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Background foundations of Phylogeny

Statistics versus mathematics.

What is a Tree?

Gene Tree.

Model for Molecular Evolution.

Mutation Rates and Edge Lengths.

Examples of estimation methods for trees: parsimony.
ML estimation.

Parametric Bootstrap for ML.

Bayesian Approach.

Distance based tree building.
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Hierarchical Clustering Trees.



Mathematical Logic

(A— B) < (-B — —-A4)

Observation: Non B= —B.
Conclusion: Observing — B, allows us to say: A is not true.



Statistical Logic

(A—>B) < (—|B—>—|A)

Observation: X
If the observed X makes P(B) very small, then we infer A is unlikely.



Statistical Logic: induction

(HO = E) < ("E = _|HQ)

If the observed X makes P(FE) is very small, then we infer Hy is
unlikely.



Statistics: separate the model from the
data



http://bios221.stanford.edu/book/

Phylogenetic Trees
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Phylogenetic tree is the unknown
parameter

Estimated in different ways from DNA/AA data:
- Parametric: ML estimation, PAML, Phyml, FastML,RaxML,...
- Distance based methods: Neighbor Joining, UPGMA,..
- Parsimony: Steiner tree problem: nonparametric.

- Bayesian estimation, Mr Bayes by MCMC, from posterior
sampling distribution.



Hierarchical Clustering Trees




An introduction to Phylogeny

Representation of biological families by trees predates Darwin’s
theory of evolution, although the latter gave such representations a
true explanatory justification. For biologists, at each branch of the
tree are situated separation events that split orders or families or
genera or species. An early example is the classification made by
Haeckel, 1870.
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Less symmetrical Phylogenies

Linguistics use trees to map out the history of language. Linguists use
trees, but they have an ancient form and a novel form. So their trees

do not have symmetry between siblings.
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Number of trees?

Felsenstein, 1978 published the number of phylogenetic trees
2n-3)1=2n-3)x(2n—5) x...5x 3

This formula for the number of trees was first proved using
generating functions by Schroder (1873).



Coding Trees as Perfect Matchings

A perfect matching on 2n points is a partition of 1,2, ...,2n into n
two-element subsets. It is well known that there are (2n)!/2"n!
distinct perfect matchings. When n = 2, the three perfect matchings
are

{1,2}{3,4}; {1,3}{2,4}; {1,4}{2, 3}



From Trees to Matchings









\

Put down the sibling pairs:

(1,3)(2,5)(5, ) (+,4)

We briefly describe the correspondence between matchings and
trees. Begin with a tree with / labeled leaves. Label the internal
vertices sequentially with ¢ + 1, + 2,...,2(¢ — 1) choosing at each
stage the ancestor which has both children labeled and who has the
descendent lowest possible available label (youngest child). Thus the
tree



When all nodes are labeled, create a matching on 2n = 2(¢ — 1
vertices by grouping siblings. In the example above, this yield



From matchings to trees

To go backward, given a perfect matching of 2n points, note that at
least one matched pair has both entries from {1,2,3...,n + 1}. All
such labels are leaves; if there are several leaf-labeled pairs, choose
the pair with the smallest label. Give the next available label

(n + 2 = £ + 1) to their parent node. There are then a new set of
available labeled pairs. Choose again the pair with the smallest label
to take the next available label for its parent, and so on.



For example, {3,4}{2,5}{1,6} has 2n = 6 and {3,4} has both
entries from {1,2,3,4}. The parent of these is labeled 5 and thus
matched with 2 and then the parent of {2, 5} is matched with 1,

yielding



Matchings and Decompositions

Diaconis and Holmes (1998) A matching of 2(n-1) objects is a pairing
off, without care for order within pairs or between pairs.



Call B,,—; the subgroup of Sy, that fixes the pairs

{1,2}{3,4}...{2n — 3,2n — 2}

then
S =50
and
Y |_M—(2 =3 = (2n—3)x(2n—5) x- - -x3x1
n—1| = —1(n—1) o = e

(S2n—2, By—1) form a Gelfand pair Diaconis and Shahshahani (1987)

L(Mn_1)=V1@V2@...EBV>\



A multiplicity free representation.

L(My_q) = SZ

&
AbFEn
where the direct sum is over all partitions A\ of m,

2X = (2A1,2)2, ..., 2)\;) and S** is associated irreducible
representation of the symmetric group S2,,.

Just to take the first few: for A =n — 1 S? are the constants, and
this gives the sample size. for A = (n — 2,1), S* are the number of
times each pair appears. for A = (n — 3,2), S* are the number of
times partition of 4 appears in the tree. for A = (n — 3,1, 1), 5" are
the number of times 2 pairs appear simultaneously.



Matchings are useful

- For going through all trees systematically. (Gray code for Trees)
- Doing vigorous random walks on tree space.
- Doing Fourier Analysis on Tree Data.

But the matching distance is not satisfactory to the biologists.



The Matching Polytope

(o]




Cornell, 1997: The
permuto-associahedron

1((32)4)

A book on polytopes.(Ziegler)
But the trees are extreme points
Quotients (/!




One tree from one gene : many gene trees

A gene sequence might be about 2000 base pairs long. One of the
problems that has occurred in the last 20 years is that biologists
believe that the way evolution works is that there would only be one
species tree.

Different genes have different histories, so you get different gene
trees. Putting them together is also a statistical problem: trying to
find out what the average of the different genes are. We're going to
study the evolutionary process as one of our models for trying to
understand what happens over time and how these mutations occur.
What we see with the data is some columns with changes.

We’re going to try to make a model for how these substitutions
occur and use that model in various ways to try to make up the tree.
The models we use are all Markovian. If you write them in discrete
time, we have probability of a change occurring as the transition
probability.



Copying Model not only for DNA

Chaucer



Continuous time Markov chains

Memoryless Property P(Y (u+t) = j|Y (t) = i) doesn’t depend on
time before t

Time homogeneity P(Y (h +t) = j|Y (t) = i) doesn’t depend on t,
only depends on h, time between the events.

Instantaneous transition rate

Pij(h) = gijh + o(h), j # i.

Pii(h) =1 —qi(h) + o(h), ¢ = ZQij
J#i

qi; is known as the instantaneous transition rate.



Times between changes are exponential

P(T >t +h)
P(T >t +h)

p(t>t+h)—P(T >1)
h

dP(T > t)

dt

P(T >0)

gives solution

P(T>1)

Ten < )

f(t)

P(T>t)P(T>t+hT>
P(T > t)P(T > h)
P(T>t)(1—-gh+...)

—q;P(T > t)
—q;P(T > t)

1

G*Qit
1— e %t

gie” %" ~ Exp(q;)



Derivative of P

Bij(t +h) — Bij(t)

- = —q; P, )+ Z i b ik (t
k#j
as h — 0,
dP;; (¢
Zl]t() = —qiPy(t) + > qriPi(t)
k#j

The simplest possible model we’ll study, the mutations are all equally
likely. This model, called a Jukes-Cantor model is a one parameter
model. We suppose that every transition is reversible and that the
probability is that they’re all equal.



Particular case of Jukes-Cantor: ¢; = 3aand ¢;; = o, @ # j.

45 ;ft(t> = —3aP,(t)+a ; Py(t)
= —3aP;(t) + a(l — Py(t))

= o—4aP;(t)
gives solutions

Pl(t) - —4at

G =@

6—4at

e
N SN 6L

Pit) =



The rate matrix () is of the form:

A T C G
A -3a « « Q@
Q=T o -3a « «@
C « a —3a «
G « o a =3«
The Kimura two parameter model is:
A T C G
A —a—20 15} I} «
Q=T B —a—20 Q@ 15}
C 5 « —a— 20 15}
G Q@ 15} B —a— 20

The 12 parameter model is of the form

A SR

A —NoEeeails ol
Q=T o1 — a3 g
C a31 o032 — o034

G a41 Q49 o043 —



The substitution matrix gives the probability of the change of a
nucleotide during a time ¢ as the continuous Markov chain with
infinitesimal generator Q.

In the case of the amino acids we would have bigger matrices (20 x 20
instead of 4 x 4), but most of the other computations carry through.
The best reference about these subjects are the books by W. H Li
and WH Li and D. Graur. See also Page and E. Holmes on Molecular
Evolution: A phylogenetic approach.



Call A the amino acid replacement rate per year,

et K Hsubstit.
2t 2 x divergence time

Probability that a site stays unchanged through ¢ intervals is
Gl =2y~
The probability D; of one or more replacements occurring in ¢

units of time is
T ({1l = it

1 =
log(1 — Dy) = 2tlog(l—\)

K
log(1 — D) = % log(1—\) ~ —K

Expected proportion of differences between sequences at time
t.



Example : S globin molecule in primates

contains 146 amino acids, the estimates of the number of differences

Time of div. Average # average
(millions of  of amino D -log(1 — D)
years) acid changes differ.
85 25.5 25.5/146 .192
are: 60 24 24/146  .180
42 6.25 6.25/146 .044
40 6.0 6.0/146  .042
30 25 2.5/146 018
I5 1.5 |.5/146  .007

The slope is around a = .002, and the evolution rate is half of this,
so: 1072 per million years or 10~ per year.



Human MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK
Gorilla MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK
Rabbit MVHLSSEEKSAVTALWGKVNVEEVGGEALGRLLVVYPWTQRFFESFGDLSSANAVMNNPK

Cow M. .LTAEEKAAVTAFWGKVKVDEVGGEALGRLLVVYPWTQRFFESFGDLSTADAVMNNPK
Goat M. .LTAEEKAAVTGFWGKVKVDEVGAEALGRLLVVYPWTQRFFEHFGDLSSADAVMNNAK
Mouse MVHLTDAEKAAVSCLWGKVNSDEVGGEALGRLLVVYPWTQRYFDSFGDLSSASAIMGNAK
Chicken MVHWTAEEKQLITGLWGKVNVAECGAEALARLLIVYPWTQRFFASFGNLSSPTAILGNPM
Carp MVEWTDAERSAIIGLWGKLNPDELGPQALARCLIVYPWTQRYFASFGNLSSPAAIMGNPK
61 120

Human VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG
Gorilla VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFKLLGNVLVCVLAHHFG
Rabbit VKAHGKKVLAAFSEGLSHLDNLKGTFAKLSELHCDKLHVDPENFRLLGNVLVIVLSHHFG

Cow VKAHGKKVLDSFSNGMKHLDDLKGTFAALSELHCDKLHVDPENFKLLGNVLVVVLARNFG

Goat VKAHGKKVLDSFSNGMKHLDDLKGTFAQLSELHCDKLHVDPENFKLLGNVLVVVLARHHG

Mouse VKAHGKKVITAFNDGLNHLDSLKGTFASLSELHCDKLHVDPENFRLLGNMIVIVLGHHLG

Chicken VRAHGKKVLTSFGDAVKNLDNIKNTFSQLSELHCDKLHVDPENFRLLGDILIIVLAAHFS

Carp VAAHGRTVMGGLERAIKNMDNIKATYAPLSVMHSEKLHVDPDNFRLLADCITVCAAMKFG
121 148

Human .KEFTPPVQAAYQKVVAGVANALAHKYH

GOorilla «Keeeceeoosesosceooccoonsans
Rabbit -KEFTPQVOAAYQKVVAGVANALAHKYH

Cow - KEFTPVLQADFQKVVAGVANALAHRYH
Goat . SEFTPLLOQAEFQKVVAGVANALAHRYH
Mouse . KDFTPARQAAFQKVVAGVATALAHKYH

Chicken .KDFTPECQAAWQKLVRVVAHALARKYH
Carp PSGFSPNVQEAWQKFLSVVVSALCRQYH



Human beta-globin vs. Gorilla beta-globin
Percent Similarity: 100
Percent Identity: 99

Human 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQR

Gorilla 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQR

51 TPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHC

51 TPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHC

101 PENFRLLGNVLVCVLAHHFGK 121

101 PENFKLLGNVLVCVLAHHFGK 121



We’re going to separate out two problems, which in today’s age of
computing, should be mixed together: alignhment and trees.

I’'m going to suppose we have sequences either of amino acids or
nucleotides which we have aligned. This is an example data set | did
in my first phylogeny paper | wrote was with Brad Efron in which we
analyzed malaria data. These are malaria sequences from | | different
species of malaria. Two of the species of malaria are human malaria.
The others are from different animals. The question in trying to find
out information from the families has a lot of influence on designing
vaccines.



Malaria Data

11
Prel
Pme2
Pma3
pPfad
Pbe5
Plo6
Pfr7
Pkn8
Pcy9
Pvilo
Pgall

1620
GTACTTGTTA
GTATCTGTTA
GTATTTGTTA
GTATTTGTTA
GTATTTGTTA
GTATTTGTTA
GTACTTGTTA
GTACTTGTTA
GTACTCGTTA
GTACTTGTTA
GTATTTGTTA

GGCCTTATAA
AGCCTTATAA
AGCCTTATAA
GGCCTTATAA
AGCCTTATAA
AGCCTTATAA
AGCCTTATAA
AGCCTTATAA
AGCCTTTTAA
AGCCTTTTAA
AGCCTTATAA

ACAAAGAAGT AACACGTAAT
ACAAAGAAGT AACACGTAAT
ACAAAGAAGT AACACATAAT
ACAAAGAAGT AACACGTAAT
ACAAAGAAGT AACACATAAT
ACAAAGAAGC AACACATAAT
ACAAAGAAGT AACACGTGAA
ACAAAGAAGT AACACGTAAT
ACAAAGAAGT AACACGTAAT

ACAAAGAAGC

GACACGTAAT

ACAAAGAAGC AACACATAAT

GAAAAAAGT-
AAAGATAGT-
GAGAAAAGTA
GAAAAAAGT-
GAAAAA--T-
GAAAAAAGT-
GAAAGAAGT-
GAAAAGAGT-
GAAAAAAGT-
GAAAAAAGT-
GAAAAAAGT-

AA--ATTTAT
AA--ATTATA
AAA-TTTCGA
AA--ATTTAT
AT--ATTTAC
AAAGCTGCGT
ATGGATTAAC
--GGATTCT-
--GGATCCG-
--GGATCCG-
AAAACTTTGT

TATTAACTTA
T-TAAATTAA
TATTAACTTA
TATTAACTTA
TTTTAATTAA
TACTAACTAA
TATTAACTTA
TATTAACTTA
TATTAACTTA
TATTAACTTA
TATTAATTTA

TTTATT ==~
TTTATTA--~
=ATATTT---
TTTATTT---
TATATTT---
CTTATTT---
TCCATTTTTT
TCCATTTT--
TCCATTTT--
TCCATTTT--
TTTATTT---

AGGAATTATA
AGGAATTATA
AGGA-TTATA
AGGAATTATA
AGGAATTATA
AGGAATTATA
AGGAATTATA
AGGAATTATA
AGGAATTATA
AGGAATTATA
AGGAATTATA

-AGTGTGTAT
—-AGTGTGTAT
—~AGTGTGTAT
—-AGTGTGTAT
-AGTGTGTAT
-AGTGTGTAT
TAGTGTGTAT
TAGTGTGTAT
TAGTGTGTAT
TAGTGTGTAT
-AGTGTGTAT



Transitions and Transversions

The probability of changing from a purine to a pyrimidine is called a
transversion. If you think about coding sequences, the amino acids
you don’t code the amino acid if you have a transition. Ve make the
two parameter model is the most used in the study of evolution. We
don’t have discrete time, that’s just a simplification.



Model 0:Jukes Cantor

This model is not a completely realistic model.

All mutations, transversions and translations are equally likely.

The probability of it not changing is 1 — 3. This is discrete time
markov chain matrix.

You can look at it stationary distribution because you have a perfect
symmetry, the left eigenvector is %, %, %, %.

This stationary distribution of %, %, %, %.

If for a long time you have sequences evolving over time and you’re
lost track of time and you pull a nucleotide at random it has equal
probability of being any of those.



Transitions and Transversions

The probability of changing from a purine to a pyrimidine is called a
transversion. If you think about coding sequences, the amino acids
you don’t code the amino acid if you have a transition. Ve make the
two parameter model is the most used in the study of evolution. We
don’t have discrete time, that’s just a simplification.



Distance based methods Variants of hierarchical cluster analysis.
The aim is to reconstruct the distances as computed between the
two sequences of the two species  and y by distances along the
edges of the tree forming a path between z and y.

First a distance matrix is constructed between the /N units in some
way. These distances d, are supposed to estimate the unknown
‘true evolutionary’ distances between x and y as they would be
measured along the unknown true tree 7.

For the Jukes-Cantor model which assumes equal rates of
substitution between all base pairs provides the estimate of distances
between sequences x and y as:

3 4 #AA #COC #GG #IT

doy = —7log(l = 2(1 = (7= + ==+ ——+ =)

where k denotes the number of characters (columns) in the data
matrix, and #A A denotes the number of times there is an A in
matched with an A in y.

Once the distances are decided upon, the parametric model is left
behind and a clustering technique such as hierarchical clustering with
average groups is used to find the tree from the distances.




Remarks:

If we knew the true evolutionary distances between species, we
could build an additive tree that reproduced the distances along the
tree in a unique way.

The existence of an additive tree reproducing the distances faithfully
is not always ensured, a sufficient condition for this to be possible is
called the four point condition(for all quadruples):

dap +dcp < max(dac + dpp,dap + dpc).

This means that one of the two sums is minimum and the other two
are equal. Notice that this is not the same as the ultrametric
property which says that for any three points: A, B, C:

dac < max(dap,dpc)

If the distances obey the ultrametric property the distances can be fit
to a binary tree with leaves equally distant from the root.
Unfortunately distances computed from real data never obey this
property.



Additivity is destroyed by:
- Homoplasy (reversal, parallelism and convergence) which is
caused by superimposed changes.
- An uneven distribution of change rates.
- Measurement error.
- Paralogous sequences.

We concentrate on distances that are computed from substitution
models such as Jukes and Cantor’s one-parameter model, Kimura’s
two-parameter model, or even the complex |2-parameter model for
the substitution matrices. These models provide estimates of
differences between sequences computed from the frequencies of
various changes in the sequences.



Parsimony method

Nonparametric procedures. Farris (1983), has a justification for
parsimony : “minimizes requirements of ad hoc hypotheses of
homoplasy”.

Analogy is made between homoplasies and residuals, (part of the
data that the tree does not explain), minimizing homoplasies is akin
to minimizing residuals in regression.

Roughly this method can be seen as based on the assumption that
“evolution is parsimonious” which means that there should be no
more evolutionary steps than necessary.

Thus the best trees are the ones that minimize the number of
changes between ancestors and descendants. Under independence of
each of the characters, this has a clear combinatorial translation.



The parsimony tree as a combinatorial
problem

Unrooted parsimony trees.

Recall that the Hamming distance between two units is the number
of changes needed to bring one to the other. This assumes that all
changes in a categorical character are counted as one step.

dy(AACTGGG, AACTGGC) = dy(AACTGGG, AACTGGA) = 1

Here, given N points in a metric space, the Steiner problem is that of
finding the shortest tree connecting the NV points where one is
allowed to add extra vertices. Thus, with 4 points arranged at the
vertices of a unit square, one would add a fifth point in the center to
form the Steiner tree.



The minimum spanning tree and the Steiner tree of the 4 vertices of a

rectangle.
Although statisticians are not familiar with minimal Steiner trees, they
may have encountered minimal spanning trees as used by Friedman

and Rafsky (1985).



The relation between the two is well explained in Gardner’s
wonderful chapter on Steiner trees (Chapter 22, Gardner (1997)).
He explains how minimal spanning trees are good “starting points”
since in the plane for instance they can only be 13% longer than
Steiner trees.

As a combinatorial problem, the maximum parsimony tree is the
problem of finding the Steiner points or Steiner tree for Hamming
distance between the units, under the constraint that the tree be
binary.

The problem of finding a minimal Steiner tree is that of finding the
Steiner points (representing ancestors) that minimize the complete
length of the tree. Steiner points are points that are added to a graph
so that its minimal spanning tree becomes shorter.



Computation issues

The minimal Steiner tree problem is NP-hard, meaning that no
algorithm is known that will compute an optimal tree in polynomial
time in the number of species N.

Much work has been done to implement good heuristic algorithms
for finding approximately optimum trees. Swofford’s PAUP,
Felsenstein’s Phy11ip, and Goloboff’s NONA all contain clever use of
branch and bound techniques and branch swapping to find acceptable
answers.

#species=1500 can now be done routinely.



Parsimony as a statistical procedure

Felsenstein (1983) lists parsimony in a section entitled a section on
parsimony as “non-statistical approaches”. Farris says (1983) says the
“statistical approach to phylogenetic inference was wrong from the
start, for it rests on the idea that to study phylogeny at all one must
first know in great detail how evolution has proceeded”. Both these
authors identify statistics with parametric modeling.

In fact parsimony is just a nonparametric method of estimating the
tree parameter.



Simple Example

T7 data experimentally generated phylogeny, Hillis et al. (1992) for

which the parsimony program will be seen to produce the correct

answer. Here is the part of the data set (in phylip form) composed

of the informative sites:

21

ccecgececegeececeeececaGgGeGGeGeGT
CCCCGTACCGGTCAACGGGGT
TCCCGCACCGATCAATGGGGG
TCCCGCACCGATCAATGGGGG
CTCCGTACCGGTCAACGGGGT
CCTTACGTTAGCTGGCAAAAT
CTCCGCGCTGGCCGGCAGAAT
CCCCACGCTGGCCGGCAGAAT
CCTTACGTTAGCTGGCAAAAT



One most parsimonious tree found:

e o]
4 ST e SN 6
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! ! +--0
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1 +--L
[ tom——— K}
[ ! +--K
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! S R, 4
! +--J
|
e R
remember: this is an unrooted tree!
requires a total of 25.000

steps in each site:






Output: the Newick notation

The output file called treefile contains the following line (the
tree in parentheses format):

(((O, (P, (Q,N))), ((L,K),(M,J))),R);



Rooting the Tree

At least one of the taxonomic units has a special function. For a
statistician it would be seen as a simple outlier: the biologists
voluntarily include what they call an outgroup to locate the root of
the tree. The root is situated by creating an unrooted tree and the
edge that joins the outgroup to the other species will be the support
for the root.

This is a clever use of prior information that simplifies the problem
considerably, (by a factor of (2N — 3)). What is less obvious to the
outsider is why, once the root’s position is decided upon, the
biologists keep the outgroup in the data set - it seems to distort the
image of the closer group (called the ingroup), in fact outgroups
also provide information on the root’s characters, and so on the
ancestral states of the character.



Maximum likelihood trees

For a statistician this is the easiest of the methods to understand. A
parametric model (6, T') is postulated, 6 is a 7-dimensional vector
that we explain below and 7T is the tree’s topology. Under this model
the likelihood for each possible tree 7 is separately computed for
each character, the independence of characters then allows the total
likelihood of the tree for all data to be computed by taking the
product.

The first part of the vector of parameters # comes from the
Markovian substitution model as explained before.

The number of other parameters that have to be specified depends
on the complexity of the model. If a molecular clock ' is postulated,
speciation times {1, to,...Ly_2} (splitting events) are the other
parameters. Otherwise both the branch lengths {v1, va,...vx_2}
and the different rates along those branches have to be parametrized.

'branch lengths in evolutionary change depend linearly on time



i

2 t3
Y

tq

T =a To =D 9 =@

The substitution parameters are estimated from the data. A
complete model including distributions of separation events is
postulated and the likelihood can be computed for each possible tree
by computing the likelihood of the tree for each site X ;:

f(X;161,02,...,6,,T).



This actually requires computing the likelihood of all the subtrees, so
the method is recursive.

k
L(01,02,...,0X1,Xo,..., Xp, T) =[] £(X;16,7)
g=l

The essential assumptions:
I. Each site in the sequence evolves independently.
2. Different lineages evolve independently.

3. Each site undergoes substitution at an expected rate (can be
extended to a series of rates with a given distribution).



Yy
t1
1 =a o =0 T3 =c¢

Likelihood:P(data| Tree,t’s,ancestors,mutation rates). Based on the
probabilities computed given the tree and for potential ancestors
(ts = t1 + t2)
P(G,, bv GY, Z’T7 t) . P(a“y7 tl)P(b’yv tl)P(C‘Z, t3)P(y|Z7 tQ)P(Z)
P(a,b,c,|T,t) > mPuc(ts) Y Pay(t2)Pya(t1) Pp(tr)
z Y

This is a function of ¢1, t5 whose values are estimated as the
maximum for a given tree topology, then for the ml estimate is made
for each T.



The T with the maximum value is the maximum likelihood estimate.
We can consider the likelihood computation, one character at a time.
Starting from the root, or starting from the leaves, Felsenstein’s
transversal method starts from the leaves, we abbreviate the
character we are interested from z;; to ;. For two leaves with the
residue a at their common ancestor (the root here):

P(x1,x2,a|T, 01 = t1,00 = t2) = mo P(z1]a, 01) P(z2|a, 02)
The root is an unknown nuisance parameter that we integrate out:

P(x1,22|T,01 = t1,602 = t2) Zﬂa (w1la, 61)P(z2|a, 02)



Call m|i] the direct parent of i, and P(L;|a) denote the probability
of all nodes below 7 given that the node 7 is a. VWe number the inner
nodes from (n+1) to (2n-2), these ancestral nodes are all unknown,
so we have to sum the probabilities of all their possible assignments
to compute the complete likelihood of the tree, given its edge
Iengths (91, 92, ... 792n72)-

The algorithm is similar to the forward algorithm in HMM.

Sum over possible paths, working upwards from the leaves.
Compute P(Ljle), P(Lg| f) for all e and f at daughter nodes j, k of i

P(Lila) = Y P(bla,t;) * P(L;[b) x P(cla, ti) * P(Ly|c)
b,c

We can write down the complete probability as a sum.



We denote the alphabet of possible residuals A4,

Pzt 2?,..., 22" 2|T 9)

2n—2
= > maen— || Pla’la™, e)H P(z'|a™ 6,
(an+l’“.7a2n71)€An 2 n+1

the computational algorithm evaluates P(L;|a) for the children j and
k such that m[j] = m[k] = i, we compute P(L;|b) and P(Ly|c) for
all possible b and c.

These instructions allow us to compute the likelihood of any tree,
given its branching order (sometimes called topology) and its branch
lengths.

For the maximum likelihood computation, we need to compute the
tree that maximizes the likelihood, first for a given branching order,
find the branch lengths that maximize the likelihood. This can be
m in order to use the
conjugate gradient method for optlmlsmg the edge lengths, or we can
take an EM approach as Felsenstein, 1981 suggests and implemented
in his phylip program.

done by taking the derivative



Complexity: Hard

Finding the likelihood of one tree is an NP complete problem
Remark :There is no known polynomial time algorithm that finds the
tree with maximum likelihood.

Thus as we need to look at all the topologies, of which there are
exponentially many; we see the exact computation becomes quickly
intractable as the number of leaves increases.

Nice implementations:

phylip, RaXML, FastML, PhyML, (see wikipedia)...

From R: phangorn, phyml.



Maximum likelihood trees: Output from phylip program
dnaml:

Nucleic acid sequence Max. Likelihood, vers. 3.572c
Empirical Base Frequencies:

A 0.27778 G 0.22685
c 0.22325 T(U)0.27212
Transition/transversion ratio = 2.000000

(Transition/transversion parameter = 1.519971)



!
! +R
! +-—-1
! ! ! +N
! ! +--4
! ! ! +0
! +--5 +--3
! 1 $ ! +P
4 ! 4 +-=2
--7--6 ! +0Q
! ! !
! 4 <F
! !
! +M
!
+K
ILn Likelihood = -344.10331
Examined 95 trees
Between And Length Approx.Conf.Limits

7 J 0.00006 ( =zero, infinity)
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* %
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0.00003 ( =zero, infinity)

5 0.00006 ( zero, infinity)
0.00936 ( =zero, 0.02236)

0.00466 ( 2zero, 0.01384)

0.00469 ( 2zero, 0.01389)

0.00462 ( zero, 0.01369)

0.00003 ( zero, infinity)

(0] 0.00462 ( =zero, 0.01369)
0.00003 ( zero, infinity)

P 0.00462 ( =zero, 0.01369)
Q 0.00003 ( zero, infinity)
L 0.00006 ( zero, infinity)
M 0.00003 ( zero, infinity)
K 0.00003 ( zero, infinity)

= significantly positive, P < 0.05
= significantly positive, P < 0.01



ML Estimate Application: Origins of HIV

The article by Korber et al. provides an estimate of a most recent
ancestor. When you see two sequences, how much time went by
until the most recent common ancestor.

The English author, Hooper, hypothesis that HIV was spread by
dispensaries who were giving the polio vaccination in East Africa.
They were supposed to be responsible for diffusing AIDS because the
vaccination was grown in monkey tissue. The idea was to try to
disprove this occurred at the time of the vaccination program in 1957
and this study was trying to make a confidence interval of the time of
the most recent ancestor using as many sequences as they had to
make up the whole tree.

One of the reasons this data seemed interested is that this data is
freely available on Los Alamos National Laboratories.






US B Clade
1954
(1941-1963)

M group
1930
(1911-1945)

B/D
1939
(1920-1940)




The ideas is that of the models we are using for molecular evolution,
they have this molecular clock.

You have a homogenous process, the number of mutations with be
proportionate to time.

There hasn’t been much progress in disproving or in proving this
molecular clock hypothesis, so the the way it’s justified is the average
the amount of mutation that occurs over time.

Suppose we had the treefile from a previous phylip output,
the generation of sequences is done using Seq-gen (Rambaut and
Grassly, 1997) by :

seg-gen -mHKY -t3.0 -127 -nl00 < treefile > exampl

For which the output looks like:



Sequence Generator - seg-gen, Version 1.04
(c) Copyright, 1996 Andrew Rambaut and Nick Grassly
Department of Zoology, University of Oxford
South Parks Road, Oxford OX1 3PS, U.K.
Simulating 11 taxa, 27 bases
for 1 tree(s) with 100 dataset(s) per tree
Branch lengths assumed to be number of substitutions

per site
Rate homogeneity of sites.
Model=HKY
transition/transversion ratio = 3 (kappa=6)
frequencies = A:0.25 C:0.25 G:0.25 T:0.25
0% | |100%

R AR )

Time taken: 0.12 seconds



The data file example.T7 generated looks like this:

11 27
R CCGACCTCCAAGATTCGCTATGACAAT
12 CCGACCTCCAAGATTCGCTATGACAAT
Q CCGACCTCCAAGATTCGCTATGACAAT
L CCGACCTCCAAGATTCGCTATGACAAT
M CCGACCTCCAAGATT . e e e e e v etc

11 27
R ATGGTAGCGGATAACTGACTTCATCGA
P ATGGTAGCGGATAACTGACTTCATCGA
Q ATGGTAGCGGATAACTGACTTCATCGA
L ATGGTAGCGGATAACTGACTTCATCGA
M ATGGTAGCGGATAACTGACTTCATCGA
...... ATGGTAGCGGATAA. ¢ e e e v e e



This file example. T7 was then submitted to the phylip program
dnapars with the option multiple data sets indicating that there
were 100 data sets to analyze, the first part of the output from this
looked like this:

»(((((M,K),L),N),Q),(J,P))),0)[0.0100];
+(((((M,K),L),N),(J,Q)),P)),0)[0.0100];
(((((™,K),L),(J,N)),Q),P)),0)[0.0100];
(((((™,K),(J,L)),N),Q),P)),0)[0.0100];
(™, (J,x)),L),N),0),P)),0)[0.0100];
(((J,M),(R,K)),L),N),Q),P),0)[0.0100];
(((J,(R,M)),K),L),N),Q),P),0)[0.0100];
((((R,J),M),K),L),N),Q),P),0)[0.0100];
((((((J,M),K),L),N),Q),P)),0)[0.0100];
(CCCC((R;(T,M)),K),L),N),Q),P),0)[0.0100];
(((R,J),(((((M,K),L),N),Q),P)),0)[0.0100];
((3, (R, (((((M,K),L),N),Q),P))),0)[0.0100];
((R, (3, (((((M,K),L),N),Q),P))),0)[0.0100];
((R, ((3,((((M,K),L),N),Q)),P)),0)[0.0100];
((R, (((J,(((M,K),L),N)),Q),P)),0)[0.0100];
((R, ((((J,((M,K),L)),N),Q),P)),0)[0.0100];
((R, (((((J,(M,K)),L),N),Q),P)),0)[0.0100];
(((J,(R,M)), ((((XK,L),N),Q),P)),0)[0.0100];
((((R,J),M),((((K,L),N),Q),P)),0)[0.0100];
(((R,(I,M)),((((K,L),N),Q),P)),0)[0.0100];
(M, ((R,J),((((K,L),N),Q),P))),0)[0.0100];
(((R,J), (M, ((((X,L),N),Q),P))),0)[0.0100];
(((R,J), ((M,(((K,L),N),Q)),P)),0)[0.0100];

Notice at the end of each tree is associated a weight.



Molecular Clock

Says that the probability of changes along the edges of the tree are
proportional to edgelengths:



More believable models of Evolution:

The likelihood was computed as:

Ed

£(91,92,...,Hn]:r,l,x.Q,...,x.k, H |9 T

Variation of rates of substitution among sites.

Variable sites models for the rates considers the sites to have
different rates. The new likelihood takes the different rates into
account:

K
( ’T t T‘K = H .%'k’T Tkt

We do not have enough information about the sites to know what
these rates should be, so we integrate out the variation by
integrating out over all values of r using a prior for the rates. Yang
proposes to use a gamma g(7, «, ) prior which has mean | and
variance 1/« for the rates.



The likelihood now becomes:
K o0
P(z|T,t,a) = H/ P(xg|T,rt)g(r, o, )dr
k=10

For each T, this is maximised with respect to ¢ and «.

Actually better by far to use a from other data.

In practice a discrete sum approximation is sufficient.

Similar approach is to use a hidden Markov model for the states
(Felsenstein and Churchill)

K m
P(z|T,t,as) = H ZaklP x| T, r)g(r, a, o)
k=1 k=1

Different areas can thus be defined:
- Surface sites of proteins may be exposed to more substitutions.
- Loops with exposed sites.

- Beta sheets have an alternance of buried and exposed sites.



Full Bayesian Method

- Prior distribution on all tree branching patterns.
- Gamma dsitribution for the rates.

- Compute posterior distribution using MCMC.

Implementations:MrBayes, Beast
Open Questions:

- Prior probability model for trees , open question. Uniform
distribution on all trees poses big problem:
2n — 3!! different binary rotted semi-labeled trees with n leaves.
With 10, you have more than a million trees.

- How long to run the MCMC? (Diaconis and Holmes, EJP cannot
touch the real case)
Negative results by Mossel and Vigoda on problems with
mixtures.

- Using the output from MCMC runs ...we will talk about this.



Distance Based Methods

In phylogenetics, neighbor joining is very similar to the algorithms
used for hierarchical clustering.

The aim is to reconstruct the distances as computed between the
two sequences of the two species x and y by distances along the
edges of the tree forming a path between x and y.

First a distance matrix is constructed between the N units in some
way. These distances d, are supposed to estimate the unknown
‘true evolutionary’ distances between z and y as they would be
measured along the unknown true tree 7.

For the Jukes-Cantor model which assumes equal rates of
substitution between all base pairs provides the estimate of distances
between sequences x and y as:

3 4 #AA #COC #GG #IT

dpy = —=log(l — =(1—

w=—logl- 50— (2 4+ T= B2 Ty
where k denotes the number of characters (columns) in the data
matrix, and #4 A denotes the number of times there is an A in x

matched with an A in 2/




Iterative Agglomeration: Bottom Up

heuristic

Once the distances are decided upon, the parametric model is left
behind and a clustering technique such as hierarchical clustering with
average groups is used to find the tree from the distances.

Remarks:

If we knew the true evolutionary distances between species, we
could build an additive tree that reproduced the distances along the
tree in a unique way.

The existence of an additive tree reproducing the distances faithfully
is not always ensured, a sufficient condition for this to be possible is
called the four point condition(for all quadruples):

dap +dcp < max(dac + dpp,dap + dpc).

This means that one of the two sums is minimum and the other two
are equal. Notice that this is not the same as the ultrametric
property which says that for any three points: A, B, C:

dac < max(dap,dpc)



dac < max(dap,dpc)

If the distances obey the ultrametric property the distances can be fit
to a binary tree with leaves equally distant from the root.
Unfortunately distances computed from real data never obey this
property.
This can be destroyed by:

- Homoplasy (reversal, parallelism and convergence) which is

caused by superimposed changes.
- An uneven distribution of change rates.
- Measurement error.

- Paralogous sequences.



Hierarchical clustering trees

Built from distances or dissimilarities between the rows of the data
matrix [7].

Common examples include computations of dissimilarities in gene
expression or in occurrence of words in texts or webpages.

The resulting hierarchical clustering tree has the advantage over
simple partitioning methods that one can look at the output in order
to make an informed decision as to the relevant number of clusters
for a particular data set.

Microarray studies have popularized the use of a double hierarchical
clustering or bi-clustering trees where both the rows and columns of
the data are clustered. This is the most popular method for
visualizing both relations between genes and patient groups in gene
expression studies [I, 5].

Many implementations are available; the illustration in Figure in the
introduction was made with heatmap function in R [9].



Consequences for statistics on treespace

- The uniform distribution on tree is irrelevant.

- Statistical inference involving phylogenetic trees require more
sophisticated probabilities on treespace.

- Would benefit from a notion of neighborhood for trees.
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Motivation: Forests of Trees

- Different genes, same set of species.

- Bootstrapped Data by Multinomial Resampling, then estimating
the tree.

- Bayesian Posterior Distributions on set of Trees.

- Simulated data according to certain evolutionary models
(seg-gen).

- Data specimens in different conditions.

- Hierarchical Clustering Trees for (repeated) RNA-seq data
(different time points, different space points, ...).



Hierarchical Clustering Trees




Some Methods for Generating Trees

With advances in computational power we can use simulated data to
evaluate clustering stability, either in a frequentist (Bootstrap) setting
or by using a Bayesian paradigm where trees from a posterior
distribution can be generated by MCMC (Monte Carlo Markov chain)
methods.

We provide here a brief overview of the standard methods for
generating distributions of trees. Different approaches to the
problem of combining the trees are summarized. This combination of
information on different trees is a non-standard statistical problem
because trees do not lie in a Euclidean space ([I]).



Sampling Distribution for Trees













Bootstrap support for Phylogenies Taking as observations the
columns of the matrix X of aligned sequences, the rows
representing the species.

The sampling distribution of the estimated tree is
estimated by resampling with replacement among the
characters or columns of the data.

This provides a large set of plausible alternative data
sets, each be used in the same way as the original data
to give a separate tree (see [|3] for a review).

Parametric Bootstrapping for Microarray Clusters



Bayesian posterior distributions for phylogenetic trees - Prior
distributions on the DNA mutation rates that
occur during the evolutionary process and a
uniform distribution on the original tree.

- Use of MCMC to generate instances of the
posterior distribution.

- Implementations MrBayes [|5] and Beast
provide a sample of trees from the posterior
distribution.

- The posterior distribution provides an estimate of
variability.

Bayesian methods in hierarchical clustering Heller[23] provide a
Bayesian nonparametric method for generating
posterior distributions of hierarchical clustering trees.



Euclidean space (where through every point not on a line) is flat:

(sum of angles of a triangle is 180 ©),



Hyperbolic space is ‘ negatively’ curved:

Euclid’s parallel postulate is replaced.
In hyperbolic geometry there are at least two distinct lines through P

which do not intersect |, so the parallel postulate is false.
A characteristic property of hyperbolic geometry is that the angles of
a triangle add to less than 180 °.






Geodesic metric space:

If we have a distance defined between any two points of a space, we
call it a metric space.

(The distance doesn’t have to be defined through ordinary
coordinates)

A geodesic metric space is a metric space where geodesics are
defined to be the shortest path between points in the space.



d-hyperbolic space is a geodesic metric space in which every geodesic
triangle is d-thin.

d-thin: pick three points and draw geodesic lines between them to
make a geodesic triangle. Then any point on any of the edges of the
triangle is within a distance of J from one of the other two sides.



For example, trees are 0-hyperbolic: a geodesic triangle in a tree is
just a subtree, so any point on a geodesic triangle is actually on two
edges.

Normal Euclidean space is co-hyperbolic; i.e. not hyperbolic.
Generally, the higher ¢ has to be, the less curved the space is.



Comparing Different Trees

Macaca mul

acaca fus

o ] Macaca syl

==Hylobates

- Binomial Support Estimates (Consensus+support values).
- Split Differences, Visualization Programs .

Distances.

Recoding of Trees as binary columns.
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Depend on local and global properties of a neighborhood.
/ -
A

From Efron, Halloran, Holmes, (1996)

What is the curvature of the boundary?
How many neighbors does a region have?



- Univariate.
- Multiple Testing.

- Composite Statements.
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Do we care about confidence statements
for phylogenetic trees?

Cetacees: recognising what is being sold as Whale meat in Japan?
e SR = 1

#







Cutgroups

Phylogenetic Identification
of Whale and Dolphin Products

KOREA JAPAN
100407 1093-08° 190889
Pyamy Right
Bowhead
Right
N Minks 54 3 29
5. Minke 2 134 57
o 2 4
B
Beyie's 2
- 3 1T 4
Sei 4
2
Fin Fil 1
Blue 2
Gray
Pygmy Sperm 1
I g £ 1
Other Beaked 1
* whales
Baird's 19 8
Boaked
{ Cuier's 1 3
Parpaize 5 2
2 Killer whale J 1




The River without a Paddle?

Human immunodeficiency virus: Phylogeny and the origin of HIV-1
The origin of human immunodeficiency virus type | (HIV-1) is
controversial.

EFD'WARD HOPER



Conversely, phylogenetic analysis of HIV-1 sequences indicates that
group M originated before the vaccination campaign, supporting a
model of 'natural transfer’ from chimpanzees to humans. If this
timescale is correct, then the OPV theory remains a viable
hypothesis of HIV-1 origins only if the subtypes of group M
differentiated in chimpanzees before their transmission to humans.



Confidence Intervals?

Korber and colleagues extrapolated the timing of the origin of HIV-1
group M back to a single viral ancestor in 1931, give or take about 12
years for 95% confidence limits.

Because this calendar of events obviously pre-dated the OPV trials, in
the revised version of his book, Hooper suggested that group M first
began to diverge in chimpanzees, and that there were then several
independent transfers of virus to humans via OPV.

In that case, several OPV batches should bear evidence of their
production in chimpanzee tissue, yet no such evidence has been
found.






M group
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Polio vaccines exonerated
Nature 410, 1035 - 1036 (2001)

The OPV batch that Hooper considered to be under most suspicion,
however, was CHAT [0A-1I1.

An original vial of the batch was found at Britain’s National Institute
for Biological Standards and Control, and the new tests show that it
was prepared from rhesus-macaque cells.



P(TeRy)=1-a

We will use the nonparametric approach of Tukey who proposed
peeling convex hulls to construct successive ‘deeper’ confidence
regions. But we need a geometrical space to build these regions in.



What does a neighborhood look like?

Need modern topology.

Aims
- Fill Tree Space and make meaningful boundaries.
- Define distances between trees.
- Define neighborhoods, meaningful measures.

- Principal directions of variations in tree space, summarizing :
structure + noise.

- Confidence statements, convex hulls.



Distances between Trees

- Robinson and Foulds, (bipartitions).

- Nearest Neighbor Interchange (NNI).

0

1 2 3 4



Distances between Trees

- Robinson and Foulds, (bipartitions).

- Nearest Neighbor Interchange (NNI).

0 0

1 2 3 4 123 4



Distances between Trees

- Robinson and Foulds, (bipartitions).

- Nearest Neighbor Interchange (NNI).

0 0 0

1 2 3 4 123 4 42 & 4



Distances between Trees

- Robinson and Foulds, (bipartitions).

- Nearest Neighbor Interchange (NNI).

0 0 0

1 2 3 4 123 4 42 & 4

- Subtree Prune Rebranch. (SPR)

- Fill-in of NNI moves: Billera, Holmes, Vogtmann (BHYV).
The boundaries between regions represent an area of
uncertainty about the exact branching order. In biological
terminology this is called an ‘unresolved’ tree.



Boundary for trees with 3 leaves



The quadrant for one tree

O00O0




The quadrant for one tree

O00O0




The quadrant for one tree

O00O0




The quadrant for one tree

© O ©

O00O0




All I5 quadrants for n = 4 share the same origin. If we take the
diagonal line segment x + y = 1 in each quadrant, we obtain a graph
with an edge for each quadrant and a trivalent vertex for each
boundary ray; this grapiis called the link of the origin.




Cube complex of Euclidean Orthants

L
_7

A path between two trees consists
of line segments through a sequence of orthants. This sequence of
orthants is the path.

A path is a geodesic when it has the smallest length of all paths
between two points.



Cube complex of Euclidean Orthants

\ L
7 >

N\ —]

A path between two trees consists
of line segments through a sequence of orthants. This sequence of
orthants is the path.

A path is a geodesic when it has the smallest length of all paths
between two points.



A Cone Path

L

L7

A path between two trees T and 7" always exists. Since all orthants
connect at the origin, any two trees T and 7" can be connected by a
two-segment path, this is called the cone-path.



Three orthants sharing a common boundary for n = 4 leaves.




b b

Theorem( Billera, Holmes, Vogtmann (BHV)): Tree space with BHV
metric is a CAT(0) space, that is, it has non-positive curvature.
This implies there are geodesic between any two trees (Gromov).
It is not an Euclidean space.









This has an effect on the existence of geodesics.
The speed at which MCMC methods work.
The size of the “variance”.

The computation of the mean of a set of trees.
The number of neighbors of a tree.



We know that given a distance matrix we can give a treelike
representation of the points with these distances by building a tree if
the distances obey Buneman’s four point condition (Buneman, 1974).




We can see Gromov’s definition the hyperbolicity contant 4 as a
relaxation of the above four-point condition:




Can we embed trees in Euclidean space
(approximately)

We can ask whether points are closer to a tree or to being
embeddable in Euclidean space by using Gromov’s 4.
Implementation:

distory is an R package written with John Chakerian[3] which
both implements the geodesic BHV distance between trees using
Owen and Provan (2009)’s algorithm and the computation of delta
for any finite set of points.



Multidimensional Scaling (MDS or PCoA)

Schoenberg’s (1935) remarked that a symmetric matrix of positive
entries with zeros on the diagonal is a Euclidean distance matrix
between n points if and only if the matrix

1
—§HA2H is semi-definite positive

where H = (I — 11l),and I’ = (1,1,1...,1)



Approximating Non Euclidean Distances
by Euclidean ones

Suppose we did have an
Euclidena space, variables measured in RP that are not centered: Y,
apply the centering matrix

1
X=HY, withH=T——11")andl'=(1,1,1...,1)
n

Call B= XX/, if D®) is the matrix of squared distances between
rows of X in the euclidean coordinates,

1
G \/(x;l — 25 )2 Dy — §HD(2)H =B

We can go backwards from a matrix D to X
by taking the eigendecomposition of B in much the same way that
PCA provides the best rank r approximation for data by taking the
singular value decomposition of X, or the eigendecomposition of
XX’



SET (0
0 N0 0
X0 = sy with S =10 0
0 0 ST
0 0

This provides the best approximate representation in an Euclidean
space of dimension r. The algorithm provides points in a Euclidean

space that have approximately the same distances as those provided
by D2.



MDS Algorithm

In summary, given an n X n matrix of interpoint distances, one can
solve for points achieving these distances by:

I. Double centering the interpoint distance squared matrix:
S= —%H Do H.

2. Diagonalizing S: S = UAUT.

3. Extracting X: X = UAY/2,



Is it better to represent the distances
a tree or a Euclidean projection?

PSYCHOMETRIKA-VOL. 47 NO. 1
MARCH 1982

SPATIAL VERSUS TREE REPRESENTATIONS OF PROXIMITY DATA

SANDRA PRUZANSKY

BELL LABORATORIES

J. DouGLAS CARROLL

BELL LABORATORIES

In this paper we investigated two of the most common representations of proximities, two-
dimensional euclidean planes and additive trees. Our purpose was to develop guidelines for com-
paring these representations, and to discover properties that could help diagnose which
representation is more appropriate for & given set of data. In a simulation study, artificial data
generated cither by a plane or by a tree were scaled using procedures for fitting either a plane
{KYST) or a trec (ADDTREE). As expected, the appropriate model fit the data betier than the
inappropriate model for all noise levels. Furthermore, the two models were roughly comparable:
for all noise levels, KYST accounted for plane data about as well as ADDTREE accounted for tree
data. Two properties of the data proved useful in distinguishing between the models: the skewness
of the distribution of distances, and the proportion of elongated triangles, which measures depar-
tures from the ulirameiric inequality, Applications of KYST and ADDTREE to some twenty sets of
real data, collected by other investigators, showed that most of these data could be classified clearly
as favoring cither a tree or a two-dimensional representation.

Key words: multidimensional scaling, clustering, tree structures, additive trees.




Malaria Data as seen using
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Bootstrapped trees




Probability Distributions on Tree Space

In Holmes (2005) | discuss the use of distances for making believable
probability distributions on the space of trees, the simplest such

model is
P(7;) = Ke~d(im)

This is really a Mallows[|7] model for trees, and as such has possible
extensions in similar ways than [10], [1 1] or those used for rankings
developed in [4].






Empirical Evidence on Mixing on Bethe
Lattice

Mossel noticed that one of the extreme points of tree space with
regards to predicting the root was the Bethe Lattice:



Can we hear the root?

)



For large enough independent sequences, say for k we can
reconstruct the tree with probability 1 — ¢

clogn
(1 — Onax)262 . (T)

min

k >

However for large mutation rates, Mossel also proved the
impossibility of estimating a tree if we only have short sequences and
high mutation rates.



Distribution of Trees from seqgen Bethe
Tree Data
a = 0.05,£ = 1000 MDS plot,



Distribution of Trees from seqgen Bethe
Tree Data
a = 0.01,£ = 1000 MDS plot,



Seeing the Mutation Rate Gradient

We generated 9 sets of trees with mutation rates set from o = 0.01
to a = 0.09 and we generated the data according to the Bethe lattice

tree.
Here are the results in the first plane of the MDS:



Tree of Trees

A tree is a complete CAT(0) space.

Since BHV,2001 [I] have shown that the space of trees is negatively
curved (a CAT(0) space), the most natural representation of a
collection of trees may be a tree.

Is this good for anything?



Mixture Detection

Mixtures pose problems when using MCMC methods in the Bayesian
estimation context ( Mossel,Vigoda 2005[20]). These authors note
that MCMC methods in particular those used to compute Bayesian
posterior distributions on trees can be misleading when the data are
generated from a mixture of trees, because in the case of a
‘well-balanced’ mixture the algorithms are not guaranteed to
converge.

They recommend separating the sequences according to coherent
evolutionary processes.

Suppose the data come from the mixture of several different trees,
we will see how the bootstrap and the various distances and
representations can detect these situations.

Our procedure uses the bootstrap.



We use the distance between trees and then make a hierarchical
clustering tree using single linkage (Similar to UPGMA) to provide a
picture of the relationships between the trees.

In this simulated example we generate two sets of data of length
1,000 from the two different trees represented:

Trees used to generate sequences of length 1000 each which are
combined into one 2000 long aligned set (X72) and then
bootstrapped.



A simulation experiment: we concatenate the data into one data set
on which the standard phylogenetic estimation procedures are run.
This provides the estimated tree for the data. Ve also generate 250
bootstrap resamples from the combined data. We then compute the
distances between the 250 trees from each of the bootstrap
resamples and make a hierarchical clustering single linkage from this
distance matrix.



Figure: Hierarchical clustering of 250 trees resulting from a nonparametric
bootstrap of the data generated by the double data set X5



Data Distrib. Dist Max (sd) Mean (sd) )

500 Unif Manhat 13.8 (0.33) 8.33 (0.04) 7.
500 Unif Euclid 3.04 (0.06) 2.03 (0.009) 1.
512  MVN Manhat 49.14 (1.59) 28.22 (0.20) 21
512  MVN Euclid 11.66 (0.41) 7.00 (0.05) 4.
512 Bethe Jc69 0.223 (0.008) 0.16 (0.003) O.
512  Bethe Raw 0.19 (0.006) 0.14 (0.002) O.

Table: Different values of
for points generated both in bounded Euclidean
space and for points generated from trees. Each
value was estimated from 100 simulations, in the
Euclidean case the distances were computed from
points generated in 25 dimensions.

0 and the ratio d§/max(d)



In particular, we used the §/max statistic in the case of the
bootstrapped trees represented by the MDS plot in the resulting
ratio was (.47, thus indicating given the calibration experiments in
the above table that point configuration would be well approximated
by a Euclidean MDS. The §/max statistic is a rough approximation
for scaling each triangle considered by its diameter; two other
approximations, scaling by the perimeter and scaling by the max of
the sums A(;) are implemented in the R package.



Statistical Uses for Distances

Center of Cloud of Trees (equal weights): Find Tj that
minimizes either Z{f:l d*(Ty, Ty) this is the (L?) definition
of the mean tree, or 215:1 d(To, Ty,) (LY).

Extend the above to cater for a measure on treespace.

P(T) = Kexp(—\d(T,Tp))

Variability of the tree-points:
Pseudovariance= A Zle AT, T =
Studentizing :

d(T™, Tops)

5

Leverage of a position, as in leverage of an observation in
regression.
PCA with regards to Instrumental Variables- DPCOA. Explain a
set of distances between trees by other distances between the
same data.



Path between different tree topologies
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Thinking like a Statistician....



Thinking like a Statistician....

and a geometer..

- How treelike are the data ? Model Selection.
- Do we always need the tree, Distances between Data.
- Are all the characters supporting the tree? Leverage.
- Finding hidden gradients Ordination of trees.
- Stability under perturbation Evaluating the estimates.

How variable are the trees? Variance and Moments.



Averaging works better than it should, (an argument against
total evidence computation without decomposing??).

We can build Bayesian priors based on distances.
We can make a useful bootstrap statement.

We can make convex hulls. — Confidence regions.
We know how many neighbors any tree has.

We can make a useful bootstrap statement.



How many neighbors for a given
tree?(W.H.Li,1993)

We know the number of neighbors of each tree.

'E




For a tree with only two inner edges, there is the only one way of
having two edges small: to be close to the origin-star tree:

I5 neighbors. This same notion of neighborhood containing 15
different branching orders applies to all trees on as many leaves as
necessary but who have two contiguous “small edges” and all the
other inner edges significantly bigger than 0.



This picture of treespace frees us from having to use simulations to
find out how many different trees are in a neighborhood of a given
radius r around a given tree. All we have to do is check the sets of
contiguous edges in the tree smaller than r, say there is only one set
of size k, then the neighborhood will contain

(2k — 3)!! = (2k — 3) x (2k — 5) x - - - 3'different’ trees.



1 2 3 4 5 6 /7 89 1011










105

15




In this case the number of trees within r will be 15 x 105 x 3 = 4725,
in general:

(2n1 — 3! x (2ng — 3)!! x (2ng — 3)!--- x (2n,, — 3)!!

A tree near the star tree at the origin will have an exponential
number of neighbors.

This explosion of the volume of a neighborhood at the origin
provides for interesting math problems.



These differing number of neighbors for different trees show that the
bootstrap values cannot be compared from one tree to another.

This was implicitly understood by Hendy and Penny in their NN
Bootstrap procedure.

Are there other ways of using the bootstrap than just counting clade
appearances?



Beware the different number of neighbors matters if you think you
are using a Monte Carlo method to estimate the distance to the
boundary using the bootstrap.



X original data — 7T estimate.

| o

How?
Call X'* bootstrap samples consistent with the model used for
estimating the tree:
- Non parametric multinomial resampling for a parsimony tree.
- Seqgen parametric type resampling with the same parameters
for a ML.
- Bayesian GAMMA prior on rates and generation (Yang 2000) for
random sequences according to 7



Sampling Distribution for Trees













New resample D* drawn by resampling rows (genes) from the

original DnspecieSchhar matrix.

- Are the characters (columns) independent?
We actually have less information than we think?
What is the unit of information?

- Block Bootstrap to generate dependent data.

Summarizing the bootstrap sampling distribution:
Why isn’t enought to just count the branches in common?
Loss of all the multivariate information.



Resample genes and compare the bootstrap tree to the original tree
using a distance between trees (Billera, Holmes, Vogtman, 2001 for
the distances and Holmes, Vogtmann, Staple, 2004 for the algorithm).
Implemented in ape.



The bootstrap works (2)

Conjecture:

The bootstrap estimate of the sampling distribution of the distances
d(T*,T) is a good approximation to the true sampling distribution
of d(T,T).



Hypothesis Testing

As an additional element we have projected the star tree “S” (chosen
with the lengths of the pendant edges closest to the original tree) to
see whether it is in a small neighborhood, or credibility region of the
bootstrapped trees.

This is analogous to seeing if 0 is in a confidence interval of
differences between two random variables. If the star tree seems to
be in central to a confidence region with a high probability coverage
then we conclude that the data are not really treelike. In the figure ,
S appears to be on the outer convex hull of the projected points; we
can conclude that the probability that the star tree belongs to the
confidence region is low. To our knowledge, this is the first concrete
implementation of the idea of using convex hulls to make confidence
statements of this type [14] .



As an aside, note that the numbers in the Figure label the different
types of branching patterns. We see that trees of the same topology
are not necessarily closer to the original tree if we use the BHV
with no modifications. In some cases we may want to give an extra
weight to crossing orthants (ie changing branching pattern). We give
examples of such modifications of the distance in the [? ] vignette.
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Who Cares?

Bacterial Species in the Gut: Example of a Metagenome.
Samples from IBS and healthy rats give abundance of about 1,000
species of bacteria.



Who Cares?

Bacterial Species in the Gut: Example of a Metagenome.
Samples from IBS and healthy rats give abundance of about 1,000
species of bacteria. To be continued...
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Part |

Heterogeneity

“Homogeneous data are all alike;
all heterogeneous data are heterogeneous

in thetr own way.'
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Heterogeneity of Data

Status : response/ explanatory.

Hidden (latent)/measured.
Types :

>

vV vy vy VvVYyy

Continuous

Binary, categorical
Graphs/ Trees

Images

Maps/ Spatial Information
Rankings

Amounts of dependency: independent/time series/spatial.

Different technologies used (454, lllumina, PacBio,
MassSpec, RNA-seq, Cytof).



Goals in Modern Biology: Systems Approach
Look at the data/ all the data: data integration



Goals in Modern Biology: Systems Approach
Look at the data/ all the data: data integration
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What do statisticians do?

» Design new experiments to test scientific hypotheses.

» Visualize and summarize data in ways that account for
uncertainties.

» Look for meaningful differences or structure in high
dimensional noisy data.

» Predict the class of new observations given previously
observed ones.

» Predict the value of a response variable given a whole set of
other explanatory variables.

» Combine different sources of data to understand complex
interactions.



Today’s challenge

» Data are not uniformly
distributed from some
manifold.

» Data are not an identically
distributed random sample.

» Data are not independent.

» Data may be combined
from different source types
(multiway).



Data can often be seen as points in a state space




Distances in Statistics

» Euclidean Distances, spatial distances.

» Weighted Euclidean distances: Mahalanobis distance for
discriminant analysis.

» Chisquare distances for contingency tables and discrete
data.

» Jaccard distances for presence absence is one of 50
distances used in Ecology.

» Earth Mover’s distance on trees or graphs.
» Distances between aligned graphs or trees.

» Biologically meaningful distances (DNA, haplotype,
Proteins).



What do statisticians use distances for?

» Summaries through Fréchet Means and Medians and
pseudo variances.

» Center of Cloud of Objects T}, (equal weights): Find T, that
minimizes either S | d2(Tp, Ty)  this is the (L?)
definition of the Fréchet mean object,

> or Zszl d(Ty, Ty,) (L' or Geometric Median).

: —_1 K 52 — 22
» Pseudovariance=—= >, _, d*(Ty, Tx) = §°.



What do statisticians use distances for?

» Summaries through Fréchet Means and Medians and
pseudo variances.

» Dimension reduction and visualization.

» Nearest Neighbor Methods.

» Clustering.

» Make network edges from close points.

» Prediction by minimizing weighted residual distances.
» Cross-products: correlations, autocorrelations.

» Generalizations of analysis of variance.

Finding the right distance usually solves the statistical problem.



Part Il

The Geometries of Data



First example: cell segmentation
Joint work with Adam Kapelner and PP Lee.
Stained biopsy slides. Multispectral imaging (8
levels/wavelengths).
Stained Lymph Node Aim to identify cell.



Problem : Staining is heterogeneous

Both images are from the same image set. The stained cells are
cancer cells stained with Fast Red red.

Some regions of the tissue stain like the image on the left and
other regions stain as the left.

This shows the level of heterogeneity These are two
“subclasses” of the same phenotype (the left is named subclass
“A” the right, subclass “B”).



Problem : Staining is heterogeneous

Extreme variability in the image colors/intensity/contrast.
Pixels from a same cell not independent and identically
distributed across the different slides or across different cell
types.

‘:’3f' .‘ ... :*o.o:

Simple nearest neighbor approach:
- Take 8 dimensional pixels points.
- Assigning the point to the closest neighbor



Problem : Staining is heterogeneous

Extreme variability in the image colors/intensity/contrast.
Pixels from a same cell not independent and identically
distributed across the different slides or across different cell

types.
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Simple nearest neighbor approach:
- Take 8 dimensional pixels points.
- Assigning the point to the closest neighbor
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Multivariate Normal Data

Mahalanobis Transformation.
Several different clusters with different variance-covariance
matrices and different means.

(:Uflv 21) (/1’27 22)



Corresponding Data Transformation

H=1-1D,17, S=XHD,HX
2 = S_%(.%'Z — .T)

This is sometimes called ‘data sphering’.
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Output Data

Tumor

Number of Tumor cells: 27,822
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We can add information through choice of distances

Sample data can often be seen Variables are ‘vectors’
as points in a state space. in data point space
RP R"™

T'Qy =< z,y >q 2Dy =<z,y >p
Dualitv * Tran<sno<able data



Data Analysis: Geometrical Approach

i. The data are p variables measured on n observations.
ii. X with n rows (the observations) and p columns (the
variables).
iii. Disann x n matrix of weights on the “observations”, which
is most often diagonal but not always.
iv. Symmetric definite positive matrix @), weights on
Ui% 0 0 0
0 %g 0 0
variables, often ) = .
0O 0 .0
0

q
STl




Euclidean Space and dimension reduction

These three matrices form the essential “triplet” (X, Q, D)
defining a multivariate data analysis.

@ and D define geometries or inner products in R? and R,
respectively, through

$'Qy =< z,y >¢ z,y € RP
2'Dy =<,y >p z,y € R™

This can be extended to more inner products giving what is
known as Kernel methods.



Principal Component Analysis: Dimension Reduction

PCA seeks to replace the original (centered) matrix X by a
matrix of lower rank, this can be solved using the singular value
decomposition of X:

X =USV', withU'DU = I,, and V'QV = I,, and S diagonal

XX'=US*U’, withU'DU =1I,,and S? = A

PCA is a linear nonparametric multivariate method for
dimension reduction. D and () are the relevant metrics on the
dual row and column spaces of n samples and p variables.



A Commutative Diagram Approach

Caillez and Pages, 1976. Escoufier, 1977.

Statisticians search for approximations with certain properties,
for the case of PCA for instance, we rephrase the problem as
follows:

» () can be seen as a linear function from R? to RP* = L(RRP),
the space of scalar linear functions on R?.

» D can be seen as a linear function from R” to R™* = L(R").

| 2
Rp* R
X
V=X'DX QT lv Dl TW W =XQXx!

RP +—— R™
Xt

This duality gives ‘transposable’ data.



Properties of the Diagram

Rank of the diagram:

X, Xt VQ and WD all have the same rank.

For @ and D symmetric matrices, VQ and WD are
diagonalisable and have the same eigenvalues.

M>ZA>N3>...2A>20>--2>0.

Eigendecomposition of the diagram: V@ is ) symmetric, thus
we can find Z such that

VQZ = Z\, Z'QZ = T, where A = diag(\1, Mg, ..., \p). (1)

Modern extensions to this approach include Kernel methods in
Machine Learning.



Comparing Two Diagrams: the RV coefficient

Many problems can be rephrased in terms of comparison of two
“duality diagrams” or put more simply, two characterizing
operators, built from two “triplets”, usually with one of the
triplets being a response or having constraints imposed on it.
Most often what is done is to compare two such diagrams, and
try to get one to match the other in some optimal

way.(O = WD)

To compare two symmetric operators, there is either a vector
covariance as inner product

covV (01,02) = Tr(0Y04) =< Oy, 0 > or a vector correlation
(Escoufier, 1977)

Tr(0}09)
\/T’l“ OtOl)tr(Ot 02)

RV (01,0,) =

If we were to compare the two triplets (an1, 1, %In) and
(Ynx1,1, 11,) we would have RV = p2.



PCA: Approximating one diagram by another

PC A can be seen as finding the matrix Y which maximizes the
RV coefficient between characterizing operators, that is,
between (X,,xp, Q, D) and (Y, x4, I, D), under the constraint
that Y be of rank g < p.

RV (XQX'D,YY'D) = Tr (XQX'DYY'D)
’ - \/Tr (XQXtD)*Tr (YYtD)Q'




This maximum is attained where Y is chosen as the first ¢
eigenvectors of XQX'D normed so that Y!DY = A,. The
maximum RV is

q )2

RVmax = ;:71)\;.

=17V
Of course, classical PCA has D = %I, (Q = 7, but the extra
flexibility is often useful. We define the distance between
triplets (X, @, D) and (Z,Q, M) where Z is also n x p, as the
distance deduced from the RV inner product between operators
XQX'Dand ZMZ!D.



Discriminant Analysis as a duality diagram

Case of a categorical response variable (group labels).
Let A be the g x p matrix of group means in each of the p
variables. This satisfies

YIDX = Ay A where Ay = Y'DY = diag(wy, w2, . .., wy),

and wy, = Ziz%k:l d;, the wy's are the group weights, as they are
the sums of the weights as defined by D for all the elements in
that group.

Call T the matrix T = XtDX, in the standard case with all
diagonal elements of D equal to % this is just the standard
variance-covariance, otherwise it is a generalization thereof.
The generalized between group variance-covariance is

B = A'Ay A and call the between group variance covariance
the matrix W = (X —YA)!D(X — Y A).



A generalized Huyghens’ formula:
T=B+W
Proof: Expanding W gives

X'DX — X'DYA— AV!'DX + A'Y'DY A
= T—AAyA—-AAVvA+AANVyA=T - B

w



Duality Diagram for LDA

The duality diagram for linear discriminant analysis is

R — RS9
A

This corresponds to the triple (A, 7!, Ay ), because
(X'DY)AV(Y'DX) = A'Ay A

and gives equivalent results to the triple (Y!DX,T!, A;l).
The discriminating variables are the eigenvectors of the operator

A'Ay AT
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combine and Compare Trees,
qraphs ano Contingent Count data
for the Human Microbiome



Layers of Data in the Microbiome
Joshua Lederberg:‘the ecological community of commensal,
symbiotic, and pathogenic microorganisms that literally share
our body space and have been all but ignored as determinants
of health and disease’

Microbiome Complete collection of genes contained in the
genomes of microbes living in a given environment.

Numbers Humans shelter 100 trillion microbes (10'4), (we are
made of 10 x10'2 cells).

Metagenome Composition of all genes present in an
environment (soil, gut, seawater), regardless of
species.

Transciptome These are the mRNA transcripts in the cell, it
reflects the genes that are being actively expressed
at any given time.

Metabolome The metabolites (small molecules) nucleic or fatty
acids, sugars,... present in the sample either
endogenous or exogenous (medication, pollution).



Source: YK Lee and SK Mazmanian Science, 2010.



Bacteria etc... and Us

The human microbiome or human microbiota is the assemblage
of microorganisms that reside on the surface and in deep layers
of skin, in the saliva and oral mucosa, in the conjunctiva, and in
the gastrointestinal tracts.

» They include bacteria, fungi, and archaea.

» Some of these organisms perform tasks that are useful for
the human host. (live in symbiosis)

» Majority have no known beneficial or harmful effect.



Human Microbiome: What are the data?

DNA The Genomic material present (16sRNA-gene
especially, but also shotgun).

RNA What genes are being turned on (gene expression),

transcriptomics.

Mass Spec Specific signatures of chemical compounds present
(LC/MS, GC/MS).

Clinical Multivariate information about patients’ clinical
status, medication, weight.
Environmental Location, nutrition, drugs, chemicals,

temperature, time.

Domain Knowledge Metabolic networks, phylogenetic trees,
gene ontologies.



An example of taxa/specimen table.

ASV/0OTU Ctrl1

Ctrl2 Ctrl3 Ctrl4 Ctrl5 I1BD1 [IBD2 |IB

Bacteroides 1822 913 147 2988 4616 172 3516 6
Bifidobacterium 0 162 0 0 84 0 85 1¢
Collinsella 1359 0 0 206 0 327 0
Enterococcus 621 0 0 3 40 0 0
Streptococcus 75 139 2161 110

97 1820 85 :




Heterogeneous Data Objects

Object oriented input and data manipulation with phyloseq
(McMurdie and Holmes, 2013, Plos ONE)
Object oriented data in R:

Sample Variables
sanpl eDat a

(=) ) (50
==

Phylogenetic Tree
Taxonomy Table class: phyl o
taxononyTabl e slots: see ape

OTU Abundance slots: . Dat a,
class: ot uTabl e nanes,

slots: . Dat a, ;
0 Da

Component data objects:

phyl oseq
slots:
otuTabl e
sanpl eDat a
taxTab

tre

Experiment-level data object:




Points are measured with unequal variance




Part IV

Combining a phylogenetic tree with
the count data



A distance on the known tree

Monge-Kantorovich earth mover’s distance on the tree.
Used to compare two samples or body sites for instance.
Incorporate taxa abundances and phylogenetic tree

* Actinobacteria (class)
 Bacili

« Bacteroidia

Duality diagram methods that can use any dependency
structure.



Unifrac Distance (Lozupone and Knight, 2005)

is a distance between groups of organisms that are related to
each other by a tree.

Suppose we have the OTUs present in sample 1 (blue) and in
sample 2(red).

Question: Do the two samples differ phylogenetically?

It is defined as the ratio of the sum of the lengths of the
branches leading to members of group A or members of group B
but not both to the total branch length of the tree.



Weighted Unifrac distance A modification of UniFrac,
weighted UniFrac is defined in (Lozupone et al., 2007) as

=1

» 1 = humber of branches in the tree

v

b; = length of the ith branch

v

A; = number of descendants of
ith branch in group A

v

A7 = total number of sequences
in group A

[7].
[6].
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Rao’s Distance

We start with a distance between individuals.

The heterogeneity of a population (H; ) is the average distance
between members of that population.

The heterogeneity between two populations (H;;) is the average
distance between a member of population 7 and a member of
population ;.

The distance between two populations is

1
Dij = Hij — 5(Hi + Hj)



Decomposition of Diversity

If we have populations 1, ..., k with frequencies 71, ..., 7, then
the diversity of all the populations together is

k
Hy = ZWiHi + ZZW“T]‘DZ‘]' = H(w) + D(b)
i=1 i g



Double Principal Coordinate Analysis

Pavoine, Dufour and Chessel (2004), Purdom (2010) and
Fukuyama et al. (2011). .

Suppose we have n species in p locations and a (euclidean)
matrix A giving the squares of the pairwise distances between
the species. Then we can

» Use the distances between species to find an embedding in
n — 1 -dimensional space such that the euclidean distances
between the species is the same as the distances between
the species defined in A.

» Place each of the p locations at the barycenter of its species
profile. The euclidean distances between the locations will
be the same as the square root of the Rao dissimilarity
between them.

» Use PCA to find a lower-dimensional representation of the
locations.

Give the species and communities coordinates such that the
inertia decomposes the same way the diversity does.



Fukuyama and Holmes, PSB, 2012.

Method Original description New formula Properties

DPCoA square root of Rao’s distance based [>;bi(A;/Ar — By /Br1)?] 1/2 Most sensitive to outliers,
on the square root of the patristic least sensitive to noise,
distances upweights deep differences,

gives OTU locations

wUniFrac > bilAy/Ar — By/Br]| > ibi|Ai/Ar — B;/Br]| Less sensitive to out-
liers/more sensitive to noise

than DPCoA
UniFrac fraction of branches leading to ex- 3=, b;1{ % > 1} Sensitive to noise, up-
actly one group AT TEET weights shallow differences

on the tree

Summary of the methods under consideration. “Outliers” refers to highly abundant taxa, and noise refers to noise in

detecting low-abundance taxa.



Antibiotic Time Course Data

Measurements of about 2500 different bacterial OTUs from
stool samples of three patients (D, E, F)

Each patient sampled ~ 50 times during the course of treatment
with ciprofloxacin (an antibiotic).

Times categorized as Pre Cp, 1st Cp, 1st WPC (week post cipro),
Interim, 2nd Cp, 2nd WPC, and Post Cp.



UniFrac weighted UniFrac weighted UF on presence/absence

0.2-
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-0.2- =0.24
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0.2-0.1 0.0 0.1 0.2 0.3 0.4 0.4-0.3-0.2-0.10.0 0.1 0.2 0.3 0.160.08.000.050.100.150.20
Axis 1: 14.7% Axis 1: 47.6% Axis 1: 32.7%

Comparing the UniFrac variants. From left to right: PCoA/MDS
with unweighted UniFrac, with weighted UniFrac, and with
weighted UniFrac performed on presence/absence data
extracted from the abundance data used in the other two plots



Axis 2: 3.7%

(a) MDS of OTUs

i3
AN
S subject
D
4 E
I3
10 -05 00 o
Axis 1: 6.2%

Axis 2: 13.3%

(b) DPCoA community plot

-10 -05 00 O
Axis 1: 40.9%

(c) DPCoA OTU plot

Ccs2
>

phylum
4cod-2
Actinobacteria
Bacteroidetes

+ Candidate division TM7

- Cyanobacteria

+  Firmicutes

+ Fusobacteria

- Lentisphaerae
Proteobacteria
Synergistetes
Verrucomicrobia

(a)

PCoA/MDS of the OTUs based on the patristic distance, (b)

community and (c) species points for DPCoA after removing two
outlying species.



Antibiotic Stress

We next want to visualize the effect of the antibiotic.
Ordinations of the communities due to DPCoA and UniFrac with
information about the whether the community was stressed or
not stressed (pre cipro, interim, and post cipro were considered
“not stressed”, while first cipro, first week post cipro, second
cipro, and second week post cipro were considered “stressed”).
We see that for UniFrac, the first axis seems to separate the
stressed communities from the not stressed communities.
DPCoA also seems to separate the out the stressed
communities along the first axis (in the direction associated with
Bacteroidetes), although only for subjects D and E.



Antibiotic stress
« 1:not stressed
A 2:stressed

AXis2

Subject

- D
—— E

-0.1- — F

_0.2_

] ] 1 1 1 1 1
-0.2 -01 0.0 01 02 03 04

Axisl

PCoA/MDS with unweighted UniFrac. The labels represent
subject plus antibiotic condition.



] 1 1 1
-1.0 -0.5 0.0 0.5

Axisl

Community points as represented by DPCoA. The labels
represent subject plus antibiotic condition.



Conclusions for Antibiotic Stress

Since UniFrac emphasizes shallow differences on the tree and
since PCoA/MDS with UniFrac seems to separate the subjects
from each other better than the other two methods, we can
conclude that the differences between subjects are mainly
shallow ones.

However, DPCoA also separates the subjects and the stressed
versus non-stressed communities, and examining the
community and OTU ordinations can tell us about the
differences in the compositions of these communities.



Modulating the tree-based distances

We would like the axes to be both smooth on the tree and for
which the projections of the samples have a large variance.

We can design an inner product on the rows which will pull out
axes with these properties.

One extreme will be PCA without a tree, the other is DPCoA.
We create a family of gPCAs interpolating between DPCoA and
standard PCA or as giving us a tunable parameter controlling
how smooth we want the principal axes to be.



Adaptive gPCA

Fukuyama, Julia (2019), Ann. of Appl. Statistics.

We want to incorporate the prior (tree-like) information about
the structure of the variables.

The intuition is that the variables which are similar to each other
should behave in similar ways (in the case of microbiome data
the idea is that species close together on the tree will behave
similarly).

Perform generalized PCA on the posterior estimate of each
sample given the data, taking into account the variance
structure of the posterior.

Varying the scalings of the prior and noise variances gives a
one-dimensional family of generalized PCAs which favor
progressively smoother solutions according to the structure of
the variables.



Data

Suppose we have a positive definite similarity matrix Q € RP*?P
(a kernel matrix) between the variables.

To prevent scaling issues, assume that tr(Q) = p.

Note that since @ is positive definite, it is also a covariance
matrix, and a random vector with covariance @ will have
stronger positive correlations between variables which are more
similar to each other.



Special case of the phylogenetic tree

@ is the matrix where @Q);; represents the amount of shared
ancestral branch length between species i and ;.

This is the kernel implicit in DPCoA, it is also related to the
covariance of a Brownian motion run along the branches of the

tree.
With this in mind, consider the following model for our data
matrix X:

Xlu\qN(MHO—%I)? 'l:].,,TL (2)

1 S N,0%2Q), i=1,....n (3)



We are simply including prior knowledge into our model. The
prior incorporates information about the structure in our
variables: since the p;’s have covariance equal to a scalar
multiple of (), inference using this prior will allow us to
regularize towards this structure, or to smooth the data towards
our expectation that similar variables will behave in similar ways.



PCA on Bayes estimates

We are interested in the “true” values given in u; and not the
observed data x;, and so the appropriate next step is to compute
the posterior distribution of the the y;’s and then perform PCA
on these posteriors. We can compute the posterior distribution
i | X; using Bayes’ rule, which is

i | X = x ~ N(05%5z, S) (4)
with
S=(o72Q 7 +0,2)! (5)

Now we want to perform PCA on the posterior estimates of the
1;'s. We need to take into account the fact that the posterior
distributions for each u; have non-spherical variance, and so we
need to use gPCA instead of standard PCA.



Theorem

The row scores from gPCA on the posterior estimates y; | x; from
the model are the same, up to a scaling factor, to the row scores
from gPCA on (X, S, I,,). The principal axes from gPCA on the
posterior estimates are the same, up to a scaling factor, as the
principal axes from gPCA on (X, S, I,,) pre-multiplied by S.

From this theorem, we see that when we perform gPCA on the
posterior estimates obtained from the model, different scalings
of the prior and the noise variances simply lead to gPCAs with
different row inner product matrices.



A family of gPCAs

Now we can explore the family of inner product matrices which
our model gives rise to. Up to a scaling factor, the matrix

S = (072Q " + 0, 2I)~! depends only on the relative sizes of oy
and o, the scalings for the prior and the noise. We therefore
have a one-dimensional family of gPCAs determined by the
relative sizes of o1 and o3. To get some insight into this family,
we can first consider the endpoints.

As 01 /09 — 0, that is, as the noise becomes very small
compared to the prior structure, S becomes more and more like
a scalar multiple of the identity, and so we approach a scalar
multiple of gPCA on the triple (X, I, I), or standard PCA. At the
other end, as 032/01 — 0, we approach a scalar multiple of gPCA
on the triple (X, @, I). The gPCA on (X, @, I) turns out to be
very closely related to double principal coordinates analysis
(DPCoA), which is another method for incorporating information
about the variables into the analysis.



Automatic selection of family member

If we do not want to assume o7 and o5 are known, we can
estimate the values o1 and o5 from the data itself by maximum
marginal likelihood. To be more concrete, according to our data
model we have

X; iid N(0, O'%Q + 0%[) (6)
The overall log likelihood of the data is therefore (up to a
constant factor)
n

n 1 _
UX;01,02) = =5 log |07Q + 31| = §XiT(U%Q +050) 7

i—1
(7)



Maximizing this likelihood is not a convex problem: we
transform it into a one parameter problem over the unit interval.
Letr = 07 /(0% + 03),and let 02 = 02 + 03. Let Q = VAV be
the eigendecomposition of () where V' is an orthogonal matrix
and A is diagonal containing the eigenvalues Ay, ..., A,. Finally,
let %, = VT 'x; and Z;; be the jth element of x;. The log likelihood
in the new parameterization is

UX;r0)= —70 Ylog|rQ+ (1 —r)I| —o~ 22 TrQ+ @1 -r)x
i=1
(8)
- p2ZIogr)\ +1—7) _0222279\4-1—1"
(9)

Based on the expression above, we can find a closed-form
solution for the maximizing value of o2 for any fixed r.



This gives us

n p
2" (1) = nlp SN+ 1-7) (10)

i=1 j=1

We re-write the likelihood as a function of r only. This is still not
convex but only has one parameter which lies on the unit
interval, the optimization can be performed numerically.



DPCoA
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A plot of the scores along the second axis from adaptive gPCA
by time, plotted for each of the three individuals. We see very
clearly that this axis is capturing species that change during the
administration of the antibiotic but which are stable otherwise.
The corresponding plots for PCA and DPCoA are much less
compelling.



Alternatives

We could add a ridge penalty to @, resulting in gPCA on

(X,Q + M, I). This family has the same endpoints as the family
we have described: when A = 0 we have gPCA on (X, @, ), and
as A — oo we get standard PCA.

Very roughly, when we add a ridge penalty to (), the main effect
is to increase the small eigenvalues, but when we add a ridge
penalty to Q! we make the large eigenvalues more similar to
each other.

Small eigenvalues of () correspond to eigenvectors that are very
rough, while the large eigenvalues correspond to eigenvectors
that are smooth.



When we do structured dimensionality reduction, we want to
dampen any variance along rough eigenvectors, but we don'’t
necessarily prefer variance in the direction of an extremely
smooth eigenvector over variance in the direction of a
mostly-smooth eigenvector. When we use Q + I, we remove
the dampening on the rough directions, but when we use
S=(ciQ 1+ 02_21)‘1 we keep the eigenvalues of the rough
directions small and decrease the difference between
eigenvalues of smooth eigenvectors.



Part V

Multitable methods for
heterogeneous data
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Multi-table methods: use Inertia/Co-Inertia

Generalize variance and covariance — moments of inertia.
weighted (p;) sum of distances.

Abundance data in a contingency table — weighted sum of the
squares
weighted frequencies (chisquare).



Co-lnertia

When studying two variables measured at the same locations,
for instance PH and humidity the standard quantification of
covariation is the covariance.

sum(xl *yl + 22 x y2 + 23 x y3)

if x and y co-vary -in the same direction this will be big.

A simple generalization to this when the variability is more
complicated to measure as above is done through Co-Inertia
analysis (CIA).

Co-inertia analysis (CIA) is a multivariate method that identifies
trends or co-relationships in multiple datasets which contain the
same samples or the same time points.

That is the rows or columns of the matrix have to be weighted
similarly and thus must be matchable.



RV coefficient

The global measure of similarity of two data tables as opposed
to two vectors can be done by a generalization of covariance
provided by an inner product between tables that gives the RV
coefficient, a number between 0 and 1, like a correlation
coefficient, but for tables.

Tr(A'B)

RV (A,B) = \/Tr(A’A)\/Tr(B'B)

Survey on RV: Josse, Holmes (2015) Statistics Surveys, arXiv link.


https://arxiv.org/pdf/1307.7383v3.pdf

Example

Combining different types of data (antibiotic study).

Taxa Read counts (3 patients taking cipro: two time
courses) : .

Mass-Spec Positive and Negative ion Mass Spec features and
their intensities: .

RNA-seq Metagenomic data on genes :.
Here is the RV table of the three array types:

> fourtableS$RV

Taxa Kegg MassSpec+ MassSpec-
Taxa 1 0.565 0.561 0.670
Kegg 0.565 1 0.686 0.644
MassSpec+ 0.561 0.686 1 0.568
MassSpec- 0.670 0.644 0.568 1



Part VI

Distances between "aligned" graphs



Bacteria ‘sharing’ between mice

Using the Jaccard index that measures the co-incidence or
co-occurrence of species between mice.

fu
for + fio + fun

Jo1 + fio
for + fio + fuu

Jaccard Similarity =

Jaccard Disimilarity =

mousel

000101010000001

moused

1000000O0O0O0OO0OO0OO0OO0T1

vegdist (rbind(mousel,moused) ,method="jaccard")
0.8



Bacteria ‘sharing’ between mice as a network

netbaseline=make network(phy pifn glom)

p=plot network(netbaseline,phy pifn glom,
color="mousenames",label="mousenames",point size=7)
+geom_text (aes(label=mousenames),size=7)
ptscale_colour hue(guide="none")
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Does the network relate to ‘communities’?

Friedman and Rafsky (1979) devised a nonparametric test for
multivariate data using the minimum spanning tree with any
metric.

Then compute the number of ‘pure’ edging connecting labels
from the same groups compared to the mixed edges connecting
labels from different groups, call F, the observed statistic.

In our example: F, = 82

Keeping the graph fixed, permute the labels and recompute the
number of pure edges.

All 1000 simulated values had F; < 82 so p < 0.001.



Co-occurrence networks for taxa of the baseline mice

p=plot network(netbasetaxa,phy pifn glom,color="Family",
type="taxa",label=NULL)
ptgeom text(aes(label=Class),size=3)
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Changes of the network over time?



Differences between two graphs?



Distances between (node-identified graphs)

Claire Donnat, SH, Ann. of Applied Stat., 2018.

Example:

Each graph corresponds to a cuisine (French, American, Greek,
etc...).

Each of 1,530 ingredients constitutes a node in the graph and
each of the 49 cuisines is assigned to a weighted graph.

The weight on the edge is the frequency of co-occurrence of the
two ingredients for that particular cuisine. Some graphs includes
a collection of disconnected nodes (ingredients that never
co-occur in a single recipe) and a weighted connected
component.



Graphs with identified vertices

G = (V, €) the graph with vertices V and edges £. N = |V|,
i ~ j if nodes i and j are neighbors. A refers to the adjacency
matrix of the graph, and D to its degree matrix:

Lifi~ j Al
A = and D = Diag(d;);=1..n S.t. d; = E Ajj
! {0 otherwise B(di)imr--n ’

Jj=1

Restricting ourselves to undirected graphs, the matrix A is
symmetric: AT = A.



Hamming distance

It measures the number of edge deletions and insertions
necessary to transform one graph into another.

A Ay -
dH(G,G); N(JN—lj) = N(N_l)HA—AHl (11)

This defines a metric between graphs, since it is a scaled version
of the L, norm between the adjacency matrices 4 and A.

It defines a distance bounded between 0 and 1 over all graphs
of size N.



The Jaccard distance

GUEI—IGNE Sy — Al A A
dJaccard(G, G) = ’ ‘ ‘~ | = J T zz ‘ _ H ~Hl
GUG] >y max(Aqj, Aij) |[A+ Alls

(12)

where || - || denotes the nuclear norm of a matrix.



Eg. 12 is known to define a proper distance between the
graphs. A straightforward way to see this is to use the Steinhaus
Transform: for (X, d) a metric and ¢ a fixed point, the
transformation §(z,y) = d(mﬁc)fj((;’:fﬁd(x’y) produces a metric.
Apply this transformation, with d the Hamming distance and ¢
the empty graph, to see:

5G.G— A=Al 2(¢udl-|Gnd)
[[Allx + [|All + (|4 — Al|lx 2|GUG]|
= dJaccard(Gv G)-

(*)




The recipes graphs

Each cuisine-graph has nodes that represent ingredients; edges
are co-occurrence frequencies.

Cuisines can be better characterized by typical associations of
ingredients.

For instance, the Japanese cuisine might be characterized by a
higher associativity of ingredients such as “rice” and “nori” than
Greek cuisine.

We use the co-occurrence counts of 1,530 different ingredients
for 49 different cuisines (Chinese, American, French, etc.) Each
cuisine is then characterized by its own co-occurrence graph.
The weight on the edge is the frequency of co-occurrence of the
two ingredients in a given cuisine. The final graph for a given
cuisine thus consists in a collection of disconnected nodes
(ingredients that never appear in a single recipe for that cuisine)
and a weighted connected component.



Hamming: metagraph
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Distances between networks (node-identified graphs)

Claire Donnat, Susan Holmes, Annals of Applied Statistics, 2018.
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3 nearest neighbors Polynomial kernel distance between graphs.



Identification of the ingredients that change the most from one
graph to another



Distances enable statisticians to....

» Summarize data with medians, means and principal
directions.

» Encode some variations in uncertainty.

» Make comparisons of heterogeneous sources of
information.

» Integrate network and tree information.

» Measure diversity, inertia and generalize the notion of
variance.



Questions for mathematicians

» How to build distances between images that account for
unequal measurement errors, even locally?

X

n.
-,
I.

Xp

Work by Adler, Taylor and Worsley (2003,2005,2007) using
Random Fields.



Questions for mathematicians

» How well can the Euclidean embedding approximations do
compared to the inherent noise?

» Are there better ways of approximating the commutative
diagrams?
This is also an important point of contact with the use of
Stein’s method in probability theory.



Questions for mathematicians

» How to distinguish between the effect of the curvature of a
state space and the effect of the unequal sampling?
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Part VIII

Dimension Reduction: the
Buclidean embedding workhorse:
MDbS



Metric Multidimensional Scaling
Schoenberg (1935)

Anxars or MaTREMATICS
Vol.36, No. 3. July, 1935

REMARKS TO MAURICE FRECHET’S ARTICLE “SUR LA DEFINITION
AXIOMATIQUE D’UNE CLASSE D’ESPACE DISTANCIES VECTOR-

IELLEMENT APPLICABLE SUR L’ESPACE DE HILBERT!
By 1. J. ScHOENBERG

(Received April 16, 1935)

1. Fréchet’s developments in the last section of his article suggest an elegant.

solution of the following problem.
Let

A = Qxi (G #*k;i,k=0,1,---,n

be dn(n + 1) given positive quantities. What are the necessary and sufficient
conditions that they be the lengths of the edges of a n-simplez AoA, --- A.! More
general, what are the conditions that they be the lengths of the edges of a n-‘‘simplex’”

AoA, - - A, lying in a euclidean space R, (1 S r S n) but not ina R,_,?

This problem is fundamental in K. Menger’s metric investigation of euclidean
spaces ([6] and [7), particularly his third fundamental theorem in (7], pp. 737~
743). It was solved by Menger by means of equations and inequalities involv-
ing cerum determinants. Theorem 1 below furnishes a complete and inde-

lution of this problem. Theorem 2 solves the similar problem for

spherical spaces prevnoualy treated by Menger’s hods by L. M. Bl

and G. A. Garrett ([1]) and Laura Klanfer ([5]); it may be conveniently applied

(Theorems 3 and 3’) to prove and extend a theorem of K. Godel ((4]).

method of Theorem 1 is finally applied to solve the correspondmg problem for
spaces with indefinite line el recently idered by A. Wald ((8]) and

H. 8. M. Coxeter and J. A. Todd ([2]).



From Coordinates to Distances and Back

If we started with original data in RP that are not centered: Y,
apply the centering matrix

X = HY, withH=(I—211),and? = (1,1,1....1)
n

Call B = XX, if D@ is the matrix of squared distances between
rows of X in the euclidean coordinates, we can show that

—%HD(Q)H =B

Schoenberg’s result: exact Euclidean distance If B is positive
semi-definite then D can be seen as a distance between points
in a Euclidean space.



Reverse engineering an Euclidean embedding

We can go backwards from a matrix D to X by taking the
eigendecomposition of B = —2 HD® H in much the same way
that PCA provides the best rank r approximation for data by
taking the singular value decomposition of X, or the
eigendecomposition of X X”.

s 0 0 0
0 s 0 0
X0 =usMy withs™ =|[0 o
0 O Sy



Multidimensional Scaling (MDS)

Simple classical multidimensional scaling.
» Square D elementwise D) = D,
» Compute HD,H = B.
» Diagonalize B to find the principal coordinates SV".

» Choose a number of dimensions by inspecting the
eigenvalue’s screeplot.

The advantage is that the original distances don’t have to be
Euclidean.



Taking Categorical Data and Making it into a

Continuum
Horseshoe Example:Joint with Persi Diaconis and Sharad Goel
(Annals of Applied Stats, 2005). Data from 2005 U.S. House of
Representatives roll call votes. We further restricted our
analysis to the 401 Representatives that voted on at least 90%
of the roll calls (220 Republicans, 180 Democrats and 1
Independent) leading to a 401 x 669 matrix of voting data.

The Data

VlVv2 V3 V4 V5 V6 V7 V8 V9 V10
R1 -1 -1 1 -1 0 1 1 1 1 1 ...
R2 -1 -1 1 -1 0 1 1 1 1 1 ...
R3 1 1 -1 1 -1 1 1-1-1 -1...
R4 1 1 -1 1 -1 1 1-1-1 -1...
R5 1 1 -1 1 -1 1 1-1-1 -1...
R6 -1 -1 1 -1 0 11 1 1 1 ...
R7 -1 -1 1 -1 -1 1 1 1 1 1 ...
R -1 -1 1 -1 0 1 1 1 1 1 ...
R9 1 1 -1 1 -1 1 1-1-1 -1...
R10 -1 -1 1 -1 0 11 0 0 -0



L, distance

We define a distance between legislators as

) 1 669
d(ls, 1) = o5 > Jvik — vjnl-
k=1

Roughly, d(l;, ;) is the percentage of roll calls on which
legislators /; and [; disagreed.



DA



-0.1 02

3-Dimensional MDS mapping of legislators based on the 2005 U.S.
House of Representatives roll call votes. We used dissimilarity
indices 1-exp(—Ad(R1, R2))



-0.1 02

3-Dimensional MDS mapping of legislators based on the 2005 U.S.
House of Representatives roll call votes. Color has been added to
indicate the party affiliation of each representative.
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Comparison of the MDS derived rank for Representatives with the
National Journal’s liberal score
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Delivery Perturbation
Preterm Prediction

Stability


http://statweb.stanford.edu/~susan/papers/Pregnancy/PNAS_Delivery.html
http://statweb.stanford.edu/~susan/papers/Pregnancy/PNAS_Vaginal_Analysis.html
http://statweb.stanford.edu/~susan/papers/Pregnancy//PNAS_Stability.html

























Kris Sankaran’s Topic Page


https://github.com/krisrs1128/microbiome_plvm/































- %
g
= .1'

T HE

UNDOING
PROJECT

A Friendship rhar Changed Our Minds






























[| Accuracy: Simulated data I

Inferred abundance

200 300 400

100

mothur (an)

100 200 300
True abundance

TP: 978
FP: 272
FN: 77
cor: 0.935

400

Inferred abundance

DADA2
o
2 |
N
o
8 -
8 -
o
T T T T T T I
0 50 100 200 300

True abundance

TP: 1042
FP: 0
FN: 13
cor: 0.999

Data: Kopylova, et al. mSystems, 2016.
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http://bioconductor.org/packages/stats/bioc/phyloseq/
http://bioconductor.org/packages/stats/bioc/phyloseq/
http://bioconductor.org/packages/stats/bioc/dada2/
http://bioconductor.org/packages/stats/bioc/dada2/
https://krisrs1128.github.io/treelapse/
http://statweb.stanford.edu/~kriss1/antibiotic.html
http://statweb.stanford.edu/~kriss1/antibiotic.html
https://github.com/krisrs1128/microbiome_plvm
https://github.com/krisrs1128/microbiome_plvm
https://github.com/benjjneb/decontam/
https://cran.r-project.org/web/packages/adaptiveGPCA/index.html
https://cran.r-project.org/web/packages/adaptiveGPCA/index.html
https://github.com/PratheepaJ/bootLong/blob/master/vignettes/Workflow.Rmd
https://github.com/PratheepaJ/bootLong/blob/master/vignettes/Workflow.Rmd
http://bios221.stanford.edu/book/
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