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Background foundations of Phylogeny

1. Statistics versus mathematics.

2. What is a Tree?

3. Gene Tree.

4. Model for Molecular Evolution.

5. Mutation Rates and Edge Lengths.

6. Examples of estimation methods for trees: parsimony.

7. ML estimation.

8. Parametric Bootstrap for ML.

9. Bayesian Approach.

10. Distance based tree building.

11. Hierarchical Clustering Trees.



Mathematical Logic

(A → B) ⇐⇒ (¬B → ¬A)

Observation: Non B= ¬B.
Conclusion: Observing ¬B, allows us to say: A is not true.



Statistical Logic

(A → B) ⇐⇒ (¬B → ¬A)

Observation: X
If the observed X makes P (B) very small, then we infer A is unlikely.



Statistical Logic: induction

(H0 → E) ⇐⇒ (¬E → ¬H0)

If the observed X makes P (E) is very small, then we infer H0 is
unlikely.



Statistics: separate the model from the
data
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See a complete book:
http://bios221.stanford.edu/book/

http://bios221.stanford.edu/book/


Phylogenetic Trees



Phylogenetic tree is the unknown
parameter

Estimated in different ways from DNA/AA data:

- Parametric: ML estimation, PAML, Phyml, FastML,RaxML,...

- Distance based methods: Neighbor Joining, UPGMA,..

- Parsimony: Steiner tree problem: nonparametric.

- Bayesian estimation, Mr Bayes by MCMC, from posterior
sampling distribution.



Hierarchical Clustering Trees
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(a) Hierarchical Clustering trees of both rows and columns of a
microarray matrix.
Rows are genes, columns are patients.



An introduction to Phylogeny

Representation of biological families by trees predates Darwin’s
theory of evolution, although the latter gave such representations a
true explanatory justification. For biologists, at each branch of the
tree are situated separation events that split orders or families or
genera or species. An early example is the classification made by
Haeckel, 1870.







Less symmetrical Phylogenies
Linguistics use trees to map out the history of language. Linguists use
trees, but they have an ancient form and a novel form. So their trees
do not have symmetry between siblings.



Number of trees ?

Felsenstein, 1978 published the number of phylogenetic trees

(2n− 3)!! = (2n− 3)× (2n− 5)× . . . 5× 3

This formula for the number of trees was first proved using
generating functions by Schroder (1873).



Coding Trees as Perfect Matchings

A perfect matching on 2n points is a partition of 1, 2, . . . , 2n into n
two-element subsets. It is well known that there are (2n)!/2nn!
distinct perfect matchings. When n = 2, the three perfect matchings
are

{1, 2}{3, 4}; {1, 3}{2, 4}; {1, 4}{2, 3}



From Trees to Matchings

5 2 1 3 4



5 2 1 3 4

6



2 1 3 4

6
7
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2 1 3 4

6
7

8

5
Put down the sibling pairs:

(1, 3)(2, 5)(6, 7)(8, 4)

We briefly describe the correspondence between matchings and
trees. Begin with a tree with ℓ labeled leaves. Label the internal
vertices sequentially with ℓ+ 1, ℓ+ 2, . . . , 2(ℓ− 1) choosing at each
stage the ancestor which has both children labeled and who has the
descendent lowest possible available label (youngest child). Thus the
tree
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When all nodes are labeled, create a matching on 2n = 2(ℓ− 1)
vertices by grouping siblings. In the example above, this yields

{3, 4}{2, 5}{1, 6}.



From matchings to trees

To go backward, given a perfect matching of 2n points, note that at
least one matched pair has both entries from {1, 2, 3 . . . , n+ 1}. All
such labels are leaves; if there are several leaf-labeled pairs, choose
the pair with the smallest label. Give the next available label
(n+ 2 = ℓ+ 1) to their parent node. There are then a new set of
available labeled pairs. Choose again the pair with the smallest label
to take the next available label for its parent, and so on.



For example, {3, 4}{2, 5}{1, 6} has 2n = 6 and {3, 4} has both
entries from {1, 2, 3, 4}. The parent of these is labeled 5 and thus
matched with 2 and then the parent of {2, 5} is matched with 1,
yielding
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Matchings and Decompositions

Diaconis and Holmes (1998) A matching of 2(n-1) objects is a pairing
off, without care for order within pairs or between pairs.
The Same matchings:

(1, 4)(2, 5)(3, 6)

(6, 3)(4, 1)(2, 5)

(5, 2)(3, 6)(1, 4)



Call Bn−1 the subgroup of S2n−2 that fixes the pairs

{1, 2}{3, 4} . . . {2n− 3, 2n− 2}

then
Mn−1 = S2n/Bn−1

and

|Mn−1| =
(2n− 2)!

2n−1(n− 1)!
= (2n−3)!! = (2n−3)×(2n−5)×· · ·×3×1

(S2n−2,Bn−1) form a Gelfand pair Diaconis and Shahshahani (1987)

L(Mn−1) = V1 ⊕ V2 ⊕ . . .⊕ Vλ



A multiplicity free representation.

L(Mn−1) = ⊕ S2λ

λ ⊢ n

where the direct sum is over all partitions λ of m,
2λ = (2λ1, 2λ2, . . . , 2λk) and S2λ is associated irreducible
representation of the symmetric group S2m.
Just to take the first few: for λ = n− 1 Sλ are the constants, and
this gives the sample size. for λ = (n− 2, 1), Sλ are the number of
times each pair appears. for λ = (n− 3, 2), Sλ are the number of
times partition of 4 appears in the tree. for λ = (n− 3, 1, 1), Sλ are
the number of times 2 pairs appear simultaneously.



Matchings are useful

- For going through all trees systematically. (Gray code for Trees)

- Doing vigorous random walks on tree space.

- Doing Fourier Analysis on Tree Data.

But the matching distance is not satisfactory to the biologists.



The Matching Polytope
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Cornell, 1997: The
permuto-associahedron

1((32)4)

1(2(43))

1(3(24))

(12)(34)

(1(23))4 1(2(34))

(1((23)4)

A book on polytopes.(Ziegler)
But the trees are extreme points

Quotients (?/!)



One tree from one gene : many gene trees

A gene sequence might be about 2000 base pairs long. One of the
problems that has occurred in the last 20 years is that biologists
believe that the way evolution works is that there would only be one
species tree.
Different genes have different histories, so you get different gene
trees. Putting them together is also a statistical problem: trying to
find out what the average of the different genes are. We’re going to
study the evolutionary process as one of our models for trying to
understand what happens over time and how these mutations occur.
What we see with the data is some columns with changes.
We’re going to try to make a model for how these substitutions
occur and use that model in various ways to try to make up the tree.
The models we use are all Markovian. If you write them in discrete
time, we have probability of a change occurring as the transition
probability.



Copying Model not only for DNA

Chaucer



Continuous time Markov chains

Memoryless Property P (Y (u+ t) = j|Y (t) = i) doesn’t depend on
time before t

Time homogeneity P (Y (h+ t) = j|Y (t) = i) doesn’t depend on t,
only depends on h, time between the events.

Instantaneous transition rate

Pij(h) = qijh+ o(h), j ̸= i.

Pii(h) = 1− qi(h) + o(h), qi =
∑
j ̸=i

qij

qij is known as the instantaneous transition rate.



Times between changes are exponential

P (T ≥ t+ h) = P (T ≥ t)P (T ≥ t+ h|T ≥ t) . .

P (T ≥ t+ h) = P (T ≥ t)P (T ≥ h)

= P (T ≥ t)(1− qih+ . . .)

p(t ≥ t+ h)− P (T ≥ t)

h
= −qjP (T ≥ t)

dP (T ≥ t)

dt
= −qiP (T ≥ t)

P (T ≥ 0) = 1

gives solution

P (T ≥ t) = e−qit

P (T ≤ t) = 1− e−qit

f(t) = qie
−qit ∼ Exp(qi)



Derivative of P

Pij(t+ h)− Pij(t)

h
= −qjPij(t) +

∑
k ̸=j

qkjPik(t)

as h −→ 0,

dPij(t)

dt
= −qjPij(t) +

∑
k ̸=j

qkjPik(t)

The simplest possible model we’ll study, the mutations are all equally
likely. This model, called a Jukes-Cantor model is a one parameter
model. We suppose that every transition is reversible and that the
probability is that they’re all equal.



Particular case of Jukes-Cantor: qj = 3α and qij = α, i ̸= j.

dPij(t)

dt
= −3αPij(t) + α

∑
k ̸=j

Pik(t)

= −3αPij(t) + α(1− Pij(t))

= α− 4αPij(t)

Pii(0) = 1 and Pij(0) = 0

gives solutions

Pii(t) =
1

4
+

3

4
e−4αt

Pij(t) =
1

4
− 1

4
e−4αt



The rate matrix Q is of the form:

Q =

A T C G
A −3α α α α
T α −3α α α
C α α −3α α
G α α α −3α

The Kimura two parameter model is:

Q =

A T C G
A −α− 2β β β α
T β −α− 2β α β
C β α −α− 2β β
G α β β −α− 2β

The 12 parameter model is of the form

Q =

A T C G
A − α1,2 α1,3 α1,4

T α2,1 − α2,3 α2,4

C α3,1 α3,2 − α3,4

G α4,1 α4,2 α4,3 −



The substitution matrix gives the probability of the change of a
nucleotide during a time t as the continuous Markov chain with
infinitesimal generator Q.
In the case of the amino acids we would have bigger matrices (20×20
instead of 4× 4), but most of the other computations carry through.
The best reference about these subjects are the books by W. H Li
and WH Li and D. Graur. See also Page and E. Holmes on Molecular
Evolution: A phylogenetic approach.



Estimating the rates
- Call λ the amino acid replacement rate per year,

λ =
K

2t
=

#substit.
2× divergence time

- Probability that a site stays unchanged through t intervals is
(1− λ)2t

- The probability Dt of one or more replacements occurring in t
units of time is

1− (1− λ)2t

-

1−Dt = (1− λ)2t

log(1−Dt) = 2t log(1− λ)

log(1−Dt) =
K

λ
log(1− λ) ≃ −K

Expected proportion of differences between sequences at time
t.



Example : β globin molecule in primates

contains 146 amino acids, the estimates of the number of differences

are:

Time of div. Average # average
(millions of of amino D̂ -log(1− D̂)
years) acid changes differ.
85 25.5 25.5/146 .192
60 24 24/146 .180
42 6.25 6.25/146 .044
40 6.0 6.0/146 .042
30 2.5 2.5/146 .018
15 1.5 1.5/146 .007

The slope is around a = .002, and the evolution rate is half of this,
so: 10−3 per million years or 10−9 per year.



Human MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK

Gorilla MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK

Rabbit MVHLSSEEKSAVTALWGKVNVEEVGGEALGRLLVVYPWTQRFFESFGDLSSANAVMNNPK

Cow M..LTAEEKAAVTAFWGKVKVDEVGGEALGRLLVVYPWTQRFFESFGDLSTADAVMNNPK

Goat M..LTAEEKAAVTGFWGKVKVDEVGAEALGRLLVVYPWTQRFFEHFGDLSSADAVMNNAK

Mouse MVHLTDAEKAAVSCLWGKVNSDEVGGEALGRLLVVYPWTQRYFDSFGDLSSASAIMGNAK

Chicken MVHWTAEEKQLITGLWGKVNVAECGAEALARLLIVYPWTQRFFASFGNLSSPTAILGNPM

Carp MVEWTDAERSAIIGLWGKLNPDELGPQALARCLIVYPWTQRYFASFGNLSSPAAIMGNPK

61 120

Human VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG

Gorilla VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFKLLGNVLVCVLAHHFG

Rabbit VKAHGKKVLAAFSEGLSHLDNLKGTFAKLSELHCDKLHVDPENFRLLGNVLVIVLSHHFG

Cow VKAHGKKVLDSFSNGMKHLDDLKGTFAALSELHCDKLHVDPENFKLLGNVLVVVLARNFG

Goat VKAHGKKVLDSFSNGMKHLDDLKGTFAQLSELHCDKLHVDPENFKLLGNVLVVVLARHHG

Mouse VKAHGKKVITAFNDGLNHLDSLKGTFASLSELHCDKLHVDPENFRLLGNMIVIVLGHHLG

Chicken VRAHGKKVLTSFGDAVKNLDNIKNTFSQLSELHCDKLHVDPENFRLLGDILIIVLAAHFS

Carp VAAHGRTVMGGLERAIKNMDNIKATYAPLSVMHSEKLHVDPDNFRLLADCITVCAAMKFG

121 148

Human .KEFTPPVQAAYQKVVAGVANALAHKYH

Gorilla .K..........................

Rabbit .KEFTPQVQAAYQKVVAGVANALAHKYH

Cow .KEFTPVLQADFQKVVAGVANALAHRYH

Goat .SEFTPLLQAEFQKVVAGVANALAHRYH

Mouse .KDFTPAAQAAFQKVVAGVATALAHKYH

Chicken .KDFTPECQAAWQKLVRVVAHALARKYH

Carp PSGFSPNVQEAWQKFLSVVVSALCRQYH



Human beta-globin vs. Gorilla beta-globin

Percent Similarity: 100

Percent Identity: 99

. . . . .

Human 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLS 50

||||||||||||||||||||||||||||||||||||||||||||||||||

Gorilla 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLS 50

. . . . .

51 TPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVD 100

||||||||||||||||||||||||||||||||||||||||||||||||||

51 TPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVD 100

. .

101 PENFRLLGNVLVCVLAHHFGK 121

||||:||||||||||||||||

101 PENFKLLGNVLVCVLAHHFGK 121



We’re going to separate out two problems, which in today’s age of
computing, should be mixed together: alignment and trees.
I’m going to suppose we have sequences either of amino acids or
nucleotides which we have aligned. This is an example data set I did
in my first phylogeny paper I wrote was with Brad Efron in which we
analyzed malaria data. These are malaria sequences from 11 different
species of malaria. Two of the species of malaria are human malaria.
The others are from different animals. The question in trying to find
out information from the families has a lot of influence on designing
vaccines.



Malaria Data

11 1620

Pre1 GTACTTGTTA GGCCTTATAA GAAAAAAGT- TATTAACTTA AGGAATTATA

Pme2 GTATCTGTTA AGCCTTATAA AAAGATAGT- T-TAAATTAA AGGAATTATA

Pma3 GTATTTGTTA AGCCTTATAA GAGAAAAGTA TATTAACTTA AGGA-TTATA

Pfa4 GTATTTGTTA GGCCTTATAA GAAAAAAGT- TATTAACTTA AGGAATTATA

Pbe5 GTATTTGTTA AGCCTTATAA GAAAAA--T- TTTTAATTAA AGGAATTATA

Plo6 GTATTTGTTA AGCCTTATAA GAAAAAAGT- TACTAACTAA AGGAATTATA

Pfr7 GTACTTGTTA AGCCTTATAA GAAAGAAGT- TATTAACTTA AGGAATTATA

Pkn8 GTACTTGTTA AGCCTTATAA GAAAAGAGT- TATTAACTTA AGGAATTATA

Pcy9 GTACTCGTTA AGCCTTTTAA GAAAAAAGT- TATTAACTTA AGGAATTATA

Pvi10 GTACTTGTTA AGCCTTTTAA GAAAAAAGT- TATTAACTTA AGGAATTATA

Pga11 GTATTTGTTA AGCCTTATAA GAAAAAAGT- TATTAATTTA AGGAATTATA

ACAAAGAAGT AACACGTAAT AA--ATTTAT TTTATTT--- -AGTGTGTAT

ACAAAGAAGT AACACGTAAT AA--ATTATA TTTATTA--- -AGTGTGTAT

ACAAAGAAGT AACACATAAT AAA-TTTCGA -ATATTT--- -AGTGTGTAT

ACAAAGAAGT AACACGTAAT AA--ATTTAT TTTATTT--- -AGTGTGTAT

ACAAAGAAGT AACACATAAT AT--ATTTAC TATATTT--- -AGTGTGTAT

ACAAAGAAGC AACACATAAT AAAGCTGCGT CTTATTT--- -AGTGTGTAT

ACAAAGAAGT AACACGTGAA ATGGATTAAC TCCATTTTTT TAGTGTGTAT

ACAAAGAAGT AACACGTAAT --GGATTCT- TCCATTTT-- TAGTGTGTAT

ACAAAGAAGT AACACGTAAT --GGATCCG- TCCATTTT-- TAGTGTGTAT

ACAAAGAAGC GACACGTAAT --GGATCCG- TCCATTTT-- TAGTGTGTAT

ACAAAGAAGC AACACATAAT AAAACTTTGT TTTATTT--- -AGTGTGTAT



Transitions and Transversions

The probability of changing from a purine to a pyrimidine is called a
transversion. If you think about coding sequences, the amino acids
you don’t code the amino acid if you have a transition. We make the
two parameter model is the most used in the study of evolution. We
don’t have discrete time, that’s just a simplification.



Model 0:Jukes Cantor

This model is not a completely realistic model.
All mutations, transversions and translations are equally likely.
The probability of it not changing is 1− 3α. This is discrete time
markov chain matrix.
You can look at it stationary distribution because you have a perfect
symmetry, the left eigenvector is 1

4 ,
1
4 ,

1
4 ,

1
4 .

This stationary distribution of 1
4 ,

1
4 ,

1
4 ,

1
4 .

If for a long time you have sequences evolving over time and you’re
lost track of time and you pull a nucleotide at random it has equal
probability of being any of those.



Transitions and Transversions

The probability of changing from a purine to a pyrimidine is called a
transversion. If you think about coding sequences, the amino acids
you don’t code the amino acid if you have a transition. We make the
two parameter model is the most used in the study of evolution. We
don’t have discrete time, that’s just a simplification.



Distance based methods Variants of hierarchical cluster analysis.
The aim is to reconstruct the distances as computed between the
two sequences of the two species x and y by distances along the
edges of the tree forming a path between x and y.
First a distance matrix is constructed between the N units in some
way. These distances dxy are supposed to estimate the unknown
‘true evolutionary’ distances between x and y as they would be
measured along the unknown true tree T .
For the Jukes-Cantor model which assumes equal rates of
substitution between all base pairs provides the estimate of distances
between sequences x and y as:

dxy = −3

4
log(1− 4

3
(1− (

#AA
k

+
#CC

k
+

#GG

k
+

#TT
k

)))

where k denotes the number of characters (columns) in the data
matrix, and #AA denotes the number of times there is an A in x
matched with an A in y.
Once the distances are decided upon, the parametric model is left
behind and a clustering technique such as hierarchical clustering with
average groups is used to find the tree from the distances.



Remarks:
If we knew the true evolutionary distances between species, we
could build an additive tree that reproduced the distances along the
tree in a unique way.
The existence of an additive tree reproducing the distances faithfully
is not always ensured, a sufficient condition for this to be possible is
called the four point condition(for all quadruples):
dAB + dCD ≤ max(dAC + dBD, dAD + dBC).
This means that one of the two sums is minimum and the other two
are equal. Notice that this is not the same as the ultrametric
property which says that for any three points: A, B, C:

dAC ≤ max(dAB, dBC)

If the distances obey the ultrametric property the distances can be fit
to a binary tree with leaves equally distant from the root.
Unfortunately distances computed from real data never obey this
property.



Additivity is destroyed by:

- Homoplasy (reversal, parallelism and convergence) which is
caused by superimposed changes.

- An uneven distribution of change rates.

- Measurement error.

- Paralogous sequences.
We concentrate on distances that are computed from substitution
models such as Jukes and Cantor’s one-parameter model, Kimura’s
two-parameter model, or even the complex 12-parameter model for
the substitution matrices. These models provide estimates of
differences between sequences computed from the frequencies of
various changes in the sequences.



Parsimony method

Nonparametric procedures. Farris (1983), has a justification for
parsimony : “minimizes requirements of ad hoc hypotheses of
homoplasy”.
Analogy is made between homoplasies and residuals, (part of the
data that the tree does not explain), minimizing homoplasies is akin
to minimizing residuals in regression.
Roughly this method can be seen as based on the assumption that
“evolution is parsimonious” which means that there should be no
more evolutionary steps than necessary.
Thus the best trees are the ones that minimize the number of
changes between ancestors and descendants. Under independence of
each of the characters, this has a clear combinatorial translation.



The parsimony tree as a combinatorial
problem

Unrooted parsimony trees.
Recall that the Hamming distance between two units is the number
of changes needed to bring one to the other. This assumes that all
changes in a categorical character are counted as one step.

dH(AACTGGG,AACTGGC) = dH(AACTGGG,AACTGGA) = 1

Here, given N points in a metric space, the Steiner problem is that of
finding the shortest tree connecting the N points where one is
allowed to add extra vertices. Thus, with 4 points arranged at the
vertices of a unit square, one would add a fifth point in the center to
form the Steiner tree.
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The minimum spanning tree and the Steiner tree of the 4 vertices of a
rectangle.
Although statisticians are not familiar with minimal Steiner trees, they
may have encountered minimal spanning trees as used by Friedman
and Rafsky (1985).



The relation between the two is well explained in Gardner’s
wonderful chapter on Steiner trees (Chapter 22, Gardner (1997)).
He explains how minimal spanning trees are good “starting points”
since in the plane for instance they can only be 13% longer than
Steiner trees.
As a combinatorial problem, the maximum parsimony tree is the
problem of finding the Steiner points or Steiner tree for Hamming
distance between the units, under the constraint that the tree be
binary.
The problem of finding a minimal Steiner tree is that of finding the
Steiner points (representing ancestors) that minimize the complete
length of the tree. Steiner points are points that are added to a graph
so that its minimal spanning tree becomes shorter.



Computation issues

The minimal Steiner tree problem is NP-hard, meaning that no
algorithm is known that will compute an optimal tree in polynomial
time in the number of species N .
Much work has been done to implement good heuristic algorithms
for finding approximately optimum trees. Swofford’s PAUP,
Felsenstein’s Phylip, and Goloboff’s NONA all contain clever use of
branch and bound techniques and branch swapping to find acceptable
answers.
#species=1500 can now be done routinely.



Parsimony as a statistical procedure

Felsenstein (1983) lists parsimony in a section entitled a section on
parsimony as “non-statistical approaches”. Farris says (1983) says the
“statistical approach to phylogenetic inference was wrong from the
start, for it rests on the idea that to study phylogeny at all one must
first know in great detail how evolution has proceeded”. Both these
authors identify statistics with parametric modeling.
In fact parsimony is just a nonparametric method of estimating the
tree parameter.



Simple Example

T7 data experimentally generated phylogeny, Hillis et al. (1992) for
which the parsimony program will be seen to produce the correct
answer. Here is the part of the data set (in phylip form) composed
of the informative sites:

9 21

R C C G C C G G C C G G C C A G C G G G G T

J C C C C G T A C C G G T C A A C G G G G T

K T C C C G C A C C G A T C A A T G G G G G

L T C C C G C A C C G A T C A A T G G G G G

M C T C C G T A C C G G T C A A C G G G G T

N C C T T A C G T T A G C T G G C A A A A T

O C T C C G C G C T G G C C G G C A G A A T

P C C C C A C G C T G G C C G G C A G A A T

Q C C T T A C G T T A G C T G G C A A A A T



One most parsimonious tree found:

+--------O

+-----------6

! ! +-----P

! +--7

! ! +--Q

! +--8

+--5 +--N

! !

! ! +--L

! ! +-----3

! ! ! +--K

--1 +-----------2

! ! +--M

! +-----4

! +--J

!

+-----------------------R

remember: this is an unrooted tree!

requires a total of 25.000

steps in each site:



0 1 2 3 4 5 6 7 8 9

*-----------------------------------------

0! 1 2 2 1 2 2 1 1 1

10! 1 1 1 1 1 1 1 1 1 1

20! 1 1



Output: the Newick notation

The output file called treefile contains the following line (the
tree in parentheses format):
(((O,(P,(Q,N))),((L,K),(M,J))),R);



Rooting the Tree

At least one of the taxonomic units has a special function. For a
statistician it would be seen as a simple outlier: the biologists
voluntarily include what they call an outgroup to locate the root of
the tree. The root is situated by creating an unrooted tree and the
edge that joins the outgroup to the other species will be the support
for the root.
This is a clever use of prior information that simplifies the problem
considerably, (by a factor of (2N − 3)). What is less obvious to the
outsider is why, once the root’s position is decided upon, the
biologists keep the outgroup in the data set - it seems to distort the
image of the closer group (called the ingroup), in fact outgroups
also provide information on the root’s characters, and so on the
ancestral states of the character.



Maximum likelihood trees
For a statistician this is the easiest of the methods to understand. A
parametric model (θ, T ) is postulated, θ is a η-dimensional vector
that we explain below and T is the tree’s topology. Under this model
the likelihood for each possible tree T is separately computed for
each character, the independence of characters then allows the total
likelihood of the tree for all data to be computed by taking the
product.
The first part of the vector of parameters θ comes from the
Markovian substitution model as explained before.
The number of other parameters that have to be specified depends
on the complexity of the model. If a molecular clock 1 is postulated,
speciation times {t1, t2, ...tN−2} (splitting events) are the other
parameters. Otherwise both the branch lengths {v1, v2, ...vN−2}
and the different rates along those branches have to be parametrized.

1branch lengths in evolutionary change depend linearly on time
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The substitution parameters are estimated from the data. A
complete model including distributions of separation events is
postulated and the likelihood can be computed for each possible tree
by computing the likelihood of the tree for each site X.j :

f(X.j |θ1, θ2, . . . , θη, T ).



This actually requires computing the likelihood of all the subtrees, so
the method is recursive.

L(θ1, θ2, . . . , θη|X.1, X.2, . . . , X.k, T ) =

k∏
j=1

f(X.j |θ, T )

The essential assumptions:

1. Each site in the sequence evolves independently.

2. Different lineages evolve independently.

3. Each site undergoes substitution at an expected rate (can be
extended to a series of rates with a given distribution).



t3

x1 = a x2 = b x3 = c

z

y
t1

t2 
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Likelihood:P(data|Tree,t’s,ancestors,mutation rates). Based on the
probabilities computed given the tree and for potential ancestors
(t3 = t1 + t2)

P (a, b, c, y, z|T, t) = P (a|y, t1)P (b|y, t1)P (c|z, t3)P (y|z, t2)P (z)

P (a, b, c, |T, t) =
∑
z

πzPzc(t3)
∑
y

Pzy(t2)Pya(t1)Pyb(t1)

This is a function of t1, t2 whose values are estimated as the
maximum for a given tree topology, then for the ml estimate is made
for each T.



The T with the maximum value is the maximum likelihood estimate.
We can consider the likelihood computation, one character at a time.
Starting from the root, or starting from the leaves, Felsenstein’s
transversal method starts from the leaves, we abbreviate the
character we are interested from xij to xi. For two leaves with the
residue a at their common ancestor (the root here):

P (x1, x2, a|T , θ1 = t1, θ2 = t2) = πaP (x1|a, θ1)P (x2|a, θ2)

The root is an unknown nuisance parameter that we integrate out:

P (x1, x2|T , θ1 = t1, θ2 = t2) =
∑
a

πaP (x1|a, θ1)P (x2|a, θ2)



Call m[i] the direct parent of i, and P (Li|a) denote the probability
of all nodes below i given that the node i is a. We number the inner
nodes from (n+1) to (2n-2), these ancestral nodes are all unknown,
so we have to sum the probabilities of all their possible assignments
to compute the complete likelihood of the tree, given its edge
lengths (θ1, θ2, . . . , θ2n−2).
The algorithm is similar to the forward algorithm in HMM.
Sum over possible paths, working upwards from the leaves.
Compute P (Lj |e), P (Lk|f) for all e and f at daughter nodes j, k of i

P (Li|a) =
∑
b,c

P (b|a, tj) ∗ P (Lj |b) ∗ P (c|a, tk) ∗ P (Lk|c)

We can write down the complete probability as a sum.



We denote the alphabet of possible residuals A,

P (x1, x2, . . . , x(2n−2)|T , θ)

=
∑

(an+1,...,a2n−1)∈An−2

πa2n−1

2n−2∏
n+1

P (ai|am[i], θi)

n∏
1

P (xi|am[i], θi)

the computational algorithm evaluates P (Li|a) for the children j and
k such that m[j] = m[k] = i, we compute P (Lj |b) and P (Lk|c) for
all possible b and c.
These instructions allow us to compute the likelihood of any tree,
given its branching order (sometimes called topology) and its branch
lengths.
For the maximum likelihood computation, we need to compute the
tree that maximizes the likelihood, first for a given branching order,
find the branch lengths that maximize the likelihood. This can be

done by taking the derivative ∂P (xj |xm[j],θk)
∂θj

in order to use the
conjugate gradient method for optimising the edge lengths, or we can
take an EM approach as Felsenstein, 1981 suggests and implemented
in his phylip program.



Complexity: Hard

Finding the likelihood of one tree is an NP complete problem
Remark :There is no known polynomial time algorithm that finds the
tree with maximum likelihood.
Thus as we need to look at all the topologies, of which there are
exponentially many; we see the exact computation becomes quickly
intractable as the number of leaves increases.
Nice implementations:
phylip, RaXML, FastML, PhyML, (see wikipedia)...
From R: phangorn, phyml.



Maximum likelihood trees: Output from phylip program
dnaml:

Nucleic acid sequence Max. Likelihood, vers. 3.572c

Empirical Base Frequencies:

A 0.27778 G 0.22685

C 0.22325 T(U)0.27212

Transition/transversion ratio = 2.000000

(Transition/transversion parameter = 1.519971)



+J

!

! +R

! +--1

! ! ! +N

! ! +--4

! ! ! +O

! +--5 +--3

! ! ! ! +P

! ! ! +--2

--7--6 ! +Q

! ! !

! ! +L

! !

! +M

!

+K

Ln Likelihood = -344.10331

Examined 95 trees

Between And Length Approx.Conf.Limits

------- --- ------ ------- ----------

7 J 0.00006 ( zero, infinity)



7 6 0.00003 ( zero, infinity)

6 5 0.00006 ( zero, infinity)

5 1 0.00936 ( zero, 0.02236) **

1 R 0.00466 ( zero, 0.01384) **

1 4 0.00469 ( zero, 0.01389) **

4 N 0.00462 ( zero, 0.01369) **

4 3 0.00003 ( zero, infinity)

3 O 0.00462 ( zero, 0.01369) **

3 2 0.00003 ( zero, infinity)

2 P 0.00462 ( zero, 0.01369) **

2 Q 0.00003 ( zero, infinity)

5 L 0.00006 ( zero, infinity)

6 M 0.00003 ( zero, infinity)

7 K 0.00003 ( zero, infinity)

* = significantly positive, P < 0.05

** = significantly positive, P < 0.01



ML Estimate Application: Origins of HIV

The article by Korber et al. provides an estimate of a most recent
ancestor. When you see two sequences, how much time went by
until the most recent common ancestor.
The English author, Hooper, hypothesis that HIV was spread by
dispensaries who were giving the polio vaccination in East Africa.
They were supposed to be responsible for diffusing AIDS because the
vaccination was grown in monkey tissue. The idea was to try to
disprove this occurred at the time of the vaccination program in 1957
and this study was trying to make a confidence interval of the time of
the most recent ancestor using as many sequences as they had to
make up the whole tree.
One of the reasons this data seemed interested is that this data is
freely available on Los Alamos National Laboratories.







The ideas is that of the models we are using for molecular evolution,
they have this molecular clock.
You have a homogenous process, the number of mutations with be
proportionate to time.
There hasn’t been much progress in disproving or in proving this
molecular clock hypothesis, so the the way it’s justified is the average
the amount of mutation that occurs over time.
Parametric bootstrap generation of sequences
Suppose we had the treefile from a previous phylip output,
the generation of sequences is done using Seq-gen (Rambaut and
Grassly, 1997) by :

seq-gen -mHKY -t3.0 -l27 -n100 < treefile > example.T7

For which the output looks like:



Sequence Generator - seq-gen, Version 1.04

(c) Copyright, 1996 Andrew Rambaut and Nick Grassly

Department of Zoology, University of Oxford

South Parks Road, Oxford OX1 3PS, U.K.

Simulating 11 taxa, 27 bases

for 1 tree(s) with 100 dataset(s) per tree

Branch lengths assumed to be number of substitutions

per site

Rate homogeneity of sites.

Model=HKY

transition/transversion ratio = 3 (kappa=6)

frequencies = A:0.25 C:0.25 G:0.25 T:0.25

0%|____________________|100%

[....................]

Time taken: 0.12 seconds



The data file example.T7 generated looks like this:

11 27

R CCGACCTCCAAGATTCGCTATGACAAT

P CCGACCTCCAAGATTCGCTATGACAAT

Q CCGACCTCCAAGATTCGCTATGACAAT

L CCGACCTCCAAGATTCGCTATGACAAT

M CCGACCTCCAAGATT.........etc

..

11 27

R ATGGTAGCGGATAACTGACTTCATCGA

P ATGGTAGCGGATAACTGACTTCATCGA

Q ATGGTAGCGGATAACTGACTTCATCGA

L ATGGTAGCGGATAACTGACTTCATCGA

M ATGGTAGCGGATAACTGACTTCATCGA

...... ATGGTAGCGGATAA.........etc



This file example. T7 was then submitted to the phylip program
dnapars with the option multiple data sets indicating that there
were 100 data sets to analyze, the first part of the output from this
looked like this:

((R,(((((M,K),L),N),Q),(J,P))),O)[0.0100];

((R,(((((M,K),L),N),(J,Q)),P)),O)[0.0100];

((R,(((((M,K),L),(J,N)),Q),P)),O)[0.0100];

((R,(((((M,K),(J,L)),N),Q),P)),O)[0.0100];

((R,(((((M,(J,K)),L),N),Q),P)),O)[0.0100];

(((((((J,M),(R,K)),L),N),Q),P),O)[0.0100];

(((((((J,(R,M)),K),L),N),Q),P),O)[0.0100];

((((((((R,J),M),K),L),N),Q),P),O)[0.0100];

((R,((((((J,M),K),L),N),Q),P)),O)[0.0100];

(((((((R,(J,M)),K),L),N),Q),P),O)[0.0100];

(((R,J),(((((M,K),L),N),Q),P)),O)[0.0100];

((J,(R,(((((M,K),L),N),Q),P))),O)[0.0100];

((R,(J,(((((M,K),L),N),Q),P))),O)[0.0100];

((R,((J,((((M,K),L),N),Q)),P)),O)[0.0100];

((R,(((J,(((M,K),L),N)),Q),P)),O)[0.0100];

((R,((((J,((M,K),L)),N),Q),P)),O)[0.0100];

((R,(((((J,(M,K)),L),N),Q),P)),O)[0.0100];

(((J,(R,M)),((((K,L),N),Q),P)),O)[0.0100];

((((R,J),M),((((K,L),N),Q),P)),O)[0.0100];

(((R,(J,M)),((((K,L),N),Q),P)),O)[0.0100];

((M,((R,J),((((K,L),N),Q),P))),O)[0.0100];

(((R,J),(M,((((K,L),N),Q),P))),O)[0.0100];

(((R,J),((M,(((K,L),N),Q)),P)),O)[0.0100];

Notice at the end of each tree is associated a weight.



Molecular Clock
Says that the probability of changes along the edges of the tree are
proportional to edgelengths:

.



More believable models of Evolution:
The likelihood was computed as:

L(θ1, θ2, . . . , θη|x.1, x.2, . . . , x.k, T ) =

k∏
j=1

f(x.j |θ, T )

Variation of rates of substitution among sites.
Variable sites models for the rates considers the sites to have
different rates. The new likelihood takes the different rates into
account:

P (x|T, t, rK) =

K∏
k=1

P (xk|T, rkt)

We do not have enough information about the sites to know what
these rates should be, so we integrate out the variation by
integrating out over all values of r using a prior for the rates. Yang
proposes to use a gamma g(r, α, α) prior which has mean 1 and
variance 1/α for the rates.



The likelihood now becomes:

P (x|T, t, α) =
K∏
k=1

∫ ∞

0
P (xk|T, rt)g(r, α, α)dr

For each T, this is maximised with respect to t and α.
Actually better by far to use α from other data.
In practice a discrete sum approximation is sufficient.
Similar approach is to use a hidden Markov model for the states
(Felsenstein and Churchill)

P (x|T, t, αs) =

K∏
k=1

m∑
k=1

aklP (xk|T, rl)g(r, α, α)

Different areas can thus be defined:

- Surface sites of proteins may be exposed to more substitutions.

- Loops with exposed sites.

- Beta sheets have an alternance of buried and exposed sites.



Full Bayesian Method

- Prior distribution on all tree branching patterns.

- Gamma dsitribution for the rates.

- Compute posterior distribution using MCMC.

Implementations:MrBayes, Beast

Open Questions:

- Prior probability model for trees , open question. Uniform
distribution on all trees poses big problem:
2n− 3!! different binary rotted semi-labeled trees with n leaves.
With 10, you have more than a million trees.

- How long to run the MCMC? (Diaconis and Holmes, EJP cannot
touch the real case)
Negative results by Mossel and Vigoda on problems with
mixtures.

- Using the output from MCMC runs ...we will talk about this.



Distance Based Methods
In phylogenetics, neighbor joining is very similar to the algorithms
used for hierarchical clustering.
The aim is to reconstruct the distances as computed between the
two sequences of the two species x and y by distances along the
edges of the tree forming a path between x and y.
First a distance matrix is constructed between the N units in some
way. These distances dxy are supposed to estimate the unknown
‘true evolutionary’ distances between x and y as they would be
measured along the unknown true tree T .
For the Jukes-Cantor model which assumes equal rates of
substitution between all base pairs provides the estimate of distances
between sequences x and y as:

dxy = −3

4
log(1− 4

3
(1− (

#AA
k

+
#CC

k
+

#GG

k
+

#TT
k

)))

where k denotes the number of characters (columns) in the data
matrix, and #AA denotes the number of times there is an A in x
matched with an A in y.



Iterative Agglomeration: Bottom Up
heuristic
Once the distances are decided upon, the parametric model is left
behind and a clustering technique such as hierarchical clustering with
average groups is used to find the tree from the distances.
Remarks:
If we knew the true evolutionary distances between species, we
could build an additive tree that reproduced the distances along the
tree in a unique way.
The existence of an additive tree reproducing the distances faithfully
is not always ensured, a sufficient condition for this to be possible is
called the four point condition(for all quadruples):
dAB + dCD ≤ max(dAC + dBD, dAD + dBC).
This means that one of the two sums is minimum and the other two
are equal. Notice that this is not the same as the ultrametric
property which says that for any three points: A, B, C:

dAC ≤ max(dAB, dBC)



dAC ≤ max(dAB, dBC)

If the distances obey the ultrametric property the distances can be fit
to a binary tree with leaves equally distant from the root.
Unfortunately distances computed from real data never obey this
property.
This can be destroyed by:

- Homoplasy (reversal, parallelism and convergence) which is
caused by superimposed changes.

- An uneven distribution of change rates.

- Measurement error.

- Paralogous sequences.



Hierarchical clustering trees

Built from distances or dissimilarities between the rows of the data
matrix [7].
Common examples include computations of dissimilarities in gene
expression or in occurrence of words in texts or webpages.
The resulting hierarchical clustering tree has the advantage over
simple partitioning methods that one can look at the output in order
to make an informed decision as to the relevant number of clusters
for a particular data set.
Microarray studies have popularized the use of a double hierarchical
clustering or bi-clustering trees where both the rows and columns of
the data are clustered. This is the most popular method for
visualizing both relations between genes and patient groups in gene
expression studies [1, 5].
Many implementations are available; the illustration in Figure in the
introduction was made with heatmap function in R [9].



Consequences for statistics on treespace

- The uniform distribution on tree is irrelevant.

- Statistical inference involving phylogenetic trees require more
sophisticated probabilities on treespace.

- Would benefit from a notion of neighborhood for trees.
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