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Background foundations of Phylogeny

1. Statistics versus mathematics.

2. What is a Tree?

3. Gene Tree.

4. Model for Molecular Evolution.

5. Mutation Rates and Edge Lengths.

6. Examples of estimation methods for trees: parsimony.

7. ML estimation.

8. Parametric Bootstrap for ML.

9. Bayesian Approach.

10. Distance based tree building.

11. Hierarchical Clustering Trees.



Mathematical Logic

(A→ B) ⇐⇒ (¬B → ¬A)

Observation: Non B= ¬B.
Conclusion: Observing ¬B, allows us to say: A is not true.



Statistical Logic

(A→ B) ⇐⇒ (¬B → ¬A)

Observation: X
If the observed X makes P (B) very small, then we infer A is unlikely.



Statistical Logic: induction

(H0 → E) ⇐⇒ (¬E → ¬H0)

If the observed X makes P (E) is very small, then we infer H0 is
unlikely.



Statistics: separate the model from the
data
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See a complete book:
http://bios221.stanford.edu/book/

http://bios221.stanford.edu/book/


Phylogenetic Trees



Phylogenetic tree is the unknown
parameter

Estimated in different ways from DNA/AA data:

- Parametric: ML estimation, PAML, Phyml, FastML,RaxML,...

- Distance based methods: Neighbor Joining, UPGMA,..

- Parsimony: Steiner tree problem: nonparametric.

- Bayesian estimation, Mr Bayes by MCMC, from posterior
sampling distribution.



Hierarchical Clustering Trees
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(a) Hierarchical Clustering trees of both rows and columns of a
microarray matrix.
Rows are genes, columns are patients.



An introduction to Phylogeny

Representation of biological families by trees predates Darwin’s
theory of evolution, although the latter gave such representations a
true explanatory justification. For biologists, at each branch of the
tree are situated separation events that split orders or families or
genera or species. An early example is the classification made by
Haeckel, 1870.







Less symmetrical Phylogenies
Linguistics use trees to map out the history of language. Linguists use
trees, but they have an ancient form and a novel form. So their trees
do not have symmetry between siblings.



Number of trees ?

Felsenstein, 1978 published the number of phylogenetic trees

(2n− 3)!! = (2n− 3)× (2n− 5)× . . . 5× 3

This formula for the number of trees was first proved using
generating functions by Schroder (1873).



Coding Trees as Perfect Matchings

A perfect matching on 2n points is a partition of 1, 2, . . . , 2n into n
two-element subsets. It is well known that there are (2n)!/2nn!
distinct perfect matchings. When n = 2, the three perfect matchings
are

{1, 2}{3, 4}; {1, 3}{2, 4}; {1, 4}{2, 3}



From Trees to Matchings

5 2 1 3 4



5 2 1 3 4

6



2 1 3 4

6
7

5



2 1 3 4

6
7

8

5
Put down the sibling pairs:

(1, 3)(2, 5)(6, 7)(8, 4)

We briefly describe the correspondence between matchings and
trees. Begin with a tree with ℓ labeled leaves. Label the internal
vertices sequentially with ℓ+ 1, ℓ+ 2, . . . , 2(ℓ− 1) choosing at each
stage the ancestor which has both children labeled and who has the
descendent lowest possible available label (youngest child). Thus the
tree
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When all nodes are labeled, create a matching on 2n = 2(ℓ− 1)
vertices by grouping siblings. In the example above, this yields

{3, 4}{2, 5}{1, 6}.



From matchings to trees

To go backward, given a perfect matching of 2n points, note that at
least one matched pair has both entries from {1, 2, 3 . . . , n+ 1}. All
such labels are leaves; if there are several leaf-labeled pairs, choose
the pair with the smallest label. Give the next available label
(n+ 2 = ℓ+ 1) to their parent node. There are then a new set of
available labeled pairs. Choose again the pair with the smallest label
to take the next available label for its parent, and so on.



For example, {3, 4}{2, 5}{1, 6} has 2n = 6 and {3, 4} has both
entries from {1, 2, 3, 4}. The parent of these is labeled 5 and thus
matched with 2 and then the parent of {2, 5} is matched with 1,
yielding
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Matchings and Decompositions

Diaconis and Holmes (1998) A matching of 2(n-1) objects is a pairing
off, without care for order within pairs or between pairs.
The Same matchings:

(1, 4)(2, 5)(3, 6)

(6, 3)(4, 1)(2, 5)

(5, 2)(3, 6)(1, 4)



Call Bn−1 the subgroup of S2n−2 that fixes the pairs

{1, 2}{3, 4} . . . {2n− 3, 2n− 2}

then
Mn−1 = S2n/Bn−1

and

|Mn−1| =
(2n− 2)!

2n−1(n− 1)!
= (2n−3)!! = (2n−3)×(2n−5)×· · ·×3×1

(S2n−2,Bn−1) form a Gelfand pair Diaconis and Shahshahani (1987)

L(Mn−1) = V1 ⊕ V2 ⊕ . . .⊕ Vλ



A multiplicity free representation.

L(Mn−1) = ⊕ S2λ
λ ⊢ n

where the direct sum is over all partitions λ of m,
2λ = (2λ1, 2λ2, . . . , 2λk) and S2λ is associated irreducible
representation of the symmetric group S2m.
Just to take the first few: for λ = n− 1 Sλ are the constants, and
this gives the sample size. for λ = (n− 2, 1), Sλ are the number of
times each pair appears. for λ = (n− 3, 2), Sλ are the number of
times partition of 4 appears in the tree. for λ = (n− 3, 1, 1), Sλ are
the number of times 2 pairs appear simultaneously.



Matchings are useful

- For going through all trees systematically. (Gray code for Trees)

- Doing vigorous random walks on tree space.

- Doing Fourier Analysis on Tree Data.

But the matching distance is not satisfactory to the biologists.



The Matching Polytope
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Cornell, 1997: The
permuto-associahedron

1((32)4)

1(2(43))

1(3(24))

(12)(34)

(1(23))4 1(2(34))

(1((23)4)

A book on polytopes.(Ziegler)
But the trees are extreme points

Quotients (?/!)



One tree from one gene : many gene trees

A gene sequence might be about 2000 base pairs long. One of the
problems that has occurred in the last 20 years is that biologists
believe that the way evolution works is that there would only be one
species tree.
Different genes have different histories, so you get different gene
trees. Putting them together is also a statistical problem: trying to
find out what the average of the different genes are. We’re going to
study the evolutionary process as one of our models for trying to
understand what happens over time and how these mutations occur.
What we see with the data is some columns with changes.
We’re going to try to make a model for how these substitutions
occur and use that model in various ways to try to make up the tree.
The models we use are all Markovian. If you write them in discrete
time, we have probability of a change occurring as the transition
probability.



Copying Model not only for DNA

Chaucer



Continuous time Markov chains

Memoryless Property P (Y (u+ t) = j|Y (t) = i) doesn’t depend on
time before t

Time homogeneity P (Y (h+ t) = j|Y (t) = i) doesn’t depend on t,
only depends on h, time between the events.

Instantaneous transition rate

Pij(h) = qijh+ o(h), j ̸= i.

Pii(h) = 1− qi(h) + o(h), qi =
∑
j ̸=i

qij

qij is known as the instantaneous transition rate.



Times between changes are exponential

P (T ≥ t+ h) = P (T ≥ t)P (T ≥ t+ h|T ≥ t) . .

P (T ≥ t+ h) = P (T ≥ t)P (T ≥ h)

= P (T ≥ t)(1− qih+ . . .)

p(t ≥ t+ h)− P (T ≥ t)

h
= −qjP (T ≥ t)

dP (T ≥ t)

dt
= −qiP (T ≥ t)

P (T ≥ 0) = 1

gives solution

P (T ≥ t) = e−qit

P (T ≤ t) = 1− e−qit

f(t) = qie
−qit ∼ Exp(qi)



Derivative of P

Pij(t+ h)− Pij(t)

h
= −qjPij(t) +

∑
k ̸=j

qkjPik(t)

as h −→ 0,

dPij(t)

dt
= −qjPij(t) +

∑
k ̸=j

qkjPik(t)

The simplest possible model we’ll study, the mutations are all equally
likely. This model, called a Jukes-Cantor model is a one parameter
model. We suppose that every transition is reversible and that the
probability is that they’re all equal.



Particular case of Jukes-Cantor: qj = 3α and qij = α, i ̸= j.

dPij(t)

dt
= −3αPij(t) + α

∑
k ̸=j

Pik(t)

= −3αPij(t) + α(1− Pij(t))

= α− 4αPij(t)

Pii(0) = 1 and Pij(0) = 0

gives solutions

Pii(t) =
1

4
+

3

4
e−4αt

Pij(t) =
1

4
− 1

4
e−4αt



The rate matrix Q is of the form:

Q =

A T C G
A −3α α α α
T α −3α α α
C α α −3α α
G α α α −3α

The Kimura two parameter model is:

Q =

A T C G
A −α− 2β β β α
T β −α− 2β α β
C β α −α− 2β β
G α β β −α− 2β

The 12 parameter model is of the form

Q =

A T C G
A − α1,2 α1,3 α1,4

T α2,1 − α2,3 α2,4

C α3,1 α3,2 − α3,4

G α4,1 α4,2 α4,3 −



The substitution matrix gives the probability of the change of a
nucleotide during a time t as the continuous Markov chain with
infinitesimal generator Q.
In the case of the amino acids we would have bigger matrices (20×20
instead of 4× 4), but most of the other computations carry through.
The best reference about these subjects are the books by W. H Li
and WH Li and D. Graur. See also Page and E. Holmes on Molecular
Evolution: A phylogenetic approach.



Estimating the rates
- Call λ the amino acid replacement rate per year,

λ =
K

2t
=

#substit.
2× divergence time

- Probability that a site stays unchanged through t intervals is
(1− λ)2t

- The probability Dt of one or more replacements occurring in t
units of time is

1− (1− λ)2t

-

1−Dt = (1− λ)2t

log(1−Dt) = 2t log(1− λ)

log(1−Dt) =
K

λ
log(1− λ) ≃ −K

Expected proportion of differences between sequences at time
t.



Example : β globin molecule in primates

contains 146 amino acids, the estimates of the number of differences

are:

Time of div. Average # average
(millions of of amino D̂ -log(1− D̂)
years) acid changes differ.
85 25.5 25.5/146 .192
60 24 24/146 .180
42 6.25 6.25/146 .044
40 6.0 6.0/146 .042
30 2.5 2.5/146 .018
15 1.5 1.5/146 .007

The slope is around a = .002, and the evolution rate is half of this,
so: 10−3 per million years or 10−9 per year.



Human MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK

Gorilla MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK

Rabbit MVHLSSEEKSAVTALWGKVNVEEVGGEALGRLLVVYPWTQRFFESFGDLSSANAVMNNPK

Cow M..LTAEEKAAVTAFWGKVKVDEVGGEALGRLLVVYPWTQRFFESFGDLSTADAVMNNPK

Goat M..LTAEEKAAVTGFWGKVKVDEVGAEALGRLLVVYPWTQRFFEHFGDLSSADAVMNNAK

Mouse MVHLTDAEKAAVSCLWGKVNSDEVGGEALGRLLVVYPWTQRYFDSFGDLSSASAIMGNAK

Chicken MVHWTAEEKQLITGLWGKVNVAECGAEALARLLIVYPWTQRFFASFGNLSSPTAILGNPM

Carp MVEWTDAERSAIIGLWGKLNPDELGPQALARCLIVYPWTQRYFASFGNLSSPAAIMGNPK

61 120

Human VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG

Gorilla VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFKLLGNVLVCVLAHHFG

Rabbit VKAHGKKVLAAFSEGLSHLDNLKGTFAKLSELHCDKLHVDPENFRLLGNVLVIVLSHHFG

Cow VKAHGKKVLDSFSNGMKHLDDLKGTFAALSELHCDKLHVDPENFKLLGNVLVVVLARNFG

Goat VKAHGKKVLDSFSNGMKHLDDLKGTFAQLSELHCDKLHVDPENFKLLGNVLVVVLARHHG

Mouse VKAHGKKVITAFNDGLNHLDSLKGTFASLSELHCDKLHVDPENFRLLGNMIVIVLGHHLG

Chicken VRAHGKKVLTSFGDAVKNLDNIKNTFSQLSELHCDKLHVDPENFRLLGDILIIVLAAHFS

Carp VAAHGRTVMGGLERAIKNMDNIKATYAPLSVMHSEKLHVDPDNFRLLADCITVCAAMKFG

121 148

Human .KEFTPPVQAAYQKVVAGVANALAHKYH

Gorilla .K..........................

Rabbit .KEFTPQVQAAYQKVVAGVANALAHKYH

Cow .KEFTPVLQADFQKVVAGVANALAHRYH

Goat .SEFTPLLQAEFQKVVAGVANALAHRYH

Mouse .KDFTPAAQAAFQKVVAGVATALAHKYH

Chicken .KDFTPECQAAWQKLVRVVAHALARKYH

Carp PSGFSPNVQEAWQKFLSVVVSALCRQYH



Human beta-globin vs. Gorilla beta-globin

Percent Similarity: 100

Percent Identity: 99

. . . . .

Human 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLS 50

||||||||||||||||||||||||||||||||||||||||||||||||||

Gorilla 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLS 50

. . . . .

51 TPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVD 100

||||||||||||||||||||||||||||||||||||||||||||||||||

51 TPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVD 100

. .

101 PENFRLLGNVLVCVLAHHFGK 121

||||:||||||||||||||||

101 PENFKLLGNVLVCVLAHHFGK 121



We’re going to separate out two problems, which in today’s age of
computing, should be mixed together: alignment and trees.
I’m going to suppose we have sequences either of amino acids or
nucleotides which we have aligned. This is an example data set I did
in my first phylogeny paper I wrote was with Brad Efron in which we
analyzed malaria data. These are malaria sequences from 11 different
species of malaria. Two of the species of malaria are human malaria.
The others are from different animals. The question in trying to find
out information from the families has a lot of influence on designing
vaccines.



Malaria Data

11 1620

Pre1 GTACTTGTTA GGCCTTATAA GAAAAAAGT- TATTAACTTA AGGAATTATA

Pme2 GTATCTGTTA AGCCTTATAA AAAGATAGT- T-TAAATTAA AGGAATTATA

Pma3 GTATTTGTTA AGCCTTATAA GAGAAAAGTA TATTAACTTA AGGA-TTATA

Pfa4 GTATTTGTTA GGCCTTATAA GAAAAAAGT- TATTAACTTA AGGAATTATA

Pbe5 GTATTTGTTA AGCCTTATAA GAAAAA--T- TTTTAATTAA AGGAATTATA

Plo6 GTATTTGTTA AGCCTTATAA GAAAAAAGT- TACTAACTAA AGGAATTATA

Pfr7 GTACTTGTTA AGCCTTATAA GAAAGAAGT- TATTAACTTA AGGAATTATA

Pkn8 GTACTTGTTA AGCCTTATAA GAAAAGAGT- TATTAACTTA AGGAATTATA

Pcy9 GTACTCGTTA AGCCTTTTAA GAAAAAAGT- TATTAACTTA AGGAATTATA

Pvi10 GTACTTGTTA AGCCTTTTAA GAAAAAAGT- TATTAACTTA AGGAATTATA

Pga11 GTATTTGTTA AGCCTTATAA GAAAAAAGT- TATTAATTTA AGGAATTATA

ACAAAGAAGT AACACGTAAT AA--ATTTAT TTTATTT--- -AGTGTGTAT

ACAAAGAAGT AACACGTAAT AA--ATTATA TTTATTA--- -AGTGTGTAT

ACAAAGAAGT AACACATAAT AAA-TTTCGA -ATATTT--- -AGTGTGTAT

ACAAAGAAGT AACACGTAAT AA--ATTTAT TTTATTT--- -AGTGTGTAT

ACAAAGAAGT AACACATAAT AT--ATTTAC TATATTT--- -AGTGTGTAT

ACAAAGAAGC AACACATAAT AAAGCTGCGT CTTATTT--- -AGTGTGTAT

ACAAAGAAGT AACACGTGAA ATGGATTAAC TCCATTTTTT TAGTGTGTAT

ACAAAGAAGT AACACGTAAT --GGATTCT- TCCATTTT-- TAGTGTGTAT

ACAAAGAAGT AACACGTAAT --GGATCCG- TCCATTTT-- TAGTGTGTAT

ACAAAGAAGC GACACGTAAT --GGATCCG- TCCATTTT-- TAGTGTGTAT

ACAAAGAAGC AACACATAAT AAAACTTTGT TTTATTT--- -AGTGTGTAT



Transitions and Transversions

The probability of changing from a purine to a pyrimidine is called a
transversion. If you think about coding sequences, the amino acids
you don’t code the amino acid if you have a transition. We make the
two parameter model is the most used in the study of evolution. We
don’t have discrete time, that’s just a simplification.



Model 0:Jukes Cantor

This model is not a completely realistic model.
All mutations, transversions and translations are equally likely.
The probability of it not changing is 1− 3α. This is discrete time
markov chain matrix.
You can look at it stationary distribution because you have a perfect
symmetry, the left eigenvector is 1

4 ,
1
4 ,

1
4 ,

1
4 .

This stationary distribution of 1
4 ,

1
4 ,

1
4 ,

1
4 .

If for a long time you have sequences evolving over time and you’re
lost track of time and you pull a nucleotide at random it has equal
probability of being any of those.



Transitions and Transversions

The probability of changing from a purine to a pyrimidine is called a
transversion. If you think about coding sequences, the amino acids
you don’t code the amino acid if you have a transition. We make the
two parameter model is the most used in the study of evolution. We
don’t have discrete time, that’s just a simplification.



Distance based methods Variants of hierarchical cluster analysis.
The aim is to reconstruct the distances as computed between the
two sequences of the two species x and y by distances along the
edges of the tree forming a path between x and y.
First a distance matrix is constructed between the N units in some
way. These distances dxy are supposed to estimate the unknown
‘true evolutionary’ distances between x and y as they would be
measured along the unknown true tree T .
For the Jukes-Cantor model which assumes equal rates of
substitution between all base pairs provides the estimate of distances
between sequences x and y as:

dxy = −3

4
log(1− 4

3
(1− (

#AA
k

+
#CC

k
+

#GG

k
+

#TT
k

)))

where k denotes the number of characters (columns) in the data
matrix, and #AA denotes the number of times there is an A in x
matched with an A in y.
Once the distances are decided upon, the parametric model is left
behind and a clustering technique such as hierarchical clustering with
average groups is used to find the tree from the distances.



Remarks:
If we knew the true evolutionary distances between species, we
could build an additive tree that reproduced the distances along the
tree in a unique way.
The existence of an additive tree reproducing the distances faithfully
is not always ensured, a sufficient condition for this to be possible is
called the four point condition(for all quadruples):
dAB + dCD ≤ max(dAC + dBD, dAD + dBC).
This means that one of the two sums is minimum and the other two
are equal. Notice that this is not the same as the ultrametric
property which says that for any three points: A, B, C:

dAC ≤ max(dAB, dBC)

If the distances obey the ultrametric property the distances can be fit
to a binary tree with leaves equally distant from the root.
Unfortunately distances computed from real data never obey this
property.



Additivity is destroyed by:

- Homoplasy (reversal, parallelism and convergence) which is
caused by superimposed changes.

- An uneven distribution of change rates.

- Measurement error.

- Paralogous sequences.
We concentrate on distances that are computed from substitution
models such as Jukes and Cantor’s one-parameter model, Kimura’s
two-parameter model, or even the complex 12-parameter model for
the substitution matrices. These models provide estimates of
differences between sequences computed from the frequencies of
various changes in the sequences.



Parsimony method

Nonparametric procedures. Farris (1983), has a justification for
parsimony : “minimizes requirements of ad hoc hypotheses of
homoplasy”.
Analogy is made between homoplasies and residuals, (part of the
data that the tree does not explain), minimizing homoplasies is akin
to minimizing residuals in regression.
Roughly this method can be seen as based on the assumption that
“evolution is parsimonious” which means that there should be no
more evolutionary steps than necessary.
Thus the best trees are the ones that minimize the number of
changes between ancestors and descendants. Under independence of
each of the characters, this has a clear combinatorial translation.



The parsimony tree as a combinatorial
problem

Unrooted parsimony trees.
Recall that the Hamming distance between two units is the number
of changes needed to bring one to the other. This assumes that all
changes in a categorical character are counted as one step.

dH(AACTGGG,AACTGGC) = dH(AACTGGG,AACTGGA) = 1

Here, given N points in a metric space, the Steiner problem is that of
finding the shortest tree connecting the N points where one is
allowed to add extra vertices. Thus, with 4 points arranged at the
vertices of a unit square, one would add a fifth point in the center to
form the Steiner tree.



t

t

t

t

t t

tt
d d\

\\

�
��

�
��
\
\\

The minimum spanning tree and the Steiner tree of the 4 vertices of a
rectangle.
Although statisticians are not familiar with minimal Steiner trees, they
may have encountered minimal spanning trees as used by Friedman
and Rafsky (1985).



The relation between the two is well explained in Gardner’s
wonderful chapter on Steiner trees (Chapter 22, Gardner (1997)).
He explains how minimal spanning trees are good “starting points”
since in the plane for instance they can only be 13% longer than
Steiner trees.
As a combinatorial problem, the maximum parsimony tree is the
problem of finding the Steiner points or Steiner tree for Hamming
distance between the units, under the constraint that the tree be
binary.
The problem of finding a minimal Steiner tree is that of finding the
Steiner points (representing ancestors) that minimize the complete
length of the tree. Steiner points are points that are added to a graph
so that its minimal spanning tree becomes shorter.



Computation issues

The minimal Steiner tree problem is NP-hard, meaning that no
algorithm is known that will compute an optimal tree in polynomial
time in the number of species N .
Much work has been done to implement good heuristic algorithms
for finding approximately optimum trees. Swofford’s PAUP,
Felsenstein’s Phylip, and Goloboff’s NONA all contain clever use of
branch and bound techniques and branch swapping to find acceptable
answers.
#species=1500 can now be done routinely.



Parsimony as a statistical procedure

Felsenstein (1983) lists parsimony in a section entitled a section on
parsimony as “non-statistical approaches”. Farris says (1983) says the
“statistical approach to phylogenetic inference was wrong from the
start, for it rests on the idea that to study phylogeny at all one must
first know in great detail how evolution has proceeded”. Both these
authors identify statistics with parametric modeling.
In fact parsimony is just a nonparametric method of estimating the
tree parameter.



Simple Example

T7 data experimentally generated phylogeny, Hillis et al. (1992) for
which the parsimony program will be seen to produce the correct
answer. Here is the part of the data set (in phylip form) composed
of the informative sites:

9 21

R C C G C C G G C C G G C C A G C G G G G T

J C C C C G T A C C G G T C A A C G G G G T

K T C C C G C A C C G A T C A A T G G G G G

L T C C C G C A C C G A T C A A T G G G G G

M C T C C G T A C C G G T C A A C G G G G T

N C C T T A C G T T A G C T G G C A A A A T

O C T C C G C G C T G G C C G G C A G A A T

P C C C C A C G C T G G C C G G C A G A A T

Q C C T T A C G T T A G C T G G C A A A A T



One most parsimonious tree found:

+--------O

+-----------6

! ! +-----P

! +--7

! ! +--Q

! +--8

+--5 +--N

! !

! ! +--L

! ! +-----3

! ! ! +--K

--1 +-----------2

! ! +--M

! +-----4

! +--J

!

+-----------------------R

remember: this is an unrooted tree!

requires a total of 25.000

steps in each site:



0 1 2 3 4 5 6 7 8 9

*-----------------------------------------

0! 1 2 2 1 2 2 1 1 1

10! 1 1 1 1 1 1 1 1 1 1

20! 1 1



Output: the Newick notation

The output file called treefile contains the following line (the
tree in parentheses format):
(((O,(P,(Q,N))),((L,K),(M,J))),R);



Rooting the Tree

At least one of the taxonomic units has a special function. For a
statistician it would be seen as a simple outlier: the biologists
voluntarily include what they call an outgroup to locate the root of
the tree. The root is situated by creating an unrooted tree and the
edge that joins the outgroup to the other species will be the support
for the root.
This is a clever use of prior information that simplifies the problem
considerably, (by a factor of (2N − 3)). What is less obvious to the
outsider is why, once the root’s position is decided upon, the
biologists keep the outgroup in the data set - it seems to distort the
image of the closer group (called the ingroup), in fact outgroups
also provide information on the root’s characters, and so on the
ancestral states of the character.



Maximum likelihood trees
For a statistician this is the easiest of the methods to understand. A
parametric model (θ, T ) is postulated, θ is a η-dimensional vector
that we explain below and T is the tree’s topology. Under this model
the likelihood for each possible tree T is separately computed for
each character, the independence of characters then allows the total
likelihood of the tree for all data to be computed by taking the
product.
The first part of the vector of parameters θ comes from the
Markovian substitution model as explained before.
The number of other parameters that have to be specified depends
on the complexity of the model. If a molecular clock 1 is postulated,
speciation times {t1, t2, ...tN−2} (splitting events) are the other
parameters. Otherwise both the branch lengths {v1, v2, ...vN−2}
and the different rates along those branches have to be parametrized.

1branch lengths in evolutionary change depend linearly on time
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The substitution parameters are estimated from the data. A
complete model including distributions of separation events is
postulated and the likelihood can be computed for each possible tree
by computing the likelihood of the tree for each site X.j :

f(X.j |θ1, θ2, . . . , θη, T ).



This actually requires computing the likelihood of all the subtrees, so
the method is recursive.

L(θ1, θ2, . . . , θη|X.1, X.2, . . . , X.k, T ) =
k∏

j=1

f(X.j |θ, T )

The essential assumptions:

1. Each site in the sequence evolves independently.

2. Different lineages evolve independently.

3. Each site undergoes substitution at an expected rate (can be
extended to a series of rates with a given distribution).
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x1 = a x2 = b x3 = c
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Likelihood:P(data|Tree,t’s,ancestors,mutation rates). Based on the
probabilities computed given the tree and for potential ancestors
(t3 = t1 + t2)

P (a, b, c, y, z|T, t) = P (a|y, t1)P (b|y, t1)P (c|z, t3)P (y|z, t2)P (z)

P (a, b, c, |T, t) =
∑
z

πzPzc(t3)
∑
y

Pzy(t2)Pya(t1)Pyb(t1)

This is a function of t1, t2 whose values are estimated as the
maximum for a given tree topology, then for the ml estimate is made
for each T.



The T with the maximum value is the maximum likelihood estimate.
We can consider the likelihood computation, one character at a time.
Starting from the root, or starting from the leaves, Felsenstein’s
transversal method starts from the leaves, we abbreviate the
character we are interested from xij to xi. For two leaves with the
residue a at their common ancestor (the root here):

P (x1, x2, a|T , θ1 = t1, θ2 = t2) = πaP (x1|a, θ1)P (x2|a, θ2)

The root is an unknown nuisance parameter that we integrate out:

P (x1, x2|T , θ1 = t1, θ2 = t2) =
∑
a

πaP (x1|a, θ1)P (x2|a, θ2)



Call m[i] the direct parent of i, and P (Li|a) denote the probability
of all nodes below i given that the node i is a. We number the inner
nodes from (n+1) to (2n-2), these ancestral nodes are all unknown,
so we have to sum the probabilities of all their possible assignments
to compute the complete likelihood of the tree, given its edge
lengths (θ1, θ2, . . . , θ2n−2).
The algorithm is similar to the forward algorithm in HMM.
Sum over possible paths, working upwards from the leaves.
Compute P (Lj |e), P (Lk|f) for all e and f at daughter nodes j, k of i

P (Li|a) =
∑
b,c

P (b|a, tj) ∗ P (Lj |b) ∗ P (c|a, tk) ∗ P (Lk|c)

We can write down the complete probability as a sum.



We denote the alphabet of possible residuals A,

P (x1, x2, . . . , x(2n−2)|T , θ)

=
∑

(an+1,...,a2n−1)∈An−2

πa2n−1

2n−2∏
n+1

P (ai|am[i], θi)

n∏
1

P (xi|am[i], θi)

the computational algorithm evaluates P (Li|a) for the children j and
k such that m[j] = m[k] = i, we compute P (Lj |b) and P (Lk|c) for
all possible b and c.
These instructions allow us to compute the likelihood of any tree,
given its branching order (sometimes called topology) and its branch
lengths.
For the maximum likelihood computation, we need to compute the
tree that maximizes the likelihood, first for a given branching order,
find the branch lengths that maximize the likelihood. This can be

done by taking the derivative ∂P (xj |xm[j],θk)
∂θj

in order to use the
conjugate gradient method for optimising the edge lengths, or we can
take an EM approach as Felsenstein, 1981 suggests and implemented
in his phylip program.



Complexity: Hard

Finding the likelihood of one tree is an NP complete problem
Remark :There is no known polynomial time algorithm that finds the
tree with maximum likelihood.
Thus as we need to look at all the topologies, of which there are
exponentially many; we see the exact computation becomes quickly
intractable as the number of leaves increases.
Nice implementations:
phylip, RaXML, FastML, PhyML, (see wikipedia)...
From R: phangorn, phyml.



Maximum likelihood trees: Output from phylip program
dnaml:

Nucleic acid sequence Max. Likelihood, vers. 3.572c

Empirical Base Frequencies:

A 0.27778 G 0.22685

C 0.22325 T(U)0.27212

Transition/transversion ratio = 2.000000

(Transition/transversion parameter = 1.519971)



+J

!

! +R

! +--1

! ! ! +N

! ! +--4

! ! ! +O

! +--5 +--3

! ! ! ! +P

! ! ! +--2

--7--6 ! +Q

! ! !

! ! +L

! !

! +M

!

+K

Ln Likelihood = -344.10331

Examined 95 trees

Between And Length Approx.Conf.Limits

------- --- ------ ------- ----------

7 J 0.00006 ( zero, infinity)



7 6 0.00003 ( zero, infinity)

6 5 0.00006 ( zero, infinity)

5 1 0.00936 ( zero, 0.02236) **

1 R 0.00466 ( zero, 0.01384) **

1 4 0.00469 ( zero, 0.01389) **

4 N 0.00462 ( zero, 0.01369) **

4 3 0.00003 ( zero, infinity)

3 O 0.00462 ( zero, 0.01369) **

3 2 0.00003 ( zero, infinity)

2 P 0.00462 ( zero, 0.01369) **

2 Q 0.00003 ( zero, infinity)

5 L 0.00006 ( zero, infinity)

6 M 0.00003 ( zero, infinity)

7 K 0.00003 ( zero, infinity)

* = significantly positive, P < 0.05

** = significantly positive, P < 0.01



ML Estimate Application: Origins of HIV

The article by Korber et al. provides an estimate of a most recent
ancestor. When you see two sequences, how much time went by
until the most recent common ancestor.
The English author, Hooper, hypothesis that HIV was spread by
dispensaries who were giving the polio vaccination in East Africa.
They were supposed to be responsible for diffusing AIDS because the
vaccination was grown in monkey tissue. The idea was to try to
disprove this occurred at the time of the vaccination program in 1957
and this study was trying to make a confidence interval of the time of
the most recent ancestor using as many sequences as they had to
make up the whole tree.
One of the reasons this data seemed interested is that this data is
freely available on Los Alamos National Laboratories.







The ideas is that of the models we are using for molecular evolution,
they have this molecular clock.
You have a homogenous process, the number of mutations with be
proportionate to time.
There hasn’t been much progress in disproving or in proving this
molecular clock hypothesis, so the the way it’s justified is the average
the amount of mutation that occurs over time.
Parametric bootstrap generation of sequences
Suppose we had the treefile from a previous phylip output,
the generation of sequences is done using Seq-gen (Rambaut and
Grassly, 1997) by :

seq-gen -mHKY -t3.0 -l27 -n100 < treefile > example.T7

For which the output looks like:



Sequence Generator - seq-gen, Version 1.04

(c) Copyright, 1996 Andrew Rambaut and Nick Grassly

Department of Zoology, University of Oxford

South Parks Road, Oxford OX1 3PS, U.K.

Simulating 11 taxa, 27 bases

for 1 tree(s) with 100 dataset(s) per tree

Branch lengths assumed to be number of substitutions

per site

Rate homogeneity of sites.

Model=HKY

transition/transversion ratio = 3 (kappa=6)

frequencies = A:0.25 C:0.25 G:0.25 T:0.25

0%|____________________|100%

[....................]

Time taken: 0.12 seconds



The data file example.T7 generated looks like this:

11 27

R CCGACCTCCAAGATTCGCTATGACAAT

P CCGACCTCCAAGATTCGCTATGACAAT

Q CCGACCTCCAAGATTCGCTATGACAAT

L CCGACCTCCAAGATTCGCTATGACAAT

M CCGACCTCCAAGATT.........etc

..

11 27

R ATGGTAGCGGATAACTGACTTCATCGA

P ATGGTAGCGGATAACTGACTTCATCGA

Q ATGGTAGCGGATAACTGACTTCATCGA

L ATGGTAGCGGATAACTGACTTCATCGA

M ATGGTAGCGGATAACTGACTTCATCGA

...... ATGGTAGCGGATAA.........etc



This file example. T7 was then submitted to the phylip program
dnapars with the option multiple data sets indicating that there
were 100 data sets to analyze, the first part of the output from this
looked like this:

((R,(((((M,K),L),N),Q),(J,P))),O)[0.0100];

((R,(((((M,K),L),N),(J,Q)),P)),O)[0.0100];

((R,(((((M,K),L),(J,N)),Q),P)),O)[0.0100];

((R,(((((M,K),(J,L)),N),Q),P)),O)[0.0100];

((R,(((((M,(J,K)),L),N),Q),P)),O)[0.0100];

(((((((J,M),(R,K)),L),N),Q),P),O)[0.0100];

(((((((J,(R,M)),K),L),N),Q),P),O)[0.0100];

((((((((R,J),M),K),L),N),Q),P),O)[0.0100];

((R,((((((J,M),K),L),N),Q),P)),O)[0.0100];

(((((((R,(J,M)),K),L),N),Q),P),O)[0.0100];

(((R,J),(((((M,K),L),N),Q),P)),O)[0.0100];

((J,(R,(((((M,K),L),N),Q),P))),O)[0.0100];

((R,(J,(((((M,K),L),N),Q),P))),O)[0.0100];

((R,((J,((((M,K),L),N),Q)),P)),O)[0.0100];

((R,(((J,(((M,K),L),N)),Q),P)),O)[0.0100];

((R,((((J,((M,K),L)),N),Q),P)),O)[0.0100];

((R,(((((J,(M,K)),L),N),Q),P)),O)[0.0100];

(((J,(R,M)),((((K,L),N),Q),P)),O)[0.0100];

((((R,J),M),((((K,L),N),Q),P)),O)[0.0100];

(((R,(J,M)),((((K,L),N),Q),P)),O)[0.0100];

((M,((R,J),((((K,L),N),Q),P))),O)[0.0100];

(((R,J),(M,((((K,L),N),Q),P))),O)[0.0100];

(((R,J),((M,(((K,L),N),Q)),P)),O)[0.0100];

Notice at the end of each tree is associated a weight.



Molecular Clock
Says that the probability of changes along the edges of the tree are
proportional to edgelengths:

.



More believable models of Evolution:
The likelihood was computed as:

L(θ1, θ2, . . . , θη|x.1, x.2, . . . , x.k, T ) =
k∏

j=1

f(x.j |θ, T )

Variation of rates of substitution among sites.
Variable sites models for the rates considers the sites to have
different rates. The new likelihood takes the different rates into
account:

P (x|T, t, rK) =

K∏
k=1

P (xk|T, rkt)

We do not have enough information about the sites to know what
these rates should be, so we integrate out the variation by
integrating out over all values of r using a prior for the rates. Yang
proposes to use a gamma g(r, α, α) prior which has mean 1 and
variance 1/α for the rates.



The likelihood now becomes:

P (x|T, t, α) =
K∏
k=1

∫ ∞

0
P (xk|T, rt)g(r, α, α)dr

For each T, this is maximised with respect to t and α.
Actually better by far to use α from other data.
In practice a discrete sum approximation is sufficient.
Similar approach is to use a hidden Markov model for the states
(Felsenstein and Churchill)

P (x|T, t, αs) =

K∏
k=1

m∑
k=1

aklP (xk|T, rl)g(r, α, α)

Different areas can thus be defined:

- Surface sites of proteins may be exposed to more substitutions.

- Loops with exposed sites.

- Beta sheets have an alternance of buried and exposed sites.



Full Bayesian Method

- Prior distribution on all tree branching patterns.

- Gamma dsitribution for the rates.

- Compute posterior distribution using MCMC.

Implementations:MrBayes, Beast

Open Questions:

- Prior probability model for trees , open question. Uniform
distribution on all trees poses big problem:
2n− 3!! different binary rotted semi-labeled trees with n leaves.
With 10, you have more than a million trees.

- How long to run the MCMC? (Diaconis and Holmes, EJP cannot
touch the real case)
Negative results by Mossel and Vigoda on problems with
mixtures.

- Using the output from MCMC runs ...we will talk about this.



Distance Based Methods
In phylogenetics, neighbor joining is very similar to the algorithms
used for hierarchical clustering.
The aim is to reconstruct the distances as computed between the
two sequences of the two species x and y by distances along the
edges of the tree forming a path between x and y.
First a distance matrix is constructed between the N units in some
way. These distances dxy are supposed to estimate the unknown
‘true evolutionary’ distances between x and y as they would be
measured along the unknown true tree T .
For the Jukes-Cantor model which assumes equal rates of
substitution between all base pairs provides the estimate of distances
between sequences x and y as:

dxy = −3

4
log(1− 4

3
(1− (

#AA
k

+
#CC

k
+

#GG

k
+

#TT
k

)))

where k denotes the number of characters (columns) in the data
matrix, and #AA denotes the number of times there is an A in x
matched with an A in y.



Iterative Agglomeration: Bottom Up
heuristic
Once the distances are decided upon, the parametric model is left
behind and a clustering technique such as hierarchical clustering with
average groups is used to find the tree from the distances.
Remarks:
If we knew the true evolutionary distances between species, we
could build an additive tree that reproduced the distances along the
tree in a unique way.
The existence of an additive tree reproducing the distances faithfully
is not always ensured, a sufficient condition for this to be possible is
called the four point condition(for all quadruples):
dAB + dCD ≤ max(dAC + dBD, dAD + dBC).
This means that one of the two sums is minimum and the other two
are equal. Notice that this is not the same as the ultrametric
property which says that for any three points: A, B, C:

dAC ≤ max(dAB, dBC)



dAC ≤ max(dAB, dBC)

If the distances obey the ultrametric property the distances can be fit
to a binary tree with leaves equally distant from the root.
Unfortunately distances computed from real data never obey this
property.
This can be destroyed by:

- Homoplasy (reversal, parallelism and convergence) which is
caused by superimposed changes.

- An uneven distribution of change rates.

- Measurement error.

- Paralogous sequences.



Hierarchical clustering trees

Built from distances or dissimilarities between the rows of the data
matrix [7].
Common examples include computations of dissimilarities in gene
expression or in occurrence of words in texts or webpages.
The resulting hierarchical clustering tree has the advantage over
simple partitioning methods that one can look at the output in order
to make an informed decision as to the relevant number of clusters
for a particular data set.
Microarray studies have popularized the use of a double hierarchical
clustering or bi-clustering trees where both the rows and columns of
the data are clustered. This is the most popular method for
visualizing both relations between genes and patient groups in gene
expression studies [1, 5].
Many implementations are available; the illustration in Figure in the
introduction was made with heatmap function in R [9].



Consequences for statistics on treespace

- The uniform distribution on tree is irrelevant.

- Statistical inference involving phylogenetic trees require more
sophisticated probabilities on treespace.

- Would benefit from a notion of neighborhood for trees.
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Motivation: Forests of Trees

- Different genes, same set of species.

- Bootstrapped Data by Multinomial Resampling, then estimating
the tree.

- Bayesian Posterior Distributions on set of Trees.

- Simulated data according to certain evolutionary models
(seq-gen).

- Data specimens in different conditions.

- Hierarchical Clustering Trees for (repeated) RNA-seq data
(different time points, different space points, ...).



Hierarchical Clustering Trees
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Some Methods for Generating Trees

With advances in computational power we can use simulated data to
evaluate clustering stability, either in a frequentist (Bootstrap) setting
or by using a Bayesian paradigm where trees from a posterior
distribution can be generated by MCMC (Monte Carlo Markov chain)
methods.
We provide here a brief overview of the standard methods for
generating distributions of trees. Different approaches to the
problem of combining the trees are summarized. This combination of
information on different trees is a non-standard statistical problem
because trees do not lie in a Euclidean space ([1]).



Sampling Distribution for Trees
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Bootstrap support for Phylogenies Taking as observations the
columns of the matrix X of aligned sequences, the rows
representing the species.
The sampling distribution of the estimated tree is
estimated by resampling with replacement among the
characters or columns of the data.
This provides a large set of plausible alternative data
sets, each be used in the same way as the original data
to give a separate tree (see [13] for a review).

Parametric Bootstrapping for Microarray Clusters



Bayesian posterior distributions for phylogenetic trees - Prior
distributions on the DNA mutation rates that
occur during the evolutionary process and a
uniform distribution on the original tree.

- Use of MCMC to generate instances of the
posterior distribution.

- Implementations MrBayes [15] and Beast
provide a sample of trees from the posterior
distribution.

- The posterior distribution provides an estimate of
variability.

Bayesian methods in hierarchical clustering Heller[23] provide a
Bayesian nonparametric method for generating
posterior distributions of hierarchical clustering trees.



Euclidean space (where through every point not on a line) is flat:

(sum of angles of a triangle is 180 o),



Hyperbolic space is ‘ negatively’ curved:

Euclid’s parallel postulate is replaced.
In hyperbolic geometry there are at least two distinct lines through P
which do not intersect l, so the parallel postulate is false.
A characteristic property of hyperbolic geometry is that the angles of
a triangle add to less than 180 o.



c

a

c

b ba



Geodesic metric space:
If we have a distance defined between any two points of a space, we
call it a metric space.
(The distance doesn’t have to be defined through ordinary
coordinates)
A geodesic metric space is a metric space where geodesics are
defined to be the shortest path between points in the space.



δ-hyperbolic space is a geodesic metric space in which every geodesic
triangle is δ-thin.
δ-thin: pick three points and draw geodesic lines between them to
make a geodesic triangle. Then any point on any of the edges of the
triangle is within a distance of δ from one of the other two sides.



For example, trees are 0-hyperbolic: a geodesic triangle in a tree is
just a subtree, so any point on a geodesic triangle is actually on two
edges.

Normal Euclidean space is∞-hyperbolic; i.e. not hyperbolic.
Generally, the higher δ has to be, the less curved the space is.



Comparing Different Trees

- Binomial Support Estimates (Consensus+support values).

- Split Differences, Visualization Programs .

- Distances.

- Recoding of Trees as binary columns.



Confidence Statements for trees



Confidence Statements in Statistics
Depend on local and global properties of a neighborhood.
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From Efron, Halloran, Holmes, (1996)

What is the curvature of the boundary?
How many neighbors does a region have?



Simple confidence values

- Univariate.

- Multiple Testing.

- Composite Statements.
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+---------------------------------------Lemur catt



Do we care about confidence statements
for phylogenetic trees?
Cetacees: recognising what is being sold as Whale meat in Japan?

Steve
Palumbi, Stanford. Scott Baker, Auckland.







The River without a Paddle?
Human immunodeficiency virus: Phylogeny and the origin of HIV-1
The origin of human immunodeficiency virus type 1 (HIV-1) is
controversial.

Phylogeny has showed that viruses obtained from the Democratic
Republic of Congo in Africa have a quantitatively different
phylogenetic tree structure from those sampled in other parts of the
world.
This indicates that the structure of HIV-1 phylogenies is the result of
epidemiological processes acting within human populations alone,
and is not due to multiple cross-species transmission initiated by oral
polio vaccination.



Conversely, phylogenetic analysis of HIV-1 sequences indicates that
group M originated before the vaccination campaign, supporting a
model of ’natural transfer’ from chimpanzees to humans. If this
timescale is correct, then the OPV theory remains a viable
hypothesis of HIV-1 origins only if the subtypes of group M
differentiated in chimpanzees before their transmission to humans.



Confidence Intervals ?

Korber and colleagues extrapolated the timing of the origin of HIV-1
group M back to a single viral ancestor in 1931, give or take about 12
years for 95% confidence limits.
Because this calendar of events obviously pre-dated the OPV trials, in
the revised version of his book, Hooper suggested that group M first
began to diverge in chimpanzees, and that there were then several
independent transfers of virus to humans via OPV.
In that case, several OPV batches should bear evidence of their
production in chimpanzee tissue, yet no such evidence has been
found.







Closure: Polio vaccines exonerated
Nature 410, 1035 - 1036 (2001)

The OPV batch that Hooper considered to be under most suspicion,
however, was CHAT 10A-11.
An original vial of the batch was found at Britain’s National Institute
for Biological Standards and Control, and the new tests show that it
was prepared from rhesus-macaque cells.



Frequentist Confidence Regions

P (τ ∈ Rα) = 1− α

We will use the nonparametric approach of Tukey who proposed
peeling convex hulls to construct successive ‘deeper’ confidence
regions. But we need a geometrical space to build these regions in.



What does a neighborhood look like?

Need modern topology.
Aims

- Fill Tree Space and make meaningful boundaries.

- Define distances between trees.

- Define neighborhoods, meaningful measures.

- Principal directions of variations in tree space, summarizing :
structure + noise.

- Confidence statements, convex hulls.



Distances between Trees

- Robinson and Foulds, (bipartitions).

- Nearest Neighbor Interchange (NNI). Rotation Moves

                     4
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2 31

                     

0

4321                    

0

41 32

- Subtree Prune Rebranch. (SPR)

- Fill-in of NNI moves: Billera, Holmes, Vogtmann (BHV).
The boundaries between regions represent an area of
uncertainty about the exact branching order. In biological
terminology this is called an ‘unresolved’ tree.
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Boundary for trees with 3 leaves
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The quadrant for one tree
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Link of the origin
All 15 quadrants for n = 4 share the same origin. If we take the
diagonal line segment x+ y = 1 in each quadrant, we obtain a graph
with an edge for each quadrant and a trivalent vertex for each
boundary ray; this graph is called the link of the origin.

1 42 3

0

1 42 3

0

(1,0)

(0,1) 

x+y=1



Cube complex of Euclidean Orthants

A path between two trees consists
of line segments through a sequence of orthants. This sequence of
orthants is the path.
A path is a geodesic when it has the smallest length of all paths
between two points.
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A path between two trees consists
of line segments through a sequence of orthants. This sequence of
orthants is the path.
A path is a geodesic when it has the smallest length of all paths
between two points.



A Cone Path

A path between two trees T and T ′ always exists. Since all orthants
connect at the origin, any two trees T and T ′ can be connected by a
two-segment path, this is called the cone-path.



Three orthants sharing a common boundary for n = 4 leaves.
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a
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b ba

Theorem( Billera, Holmes, Vogtmann (BHV)): Tree space with BHV
metric is a CAT(0) space, that is, it has non-positive curvature.
This implies there are geodesic between any two trees (Gromov).
It is not an Euclidean space.
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This has an effect on the existence of geodesics.
The speed at which MCMC methods work.
The size of the “variance”.
The computation of the mean of a set of trees.
The number of neighbors of a tree.



We know that given a distance matrix we can give a treelike
representation of the points with these distances by building a tree if
the distances obey Buneman’s four point condition (Buneman, 1974).

Buneman’s four point condition
For any four points (u, v, w, x) :
The three sums:d(u, v) + d(w, x), d(u,w) + d(v, x), d(u, x) + d(v, w) are
equal, not less than the third.



We can see Gromov’s definition the hyperbolicity contant δ as a
relaxation of the above four-point condition:

Gromov’s hyperbolicity contant

For any four points u,v,w,x, the two larger of the three sums
d(u, v) + d(w, x), d(u,w) + d(v, x), d(u, x) + d(v, w) differ by at most 2δ.



Can we embed trees in Euclidean space
(approximately)
We can ask whether points are closer to a tree or to being
embeddable in Euclidean space by using Gromov’s δ.
Implementation:
distory is an R package written with John Chakerian[3] which
both implements the geodesic BHV distance between trees using
Owen and Provan (2009)’s algorithm and the computation of delta
for any finite set of points.

c
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Multidimensional Scaling (MDS or PCoA)

Schoenberg’s (1935) remarked that a symmetric matrix of positive
entries with zeros on the diagonal is a Euclidean distance matrix
between n points if and only if the matrix

−1

2
H∆2H is semi-definite positive

where H = (I − 1
n11

′), and 1′ = (1, 1, 1 . . . , 1)



Approximating Non Euclidean Distances
by Euclidean ones
Forward:Decomposition of Distances Suppose we did have an
Euclidena space, variables measured in Rp that are not centered: Y ,
apply the centering matrix

X = HY, with H = (I − 1

n
11′), and 1′ = (1, 1, 1 . . . , 1)

Call B = XX ′, if D(2) is the matrix of squared distances between
rows of X in the euclidean coordinates,

di,j =
√
(x1i − x1j )

2 + · · ·+ (xpi − xpj )
2. and − 1

2
HD(2)H = B

Backward from D to X We can go backwards from a matrix D to X
by taking the eigendecomposition of B in much the same way that
PCA provides the best rank r approximation for data by taking the
singular value decomposition of X , or the eigendecomposition of
XX ′.



X(r) = US(r)V ′ with S(r) =


s1 0 0 0 ...
0 s2 0 0 ...
0 0 ... ... ...
0 0 ... sr ...
... ... ... 0 0


This provides the best approximate representation in an Euclidean
space of dimension r. The algorithm provides points in a Euclidean
space that have approximately the same distances as those provided
by D2.



MDS Algorithm

In summary, given an n× n matrix of interpoint distances, one can
solve for points achieving these distances by:

1. Double centering the interpoint distance squared matrix:
S = −1

2HD2H .

2. Diagonalizing S: S = UΛUT .

3. Extracting X̃ : X̃ = UΛ1/2.



Is it better to represent the distances by
a tree or a Euclidean projection?



Malaria Data as seen using ape

Pre1

Pme2

Plo6

Pga11

Pma3

Pbe5

Pfr7

Pkn8

Pcy9

Pvi10

Pfa4
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Probability Distributions on Tree Space

In Holmes (2005) I discuss the use of distances for making believable
probability distributions on the space of trees, the simplest such
model is

P (τi) = Ke−λd(τi,τ0)

This is really a Mallows[17] model for trees, and as such has possible
extensions in similar ways than [10], [11] or those used for rankings
developed in [4].



Maximum Likelihood Bootstrap



Empirical Evidence on Mixing on Bethe
Lattice
Mossel noticed that one of the extreme points of tree space with
regards to predicting the root was the Bethe Lattice:

12
34
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Can we hear the root?



For large enough independent sequences, say for k we can
reconstruct the tree with probability 1− δ

k >
c logn

(1− θmax)2θdmin(T )

However for large mutation rates, Mossel also proved the
impossibility of estimating a tree if we only have short sequences and
high mutation rates.



Distribution of Trees from seqgen Bethe
Tree Data

α = 0.05, ℓ = 1000 MDS plot,
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higher mutation rate.



Distribution of Trees from seqgen Bethe
Tree Data

α = 0.01, ℓ = 1000 MDS plot,

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

−0.02 −0.01 0.00 0.01 0.02

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

1



Seeing the Mutation Rate Gradient
We generated 9 sets of trees with mutation rates set from α = 0.01
to α = 0.09 and we generated the data according to the Bethe lattice
tree.
Here are the results in the first plane of the MDS:
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Tree of Trees

A tree is a complete CAT(0) space.

c

a

c

b baa

c

b

Since BHV,2001 [1] have shown that the space of trees is negatively
curved (a CAT(0) space), the most natural representation of a
collection of trees may be a tree.
Is this good for anything?



Mixture Detection

Mixtures pose problems when using MCMC methods in the Bayesian
estimation context ( Mossel,Vigoda 2005[20]). These authors note
that MCMC methods in particular those used to compute Bayesian
posterior distributions on trees can be misleading when the data are
generated from a mixture of trees, because in the case of a
‘well-balanced’ mixture the algorithms are not guaranteed to
converge.
They recommend separating the sequences according to coherent
evolutionary processes.
Suppose the data come from the mixture of several different trees,
we will see how the bootstrap and the various distances and
representations can detect these situations.
Our procedure uses the bootstrap.



We use the distance between trees and then make a hierarchical
clustering tree using single linkage (Similar to UPGMA) to provide a
picture of the relationships between the trees.
In this simulated example we generate two sets of data of length
1, 000 from the two different trees represented:

A

B

C

D

E

F

G

H

O

A

B

C

D

E

F

G

H

O

Trees used to generate sequences of length 1000 each which are
combined into one 2000 long aligned set (X12) and then
bootstrapped.



A simulation experiment: we concatenate the data into one data set
on which the standard phylogenetic estimation procedures are run.
This provides the estimated tree for the data. We also generate 250
bootstrap resamples from the combined data. We then compute the
distances between the 250 trees from each of the bootstrap
resamples and make a hierarchical clustering single linkage from this
distance matrix.



3
3

3
3 3

6
2 2

6
2 2 6 2 2

2 2
2

2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2
2 2 2 2 2 2 2 2

2 2
2 2 2 2 2 2 2

2 2
2

2 2 2
2 2

2
2 2

2
2 2 2 2 2

2 2
2 2 2 2

2 2 2
2 2

2
2 2 2

2 2
2 2 2 2 2 2 2 2

2 2 2 2 2 2
2 2

2 2 2
2 2

2 2
2 2 2

2 2
2 2 2

2 2
2 2 2 2 2
2 2 2

2 2
2 2

2 2
2 2

1
1 1 1 1 1 1 1 1 1 1

5 5
1 1 1

1 1
1 1 1 1

1 1
1 1 1 1 1

1 1
1 1 1 1

1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1
1 1 1 1 1 1 1 1 1 1 1 1 1

1
1 1

1
1 1

1 1 1 1 1 1 1
1 1

1 1 1 1 1 1 1 1 1 1 1 1
1 1

1 1 1 1 1 1 1
1 1

1
1 1

1 1 1
4

4 4 4 4

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

Cluster Dendrogram

H
ei

gh
t

Figure: Hierarchical clustering of 250 trees resulting from a nonparametric
bootstrap of the data generated by the double data set X12



Data Distrib. Dist Max (sd) Mean(sd) δ (sd) δ/Max (sd)

500 Unif Manhat 13.8 (0.33) 8.33 (0.04) 7.03 (0.26) 0.51 (0.02)

500 Unif Euclid 3.04 (0.06) 2.03 (0.009) 1.38 (0.05) 0.45 (0.02)

512 MVN Manhat 49.14 (1.59) 28.22 (0.20) 21.45 (0.79) 0.44 (0.02)

512 MVN Euclid 11.66 (0.41) 7.00 (0.05) 4.82 (0.17) 0.41 (0.02)

512 Bethe JC69 0.223 (0.008) 0.16 (0.003) 0.017 (0.001) 0.076 (0.0043)

512 Bethe Raw 0.19 (0.006) 0.14 (0.002) 0.013 (0.001) 0.069 (0.004)

Table: Different values of δ and the ratio δ/max(d)
for points generated both in bounded Euclidean

space and for points generated from trees. Each

value was estimated from 100 simulations, in the

Euclidean case the distances were computed from

points generated in 25 dimensions.



In particular, we used the δ/max statistic in the case of the
bootstrapped trees represented by the MDS plot in the resulting
ratio was 0.47, thus indicating given the calibration experiments in
the above table that point configuration would be well approximated
by a Euclidean MDS. The δ/max statistic is a rough approximation
for scaling each triangle considered by its diameter; two other
approximations, scaling by the perimeter and scaling by the max of
the sums A(1) are implemented in the R package.



Statistical Uses for Distances
- Center of Cloud of Trees (equal weights): Find T0 that
minimizes either

∑K
k=1 d

2(T0, Tk) this is the (L2) definition
of the mean tree, or

∑K
k=1 d(T0, Tk) (L1).

- Extend the above to cater for a measure on treespace.

P (T ) = Kexp(−λd(T, T0))

- Variability of the tree-points:
Pseudovariance= 1

K−1

∑K
k=1 d

2(T0, Tk) = ŝ2.
- Studentizing :

d(T̂ ∗, T̂obs)

ŝ
- Leverage of a position, as in leverage of an observation in
regression.

- PCA with regards to Instrumental Variables- DPCOA. Explain a
set of distances between trees by other distances between the
same data.



Path between different tree topologies



Finding the ‘guilty characters’



Thinking like a Statistician....

and a geometer..

- How treelike are the data ? Model Selection.

- Do we always need the tree, Distances between Data.

- Are all the characters supporting the tree? Leverage.

- Finding hidden gradients Ordination of trees.

- Stability under perturbation Evaluating the estimates.

- How variable are the trees? Variance and Moments.
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- How variable are the trees? Variance and Moments.



Consequences

- Averaging works better than it should, (an argument against
total evidence computation without decomposing??).

- We can build Bayesian priors based on distances.

- We can make a useful bootstrap statement.

- We can make convex hulls. −→ Confidence regions.

- We know how many neighbors any tree has.

- We can make a useful bootstrap statement.



How many neighbors for a given
tree?(W.H.Li,1993)

We know the number of neighbors of each tree.



For a tree with only two inner edges, there is the only one way of
having two edges small: to be close to the origin-star tree:
15 neighbors. This same notion of neighborhood containing 15
different branching orders applies to all trees on as many leaves as
necessary but who have two contiguous “small edges” and all the
other inner edges significantly bigger than 0.



This picture of treespace frees us from having to use simulations to
find out how many different trees are in a neighborhood of a given
radius r around a given tree. All we have to do is check the sets of
contiguous edges in the tree smaller than r, say there is only one set
of size k, then the neighborhood will contain

(2k − 3)!! = (2k − 3)× (2k − 5)× · · · 3‘different’ trees.

If there are m sets of sizes (n1, n2, . . . , nm)
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In this case the number of trees within r will be 15 ∗ 105 ∗ 3 = 4725,
in general:

(2n1 − 3)!!× (2n2 − 3)!!× (2n3 − 3)!! · · · × (2nm − 3)!!

A tree near the star tree at the origin will have an exponential
number of neighbors.
This explosion of the volume of a neighborhood at the origin
provides for interesting math problems.



These differing number of neighbors for different trees show that the
bootstrap values cannot be compared from one tree to another.
This was implicitly understood by Hendy and Penny in their NN
Bootstrap procedure.
Are there other ways of using the bootstrap than just counting clade
appearances?



Beware the different number of neighbors matters if you think you
are using a Monte Carlo method to estimate the distance to the
boundary using the bootstrap.



Inferential Bootstrap

X original data −→ T̂ estimate.

Data 1

2
3

How?
Call X ∗ bootstrap samples consistent with the model used for
estimating the tree:

- Non parametric multinomial resampling for a parsimony tree.

- Seqgen parametric type resampling with the same parameters
for a ML.

- Bayesian GAMMA prior on rates and generation (Yang 2000) for
random sequences according to T̂



Sampling Distribution for Trees

Data 1

2
3



Data 1
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Treespace  Tn



Data
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True  Sampling  Distribution



Data
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New resample D∗ drawn by resampling rows (genes) from the
original Dnspecies×nchar matrix.

- Are the characters (columns) independent?
We actually have less information than we think?
What is the unit of information?

- Block Bootstrap to generate dependent data.

Summarizing the bootstrap sampling distribution:
Why isn’t enought to just count the branches in common?
Loss of all the multivariate information.



Tree Stability ?

Resample genes and compare the bootstrap tree to the original tree
using a distance between trees (Billera, Holmes, Vogtman, 2001 for
the distances and Holmes, Vogtmann, Staple, 2004 for the algorithm).
Implemented in ape.



The bootstrap works (?)

Conjecture:
The bootstrap estimate of the sampling distribution of the distances
d(T̂ ∗, T̂ ) is a good approximation to the true sampling distribution
of d(T̂ , T ).



Hypothesis Testing

As an additional element we have projected the star tree “S” (chosen
with the lengths of the pendant edges closest to the original tree) to
see whether it is in a small neighborhood, or credibility region of the
bootstrapped trees.
This is analogous to seeing if 0 is in a confidence interval of
differences between two random variables. If the star tree seems to
be in central to a confidence region with a high probability coverage
then we conclude that the data are not really treelike. In the figure ,
S appears to be on the outer convex hull of the projected points; we
can conclude that the probability that the star tree belongs to the
confidence region is low. To our knowledge, this is the first concrete
implementation of the idea of using convex hulls to make confidence
statements of this type [14] .



As an aside, note that the numbers in the Figure label the different
types of branching patterns. We see that trees of the same topology
are not necessarily closer to the original tree if we use the BHV
with no modifications. In some cases we may want to give an extra
weight to crossing orthants (ie changing branching pattern). We give
examples of such modifications of the distance in the [? ] vignette.
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Who Cares?

Bacterial Species in the Gut: Example of a Metagenome.
Samples from IBS and healthy rats give abundance of about 1,000
species of bacteria.

To be continued...



Who Cares?

Bacterial Species in the Gut: Example of a Metagenome.
Samples from IBS and healthy rats give abundance of about 1,000
species of bacteria. To be continued...
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Part I

Heterogeneity

`Homogeneous data are all alike;

all heterogeneous data are heterogeneous

in their own way.'

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Heterogeneity of Data
▶ Status : response/ explanatory.
▶ Hidden (latent)/measured.
▶ Types :

▶ Con nuous
▶ Binary, categorical
▶ Graphs/ Trees
▶ Images
▶ Maps/ Spa al Informa on
▶ Rankings

▶ Amounts of dependency: independent/ me series/spa al.
▶ Different technologies used (454, Illumina, PacBio,
MassSpec, RNA-seq, Cytof).

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Goals in Modern Biology: Systems Approach
Look at the data/ all the data: data integra on

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Goals in Modern Biology: Systems Approach
Look at the data/ all the data: data integra on
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What do sta s cians do?

▶ Design new experiments to test scien fic hypotheses.
▶ Visualize and summarize data in ways that account for
uncertain es.

▶ Look for meaningful differences or structure in high
dimensional noisy data.

▶ Predict the class of new observa ons given previously
observed ones.

▶ Predict the value of a response variable given a whole set of
other explanatory variables.

▶ Combine different sources of data to understand complex
interac ons.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Today’s challenge

▶ Data are not uniformly
distributed from some
manifold.

▶ Data are not an iden cally
distributed random sample.

▶ Data are not independent.
▶ Data may be combined
from different source types
(mul way).

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Data can o en be seen as points in a state space
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Distances in Sta s cs

▶ Euclidean Distances, spa al distances.
▶ Weighted Euclidean distances: Mahalanobis distance for
discriminant analysis.

▶ Chisquare distances for con ngency tables and discrete
data.

▶ Jaccard distances for presence absence is one of 50
distances used in Ecology.

▶ Earth Mover’s distance on trees or graphs.
▶ Distances between aligned graphs or trees.
▶ Biologically meaningful distances (DNA, haplotype,
Proteins).

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



What do sta s cians use distances for?

▶ Summaries through Fréchet Means and Medians and
pseudo variances.

▶ Center of Cloud of Objects Tk (equal weights): Find T0 that
minimizes either

∑K
k=1 d

2(T0, Tk) this is the (L2)
defini on of the Fréchet mean object,

▶ or
∑K

k=1 d(T0, Tk) (L1 or Geometric Median).
▶ Pseudovariance= 1

K−1

∑K
k=1 d

2(T0, Tk) = ŝ2. Dimension
reduc on and visualiza on.
Nearest Neighbor Methods.
Clustering.
Make network edges from close points. Predic on by
minimizing weighted residual distances.
Cross-products: correla ons, autocorrela ons.
Generaliza ons of analysis of variance.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



What do sta s cians use distances for?

▶ Summaries through Fréchet Means and Medians and
pseudo variances.

▶ Dimension reduc on and visualiza on.
▶ Nearest Neighbor Methods.
▶ Clustering.
▶ Make network edges from close points.
▶ Predic on by minimizing weighted residual distances.
▶ Cross-products: correla ons, autocorrela ons.
▶ Generaliza ons of analysis of variance.

Finding the right distance usually solves the sta s cal problem.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Part II

The Geometries of Data

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



First example: cell segmenta on
Joint work with Adam Kapelner and PP Lee.
Stained biopsy slides. Mul spectral imaging (8
levels/wavelengths).
Stained Lymph Node Aim to iden fy cell.

Points similar in feature space are of the same type.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Problem : Staining is heterogeneous

Both images are from the same image set. The stained cells are
cancer cells stained with Fast Red red.
Some regions of the ssue stain like the image on the le and
other regions stain as the le .
This shows the level of heterogeneity These are two
“subclasses” of the same phenotype (the le is named subclass
“A,” the right, subclass “B”).

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Problem : Staining is heterogeneous
Extreme variability in the image colors/intensity/contrast.
Pixels from a same cell not independent and iden cally
distributed across the different slides or across different cell
types.

Simple nearest neighbor approach:
- Take 8 dimensional pixels points.
- Assigning the point to the closest neighbor

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Problem : Staining is heterogeneous
Extreme variability in the image colors/intensity/contrast.
Pixels from a same cell not independent and iden cally
distributed across the different slides or across different cell
types. ?

Simple nearest neighbor approach:
- Take 8 dimensional pixels points.
- Assigning the point to the closest neighbor

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
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Mul variate Normal Data

Mahalanobis Transforma on.
Several different clusters with different variance-covariance
matrices and different means.
(µ1,Σ1) (µ2,Σ2)

D2
1(x, µ1) = (x− µ1)

TΣ−1
1 (x− µ1)

D2
2(x, µ2) = (x− µ2)

TΣ−1
2 (x− µ2)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Corresponding Data Transforma on

H = I − 1Dn1
T , S = X ′HDnHX

zi. = S− 1
2 (xi. − x̄)

This is some mes called ‘data sphering’.
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Output Data
Tumor

Tumor Cells
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We can add informa on through choice of distances
Sample data can o en be seen Variables are ‘vectors’
as points in a state space. in data point space
Rp Rn
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Duality : Transposable data. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Data Analysis: Geometrical Approach
i. The data are p variables measured on n observa ons.
ii. X with n rows (the observa ons) and p columns (the
variables).

iii. D is an n× nmatrix of weights on the “observa ons”, which
is most o en diagonal but not always.

iv Symmetric definite posi ve matrix Q, weights on

. variables, o en Q =


1
σ2
1

0 0 0 ...

0 1
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0 0
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Euclidean Space and dimension reduc on

These three matrices form the essen al “triplet” (X,Q,D)
defining a mul variate data analysis.
Q and D define geometries or inner products in Rp and Rn,
respec vely, through

xtQy =< x, y >Q x, y ∈ Rp

xtDy =< x, y >D x, y ∈ Rn.

This can be extended to more inner products giving what is
known as Kernel methods.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Principal Component Analysis: Dimension Reduc on

PCA seeks to replace the original (centered) matrix X by a
matrix of lower rank, this can be solved using the singular value
decomposi on of X :

X = USV ′, with U ′DU = In and V ′QV = Ip and S diagonal

XX ′ = US2U ′, with U ′DU = In and S2 = Λ

PCA is a linear nonparametric mul variate method for
dimension reduc on. D and Q are the relevant metrics on the
dual row and column spaces of n samples and p variables.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



A Commuta ve Diagram Approach

Caillez and Pages, 1976. Escoufier, 1977.
Sta s cians search for approxima ons with certain proper es,
for the case of PCA for instance, we rephrase the problem as
follows:

▶ Q can be seen as a linear func on from Rp to Rp∗ = L(Rp),
the space of scalar linear func ons on Rp.

▶ D can be seen as a linear func on from Rn to Rn∗ = L(Rn).
▶

V = XtDX

Rp∗ −−−−→
X

Rn

Q

x yV D

y xW

Rp ←−−−−
Xt

Rn∗

W = XQXt

This duality gives ‘transposable’ data.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Proper es of the Diagram

Rank of the diagram:
X,Xt, V Q andWD all have the same rank.
For Q and D symmetric matrices, V Q andWD are
diagonalisable and have the same eigenvalues.

λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λr ≥ 0 ≥ · · · ≥ 0.

Eigendecomposi on of the diagram: V Q is Q symmetric, thus
we can find Z such that

V QZ = ZΛ, ZtQZ = Ip, where Λ = diag(λ1, λ2, . . . , λp). (1)

Modern extensions to this approach include Kernel methods in
Machine Learning.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Comparing Two Diagrams: the RV coefficient
Many problems can be rephrased in terms of comparison of two
“duality diagrams” or put more simply, two characterizing
operators, built from two “triplets”, usually with one of the
triplets being a response or having constraints imposed on it.
Most o en what is done is to compare two such diagrams, and
try to get one to match the other in some op mal
way.(O = WD)
To compare two symmetric operators, there is either a vector
covariance as inner product
covV (O1, O2) = Tr(Ot

1O2) =< O1, O2 > or a vector correla on
(Escoufier, 1977)

RV (O1, O2) =
Tr(Ot

1O2)√
Tr(Ot

1O1)tr(Ot
2O2)

.

If we were to compare the two triplets
(
Xn×1, 1,

1
nIn

)
and(

Yn×1, 1,
1
nIn

)
we would have RV = ρ2.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



PCA: Approxima ng one diagram by another

PCA can be seen as finding the matrix Y which maximizes the
RV coefficient between characterizing operators, that is,
between (Xn×p, Q,D) and (Yn×q, I,D), under the constraint
that Y be of rank q < p .

RV
(
XQXtD,Y Y tD

)
=

Tr
(
XQXtDY Y tD

)√
Tr (XQXtD)2 Tr (Y Y tD)2

.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



This maximum is a ained where Y is chosen as the first q
eigenvectors of XQXtD normed so that Y tDY = Λq . The
maximum RV is

RVmax =

∑q
i=1 λ

2
i∑p

i=1 λ
2
i

.

Of course, classical PCA has D = 1
nI , Q = I , but the extra

flexibility is o en useful. We define the distance between
triplets (X,Q,D) and (Z,Q,M) where Z is also n× p, as the
distance deduced from the RV inner product between operators
XQXtD and ZMZtD.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Discriminant Analysis as a duality diagram

Case of a categorical response variable (group labels).
Let A be the g × p matrix of group means in each of the p
variables. This sa sfies

Y tDX = ∆Y A where ∆Y = Y tDY = diag(w1, w2, . . . , wg),

and wk =
∑

i:yik=1 di, the wk ’s are the group weights, as they are
the sums of the weights as defined by D for all the elements in
that group.
Call T the matrix T = XtDX , in the standard case with all
diagonal elements of D equal to 1

n this is just the standard
variance-covariance, otherwise it is a generaliza on thereof.
The generalized between group variance-covariance is
B = At∆Y A and call the between group variance covariance
the matrixW = (X − Y A)tD(X − Y A).

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



A generalized Huyghens’ formula:

T = B +W

Proof: ExpandingW gives

W = XtDX −XtDY A−AtY tDX +AtY tDY A

= T −A′∆Y A−A′∆Y A+A′∆Y A = T −B

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Duality Diagram for LDA

The duality diagram for linear discriminant analysis is

Rp∗ −−→
A

Rg

T−1

x yB ∆Y

y xAT−1At

Rp ←−−
At

Rg∗

.

This corresponds to the triple (A, T−1,∆Y ), because

(XtDY )∆−1
Y (Y tDX) = At∆Y A

and gives equivalent results to the triple (Y tDX,T−1,∆−1
Y ).

The discrimina ng variables are the eigenvectors of the operator

At∆Y AT
−1.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Part III

Combine and Compare Trees,
Graphs and Contingent Count Data

for the Human Microbiome

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Layers of Data in theMicrobiome
Joshua Lederberg:‘the ecological community of commensal,
symbio c, and pathogenic microorganisms that literally share
our body space and have been all but ignored as determinants
of health and disease’
Microbiome Complete collec on of genes contained in the

genomes of microbes living in a given environment.
Numbers Humans shelter 100 trillion microbes (1014), (we are

made of 10 ×1012 cells).
Metagenome Composi on of all genes present in an

environment (soil, gut, seawater), regardless of
species.

Transciptome These are the mRNA transcripts in the cell, it
reflects the genes that are being ac vely expressed
at any given me.

Metabolome The metabolites (small molecules) nucleic or fa y
acids, sugars,... present in the sample either
endogenous or exogenous (medica on, pollu on).

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



.

Source: YK Lee and SK Mazmanian Science, 2010.
. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Bacteria etc... and Us

The human microbiome or human microbiota is the assemblage
of microorganisms that reside on the surface and in deep layers
of skin, in the saliva and oral mucosa, in the conjunc va, and in
the gastrointes nal tracts.

▶ They include bacteria, fungi, and archaea.
▶ Some of these organisms perform tasks that are useful for
the human host. (live in symbiosis)

▶ Majority have no known beneficial or harmful effect.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Human Microbiome: What are the data?

DNA The Genomic material present (16sRNA-gene
especially, but also shotgun).

RNA What genes are being turned on (gene expression),
transcriptomics.

Mass Spec Specific signatures of chemical compounds present
(LC/MS, GC/MS).

Clinical Mul variate informa on about pa ents’ clinical
status, medica on, weight.

Environmental Loca on, nutri on, drugs, chemicals,
temperature, me.

Domain Knowledge Metabolic networks, phylogene c trees,
gene ontologies.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



An example of taxa/specimen table.

ASV/OTU Ctrl1 Ctrl2 Ctrl3 Ctrl4 Ctrl5 IBD1 IBD2 IBD3 IBD4 IBD5

Bacteroides 1822 913 147 2988 4616 172 3516 657 550 1423
Bifidobacterium 0 162 0 0 84 0 85 1927 0 286
Collinsella 1359 0 0 206 0 327 0 0 160 122
Enterococcus 621 0 0 3 40 0 0 0 0 0
Streptococcus 75 139 2161 110 97 1820 85 58 5 294

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Heterogeneous Data Objects

Object oriented input and data manipula on with phyloseq
(McMurdie and Holmes, 2013, Plos ONE)
Object oriented data in R:

Taxonomy Table
 taxonomyTable
slots: .Data

OTU Abundance
class: otuTable
slots: .Data, 
speciesAreRows

Sample Variables
sampleData
slots: .Data,
names,
row.names,
.S3Class

Phylogenetic Tree
class: phylo
slots: see ape 
package

matrix matrixdata.frame

phyloseq
slots:
otuTable
sampleData
taxTab
tre

Experiment-level data object:

Component data objects:

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Points are measured with unequal variance
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Part IV

Combining a phylogenetic tree with
the count data

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



A distance on the known tree
Monge-Kantorovich earth mover’s distance on the tree.
Used to compare two samples or body sites for instance.
Incorporate taxa abundances and phylogene c tree

Epulopiscium

Clostridium

Adlercreutzia

Lachnospira

Alistipes

Roseburia

Coprococcus

Clostridium

Blautia

Coprococcus

Dehalobacterium

Clostridium

Clostridium

Clostridium

Coprobacillus

Coprococcus

Clostridium

Clostridium

Moryella

Abundance

1

25

625

Class

Actinobacteria (class)

Bacilli

Bacteroidia

Clostridia

Erysipelotrichi

Gammaproteobacteria

Mollicutes

Verrucomicrobiae

YS2

Duality diagram methods that can use any dependency
structure.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Unifrac Distance (Lozupone and Knight, 2005)

is a distance between groups of organisms that are related to
each other by a tree.
Suppose we have the OTUs present in sample 1 (blue) and in
sample 2(red).
Ques on: Do the two samples differ phylogene cally?
It is defined as the ra o of the sum of the lengths of the
branches leading to members of group A or members of group B
but not both to the total branch length of the tree.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Weighted Unifrac distance A modifica on of UniFrac,
weighted UniFrac is defined in (Lozupone et al., 2007) as

n∑
i=1

bi × |
Ai

AT
− Bi

BT
|

▶ n = number of branches in the tree

▶ bi = length of the ith branch

▶ Ai = number of descendants of
ith branch in group A

▶ AT = total number of sequences
in group A

[7].
[6]. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Costello et al. 2010

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Rao’s Distance

We start with a distance between individuals.
The heterogeneity of a popula on (Hi ) is the average distance
between members of that popula on.
The heterogeneity between two popula ons (Hij ) is the average
distance between a member of popula on i and a member of
popula on j.
The distance between two popula ons is

Dij = Hij −
1

2
(Hi +Hj)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Decomposi on of Diversity

If we have popula ons 1, . . . , k with frequencies π1, . . . , πk, then
the diversity of all the popula ons together is

H0 =

k∑
i=1

πiHi +
∑
i

∑
j

πiπjDij = H(w) +D(b)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Double Principal Coordinate Analysis
Pavoine, Dufour and Chessel (2004), Purdom (2010) and
Fukuyama et al. (2011). .
Suppose we have n species in p loca ons and a (euclidean)
matrix ∆ giving the squares of the pairwise distances between
the species. Then we can

▶ Use the distances between species to find an embedding in
n− 1 -dimensional space such that the euclidean distances
between the species is the same as the distances between
the species defined in ∆.

▶ Place each of the p loca ons at the barycenter of its species
profile. The euclidean distances between the loca ons will
be the same as the square root of the Rao dissimilarity
between them.

▶ Use PCA to find a lower-dimensional representa on of the
loca ons.

Give the species and communi es coordinates such that the
iner a decomposes the same way the diversity does.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Fukuyama and Holmes, PSB, 2012.

Method Original descrip on New formula Proper es

DPCoA square root of Rao’s distance based
on the square root of the patris c
distances

[
∑

i bi(Ai/AT − Bi/BT )2]1/2 Most sensi ve to outliers,
least sensi ve to noise,
upweights deep differences,
gives OTU loca ons

wUniFrac
∑

i bi |Ai/AT − Bi/BT |
∑

i bi |Ai/AT − Bi/BT | Less sensi ve to out-
liers/more sensi ve to noise
than DPCoA

UniFrac frac on of branches leading to ex-
actly one group

∑
i bi1{

Ai/AT −Bi/BT
Ai/AT +Bi/BT

≥ 1} Sensi ve to noise, up-
weights shallow differences
on the tree

Summary of the methods under considera on. “Outliers” refers to highly abundant taxa, and noise refers to noise in

detec ng low-abundance taxa.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



An bio c Time Course Data

Measurements of about 2500 different bacterial OTUs from
stool samples of three pa ents (D, E, F)
Each pa ent sampled ∼ 50 mes during the course of treatment
with ciprofloxacin (an an bio c).
Times categorized as Pre Cp, 1st Cp, 1st WPC (week post cipro),
Interim, 2nd Cp, 2nd WPC, and Post Cp.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



UniFrac
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(a) MDS of OTUs
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An bio c Stress

We next want to visualize the effect of the an bio c.
Ordina ons of the communi es due to DPCoA and UniFrac with
informa on about the whether the community was stressed or
not stressed (pre cipro, interim, and post cipro were considered
“not stressed”, while first cipro, first week post cipro, second
cipro, and second week post cipro were considered “stressed”).
We see that for UniFrac, the first axis seems to separate the
stressed communi es from the not stressed communi es.
DPCoA also seems to separate the out the stressed
communi es along the first axis (in the direc on associated with
Bacteroidetes), although only for subjects D and E.
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Conclusions for An bio c Stress

Since UniFrac emphasizes shallow differences on the tree and
since PCoA/MDS with UniFrac seems to separate the subjects
from each other be er than the other two methods, we can
conclude that the differences between subjects are mainly
shallow ones.
However, DPCoA also separates the subjects and the stressed
versus non-stressed communi es, and examining the
community and OTU ordina ons can tell us about the
differences in the composi ons of these communi es.
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Modula ng the tree-based distances

We would like the axes to be both smooth on the tree and for
which the projec ons of the samples have a large variance.
We can design an inner product on the rows which will pull out
axes with these proper es.
One extreme will be PCA without a tree, the other is DPCoA.
We create a family of gPCAs interpola ng between DPCoA and
standard PCA or as giving us a tunable parameter controlling
how smooth we want the principal axes to be.
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Adap ve gPCA

Fukuyama, Julia (2019), Ann. of Appl. Sta s cs.
We want to incorporate the prior (tree-like) informa on about
the structure of the variables.
The intui on is that the variables which are similar to each other
should behave in similar ways (in the case of microbiome data
the idea is that species close together on the tree will behave
similarly).
Perform generalized PCA on the posterior es mate of each
sample given the data, taking into account the variance
structure of the posterior.
Varying the scalings of the prior and noise variances gives a
one-dimensional family of generalized PCAs which favor
progressively smoother solu ons according to the structure of
the variables.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Data

Suppose we have a posi ve definite similarity matrix Q ∈ Rp×p

(a kernel matrix) between the variables.
To prevent scaling issues, assume that tr(Q) = p.
Note that since Q is posi ve definite, it is also a covariance
matrix, and a random vector with covariance Q will have
stronger posi ve correla ons between variables which are more
similar to each other.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Special case of the phylogene c tree

Q is the matrix where Qij represents the amount of shared
ancestral branch length between species i and j.
This is the kernel implicit in DPCoA; it is also related to the
covariance of a Brownian mo on run along the branches of the
tree.
With this in mind, consider the following model for our data
matrix X :

xi
iid∼ N(µi, σ

2
2I), i = 1, . . . , n (2)

µi
iid∼ N(0, σ2

1Q), i = 1, . . . , n (3)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



We are simply including prior knowledge into our model. The
prior incorporates informa on about the structure in our
variables: since the µi’s have covariance equal to a scalar
mul ple of Q, inference using this prior will allow us to
regularize towards this structure, or to smooth the data towards
our expecta on that similar variables will behave in similar ways.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



PCA on Bayes es mates

We are interested in the “true” values given in µi and not the
observed data xi, and so the appropriate next step is to compute
the posterior distribu on of the the µi’s and then perform PCA
on these posteriors. We can compute the posterior distribu on
µi | xi using Bayes’ rule, which is

µi | xi = x ∼ N(σ−2
2 Sx, S) (4)

with

S = (σ−2
1 Q−1 + σ−2

2 I)−1 (5)

Now we want to perform PCA on the posterior es mates of the
µi’s. We need to take into account the fact that the posterior
distribu ons for each µi have non-spherical variance, and so we
need to use gPCA instead of standard PCA.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Theorem
The row scores from gPCA on the posterior es mates µi | xi from
the model are the same, up to a scaling factor, to the row scores
from gPCA on (X,S, In). The principal axes from gPCA on the
posterior es mates are the same, up to a scaling factor, as the
principal axes from gPCA on (X,S, In) pre-mul plied by S.
From this theorem, we see that when we perform gPCA on the
posterior es mates obtained from the model, different scalings
of the prior and the noise variances simply lead to gPCAs with
different row inner product matrices.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



A family of gPCAs

Now we can explore the family of inner product matrices which
our model gives rise to. Up to a scaling factor, the matrix
S = (σ−2

1 Q−1 + σ−2
2 I)−1 depends only on the rela ve sizes of σ1

and σ2, the scalings for the prior and the noise. We therefore
have a one-dimensional family of gPCAs determined by the
rela ve sizes of σ1 and σ2. To get some insight into this family,
we can first consider the endpoints.
As σ1/σ2 → 0, that is, as the noise becomes very small
compared to the prior structure, S becomes more and more like
a scalar mul ple of the iden ty, and so we approach a scalar
mul ple of gPCA on the triple (X, I, I), or standard PCA. At the
other end, as σ2/σ1 → 0, we approach a scalar mul ple of gPCA
on the triple (X,Q, I). The gPCA on (X,Q, I) turns out to be
very closely related to double principal coordinates analysis
(DPCoA), which is another method for incorpora ng informa on
about the variables into the analysis.
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Automa c selec on of family member

If we do not want to assume σ1 and σ2 are known, we can
es mate the values σ1 and σ2 from the data itself by maximum
marginal likelihood. To be more concrete, according to our data
model we have

xi
iid∼ N(0, σ2

1Q+ σ2
2I) (6)

The overall log likelihood of the data is therefore (up to a
constant factor)

ℓ(X;σ1, σ2) = −
n

2
log |σ2

1Q+ σ2
2I| −

n∑
i=1

1

2
xTi (σ2

1Q+ σ2
2I)

−1xi

(7)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Maximizing this likelihood is not a convex problem: we
transform it into a one parameter problem over the unit interval.
Let r = σ2

1/(σ
2
1 + σ2

2), and let σ2 = σ2
1 + σ2

2 . Let Q = V ΛV T be
the eigendecomposi on of Q where V is an orthogonal matrix
and Λ is diagonal containing the eigenvalues λ1, . . . , λp. Finally,
let ~xi = V Txi and x̃ij be the jth element of x̃i. The log likelihood
in the new parameteriza on is

ℓ(X; r, σ) = −np

2
σ2 log |rQ+ (1− r)I| − σ−2

n∑
i=1

1

2
xTi (rQ+ (1− r)I)xi

(8)

= −np

2
σ2

p∑
j=1

log(rλj + 1− r)− σ−2
n∑

i=1

p∑
j=1

1

2

x̃2ij
rλj + 1− r

(9)

Based on the expression above, we can find a closed-form
solu on for the maximizing value of σ2 for any fixed r.
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This gives us

σ2∗(r) =
1

np

n∑
i=1

p∑
j=1

x̃2ij/(rλi + 1− r) (10)

We re-write the likelihood as a func on of r only. This is s ll not
convex but only has one parameter which lies on the unit
interval, the op miza on can be performed numerically.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
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Sample (le ) and species (right) plots for DPCoA (top), adap ve
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a er) or no abx (all other mes). The colors in the species plots

represent phyla.
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The corresponding plots for PCA and DPCoA are much less
compelling.
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Alterna ves

We could add a ridge penalty to Q, resul ng in gPCA on
(X,Q+ λI, I). This family has the same endpoints as the family
we have described: when λ = 0 we have gPCA on (X,Q, I), and
as λ→∞ we get standard PCA.
Very roughly, when we add a ridge penalty to Q, the main effect
is to increase the small eigenvalues, but when we add a ridge
penalty to Q−1 we make the large eigenvalues more similar to
each other.
Small eigenvalues of Q correspond to eigenvectors that are very
rough, while the large eigenvalues correspond to eigenvectors
that are smooth.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



When we do structured dimensionality reduc on, we want to
dampen any variance along rough eigenvectors, but we don’t
necessarily prefer variance in the direc on of an extremely
smooth eigenvector over variance in the direc on of a
mostly-smooth eigenvector. When we use Q+ λI , we remove
the dampening on the rough direc ons, but when we use
S = (σ1

1Q
−1 + σ−2

2 I)−1 we keep the eigenvalues of the rough
direc ons small and decrease the difference between
eigenvalues of smooth eigenvectors.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Part V

Multitable methods for
heterogeneous data
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Mul -table methods: use Iner a/Co-Iner a

Generalize variance and covariance −→ moments of iner a.
weighted (pi) sum of distances.

Abundance data in a con ngency table −→ weighted sum of the
squares

weighted frequencies (chisquare).

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Co-Iner a

When studying two variables measured at the same loca ons,
for instance PH and humidity the standard quan fica on of
covaria on is the covariance.

sum(x1 ∗ y1 + x2 ∗ y2 + x3 ∗ y3)

if x and y co-vary –in the same direc on this will be big.
A simple generaliza on to this when the variability is more
complicated to measure as above is done through Co-Iner a
analysis (CIA).
Co-iner a analysis (CIA) is a mul variate method that iden fies
trends or co-rela onships in mul ple datasets which contain the
same samples or the same me points.
That is the rows or columns of the matrix have to be weighted
similarly and thus must be matchable.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



RV coefficient

The global measure of similarity of two data tables as opposed
to two vectors can be done by a generaliza on of covariance
provided by an inner product between tables that gives the RV
coefficient, a number between 0 and 1, like a correla on
coefficient, but for tables.

RV (A,B) =
Tr(A′B)√

Tr(A′A)
√

Tr(B′B)

Survey on RV: Josse, Holmes (2015) Sta s cs Surveys, arXiv link.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

https://arxiv.org/pdf/1307.7383v3.pdf


Example

Combining different types of data (an bio c study).
Taxa Read counts (3 pa ents taking cipro: two me

courses) : .
Mass-Spec Posi ve and Nega ve ion Mass Spec features and

their intensi es: .
RNA-seq Metagenomic data on genes :.

Here is the RV table of the three array types:

> fourtable$RV

Taxa Kegg MassSpec+ MassSpec-

Taxa 1 0.565 0.561 0.670

Kegg 0.565 1 0.686 0.644

MassSpec+ 0.561 0.686 1 0.568

MassSpec- 0.670 0.644 0.568 1

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Part VI

Distances between "aligned" graphs

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Bacteria ‘sharing’ between mice

Using the Jaccard index that measures the co-incidence or
co-occurrence of species between mice.

Jaccard Similarity =
f11

f01 + f10 + f11

Jaccard Disimilarity =
f01 + f10

f01 + f10 + f11

mouse1

0 0 0 1 0 1 0 1 0 0 0 0 0 0 1

mouse4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

vegdist(rbind(mouse1,mouse4),method="jaccard")

0.8

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Bacteria ‘sharing’ between mice as a network

netbaseline=make_network(phy_pifn_glom)

p=plot_network(netbaseline,phy_pifn_glom,

color="mousenames",label="mousenames",point_size=7)

+geom_text(aes(label=mousenames),size=7)

p+scale_colour_hue(guide="none")

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
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Does the network relate to ‘communi es’?

Friedman and Rafsky (1979) devised a nonparametric test for
mul variate data using the minimum spanning tree with any
metric.
Then compute the number of ‘pure’ edging connec ng labels
from the same groups compared to the mixed edges connec ng
labels from different groups, call Fo the observed sta s c.
In our example: Fo = 82
Keeping the graph fixed, permute the labels and recompute the
number of pure edges.
All 1000 simulated values had Fs < 82 so p < 0.001.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Co-occurrence networks for taxa of the baseline mice

p=plot_network(netbasetaxa,phy_pifn_glom,color="Family",

type="taxa",label=NULL)

p+geom_text(aes(label=Class),size=3)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Mollicutes

Bacteroidia

Bacteroidia

BacteroidiaBacteroidia

Bacteroidia

Bacteroidia

Bacteroidia

Clostridia

Clostridia

Clostridia

Clostridia

Clostridia

Clostridia
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Clostridia

Clostridia

Family

Anaeroplasmataceae

Catabacteriaceae

Clostridiales Family XIII. Incertae Sedis

Lachnospiraceae

Ruminococcaceae
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Changes of the network over me?

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Differences between two graphs?

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Distances between (node-iden fied graphs)

Claire Donnat, SH, Ann. of Applied Stat., 2018.

Example:
Each graph corresponds to a cuisine (French, American, Greek,
etc...).
Each of 1,530 ingredients cons tutes a node in the graph and
each of the 49 cuisines is assigned to a weighted graph.
The weight on the edge is the frequency of co-occurrence of the
two ingredients for that par cular cuisine. Some graphs includes
a collec on of disconnected nodes (ingredients that never
co-occur in a single recipe) and a weighted connected
component.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Graphs with iden fied ver ces

G = (V, E) the graph with ver ces V and edges E . N = |V|,
i ∼ j if nodes i and j are neighbors. A refers to the adjacency
matrix of the graph, and D to its degree matrix:

Aij =

{
1 if i ∼ j

0 otherwise
and D = Diag(di)i=1···N s.t. di =

N∑
j=1

Aij

Restric ng ourselves to undirected graphs, the matrix A is
symmetric: AT = A.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Hamming distance

It measures the number of edge dele ons and inser ons
necessary to transform one graph into another.

dH(G, G̃) =
∑
i,j

|Aij − Ãij |
N(N − 1)

=
1

N(N − 1)
||A− Ã||1 (11)

This defines a metric between graphs, since it is a scaled version
of the L1 norm between the adjacency matrices A and Ã.
It defines a distance bounded between 0 and 1 over all graphs
of size N .

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



The Jaccard distance

dJaccard(G, G̃) =
|G ∪ G̃| − |G ∩ G̃|

|G ∪ G̃|
=

∑
i,j |Aij − Ãij |∑

i,j max(Ai,j , Ãij)
| = ||A− Ã||1
||A+ Ã||∗
(12)

where || · ||∗ denotes the nuclear norm of a matrix.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Eq. 12 is known to define a proper distance between the
graphs. A straigh orward way to see this is to use the Steinhaus
Transform: for (X, d) a metric and c a fixed point, the
transforma on δ(x, y) = 2d(x,y)

d(x,c)+d(y,c)+d(x,y) produces a metric.
Apply this transforma on, with d the Hamming distance and c
the empty graph, to see:

δ(G, G̃) =
2||A− Ã||1

||A||1 + ||Ã||1 + ||A− Ã||1
=

2(|G ∪ G̃| − |G ∩ G̃|)
2|G ∪ G̃|

(*)

= dJaccard(G, G̃).

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



The recipes graphs

Each cuisine-graph has nodes that represent ingredients; edges
are co-occurrence frequencies.
Cuisines can be be er characterized by typical associa ons of
ingredients.
For instance, the Japanese cuisine might be characterized by a
higher associa vity of ingredients such as “rice” and “nori” than
Greek cuisine.
We use the co-occurrence counts of 1,530 different ingredients
for 49 different cuisines (Chinese, American, French, etc.) Each
cuisine is then characterized by its own co-occurrence graph.
The weight on the edge is the frequency of co-occurrence of the
two ingredients in a given cuisine. The final graph for a given
cuisine thus consists in a collec on of disconnected nodes
(ingredients that never appear in a single recipe for that cuisine)
and a weighted connected component.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Hamming: metagraph
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Distances between networks (node-iden fied graphs)

Claire Donnat, Susan Holmes, Annals of Applied Sta s cs, 2018.
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Iden fica on of the ingredients that change the most from one
graph to another

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Distances enable sta s cians to....

▶ Summarize data with medians, means and principal
direc ons.

▶ Encode some varia ons in uncertainty.
▶ Make comparisons of heterogeneous sources of
informa on.

▶ Integrate network and tree informa on.
▶ Measure diversity, iner a and generalize the no on of
variance.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Ques ons for mathema cians
▶ How to build distances between images that account for
unequal measurement errors, even locally?

x

x1

2x

x

x

x

x

2

.

.

.

.

.

.

p

i

1

3

.

xn ..

Work by Adler, Taylor and Worsley (2003,2005,2007) using
Random Fields.
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Ques ons for mathema cians

▶ How well can the Euclidean embedding approxima ons do
compared to the inherent noise?

▶ Are there be er ways of approxima ng the commuta ve
diagrams?
This is also an important point of contact with the use of
Stein’s method in probability theory.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Ques ons for mathema cians

▶ How to dis nguish between the effect of the curvature of a
state space and the effect of the unequal sampling?

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
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Part VIII

Dimension Reduction: the
Euclidean embedding workhorse:

MDS

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Metric Mul dimensional Scaling
Schoenberg (1935)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



From Coordinates to Distances and Back

If we started with original data in Rp that are not centered: Y ,
apply the centering matrix

X = HY, with H = (I − 1

n
11′), and 1′ = (1, 1, 1 . . . , 1)

Call B = XX ′, ifD(2) is the matrix of squared distances between
rows of X in the euclidean coordinates, we can show that

−1

2
HD(2)H = B

Schoenberg’s result: exact Euclidean distance If B is posi ve
semi-definite then D can be seen as a distance between points
in a Euclidean space.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Reverse engineering an Euclidean embedding

We can go backwards from a matrix D to X by taking the
eigendecomposi on of B = −1

2HD(2)H in much the same way
that PCA provides the best rank r approxima on for data by
taking the singular value decomposi on of X , or the
eigendecomposi on of XX ′.

X(r) = US(r)V ′ with S(r) =


s1 0 0 0 ...
0 s2 0 0 ...
0 0 ... ... ...
0 0 ... sr ...
... ... ... 0 0



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Mul dimensional Scaling (MDS)

Simple classical mul dimensional scaling.
▶ Square D elementwise D(2) = D2.
▶ Compute −1

2 HD2H = B.
▶ Diagonalize B to find the principal coordinates SV ′.
▶ Choose a number of dimensions by inspec ng the
eigenvalue’s screeplot.

The advantage is that the original distances don’t have to be
Euclidean.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Taking Categorical Data and Making it into a
Con nuum

Horseshoe Example:Joint with Persi Diaconis and Sharad Goel
(Annals of Applied Stats, 2005). Data from 2005 U.S. House of
Representa ves roll call votes. We further restricted our
analysis to the 401 Representa ves that voted on at least 90%
of the roll calls (220 Republicans, 180 Democrats and 1
Independent) leading to a 401× 669 matrix of vo ng data.

The Data
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

R1 -1 -1 1 -1 0 1 1 1 1 1 ...

R2 -1 -1 1 -1 0 1 1 1 1 1 ...

R3 1 1 -1 1 -1 1 1 -1 -1 -1 ...

R4 1 1 -1 1 -1 1 1 -1 -1 -1 ...

R5 1 1 -1 1 -1 1 1 -1 -1 -1 ...

R6 -1 -1 1 -1 0 1 1 1 1 1 ...

R7 -1 -1 1 -1 -1 1 1 1 1 1 ...

R8 -1 -1 1 -1 0 1 1 1 1 1 ...

R9 1 1 -1 1 -1 1 1 -1 -1 -1 ...

R10 -1 -1 1 -1 0 1 1 0 0 0 .... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



L1 distance

We define a distance between legislators as

d̂(li, lj) =
1

669

669∑
k=1

|vik − vjk|.

Roughly, d̂(li, lj) is the percentage of roll calls on which
legislators li and lj disagreed.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
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Uncertainty propagation with
heterogenous data.

Susan Holmes
http://www-stat.stanford.edu/~susan/

Bio-X and Statistics, Stanford University

Toulouse, September 2, 2019



Part I

Experimental Design and
data



Subject to Subject variation is largest
source of variation

(A)

(B)



Not equally distant time points.

Between point variation should be equal.
See Peter Diggle’s text : Analysis of Longitudinal Data, 2002.



Example in microbiome: unknown
parameters?
The relative abundances of bacteria and their differences.

Different taxa are identified as Amplicon Strain Variant (ASV)

generated with DADA2 (Callahan et al., 2017)

ptt = (p1, p2, . . . pJ) For J ASV ′s

pctl = (p1, p2, . . . pJ) ∆ = diff(ptt − pctl)

We estimate these by accounting for different sequencing depths and
provide estimates of the standard errors.

We need to quantify the
uncertainty we have on the parameters.
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Example in microbiome: unknown
parameters?
The relative abundances of bacteria and their differences.

Different taxa are identified as Amplicon Strain Variant (ASV)

generated with DADA2 (Callahan et al., 2017)

ptt = (p1, p2, . . . pJ) For J ASV ′s

pctl = (p1, p2, . . . pJ) ∆ = diff(ptt − pctl)

We estimate these by accounting for different sequencing depths and
provide estimates of the standard errors.
Models for noise: hierarchical Gamma-Poisson: we know how to
transform the data to stabilize the variance (Delta-method).
McMurdie and Holmes (2014) “Waste Not, Want Not: Why
rarefying microbiome data is inadmissible”, PLOS Comp.Bio.



Read data are counts, the data are not
compositional.

We do not summarize them to ratios or “relative abundance”.

- After perturbations amounts of bacteria go up & down.

- Remove contaminants using read numbers (decontam).
- Estimating depth bias requires read numbers.

- We need the read depths for variability/standard error
estimation and uncertainty quantification.

- Transform the data to equalize the variance.



Paths in thinking about these
heterogeneous systems

- Think in layers: latent variables or factors enable interpretation.

hidden variables.



Paths in thinking about these
heterogeneous systems

- Think in layers: latent variables or factors enable interpretation.

hidden variables.



Paths in thinking about these
heterogeneous systems

- Think in terms of mixtures (not one parametric population).







Part II

Models for Microbial Communities
over time.



Pregnancy data: perturbation, stability
and preterm birth

A case-control study of 49 pregnant women:

- 15 delivered preterm.

- From 40 of these women: 3,766 specimens
collected weekly during gestation, and monthly after delivery.

- Sites:vagina, distal gut, saliva, and tooth/gum.

- 9 women: validation set collected after the first study was
complete.

Methods used: variance stabilization through negative binomial,
testing perturbations through linear mixed-effects modeling. Preterm
prediction through medoid-based clustering and simple Markov chain.
Provided: Simple community temporal trends, community structure,
and vaginal community state transitions.



Attention to detail

- Careful noise models (dada2) and variance stabilization
(DESeq2, vsn, voom).

- Random effects, mixed models.

- Finite State Markov chains.

- Differential abundance testing provides biomarkers for preterm
birth.

DiGiulio DB, Callahan BJ, McMurdie PJ, ... & Holmes, SP and Relman,
DA
Temporal and spatial variation of the human microbiota during
pregnancy. PNAS, 2015,112(35):11060-5.



Co-occurrence networks

Dual networks:
- Edges are created between taxa if in more than a certain
proportion of samples share that taxa.
This can be seen as a geometric graph with the distance being
the Jaccard distance.

- Edges are created between samples if they share more than a
certain proportion of taxa in common.



Communities of bacteria organize into 5
different types



Questions asked?

- Are the community state types the same as seen in previous
studies?

- How stable are the communities within each individual during
pregnancy?

- What alterations of the vaginal microbiome predict preterm
birth?

- How early do these alterations occur?



Previously known Microbial Community
State Types: Latent categorical variable.
Samples into community types and species patterns associated.



Longitudinal Analyses



Markov Chain Model
Transitions between states, as in simple ecological models.
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Conclusions for this study

- Microbiota community and diversity stable during pregnancy.

- Prevalence of a Lactobacillus-poor vaginal community state type
(CST 4) was inversely correlated with gestational age at delivery
(p=0.0039).
Risk for preterm birth was more pronounced for subjects with
CST 4 accompanied by elevated Gardnerella or Ureaplasma
abundances.

- Finding validated with a separate diagnostic set of 246 vaginal
specimens from nine women (four of whom delivered preterm).



Illustration through Analyses

.
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0.0 0.5 1.0

0.98
0.98

0.88

0.68

0.8308

12

3

4

5

- Delivery Perturbation

- Preterm Prediction

- Stability

http://statweb.stanford.edu/~susan/papers/Pregnancy/PNAS_Delivery.html
http://statweb.stanford.edu/~susan/papers/Pregnancy/PNAS_Vaginal_Analysis.html
http://statweb.stanford.edu/~susan/papers/Pregnancy//PNAS_Stability.html


Part III

The Dirichlet for the multinomial



General Ideas about the multinomial

- Balls in boxes, not necessarily the same size.

- The number of balls is the number of reads, the boxes are the
ASVs.

- Multinomial model gives the probability of seeing say (4,2,3,1) if
the probabilities of the four boxes are
p1 = 0.3, p2 = 0.2, p3 = 0.4, p4 = 0.1 this number is:
> dmultinom(c(4,2,3,1),prob=c(0.3,0.2,0.4,0.1))
[1] 0.02612736

- Apart from the fact that if a lot of balls fall in the first box there
will be less balls for the other boxes, the boxes’ contents are
independent: that is BAD.



Dirichlet

Make the p’s vary randomly.
Hierarchical Model:
ps ∼ Dirichlet(α,α, α, α)
Uniform on the simplex (four cornered pyramid).

x <- round(gtools::rdirichlet(5, c(1,1,1,1) ),2)
> x

[,1] [,2] [,3] [,4]
[1,] 0.06 0.50 0.08 0.36
[2,] 0.20 0.57 0.18 0.05
[3,] 0.07 0.20 0.55 0.18
[4,] 0.57 0.04 0.00 0.39
[5,] 0.02 0.16 0.27 0.55



Multinomial needs to be modified

Multivariate dependencies in bacterial communities
Data depart from a multinomial distribution within each row:

- Some taxa are quasi-exclusive (Lactobacillus crispatus and
Gardnerella).

- Co-occurrence through syntrophy, in which a molecular
hydrogen-consuming species (typically a methanogen, like
Methanobrevibacter smithii in the human gut) enhances the
growth of a molecular hydrogen-producing species (any of a
number of secondary fermenters in the gut).

- In the mouth (subgingival crevice), where in cases of moderate
to severe periodontitis, a methanogen (Methanobrevibacter
oralis) is always found with a syntrophic partner.

- There are not a finite number of taxa a priori, taxa evolve, some
are sample-specific.



Part IV

Interpretability: latent
variables and topic analysis



Discrete/disconnected Community state
types are rare

Each sample is assigned to only one type of community.

Need a more nuanced model: mixtures.



Mixture models

- In clustering and hidden discrete categorical variables, every
sample belonged to a community state type.

- In a topic mixture model, every sample can be composed of
several topics.

Most useful parallel: natural language processing.



Generative model

- Pick topics at random among a certain number of topics.

- Each topic corresponds to a probability distribution for many
words.

- Pick a word at random according to the chosen topic.



How to understand the the taxa involved
in the perturbation?

.
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Kris SankaranBiostatistics, 2018,
Latent Variable Modeling for the Microbiome.
Kris Sankaran’s Topic Page

https://github.com/krisrs1128/microbiome_plvm/


Parallel between topic and community
analyses

Credit: Kris Sankaran



Parallel between topic and community
analyses



Statistical Model

Latent Dirichlet Allocation (LDA) is an alternative to Multinomial
Mixture Modeling.

It assumes samples have mixed memberships across topics.
(See Pritchard et. al 2000, Blei et. al. 2003)

Posterior inference can be done with variational approximations or
(collapsed) Gibbs sampling.

Observed microbiomes ∼ mixtures of underlying community types.



Statistical Model



Statistical Model













Part V

Distances cannot provide
all the information



But distances are not
everything....remember the baseline

.

Amos Tversky and Danny Kahnneman



Heuristics and Biases, more particularly the representativeness
heuristic.
Heuristics are described as ”judgmental shortcuts that generally get
us where we need to go - and quickly - but at the cost of occasionally
sending us off course.”
Heuristics are useful because they use effort-reduction and
simplification in decision-making.
For representativenes of an event, similarity or a small distance is not
enough, the baseline frequencies (ie probability) are essential to
conclude.
We need careful realistic probability models for treespace, no real
data has ever been uniform, no multivariate data is ever multivariate
normal.



Diversities in the microbiome depend on
the number of taxa

- α-diversity: Number of ‘species’-taxa in a biological sample (
from one location).

- β-diversity: Differentiation in diversity among different samples
from different locations.

Extremely sensitive to noise.
Fake species:



How many words does Professor D.
know?

- Maybe 15,000, 20,000?

- Start sampling...... banana, bannana, bannanna, orange, orenge,
muscle, musel, muscel, foreign, forene, forane,.........

- How many real words does Prof D. know?

- Use more information than the spelling....



From reads to Operational Taxonomic
Units
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From reads to Operational Taxonomic
Units

OTU  1

OTU  2
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Curent practice (qiime, mothur, rdp,...): 97% similarity.



Probabilistic Model

.







Data: Kopylova, et al. mSystems, 2016.
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Mathematicians also have baseline
measure problems
Examples in Topological Data Analysis (Edelsbrunner, Carlsson,
Zoromodian, Ghrist et al.).

Bob Ghrist.



Mathematicians also have baseline
measure problems

Ghrist, R. Barcodes: persistent toology of data, AMS, 2008



Mathematicians also have baseline
measure problems
Examples in Topological Data Analysis (Edelsbrunner, Carlsson,
Zoromodian, Ghrist et al.).

(Ghrist)
Open Question: How to make a method designed for uniformly
distributed points work for points generated by mixtures of
heterogeneous distributions?



Part VI

Uncertainty quantification
for latent gradients



Uncertainty Quantification for rankings
and gradients

Bayesian Unidimensional Scaling (Lan Huong Nguyen and Susan
Holmes, 2017, BMC Bioinformatics).



Bayesian model for distances



Modeling the heteroscedasticity

ˆs(dij) =
1

|DK
ij|

∑
d∈DK

ij

(d− d̄K
ij)

2

Scale parameter for the error term: s2ij =
ˆs(dij)/

¯̂
s(dij).

.







Code using stan

fit_buds <- function(D, K = NULL,
method = c("vb", "mcmc"),
hyperparams = list(

"gamma_tau"= 2.5,
"gamma_epsilon" = 2.5,
"gamma_bias" = 2.5,
"gamma_rho" = 2.5,
"min_sigma" = 0.03),

init_from = c("random", "principal_curve"),
seed = 1234, max_trials = 20, ...) {

buds package on github.



Part VII

Uncertainty quantification
for latent factors



Full Bayesian nonparametric model

- We do not know the number of OTUs.

- We suppose underlying low dimensional latent variables for the
sample Pj’s.

- We use dependent microbial distributions, marginal priors of
discrete distributions are built using manipulation of a Gaussian
process and then extending this to multiple correlated
distributions.



Generalization: Bayesian posterior
uncertainty measures

Parameters for samples
Yj, j ∈ J = {1, . . . , J}

Define a joint prior on these
factors through the Gram matrix
(ϕ(j1, j2))j1,j2∈J
The parameters Yj can be
interpreted as key characteristics
of the biological samples that
affect the relative abundance of
ASVs.
Qi,j = ⟨Xi,Yj⟩+ ϵi,j,

ϵi,j iid Normal
Bayesian Nonparametric Ordination for the Analysis of Microbial
Communities, Ren, Bacallado, Favaro, Holmes, Trippa (2017, JASA).
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Figure: Left panel: realization of 4 microbial distributions from a
dependent Dirichlet processes with 10 OTUs Right panel: correlation of
two random probability measures when the cosine ϕ(j, j ′) between Yj and
Yj ′ varies from −1 to 1. (Ren et al, JASA, 2017).



Parameters for samples

Yj, j ∈ J = {1, . . . , J}

Define a joint prior on these factors through the Gram matrix

(ϕ(j1, j2))j1,j2∈J

The parameters Yj can be interpreted as key characteristics of the
biological samples that affect the relative abundance of OTUs.

Qi,j = ⟨Xi,Yj⟩+ ϵi,j, (1)

where the ϵi,j are independent Normal variables.



The degree of similarity between the discrete distributions
{Pj; j ∈ J } is summarized by the Gram matrix
(ϕ(j, j ′) = ⟨Yj,Yj ′⟩; j, j ′ ∈ J ).
The dependent Dirichlet processes is defined by setting

Pj(A) =

∑
i I(Zi ∈ A)× σi⟨Xi,Yj⟩+2∑

i σi⟨Xi,Yj⟩+2
, ∀j ∈ J , (2)

for every A ∈ F . Here the sequence (Z1, Z2, . . .) and the array
(X1,X2, . . .), contain independent and identically distributed random
variables, while σ is a Poisson process on the unit interval defined by
using a prior on σ = (σ1, σ2, . . .), the distribution of ordered points
(σi > σi+1) in a Poisson process on (0, 1) with intensity

ν(σ) = ασ−1(1− σ)−1/2, (3)

where α > 0 is a concentration parameter.
We will use the notation Qi,j = ⟨Xi,Yj⟩.



The methods that we consider here are all related to PCA and use
the normalized Gram matrix S between biological samples.
S is the correlation matrix of (Qi,1, . . . , Qi,J). Based on a single
posterior instance of S, we can visualize biological samples in a lower
dimensional space through PCA, with each biological sample
projected once.



A projection approach
Naively overlaying projections of the principal coordinate loadings
generated from different posterior samples of S on the same plot
could show the variability of the projections.
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Alternatively
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We identify a consensus lower dimensional space for all posterior
samples using STATIS (Escoufier, 1980, see Holmes, 2005). We list
the three main steps used to visualize the variability of S.



Registration: Find S0

Identify a Gram matrix S0 that best summarizes K posterior samples’
Gram matrix S1, . . . ,SK. Minimizing L2 loss element-wise leads to
S0 = (

∑
i Si)/K.

We prefer to choose S0, the Gram matrix that maximizes similarity
with S1, . . . ,SK.
We use the RV similarity metric between two symmetric square
matrices A and B

RV(A,B) = Tr(AB)/
√

Tr(AA)Tr(BB)

We diagonalize the RV matrix to obtain S0.



We can see the uncertainties

Bayesian Nonparametric Ordination for the Analysis of Microbial
Communities, Ren et al, 2017 (JASA).
A contour plot is produced for each biological sample to facilitate
visualization of the posterior variability of its position in the
consensus space V .
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A contour plot is produced for each biological sample to facilitate
visualization of the posterior variability of its position in the
consensus space V .



R packages and resources
phyloseq: http://bioconductor.org/packages/stats/bioc/

phyloseq/
dada2: http:

//bioconductor.org/packages/stats/bioc/dada2/
treelapse: https://krisrs1128.github.io/treelapse/
treelapse antibiotics http://statweb.stanford.edu/

~kriss1/antibiotic.html
microbiome_pvlm: https:

//github.com/krisrs1128/microbiome_plvm
decontam: https://github.com/benjjneb/decontam/

adaptiveGPCA: https://cran.r-project.org/web/
packages/adaptiveGPCA/index.html

bootLong: https://github.com/PratheepaJ/bootLong/
blob/master/vignettes/Workflow.Rmd

Modern Statistics for Modern Biology
http://bios221.stanford.edu/book/

http://bioconductor.org/packages/stats/bioc/phyloseq/
http://bioconductor.org/packages/stats/bioc/phyloseq/
http://bioconductor.org/packages/stats/bioc/dada2/
http://bioconductor.org/packages/stats/bioc/dada2/
https://krisrs1128.github.io/treelapse/
http://statweb.stanford.edu/~kriss1/antibiotic.html
http://statweb.stanford.edu/~kriss1/antibiotic.html
https://github.com/krisrs1128/microbiome_plvm
https://github.com/krisrs1128/microbiome_plvm
https://github.com/benjjneb/decontam/
https://cran.r-project.org/web/packages/adaptiveGPCA/index.html
https://cran.r-project.org/web/packages/adaptiveGPCA/index.html
https://github.com/PratheepaJ/bootLong/blob/master/vignettes/Workflow.Rmd
https://github.com/PratheepaJ/bootLong/blob/master/vignettes/Workflow.Rmd
http://bios221.stanford.edu/book/


Solutions for microbiome analyses:
respect the data.

- Poor data quality, information−→ quality scores & probability.

- Maintain all information −→ sequences are names.

- Interpretation −→ latent variables (gradients or clusters).

- Nonlinearity: gradients −→ t-sne and buds for manifold
estimation.

- Reproducibility −→ complete code source.

- Heterogeneity −→ multicomponent objects:phyloseq.

- Training and collaboration −→ Rmd and html.

- Find the right ”statistic” to bootstrap or compute posterior
distribution for.



Benefitting from the tools and schools of
Statisticians.......

Thanks to the R and Bioconductor community and to co-authors.

Wolfgang Huber, Joey McMurdie, Ben Callahan, JJ Allaire and Rob
Gentleman.



Lab Group and David Relman

Postdoctoral Fellows Paul (Joey) McMurdie, Ben Callahan, Christof
Seiler, Pratheepa Jeganathan, Nina Miolane. Students: John Cherian,
Diana Proctor, Daniel Sprockett, Lan Huong Nguyen, Julia Fukuyama,
Kris Sankaran, Claire Donnat. Funding from NIH TR01 and
NSF-DMS.



phyloseq

Joey McMurdie (joey711 on github).
Available in Bioconductor.
How can I (my students, my postdocs...) learn more?
Ask me.
http://www-stat.stanford.edu/~susan/

http://webstat.stanford.edu/~{}susan/
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