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Motivation: Forests of Trees

- Different genes, same set of species.

- Bootstrapped Data by Multinomial Resampling, then estimating
the tree.

- Bayesian Posterior Distributions on set of Trees.

- Simulated data according to certain evolutionary models
(seq-gen).

- Data specimens in different conditions.

- Hierarchical Clustering Trees for (repeated) RNA-seq data
(different time points, different space points, ...).



Hierarchical Clustering Trees
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Some Methods for Generating Trees

With advances in computational power we can use simulated data to
evaluate clustering stability, either in a frequentist (Bootstrap) setting
or by using a Bayesian paradigm where trees from a posterior
distribution can be generated by MCMC (Monte Carlo Markov chain)
methods.
We provide here a brief overview of the standard methods for
generating distributions of trees. Different approaches to the
problem of combining the trees are summarized. This combination of
information on different trees is a non-standard statistical problem
because trees do not lie in a Euclidean space ([1]).



Sampling Distribution for Trees
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Bootstrap support for Phylogenies Taking as observations the
columns of the matrix X of aligned sequences, the rows
representing the species.
The sampling distribution of the estimated tree is
estimated by resampling with replacement among the
characters or columns of the data.
This provides a large set of plausible alternative data
sets, each be used in the same way as the original data
to give a separate tree (see [13] for a review).

Parametric Bootstrapping for Microarray Clusters



Bayesian posterior distributions for phylogenetic trees - Prior
distributions on the DNA mutation rates that
occur during the evolutionary process and a
uniform distribution on the original tree.

- Use of MCMC to generate instances of the
posterior distribution.

- Implementations MrBayes [15] and Beast
provide a sample of trees from the posterior
distribution.

- The posterior distribution provides an estimate of
variability.

Bayesian methods in hierarchical clustering Heller[23] provide a
Bayesian nonparametric method for generating
posterior distributions of hierarchical clustering trees.



Euclidean space (where through every point not on a line) is flat:

(sum of angles of a triangle is 180 o),



Hyperbolic space is ‘ negatively’ curved:

Euclid’s parallel postulate is replaced.
In hyperbolic geometry there are at least two distinct lines through P
which do not intersect l, so the parallel postulate is false.
A characteristic property of hyperbolic geometry is that the angles of
a triangle add to less than 180 o.
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Geodesic metric space:
If we have a distance defined between any two points of a space, we
call it a metric space.
(The distance doesn’t have to be defined through ordinary
coordinates)
A geodesic metric space is a metric space where geodesics are
defined to be the shortest path between points in the space.



δ-hyperbolic space is a geodesic metric space in which every geodesic
triangle is δ-thin.
δ-thin: pick three points and draw geodesic lines between them to
make a geodesic triangle. Then any point on any of the edges of the
triangle is within a distance of δ from one of the other two sides.



For example, trees are 0-hyperbolic: a geodesic triangle in a tree is
just a subtree, so any point on a geodesic triangle is actually on two
edges.

Normal Euclidean space is ∞-hyperbolic; i.e. not hyperbolic.
Generally, the higher δ has to be, the less curved the space is.



Comparing Different Trees

- Binomial Support Estimates (Consensus+support values).

- Split Differences, Visualization Programs .

- Distances.

- Recoding of Trees as binary columns.



Confidence Statements for trees



Confidence Statements in Statistics
Depend on local and global properties of a neighborhood.
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What is the curvature of the boundary?
How many neighbors does a region have?



Simple confidence values

- Univariate.

- Multiple Testing.

- Composite Statements.
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Do we care about confidence statements
for phylogenetic trees?
Cetacees: recognising what is being sold as Whale meat in Japan?

Steve
Palumbi, Stanford. Scott Baker, Auckland.







The River without a Paddle?
Human immunodeficiency virus: Phylogeny and the origin of HIV-1
The origin of human immunodeficiency virus type 1 (HIV-1) is
controversial.

Phylogeny has showed that viruses obtained from the Democratic
Republic of Congo in Africa have a quantitatively different
phylogenetic tree structure from those sampled in other parts of the
world.
This indicates that the structure of HIV-1 phylogenies is the result of
epidemiological processes acting within human populations alone,
and is not due to multiple cross-species transmission initiated by oral
polio vaccination.



Conversely, phylogenetic analysis of HIV-1 sequences indicates that
group M originated before the vaccination campaign, supporting a
model of ’natural transfer’ from chimpanzees to humans. If this
timescale is correct, then the OPV theory remains a viable
hypothesis of HIV-1 origins only if the subtypes of group M
differentiated in chimpanzees before their transmission to humans.



Confidence Intervals ?

Korber and colleagues extrapolated the timing of the origin of HIV-1
group M back to a single viral ancestor in 1931, give or take about 12
years for 95% confidence limits.
Because this calendar of events obviously pre-dated the OPV trials, in
the revised version of his book, Hooper suggested that group M first
began to diverge in chimpanzees, and that there were then several
independent transfers of virus to humans via OPV.
In that case, several OPV batches should bear evidence of their
production in chimpanzee tissue, yet no such evidence has been
found.







Closure: Polio vaccines exonerated
Nature 410, 1035 - 1036 (2001)

The OPV batch that Hooper considered to be under most suspicion,
however, was CHAT 10A-11.
An original vial of the batch was found at Britain’s National Institute
for Biological Standards and Control, and the new tests show that it
was prepared from rhesus-macaque cells.



Frequentist Confidence Regions

P (τ ∈ Rα) = 1− α

We will use the nonparametric approach of Tukey who proposed
peeling convex hulls to construct successive ‘deeper’ confidence
regions. But we need a geometrical space to build these regions in.



What does a neighborhood look like?

Need modern topology.
Aims

- Fill Tree Space and make meaningful boundaries.

- Define distances between trees.

- Define neighborhoods, meaningful measures.

- Principal directions of variations in tree space, summarizing :
structure + noise.

- Confidence statements, convex hulls.



Distances between Trees

- Robinson and Foulds, (bipartitions).

- Nearest Neighbor Interchange (NNI). Rotation Moves
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terminology this is called an ‘unresolved’ tree.
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Boundary for trees with 3 leaves
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The quadrant for one tree
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Link of the origin
All 15 quadrants for n = 4 share the same origin. If we take the
diagonal line segment x+ y = 1 in each quadrant, we obtain a graph
with an edge for each quadrant and a trivalent vertex for each
boundary ray; this graph is called the link of the origin.
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x+y=1



Cube complex of Euclidean Orthants

A path between two trees consists
of line segments through a sequence of orthants. This sequence of
orthants is the path.
A path is a geodesic when it has the smallest length of all paths
between two points.
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A Cone Path

A path between two trees T and T ′ always exists. Since all orthants
connect at the origin, any two trees T and T ′ can be connected by a
two-segment path, this is called the cone-path.



Three orthants sharing a common boundary for n = 4 leaves.
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Theorem( Billera, Holmes, Vogtmann (BHV)): Tree space with BHV
metric is a CAT(0) space, that is, it has non-positive curvature.
This implies there are geodesic between any two trees (Gromov).
It is not an Euclidean space.
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This has an effect on the existence of geodesics.
The speed at which MCMC methods work.
The size of the “variance”.
The computation of the mean of a set of trees.
The number of neighbors of a tree.



We know that given a distance matrix we can give a treelike
representation of the points with these distances by building a tree if
the distances obey Buneman’s four point condition (Buneman, 1974).

Buneman’s four point condition
For any four points (u, v, w, x) :
The three sums:d(u, v) + d(w, x), d(u,w) + d(v, x), d(u, x) + d(v, w) are
equal, not less than the third.



We can see Gromov’s definition the hyperbolicity contant δ as a
relaxation of the above four-point condition:

Gromov’s hyperbolicity contant

For any four points u,v,w,x, the two larger of the three sums
d(u, v) + d(w, x), d(u,w) + d(v, x), d(u, x) + d(v, w) differ by at most 2δ.



Can we embed trees in Euclidean space
(approximately)
We can ask whether points are closer to a tree or to being
embeddable in Euclidean space by using Gromov’s δ.
Implementation:
distory is an R package written with John Chakerian[3] which
both implements the geodesic BHV distance between trees using
Owen and Provan (2009)’s algorithm and the computation of delta
for any finite set of points.
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Multidimensional Scaling (MDS or PCoA)

Schoenberg’s (1935) remarked that a symmetric matrix of positive
entries with zeros on the diagonal is a Euclidean distance matrix
between n points if and only if the matrix

−1

2
H∆2H is semi-definite positive

where H = (I − 1
n11

′), and 1′ = (1, 1, 1 . . . , 1)



Approximating Non Euclidean Distances
by Euclidean ones
Forward:Decomposition of Distances Suppose we did have an
Euclidena space, variables measured in Rp that are not centered: Y ,
apply the centering matrix

X = HY, with H = (I − 1

n
11′), and 1′ = (1, 1, 1 . . . , 1)

Call B = XX ′, if D(2) is the matrix of squared distances between
rows of X in the euclidean coordinates,

di,j =
√
(x1i − x1j )

2 + · · ·+ (xpi − xpj )
2. and − 1

2
HD(2)H = B

Backward from D to X We can go backwards from a matrix D to X
by taking the eigendecomposition of B in much the same way that
PCA provides the best rank r approximation for data by taking the
singular value decomposition of X , or the eigendecomposition of
XX ′.



X(r) = US(r)V ′ with S(r) =


s1 0 0 0 ...
0 s2 0 0 ...
0 0 ... ... ...
0 0 ... sr ...
... ... ... 0 0


This provides the best approximate representation in an Euclidean
space of dimension r. The algorithm provides points in a Euclidean
space that have approximately the same distances as those provided
by D2.



MDS Algorithm

In summary, given an n× n matrix of interpoint distances, one can
solve for points achieving these distances by:

1. Double centering the interpoint distance squared matrix:
S = −1

2HD2H .

2. Diagonalizing S: S = UΛUT .

3. Extracting X̃ : X̃ = UΛ1/2.



Is it better to represent the distances by
a tree or a Euclidean projection?



Malaria Data as seen using ape
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Probability Distributions on Tree Space

In Holmes (2005) I discuss the use of distances for making believable
probability distributions on the space of trees, the simplest such
model is

P (τi) = Ke−λd(τi,τ0)

This is really a Mallows[17] model for trees, and as such has possible
extensions in similar ways than [10], [11] or those used for rankings
developed in [4].



Maximum Likelihood Bootstrap



Empirical Evidence on Mixing on Bethe
Lattice
Mossel noticed that one of the extreme points of tree space with
regards to predicting the root was the Bethe Lattice:
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Can we hear the root?



For large enough independent sequences, say for k we can
reconstruct the tree with probability 1− δ

k >
c logn

(1− θmax)2θdmin(T )

However for large mutation rates, Mossel also proved the
impossibility of estimating a tree if we only have short sequences and
high mutation rates.



Distribution of Trees from seqgen Bethe
Tree Data

α = 0.05, ℓ = 1000 MDS plot,
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Bias in the trees from data generated from the balanced tree with
higher mutation rate.



Distribution of Trees from seqgen Bethe
Tree Data

α = 0.01, ℓ = 1000 MDS plot,
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Seeing the Mutation Rate Gradient
We generated 9 sets of trees with mutation rates set from α = 0.01
to α = 0.09 and we generated the data according to the Bethe lattice
tree.
Here are the results in the first plane of the MDS:
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Tree of Trees

A tree is a complete CAT(0) space.

c

a

c

b baa

c

b

Since BHV,2001 [1] have shown that the space of trees is negatively
curved (a CAT(0) space), the most natural representation of a
collection of trees may be a tree.
Is this good for anything?



Mixture Detection

Mixtures pose problems when using MCMC methods in the Bayesian
estimation context ( Mossel,Vigoda 2005[20]). These authors note
that MCMC methods in particular those used to compute Bayesian
posterior distributions on trees can be misleading when the data are
generated from a mixture of trees, because in the case of a
‘well-balanced’ mixture the algorithms are not guaranteed to
converge.
They recommend separating the sequences according to coherent
evolutionary processes.
Suppose the data come from the mixture of several different trees,
we will see how the bootstrap and the various distances and
representations can detect these situations.
Our procedure uses the bootstrap.



We use the distance between trees and then make a hierarchical
clustering tree using single linkage (Similar to UPGMA) to provide a
picture of the relationships between the trees.
In this simulated example we generate two sets of data of length
1, 000 from the two different trees represented:

A

B

C

D

E

F

G

H

O

A

B

C

D

E

F

G

H

O

Trees used to generate sequences of length 1000 each which are
combined into one 2000 long aligned set (X12) and then
bootstrapped.



A simulation experiment: we concatenate the data into one data set
on which the standard phylogenetic estimation procedures are run.
This provides the estimated tree for the data. We also generate 250
bootstrap resamples from the combined data. We then compute the
distances between the 250 trees from each of the bootstrap
resamples and make a hierarchical clustering single linkage from this
distance matrix.
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Figure: Hierarchical clustering of 250 trees resulting from a nonparametric
bootstrap of the data generated by the double data set X12



Data Distrib. Dist Max (sd) Mean(sd) δ (sd) δ/Max (sd)

500 Unif Manhat 13.8 (0.33) 8.33 (0.04) 7.03 (0.26) 0.51 (0.02)

500 Unif Euclid 3.04 (0.06) 2.03 (0.009) 1.38 (0.05) 0.45 (0.02)

512 MVN Manhat 49.14 (1.59) 28.22 (0.20) 21.45 (0.79) 0.44 (0.02)

512 MVN Euclid 11.66 (0.41) 7.00 (0.05) 4.82 (0.17) 0.41 (0.02)

512 Bethe JC69 0.223 (0.008) 0.16 (0.003) 0.017 (0.001) 0.076 (0.0043)

512 Bethe Raw 0.19 (0.006) 0.14 (0.002) 0.013 (0.001) 0.069 (0.004)

Table: Different values of δ and the ratio δ/max(d)
for points generated both in bounded Euclidean

space and for points generated from trees. Each

value was estimated from 100 simulations, in the

Euclidean case the distances were computed from

points generated in 25 dimensions.



In particular, we used the δ/max statistic in the case of the
bootstrapped trees represented by the MDS plot in the resulting
ratio was 0.47, thus indicating given the calibration experiments in
the above table that point configuration would be well approximated
by a Euclidean MDS. The δ/max statistic is a rough approximation
for scaling each triangle considered by its diameter; two other
approximations, scaling by the perimeter and scaling by the max of
the sums A(1) are implemented in the R package.



Statistical Uses for Distances
- Center of Cloud of Trees (equal weights): Find T0 that
minimizes either

∑K
k=1 d

2(T0, Tk) this is the (L2) definition
of the mean tree, or

∑K
k=1 d(T0, Tk) (L1).

- Extend the above to cater for a measure on treespace.

P (T ) = Kexp(−λd(T, T0))

- Variability of the tree-points:
Pseudovariance= 1

K−1

∑K
k=1 d

2(T0, Tk) = ŝ2.
- Studentizing :

d(T̂ ∗, T̂obs)

ŝ
- Leverage of a position, as in leverage of an observation in
regression.

- PCA with regards to Instrumental Variables- DPCOA. Explain a
set of distances between trees by other distances between the
same data.



Path between different tree topologies



Finding the ‘guilty characters’



Thinking like a Statistician....

and a geometer..

- How treelike are the data ? Model Selection.

- Do we always need the tree, Distances between Data.

- Are all the characters supporting the tree? Leverage.

- Finding hidden gradients Ordination of trees.

- Stability under perturbation Evaluating the estimates.

- How variable are the trees? Variance and Moments.
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Consequences

- Averaging works better than it should, (an argument against
total evidence computation without decomposing??).

- We can build Bayesian priors based on distances.

- We can make a useful bootstrap statement.

- We can make convex hulls. −→ Confidence regions.

- We know how many neighbors any tree has.

- We can make a useful bootstrap statement.



How many neighbors for a given
tree?(W.H.Li,1993)

We know the number of neighbors of each tree.



For a tree with only two inner edges, there is the only one way of
having two edges small: to be close to the origin-star tree:
15 neighbors. This same notion of neighborhood containing 15
different branching orders applies to all trees on as many leaves as
necessary but who have two contiguous “small edges” and all the
other inner edges significantly bigger than 0.



This picture of treespace frees us from having to use simulations to
find out how many different trees are in a neighborhood of a given
radius r around a given tree. All we have to do is check the sets of
contiguous edges in the tree smaller than r, say there is only one set
of size k, then the neighborhood will contain

(2k − 3)!! = (2k − 3)× (2k − 5)× · · · 3‘different’ trees.

If there are m sets of sizes (n1, n2, . . . , nm)
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In this case the number of trees within r will be 15 ∗ 105 ∗ 3 = 4725,
in general:

(2n1 − 3)!!× (2n2 − 3)!!× (2n3 − 3)!! · · · × (2nm − 3)!!

A tree near the star tree at the origin will have an exponential
number of neighbors.
This explosion of the volume of a neighborhood at the origin
provides for interesting math problems.



These differing number of neighbors for different trees show that the
bootstrap values cannot be compared from one tree to another.
This was implicitly understood by Hendy and Penny in their NN
Bootstrap procedure.
Are there other ways of using the bootstrap than just counting clade
appearances?



Beware the different number of neighbors matters if you think you
are using a Monte Carlo method to estimate the distance to the
boundary using the bootstrap.



Inferential Bootstrap

X original data −→ T̂ estimate.

Data 1

2
3

How?
Call X ∗ bootstrap samples consistent with the model used for
estimating the tree:

- Non parametric multinomial resampling for a parsimony tree.

- Seqgen parametric type resampling with the same parameters
for a ML.

- Bayesian GAMMA prior on rates and generation (Yang 2000) for
random sequences according to T̂



Sampling Distribution for Trees

Data 1

2
3



Data 1
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Treespace  Tn



Data
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*

*
*

*



New resample D∗ drawn by resampling rows (genes) from the
original Dnspecies×nchar matrix.

- Are the characters (columns) independent?
We actually have less information than we think?
What is the unit of information?

- Block Bootstrap to generate dependent data.

Summarizing the bootstrap sampling distribution:
Why isn’t enought to just count the branches in common?
Loss of all the multivariate information.



Tree Stability ?

Resample genes and compare the bootstrap tree to the original tree
using a distance between trees (Billera, Holmes, Vogtman, 2001 for
the distances and Holmes, Vogtmann, Staple, 2004 for the algorithm).
Implemented in ape.



The bootstrap works (?)

Conjecture:
The bootstrap estimate of the sampling distribution of the distances
d(T̂ ∗, T̂ ) is a good approximation to the true sampling distribution
of d(T̂ , T ).



Hypothesis Testing

As an additional element we have projected the star tree “S” (chosen
with the lengths of the pendant edges closest to the original tree) to
see whether it is in a small neighborhood, or credibility region of the
bootstrapped trees.
This is analogous to seeing if 0 is in a confidence interval of
differences between two random variables. If the star tree seems to
be in central to a confidence region with a high probability coverage
then we conclude that the data are not really treelike. In the figure ,
S appears to be on the outer convex hull of the projected points; we
can conclude that the probability that the star tree belongs to the
confidence region is low. To our knowledge, this is the first concrete
implementation of the idea of using convex hulls to make confidence
statements of this type [14] .



As an aside, note that the numbers in the Figure label the different
types of branching patterns. We see that trees of the same topology
are not necessarily closer to the original tree if we use the BHV
with no modifications. In some cases we may want to give an extra
weight to crossing orthants (ie changing branching pattern). We give
examples of such modifications of the distance in the [? ] vignette.
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Who Cares?

Bacterial Species in the Gut: Example of a Metagenome.
Samples from IBS and healthy rats give abundance of about 1,000
species of bacteria.

To be continued...
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Bacterial Species in the Gut: Example of a Metagenome.
Samples from IBS and healthy rats give abundance of about 1,000
species of bacteria. To be continued...
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