Exploiting the low rank property in off-the-grid sparse super-resolution

Paul Catala Vincent Duval Gabriel Peyré ENS INRIA Paris CNRS/ ENS
(MOKAPLAN)

CIMI Workshop
November 7th, 2019

Outline

1. Introduction to the BLASSO
2. SDP hierarchies for solving the BLASSO
3. Algorithm and numerical experiments

Summary

1. Introduction to the BLASSO

2. SDP hierarchies for solving the BLASSO

3. Algorithm and numerical experiments

Measuring devices have a non sharp impulse response: our observations are blurred of a "true ideal scene".

- Geophysics,
- Astronomy,
- Microscopy,
- Spectroscopy,
> ...

Image courtesy of S. Ladjal
Goal: Obtain as much detail as we can from given measurements.

The Deconvolution Problem

- Consider a signal μ_{0} defined on $\mathbb{T}^{d}=(\mathbb{R} / \mathbb{Z})^{d}$ (i.e. $[0,1)^{d}$ with periodic boundary condition).
- Perturbation model:

- Goal: recover μ_{0} from the observation $y_{0}+w=\varphi * \mu_{0}+w$ (or simply $y_{0}=\varphi * \mu_{0}$)

The Deconvolution Problem

- Consider a signal μ_{0} defined on $\mathbb{T}^{d}=(\mathbb{R} / \mathbb{Z})^{d}$ (i.e. $[0,1)^{d}$ with periodic boundary condition).
- Perturbation model:

- Goal: recover μ_{0} from the observation $y_{0}+w=\varphi * \mu_{0}+w$ (or simply $y_{0}=\varphi * \mu_{0}$)
- III-posed problem:
- the low pass filter might not be invertible ($\hat{\varphi}_{n}=0$ for some frequency n)
- even though, the problem is ill-conditioned $\left(\left|\hat{\varphi}_{n}\right| \ll\left|\hat{\varphi}_{0}\right|\right.$ for high frequencies n)

The Deconvolution Problem

Assumption: the signal μ_{0} is sparse.

In other words, we want to recover point sources (amplitudes and locations)

- Spectral estimation,
- Seismic imaging,
- EEG,
- Direction of Arrival,
- Super-resolution microscopy (PALM/STORM)

Widefield STORM

The Deconvolution Problem

Assumption: the signal μ_{0} is sparse.

$$
\mu_{0}=\sum_{i=1}^{N} a_{i} \delta_{x_{i}}, \quad \text { where }\left\{\begin{array}{l}
a_{i} \in \mathbb{C} \\
x_{i} \in \mathbb{T}, \\
N \in \mathbb{N} \text { is small. }
\end{array}\right.
$$

so that we observe $y+w=\sum_{i=1}^{N} a_{i} \varphi\left(\cdot-x_{i}\right)+w$.
Idea: Look for a sparse signal μ such that $\varphi * \mu \approx y_{0}+w\left(\right.$ or $\left.y_{0}\right)$.

Possible approaches

- Define a grid $\mathcal{G}=\left\{g_{i}: 0 \leqslant i \leqslant G-1\right\}$ an try to recover a signal of the form $\mu=\sum_{i=0}^{G-1} a_{i} \delta_{g_{i}}$ using LASSO or Matching Pursuit. . .
- Well understood algorithms

- Large and ill-conditioned problems when using thin grids
- Discretization artifacts, basis mismatch
- Use a fully continuous approach (Prony, MUSIC, Beurling LASSO)

- Nice theoretical properties
- Numerical resolution not straightforward

Towards the continuous approach

Define the total variation of the measure $m \in \mathcal{M}\left(\mathbb{T}^{d}\right)$ as:

$$
|\mu|\left(\mathbb{T}^{d}\right)=\sup \left\{\mathcal{R e}\left(\int_{\mathbb{T}^{d}} \psi^{*} d m\right) ; \psi \in \mathscr{C}\left(\mathbb{T}^{d}, \mathbb{C}\right),\|\psi\|_{\infty} \leqslant 1\right\}
$$

Example: \quad If $\mu=\sum_{i=1}^{r} a_{i} \delta_{x_{i}}$, then $|\mu|\left(\mathbb{T}^{d}\right)=\sum_{i=1}^{M}\left|a_{i}\right|$.

- If $\mu=f d \mathcal{L}$, then $|\mu|\left(\mathbb{T}^{d}\right)=\int_{\mathbb{T}^{d}}|f(t)| \mathrm{d} t$.

Rationale: the extreme points of $\left\{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right),|\mu|\left(\mathbb{T}^{d}\right) \leqslant 1\right\}$ are the Dirac masses: $\alpha \delta_{x}$ for $x \in \mathbb{T}^{d},|\alpha|=1$.

Continuous sparse recovery

Given a linear observation operator $\Phi: \mathcal{M}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{C}^{M}$, consider

- Basis Pursuit for measures [de Castro \& Gamboa (12), Candès \& Fernandez-Granda (13)],

$$
\inf _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)}|\mu|\left(\mathbb{T}^{d}\right) \text { such that } \Phi \mu=y_{0} \quad\left(\mathcal{P}_{0}\left(y_{0}\right)\right)
$$

- LASSO for measures, or BLASSO [Recht et al. (12), Bredies \& Pikkarainen (13), Azais et al. (13)]

$$
\inf _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)} \lambda|\mu|\left(\mathbb{T}^{d}\right)+\frac{1}{2}\left\|\Phi \mu-\left(y_{0}+w\right)\right\|^{2} \quad\left(\mathcal{P}_{\lambda}\left(y_{0}+w\right)\right)
$$

Observation framework

For the rest of the talk, we assume that Φ is a partial Fourier operator

$$
\begin{gathered}
\Phi \mu=\mathcal{F}_{\Omega_{c}} \mu, \quad \text { where } \quad \Omega_{c}=\left\{j \in \mathbb{N}^{d}:\|j\|_{\infty} \leqslant f_{c}\right\}, \\
\left(\mathcal{F}_{\Omega_{c}} \mu\right)_{j} \stackrel{\text { def. }}{=} \int_{\mathbb{T}^{d}} e^{-2 i \pi\langle j, x\rangle} \mathrm{d} \mu(x) .
\end{gathered}
$$

- Ideal Low-Pass Filter (convolution w/ Dirichlet kernel), spectral estimation,
- Extensions to more general observation operators are possible.

Identifiability for discrete measures

Minimum separation distance of μ :

$$
\Delta(\mu)=\min _{\substack{x, x^{\prime} \in \operatorname{Supp} \mu, x \neq x^{\prime}}}\left\|x-x^{\prime}\right\|_{\infty}
$$

Theorem (Candès \& Fernandez-Granda (2013))

There exists a constant $C_{d}>0$ such that, for any (discrete) measure μ_{0} with $\Delta\left(\mu_{0}\right) \geqslant \frac{C_{d}}{f_{c}}, \mu_{0}$ is the unique solution of

$$
\begin{equation*}
\inf _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)}|\mu|\left(\mathbb{T}^{d}\right) \text { such that } \Phi \mu=y_{0} \tag{0}
\end{equation*}
$$

where $y_{0}=\Phi \mu_{0}$.
Remark: $1 \leqslant C \leqslant 1.26$ for $d=1$.

Question: if w is small and $\lambda>0$ is small, can we recover a solution $\mu \approx \mu_{0}$ where $y_{0}=\Phi \mu_{0}$?

$$
\inf _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)} \lambda|\mu|\left(\mathbb{T}^{d}\right)+\frac{1}{2}\left\|\Phi \mu-\left(y_{0}+w\right)\right\|^{2} \quad\left(\mathcal{P}_{\lambda}\left(y_{0}+w\right)\right)
$$

Yes, provided μ_{0} is the unique solution to

$$
\begin{equation*}
\inf _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)}|\mu|\left(\mathbb{T}^{d}\right) \text { such that } \Phi \mu=y_{0} \tag{0}
\end{equation*}
$$

(+ technical conditions)

- Weak-* convergence results [Bredies \& Pikkarainen (13)],
- Estimation on the local averages of μ [Azais et al. (13), Fernandez-Granda (13)].

Consider an input measure $\mu_{0}=\sum_{i=1}^{r} a_{0, i} \delta_{x_{0}, i}$

Theorem (D.-Peyré'15)

Assume that μ_{0} is "non-degenerate".
Then there exists, $\alpha>0, \lambda_{0}>0$ such that for $0 \leqslant \lambda \leqslant \lambda_{0}$ and $\|w\| \leqslant \alpha \lambda$,

- the solution $\mu_{(\lambda, w)}$ to $\mathcal{P}_{\lambda}(y+w)$ is unique and has exactly r spikes, $\mu_{(\lambda, w)}=\sum_{i=1}^{r} a_{i}(\lambda, w) \delta_{x_{i}(\lambda, w)}$,
- the mapping $(\lambda, w) \mapsto(a, x)$ is \mathscr{C}^{1}.
- the solution has the Taylor expansion

$$
\binom{a(\lambda, w)}{x(\lambda, w)}=\binom{a_{0}}{x_{0}}+\left(\begin{array}{cc}
1 & 0 \\
0 & \text { diaga } a_{0}^{-1}
\end{array}\right)\left(\Gamma_{x_{0}}^{*} \Gamma_{x_{0}}\right)^{-1}\left[\binom{\operatorname{sign}\left(a_{0}\right)}{0} \lambda-\Gamma_{x_{0}}^{*} w\right]+o\binom{\lambda}{w}
$$

1. Introduction to the BLASSO

2. SDP hierarchies for solving the BLASSO

3. Algorithm and numerical experiments

- Discretization of the domain + proximal algorithm [Donoho'92,...]
- Greedy method [Bredies \& Pikkarainen'13, Boyd et al.'15]
- Moment-Sum of Squares hierarchies (following [Lasserre'00])
- In [De Castro et al.'17, Josz et al. '17]: a relaxation method taylored for real-valued measures.
- We use a relaxation for complex-valued measures μ. Based on the reformulation [Tang et al. '13] in the 1D-case.

Reformulation

$$
\min _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)} \lambda|\mu|\left(\mathbb{T}^{d}\right)+\frac{1}{2}\left\|y-\mathcal{F}_{\Omega_{c}} \mu\right\|^{2}
$$

$$
\min _{z \in \mathbb{C}^{\left(2 f_{c}+1\right)^{d}}} \frac{1}{2}\|y-z\|^{2}+\lambda\left(\min _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)}|\mu|\left(\mathbb{T}^{d}\right) \quad \text { s.t. } \quad(\mathcal{F} \mu)_{k}=z_{k} \quad \forall k \in \Omega_{c}\right)
$$

It is sufficient to study the problem

$$
\min _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)}|\mu|\left(\mathbb{T}^{d}\right) \quad \text { s.t. } \quad(\mathcal{F} \mu)_{k}=z_{k} \quad \forall k \in \Omega_{c}=\llbracket-f_{c}, f_{c} \rrbracket^{d} \quad\left(\mathcal{Q}_{0}(z)\right)
$$

Let $\nu=|\mu|$ and consider its moment matrix $\mathbb{M}_{\ell}[\nu]$,

$$
\forall i, j \in \llbracket-\ell, \ell \rrbracket^{d}, \quad\left(\mathbb{M}_{\ell}[\nu]\right)_{i, j}=\int_{\mathbb{T}^{d}} e^{-2 \mathrm{i} \pi\langle i, x\rangle} e^{2 \mathrm{i} \pi\langle j, x\rangle} \mathrm{d} \nu(x)
$$

Then,

- $\mathbb{M}_{\ell}[\nu]$ is positive semi-definite $\left(\mathbb{M}_{\ell}[\nu] \succeq 0\right)$.

$$
\begin{aligned}
\forall q \in \mathbb{C}^{(2 \ell+1)^{d}}, \quad q^{*} \mathbb{M}_{\ell}[\nu] q & =\int_{\mathbb{T}^{d}}\left(\sum_{\|i\|_{\infty} \leqslant \ell} q_{i} e^{2 \mathrm{i} \pi\langle i, x\rangle}\right)^{*}\left(\sum_{\|j\|_{\infty} \leqslant \ell} q_{j} e^{2 \mathrm{i} \pi\langle j, x\rangle}\right) \mathrm{d} \nu(x) \\
& =\int_{\mathbb{T}^{d}}\left|\sum_{\|j\|_{\infty} \leqslant \ell} q_{j} e^{2 \mathrm{i} \pi\langle j, x\rangle}\right|^{2} \mathrm{~d} \nu(x) \geqslant 0 .
\end{aligned}
$$

Moment based relaxation (motivation)

Let $\nu=|\mu|$ and consider its moment matrix $\mathbb{M}_{\ell}[\nu]$,

$$
\forall i, j \in \llbracket-\ell, \ell \rrbracket^{d}, \quad\left(\mathbb{M}_{\ell}[\nu]\right)_{i, j}=\int_{\mathbb{T}^{d}} e^{-2 \mathrm{i} \pi\langle i, x\rangle} e^{2 \mathrm{i} \pi\langle j, x\rangle} \mathrm{d} \nu(x)
$$

Then,

- $\mathbb{M}_{\ell}[\nu]$ is positive semi-definite $\left(\mathbb{M}_{\ell}[\nu] \succeq 0\right)$.
- $\mathbb{M}_{\ell}[\nu]$ is multi-level Toeplitz, a.k.a. Toeplitz-Block-Toeplitz $\left(\mathbb{M}_{\ell}[\nu] \in \mathcal{T}_{\ell}\right)$.

$$
\begin{aligned}
\left(\mathbb{M}_{\ell}[\nu]\right)_{i+k, j+k} & =\int_{\mathbb{T}^{d}} e^{-2 \mathrm{i} \pi\langle i+k, x\rangle} e^{2 \mathrm{i} \pi\langle j+k, x\rangle} \mathrm{d} \nu(x) \\
& =\int_{\mathbb{T}^{d}} e^{-2 \mathrm{i} \pi\langle i, x\rangle} e^{2 \mathrm{i} \pi\langle j, x\rangle} \mathrm{d} \nu(x)=\left(\mathbb{M}_{\ell}[\nu]\right)_{i, j}
\end{aligned}
$$

for all i, j, k such that $\|i\|_{\infty} \leqslant \ell,\|j\|_{\infty} \leqslant \ell,\|i+k\|_{\infty} \leqslant \ell,\|j+k\|_{\infty} \leqslant \ell$.

Moment based relaxation (motivation)

Let $\nu=|\mu|$ and consider its moment matrix $\mathbb{M}_{\ell}[\nu]$,

$$
\forall i, j \in \llbracket-\ell, \ell \rrbracket^{d}, \quad\left(\mathbb{M}_{\ell}[\nu]\right)_{i, j}=\int_{\mathbb{T}^{d}} e^{-2 \mathrm{i} \pi\langle i, x\rangle} e^{2 \mathrm{i} \pi\langle j, x\rangle} \mathrm{d} \nu(x)
$$

Then,

- $\mathbb{M}_{\ell}[\nu]$ is positive semi-definite $\left(\mathbb{M}_{\ell}[\nu] \succeq 0\right)$.
- $\mathbb{M}_{\ell}[\nu]$ is multi-level Toeplitz, a.k.a. Toeplitz-Block-Toeplitz $\left(\mathbb{M}_{\ell}[\nu] \in \mathcal{T}_{\ell}\right)$.
$\triangleright \tau \mathbb{M}_{\ell}[\nu]-\tilde{z} \tilde{z}^{*} \succeq 0$ where $\tau=\nu\left(\mathbb{T}^{d}\right)=\left(\mathbb{M}_{\ell}[\nu]\right)_{(0,0)}$ and $\tilde{z}=\mathcal{F}_{\llbracket-\ell, \ell \rrbracket^{d}} \mu$.

$$
\begin{aligned}
\forall q \in \mathbb{C}^{(2 \ell+1)^{d}}, \quad q^{*}\left(z z^{*}\right) q & =\left|\int_{\mathbb{T}^{d}} \sum_{\|j\|_{\infty} \leqslant \ell} q_{j} e^{2 \mathrm{i} \pi\langle j, x\rangle} \mathrm{d} \mu(x)\right|^{2} \\
& \leqslant\left(\left.\left.\int_{\mathbb{T}^{d}}\right|_{\|j\|_{\infty} \leqslant \ell} q_{j} e^{2 \mathrm{i} \pi\langle j, x\rangle}\right|^{2} \mathrm{~d}|\mu|(x)\right)\left(\int_{\mathbb{T}^{d}} 1^{2} \mathrm{~d}|\mu|\right) \\
& =\left(q^{*} \mathbb{M}_{\ell}[\nu] q\right) \times \tau .
\end{aligned}
$$

Moment based relaxation (motivation)

Let $\nu=|\mu|$ and consider its moment matrix $\mathbb{M}_{\ell}[\nu]$,

$$
\forall i, j \in \llbracket-\ell, \ell \rrbracket^{d}, \quad\left(\mathbb{M}_{\ell}[\nu]\right)_{i, j}=\int_{\mathbb{T}^{d}} e^{-2 \mathrm{i} \pi\langle i, x\rangle} e^{2 \mathrm{i} \pi\langle j, x\rangle} \mathrm{d} \nu(x)
$$

Then,

- $\mathbb{M}_{\ell}[\nu]$ is positive semi-definite $\left(\mathbb{M}_{\ell}[\nu] \succeq 0\right)$.
- $\mathbb{M}_{\ell}[\nu]$ is multi-level Toeplitz, a.k.a. Toeplitz-Block-Toeplitz $\left(\mathbb{M}_{\ell}[\nu] \in \mathcal{T}_{\ell}\right)$.
$\triangleright \tau \mathbb{M}_{\ell}[\nu]-\tilde{z} \tilde{z}^{*} \succeq 0$ where $\tau=\nu\left(\mathbb{T}^{d}\right)=\left(\mathbb{M}_{\ell}[\nu]\right)_{(0,0)}$ and $\tilde{z}=\mathcal{F}_{\llbracket-\ell, \ell \rrbracket^{d}} \mu$.

$$
\text { In other words, } \quad\left(\begin{array}{cc}
\mathbb{M}_{\ell}[\nu] & \tilde{z} \\
\tilde{z}^{*} & \tau
\end{array}\right) \succeq 0
$$

Moment based relaxation

Given $z \in \mathbb{C}^{\left(2 f_{c}+1\right)^{d}}$, consider the problem on measures

$$
\min _{\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)}|\mu|\left(\mathbb{T}^{d}\right) \quad \text { s.t. } \quad(\mathcal{F} \mu)_{k}=z_{k}, \forall k \in \Omega_{c}=\llbracket-f_{c}, f_{c} \rrbracket^{d}
$$

or the semi-definite program $\left(\ell \geqslant f_{c}\right)$

Proposition (same as [Lasserre '00])

$$
\left.\begin{array}{rl}
\min \mathcal{Q}_{0}^{(\ell)}(z) & \leqslant \min \mathcal{Q}_{0}^{(\ell+1)}(z)
\end{array}\right) \leqslant \min \mathcal{Q}_{0}(z) ~\left\{\begin{array}{l}
\text { and } \lim _{\ell \rightarrow+\infty}\left(\min \mathcal{Q}_{0}^{(\ell)}(z)\right)=\left(\min \mathcal{Q}_{0}(z)\right)
\end{array}\right.
$$

Flatness criterion

We say that R is flat if $\operatorname{rank}\left([R]_{\llbracket-\ell+1, \ell-1 \rrbracket^{d}}\right)=\operatorname{rank} R$.

Proposition

If R is flat, then R has a representing measure: $R=\mathbb{M}_{\ell}[\nu]$ for some measure $\nu \geqslant 0$. Moreover card $\operatorname{Supp}(\nu)=\operatorname{rank}(R)$.

Note: Similar to [Curto \& Fialkow'96], but the degree is

$$
\operatorname{deg}_{\infty}(i)=\max \left(\left|i_{1}\right|, \ldots\left|i_{d}\right|\right)
$$

instead of

$$
\operatorname{deg}_{1}(i)=\left|i_{1}\right|+\ldots+\left|i_{d}\right| .
$$

we rely on [Laurent \& Mourrain'09] for flat extensions with general monomial sets.
Remark: For $d=1, R$ already has a representing measure for $\ell=f_{c}$.

Tightness of the relaxation

Let (R, \tilde{z}) be a solution to

$$
\min _{\substack{R \succeq 0, \tilde{z} \in \mathbb{C}^{(2 \ell+1)^{d}}}}\left(\frac{1}{(2 \ell+1)^{d}} \operatorname{Tr}(R)+\tau\right) \quad \text { s.t. } \quad\left\{\begin{aligned}
& \forall k \in \Omega_{c}, \tilde{z}_{k} \\
&=z_{k} \\
&\left(\begin{array}{cc}
R & \tilde{z} \\
\tilde{z}^{*} & \tau
\end{array}\right) \succeq 0 \\
& R \\
& \in \mathcal{T}_{\ell} \\
&\left(\mathcal{Q}_{0}^{(\ell)}(z)\right)
\end{aligned}\right.
$$

Proposition

Assume that R is flat, and let $\nu \geqslant 0$ s.t. $R=\mathbb{M}_{\ell}[\nu]$. Then, there exists $\mu \in \mathcal{M}\left(\mathbb{T}^{d}\right)$, such that

- $\operatorname{card} \operatorname{Supp}(\mu)=\operatorname{rank}(R)$,
- $\tilde{z}=\mathcal{F}_{\llbracket-\ell, \ell \rrbracket^{d}} \mu$, and $\nu=|\mu|$.
$\Rightarrow \min \mathcal{Q}_{0}^{(\ell)}(z)=\min \mathcal{Q}_{0}(z)$ and μ is a solution to $\mathcal{Q}_{0}(z)$.
Conversely, if μ is a solution to $\mathcal{Q}_{0}(z)$ and $\min \mathcal{Q}_{0}^{(\ell)}(z)=\min \mathcal{Q}_{0}(z)$, then $\left(\mathbb{M}_{\ell}[|\mu|], \mathcal{F}_{\llbracket-\ell, \ell \rrbracket^{d}} \mu\right)$ is a solution to $\mathcal{Q}_{0}^{(\ell)}(z)$.

1. Introduction to the BLASSO

2. SDP hierarchies for solving the BLASSO

3. Algorithm and numerical experiments

What we have seen so far

We want to solve the relaxation of the BLASSO:

$$
\begin{gather*}
\min _{\substack{\left.R \succeq 0, \tilde{z} \in \mathbb{C}^{(2 \ell+1}\right)^{d}}}\left(\lambda\left(\frac{1}{(2 \ell+1)^{d}} \operatorname{Tr}(R)+\tau\right)+\frac{1}{2}\left\|y-\tilde{z}_{\mathbb{\llbracket}-f_{c}, f_{c} \rrbracket^{d}}\right\|^{2}\right) \\
\text { s.t. } \quad\left\{\begin{array}{cc}
R & \tilde{z} \\
\tilde{z}^{*} & \tau
\end{array}\right) \succeq 0, \tag{e}\\
R \in \mathcal{T}_{\ell} .
\end{gather*}
$$

That SDP has a large size $\left(m \stackrel{\text { def. }}{=}(2 \ell+1)^{d}+1\right)$. But. .

- R has low rank (sparsity of μ_{λ}, if the relaxation is tight)
- R has the (multi-level) Toeplitz property

What we have seen so far

We want to solve the relaxation of the BLASSO:

$$
\begin{gather*}
\min _{\substack{\left.R \succeq 0, \tilde{z} \in \mathbb{C}^{(2 \ell+1}\right)^{d}}}\left(\lambda\left(\frac{1}{(2 \ell+1)^{d}} \operatorname{Tr}(R)+\tau\right)+\frac{1}{2}\left\|y-\tilde{z}_{\llbracket-f_{c}, f_{c} \rrbracket^{d}}\right\|^{2}\right) \\
\text { s.t. } \quad\left\{\begin{array}{cc}
R & \tilde{z} \\
\tilde{z}^{*} & \tau
\end{array}\right) \succeq 0, \tag{y}\\
R \in \mathcal{T}_{\ell} .
\end{gather*}
$$

That SDP has a large size $\left(m \stackrel{\text { def. }}{=}(2 \ell+1)^{d}+1\right)$. But. .

- R has low rank (sparsity of μ_{λ}, if the relaxation is tight)
- R has the (multi-level) Toeplitz property

We use

- a conditional gradient / Frank-Wolfe algorithm to exploit the low rank property.
- the Fast Fourier Transform in the calculations involving the Toeplitz matrix R.

Goal: Minimize a convex differentiable function f on a compact convex set $\mathcal{D} \subset \mathbb{R}^{P}$

Algorithm (Frank-Wolfe/Conditional gradient)

For all $k \in \mathbb{N}$, iterate

1. Linear minimization:
$s_{k} \in \operatorname{argmin}_{s \in \mathcal{D}} f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), s-x_{k}\right\rangle$
2. Line search: $x_{k+1} \in \operatorname{argmin}_{x \in\left[x_{k}, s_{k}\right]} f(x)$

Remarks:

- If ∇f is Lipschitz, $f\left(x_{k}\right)-\min _{\mathcal{D}} f=O\left(\frac{1}{k}\right)$.
- At each step, $x_{k} \in \operatorname{conv}\left(x_{0}, s_{1}, \ldots, s_{k-1}\right)$.
- In step 2 , one may choose $x_{k+1} \in \mathcal{D}$ with $f\left(x_{k+1}\right) \leqslant \min _{x \in\left[x_{k}, s_{k}\right]} f(x)$
- Minimization of a linear form: OK if we can handle the extreme points of \mathcal{D}.
(2) What are the extreme point of $\mathcal{T}_{\ell} \cap\{R \succeq 0\}$?

We truncate the PSD cone (w.l.o.g.), and we penalize the Toeplitz constraint

$$
\begin{aligned}
& \min _{\substack{R \succeq 0, \tilde{z} \in \mathbb{C}^{(2 \ell+1)^{d}}}}\left(\lambda\left(\frac{1}{(2 \ell+1)^{d}} \operatorname{Tr}(R)+\tau\right)+\frac{1}{2}\left\|y-\tilde{z}_{\llbracket-f_{c}, f_{c} \rrbracket^{d}}\right\|^{2}+\frac{1}{2 \rho}\left\|R-P_{\mathcal{T}_{\ell}} R\right\|^{2}\right) \\
& \text { s.t. } \quad\left\{\begin{array}{l}
\left(\begin{array}{ll}
R & \tilde{z} \\
\tilde{z}^{*} & \tau
\end{array}\right) \succeq 0 \\
\frac{1}{(2 \ell+1)^{d}} \operatorname{Tr} R+\tau \leqslant C
\end{array}\right.
\end{aligned}
$$

We truncate the PSD cone (w.l.o.g.), and we penalize the Toeplitz constraint
$\min _{\substack{R \succeq 0, \tilde{z} \in \mathbb{C}^{(2 \ell+1)^{d}}}}\left(\lambda\left(\frac{1}{(2 \ell+1)^{d}} \operatorname{Tr}(R)+\tau\right)+\frac{1}{2}\left\|y-\tilde{z}_{\llbracket-f_{c}, f_{c} \rrbracket^{d}}\right\|^{2}+\frac{1}{2 \rho}\left\|R-P_{\mathcal{T}_{\ell}} R\right\|^{2}\right)$

$$
\text { s.t. }\left\{\begin{array}{l}
\left(\begin{array}{cc}
R & \tilde{z} \\
\tilde{z}^{*} & \tau
\end{array}\right) \succeq 0, \\
\frac{1}{(2 \ell+1)^{d}} \operatorname{Tr} R+\tau \leqslant C
\end{array} \Longleftrightarrow \hat{R} \stackrel{\text { def. }}{=}\left(\begin{array}{cc}
R & \tilde{z} \\
\tilde{z}^{*} & \tau
\end{array}\right) \in K\right.
$$

K is a truncated PSD cone. Its extreme points are 0 or of the form $\alpha u u^{*}$ where $u \in \mathbb{C}^{(2 \ell+1)^{d}+1}$.

Consequence:

- If $\hat{R}_{0}=0$, at each iteration, \hat{R}_{k} is of the form $\sum_{i=1}^{k-1} \alpha_{i} u_{i} u_{i}^{*}$.
- Instead of storing \hat{R}_{k}, we store $U_{k} \in \mathbb{C}^{m \times k}$ where $\hat{R}_{k}=U_{k} U_{k}^{*}$, $m=\left((2 \ell+1)^{d}+1\right)$.

Step 1: linear minimization

At each iteration k,
Find $\quad \underset{\hat{S} \in K}{\operatorname{argmin}} \operatorname{Tr}(M \hat{S}) \quad$ where $M \stackrel{\text { def. }}{=} \nabla f\left(\hat{R}_{k}\right) \in \mathcal{H}_{n}(\mathbb{C})$.

- A solution is given by $\hat{S}_{k+1}=\alpha v_{k+1} v_{k+1}^{*}$, where v_{k+1} is obtained by power iterations on $M=\nabla f\left(\hat{R}_{k}\right)$ (up to a diagonal rescaling)
- To compute Mv:

$$
\nabla f\left(\hat{R}_{k}\right) v=\underbrace{\left(\text { terms involving } \hat{R}_{k} v\right)}_{\text {use the factorization by } U_{k}}+\underbrace{\text { (terms involving } \left.\left(P_{\mathcal{T}_{\ell}} R_{k}\right) v\right)}_{\text {use the Fast Fourier Transform (FFT) }}
$$

- Complexity: $O\left(k \ell^{d} \log \ell\right)$ (instead of $O\left(\ell^{2 d}\right)$.
- Storage: we only need to store variables of size $m \times k$ (instead of $\left.m^{2}\right)$.

Step 2: Line-search and refinement

- Update $\tilde{U}_{k+1} \stackrel{\text { def. }}{=}\left[\alpha U_{k}(1-\alpha) v_{k+1}\right]$ where $\alpha \in[0,1]$ is chosen to minimize $f\left(\tilde{U}_{k+1} \tilde{U}_{k+1}^{*}\right)$ (closed form expression).
- Non convex update (as in [Boyd et al.'15, Bredies \& Pikkarainen'13])

$$
U_{k+1}=\operatorname{BFGS}\left(U \mapsto f\left(U U^{*}\right), U_{k+1}\right)
$$

Remarks:

- Complexity of each BFGS inner step $O\left(k^{2} \ell^{d}+k \ell^{d} \log \ell\right)$.
- The non convex step does not break the theoretical convergence of the algorithm.
- It improves a lot the practical convergence of the algorithm: convergence in r outer iterations where r is the number of Dirac masses of the solution.

Finite number of iterations

Number of outer iterations w.r.t. sparsity of solution (averaged over 200 trials)

Epilogue

Once U_{k} (or \hat{R}_{k}) has converged, we need to recover the measure $\mu=\sum_{i=1}^{r} \alpha_{i} \delta_{x_{i}}$ from its moments. We apply the procedure described in [Lasserre'09] (see also [Harmouch et al.'17, Josz et al.'17]).

- Compute \tilde{U}_{k}, the reduced column echelon form of U_{k}.
- From \tilde{U}_{k}, build the "multiplication" matrices N_{1}, \ldots, N_{d} (they commute).
- The eigenvalues of N_{j} are the $e^{2 \mathrm{i} \pi\left\langle e_{j}, x\right\rangle}$ for $x \in \operatorname{Supp} \mu$ $\left(e_{j}=(0, \ldots, 1,0, \ldots, 0)\right.$).
\rightarrow recover each $x \in \operatorname{Supp} \mu$ by jointly diagonalizing N_{1}, \ldots, N_{d}.

Impact of the Toeplitz penalization

$\lim _{\rho \rightarrow 0^{+}} \frac{1}{2 \rho}\left\|R-P_{\mathcal{T}_{\ell}} R\right\|^{2}=\chi \mathcal{T}_{\ell}(R)$

(a) Error w.r.t. MOSEK solution
(b) Total number of fft wrt ρ

1D example (results averaged over ~ 700 trials)

Synthetic Data - Examples

Synthetic Data - Examples

Synthetic Data - Examples

Subsampled Gaussian - $f_{c}=30, \frac{\|w\|}{\left\|y_{0}\right\|}=10^{-3}, \mathcal{G}=64 \times 64$

Synthetic Data - Examples

Foveation $-f_{c}=30, \frac{\|w\|}{\left\|y_{0}\right\|}=10^{-3}, \mathcal{G}=64 \times 64$

SMLM Data - Example

Observation $=$ sampled convolution (from the microscopy challenge http://bigwww.epfl.ch/palm)

Reconstruction error: $\left\|x_{\text {rec }}-x_{0}\right\| /\left\|x_{0}\right\|=1.57 \times 10^{-2}$

SMLM Data - Performance

$$
\text { Jaccard index } \stackrel{\text { def. }}{=} \frac{\text { True Positive }}{\text { True Positive }+ \text { False Positive }+ \text { False Negative }}
$$

(c) Jaccard index wrt λ and ρ (up to normalization factors). Each pixel is obtained by averaging over 20 images.

(d) Jaccard index (blue) and time (red) wrt number of BFGS iterations. Values are averaged over 20 images.

- A SDP hierarchy to solve the BLASSO which yields large SDP problems...
- A fast solver which exploits
- the low rank of the solutions
- the Toeplitz structure of moment matrices
- allows to solve the BLASSO in 2D for moderate f_{c}.
- Ongoing/future work: apply this kind of methods to the recovery of higher dimensional objects (curves...)

Thank you for your attention!

Paper:
A Low-rank Approach to Off-the-Grid Sparse Super-resolution
P. Catala, V. Duval, G. Peyré, SIIMS, 2019, Vol. 12, Issue 3.

Thank you for your attention!

