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Applications of graphical models

Probabilistic models that capture the statistical dependencies between
variables of interest in the form of a network

Used throughout the natural sciences, social sciences, and economics
for modeling interactions

Undirected graphical models encode partial correlations, while
directed graphical models can be used to represent causality
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Graphical models

Motivation: Provide an economic representation of a joint distribution
using local relationships between variables

Origins of graphical models can be traced back to 3 communities:

Statistical physics: use undirected graph to represent distribution over
a large system of interacting particles [Gibbs, 1902]

Genetics: use directed graphs to model inheritance in natural species
[Wright, 1921]

Statistics: use graphs to represent interactions in multi-dimensional
contingency tables [Bartlett, 1935]

Graphical models combine graph theory with probability theory into a
powerful framework for multivariate statistical modeling [Lauritzen, 1996]

Algebraic, geometric and combinatorial questions arise naturally when
studying graphical models
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Overview of mini-course

(1) Introduction to graphical models - Markov properties

(2) Gaussian graphical models - Maximum likleihood estimation

(3) Covariance models with linear structure - Parameter estimation and
structure learning

(4) Causal inference - Structure discovery
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Overview

Lecture is based on a book chapter that I wrote for the Handbook of
Graphical Models edited by M. Drton, S. Lauritzen, M. Maathuis and
M. Wainwright:

C. Uhler, “Gaussian graphical models: An algebraic and geometric
perspective”, available at arXiv:1707.04345

Goal of this lecture is to give an introduction to Gaussian graphical
models and show that algebraic, geometric and combinatorial
questions arise naturally when studying graphical models
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Gaussian graphical models

Goal: Characterize relationship among a large number of variables

Visualize interactions by graph

Gaussian graphical models: Used throughout the natural sciences,
social sciences and economics for modeling interactions among nodes
for continuous multivariate data

encodes a deubiquitinating enzyme (DUB) in the
ESCRT pathway (17). TheWDR48-encoded pro-
tein forms stable complexes with multiple DUBs,
such as USP1, USP12, and USP46, and is re-
quired for enzymatic activity and linked to lyso-
somal trafficking (18, 19). KIF1C encodes a
motor protein localized to the ER/Golgi complex,
suggesting a role in trafficking (20). To validate
the effect of the putative splicing mutation in
family 789, we obtained fibroblasts and confirmed
skipping of exon 4 (fig. S9). Defects in ESCRTare
linked to neurodegenerative disorders such as
frontotemporal dementia, Charcot Marie Tooth
disease, and recently AR-HSP (21–23). Addition-
ally, the HSP gene products SPG20, SPAST, and
ZYFVE26 interact with components of this com-
plex (24–26). Taken together, this suggests that dis-
ruptions in ESCRT and endosomal function can
lead to HSP and other forms of neurodegeneration.

AMPD2, ENTPD1, and NT5C2 are involved
in purine nucleotide metabolism (fig. S10). Nu-
cleotide metabolism is linked to the neurological
disorder Lesch-Nyhan disease, among others (27),
but was not previously implicated in HSP. AMPD2

encodes one of three adenosine monophosophate
(AMP) deaminase enzymes involved in balancing
purine levels (28). Mutations in AMPD2 have
been recently linked to a neurodegenerative
brainstem disorder (28). In addition, the deletion
we have identified in this study affects just the
longest of the three AMPD2 isoforms, indicating
that the most N-terminal domain of AMPD2 is
important to prevent motor neuron degeneration.
ENTPD1 encodes an extracellular ectonuclease
hydrolyzing adenosine nucleotides in the synaptic
cleft (29). NT5C2 encodes a downstream cytosolic
purine nucleotide 5′ phosphatase. Purine nucleo-
tides are neuroprotective and play a critical role in
the ischemic and developing brain (29); thus, alter-
ations in their levels could sensitize neurons to stress
and insult. ENTPD1 was recently identified as a
candidate gene in a family with nonsyndromic in-
tellectual disability, butHSPwas not evaluated (30).

Candidate HSP Genes Identified by
Network Analysis
For families that were not included in our initial
analysis, we interrogated our exome database for

variants in genes emerging from the extended
HSPome network. By using this method, we iden-
tified potentially pathogenic variants in MAG,
BICD2, and REEP2, found in homozygous in-
tervals in three families (Fig. 3), validating the
usefulness of the HSPome to identify new HSP
genes. Interacting with KIF1C in the HSPome is
CCDC64, encoding amember of theBicaudal fam-
ily (31), a paralog of theBIC2 gene that emerged in
the HSPome (FDR < 0.05, table S5). Family 1370
displays a homozygous Ser608→Leu608missense
change in the BIC2 gene within a homozygous
haplotype. The Drosophila bicaudal-D protein is
associated with Golgi-to-ER transport and poten-
tially regulates the rate of synaptic vesicle recycling
(32). Coimmunoprecipitation confirmed that
BICD2 physically interacts with KIF1C (fig. S11).
Recently, a mutation in BICD2was implicated in
a dominant form of HSP (33).

MAG was identified as a significant poten-
tial HSP candidate (FDR < 0.05) from the HSPome,
interacting with PLP1, the gene product mutated
in SPG2. MAG is a membrane-bound adhesion
protein implicated in myelin function, and knockout
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Fig. 2. Hereditary spastic paraplegia interactome. (A) HSP seeds + can-
didate network (edge-weighted force-directed layout), demonstrating many of
the genes known to be mutated in HSP (seeds, blue) and new HSP candidates
(red), along with others (circles) constituting the network. (B and C) Comparison
of statistical strength of HSP subnetworks with 10,000 permutations of randomly
selected proteins. Dots denote the value of the metric on the true set (i.e., seeds

or seeds + candidates). Box and whisker plots denote matched null distributions
(i.e., 10,000 permutations). (B) Seed (known mutated in HSP) versus random
proteins drawn with the same degree distribution. (C) Seed plus candidate HSP
versus a matching set of proteins. (Left) Within group edge count (i.e., number
of edges between members of the query set). (Middle) Interaction neighborhood
overlap (i.e., Jaccard similarity). (Right) Network random walk similarity.

www.sciencemag.org SCIENCE VOL 343 31 JANUARY 2014 509

RESEARCH ARTICLE

(a) Gene association
network (Novarino et al.,

Science 343, 2014)

(b) Athens stock exchange
(Garos & Argyrakis, Physica A, 2007)

(c) Wind speed forecasting
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Gaussian Distribution

A random vector X ∈ Rp follows a multivariate Gaussian distribution
with mean µ ∈ Rp and covariance matrix Σ ∈ Sp�0 if it has density

fµ,Σ(x) = (2π)−p/2 det(Σ)−1/2 exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)

What can you say about the space of covariance matrices?
How does the space of 3× 3 correlation matrices look like?
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Gaussian Graphical Model

G = (V ,E ) undirected graph with vertices V = {1, . . . , p} and

edges E

KG = {K ∈ Sp�0 | Kij = 0 for all i 6= j with (i , j) /∈ E}

A Gaussian vector X ∈ Rp is a Gaussian graphical model on G if

X ∼ N (µ,Σ) and Σ−1 ∈ Sp�0(G ).

Question: Interpretation of missing edges in G?

Caroline Uhler Mini-course: Graphical Models Toulouse, Nov 2019 5 / 23



Gaussian Graphical Model

G = (V ,E ) undirected graph with vertices V = {1, . . . , p} and

edges E

KG = {K ∈ Sp�0 | Kij = 0 for all i 6= j with (i , j) /∈ E}

A Gaussian vector X ∈ Rp is a Gaussian graphical model on G if

X ∼ N (µ,Σ) and Σ−1 ∈ Sp�0(G ).

Question: Interpretation of missing edges in G?

Caroline Uhler Mini-course: Graphical Models Toulouse, Nov 2019 5 / 23



Marginals and Conditionals of a Gaussian

Theorem

Let X ∼ Np(µ,Σ) and partition X into two components XA ∈ Ra and
XB ∈ Rb such that a + b = p. Let µ and Σ be partitioned accordingly, i.e.,

µ =

(
µA
µB

)
and Σ =

(
ΣA,A ΣA,B

ΣB,A ΣB,B

)
.

Then,

(a) the marginal distribution of XA is N (µA,ΣA,A);

(b) the conditional distribution of XA | XB = xB is N (µA|B ,ΣA|B), where

µA|B = µA+ΣA,BΣ−1
B,B(xB−µB) and ΣA|B = ΣA,A−ΣA,BΣ−1

B,BΣB,A.

Note: Let K = Σ−1. Then by Schur complement, ΣA|AC =(KAA)−1. Hence
a missing edge in G means Kij = 0, or equivalently, Xi ⊥⊥ Xj | XV \{i ,j}.
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Two Main Problems

Given i.i.d. samples X (1), . . . ,X (n) ∈ Rp from a Gaussian graphical model

Learn the graph G

see tomorrow’s lectures (e.g. graphical lasso)

Estimate the edge weights, i.e. the non-zero entries of Σ−1

maximum likelihood estimation

These problems don’t depend on mean µ; w.l.o.g. assume µ = 0

sample covariance matrix is given by

S =
1

n

n∑
i=1

X (i)(X (i))T ∈ Sp�0, rk(S) = n ≤ p with probability 1

log-likelihood is given by: `(Σ;S) ∝ − log det(Σ)− tr (SΣ−1)

What can be said about the log-likelihood function?
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Parameter estimation for Gaussian graphical models

Given a graph G , the maximum likelihood estimator (MLE) K̂ := Σ̂−1

solves the following convex optimization problem:

maximize log detK − tr (SK )

subject to K ∈ KG

Question: What is the MLE when G is the complete graph?
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Parameter estimation for Gaussian graphical models

By strong duality: Given a graph G , the MLE K̂ := Σ̂−1 solves the
following equivalent convex optimization problems:

maximize log detK − tr (KS) minimize − log det Σ− p

subject to Kij = 0, ∀(i , j) /∈ E subject to Σij = Sij , (i , j) ∈ E or i = j

Theorem (Dempster 1972)

In a Gaussian graphical model on G the MLE Σ̂ exists if and only if the
partial sample covariance matrix SG = (Sij | (i , j) ∈ E or i = j)
(sufficient statistics) can be extended to a positive definite matrix. Then
the MLE Σ̂ is the unique completion whose inverse satisfies

(Σ̂−1)ij = 0, ∀ i 6= j , (i , j) /∈ E .

Existence of MLE is equivalent to positive definite matrix
completion problem!
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Geometric Picture  Concentration matrices:                     Covariance matrices:        

GeometryGeometry

SG := πG (S), SG := πG (Sp�0); note that SG = K∨G
fiberG (S) := {Σ ∈ Sp�0 | ΣG = SG}
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Positive Definite (pd) Matrix Completion Problem

Necessary condition for existence of pd completion:

all specified
minors are pd

However, this is in general not sufficient:

SG =


1 0.9 ? −0.9

0.9 1 0.9 ?
? 0.9 1 0.9
−0.9 ? 0.9 1

 does not have a pd completion.

Theorem (Grone, Johnson, Sá & Wolkovicz, 1984)

For a graph G the following statements are equivalent:

(a) A G-partial matrix MG ∈ R|E∗| has a pd completion if and only if all
completely specified submatrices in MG are positive definite.

(b) G is chordal (also known as triangulated), i.e. every cycle of length 4
or larger has a chord.
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Statistical Problem

Current statistical applications:

Number of variables >> Number of observations

Example: Genetic networks

Gene expression data of a few individuals to model interaction
between large number of genes

→ Gaussian graphical models widely used in this context

Problem: What is the minimum number of observations for existence of
the MLE in a given Gaussian graphical model?
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Example K2,3
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What is the minimal rank n∗ such that

SG =


s11 ? s13 s14 s15

? s22 s23 s24 s25

s13 s23 s33 ? ?
s14 s24 ? s44 ?
s15 s25 ? ? s55


can be completed to a positive definite matrix for any S ∈ Sp�0 of rank
n ≥ n∗?
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Bounds

Let n∗G denote the minimal rank such that every S ∈ Sp�0 has a positive
definite completion on G

n∗G ≥ maximal clique size of G

n∗G ≤ p

Theorem (Grone, Johnson, Sá & Wolkovicz, 1984)

For chordal (i.e. triangulated) graphs n∗ = maximal clique size of G.

Let G be non-chordal. Then

n∗G ≥ maximal clique size of G

n∗G ≤ maximal clique size in minimal chordal cover of G
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Elimination Criterion

Theorem (Uhler, 2012)

Let In be the ideal of (n + 1)× (n + 1) minors of a symmetric p× p matrix
of unknowns S. Let IG ,n be the elimination ideal obtained from In by
eliminating all unknowns corresponding to non-edges in the graph. If

IG ,n = 0

then n∗G ≤ n.

In corresponds to all symmetric matrices of rank ≤ n

Elimination corresponds to projection onto SG
IG ,n = 0 means that the projection is full-dimensional

Caroline Uhler Mini-course: Graphical Models Toulouse, Nov 2019 18 / 23



3× 3 grid
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Theorem (Uhler, 2012)

When G is the 3× 3 grid, then n∗G = 3.

First example of a graph for which n∗G < maximal clique size in
minimal chordal cover

Solves an open problem by Steffen Lauritzen

Theorem (Gross and Sullivant, 2018)

For any grid, n∗G = 3. Furthermore, for any planar graph, n∗ ≤ 4.
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Theorem (Uhler, 2012)

When G is the 3× 3 grid, then n∗G = 3.
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minimal chordal cover
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Computing the MLE

Convex optimization problem; can be solved e.g. using interior point
methods or coordinate descent algorithms (often faster)

There is a closed-form formula for the MLE ⇐⇒ G is chordal
(Lauritzen, 1996)

ML-degree: maximal number of solutions to the likelihood equations

There is a rational formula for the MLE (in the entries of S) ⇐⇒
ML-degree is 1 ⇐⇒ G is chordal (Sturmfels & Uhler, 2010)

Conjecture The p-cycle maximizes the ML-degree over all graphs on
p nodes and has ML-degree (p − 3)2p−2 + 1
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Alternative Approach: Sparsity Order of a Graph

SG PD completable if and only if 〈SG ,X 〉 > 0 for all X ∈ KG

extremal

Knowledge of extremal rays of KG is useful for deciding PD
completability

The sparsity order of a graph G is defined as

ord(G ) = max{rk (X ) | X ∈ KG extremal}

There should be strong connections between existence of the MLE,
ML-degree and sparsity order of a graph, but these are still quite
unclear (Solus, Uhler & Yoshida, 2016)

Caroline Uhler Mini-course: Graphical Models Toulouse, Nov 2019 21 / 23



Alternative Approach: Sparsity Order of a Graph

SG PD completable if and only if 〈SG ,X 〉 > 0 for all X ∈ KG

extremal

Knowledge of extremal rays of KG is useful for deciding PD
completability

The sparsity order of a graph G is defined as

ord(G ) = max{rk (X ) | X ∈ KG extremal}

There should be strong connections between existence of the MLE,
ML-degree and sparsity order of a graph, but these are still quite
unclear (Solus, Uhler & Yoshida, 2016)

Caroline Uhler Mini-course: Graphical Models Toulouse, Nov 2019 21 / 23



Sparsity Order of a Graph

ord(G ) = 1 if and only if G chordal (Agler et al., 1988)

If H is an induced subgraph of G , then

ord(H) ≤ ord(G ) (Agler et al., 1988)

If G is the clique sum of two graphs G1 and G2,

then ord(G ) = max{ord(G1), ord(G2)} (Helton et al. 1989)

ord(G ) ≤ p − 2 with equality if and only if G

is a p-cycle; the extremal ranks are 1 and p − 2 (Helton et al. 1989)

ord(Km,n) =

{
m2−m

2 + 1 if n ≥ m2−m
2 + 1

n otherwise
; (Grone & Pierce, 1990)

all ranks 1, . . . , ord(Km,n) are extremal

All graphs of order 2 have been characterized (Laurent, 2001)

Many many open problems...
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(Undirected) Gaussian graphical models

X ∼ N (0,Σ), K := Σ−1, p =nr. of variables, n =nr. of samples

Gaussian graphical model: (i , j) /∈ E if and only if Kij = 0

if and only if Xi ⊥⊥ Xj | XV \{i ,j}

Sample covariance matrix S is of rank min(n, p)

MLE:

K̂ = argmax{log det(K )− trace(SK ) | K � 0, Kij = 0 ∀(i , j) /∈ E}

In general unbounded if n < p

Given a graph G what is the minimal n such that this problem is
bounded (i.e., the MLE exists)?

→ Geometric problem
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Geometric Picture
Concentration matrices: Covariance matrices:

Geometry

πG : projection onto edge set, SG := πG (S), SG := πG (Sp�0)

Note that SG = K∨G
MLE for S exists if and only if SG ∈ int(SG )
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Geometric Picture

MLE exists for n samples, if projection of manifold of rank n psd matrices
lies in the interior of the cone SG [Uhler, arXiv:1707.04345]
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Structure learning in (undirected) graphical models

MLE: K̂ = argmax{log det(K )− trace(SK )}
K̂ is dense even if n >> p

Graphical lasso: K̂λ = argmax{log det(K )− trace(SK )− λ|K |1}
sparsistent for particular choice of λ (under certain assumptions)

[Ravikumar, Wainwright, Raskutti & Yu, 2011]

K̂λ is not monotone in λ: edges can disappear/appear for increasing λ
[Fattahi & Sojoudi, 2019]

K̂λ is not invariant to rescaling

Additional approaches include:

node-wise regression with the lasso (Meinshausen & Bühlmann, 2006)

CLIME: constrained `1-based optimization (Cai, Liu & Luo, 2011)

Algorithm with false discovery rate control (Liu, 2013)

ROCKET: for heavy-tailed distributions (Foygel-Barber & Kolar, 2018)

Conditional independence testing
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Motivation: Graphical models under positive dependence

How to model strong
forms of positive depen-
dence in data?
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Positive dependence and MTP2 distributions

A distribution (i.e. density function) p on X =
∏

v∈V Xv , with Xv ⊆ R
discrete or open, is multivariate totally positive of order 2 (MTP2) if

p(x)p(y) ≤ p(x ∧ y)p(x ∨ y) for all x , y ∈ X ,

where ∧ and ∨ are applied coordinate-wise.

Theorem (FortuinKasteleynGinibre inequality, 1971, Karlin & Rinott, 1980)

MTP2 implies positive association, i.e.

cov{φ(X ), ψ(X )} ≥ 0

for any non-decreasing functions φ, ψ : Rm → R.

Theorem (FLSUWZ, 2017)

If p(x) > 0 and MTP2, then p(x) is faithful to an undirected graph.
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Gaussian MTP2 distributions

Theorem (Bølviken 1982, Karlin & Rinott, 1983)

A multivariate Gaussian distribution p(x ;K ) is MTP2 if and only if the
inverse covariance matrix K is an M-matrix, that is

Kuv ≤ 0 for all u 6= v .

Sample distribution is MTP2! If you sample a correlation matrix uniformly
at random the probability of it being MTP2 is < 10−6!
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Gaussian MTP2 distributions

Theorem (Bølviken 1982, Karlin & Rinott, 1983)

A multivariate Gaussian distribution p(x ;K ) is MTP2 if and only if the
inverse covariance matrix K is an M-matrix, that is

Kuv ≤ 0 for all u 6= v .

Ex: 2016 Monthly correlations of global stock markets (InvestmentFrontier.com)

S =

Nasdaq Canada Europe UK Australia


1.000 0.606 0.731 0.618 0.613 Nasdaq
0.606 1.000 0.550 0.661 0.598 Canada
0.731 0.550 1.000 0.644 0.569 Europe
0.618 0.661 0.644 1.000 0.615 UK
0.613 0.598 0.569 0.615 1.000 Australia

Sample distribution is MTP2! If you sample a correlation matrix uniformly
at random the probability of it being MTP2 is < 10−6!
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Gaussian MTP2 distributions

Theorem (Bølviken 1982, Karlin & Rinott, 1983)

A multivariate Gaussian distribution p(x ;K ) is MTP2 if and only if the
inverse covariance matrix K is an M-matrix, that is

Kuv ≤ 0 for all u 6= v .

Ex: 2016 monthly correlations of global stock markets (InvestmentFrontier.com)

S−1 =

Nasdaq Canada Europe UK Australia


2.629 −0.480 −1.249 −0.202 −0.490 Nasdaq
−0.480 2.109 −0.039 −0.790 −0.459 Canada
−1.249 −0.039 2.491 −0.675 −0.213 Europe
−0.202 −0.790 −0.675 2.378 −0.482 UK
−0.490 −0.459 −0.213 −0.482 1.992 Australia

Sample distribution is MTP2! If you sample a correlation matrix uniformly
at random the probability of it being MTP2 is < 10−6!
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MTP2 constraints are often implicit

Transcription 
factors RNA

transcript
RNA

Polymerase

Lamin

MTP2 constraints are often implicit

|X | is MTP2 in:

Gaussian / binary tree models

Gaussian / binary latent tree models

Binary latent class models
Single factor analysis models

X is MTP2 in:

ferromagnetic Ising models

Markov chains with MTP2 transitions

order statistics of i.i.d. variables

Brownian motion tree models
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|X | is MTP2 in:

Gaussian / binary tree models

Gaussian / binary latent tree models

Binary latent class models
Single factor analysis models

X is MTP2 in:

ferromagnetic Ising models

Markov chains with MTP2 transitions

order statistics of i.i.d. variables
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Negative dependence: NOT analogous!!

Analog of FKG inequality does not hold: negative association,
i.e. cov{φ(X ), ψ(X )} ≤ 0 for any non-decreasing functions φ, ψ is not
implied by p(x)p(y) ≥ p(x ∧ y)p(x ∨ y) for all x , y .

See Pemantle (1999): Towards a Theory of Negative Association

Strongly Rayleigh measures: sufficient for conditionally negative
association [Borcea, Bränden & Liggett, 2009]

Recently used in various machine learning applications to enforce
diversity, e.g. recommender systems, neural network sparsification,
matrix sketching, diversity priors

Negative dependence: What this talk is not about...

Analog of FKG inequality does not hold: negative association,
i.e. cov{φ(X ), ψ(X )} ≤ 0 for any non-decreasing functions φ, ψ is not
implied by p(x)p(y) ≥ p(x ∧ y)p(x ∨ y) for all x , y .

See Pemantle (1999): Towards a Theory of Negative Association

Strongly Rayleigh measures: sufficient for conditionally negative
association [Borcea, Bränden & Liggett, 2009]

Recently used in various machine learning applications to enforce
diversity, e.g. in recommender systems, neural network sparsification,
matrix sketching, diversity priors

See NeurIPS 2018 Tutorial by

Jegelka & Sra
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Increased performance in applications:
- Portfolio optimization (Uhler)
- Recommendation systems (Jegelka / Sra)

Enhanced sample complexity:
- Structure recovery in graphical models 

(Bresler / Willsky)
- Non-parametric density estimation 

(Rigollet / Uhler)

Enhanced computational properties:
- (Anti-) ferromagnetic Ising models 

(Bresler / Gamarnik / Mossel / Shah)
- Matrix approximation, neural network 

compression (Jegelka / Sra)

Exploiting Positive and Negative Dependence in Data / Models 

Enhanced statistical and computational 
properties with boosts for applications!

Positive dependence

Negative dependence
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ML Estimation for Gaussian MTP2 distributions

Let S be the sample covariance matrix. Then maximum likelihood
estimation is a convex optimization problem:

Primal: Max-Likelihood Dual: Entropy

ML Estimation for Gaussian MTP2 distributions

maximize
K⌫0

log det(K ) � trace(KS)

subject to Kuv  0, 8 u 6= v .

minimize
⌃⌫0

� log det(⌃) � p

subject to ⌃vv = Svv , ⌃uv � Suv .
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Theorem (Slawski & Hein, 2015)

The MLE in a Gaussian MTP2 model exists with probability 1 when n ≥ 2.

New proof: 3 lines using ultrametrics [Lauritzen, U. & Zwiernik, 2019]

Theorem (Wang, Roy & U., 2019)

Graphical model inference by testing the signs of the empirical partial correlation
coefficients is consistent in the high-dimensional setting without the need of any
tuning parameter. With `1-penalty, the resulting estimator is monotone.
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Application: Portfolio selection [Agrawal, Roy & U., 2019]

Daily stock return data from the Center for Research in Security Prices
(CRSP) between 1975-2015 (NYSE, AMEX & NASDAQ stock exchanges).

M
(nr. of assets)

T
(lookback period)

EW-TQ
Linear

Shrinkage
Approximate
Factor Model

MTP2

100 25 0.694 0.710 0.730 0.803
50 0.694 0.625 0.637 0.849
100 0.694 0.600 0.617 0.896
200 0.694 0.670 0.688 0.899
400 0.694 0.736 0.782 0.892
1260 0.694 0.831 0.834 0.890

200 50 0.757 0.742 0.726 0.853
100 0.757 0.719 0.716 0.829
200 0.757 0.812 0.800 0.885
400 0.757 0.864 0.870 0.886
800 0.757 0.967 0.961 0.970
1260 0.757 0.906 0.916 0.955

500 125 0.764 0.876 0.872 1.019
250 0.764 0.985 0.977 1.112
500 0.764 0.940 0.980 1.045
1000 0.764 0.918 0.978 1.061

Information ratio (ratio of average return to standard deviation of returns)
when weights are estimated based on “full” Markowitz portfolio problem
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Conclusions

Graphical models combine graph theory with probability theory into a
powerful framework for multivariate statistical modeling

Total positivity constraints are often implicit and reflect real processes

ferromagnetism

latent tree models

MTP2 implies faithfulness

MTP2 is well-suited for high-dimensional applications (also in
non-parametric setting, see our recent work)

Explicit MTP2 constraints enhance interpretability of graphical
models (induce sparsity without the need of a tuning parameter)

MTP2 distributions not only have broad applications (finance,
psychology, genomics), but also lead to beautiful theory (exponential
families, convexity, combinatorics, semialgebraic geometry)
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Causal inference

Framework for causal inference from observational data (structural
equation models) developed in 1920’s by J. Neyman and S. Wright

Skepticism amongst statisticians halted the developments for 50 years

Reemergence in the 1970’s after major contributions by J. Pearl (CS),
J. Robins (epidemiology), D. Rubin (stats) & P. Spirtes (philosophy)

V Interaction between genetics and causal inference could be
particularly beneficial:

Geneticists can perform interventional experiments relatively easily

Drop-seq and Perturb-seq: High-throughput (100,000-1 mio single-cell
measurements on all 20,000 genes per experiment) observational and
interventional single-cell RNA-seq data is now available

V Unique data and challenges!
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Gene expression data - single-cell RNA-seq

Causal inference using both observational 
and interventional data Causal network 

Sample data 

Perturb-seq: large scale gene expression data after interventions is available 
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Perturb-seq: High-throughput observational and interventional single-cell
RNA-seq data is now available [Dixit et al., 2016]
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Structural equation models

Introduced by Sewell Wright in the 1920s

Represent causal relationships by a directed acyclic graph (DAG)

Each node is associated with a random variable; stochasticity is
introduced by independent noise variables εi

  

DAGs and conditional independence

X1 = f1(X3, ✏1)

X2 = f2(X1, ✏2)

X3 = f3(✏3)

X4 = f4(X2, X3, ✏4)

Caroline Uhler (MIT) Causal Inference & Algebraic Statistics Atlanta, July 2017 3 / 28

Structural equation model also defines interventional distribution:

Perfect (hard) intervention on X2: X2 = c

General intervention on X2: X2 = f̃2(X1, ε̃2)

Caroline Uhler Mini-course: Graphical Models Toulouse, Nov 2019 4 / 20



Structural equation models

Introduced by Sewell Wright in the 1920s

Represent causal relationships by a directed acyclic graph (DAG)

Each node is associated with a random variable; stochasticity is
introduced by independent noise variables εi

  

DAGs and conditional independence

X1 = f1(X3, ✏1)

X2 = f2(X1, ✏2)

X3 = f3(✏3)

X4 = f4(X2, X3, ✏4)

Caroline Uhler (MIT) Causal Inference & Algebraic Statistics Atlanta, July 2017 3 / 28

Structural equation model also defines interventional distribution:

Perfect (hard) intervention on X2: X2 = c

General intervention on X2: X2 = f̃2(X1, ε̃2)

Caroline Uhler Mini-course: Graphical Models Toulouse, Nov 2019 4 / 20



Markov equivalence classes on 3 nodes & talk overview

Markov equivalence: different DAGs can encode same conditional
independence relations (through factorization of the joint distribution)

  

V Interventional Markov equivalence classes?

V How do they depend on the type of intervention? Do perfect
interventions provide smaller equivalence classes than imperfect
interventions?

Algorithms for learning the interventional Markov equivalence class?
Caroline Uhler Mini-course: Graphical Models Toulouse, Nov 2019 5 / 20



Interventional Markov equivalence class

Let I be a set of intervention targets

Ex: Perfect interventions I = {∅, {4}, {3, 5}}

Definition 5 (Intervention graph) Let D = ([p], E) be a DAG with vertex set [p] and edge set
E (see Appendix A.1), and I ⊂ [p] an intervention target. The intervention graph of D is the
DAG D(I) = ([p], E(I)), where E(I) := {(a, b) | (a, b) ∈ E, b /∈ I}.

For a causal model (D, f), an interventional density f(·|doD(XI = UI)) obeys the Markov property
of D(I): the Markov property of the observational density is inherited. Figure 1 shows an example
of a DAG and two corresponding intervention graphs.

As foreshadowed in the introduction, we are interested in causal inference based on data sets
originating from multiple interventions, that means from a set of the form S = {(Ij , f̃j)}J

j=1, where

Ij ⊂ [p] is an intervention target and f̃j a level density on XIj for 1 ≤ j ≤ J . We call such a set
an intervention setting, and the corresponding (multi)set of intervention targets I = {Ij}J

j=1

a family of targets. We often use the family of targets as an index set, for example to write a
corresponding intervention setting as S = {(I, f̃I)}I∈I .

We consider interventional data of sample size n produced by a causal model (D, f) under
an intervention setting S = {(I, f̃I)}I∈I . We assume that the n samples X(1), . . . ,X(n) are inde-
pendent, and write them as usual as rows of a data matrix X. However, they are not identically
distributed as they arise from different interventions. The interventional data set is fully specified
by the pair (T ,X),

T =

⎛
⎜⎝

T (1)

...

T (n)

⎞
⎟⎠ ∈ In, X =

⎛
⎜⎝

—X(1) —
...

—X(n) —

⎞
⎟⎠ , (2)

where for each i ∈ [n], T (i) denotes the intervention target under which the sample X(i) was
produced. This data set can potentially contain observational data as well, namely if ∅ ∈ I. To
summarize, we consider the statistical model

X(1),X(2), . . . ,X(n) independent,

X(i) ∼ f
(

· | doD(X
(i)

T (i) = UT (i))
)
, UT (i) ∼ f̃T (i) , i = 1, . . . , n , (3)

and we assume that each target I ∈ I appears at least once in the sequence T .

2.2 Interventional Markov Equivalence: New Concepts and Results

An intervention at some target a ∈ [p] destroys the original causal influence of other variables
of the system on Xa. Interventional data thereof can hence not be used to determine the causal
parents of Xa in the (undisturbed) system. To be able to estimate at least the complete skeleton of
a causal structure (as in the observational case), an intervention experiment has to be performed
based on a conservative family of targets:

Definition 6 (Conservative family of targets) A family of targets I is called conservative
if for all a ∈ [p], there is some I ∈ I such that a /∈ I.

In this paper, we restrict our considerations to conservative families of targets; see Section 2.3 for
a more detailed discussion. Note that every experiment in which we also measure observational
data corresponds to a conservative family of targets.

1 2 3 4

5 6 7
(a) D

1 2 3 4

5 6 7
(b) D({4})

1 2 3 4

5 6 7
(c) D({3,5})

Figure 1: A DAG D and the corresponding intervention graphs D({4}) and D({3,5}).
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4

(c) G ({3,5})

Hauser and Bühlmann (2012): characterized I-Markov equivalence
classes under perfect interventions: an edge is orientable if it is

orientable from observational data
adjacent to an intervened node

Theorem (Yang, Katcoff & Uhler, ICML 2018)

The I-Markov equivalence classes under perfect and imperfect
interventions are the same.

Proof: By introducing & providing a graphical criterion for the I-Markov property for I-DAGs.
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For a causal model (D, f), an interventional density f(·|doD(XI = UI)) obeys the Markov property
of D(I): the Markov property of the observational density is inherited. Figure 1 shows an example
of a DAG and two corresponding intervention graphs.

As foreshadowed in the introduction, we are interested in causal inference based on data sets
originating from multiple interventions, that means from a set of the form S = {(Ij , f̃j)}J

j=1, where

Ij ⊂ [p] is an intervention target and f̃j a level density on XIj for 1 ≤ j ≤ J . We call such a set
an intervention setting, and the corresponding (multi)set of intervention targets I = {Ij}J

j=1

a family of targets. We often use the family of targets as an index set, for example to write a
corresponding intervention setting as S = {(I, f̃I)}I∈I .

We consider interventional data of sample size n produced by a causal model (D, f) under
an intervention setting S = {(I, f̃I)}I∈I . We assume that the n samples X(1), . . . ,X(n) are inde-
pendent, and write them as usual as rows of a data matrix X. However, they are not identically
distributed as they arise from different interventions. The interventional data set is fully specified
by the pair (T ,X),

T =

⎛
⎜⎝

T (1)

...

T (n)

⎞
⎟⎠ ∈ In, X =

⎛
⎜⎝

—X(1) —
...

—X(n) —

⎞
⎟⎠ , (2)

where for each i ∈ [n], T (i) denotes the intervention target under which the sample X(i) was
produced. This data set can potentially contain observational data as well, namely if ∅ ∈ I. To
summarize, we consider the statistical model

X(1),X(2), . . . ,X(n) independent,

X(i) ∼ f
(

· | doD(X
(i)

T (i) = UT (i))
)
, UT (i) ∼ f̃T (i) , i = 1, . . . , n , (3)

and we assume that each target I ∈ I appears at least once in the sequence T .

2.2 Interventional Markov Equivalence: New Concepts and Results

An intervention at some target a ∈ [p] destroys the original causal influence of other variables
of the system on Xa. Interventional data thereof can hence not be used to determine the causal
parents of Xa in the (undisturbed) system. To be able to estimate at least the complete skeleton of
a causal structure (as in the observational case), an intervention experiment has to be performed
based on a conservative family of targets:

Definition 6 (Conservative family of targets) A family of targets I is called conservative
if for all a ∈ [p], there is some I ∈ I such that a /∈ I.

In this paper, we restrict our considerations to conservative families of targets; see Section 2.3 for
a more detailed discussion. Note that every experiment in which we also measure observational
data corresponds to a conservative family of targets.
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Hauser and Bühlmann (2012): characterized I-Markov equivalence
classes under perfect interventions: an edge is orientable if it is

orientable from observational data
adjacent to an intervened node

Theorem (Yang, Katcoff & Uhler, ICML 2018)

The I-Markov equivalence classes under perfect and imperfect
interventions are the same.

Proof: By introducing & providing a graphical criterion for the I-Markov property for I-DAGs.
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Hauser and Bühlmann (2012): characterized I-Markov equivalence
classes under perfect interventions: an edge is orientable if it is

orientable from observational data
adjacent to an intervened node

Theorem (Yang, Katcoff & Uhler, ICML 2018)
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interventions are the same.
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Algorithms for learning causal graphs

There are two main types of algorithms for learning causal graphs from
observational data:

Constraint-based: treat causal search as constraint satisfaction
problem; constraints given by conditional independence; main
example: PC algorithm [Spirtes, Glymour & Scheines, 2001]

Properties: very fast, with consistency guarantees (with prob. 1 as
n→∞), require large sample size, tend to miss edges

Score-based: maximize score (e.g. BIC) of a Markov equivalence
class with respect to a data set by greedy search; main example:
Greedy Equivalence Search (GES) [Chickering, 2002]

Properties: higher accuracy for same sample size, huge search space,
theoretical consistency guarantees
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Limitation of score-based approaches

(Gillispie & Perlman, 2001)

Problem of enumerating Markov equivalence classes and their sizes leads
to hard and beautiful combinatorics problems: e.g., formula for number of
equivalence classes on p nodes? Average size of equivalence classes?

[Radhakrishnan, Solus, Uhler, UAI 2017]

[Katz-Rogozhnikov, Shanmugam, Squires, Uhler, AISTATS 2019]
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Limitation of constraint-based approaches

Constraint-based methods require the faithfulness assumption:

(i , j) ∈ E ⇐⇒ Xi⊥6⊥Xj | XS ∀S ⊂ V \{i , j}

[Zhang &Spirtes, 2003]

Ex:

  

Medicine Lung

Immune
System

- +

+

Faithfulness means that causal
effects cannot cancel out!
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Unfaithful distributions: 3-node example

� �

X1 = ε1

X2 = a12X1 + ε2

X3 = a13X1 + a23X2 + ε3

ε ∼ N (0, I )

=⇒ X ∼ N (0,Σ), Σ−1 =
(I − A)(I − A)T

Faithfulness is NOT satisfied if any of the following relations hold:

X1 ⊥⊥ X2 ⇐⇒ det((Σ−1)13,23) = a12 = 0

X1 ⊥⊥ X3 ⇐⇒ det((Σ−1)12,23) = a13 + a12a23 = 0

X2 ⊥⊥ X3 ⇐⇒ det((Σ−1)12,13) = a2
12a23 + a12a13 + a23 = 0

X1 ⊥⊥ X2 | X3 ⇐⇒ det((Σ−1)1,2) = a13a23 − a12 = 0

X1 ⊥⊥ X3 | X2 ⇐⇒ det((Σ−1)1,3) = −a13 = 0

X2 ⊥⊥ X3 | X1 ⇐⇒ det((Σ−1)2,3) = −a23 = 0

=⇒ Faithfulness not satisfied on collection of hypersurfaces in R|E |
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3-node example continued [Uhler, Raskutti, Bühlmann & Yu, Ann. Stat. 2013]

For consistency of constraint-based algorithms data has to be
bounded away from these hypersurfaces by

√
log(p)/n

For high-dimensional consistency: pn = o(log(n))
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Alternative approach: Permutation-based searches

Idea: DAG defined by ordering of vertices (permutation) and skeleton

For p = 10 search space is of size 10! = 3, 628, 800 versus 1018

For each permutation π construct a DAG Gπ = (V ,Eπ) by

(π(i), π(j)) ∈ Eπ ⇐⇒ Xπ(i) ⊥6⊥ Xπ(j) | X{π(1),...,π(i−1),π(i+1),...π(j−1)}

Greedy search for sparsest permutation Gπ∗ (GSP) is consistent under
strictly weaker conditions than faithfulness
[Mohammadi, Uhler, Wang & Yu, SIAM J. Discr. Math., 2018]

[Solus, Wang, Matejovicova & Uhler, arXiv:1702.03530]
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For p = 10 search space is of size 10! = 3, 628, 800 versus 1018

For each permutation π construct a DAG Gπ = (V ,Eπ) by
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Greedy search for sparsest permutation Gπ∗ (GSP) is consistent under
strictly weaker conditions than faithfulness

[Mohammadi, Uhler, Wang & Yu, SIAM J. Discr. Math., 2018]

[Solus, Wang, Matejovicova & Uhler, arXiv:1702.03530]

edges in polytope of permutations
(i.e., permutohedron) connect

neighboring transpositions, e.g.
(3, 1, 4, 2)− (3, 4, 1, 2)
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Greedy SP algorithm [Mohammadi, Uhler, Wang & Yu, 2018]

  

1

4

2

3
CI relations: 1 ⊥⊥ 2, 1 ⊥⊥ 4 | 3, 1 ⊥⊥ 4 | {2, 3}

2 ⊥⊥ 4 | 3, 2 ⊥⊥ 4 | {1, 3}
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(2,4,1,3)(2,1,4,3), (1,2,4,3)

(2,4,3,1)(4,2,1,3)

(4,1)

(2,4)

(1,3)
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Learning the interventional Markov equivalence class

GIES: perfect intervention adaptation of GES [Hauser & Bühlmann, 2012]

In general not consistent [Wang, Solus, Yang & Uhler, NIPS 2017]

IGSP: interventional adaptation of GSP: provably consistent
algorithm that can deal with interventional data

for perfect interventions [Wang, Solus, Yang & Uhler, NIPS 2017]

for general interventions [Yang, Katcoff & Uhler, ICML 2018]

Note: While for perfect interventions it is sufficient to perform
conditional independence tests, for general interventions we need to
test whether a conditional distribution is invariant to the interventions
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Protein signaling network [Yang, Katcoff & Uhler, 2018]

Raf

Mek

Plcγ
PIP2

PIP3

Erk

Akt

PKA

PKC
P38

Jnk

Protein signaling network described by Sachs et al. (2005);
7466 measurements of the abundance of phosphoproteins
and phospholipids recorded under different interventional
experiments;

(a) Directed edge recovery (b) Skeleton recovery
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Perturb-seq data [Yang, Katcoff & Uhler, 2018]

After preprocessing: 992 observational samples and 13,435 interven-
tional samples from 8 gene deletions; analyzed 24 genes of interest

Predicted effect of each intervention when leaving out that data

Much work remains to be done to deal with zero-inflated data, off-
target intervention effects, and latent variables;
see our recent work [arXiv:1906.00928, 1910.09014, 1910.09007]
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Causal inference and genomics

Often interested in difference of regulatory network, e.g. between
normal / diseased states; learn difference directly without estimating
each network separately! [Wang, Squires, Belyaeva & Uhler, NeurIPS 2018]

Gene Regulation and Causal Inference

• Often interested in difference of regulatory network, e.g. between different 
cell types,  normal and diseased states, etc; learn difference directly without 
estimating each network separately!  

[Wang, Squires, Belyaeva & Uhler, NeurIPS 2018]

Difference network of naïve versus activated T-
cells (estimated from single-cell RNA-seq)

Difference network of ovarian cancer cells from 
2 patient cohorts with different survival rates

• If interested in learning a collection of regulatory networks, e.g. for different 
cell types, learn them jointly, since these networks are related!           

[Wang, Segarra & Uhler, arXiv:1804.00778]

Tractable strategy to select interventions in batches under budget
constraints for causal inference with provable guarantees on both
approximation and optimization quality based on submodularity

[Agrawal, Squires, Yang, Shanmugam & Uhler, AISTATS 2019]
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Statistical-computational trade-off

Open problem: Characterize the statistical-computational trade-off that
is inherent to causal inference

Computation time

St
at

ist
ic

al
 a

ss
um

pt
io

ns

PC

GES
SP

GSP

What is the optimal algorithm for unlimited computation time?
(Conjecture: SP algorithm)
How much weaker than faithfulness are SMR (necessary and sufficient
assumption for SP) or triangle-faithfulness assumption (only
violations that are undetectable)?
What is the optimal tradeoff curve?
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