total variation of the measure m € M(T¥) as:

|M| (Td) = sup {Re (/Td w*dm> ;¢ S %(Tda(c)v ||wHoo < 1}

Example :  » If = Y1_, aidy,, then [u](T?) = 37, |ai].
> If = fdL, then [u|(T?) = [, |F(t)|dt.

Rationale: the extreme points of {i € M(T9), |u| (T9) < 1} are the
Dirac masses: ady for x € T?, |a| = 1.



Continuous sparse recovery 0/ 3

Given a linear observation operator ® : M(T?) — CM, consider

> Basis Pursuit for measures [de Castro & Gamboa (12), Candés &
Fernandez-Granda (13)],

f T?) such that P
€Jl\r)l Td)IMI( ) such that & = yo (Po(yo0))

» LASSO for measures, or BLASSO [Recht et al. (12), Bredies &
Pikkarainen (13), Azais et al. (13)]

1
d 2
ej'\f/‘lde)MN\(T )+ 5 1o = (o +w) (Palyo + w))



Observation framework 10/ 32

For the rest of the talk, we assume that ® is a partial Fourier
operator

Su = Fq_p, where QC:{jENd : HjHoogfc},

(P [ e 0au(x),

» |deal Low-Pass Filter (convolution w/ Dirichlet kernel),
spectral estimation,

» Extensions to more general observation operators are possible.



|dentifiability for discrete measures 11/ 32

Minimum separation distance of s WS s
- i=1 VX

Alp) = min [lx—x|,

x,x" €Supp i,
x#x'

Theorem (Candés & Fernandez-Granda (2013))

There exists a constant Cq > 0 such that, for any (discrete) measure g
with A(po) > % Lo is the unique solution of

inf T h that &y = P
Meﬂ(w)lul( ) such that ®p = yo (Po(¥0))

where yo = Pug.

Remark: 1 < C <1.26 ford = 1.



Robustness 12 / 32

Question: if w is small and A > 0 is small, can we recover a solution p & uo
where yo = ®po?

1
inf  Alp|(TY) + = ||[du — 2
et o [1I(T%) + 5 1®p = (vo + w)| (Pa(yo + w))

1= Yes, provided pg is the unique solution to

inf  |u|(T9) such that ®p = yo (Po(y0))
peEM(T?)

(+ technical conditions)

> Weak-* convergence results [Bredies & Pikkarainen (13)],
> Estimation on the local averages of u [Azais et al. (13), Fernandez-Granda

(13)].
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Robustness

« M _x
mg =37 3o,i5x;”,

IT i
i

Consider an input measure
r
Ho = Zi:l aoai(sxo,f

Theorem (D.-Peyré'15)

Assume that o is “non-degenerate”.
Then there exists, o > 0, Ao > 0 such that for 0 < A < A and ||w|| < @),
> the solution ju(x,w) to Px(y + w) is unique and has exactly r spikes,
K w) = Z;:I ai(A, W)‘sxi(NW)’
> the mapping (\, w) — (a,x) is €.
> the solution has the Taylor expansion

(B) = () # (o i) it [(45°) 2 —riow] 2 ()
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2. SDP hierarchies for solving the BLASSO



Numerical methods for the BLASSO 14/ 32

> Discretization of the domain + proximal algorithm [Donoho'92,.. ]
> Greedy method [Bredies & Pikkarainen'13, Boyd et al.’15]

» Moment-Sum of Squares hierarchies (following [Lasserre'00])

> In [De Castro et al.'17, Josz et al. '17]: a relaxation method taylored

for real-valued measures.
> We use a relaxation for complex-valued measures pi. Based on the

reformulation [Tang et al. '13] in the 1D-case.



Reformulation 15 / 32

min >\ T + = F
LN |l (T%) ||y ool



Reformulation 15 / 32

. 1 > .
min  Z|ly—2z —|—)\( min TY) st. (F = Vk € Q )
min g ly 2P (| min (1) st (Fae=z :

It is sufficient to study the problem

Lmin ul(T) st (Fuo=z VkeQ=[ A (o(a)



Moment based relaxation (motivation) 16 / 32
Let v = |u| and consider its moment matrix M,[v],
Vl,J c [[—é7 Z]]d, (MZ[V])I',J' _ / e—217r(i,x) e2i71'<jix>dy(x)
Td

Then,

> M[v] is positive semi-definite (M,[v] > 0).
d * i (i, x i (j, x
Vg € CCY g*My[v]q = / ( Z q, el ) ( Z CIj62 b, >)dz/(x)

<.

Z qj e217r(J x)

i1l oo

dv(x) > 0.




Moment based relaxation (motivation) 16 / 32

Let v = |u| and consider its moment matrix M,[v],

Vi, j € [—¢, Z]]d, (Me[v])ij = / e 2 (ihx) eziwo’x>dy(x)
Td
Then,
> M[v] is positive semi-definite (M,[v] > 0).
> M[v] is multi-level Toeplitz, a.k.a. Toeplitz-Block-Toeplitz (M,[v] € T¢).
(ME[V])i+k,j+k _ / ef2i7r<i+k,x) eZiﬁ(jJrk,x)dy(X)
Td

_ / e72i7'r<f,x> eZi7r(j,x>dV(X) _ (MZ[V])i,j
Td

for all 7, j, k such that ||i|| , < £, |ljllo, <& |li+kllo <L [lj+ k| <2



Moment based relaxation (motivation) 16 / 32

Let v = |u| and consider its moment matrix M,[v],
Vl,J c [[—é7 Z]]d, (MZ[V])I',J' _ / e—2i7r<i,x) e2iw01X>dV(X)
Td

Then,

> M[v] is positive semi-definite (M,[v] > 0).
> M[v] is multi-level Toeplitz, a.k.a. Toeplitz-Block-Toeplitz (M,[v] € T¢).
> TM[v] — 22° = 0 where 7 = v(T?) = (Me[V])(0,0) and Z = Fy_; gaps-

2

Vq € ceer’ , q°(zz")g =

/, 3
< (/ 3 s dlul(><)) (/[ ain)
[l

= (¢"Miv]q) x 7.




Moment based relaxation (motivation) 16 / 32

Let v = |u| and consider its moment matrix M,[v],
Vl,J c [[—é7 Z]]d, (MZ[V])I',J' _ / e—217r(i,x) e2i77<,jix>dy(x)
Td
Then,
> M[v] is positive semi-definite (M,[v] > 0).
> M[v] is multi-level Toeplitz, a.k.a. Toeplitz-Block-Toeplitz (M,[v] € T¢).
> TM[v] — 22° = 0 where 7 = v(T?) = (Me[V])(0,0) and Z = Fy_; gaps-

In other words, (Mﬂy] Z) > 0.
z T



Moment based relaxation 17/ 32

)d

Given z € C®%*D" consider the problem on measures

min |u|(T9) st (Fu)k =z, Yk € Qc = [f, £]?

peEM(T?)
(Qo(2))
or the semi-definite program (¢ > f.)
Vk € Q., Zv =z,
. 1 R Z
. >

R0, <(2€ T TR T) st <2* 7) =0,

sec(@e+1)? R €T;
(95(2))

Proposition (same as [Lasserre '00])

min ng)(z) < min Qg“l)(z) < min Qo(2)

and lﬂToo (min QE,Z)(Z)) = (min Qo(2))




Flatness criterion 18 / 32

We say that R is flat if rank ([R]H7£+1,e71]]d) =rank R.

Proposition

If R is flat, then R has a representing measure: R = M[v] for some measure
v > 0. Moreover card Supp(v) = rank(R).

Note: Similar to [Curto & Fialkow'96], but the degree is
deg.. (1) = max(li] ... |ia)
instead of
degl(i) = |I1| +...+ |Id| .

1= we rely on [Laurent & Mourrain'09] for flat extensions with general monomial

sets.
Remark: For d =1, R already has a representing measure for £ = f..



Tightness of the relaxation 19/ 32

Let (R, Z) be a solution to

Vk € Qc, 2k = zk,

1 R Z
RH) (7(2“_1) Tr(R)+T) s.t. (2* T) >0,
Zec(zeﬂ) R 672
(2Y(2))

Assume that R is flat, and let v > 0 s.t. R = My[v]. Then, there exists
w € M(T?), such that

» card Supp(u) = rank(R),
> Z=F_g et and v = |p|.

> min Qge)(z) = min Qo(z) and u is a solution to Qo(z).

Conversely, if u is a solution to Qo(z) and min fo)(z) = min Qo(z), then
(Me[|ul], Fy_g e n) is a solution to QF(2).
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3. Algorithm and numerical experiments



What we have seen so far

We want to solve the relaxation of the BLASSO:

. 1 1 =
R~0, (A (W Tr(R) + T) ol e
d

sec(26+1)
(5 2)=o
s.t. z T) —
ReTs.

That SDP has a large size (m et (2¢+1)? +1). But...
> R has low rank (sparsity of w», if the relaxation is tight)
> R has the (multi-level) Toeplitz property

)

V()



What we have seen so far 21/ 32
)
V4

R s
~%k t 07
s.t. <z T> QY ()
ReT,.

We want to solve the relaxation of the BLASSO:

. 1 1 =
R0, (A (W Tr(R)+ T) 5l -
d

sec(26+1)

That SDP has a large size (m et (2¢+1)? +1). But...
> R has low rank (sparsity of w», if the relaxation is tight)
> R has the (multi-level) Toeplitz property

We use

> a conditional gradient / Frank-Wolfe algorithm to exploit the low rank
property.

> the Fast Fourier Transform in the calculations involving the Toeplitz
matrix R.



The Frank-Wolfe algorithm 2 /3%

Goal: Minimize a convex differentiable function f on a compact convex set
D CRF

Algorithm (Frank-Wolfe/Conditional gradient)

N
8
>

=1

(%]

For all k € N, iterate

1. Linear minimization: f;
sk € argmingcp f(xk) + (VF(xk), s — xx) &
2. Line search: xc41 € argmin, o, o f(x) §
g
Remarks:
> If Vf is Lipschitz, f(x) — minp f = O (}).
> At each step, xx € conv(xo, 51, ..., 5—1).

> In step 2, one may choose xx11 € D with f(xk11) < mingepe, 5] F(X)

> Minimization of a linear form: OK if we can handle the extreme points of
D.
® What are the extreme point of 7, N {R > 0}7
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We truncate the PSD cone (w.l.o.g.), and we penalize the Toeplitz constraint

. 1 1 . 2
pr (M ) 3l - ae

2ec<ze+1)d
R z
(5 7)o
s.t. z T

(2e+1 s TrR+7<C

1 2
2 IR~ PrR
+a5IR = PrRIE)
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We truncate the PSD cone (w.l.o.g.), and we penalize the Toeplitz constraint

. 1 1 . 2 1 )
pin (M@ 70 7) + 3 b | 1R - P
seclzern?
R Z
Z* = 07 A def. 4
s.t. (Z 7') - = Rd:f <ZE i) c K
(2“1 s TrR+7<C

= K is a truncated PSD cone. Its extreme points are 0 or of the form auu™
(C(z“l)d“

where u €
Consequence:
> If Ry = 0, at each iteration, R is of the form St auug

> Instead of storing Ry, we store Uy € C™** where R, = U U;,
m=((2¢+ 1) +1).



Step 1: linear minimization 2/ 32

At each iteration k,

Find argmin Tr(MS) where M % VF(Ry) € Ha(C).
Sek

v

A solution is given by §k+1 = QVk41Vjiy1, Where vy is obtained by
power iterations on M = Vf(Ry) (up to a diagonal rescaling)

v

To compute Mv:

VF(Re)v = (terms involving Rx v) + (terms involving (P, Ri)v)

use the factorization by Uy Yse the Fast Fourier Transform (FFT)

v

Complexity: O(k¢? log £) (instead of O(¢37).

Storage: we only need to store variables of size m x k (instead of m?).

v



Step 2: Line-search and refinement 25 /3

> Update Uk+1 = [aUk (1 — @)vk41] where « € [0,1] is chosen to
minimize f(Uk1U;1) (closed form expression).

> Non convex update (as in [Boyd et al.'15, Bredies & Pikkarainen'13])
U1 = BFGS(U — f(UU"), Uks1)

Remarks:
> Complexity of each BFGS inner step O(k?¢9 + k9 log £).

> The non convex step does not break the theoretical convergence of the
algorithm.

> |t improves a lot the practical convergence of the algorithm: convergence
in r outer iterations where r is the number of Dirac masses of the
solution.



Finite number of iterations 2 / 32

Number of iterations

O 1 1 I
0 5 10 15

Sparsity

Number of outer iterations w.r.t. sparsity of solution (averaged
over 200 trials)



Epi|ogue 27 / 32

Once Uy (or Ry) has converged, we need to recover the measure
=, ajdy from its moments. We apply the procedure described
in [Lasserre’09] (see also [Harmouch et al.’17, Josz et al.’17]).

» Compute Uy, the reduced column echelon form of U.

> From Uy, build the “multiplication” matrices N, ..., Ng (they commute).

> The eigenvalues of Nj; are the 2™ %) for x € Supp
(¢ =(0,...,1,0,...,0)).
— recover each x € Supp u by jointly diagonalizing N, ..., Ng.



Impact of the Toeplitz penalization 2 / 32

1 2
lim 5 IR ~ PRI = xr,(R)

7 x104
10°
=6
J10%k o
< k)
[} f-
E10 24
5 £
= 23
.06 T
w10 A >= 1A %2
min c '_
LA <1
108 min c 1 \ \ \ \ \ ,
10 102 10" 1 10! 102 10%® 10° 102 10" 1 10" 102 108
P p
(a) Error w.r.t. MOSEK solution (b) Total number of fft wrt p

1D example (results averaged over ~ 700 trials)



Synthetic Data - Examples 20/ 3

0.6 Error = 2.420e-03

05
0.4 ®
03
0.2

0.1

03 04 05 06 07 0.8
Dirichlet, ﬁ%‘ﬁ =10"*



Synthetic Data - Examples 20/ 3

0.6 Error = 1.250e-02

05
0.4 o
03
0.2

0.1

03 04 05 06 07 08
Gaussian - f. = 30, 1wl — 104

el T



Synthetic Data - Examples 20/ 3

0.6 Error = 9.128e-03

05
0.4 °
03
0.2

0.1

03 04 05 06 07 08
Subsampled Gaussian - f. = 30 vl — 1073, G = 64 x 64

"ol T



Synthetic Data - Examples 20/ 3

0.6 Error = 1.809e-02

05
0.4 o
03
0.2

0.1

03 04 05 06 07 08
Foveation - f. = 30, ﬁjﬂ 1073, G =64 x 64

yoll ™



SMLM Data - Example 30/ %

Observation = sampled convolution
(from the microscopy challenge http://bigwww.epfl.ch/palm)

*<Reconstructed
1©Ground Truth

0.8

19

0.6 O’O ® ®

0.4+ 0

0.2+ Q

O L L L L
0 0.2 0.4 0.6 0.8 1

Reconstruction error: ||xrec — Xo|| / ||xo]| = 1.57 x 1072


http://bigwww.epfl.ch/palm

SMLM Data - Performance

def.

31/ 32

True Positive

Jaccard index = =
True Positive

1
0.9
0.8
1e2 07
0.6
Uled 0.5
0.4
0.3

1e6
0.2
0.1

1e8 0
1e-6 1e-5 1e-4 1e-3 le-2 1e-1

A
(c) Jaccard index wrt A and p (up to
normalization factors). Each pixel is
obtained by averaging over 20
images.

+ False Positive + False Negative

Jaccard index
Time (s)

60

40

20

0
0 100 200 300 400 500
Maximum number of BFGS iterations

(d) Jaccard index (blue) and time
(red) wrt number of BFGS iterations.
Values are averaged over 20 images.



COﬂClUSiOﬂ 32 /32

> A SDP hierarchy to solve the BLASSO which yields large SDP
problems. . .

> A fast solver which exploits

» the low rank of the solutions
» the Toeplitz structure of moment matrices
» allows to solve the BLASSO in 2D for moderate f..

> Ongoing/future work: apply this kind of methods to the recovery of
higher dimensional objects (curves. ..)

Thank you for your attention!

Paper:
A Low-rank Approach to Off-the-Grid Sparse Super-resolution
P. Catala, V. Duval, G. Peyré, SIIMS, 2019, Vol. 12, Issue 3.



Thank you for your attention!
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