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Semidefinite programming

minimize Trace(CX )

such that A(X ) = b,

X � 0.

Here,

I X , the unknown, is an n × n matrix ;

I C is a fixed n × n matrix (cost matrix) ;

I A : Symn → Rm is linear ;

I b is a fixed vector in Rm.
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Motivations

Various difficult problems can be “lifted” to SDPs, and solving
these lifted SDPs may solve the original problems.

Particularly important example : relaxation of MaxCut.

minimize Trace(CX )

such that diag(X ) = 1,

X � 0.

Relaxes the Maximum Cut problem from graph theory.
[Delorme and Poljak, 1993]
Appears also in phase retrieval, Z2 synchronization ...
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Numerical solvers

SDPs can be solved at a given precision in polynomial time.
But the order of the polynomial may be large.

Interior point solvers, for instance, have a per iteration
complexity of O(n4) in full generality
(when m and n are of the same order).

First-order ones, applied to a smoothed problem, have a O(n3)
complexity, but require more iterations.

→ Numerically, high dimensional SDPs are difficult to solve.
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Exploiting the low rank

To speed up these algorithms : assume that there exists a
low-rank solution and exploit this fact.

I [Pataki, 1998] : There is always a solution with rank

ropt ≤
⌊√

2m + 1/4− 1/2
⌋
≈
√

2m.

(Reason : Among the solutions, there is an extremal point
of the feasible set.)

I In many situations, there is actually a solution with rank

ropt = O(1).
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Exploiting the low rank

Two main strategies :

I Frank-Wolfe methods ;
[Frank and Wolfe, 1956]

I Burer-Monteiro factorization.
[Burer and Monteiro, 2003]
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Burer-Monteiro factorization

I Assume that there is a solution with rank ropt .

I Choose some integer p ≥ ropt .

I Write X under the form

X = VV T ,

with V an n × p matrix.

I Minimize Trace(CVV T ) over V .
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minimize Trace(CX )

for X ∈ Rn×n such that A(X ) = b,

X � 0.

m

minimize Trace(CVV T )

for V ∈ Rn×p such that A(VV T ) = b.

Remark : p is the factorization rank. It must be chosen, and
can be equal or larger than ropt .
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minimize Trace(CVV T )

for V ∈ Rn×p such that A(VV T ) = b.

We assume that {V ∈ Rn×p,A(VV T ) = b} is a “nice”
manifold.
→ Riemannian optimization algorithms.

Main advantage of the factorized formulation

The number of variables is not O(n2) anymore, but O(np),
with possibly p � n.
→ Riemannian algorithms can be much faster than SDP
→ solvers.
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minimize Trace(CVV T )

for V ∈ Rn×p such that A(VV T ) = b.

Main drawback of the factorized formulation

Contrarily to the SDP, this problem is non-convex.
→ Riemannian optimization algorithms may get stuck at a
critical point instead of finding a global minimizer.

This issue can arise or not, depending on the factorization
rank p.
⇒ How to choose p ?
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Outline

1. Literature review
I In practice, algorithms work when p = O(ropt).
I In particular situations, this phenomenon is understood.
I In a general setting, no guarantees unless p &

√
2m.

I But ropt �
√

2m. Why this gap ?

2. Optimal rank for the Burer-Monteiro formulation
I A minor improvement is possible over previous general

guarantees.
I The improved result is optimal.

→ If p .
√

2m, Riemannian algorithms cannot be certified
correct without assumptions on C .

I Idea of proof.

3. Open questions
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Empirical observations

1. [Burer and Monteiro, 2003]
Numerical experiments on various problems, notably
MaxCut and minimum bisection relaxations.
The factorization rank is p ≈

√
2m ; Riemannian

algorithms always find a global minimizer.
(The authors do not test smaller values of p.)

2. [Journée, Bach, Absil, and Sepulchre, 2010]
Numerical experiments on MaxCut relaxations (with a
particular initialization scheme).
The algorithm proposed by the authors always finds a
global minimizer when p = ropt .
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Empirical observations (continued)

3. [Boumal, 2015]
Numerical experiments on problems coming from
orthogonal synchronization.
Here, ropt = 3 and the algorithm finds the global
minimizer as soon as p ≥ 5.

4. Similar results on “SDP-like” problems.
See for example [Mishra, Meyer, Bonnabel, and
Sepulchre, 2014].
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Theoretical explanations in particular cases

[Bandeira, Boumal, and Voroninski, 2016]
SDP instances coming from Z2 synchronization and
community detection problems, under specific statistical
assumptions.
→ With high probability, ropt = 1.
→ If p = 2, Riemannian algorithms find the global minimizer.

Other particular SDP-like problems have been studied.
→ Under strong assumptions, as soon as p ≥ ropt , a
→ global minimizer is found.
[Ge, Lee, and Ma, 2016] ...

Strong guarantees, but in very specific situations only.
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General case : one main result
[Boumal, Voroninski, and Bandeira, 2018]

minimize Trace(CVV T )

for V ∈ Rn×p such that A(VV T ) = b.

The only assumption is (approximately) that

Mp
déf
= {V ∈ Rn×p,A(VV T ) = b}

is a manifold.
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General case : one main result
[Boumal, Voroninski, and Bandeira, 2018]

minimize Trace(CVV T ),

for V ∈Mp.

Riemannian optimization algorithms typically converge to
second-order critical points :

A matrix V0 ∈Mp is a second-order critical point if

I ∇fC (V0) = 0n,p ;

I Hess fC (V0) � 0,

where fC
déf
=
(
V ∈Mp → Trace(CVV T )

)
.
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General case : one main result
[Boumal, Voroninski, and Bandeira, 2018]

Theorem

For almost all matrices C , if

p >

⌊√
2m +

1

4
− 1

2

⌋
,

all second-order critical points are global minimizers.
Consequently, Riemannian optimization algorithms always find
a global minimizer.

Remark : The value of p does not depend on ropt .
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Summary

I In empirical experiments, as well as in the few particular
cases that have been studied, algorithms seem to always
work when

p = O(ropt).

I The only available general result guarantees that
algorithms work when

p &
√

2m.

As ropt is often much smaller than
√

2m, this leaves a big gap.

→ Is it possible to obtain general guarantees for p �
√

2m ?
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Overview of our results

I A minor improvement is possible over the result by
[Boumal, Voroninski, and Bandeira, 2018], but it does not
change the leading order term

p &
√

2m.

I With this improvement, the result is essentially optimal,
even if ropt �

√
2m.
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Improving [Boumal, Voroninski, and Bandeira, 2018]

Theorem

For almost all matrices C , if

p >

⌊√
2m +

9

4
− 3

2

⌋
,

all second-order critical points of the factorized problem are
global minimizers.

In [Boumal, Voroninski, and Bandeira, 2018], we had⌊√
2m + 1

4
− 1

2

⌋
. Our result is better by one unit for most

values of m.
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Theorem (Quasi-optimality of the previous result)

Let r0 = min{rank(X ),A(X ) = b,X � 0}.
Under suitable hypotheses, if

p ≤

√2m +

(
r0 +

1

2

)2

−
(
r0 +

1

2

) ,
there is a set of matrices C with non-zero Lebesgue measure
for which :

1. The global minimizer has rank r0.

2. There is a second order critical point that is not a global
minimizer.
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Comments

I In most applications, r0 is small, possibly r0 = 1.

I We have the following picture :

p0

⌊√
2m +

(
r0 + 1

2

)2 −
(
r0 + 1

2

)⌋
⌊√

2m + 9
4
− 3

2

⌋≤ r0 − 1

Riemannian optimization
cannot be certified correct. ?

Riemannian
optimization works.
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Example : MaxCut relaxations

minimize Trace(CX ),

such that diag(X ) = 1,

X � 0.

⇓

minimize Trace(CVV T ),

such that diag(VV T ) = 1,V ∈ Rn×p.

(Original SDP)

(Burer-Monteiro

factorization)

I In this case, r0 = 1.

I The “suitable hypotheses” are satisfied.
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Example : MaxCut relaxations

I For almost all C , if

p >

⌊√
2n +

9

4
− 3

2

⌋
,

no bad second-order critical point exists : Riemannian
optimization algorithms work.

I If

p ≤

⌊√
2n +

9

4
− 3

2

⌋
,

bad second-order critical points may exist, even when
there is a rank 1 solution : Riemannian algorithms cannot
be certified correct without additional assumptions on C .
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Idea of proof

We consider

p ≤

√2m +

(
r0 +

1

2

)2

−
(
r0 +

1

2

) ,
We want to construct a set of matrices C with non-zero
Lebesgue measure for which :

1. The global minimizer has rank r0.

2. There is a second order critical point that is not a global
minimizer.
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Idea of proof

Step 1

Construct one such matrix C .

Step 2

Show that, in a ball around C , all matrices satisfy these
properties.
→ Classical geometrical arguments
→ (implicit function theorem).
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Idea of proof : construct a “bad” C

I Fix a feasible X0 with rank r0.

I Fix a feasible V ∈Mp.

I Construct C such that
I The SDP problem has X0 as a unique global minimizer.
I The factorized problem has V as a non-optimal

second-order critical point.

It turns out that constructing such a C is possible for
almost any X0,V .
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Idea of proof : construct a bad C

We want C such that

I X0 is the unique global minimizer of the SDP ;

I V is a second-order critical point.

Using the analytical expressions of the gradient and Hessian,
we rewrite these properties under more explicit forms.

After simplification, we see that it is possible to construct such
a C as soon as there exists µ ∈ Rm such that

V TA∗(µ)V � 0 and XT
0 A∗(µ)V = 0.
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Idea of proof : construct a bad C

Does there exist µ such that

V TA∗(µ)V � 0 and XT
0 A∗(µ)V = 0 ?

Consider the map

Rm → Symp×p × Rr0×p

µ → (V TA∗(µ)V , XT
0 A∗(µ)V )

dimension m dimension p(p+1)
2

+ pr0

If m ≥ p(p+1)
2

+ pr0, it is generically surjective and µ exists.

⇐⇒ p ≥
√

2m +
(
r0 + 1

2

)2 −
(
r0 + 1

2

)
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Burer-Monteiro factorization : summary

I [Boumal, Voroninski, and Bandeira, 2018]

When p &
√

2m, for almost any cost matrix, all
second-order critical points are minimizers.

Numerical experiments suggest it could be true for

p = O(ropt)�
√

2m.

I [Our result]

When p .
√

2m, it is not true.



Open questions 31 / 36

Open questions

1. Better understanding of the situation where p <
√

2m

2. Application to phase retrieval problems
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Guarantees in more realistic settings ?

Two types of theoretical guarantees exist for the
Burer-Monteiro factorization :

I Specific problems and strong assumptions on C .
→ Works for p = ropt or p = ropt + 1.

“When C is very nice, it works for p ≈ ropt .”

I No assumption on C .
→ Works for p &

√
2m and not below.

“When C is very bad, p &
√

2m is necessary.”
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Guarantees in more realistic settings ?

Can we have something in between ?

“Under moderate assumptions on C , it works for
p = O(ropt)” ?

or

“For most C , it works for p = O(ropt)” ?
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Application to phase retrieval problems

Reconstruct x ∈ Cd from |〈ak , x〉|, 1 ≤ k ≤ m.

Here,

I a1, . . . , am ∈ Cd are known ;

I |.| is the complex modulus.

Important applications in optics.

Phase retrieval algorithms based
on convex relaxations usually offer
good reconstruction quality, but
are too slow.
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Application to phase retrieval problems

Can we speed up the convex relaxations with Burer-Monteiro ?

I Which factorization rank ?
Here, ropt = 1.
Numerically, seems to depend on the structure of
a1, . . . , am. But, in any case, it is small : 1 or 2.

I Which solver ?
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Thank you !

I. Waldspurger and A. Waters (2018). Rank optimality for the
Burer-Monteiro factorization. arXiv preprint arXiv :1812.03046.
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