# Exploiting the low rank property in off-the-grid sparse super-resolution

Paul CatalaVincent DuvalGabriel PeyréENSINRIA ParisCNRS/ ENS

(MOKAPLAN)

CIMI Workshop November 7th, 2019









1. Introduction to the BLASSO

### 2. SDP hierarchies for solving the BLASSO

3. Algorithm and numerical experiments



## 1. Introduction to the BLASSO

## 2. SDP hierarchies for solving the BLASSO

3. Algorithm and numerical experiments

# Inverse problems for imaging

Measuring devices have a non sharp impulse response: our observations are **blurred** of a "true ideal scene".

- Geophysics,
- Astronomy,
- Microscopy,

. . .

Spectroscopy,



Image courtesy of S. Ladjal

Goal: Obtain as much detail as we can from given measurements.

- Consider a signal µ<sub>0</sub> defined on T<sup>d</sup> = (ℝ/ℤ)<sup>d</sup> (i.e. [0, 1)<sup>d</sup> with periodic boundary condition).
- Perturbation model:



• Goal: recover  $\mu_0$  from the observation  $y_0 + w = \varphi * \mu_0 + w$  (or simply  $y_0 = \varphi * \mu_0$ )

- Consider a signal µ<sub>0</sub> defined on T<sup>d</sup> = (ℝ/ℤ)<sup>d</sup> (i.e. [0, 1)<sup>d</sup> with periodic boundary condition).
- Perturbation model:



- Goal: recover  $\mu_0$  from the observation  $y_0 + w = \varphi * \mu_0 + w$  (or simply  $y_0 = \varphi * \mu_0$ )
- Ill-posed problem:
  - the low pass filter might not be invertible ( $\hat{\varphi}_n = 0$  for some frequency n)
  - ▶ even though, the problem is ill-conditioned (|\$\hat{\varphi}\_n|\$ ≪ |\$\hat{\varphi}\_0|\$ for high frequencies n)

Assumption: the signal  $\mu_0$  is sparse.

In other words, we want to recover *point sources* (amplitudes and locations)

- Spectral estimation,
- Seismic imaging,
- ► EEG,

...

- Direction of Arrival,
- Super-resolution microscopy (PALM/STORM)





$$\mu_{\mathbf{0}} = \sum_{i=1}^{N} a_i \delta_{x_i}, \quad ext{ where } \left\{ egin{array}{l} a_i \in \mathbb{C}, \ x_i \in \mathbb{T}, \ N \in \mathbb{N} ext{ is small.} \end{array} 
ight.$$

so that we observe  $y + w = \sum_{i=1}^{N} a_i \varphi(\cdot - x_i) + w$ .

Idea: Look for a sparse signal  $\mu$  such that  $\varphi * \mu \approx y_0 + w$  (or  $y_0$ ).

6 / 32

# Possible approaches

- Define a grid  $\mathcal{G} = \{g_i : 0 \leq i \leq G-1\}$  an try to recover a signal of the form  $\mu = \sum_{i=0}^{G-1} a_i \delta_{g_i}$  using LASSO or Matching Pursuit...
  - Well understood algorithms
  - Large and ill-conditioned problems when using thin grids
  - Discretization artifacts, basis mismatch
- Use a fully continuous approach (Prony, MUSIC, Beurling LASSO)
  - Nice theoretical properties
  - Numerical resolution not straightforward





## Towards the continuous approach

Define the total variation of the measure  $m \in \mathcal{M}(\mathbb{T}^d)$  as:

$$\left|\mu\right|\left(\mathbb{T}^{d}
ight)=\sup\left\{\mathcal{R}\mathrm{e}\left(\int_{\mathbb{T}^{d}}\psi^{*}dm
ight);\psi\in\mathscr{C}(\mathbb{T}^{d},\mathbb{C}),\left\|\psi
ight\|_{\infty}\leqslant1
ight\}$$

Example : If 
$$\mu = \sum_{i=1}^{r} a_i \delta_{x_i}$$
, then  $|\mu|(\mathbb{T}^d) = \sum_{i=1}^{M} |a_i|$ .  
If  $\mu = fd\mathcal{L}$ , then  $|\mu|(\mathbb{T}^d) = \int_{\mathbb{T}^d} |f(t)| dt$ .

Rationale: the extreme points of  $\{\mu \in \mathcal{M}(\mathbb{T}^d), |\mu| (\mathbb{T}^d) \leq 1\}$  are the Dirac masses:  $\alpha \delta_x$  for  $x \in \mathbb{T}^d$ ,  $|\alpha| = 1$ .

## Continuous sparse recovery

Given a linear observation operator  $\Phi: \mathcal{M}(\mathbb{T}^d) \to \mathbb{C}^M$ , consider

 Basis Pursuit for measures [de Castro & Gamboa (12), Candès & Fernandez-Granda (13)],

$$\inf_{\mu \in \mathcal{M}(\mathbb{T}^d)} |\mu|(\mathbb{T}^d) \text{ such that } \Phi \mu = y_0 \qquad \qquad (\mathcal{P}_0(y_0))$$

 LASSO for measures, or BLASSO [Recht et al. (12), Bredies & Pikkarainen (13), Azais et al. (13)]

$$\inf_{\mu \in \mathcal{M}(\mathbb{T}^d)} \lambda |\mu|(\mathbb{T}^d) + \frac{1}{2} \left\| \Phi \mu - (y_0 + w) \right\|^2 \qquad (\mathcal{P}_{\lambda}(y_0 + w))$$

## Observation framework

For the rest of the talk, we assume that  $\Phi$  is a **partial Fourier operator** 

$$egin{aligned} \Phi \mu &= \mathcal{F}_{\Omega_c} \mu, \quad ext{where} \quad \Omega_c &= \left\{ j \in \mathbb{N}^d \; : \; \left\| j 
ight\|_{\infty} \leqslant f_c 
ight\}, \ &(\mathcal{F}_{\Omega_c} \mu)_j \stackrel{ ext{def.}}{=} \int_{\mathbb{T}^d} \mathrm{e}^{-2\mathrm{i}\pi \langle j,\, x 
angle} \mathrm{d}\mu(x). \end{aligned}$$

- Ideal Low-Pass Filter (convolution w/ Dirichlet kernel), spectral estimation,
- Extensions to more general observation operators are possible.

# Identifiability for discrete measures

#### Minimum separation distance of $\mu$ :

$$\Delta(\mu) = \min_{\substack{x, x' \in \text{Supp } \mu, \\ x \neq x'}} \|x - x'\|_{\infty}$$



Theorem (Candès & Fernandez-Granda (2013))

There exists a constant  $C_d > 0$  such that, for any (discrete) measure  $\mu_0$  with  $\Delta(\mu_0) \ge \frac{C_d}{f_c}$ ,  $\mu_0$  is the unique solution of

$$\inf_{\mu \in \mathcal{M}(\mathbb{T}^d)} |\mu| (\mathbb{T}^d) \text{ such that } \Phi \mu = y_0 \qquad (\mathcal{P}_0(y_0))$$

where  $y_0 = \Phi \mu_0$ .

Remark:  $1 \leq C \leq 1.26$  for d = 1.

## Robustness

**Question:** if w is small and  $\lambda > 0$  is small, can we recover a solution  $\mu \approx \mu_0$  where  $y_0 = \Phi \mu_0$ ?

$$\inf_{\mu \in \mathcal{M}(\mathbb{T}^d)} \lambda |\mu| (\mathbb{T}^d) + \frac{1}{2} \|\Phi\mu - (y_0 + w)\|^2 \qquad \qquad (\mathcal{P}_\lambda(y_0 + w))$$

reference with the second sec

$$\inf_{\mu \in \mathcal{M}(\mathbb{T}^d)} |\mu|(\mathbb{T}^d) \text{ such that } \Phi \mu = y_0 \qquad \qquad (\mathcal{P}_0(y_0))$$

(+ technical conditions)

- Weak-\* convergence results [Bredies & Pikkarainen (13)],
- Estimation on the local averages of µ [Azais et al. (13), Fernandez-Granda (13)].

## Robustness

Consider an input measure  $\mu_0 = \sum_{i=1}^r a_{0,i} \delta_{\mathbf{x}_{\mathbf{0},i}}$ 

#### Theorem (D.-Peyré'15)

Assume that  $\mu_0$  is "non-degenerate".

Then there exists,  $\alpha > 0$ ,  $\lambda_0 > 0$  such that for  $0 \leqslant \lambda \leqslant \lambda_0$  and  $||w|| \leqslant \alpha \lambda$ ,

- the solution μ<sub>(λ,w)</sub> to P<sub>λ</sub>(y + w) is unique and has exactly r spikes, μ<sub>(λ,w)</sub> = ∑<sup>r</sup><sub>i=1</sub> a<sub>i</sub>(λ, w)δ<sub>x<sub>i</sub>(λ,w)</sub>,
- the mapping  $(\lambda, w) \mapsto (a, x)$  is  $\mathscr{C}^1$ .
- the solution has the Taylor expansion

$$\begin{pmatrix} \mathsf{a}(\lambda,w) \\ x(\lambda,w) \end{pmatrix} = \begin{pmatrix} \mathsf{a}_{\mathbf{0}} \\ \mathsf{x}_{\mathbf{0}} \end{pmatrix} + \begin{pmatrix} I & \mathbf{0} \\ \mathbf{0} & \textit{diaga}_{\mathbf{0}}^{-1} \end{pmatrix} (\Gamma_{\mathsf{x}_{\mathbf{0}}}^* \Gamma_{\mathsf{x}_{\mathbf{0}}})^{-1} \left[ \begin{pmatrix} \mathsf{sign}(\mathsf{a}_{\mathbf{0}}) \\ \mathbf{0} \end{pmatrix} \lambda - \Gamma_{\mathsf{x}_{\mathbf{0}}}^* w \right] + o \begin{pmatrix} \lambda \\ w \end{pmatrix}$$



1. Introduction to the BLASSO

## 2. SDP hierarchies for solving the BLASSO

3. Algorithm and numerical experiments

# Numerical methods for the BLASSO

- 14 / 32
- Discretization of the domain + proximal algorithm [Donoho'92,...]
- Greedy method [Bredies & Pikkarainen'13, Boyd et al.'15]
- Moment-Sum of Squares hierarchies (following [Lasserre'00])
  - In [De Castro et al.'17, Josz et al. '17]: a relaxation method taylored for real-valued measures.
  - We use a relaxation for complex-valued measures μ. Based on the reformulation [Tang et al. '13] in the 1D-case.

# Reformulation

$$\min_{\mu \in \mathcal{M}(\mathbb{T}^d)} \lambda \left| \mu \right| \left( \mathbb{T}^d \right) + \frac{1}{2} \left\| y - \mathcal{F}_{\Omega_c} \mu \right\|^2$$

# Reformulation

$$\min_{z\in\mathbb{C}^{(2\ell_{c}+1)^{d}}} \frac{1}{2} \left\|y-z\right\|^{2} + \lambda \left(\min_{\mu\in\mathcal{M}(\mathbb{T}^{d})} \left|\mu\right|(\mathbb{T}^{d}) \quad \text{s.t.} \quad (\mathcal{F}\mu)_{k} = z_{k} \quad \forall k\in\Omega_{c} \right).$$

#### It is sufficient to study the problem

$$\min_{\mu \in \mathcal{M}(\mathbb{T}^d)} |\mu| (\mathbb{T}^d) \quad \text{s.t.} \quad (\mathcal{F}\mu)_k = z_k \quad \forall k \in \Omega_c = \llbracket -f_c, f_c \rrbracket^d \qquad (\mathcal{Q}_0(z))$$

Let  $\nu = |\mu|$  and consider its moment matrix  $\mathbb{M}_{\ell}[\nu]$ ,

$$\forall i,j \in \llbracket -\ell,\ell \rrbracket^d, \quad (\mathbb{M}_\ell[\nu])_{i,j} = \int_{\mathbb{T}^d} e^{-2\mathrm{i}\pi \langle i, \, x \rangle} e^{2\mathrm{i}\pi \langle j, \, x \rangle} \mathrm{d}\nu(x)$$

Then,

•  $\mathbb{M}_{\ell}[\nu]$  is positive semi-definite  $(\mathbb{M}_{\ell}[\nu] \succeq 0)$ .

$$egin{aligned} &orall q \in \mathbb{C}^{(2\ell+1)^d}, \; q^* \mathbb{M}_\ell[
u] q = \int_{\mathbb{T}^d} \left( \sum_{\|i\|_\infty \leqslant \ell} q_i e^{2\mathrm{i}\pi \langle i, \, x 
angle} 
ight)^* \left( \sum_{\|j\|_\infty \leqslant \ell} q_j e^{2\mathrm{i}\pi \langle j, \, x 
angle} 
ight) \mathrm{d}
u(x) \ &= \int_{\mathbb{T}^d} \left| \sum_{\|j\|_\infty \leqslant \ell} q_j e^{2\mathrm{i}\pi \langle j, \, x 
angle} 
ight|^2 \mathrm{d}
u(x) \geqslant 0. \end{aligned}$$

16 / 32

Let  $\nu = |\mu|$  and consider its moment matrix  $\mathbb{M}_{\ell}[\nu]$ ,

$$\forall i,j \in \llbracket -\ell,\ell \rrbracket^d, \quad (\mathbb{M}_\ell[\nu])_{i,j} = \int_{\mathbb{T}^d} e^{-2\mathrm{i}\pi \langle i,\, x \rangle} e^{2\mathrm{i}\pi \langle j,\, x \rangle} \mathrm{d}\nu(x)$$

Then,

- $\mathbb{M}_{\ell}[\nu]$  is positive semi-definite  $(\mathbb{M}_{\ell}[\nu] \succeq 0)$ .
- ▶  $\mathbb{M}_{\ell}[\nu]$  is multi-level Toeplitz, a.k.a. Toeplitz-Block-Toeplitz ( $\mathbb{M}_{\ell}[\nu] \in \mathcal{T}_{\ell}$ ).

$$\begin{split} (\mathbb{M}_{\ell}[
u])_{i+k,j+k} &= \int_{\mathbb{T}^d} e^{-2\mathrm{i}\pi\langle i+k,\,x
angle} e^{2\mathrm{i}\pi\langle j+k,\,x
angle} \mathrm{d}
u(x) \ &= \int_{\mathbb{T}^d} e^{-2\mathrm{i}\pi\langle i,\,x
angle} e^{2\mathrm{i}\pi\langle j,\,x
angle} \mathrm{d}
u(x) = (\mathbb{M}_{\ell}[
u])_{i,j} \end{split}$$

 $\text{for all } i,j,k \text{ such that } \left\|i\right\|_{\infty} \leqslant \ell, \left\|j\right\|_{\infty} \leqslant \ell, \left\|i+k\right\|_{\infty} \leqslant \ell, \left\|j+k\right\|_{\infty} \leqslant \ell.$ 

Let  $\nu = |\mu|$  and consider its moment matrix  $\mathbb{M}_{\ell}[\nu]$ ,

$$\forall i,j \in \llbracket -\ell,\ell \rrbracket^d, \quad (\mathbb{M}_\ell[\nu])_{i,j} = \int_{\mathbb{T}^d} e^{-2\mathrm{i}\pi \langle i,\, x \rangle} e^{2\mathrm{i}\pi \langle j,\, x \rangle} \mathrm{d}\nu(x)$$

Then,

- $\mathbb{M}_{\ell}[\nu]$  is positive semi-definite  $(\mathbb{M}_{\ell}[\nu] \succeq 0)$ .
- ▶  $\mathbb{M}_{\ell}[\nu]$  is multi-level Toeplitz, a.k.a. Toeplitz-Block-Toeplitz ( $\mathbb{M}_{\ell}[\nu] \in \mathcal{T}_{\ell}$ ).

► 
$$\tau \mathbb{M}_{\ell}[\nu] - \tilde{z}\tilde{z}^* \succeq 0$$
 where  $\tau = \nu(\mathbb{T}^d) = (\mathbb{M}_{\ell}[\nu])_{(0,0)}$  and  $\tilde{z} = \mathcal{F}_{\llbracket - \ell, \ell \rrbracket^d} \mu$ .

Let  $\nu = |\mu|$  and consider its moment matrix  $\mathbb{M}_{\ell}[\nu]$ ,

$$\forall i,j \in \llbracket -\ell,\ell \rrbracket^d, \quad (\mathbb{M}_\ell[\nu])_{i,j} = \int_{\mathbb{T}^d} e^{-2\mathrm{i}\pi \langle i,\, x \rangle} e^{2\mathrm{i}\pi \langle j,\, x \rangle} \mathrm{d}\nu(x)$$

Then,

- $\mathbb{M}_{\ell}[\nu]$  is positive semi-definite  $(\mathbb{M}_{\ell}[\nu] \succeq 0)$ .
- ▶  $\mathbb{M}_{\ell}[\nu]$  is multi-level Toeplitz, a.k.a. Toeplitz-Block-Toeplitz ( $\mathbb{M}_{\ell}[\nu] \in \mathcal{T}_{\ell}$ ).

$$\blacktriangleright \ \tau \mathbb{M}_{\ell}[\nu] - \tilde{z}\tilde{z}^* \succeq 0 \text{ where } \tau = \nu(\mathbb{T}^d) = (\mathbb{M}_{\ell}[\nu])_{(0,0)} \text{ and } \tilde{z} = \mathcal{F}_{\mathbb{I}^{-\ell,\ell}\mathbb{I}^d} \mu.$$

In other words, 
$$\begin{pmatrix} \mathbb{M}_{\ell}[\nu] & \tilde{z} \\ \tilde{z}^* & \tau \end{pmatrix} \succeq 0.$$

## Moment based relaxation

Given 
$$z \in \mathbb{C}^{(2f_c+1)^d}$$
, consider the problem on measures  
$$\min_{\mu \in \mathcal{M}(\mathbb{T}^d)} |\mu| (\mathbb{T}^d) \quad \text{s.t.} \quad (\mathcal{F}\mu)_k = z_k, \ \forall k \in \Omega_c = \llbracket -f_c, f_c \rrbracket^d$$
$$(\mathcal{Q}_0(z))$$

or the semi-definite program ( $\ell \geqslant f_c)$ 

$$\min_{\substack{R \succeq 0, \\ \tilde{z} \in \mathbb{C}^{(2\ell+1)^d}}} \left( \frac{1}{(2\ell+1)^d} \operatorname{Tr}(R) + \tau \right) \quad \text{s.t.} \quad \begin{cases} \forall k \in \Omega_c, \quad \tilde{z}_k = z_k, \\ \begin{pmatrix} R & \tilde{z} \\ \tilde{z}^* & \tau \end{pmatrix} \succeq 0, \\ R & \in \mathcal{T}_\ell. \end{cases}$$

$$(\mathcal{Q}_0^{(\ell)}(z))$$

Proposition (same as [Lasserre '00])

$$\begin{split} \min \mathcal{Q}_0^{(\ell)}(z) &\leqslant \min \mathcal{Q}_0^{(\ell+1)}(z) \leqslant \min \mathcal{Q}_0(z) \\ \text{and} \quad \lim_{\ell \to +\infty} \left( \min \mathcal{Q}_0^{(\ell)}(z) \right) = (\min \mathcal{Q}_0(z)) \end{split}$$

## Flatness criterion

We say that R is **flat** if rank 
$$([R]_{\llbracket -\ell + 1, \ell - 1 \rrbracket^d}) = \operatorname{rank} R$$
.

#### Proposition

If R is flat, then R has a representing measure:  $R = \mathbb{M}_{\ell}[\nu]$  for some measure  $\nu \ge 0$ . Moreover card  $\text{Supp}(\nu) = \text{rank}(R)$ .

Note: Similar to [Curto & Fialkow'96], but the degree is

$$\deg_{\infty}(i) = \max(|i_1|, \ldots |i_d|)$$

instead of

$$\mathsf{deg}_1(i) = |i_1| + \ldots + |i_d|.$$

 ${\tt I}{\tt sets}$  we rely on [Laurent & Mourrain'09] for flat extensions with general monomial sets.

**Remark:** For d = 1, R already has a representing measure for  $\ell = f_c$ .

# Tightness of the relaxation

Let  $(R, \tilde{z})$  be a solution to

$$\min_{\substack{R \succeq 0, \\ \tilde{z} \in \mathbb{C}^{(2\ell+1)^d}}} \left( \frac{1}{(2\ell+1)^d} \operatorname{Tr}(R) + \tau \right) \quad \text{s.t.} \quad \begin{cases} \forall k \in \Omega_c, \quad \tilde{z}_k = z_k, \\ \begin{pmatrix} R & \tilde{z} \\ \tilde{z}^* & \tau \end{pmatrix} & \succeq 0, \\ R & \in \mathcal{T}_{\ell}. \\ (\mathcal{Q}_0^{(\ell)}(z)) \end{cases}$$

#### Proposition

Assume that R is flat, and let  $\nu \ge 0$  s.t.  $R = \mathbb{M}_{\ell}[\nu]$ . Then, there exists  $\mu \in \mathcal{M}(\mathbb{T}^d)$ , such that

• card Supp $(\mu) = \operatorname{rank}(R)$ ,

• 
$$\tilde{z} = \mathcal{F}_{\llbracket -\ell, \ell \rrbracket^d} \mu$$
, and  $\nu = |\mu|$ .

• min  $\mathcal{Q}_0^{(\ell)}(z) = \min \mathcal{Q}_0(z)$  and  $\mu$  is a solution to  $\mathcal{Q}_0(z)$ .

Conversely, if  $\mu$  is a solution to  $\mathcal{Q}_0(z)$  and  $\min \mathcal{Q}_0^{(\ell)}(z) = \min \mathcal{Q}_0(z)$ , then  $(\mathbb{M}_{\ell}[|\mu|], \mathcal{F}_{[-\ell,\ell]^d}\mu)$  is a solution to  $\mathcal{Q}_0^{(\ell)}(z)$ .



1. Introduction to the BLASSO

2. SDP hierarchies for solving the BLASSO

3. Algorithm and numerical experiments

## What we have seen so far

We want to solve the relaxation of the BLASSO:

$$\begin{split} \min_{\substack{R \succeq 0, \\ \tilde{z} \in \mathbb{C}^{(2\ell+1)^d}}} \left( \lambda \left( \frac{1}{(2\ell+1)^d} \operatorname{Tr}(R) + \tau \right) + \frac{1}{2} \left\| y - \tilde{z}_{\mathbb{I} - f_c, f_c \mathbb{I}^d} \right\|^2 \right) \\ \text{s.t.} \quad \begin{cases} \left( \begin{matrix} R & \tilde{z} \\ \tilde{z}^* & \tau \end{matrix} \right) \succeq 0, \\ R \in \mathcal{T}_{\ell}. \end{cases} \quad (\mathcal{Q}_{\lambda}^{(\ell)}(y)) \end{split}$$

That SDP has a large size  $(m \stackrel{\mathsf{def.}}{=} (2\ell + 1)^d + 1)$ . But...

- *R* has low rank (sparsity of  $\mu_{\lambda}$ , if the relaxation is tight)
- R has the (multi-level) Toeplitz property

## What we have seen so far

We want to solve the relaxation of the BLASSO:

$$\begin{split} \min_{\substack{R \succeq 0, \\ \tilde{z} \in \mathbb{C}^{(2\ell+1)^d}}} \left( \lambda \left( \frac{1}{(2\ell+1)^d} \operatorname{Tr}(R) + \tau \right) + \frac{1}{2} \left\| y - \tilde{z}_{\mathbb{I} - f_c, f_c \mathbb{I}^d} \right\|^2 \right) \\ \text{s.t.} \quad \begin{cases} \left( \begin{matrix} R & \tilde{z} \\ \tilde{z}^* & \tau \end{matrix} \right) \succeq 0, \\ R \in \mathcal{T}_{\ell}. \end{cases} \quad (\mathcal{Q}_{\lambda}^{(\ell)}(y)) \end{split}$$

That SDP has a large size ( $m \stackrel{\mathsf{def.}}{=} (2\ell+1)^d + 1$ ). But...

- *R* has low rank (sparsity of  $\mu_{\lambda}$ , if the relaxation is tight)
- R has the (multi-level) Toeplitz property

We use

- a conditional gradient / Frank-Wolfe algorithm to exploit the low rank property.
- ▶ the **Fast Fourier Transform** in the calculations involving the Toeplitz matrix *R*.

# The Frank-Wolfe algorithm

**Goal:** Minimize a convex differentiable function f on a compact convex set  $\mathcal{D} \subset \mathbb{R}^P$ 

#### Algorithm (Frank-Wolfe/Conditional gradient)

For all  $k \in \mathbb{N}$ , iterate

1. Linear minimization:

$$s_k \in \operatorname{argmin}_{s \in \mathcal{D}} f(x_k) + \langle 
abla f(x_k), \ s - x_k 
angle$$

2. Line search:  $x_{k+1} \in \operatorname{argmin}_{x \in [x_k, s_k]} f(x)$ 



#### Remarks:

- If  $\nabla f$  is Lipschitz,  $f(x_k) \min_{\mathcal{D}} f = O\left(\frac{1}{k}\right)$ .
- At each step,  $x_k \in \operatorname{conv}(x_0, s_1, \ldots, s_{k-1})$ .
- ▶ In step 2, one may choose  $x_{k+1} \in D$  with  $f(x_{k+1}) \leq \min_{x \in [x_k, s_k]} f(x)$
- Minimization of a linear form: OK if we can handle the extreme points of *D*.
  - $\odot$  What are the extreme point of  $\mathcal{T}_{\ell} \cap \{R \succeq 0\}$ ?

We truncate the PSD cone (w.l.o.g.), and we penalize the Toeplitz constraint

$$\begin{split} \min_{\substack{R \succeq 0, \\ \tilde{z} \in \mathbb{C}^{(2\ell+1)^d}}} \left( \lambda \left( \frac{1}{(2\ell+1)^d} \operatorname{Tr}(R) + \tau \right) + \frac{1}{2} \left\| y - \tilde{z}_{\left[ - f_c, f_c \right]^d} \right\|^2 + \frac{1}{2\rho} \|R - P_{\mathcal{T}_{\ell}} R\|^2 \right) \\ \text{s.t.} \quad \begin{cases} \left( \begin{matrix} R & \tilde{z} \\ \tilde{z}^* & \tau \end{matrix} \right) \succeq 0, \\ \frac{1}{(2\ell+1)^d} \operatorname{Tr} R + \tau \leqslant C \end{cases} \end{split}$$

We truncate the PSD cone (w.l.o.g.), and we penalize the Toeplitz constraint

$$\begin{split} \min_{\substack{R \succeq 0, \\ \tilde{z} \in \mathbb{C}^{(2\ell+1)^d}}} \left( \lambda \left( \frac{1}{(2\ell+1)^d} \operatorname{Tr}(R) + \tau \right) + \frac{1}{2} \left\| y - \tilde{z}_{\left[ - f_c, f_c \right]^d} \right\|^2 + \frac{1}{2\rho} \|R - P_{\mathcal{T}_{\ell}} R\|^2 \right) \\ \text{s.t.} \quad \begin{cases} \left( \begin{matrix} R & \tilde{z} \\ \tilde{z}^* & \tau \end{matrix} \right) \succeq 0, \\ \frac{1}{(2\ell+1)^d} \operatorname{Tr} R + \tau \leqslant C \end{cases} \iff \hat{R} \stackrel{\text{def.}}{=} \left( \begin{matrix} R & \tilde{z} \\ \tilde{z}^* & \tau \end{matrix} \right) \in \mathcal{K} \end{split}$$

*w K* is a **truncated PSD cone**. Its extreme points are 0 or of the form  $\alpha uu^*$  where *u* ∈  $\mathbb{C}^{(2\ell+1)^d+1}$ .

#### Consequence:

- If  $\hat{R}_0 = 0$ , at each iteration,  $\hat{R}_k$  is of the form  $\sum_{i=1}^{k-1} \alpha_i u_i u_i^*$ .
- ▶ Instead of storing  $\hat{R}_k$ , we store  $U_k \in \mathbb{C}^{m \times k}$  where  $\hat{R}_k = U_k U_k^*$ ,  $m = ((2\ell + 1)^d + 1)$ .

# Step 1: linear minimization

At each iteration k,

Find argmin  $\operatorname{Tr}(M\hat{S})$  where  $M \stackrel{\text{def.}}{=} \nabla f(\hat{R}_k) \in \mathcal{H}_n(\mathbb{C})$ .

- A solution is given by Ŝ<sub>k+1</sub> = αv<sub>k+1</sub>v<sup>\*</sup><sub>k+1</sub>, where v<sub>k+1</sub> is obtained by power iterations on M = ∇f(R̂<sub>k</sub>) (up to a diagonal rescaling)
- ► To compute *Mv*:

$$\nabla f(\hat{R}_k)v = \underbrace{\left(\text{terms involving } \hat{R}_kv\right)}_{\text{use the factorization by } U_k} + \underbrace{\left(\text{terms involving } (P_{\mathcal{T}_\ell}R_k)v\right)}_{\text{use the Fast Fourier Transform (FFT)}}$$

- **Complexity:**  $O(k\ell^d \log \ell)$  (instead of  $O(\ell^{2d})$ .
- **Storage:** we only need to store variables of size  $m \times k$  (instead of  $m^2$ ).

# Step 2: Line-search and refinement

- Update Ũ<sub>k+1</sub> <sup>def.</sup> = [αU<sub>k</sub> (1 − α)v<sub>k+1</sub>] where α ∈ [0, 1] is chosen to minimize f(Ũ<sub>k+1</sub>Ũ<sup>\*</sup><sub>k+1</sub>) (closed form expression).
- Non convex update (as in [Boyd et al.'15, Bredies & Pikkarainen'13])

$$U_{k+1} = BFGS(U \mapsto f(UU^*), U_{k+1})$$

#### Remarks:

- Complexity of each BFGS inner step  $O(k^2 \ell^d + k \ell^d \log \ell)$ .
- The non convex step does not break the theoretical convergence of the algorithm.
- It improves a lot the practical convergence of the algorithm: convergence in r outer iterations where r is the number of Dirac masses of the solution.

# Finite number of iterations



Number of outer iterations w.r.t. sparsity of solution (averaged over 200 trials)

# Epilogue

Once  $U_k$  (or  $\hat{R}_k$ ) has converged, we need to recover the measure  $\mu = \sum_{i=1}^r \alpha_i \delta_{x_i}$  from its moments. We apply the procedure described in [Lasserre'09] (see also [Harmouch et al.'17, Josz et al.'17]).

- Compute  $\tilde{U}_k$ , the reduced column echelon form of  $U_k$ .
- From  $\tilde{U}_k$ , build the "multiplication" matrices  $N_1, \ldots, N_d$  (they commute).
- ► The eigenvalues of  $N_j$  are the  $e^{2i\pi \langle e_j, x \rangle}$  for  $x \in \text{Supp } \mu$  $(e_j = (0, ..., 1, 0, ..., 0)).$

 $\rightarrow$  recover each  $x \in \text{Supp } \mu$  by jointly diagonalizing  $N_1, \ldots, N_d$ .

# Impact of the Toeplitz penalization



1D example (results averaged over  $\sim$  700 trials)

28 / 32



29 / 32







# SMLM Data - Example

Observation = sampled convolution (from the microscopy challenge http://bigwww.epfl.ch/palm)



Reconstruction error:  $\|x_{rec} - x_0\| / \|x_0\| = 1.57 \times 10^{-2}$ 

# SMLM Data - Performance



images.

Values are averaged over 20 images.

# Conclusion

- A SDP hierarchy to solve the BLASSO which yields large SDP problems...
- A fast solver which exploits
  - the low rank of the solutions
  - the Toeplitz structure of moment matrices
  - allows to solve the BLASSO in 2D for moderate  $f_c$ .
- Ongoing/future work: apply this kind of methods to the recovery of higher dimensional objects (curves...)

#### Thank you for your attention!

#### Paper:

A Low-rank Approach to Off-the-Grid Sparse Super-resolution P. Catala, V. Duval, G. Peyré, SIIMS, 2019, Vol. 12, Issue 3. Thank you for your attention!

34 / 32