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Applications of graphical models

@ Probabilistic models that capture the statistical dependencies between
variables of interest in the form of a network

@ Used throughout the natural sciences, social sciences, and economics

for modeling interactions

@ Undirected graphical models encode partial correlations, while
directed graphical models can be used to represent causality
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Graphical models

Motivation: Provide an economic representation of a joint distribution
using local relationships between variables

Origins of graphical models can be traced back to 3 communities:

@ Statistical physics: use undirected graph to represent distribution over
a large system of interacting particles [Gibbs, 1902]

@ Genetics: use directed graphs to model inheritance in natural species
[Wright, 1921]

@ Statistics: use graphs to represent interactions in multi-dimensional
contingency tables [Bartlett, 1935]

Graphical models combine graph theory with probability theory into a
powerful framework for multivariate statistical modeling [Lauritzen, 1996]

Algebraic, geometric and combinatorial questions arise naturally when
studying graphical models
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Overview of mini-course

(1) Introduction to graphical models - Markov properties
(2) Gaussian graphical models - Maximum likleihood estimation

(3) Covariance models with linear structure - Parameter estimation and
structure learning

(4) Causal inference - Structure discovery
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Overview

@ Lecture is based on a book chapter that | wrote for the Handbook of
Graphical Models edited by M. Drton, S. Lauritzen, M. Maathuis and
M. Wainwright:

C. Uhler, “Gaussian graphical models: An algebraic and geometric

perspective”, available at arXiv:1707.04345

@ Goal of this lecture is to give an introduction to Gaussian graphical
models and show that algebraic, geometric and combinatorial
questions arise naturally when studying graphical models
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@ Goal: Characterize relationship among a large number of variables
@ Visualize interactions by graph

@ Gaussian graphical models: Used throughout the natural sciences,
social sciences and economics for modeling interactions among nodes
for continuous multivariate data

(a) Gene association (b) Athens stock exchange (c) Wind speed forecasting
network (Novarino et al., (Garos & Argyrakis, Physica A, 2007)
Science 343, 2014)
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A random vector X € RP follows a multivariate Gaussian distribution
with mean p € RP and covariance matrix ¥ € S’;O if it has density

fur(x) = (2n) P2 det(E) V2 exp (3 x ) TE Hx- )




Gaussian Distribution

A random vector X € RP follows a multivariate Gaussian distribution
with mean g € RP and covariance matrix ¥ € S’;O if it has density

fu(e) = (2n) 2 de(T) 20 (3 x— W) TE - )

@ What can you say about the space of covariance matrices?
@ How does the space of 3 x 3 correlation matrices look like?
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Gaussian Distribution

A random vector X € RP follows a multivariate Gaussian distribution
with mean 1 € RP and covariance matrix ¥ € S if it has density

fu(e) = (2) /2 den(E)H2esp (=30 — ) T =)

@ What can you say about the space of covariance matrices?
@ How does the space of 3 x 3 correlation matrices look like?

v
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e G = (V,E) undirected graph with vertices V = {1,...,p} and
edges E

o Kg={KeSly|Kyj=0forall i with (i,j) ¢ E}

A Gaussian vector X € RP is a Gaussian graphical model on G if }

X ~N(u,T) and T 'eSPy(G).




Gaussian Graphical Model

e G =(V,E) undirected graph with vertices V = {1,...,p} and
edges E

o Kg={KeSP,|Kj=0forall i #j with (i,j) ¢ E}

A Gaussian vector X € RP is a Gaussian graphical model on G if

X ~N(u,X) and T 'eSPy(G).

Question: Interpretation of missing edges in G?
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Marginals and Conditionals of a Gaussian

Theorem

Let X ~ Np(u, X) and partition X into two components Xa € R? and
Xg € RP such that a+ b= p. Let u and ¥ be partitioned accordingly, i.e.,

LA aa 2a B)
= and Y = Z 2 )
: <MB> <ZB,A 1pB
Then,

(a) the marginal distribution of Xa is N (p1a,XaA);
(b) the conditional distribution of Xa | Xg = xg is N (pa8, Za|B), where

HAB = HA+ZA,BZ§,13(XB—MB) and X ap = zA,A—ZA,BZ;BZB,A.
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Marginals and Conditionals of a Gaussian

Theorem

Let X ~ Np(u, X) and partition X into two components Xa € R? and
Xg € RP such that a+ b= p. Let u and ¥ be partitioned accordingly, i.e.,

LA aa 2a B)
= and Y = Z 2 )
: <MB> <ZB,A 1pB
Then,

(a) the marginal distribution of Xa is N (p1a,XaA);
(b) the conditional distribution of Xa | Xg = xg is N (pa8, Za|B), where

HAB = HA+ZA,BZ§,13(XB—MB) and X ap = zA,A—ZA,BZ;BZB,A.

Note: Let K = ¥ ~1. Then by Schur complement, ZA‘AC:(KAA)_].' Hence
a missing edge in G means Kj; = 0, or equivalently, X; L X; | Xy j1-
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Two Main Problems

Given i.i.d. samples X(), ..., X(") ¢ RP from a Gaussian graphical model

@ Learn the graph G

e see tomorrow's lectures (e.g. graphical lasso)

o Estimate the edge weights, i.e. the non-zero entries of ¥ 1

e maximum likelihood estimation
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Two Main Problems

Given i.i.d. samples X(), ..., X(") ¢ RP from a Gaussian graphical model

@ Learn the graph G

e see tomorrow's lectures (e.g. graphical lasso)

o Estimate the edge weights, i.e. the non-zero entries of ¥ 1

e maximum likelihood estimation

@ These problems don't depend on mean p; w.l.o.g. assume =0
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Two Main Problems

Given i.i.d. samples X(), ..., X(") ¢ RP from a Gaussian graphical model

@ Learn the graph G

e see tomorrow's lectures (e.g. graphical lasso)

o Estimate the edge weights, i.e. the non-zero entries of ¥ 1

e maximum likelihood estimation

@ These problems don't depend on mean p; w.l.o.g. assume =0

e sample covariance matrix is given by

1 < . .
S = - ZX(’)(X(’))T IS Sgo, rk(S) = n < p with probability 1
i=1
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Two Main Problems

Given i.i.d. samples X(), ..., X(") ¢ RP from a Gaussian graphical model

@ Learn the graph G

e see tomorrow's lectures (e.g. graphical lasso)

o Estimate the edge weights, i.e. the non-zero entries of ¥ 1

e maximum likelihood estimation

These problems don't depend on mean p; w.l.0.g. assume p =0
e sample covariance matrix is given by

1 < . .
S = - ZX(’)(X(’))T IS S’;O, rk(S) = n < p with probability 1
i=1

log-likelihood is given by: /(X;S) oc —logdet(X) — tr (ST 1)
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Two Main Problems

Given i.i.d. samples X(), ..., X(") ¢ RP from a Gaussian graphical model

@ Learn the graph G

e see tomorrow's lectures (e.g. graphical lasso)

o Estimate the edge weights, i.e. the non-zero entries of ¥ 1

e maximum likelihood estimation

These problems don't depend on mean p; w.l.0.g. assume p =0
e sample covariance matrix is given by

1

n

S=- ZX(i)(X(i))T €S2y, 1k(S) = n < p with probability 1
n =
i=1
e log-likelihood is given by: £(%;S) x — logdet(¥) — tr (ST 1)
@ What can be said about the log-likelihood function?
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Parameter estimation for Gaussian graphical models

Given a graph G, the maximum likelihood estimator (MLE) K := 31
solves the following convex optimization problem:

maximize logdet K — tr (SK)
subject to KeKg

Question: What is the MLE when G is the complete graph?
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Parameter estimation for Gaussian graphical models

By strong duality: Given a graph G, the MLE K := 31 solves the
following equivalent convex optimization problems:

maximize logdet K — tr (KS) minimize — logdetY —p
subject to Kjj =0, V(i,j) ¢ E  subject to X;=Sj, (i,j)€ Eori=j
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Parameter estimation for Gaussian graphical models

By strong duality: Given a graph G, the MLE K := 31 solves the
following equivalent convex optimization problems:

maximize logdet K — tr (KS) minimize — logdetY —p
subject to Kjj =0, V(i,j) ¢ E  subject to X;=Sj, (i,j)€ Eori=j

Theorem (Dempster 1972)

In a Gaussian graphical model on G the MLE Y- exists if and only if the
partial sample covariance matrix S = (Sjj | (i,j) € E or i = j)
(sufficient statistics) can be extended to a positive definite matrix. Then
the MLE ¥ is the unique completion whose inverse satisfies

(£ =0, Vi#j, (i,j) ¢ E.

Existence of MLE is equivalent to positive definite matrix
completion problem!
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@ S¢c = 7TG(5) S¢ = WG(S 0) note that S¢g = K\é
e fiberg(S) ={X € Szo | ¢ =S¢}
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A0 X Ay Mg

VD VD VIR VR W

K=|X XM A 0 0

Xs A2 0 A O

: > M oA 000 N

det(K) = A -(A2=X34+Xd3— A2+ dohg+A3h—A2) -
(A2 =23 —XoX3— A3 —Aodg—A3hg—)%)



Example K53

A0 A Az Ay
VD VD VIR VR W
K=|X XM A 0 0
Xs A2 0 A O
: > M oA 000 N

det(K) = A -(AF=A34+XA3— A3+ oh+ A0 —\3) -
(A2 =23 —XoA3—A3—Doda—A3ha—\9)

- & W
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@ Necessary condition for existence of pd completion:



Positive Definite (pd) Matrix Completion Problem

@ Necessary condition for existence of pd completion: all specified
minors are pd

@ However, this is in general not sufficient:

1 09 7?7 -09
0.9 109 ! does not have a pd completion
7 09 1 09 P pletion.

-09 7 09 1

S¢ =

Theorem (Grone, Johnson, Sa & Wolkovicz, 1984)

For a graph G the following statements are equivalent:

(a) A G-partial matrix Mg € RIE"l has a pd completion if and only if all
completely specified submatrices in Mg are positive definite.

(b) G is chordal (also known as triangulated), i.e. every cycle of length 4
or larger has a chord.
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Statistical Problem

Current statistical applications:
@ Number of variables >> Number of observations

@ Example: Genetic networks
Gene expression data of a few individuals to model interaction
between large number of genes

— Gaussian graphical models widely used in this context

Problem: What is the minimum number of observations for existence of
the MLE in a given Gaussian graphical model?
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Example K>3

AN

1 2

What is the minimal rank n* such that

sit ! s13 S14 S5

7 S» 3 Su S
S¢=|s13 3 s:3 7 7
s S ! sas 7

s;5 S5 ! 7 S5

can be completed to a positive definite matrix for any S € S‘;O of rank
n> n*? Bl
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Let nf; denote the minimal rank such that every S € S has a positive
definite completion on G



Let nf; denote the minimal rank such that every S € S has a positive
definite completion on G

@ ng > maximal clique size of G

e ng<p



Let nf; denote the minimal rank such that every S € S has a positive
definite completion on G

@ ng > maximal clique size of G

o ng<p

For chordal (i.e. triangulated) graphs n* = maximal clique size of G.




Bounds

Let nf. denote the minimal rank such that every S € S has a positive

definite completion on G

@ ng > maximal clique size of G

o ng<p

Theorem (Grone, Johnson, Sa & Wolkovicz, 1984)

For chordal (i.e. triangulated) graphs n* = maximal clique size of G

Let G be non-chordal. Then

@ ng > maximal clique size of G

@ ng < maximal clique size in minimal chordal cover of G
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Elimination Criterion

Theorem (Uhler, 2012)

Let I, be the ideal of (n+ 1) x (n+ 1) minors of a symmetric p X p matrix
of unknowns S. Let Ig , be the elimination ideal obtained from I, by
eliminating all unknowns corresponding to non-edges in the graph. If

len=0

then ng < n.

@ I, corresponds to all symmetric matrices of rank < n
@ Elimination corresponds to projection onto Sg

@ /g,» = 0 means that the projection is full-dimensional
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When G is the 3 x 3 grid, then ng; = 3. l

@ First example of a graph for which nf; < maximal clique size in
minimal chordal cover

@ Solves an open problem by Steffen Lauritzen



When G is the 3 x 3 grid, then ng; = 3. l

@ First example of a graph for which nf; < maximal clique size in
minimal chordal cover

@ Solves an open problem by Steffen Lauritzen

For any grid, n; = 3. Furthermore, for any planar graph, n* < 4.




Computing the MLE

@ Convex optimization problem; can be solved e.g. using interior point
methods or coordinate descent algorithms (often faster)

@ There is a closed-form formula for the MLE <= G is chordal
(Lauritzen, 1996)

@ ML-degree: maximal number of solutions to the likelihood equations

@ There is a rational formula for the MLE (in the entries of §) <=
ML-degree is1 <= G is chordal (Sturmfels & Uhler, 2010)

@ Conjecture The p-cycle maximizes the ML-degree over all graphs on
p nodes and has ML-degree (p — 3)2P~2 + 1
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@ Si PD completable if and only if (Sg, X) > 0 for all X € K¢
extremal

@ Knowledge of extremal rays of K¢ is useful for deciding PD
completability



Alternative Approach: Sparsity Order of a Graph

e S PD completable if and only if (Sg,X) > 0 for all X € K¢
extremal

@ Knowledge of extremal rays of K¢ is useful for deciding PD
completability

The sparsity order of a graph G is defined as
ord(G) = max{rk (X) | X € K¢ extremal}

@ There should be strong connections between existence of the MLE,
ML-degree and sparsity order of a graph, but these are still quite
unclear (Solus, Uhler & Yoshida, 2016)
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Sparsity Order of a Graph

ord(G) =1 if and only if G chordal

If H is an induced subgraph of G, then
ord(H) < ord(G)

If G is the clique sum of two graphs G; and G,
then ord(G) = max{ord(Gy), ord(Gz)}

ord(G) < p — 2 with equality if and only if G
is a p-cycle; the extremal ranks are 1 and p — 2

m?—m : m?>—m
n=m41 ifn> +1
AK ) = 2 273 ;
ord(Km.n) { n otherwise
all ranks 1,...,ord(Km,n) are extremal

All graphs of order 2 have been characterized

Many many open problems...
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e X ~N(0,%), K:=X71 p=nr. of variables, n =nr. of samples

e Gaussian graphical model: (i,/) ¢ E if and only if Kjj =0
if and only if X; L X; | Xv\qijy



(Undirected) Gaussian graphical models

e X ~N(0,X), K:=X! p=nr. of variables, n=nr. of samples

e Gaussian graphical model: (i,/) ¢ E if and only if Kjj =0
if and only if X; I X; | Xv\(ijy

@ Sample covariance matrix S is of rank min(n, p)

o MLE:

A~

K = argmax{log det(K) — trace(SK) | K = 0, K =0V(i,j) ¢ E}
e In general unbounded if n < p

e Given a graph G what is the minimal n such that this problem is
bounded (i.e., the MLE exists)?

— Geometric problem
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()~
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@ m¢ : projection onto edge set, S := 7(S), Sg = WG(SQO)
e Note that S¢g = K¢
e MLE for S exists if and only if Sg € int(S¢)




p
Sio
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5]

TG

MLE exists for n samples, if projection of manifold of rank n psd matrices
lies in the interior of the cone S¢ [Uhler, arXiv:1707.04345]




o MLE: K = argmax{logdet(K) — trace(SK)}

o K is dense even if n > p



Structure learning in (undirected) graphical models

o MLE: K = argmax{logdet(K) — trace(SK)}
o K is dense even if n > p

S

e Graphical lasso: Ky = argmax{log det(K) — trace(SK) — A|K|1}
e sparsistent for particular choice of A (under certain assumptions)
[Ravikumar, Wainwright, Raskutti & Yu, 2011]

o K, is not monotone in A: edges can disappear/appear for increasing A

N [Fattahi & Sojoudi, 2019]
e K is not invariant to rescaling
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Structure learning in (undirected) graphical models

o MLE: K = argmax{logdet(K) — trace(SK)}

o K is dense even if n > p

e Graphical lasso: Ky = argmax{log det(K) — trace(SK) — A|K|1}
e sparsistent for particular choice of A (under certain assumptions)
[Ravikumar, Wainwright, Raskutti & Yu, 2011]

o K, is not monotone in A: edges can disappear/appear for increasing A

N [Fattahi & Sojoudi, 2019]
e K is not invariant to rescaling

@ Additional approaches include:

e node-wise regression with the lasso (Meinshausen & Biihlmann, 2006)
e CLIME: constrained ¢1-based optimization (Cai, Liu & Luo, 2011)
e Algorithm with false discovery rate control (Liu, 2013)
o ROCKET: for heavy-tailed distributions (Foygel-Barber & Kolar, 2018)

e Conditional independence testing
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Positive dependence and MTP, distributions

A distribution (i.e. density function) p on X =[] . &\, with &, CR
discrete or open, is multivariate totally positive of order 2 (MTP;) if

p(x)p(y) < pxAy)p(xVy)  forallx,y e X,
where A and V are applied coordinate-wise.

Theorem (ForuinKasteleynGinibee inequality, 1971, Karlin & Rinott, 1980)

MTP, implies positive association, i.e.

cov{g(X), ¥(X)} = 0

for any non-decreasing functions ¢, : R™ — R.
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Positive dependence and MTP, distributions

A distribution (i.e. density function) p on X =[] . &\, with &, CR
discrete or open, is multivariate totally positive of order 2 (MTP;) if

p(x)p(y) < p(xAy)p(xVy)  forallx,y € X,
where A and V are applied coordinate-wise.

Theorem (ForuinKasteleynGinibee inequality, 1971, Karlin & Rinott, 1980)

MTP, implies positive association, i.e.

cov{g(X), ¥(X)} = 0

for any non-decreasing functions ¢, : R™ — R.

Theorem (FLSUWZ, 2017)
If p(x) > 0 and MTP», then p(x) is faithful to an undirected graph.
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A multivariate Gaussian distribution p(x; K) is MTPy if and only if the
inverse covariance matrix K is an M-matrix, that is

Ky <0 for all u# v.




Gaussian MTP, distributions

Theorem (Bglviken 1982, Karlin & Rinott, 1983)

A multivariate Gaussian distribution p(x; K) is MTP, if and only if the
inverse covariance matrix K is an M-matrix, that is

Kuv < 0 fO’f’ all u 75 V.

Ex: 2016 Monthly correlations of global stock markets (investmentFrontier.com)

Nasdaq Canada Europe UK Australia
1.000 0.606 0.731 0.618 0.613 Nasdaq
0.606 1.000 0.550 0.661 0.598 Canada
S=| 0731 0.550 1.000 0.644 0.569 Europe
0.618 0.661 0.644 1.000 0.615 UK
0.613 0.598 0.569 0.615 1.000 Australia

Caroline Uhler Mini-course: Graphical Models Toulouse, Nov 2019 8/15



Gaussian MTP, distributions

Theorem (Bglviken 1982, Karlin & Rinott, 1983)

A multivariate Gaussian distribution p(x; K) is MTP, if and only if the
inverse covariance matrix K is an M-matrix, that is

KUVSO

for all u+ v.

Ex: 2016 monthly correlations of global

Nasdaq

2.629

—0.480

s—1 -] —1.249
—0.202

—0.490

Canada
—0.480
2.109
—0.039
—0.790
—0.459

Europe
—1.249
—0.039

2.491
—0.675
—0.213

stock markets (InvestmentFrontier.com)

UK  Australia

—0.202 —0.490
—0.790 —0.459
—0.675 -0.213

2.378 —0.482
—0.482 1.992

Nasdaq
Canada
Europe
UK
Australia

Sample distribution is MTP5! If you sample a correlation matrix uniformly
at random the probability of it being MTP; is < 107°!
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X is MTP; in:

o |X| is MTP5 in:
o ferromagnetic Ising models

@ Gaussian / binary tree models

@ Gaussian / binary latent tree models

e Binary latent class models
@ Brownian motion tree models o Single factor analysis models

@ Markov chains with MTP, transitions
@ order statistics of i.i.d. variables



Negative dependence: NOT analogous!!

@ Analog of FKG inequality does not hold: negative association,
i.e. cov{p(X),(X)} < 0 for any non-decreasing functions ¢, v is not
implied by p(x)p(y) > p(x A y)p(x V y) for all x, y.

@ See Pemantle (1999): Towards a Theory of Negative Association

@ Strongly Rayleigh measures: sufficient for conditionally negative
association [Borcea, Branden & Liggett, 2009]
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Negative dependence: NOT analogous!!

@ Analog of FKG inequality does not hold: negative association,
i.e. cov{p(X),(X)} < 0 for any non-decreasing functions ¢, v is not
implied by p(x)p(y) > p(x A y)p(x V y) for all x, y.

@ See Pemantle (1999): Towards a Theory of Negative Association

@ Strongly Rayleigh measures: sufficient for conditionally negative
association [Borcea, Branden & Liggett, 2009]

@ Recently used in various machine learning applications to enforce
diversity, e.g. recommender systems, neural network sparsification,

matrix sketching, diversity priors

e See NeurlPS 2018 Tutorial by g 7 &
o

Jegelka & Sra ‘ & —————
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ML Estimation for Gaussian MTP, distributions

Let S be the sample covariance matrix. Then maximum likelihood
estimation is a convex optimization problem:

Primal: Max-Likelihood Dual: Entropy
imize | K) — trace(K. inimize — -
maximize log det(K) — trace(KS) minimize log det(X) — p
subject to K, <0, Yu#v. subject to X, = Sy, Xy > Sy
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ML Estimation for Gaussian MTP, distributions

Let S be the sample covariance matrix. Then maximum likelihood
estimation is a convex optimization problem:

Primal: Max-Likelihood Dual: Entropy
ma%iirgize log det(K) — trace(KS) mir)%izr_raize — logdet(X) — p
subject to K, <0, Yu#v. subject to X, = Sy, Xy > Sy
Theorem (Slawski & Hein, 2015)
The MLE in a Gaussian M'TP, model exists with probability 1 when n > 2.J

New proof: 3 lines using ultrametrics [Lauritzen, U. & Zwiernik, 2019]
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ML Estimation for Gaussian MTP, distributions

Let S be the sample covariance matrix. Then maximum likelihood
estimation is a convex optimization problem:

Primal: Max-Likelihood Dual: Entropy
imi | K) — trace(K. inimi — —
maximize log det(K) — trace(KS) minimize log det(X) — p
subject to K, <0, Yu#v. subject to X, = Sy, Xy > Sy

Theorem (Slawski & Hein, 2015)
The MLE in a Gaussian M'TP, model exists with probability 1 when n > 2.

New proof: 3 lines using ultrametrics [Lauritzen, U. & Zwiernik, 2019]

Theorem (Wang, Roy & U., 2019)

Graphical model inference by testing the signs of the empirical partial correlation
coefficients is consistent in the high-dimensional setting without the need of any
tuning parameter. With {1-penalty, the resulting estimator is monotone.
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Application: Portfolio selection [Agrawal, Roy & U., 2019]

Daily stock return data from the Center for Research in Security Prices
(CRSP) between 1975-2015 (NYSE, AMEX & NASDAQ stock exchanges).

M T Linear Approximate

(nr. of assets) ‘ (lookback period) ‘ EW-TQ Shrinkage Factor Model MTP,
100 25 0.694 0.710 0.730 0.803
50 0.694 0.625 0.637 0.849

100 0.694 0.600 0.617 0.896

200 0.694 0.670 0.688 0.899

400 0.694 0.736 0.782 0.892

1260 0.694 0.831 0.834 0.890

200 50 0.757 0.742 0.726 0.853
100 0.757 0.719 0.716 0.829

200 0.757 0.812 0.800 0.885

400 0.757 0.864 0.870 0.886

800 0.757 0.967 0.961 0.970

1260 0.757 0.906 0.916 0.955

500 125 0.764 0.876 0.872 1.019
250 0.764 0.985 0.977 1.112

500 0.764 0.940 0.980 1.045

1000 0.764 0.918 0.978 1.061

Information ratio (ratio of average return to standard deviation of returns)

when weights are estimated based on “full” Markowitz portfolio problem
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Conclusions

Graphical models combine graph theory with probability theory into a
powerful framework for multivariate statistical modeling

@ Total positivity constraints are often implicit and reflect real processes
e ferromagnetism

o latent tree models
@ MTP, implies faithfulness

e MTP; is well-suited for high-dimensional applications (also in
non-parametric setting, see our recent work)

@ Explicit MTP5 constraints enhance interpretability of graphical
models (induce sparsity without the need of a tuning parameter)

e MTP2 distributions not only have broad applications (finance,
psychology, genomics), but also lead to beautiful theory (exponential
families, convexity, combinatorics, semialgebraic geometry)
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Causal inference

e Framework for causal inference from observational data (structural
equation models) developed in 1920's by J. Neyman and S. Wright

@ Skepticism amongst statisticians halted the developments for 50 years

@ Reemergence in the 1970's after major contributions by J. Pearl (CS),
J. Robins (epidemiology), D. Rubin (stats) & P. Spirtes (philosophy)
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Causal inference

e Framework for causal inference from observational data (structural
equation models) developed in 1920's by J. Neyman and S. Wright

@ Skepticism amongst statisticians halted the developments for 50 years

@ Reemergence in the 1970's after major contributions by J. Pearl (CS),
J. Robins (epidemiology), D. Rubin (stats) & P. Spirtes (philosophy)

X Interaction between genetics and causal inference could be
particularly beneficial:

o Geneticists can perform interventional experiments relatively easily
e Drop-seq and Perturb-seq: High-throughput (100,000-1 mio single-cell
measurements on all 20,000 genes per experiment) observational and
interventional single-cell RNA-seq data is now available
* Unique data and challenges!
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Gene expression data - single-cell RNA-seq

Causal inference using both observational

Causal network p and interventional data

Expression

Interventions

oy

Expression

®

Genes

\

Sample data

Single cells

Perturb-seq: High-throughput observational and interventional single-cell
RNA-seq data is now available [Dixit et al., 2016]
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Structural equation models

@ Introduced by Sewell Wright in the 1920s
@ Represent causal relationships by a directed acyclic graph (DAG)

@ Each node is associated with a random variable; stochasticity is
introduced by independent noise variables ¢;

/@\ X1 = (X, )
Xo = (X1, €)
®) D
\ / X3 = f3(e3)
X = f3(X2, X3, €4)
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Structural equation models

@ Introduced by Sewell Wright in the 1920s
@ Represent causal relationships by a directed acyclic graph (DAG)

@ Each node is associated with a random variable; stochasticity is
introduced by independent noise variables ¢;

(x) X1 = (X3, €1)
®/ \® Xa = h(X1,€)
\ / X3 = f3(e3)
X = f3(X2, X3, €4)

@ Structural equation model also defines interventional distribution:

e Perfect (hard) intervention on X5: Xp =¢

o General intervention on X»: Xo = fz(Xl,Ez)
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Markov equivalence classes on 3 nodes & talk overview

@ Markov equivalence: different DAGs can encode same conditional
independence relations (through factorization of the joint distribution)

O AR
SARAReA G
0[S [5T7
VY

X Interventional Markov equivalence classes?

* How do they depend on the type of intervention? Do perfect
interventions provide smaller equivalence classes than imperfect
interventions?

@ Algorithms for learning the interventional Markov equivalence class?
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@ Let 7 be a set of intervention targets

Ex: Perfect interventions Z = {0, {4},{3,5}}

NN NN AN
5——6 7 5—6 7 5—06 7
(a) G° (b) G4 (c) GB35




Interventional Markov equivalence class

o Let Z be a set of intervention targets

Ex: Perfect interventions Z = {0, {4},{3,5}}

NONINT NN NN
5—6 7 5—6 T 5—6 7
(a) G° (b) GU{4h (©) G135

e Hauser and Biihlmann (2012): characterized Z-Markov equivalence
classes under perfect interventions: an edge is orientable if it is
e orientable from observational data
e adjacent to an intervened node
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Interventional Markov equivalence class
o Let Z be a set of intervention targets

Ex: Perfect interventions Z = {0, {4},{3,5}}

NONINT NN NN
5—6 7 5—6 7 5——6 7
(a) G° (b) GU{4h (©) G135

e Hauser and Biihlmann (2012): characterized Z-Markov equivalence
classes under perfect interventions: an edge is orientable if it is
e orientable from observational data
e adjacent to an intervened node

Theorem (Yang, Katcoff & Uhler, ICML 2018)

The Z-Markov equivalence classes under perfect and imperfect
interventions are the same.

Proof: By introducing & providing a graphical criterion for the Z-Markov property for Z-DAGs.
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Algorithms for learning causal graphs

There are two main types of algorithms for learning causal graphs from
observational data:

o Constraint-based: treat causal search as constraint satisfaction
problem; constraints given by conditional independence; main
example: PC algorithm [Spirtes, Glymour & Scheines, 2001]

Properties: very fast, with consistency guarantees (with prob. 1 as

n — 00), require large sample size, tend to miss edges

@ Score-based: maximize score (e.g. BIC) of a Markov equivalence
class with respect to a data set by greedy search; main example:
Greedy Equivalence Search (GES) [Chickering, 2002]

Properties: higher accuracy for same sample size, huge search space,
theoretical consistency guarantees
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Limitation of score-based approaches

Table 1: Equivalence Class Counts

Equivalence classes CIYADG ClL,/Cl
1 1.00000  1.00000

2 0.66667  0.50000

11 0.44000 0.36364

185 0.34070  0.31892

8782 029992  0.29788

1067825 0.28238  0.28667
312510571 0.27443  0.28068
212133402500 0.27068  0.27754
326266056291213 0.26888  0.27590
1118902054495975141 0.26799  0.27507

O D 00 NNV A WN S

—

(Gillispie & Perlman, 2001)

Problem of enumerating Markov equivalence classes and their sizes leads

to hard and beautiful combinatorics problems: e.g., formula for number of

equivalence classes on p nodes? Average size of equivalence classes?
[Radhakrishnan, Solus, Uhler, UAI 2017]

[Katz-Rogozhnikov, Shanmugam, Squires, Uhler, AISTATS 2019]
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Constraint-based methods require the faithfulness assumption:
(ilj))EE <+ XiIXj|Xs VScV\{ij}

[Zhang &Spirtes, 2003



Limitation of constraint-based approaches

Constraint-based methods require the faithfulness assumption:
(hj)e E <= XX |Xs vS c V\{i,j}

[Zhang &Spirtes, 2003]

Medicine —— Lung
Ex: N % Faithfulness means that causal
) effects cannot cancel out!
Immune
System
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X1 a2 Ao
Xi=¢€
u A Xo = anXi + e = X ~N(0,%), 1=
e » X3 = a13X1 + a3 Xs + €3 (1= A)(I - A)T
e ~N(0,1)
X3



Unfaithful distributions: 3-node example

X1

a12

Xo

X1=¢a

Xo = apXi+ e = X ~ N(QZ), Yl =
X3 = a13X1 + anXo + €3 (I =A(-AT

e ~N(0,/)

Faithfulness is NOT satisfied if any of the following relations hold:

X L X
X L X
X2 1L X3
XL X | Xs
X; L X3 | X,
X L X3 | X

Caroline Uhler

Freret

det((z_l)m 3)=ap=0

det((X~ )12 23) = 313 + axaxs =0
det((Z")12,13) = ajoa23 + a12a13 + a3 = 0
det((£7%)12) = aiza3 — a1 =0

det((Z " )13) = —ai3 =0

det((Z7')23) = —a23 =0

Mini-course: Graphical Models Toulouse, Nov 2019

10 / 20



Unfaithful distributions: 3-node example

X, a2 Xo

X1=¢a

Xo = apXi+ e = X ~ N(QZ), Yl =
X3 = a13X1 + anXo + €3 (I =A(-AT

e ~N(0,/)

Faithfulness is NOT satisfied if any of the following relations hold:

X1 L X <=  det((Z Miz23) = a2 =0

e X; I X;3 <~ det((X~ )12 23) = a13 + areaz =0

o Xy L X; < det((Z ")1213) = ahazs + arzais + azs = 0
@ X1 L Xo|Xs <= det((XT 1i2)=azan—an=0

0 X1 LXs|Xo = det((Z')13)=—ai3=0

@ X L Xs| X1 <= det((Z7')23)=—an=0

—  Faithfulness not satisfied on collection of hypersurfaces in RIE|
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@ For consistency of constraint-based algorithms data has to be
bounded away from these hypersurfaces by +/log(p)/n

e For high-dimensional consistency: p, = o(log(n))
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Idea: DAG defined by ordering of vertices (permutation) and skeleton

@ For p = 10 search space is of size 10! = 3,628, 800 versus 108



Alternative approach: Permutation-based searches
Idea: DAG defined by ordering of vertices (permutation) and skeleton

@ For p = 10 search space is of size 10! = 3,628,800 versus 108

@ For each permutation 7 construct a DAG G, = (V, E;) by
(7(i),7(j)) € Ex <= Xr(iy L Xa(gy | Xin(1),...ow(i=1)7(i41),...7(—1)}
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Alternative approach: Permutation-based searches

Idea: DAG defined by ordering of vertices (permutation) and skeleton

@ For p = 10 search space is of size 10! = 3,628, 800 versus 108

@ For each permutation 7 construct a DAG G, = (V, E;) by
(m(), () € Ex <= Xa(iy £ Xa(j) | X(x(@).....r(i—1)m(i41),..n(—1)}

@ Greedy search for sparsest permutation G- (GSP) is consistent under
strictly weaker conditions than faithfulness

[Mohammadi, Uhler, Wang & Yu, SIAM J. Discr. Math., 2018]
[Solus, Wang, Matejovicova & Uhler, arXiv:1702.03530]

edges in polytope of permutations
(i.e., permutohedron) connect
neighboring transpositions, e.g.
(3,1,4,2) — (3,4,1,2)

3241 214
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Greedy SP algorithm

1

Cl relations:

3—4

1243 2413

Caroline Uhler

Mini-course: Graphical Models

[Mohammadi, Uhler, Wang & Yu, 2018]

112 1143 114]|{23}
214(3, 214]{1,3}

(4.2,1.3)

24 4
fl,s)

2;‘)14—2

Y%
!

(2,4,1.3)

(2.4.3.1)

7
\

(2143) (1,2,4,3)
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Learning the interventional Markov equivalence class

@ GIES: perfect intervention adaptation of GES  [Hauser & Biihimann, 2012]

e In general not consistent [Wang, Solus, Yang & Uhler, NIPS 2017]

@ IGSP: interventional adaptation of GSP: provably consistent
algorithm that can deal with interventional data

e for perfect interventions [Wang, Solus, Yang & Uhler, NIPS 2017]

e for general interventions [Yang, Katcoff & Uhler, ICML 2018]

Note: While for perfect interventions it is sufficient to perform
conditional independence tests, for general interventions we need to
test whether a conditional distribution is invariant to the interventions
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Protein signaling network

[Yang, Katcoff & Uhler, 2018]

Protein signaling network described by Sachs et al. (2005);
7466 measurements of the abundance of phosphoproteins
and phospholipids recorded under different interventional
experiments;

1em@@ +++
0@ ++++
+ + \T /
- o IGSP
7 « pIGSP
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(a) Directed edge recovery
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Perturb-seq data

Measured Genes

-
&

Rela

Hifla
Spil

-
a
=
E

Deleted Genes

@ After preprocessing:
tional samples from

= N

o
g-value
number of true positives

[Yang, Katcoff & Uhler, 2018]
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number of false positives

992 observational samples and 13,435 interven-
8 gene deletions; analyzed 24 genes of interest

@ Predicted effect of each intervention when leaving out that data
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Perturb-seq

data

[Yang, Katcoff & Uhler,

Measured Genes

-
&

Hifla
Spil

-
a
=
E

Deleted Genes

Rela

= N

o
g-value
number of true positives

o 1GSP
« pIGSP
- GIES

T
0 10 20

T T
30 40 50 60 70

number of false positives

2018]

@ After preprocessing: 992 observational samples and 13,435 interven-
tional samples from 8 gene deletions; analyzed 24 genes of interest

@ Predicted effect of each intervention when leaving out that data

@ Much work remains to be done to deal with zero-inflated data, off-
target intervention effects, and latent variables;
see our recent work [arXiv:1906.00928, 1910.09014, 1910.09007]
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@ Often interested in difference of regulatory network, e.g. between
normal / diseased states; learn difference directly without estimating
each network separately! [Wang, Squires, Belyaeva & Uhler, NeurlPS 2018]

Difference network of naive versus activated T- | Difference network of ovarian cancer cells from
cells (estimated from single-cell RNA-seq) 2 patient cohorts with different survival rates




Causal inference and genomics

@ Often interested in difference of regulatory network, e.g. between
normal / diseased states; learn difference directly without estimating
each network separately! [Wang, Squires, Belyaeva & Uhler, NeurlPS 2018]

Difference network of ovarian cancer cells from
2 patient cohorts with different survival rates

s
s ()
Q

INHBA

Difference network of naive versus activated T-
cells (estimated from single-cell RNA-seq)

GZMB)

(CoNBD §100AD) (THRFT \\x TTGAE)
\ F A (‘D(% $100A6) (KLF2 @ls) RAMPT

A CsI2RB

@ Tractable strategy to select interventions in batches under budget
constraints for causal inference with provable guarantees on both
approximation and optimization quality based on submodularity

[Agrawal, Squires, Yang, Shanmugam & Uhler, AISTATS 2019]
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Statistical-computational trade-off

Open problem: Characterize the statistical-computational trade-off that
is inherent to causal inference

PC

GQP 4GES

Statistical assumptions

*S P

Computation time

@ What is the optimal algorithm for unlimited computation time?
(Conjecture: SP algorithm)

@ How much weaker than faithfulness are SMR (necessary and sufficient
assumption for SP) or triangle-faithfulness assumption (only
violations that are undetectable)?

@ What is the optimal tradeoff curve?
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