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Anatomy

Gall (1758-1828) : Phrenology
Talairach (1911-2007) 

Vésale (1514-1564)
Paré (1509-1590)

2007

Science that studies the structure and the relationship in 
space of different organs and tissues in living systems 

[Hachette Dictionary]

Revolution of observation means (~1990):
 From dissection to in-vivo in-situ imaging
 From the description of one representative individual 

to generative statistical models of the population

Galien (131-201)

1er cerebral atlas, Vesale, 1543

Visible Human Project, NLM, 1996-2000
Voxel-Man, U. Hambourg, 2001

Talairach & Tournoux, 1988

Sylvius (1614-1672)
Willis (1621-1675)

Paré, 1585
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Statistics of organ shapes across subjects in species, 
populations, diseases… 
 Mean shape (atlas), subspace of normal vs pathologic shapes
 Shape variability (Covariance)
 Model development across time (growth, ageing, ages…)

Use for personalized medicine (diagnostic, follow-up, etc)

Computational Anatomy



Geometric features in Computational Anatomy

Noisy geometric features
 Curves, sets of curves (fiber tracts)
 Surfaces, SPD matrices
 Transformations

Statistical modeling at the population level
 Simple Statistics on non-linear manifolds?

 Mean, covariance of its estimation, PCA, PLS, ICA
 GS: Statistics on manifolds vs IG: manifolds of statistical models
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Shape of RV in 18 patients

Methods of computational anatomy
Remodeling of the right ventricle of the heart in tetralogy of Fallot

 Mean shape
 Shape variability
 Correlation with clinical variables
 Predicting remodeling effect






Morphometry through Deformations
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Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]
 Observation = “random” deformation of a reference template 
 Reference template = Mean (atlas)
 Shape variability encoded by the deformations

Statistics on groups of transformations (Lie groups, diffeomorphism)?
Consistency with group operations (non commutative)?

Patient 3

Atlas

Patient 1

Patient 2

Patient 4

Patient 5

φ1

φ2
φ3

φ4

φ5



Longitudinal deformation analysis

9

time

Dynamic obervations

How to transport longitudinal deformation across subjects?
What are the convenient mathematical settings?  
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Patient A

Patient B

? ?Template
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds

Metric and Affine Geometric Settings for Lie Groups 

Parallel Transport to Analyze Longitudinal Deformations

Advances Statistics: CLT & PCA



Part 1: Foundations
 1: Riemannian geometry [Sommer, Fetcher, Pennec]
 2: Statistics on manifolds [Fletcher]
 3: Manifold-valued image processing with SPD matrices [Pennec]
 4: Riemannian Geometry on Shapes and Diffeomorphisms 

[Marsland, Sommer]
 5: Beyond Riemannian: the affine connection setting for 

transformation groups [Pennec, Lorenzi]

Part 2: Statistics on Manifolds and Shape Spaces
 6: Object Shape Representation via Skeletal Models (s-reps) and 

Statistical Analysis [Pizer, Maron]
 7: Inductive Fréchet Mean Computation on S(n) and SO(n) with 

Applications [Chakraborty, Vemuri]
 8: Statistics in stratified spaces [Ferage, Nye]
 9: Bias in quotient space and its correction [Miolane, 

Devilier,Pennec]
 10: Probabilistic Approaches to Statistics on Manifolds: 

Stochastic Processes, Transition Distributions, and Fiber Bundle 
Geometry [Sommer]

 11: Elastic Shape Analysis, Square-Root Representations and 
Their Inverses [Zhang, Klassen, Srivastava]
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Part 3: Deformations, Diffeomorphisms and their Applications
 13: Geometric RKHS models for handling curves and surfaces in Computational Anatomy : currents, varifolds, f-

shapes, normal cycles [Charlie, Charon, Glaunes, Gori, Roussillon]
 14: A Discretize-Optimize Approach for LDDMM Registration [Polzin, Niethammer, Vialad, Modezitski]
 15: Spatially varying metrics in the LDDMM framework [Vialard, Risser]
 16: Low-dimensional Shape Analysis In the Space of Diffeomorphisms [Zhang, Fleche, Wells, Golland]
 17: Diffeomorphic density matching, Bauer, Modin, Joshi]

To appear 09-2019, Elsevier



Supports for the course

http://www-sop.inria.fr/asclepios/cours/Peyresq_2019/
 1/ Intrinsic Statistics on Riemannian Manifolds

 Introduction to differential and Riemannian geometry. Chapter 1, RGSMIA. Elsevier, 2019.
 Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements. JMIV 2006. 

 2/ SPD matrices and manifold-valued image processing 
 Manifold-valued image processing with SPD matrices. Chapter 3 RGSMIA. Elsevier, 2019.
 Historical reference: A Riemannian Framework for Tensor Computing. IJCV 2006. 

 3/ Metric and affine geometric settings for Lie groups 
 Beyond Riemannian Geometry The affine connection setting for transformation groups Chapter 5, 

RGSMIA. Elsevier, 2019.

 4/ Parallel transport to analyze longitudinal deformations 
 Geodesics, Parallel Transport and One-parameter Subgroups for Diffeomorphic Image 

Registration. IJCV 105(2), November 2013. 
 Parallel Transport with Pole Ladder: a Third Order Scheme…[arXiv:1805.11436]

 5/ Advanced statistics: central limit theorem and extension of PCA 
 Curvature effects on the empirical mean in Riemannian and affine Manifolds [arXiv:1906.07418]
 Barycentric Subspace Analysis on Manifolds. Annals of Statistics. 46(6A):2711-2746, 2018. 

[arXiv:1607.02833]
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds
 Introduction to computational anatomy 
 The Riemannian manifold computational structure 
 Simple statistics on Riemannian manifolds
 Applications to the spine shape and registration accuracy 

Metric and Affine Geometric Settings for Lie Groups 
Parallel Transport to Analyze Longitudinal Deformations
Advances Statistics: CLT & PCA



Which non-linear space?

Constant curvatures spaces

 Sphere, 

 Euclidean, 

 Hyperbolic

Homogeneous spaces, Lie groups and symmetric spaces

Riemannian or affine connection spaces

Towards non-smooth quotient and stratified spaces
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Differentiable manifolds

Computing on a manifold
 Extrinsic

 Embedding in ℝ𝑛𝑛

 Intrinsic
 Coordinates : charts
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 Measuring?
 Lengths
 Straight lines
 Volumes



Measuring extrinsic distances

Basic tool: the scalar product

wvwv t>=< ,

• Norm of a vector
><= vvv ,

p

v
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γ(t)• Length of a curve
𝐿𝐿 𝛾𝛾 = ∫ 𝛾̇𝛾 𝑡𝑡 𝑑𝑑𝑑𝑑



Bernhard Riemann 
1826-1866

Measuring extrinsic distances

Basic tool: the scalar product

wvwv t>=< ,

• Norm of a vector

pp
vvv ><= ,

Bernhard Riemann 
1826-1866

wpGvwv t
p )(, =><
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• Length of a curve
𝐿𝐿 𝛾𝛾 = ∫ 𝛾̇𝛾 𝑡𝑡 𝑑𝑑𝑑𝑑



• Geodesics
• Shortest path between 2 points

• Calculus of variations (E.L.) :
2nd order differential equation
(specifies acceleration)

• Free parameters: initial speed 
and starting point 

wpGvwv t
p )(, =><

Bernhard Riemann 
1826-1866

Riemannian manifolds

Basic tool: the scalar product

Bernhard Riemann 
1826-1866
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• Length of a curve
𝐿𝐿 𝛾𝛾 = ∫ 𝛾̇𝛾 𝑡𝑡 𝑑𝑑𝑑𝑑
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Bases of Algorithms in Riemannian Manifolds

Operation Euclidean space Riemannian

Subtraction
Addition
Distance

Gradient descent )( ttt xCxx ∇−=+ εε

)(yLogxy x=
xyxy +=

xyyx −=),(dist
x

xyyx =),(dist
)(xyExpy x=

))( ( txt xCExpx
t

∇−=+ εε

xyxy −=

Reformulate algorithms with expx and logx
Vector -> Bi-point (no more equivalence classes)

Exponential map (Normal coordinate system):
 Expx = geodesic shooting parameterized by the initial tangent
 Logx = unfolding the manifold in the tangent space along geodesics 

 Geodesics = straight lines with Euclidean distance 
 Geodesic completeness: covers M \ Cut(x)
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Cut locus
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds
 Introduction to computational anatomy 
 The Riemannian manifold computational structure 
 Simple statistics on Riemannian manifolds
 Applications to the spine shape and registration accuracy 

Metric and Affine Geometric Settings for Lie Groups 
Parallel Transport to Analyze Longitudinal Deformations
Advances Statistics: CLT & PCA



Basic probabilities and statistics

Measure:               random vector x of pdf 

Approximation:

• Mean: 

• Covariance:

Propagation:

Noise model: additive, Gaussian...

Principal component analysis

Statistical distance: Mahalanobis and

dzzpz ).(. )  E(x xx ∫==

)x( xxΣx ,  ~ 

)(zpx

[ ]T)x).(x(E −−=Σ xxxx

( ) 








∂
∂

∂
∂

=
x

..
x

, x)(
Thh h ~ h xxΣxy

χ 2
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Random variable in a Riemannian Manifold

Intrinsic pdf of x
 For every set H 

𝑃𝑃 𝐱𝐱 ∈ 𝐻𝐻 = �
𝐻𝐻
𝑝𝑝 𝑦𝑦 𝑑𝑑𝑑𝑑(𝑦𝑦)

 Lebesgue’s measure 

 Uniform Riemannian Mesure 𝑑𝑑𝑑𝑑 𝑦𝑦 = det 𝐺𝐺 𝑦𝑦 𝑑𝑑𝑑𝑑

Expectation of an observable in M
 𝑬𝑬𝐱𝐱 𝜙𝜙 = ∫𝑀𝑀𝜙𝜙 𝑦𝑦 𝑝𝑝 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑦𝑦
 𝜙𝜙 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡2 (variance) :  𝑬𝑬𝐱𝐱 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . , 𝑦𝑦 2 = ∫𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦, 𝑧𝑧 2𝑝𝑝 𝑧𝑧 𝑑𝑑𝑑𝑑(𝑧𝑧)
 𝜙𝜙 = log 𝑝𝑝 (information) :  𝑬𝑬𝐱𝐱 log 𝑝𝑝 = ∫𝑀𝑀 𝑝𝑝 𝑦𝑦 log(𝑝𝑝 𝑦𝑦 )𝑑𝑑𝑑𝑑 𝑦𝑦

 𝜙𝜙 = 𝑥𝑥 (mean) :  𝑬𝑬𝐱𝐱 𝐱𝐱 = ∫𝑀𝑀 𝑦𝑦 𝑝𝑝 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑦𝑦
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First statistical tools

Moments of a random variable: tensor fields
 𝔐𝔐1 𝑥𝑥 = ∫𝑀𝑀 𝑥𝑥𝑥𝑥 𝑃𝑃(𝑑𝑑𝑧𝑧) Tangent mean: (0,1) tensor field

 𝔐𝔐2(𝑥𝑥) = ∫𝑀𝑀 𝑥𝑥𝑥𝑥 ⊗ 𝑥𝑥𝑥𝑥 𝑃𝑃(𝑑𝑑𝑧𝑧) Covariance: (0,2) tensor field

 𝔐𝔐𝑘𝑘(𝑥𝑥) = ∫𝑀𝑀 𝑥𝑥𝑥𝑥 ⊗ 𝑥𝑥𝑥𝑥⊗⋯ ⊗ 𝑥𝑥𝑥𝑥 𝑃𝑃(𝑑𝑑𝑧𝑧) k-contravariant tensor field

Fréchet mean set 
 Integral only valid in Hilbert/Wiener spaces [Fréchet 44]

 𝜎𝜎2 𝑥𝑥 = 𝑇𝑇𝑟𝑟𝑔𝑔 𝔐𝔐2 𝑥𝑥 = ∫𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡2 𝑥𝑥, 𝑧𝑧 𝑃𝑃(𝑑𝑑𝑧𝑧)

 Fréchet mean [1948] = global minima
 Exponential barycenters [Emery & Mokobodzki 1991]
𝔐𝔐1 𝑥̅𝑥 = ∫𝑀𝑀 𝑥̅𝑥𝑧𝑧 𝑃𝑃(𝑑𝑑𝑧𝑧) = 0 [critical points if P(C) =0]

X. Pennec - Geometric Statistics workshop, 04/09/2019

Maurice Fréchet 
(1878-1973)



Fréchet expectation (1944)
Minimizing the variance

Existence

 Finite variance at one point

Characterization as an exponential barycenter (P(C)=0)

Uniqueness Karcher 77 / Kendall 90 / Afsari 10 / Le 10
 Unique Karcher mean (thus Fréchet) if distribution has support in a
regular geodesic ball with radius 𝑟𝑟 < 𝑟𝑟∗ = 1

2
min 𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀 ,𝜋𝜋/ 𝜅𝜅 (k upper

bound on sectional curvatures on M)
 Empirical mean: a.s. uniqueness [Arnaudon & Miclo 2013]

Other central primitives

[ ] [ ]( )),dist(E argmin 2xx y
y M∈

=Ε

( ) [ ] 0)().(.xxE           0  )(grad 2 ==⇒= ∫
M

M zdzpy xx xxσ

[ ] [ ]( ) ααα
1

),dist(E argmin xx y
y M∈

=Ε
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A gradient descent (Gauss-Newton) algorithm

Vector space

Manifold

vHvvfxfvxf f
TT

..2
1.)()( +∇+=+

fHvvxx ftt ∇−=+= −

+ .      with  )1(

1

),()()())((exp 2
1 vvHvfxfvf fx +∇+=

( ) [ ] ∑−
=−=∇

i
in

yx2yE 2  (y)2 xxσ

IdH 2   2 ≈
xσ

[ ]xyE     with  )(expx x1 ==+ vv
tt

Geodesic marching
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Example on 3D rotations
Space of rotations SO(3):

 Manifold: RT.R=Id  and det(R)=+1
 Lie group ( R1 o R2 = R1.R2   & Inversion: R(-1) = RT )

Metrics on SO(3): compact space, there exists a bi-invariant metric
 Left / right invariant / induced by ambient space  <X, Y> = Tr(XT Y)

Group exponential
 One parameter subgroups = bi-invariant Geodesic starting at Id

 Matrix exponential and Rodrigue’s formula: R=exp(X)  and X = log(R)

 Geodesic everywhere by left (or right) translation

LogR(U) = R log(RT U)            ExpR(X) = R exp(RT X) 

Bi-invariant Riemannian distance
 d(R,U) = ||log(RT U)|| = θ( RT U )

X. Pennec - Geometric Statistics workshop, 04/09/2019
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Example with 3D rotations

Principal chart: 

Distance:

Frechet mean:

nr .  :ectorrotation v θ=

2
)1(

121 ),dist( rrRR −=

Centered chart: 

mean = barycenter









= ∑∈ i

),dist(min arg  
3

iSOR
RRR
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Distributions for parametric tests
Uniform density:

 maximal entropy knowing X

Generalization of the Gaussian density:
 Stochastic heat kernel p(x,y,t) [complex time dependency] 
 Wrapped Gaussian [Infinite series difficult to compute]
 Maximal entropy knowing the mean and the covariance

Mahalanobis D2 distance / test:

 Any distribution:

 Gaussian:

( ) ( ) 




= 2/x..xexp.)(

T
xΓxkyN

)Vol(/)(Ind)( Xzzp X=x

( ) ( ) ( )( )rOk n /1.)det(.2 32/12/ σεσπ ++= −− Σ

( ) ( )rO /  Ric3
1)1( σεσ ++−= −ΣΓ

yx..yx)y( )1(2 −Σ= xxx

t
µ

[ ] n=)(E 2 xxµ

( )rOn /)()( 322 σεσχµ ++∝xx

[ Pennec, JMIV06, NSIP’99 ]
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Gaussian on the circle

Exponential chart:

Gaussian: truncated standard Gaussian

[. ; .]    rrrx ππθ −∈=

standard Gaussian
(Ricci curvature → 0)

uniform pdf with

(compact manifolds)

Dirac

:∞→r

:∞→γ

:0→γ
3/).( 22 rπσ =
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tPCA vs PGA
tPCA

 Generative model: Gaussian
 Find the subspace that best explains the variance

 Maximize the squared distance to the mean

PGA (Fletcher 2004, Sommer 2014)
 Generative model:

 Implicit uniform distribution within the subspace
 Gaussian distribution in the vertical space

 Find a low dimensional subspace (geodesic subspaces?) that 
minimizes the error 
 Minimize the squared Riemannian distance from the measurements to that 
sub-manifold (no closed form)

Different models in curved spaces (no Pythagore thm)
Extension to BSA tomorrow
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds
 Introduction to computational anatomy 
 The Riemannian manifold computational structure 
 Simple statistics on Riemannian manifolds
 Applications to the spine shape and registration accuracy 

Metric and Affine Geometric Settings for Lie Groups 
Parallel Transport to Analyze Longitudinal Deformations
Advances Statistics: CLT & PCA
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Statistical Analysis of the Scoliotic Spine

Database
 307 Scoliotic patients from the Montreal’s 

Sainte-Justine Hospital.
 3D Geometry from multi-planar X-rays

Mean
 Main translation variability is axial (growth?)
 Main rot. var. around anterior-posterior axis 

[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]
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Statistical Analysis of the Scoliotic Spine

• Mode 1: King’s class I or III
• Mode 2: King’s class I, II, III 

• Mode 3: King’s class IV + V
• Mode 4: King’s class V (+II)

PCA of the Covariance: 
4 first variation modes 
have clinical meaning

[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]
AMDO’06 best paper award, Best French-Quebec joint PhD 2009



Typical Registration Result
with Bivariate Correlation Ratio
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Per - Operative US ImagePre - Operative MR Image

Registered

Acquisition of images : L. & D. Auer, M. Rudolf

axial

coronal sagittal

axial

coronal sagittal



Accuracy Evaluation (Consistency)

222
/

2 2 USMRUSMRloop σσσσ ++=
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Bronze Standard Rigid Registration Validation

Best explanation of the observations (ML) :
 LSQ criterion 

 Robust Fréchet mean 

 Robust initialization and Newton gradient descent

Result

Derive tests on transformations for accuracy / consistency
X. Pennec - Geometric Statistics workshop, 04/09/2019 40
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2 ),,(min),( χµ TTTTd =

transrotjiT σσ ,,,

∑= ij ijij TTdC )ˆ,(2

[ T. Glatard & al, MICCAI 2006,

Int. Journal of HPC Apps, 2006 ]
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Data (per-operative US)
 2 pre-op MR (0.9 x 0.9 x 1.1 mm)
 3 per-op US (0.63 and 0.95 mm)
 3 loops

Robustness and precision

Consistency of BCR

Results on per-operative patient images

Success var rot (deg) var trans (mm)
MI 29% 0.53 0.25
CR 90% 0.45 0.17

BCR 85% 0.39 0.11

var rot (deg) var trans (mm) var test (mm)
Multiple MR 0.06 0.06 0.10

Loop 2.22 0.82 2.33
MR/US 1.57 0.58 1.65

[Roche et al, TMI 20(10), 2001 ]
[Pennec et al, Multi-Sensor Image Fusion, Chap. 4, CRC Press, 2005]
X. Pennec - Geometric Statistics workshop, 04/09/2019


Feuil1

				Success		var rot (deg)		var trans (mm)
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Mosaicing of Confocal Microscopic in Vivo Video Sequences. 

Cellvizio: Fibered confocal fluorescence imaging

FOV 200x200 µm
Courtesy of Mike Booth, MGH, Boston, MA FOV 2747x638 µm

Cellvizio

[ T. Vercauteren et al., MICCAI 2005, T.1, p.753-760 ]
X. Pennec - Geometric Statistics workshop, 04/09/2019
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Common coordinate system
 Multiple rigid registration
 Refine with non rigid 

Mosaic image creation
 Interpolation / approximation 

with irregular sampling
MosaicFrame 6

Frame 1

Frame 2

Frame 3

Frame 4Frame 5

Mosaicing of Confocal Microscopic in Vivo Video Sequences. 

Courtesy of Mike Booth, MGH, Boston, MA FOV 2747x638 µm

[ T. Vercauteren et al., MICCAI 2005, T.1, p.753-760 ]
X. Pennec - Geometric Statistics workshop, 04/09/2019
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds

Metric and Affine Geometric Settings for Lie Groups
 Riemannian frameworks on Lie groups
 Lie groups as affine connection spaces
 The SVF framework for diffeomorphisms 
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Natural Riemannian Metrics on Transformations

Transformation are Lie groups: Smooth manifold G compatible with 
group structure
 Composition g o h and inversion g-1 are smooth
 Left and Right translation Lg(f) = g ○ f    Rg (f) = f ○ g
 Conjugation   Conjg(f) = g ○ f ○ g-1

 Symmetry: Sg(f) = g o f-1 o g

Natural Riemannian metric choices
 Chose a metric at Id: <x,y>Id

 Propagate at each point g using left (or right) translation
<x,y>g = < DLg

(-1) .x , DLg
(-1) .y >Id

Implementation 
 Practical computations using left (or right) translations

X. Pennec -Geometric Statistics workshop, 04/09/2019 3
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General Non-Compact and Non-Commutative case

No Bi-invariant  Mean for 2D Rigid Body Transformations

 Metric at Identity: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐼𝐼𝐼𝐼, 𝜃𝜃; 𝑡𝑡1; 𝑡𝑡2 )2 = 𝜃𝜃2 + 𝑡𝑡12+ 𝑡𝑡22

 𝑇𝑇1 = 𝜋𝜋
4

; − 2
2

; 2
2

𝑇𝑇2 = 0; 2; 0 𝑇𝑇3 = −𝜋𝜋
4

; − 2
2

;− 2
2

 Left-invariant Fréchet mean: 0; 0; 0

 Right-invariant Fréchet mean: 0; 2
3

; 0 ≃ (0; 0.4714; 0)

Questions for this talk:
 Can we design a mean compatible with the group operations?
 Is there a more convenient structure for statistics on Lie groups?

X. Pennec -Geometric Statistics workshop, 04/09/2019



Existence of bi-invariant (pseudo) metrics

[Miolane, XP, Computing Bi-Invariant Pseudo-Metrics on Lie Groups for 
Consistent Statistics. Entropy, 17(4):1850-1881, April 2015.]
 Algorithm: decompose the Lie algebra and find a bi-inv. pseudo-metric
 Test on rigid transformations SE(n): bi-inv. ps-metric for n=1 or 3 only

X. Pennec -Geometric Statistics workshop, 04/09/2019 5

1-dim. compact

[Cartan 50’s]:
Bi-invariant metric on 𝐺𝐺

𝐺𝐺

or

Lie groups with 
bi-invariant metric

All 
Lie groups

[Medina, Revoy 80’s]:
Bi-invariant pseudo-metric on 𝐺𝐺

Dual structure Recursivity1-dim. simple

𝐺𝐺

Lie groups with 
bi-invariant 
pseudo-metric
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Basics of Lie groups

Flow of a left invariant vector field �𝑋𝑋 = 𝐷𝐷𝐷𝐷. 𝑥𝑥 from identity
 𝛾𝛾𝑥𝑥 𝑡𝑡 exists for all time
 One parameter subgroup: 𝛾𝛾𝑥𝑥 𝑠𝑠 + 𝑡𝑡 = 𝛾𝛾𝑥𝑥 𝑠𝑠 . 𝛾𝛾𝑥𝑥 𝑡𝑡

Lie group exponential
 Definition: 𝑥𝑥 ∈ 𝔤𝔤 𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥 = 𝛾𝛾𝑥𝑥 1 𝜖𝜖 𝐺𝐺
 Diffeomorphism from a neighborhood of 0 in g to a 

neighborhood of e in G (not true in general for inf. dim)

3 curves parameterized by the same tangent vector

 Left / Right-invariant geodesics, one-parameter subgroups

Question: Can one-parameter subgroups be geodesics?

X. Pennec -Geometric Statistics workshop, 04/09/2019 7



Affine connection spaces:
Drop the metric, use connection to define geodesics

Affine Connection (infinitesimal parallel transport)
 Acceleration = derivative of the tangent vector along a curve
 Projection of a tangent space on 

a neighboring tangent space

Geodesics = straight lines
 Null acceleration: 𝛻𝛻𝛾̇𝛾𝛾̇𝛾 = 0
 2nd order differential equation:

Normal coordinate system
 Local exp and log maps, well 

defined in a convex neighborhood

X. Pennec -Geometric Statistics workshop, 04/09/2019 8

[Lorenzi, Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for 
Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013. ]



Canonical Affine Connections on Lie Groups
A unique Cartan-Schouten connection

 Bi-invariant and symmetric (no torsion) 
 Geodesics through Id are one-parameter subgroups (group 

exponential)
 Matrices : M(t) = A exp(t.V)
 Diffeos : translations of Stationary Velocity Fields (SVFs)  

Levi-Civita connection of a bi-invariant metric (if it exists)
 Continues to exists in the absence of such a metric

(e.g. for rigid or affine transformations)

Symmetric space with central symmetry 𝑺𝑺𝝍𝝍 𝝓𝝓 = 𝝍𝝍𝝓𝝓−𝟏𝟏𝝍𝝍
 Matrix geodesic symmetry: 𝑆𝑆𝐴𝐴 𝑀𝑀 𝑡𝑡 = 𝐴𝐴 exp −𝑡𝑡𝑡𝑡 𝐴𝐴−1𝐴𝐴 = 𝑀𝑀(−𝑡𝑡)

X. Pennec -Geometric Statistics workshop, 04/09/2019 9

[Lorenzi, Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for 
Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013. ]



Statistics on an affine connection space

Fréchet mean: exponential barycenters
 ∑𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥 𝑦𝑦𝑖𝑖 = 0 [Emery, Mokobodzki 91, Corcuera, Kendall 99]

 Existence local uniqueness if local convexity [Arnaudon & Li, 2005]

Covariance matrix & higher order moments
 Defined as tensors in tangent space

Σ = ∫𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥 𝑦𝑦 ⊗ 𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥 𝑦𝑦 𝜇𝜇(𝑑𝑑𝑑𝑑)

 Matrix expression changes with basis

Other statistical tools
 Mahalanobis distance, chi2 test
 Tangent Principal Component Analysis (t-PCA)
 Independent Component Analysis (ICA)?

X. Pennec – IPAM, 02/04/2019 10

[XP & Arsigny, 2012, XP & Lorenzi, Beyond Riemannian Geometry, 2019]



Statistics on an affine connection space

For Cartan-Schouten connections  [Pennec & Arsigny, 2012]

 Locus of points x such that ∑𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥−1.𝑦𝑦𝑖𝑖 = 0
 Algorithm: fixed point iteration (local convergence)

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 ∘ 𝐸𝐸𝐸𝐸𝐸𝐸
1
𝑛𝑛
�𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥𝑡𝑡−1.𝑦𝑦𝑖𝑖

 Mean stable by left / right composition and inversion 

Matrix groups with no bi-invariant metric
 Heisenberg group: bi-invariant mean is unique (conj. ok for solvable) 
 Rigid-body transformations: uniqueness if unique mean rotation 
 SU(n) and GL(n): log does not always exist (need 2 exp to cover)

X. Pennec – IPAM, 02/04/2019 11

[XP and V. Arsigny. Exponential Barycenters of the Canonical Cartan Connection and 
Invariant Means on Lie Groups. In Matrix Information Geometry. 2012 ]
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Example mean of 2D rigid-body transformation

𝑇𝑇1 =
𝜋𝜋
4

; −
2

2
;

2
2

𝑇𝑇2 = 0; 2; 0 𝑇𝑇3 = −
𝜋𝜋
4

; −
2

2
;−

2
2

 Metric at Identity: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐼𝐼𝐼𝐼, 𝜃𝜃; 𝑡𝑡1; 𝑡𝑡2 )2 = 𝜃𝜃2 + 𝑡𝑡12+ 𝑡𝑡22

 Left-invariant Fréchet mean: 0; 0; 0

 Log-Euclidean mean: 0; 2−𝜋𝜋/4
3

; 0 ≃ (0; 0.2096; 0)

 Bi-invariant mean: 0; 2−𝜋𝜋/4
1+𝜋𝜋/4( 2+1)

; 0 ≃ (0; 0.2171; 0)

 Right-invariant Fréchet mean: 0; 2
3

; 0 ≃ (0; 0.4714; 0)

X. Pennec -Geometric Statistics workshop, 04/09/2019



13

Cartan Connections vs Riemannian

What is similar
 Standard differentiable geometric structure [curved space without torsion] 
 Normal coordinate system with Expx et Logx [finite dimension]

Limitations of the affine framework
 No metric (but no choice of metric to justify)
 The exponential does always not cover the full group

 Pathological examples close to identity in finite dimension
 In practice, similar limitations for the discrete Riemannian framework

What we gain with Cartan-Schouten connection 
 A globally invariant structure invariant by composition & inversion 
 Simple geodesics, efficient computations (stationarity, group exponential)
 Consistency with any bi-invariant (pseudo)-metric
 The simplest linearization of transformations for statistics on Lie groups? 

X. Pennec -Geometric Statistics workshop, 04/09/2019
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Riemannian Metrics on diffeomorphisms
Space of deformations

 Transformation y=φ (x)
 Curves in transformation spaces: φ (x,t)
 Tangent vector = speed vector field 

Right invariant metric 
 Eulerian scheme 
 Sobolev Norm Hk or H∞ (RKHS) in LDDMM  diffeomorphisms [Miller, 

Trouve, Younes, Holm, Dupuis, Beg… 1998 – 2009]

Geodesics determined by optimization of a time-varying vector field
 Distance

 Geodesics characterized by initial velocity / momentum
 Optimization for images is quite tricky (and lenghty)

dt
txdxvt
),()( φ

=

Idttt vv
t

1−= φ
φ



)(minarg),(
1

0

2
10

2 dtvd
tt

tv ∫=
φ

φφ

X. Pennec -Geometric Statistics workshop, 04/09/2019 15



16

Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007]
 Exponential of a smooth vector field is a diffeomorphism
 Parameterize deformation by time-varying Stationary Velocity Fields

Direct generalization of numerical matrix algorithms
 Computing the deformation: Scaling and squaring [Arsigny MICCAI 2006]

recursive use of exp(v)=exp(v/2) o exp(v/2)
 Computing the Jacobian: Dexp(v) = Dexp(v/2) o exp(v/2) . Dexp(v/2)

 Updating the deformation parameters:  BCH formula [Bossa MICCAI 2007]
exp(v) ○ exp(εu) = exp( v + εu + [v,εu]/2 + [v,[v,εu]]/12 + … )
 Lie bracket       [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p)

The SVF framework for  Diffeomorphisms

X. Pennec -Geometric Statistics workshop, 04/09/2019

•exp

Stationary velocity field Diffeomorphism
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ϕ

M
id

v

ϕ
SVF setting

• v stationary velocity field
• Lie group Exp(v) non-metric 

geodesic wrt Cartan connections

LDDMM setting
• v time-varying velocity field
• Riemannian expid(v) metric 

geodesic wrt Levi-Civita connection
• Defined by intial momentum

Transporting trajectories:

Parallel transport of initial 
tangent vectors

•[Lorenzi et al, IJCV 2012]

Parallel transport of deformation trajectories

X. Pennec - Geometric Statistics workshop, 04/09/2019

LDDMM: parallel transport along geodesics
using Jacobi fields [Younes et al. 2008]



Parallel transport along arbitrary curves
A numerical scheme to integrate for symmetric connections: 

Schild’s Ladder [Elhers et al, 1972]
 Build geodesic parallelogrammoid
 Iterate along the curve 

X. Pennec - Geometric Statistics workshop, 04/09/2019 18

P0
P’0

P1

u

P2

P’1u’

λ/2

λ/2

τ

τ

C

P0
P’0

PN

u

P’NΠ(u)

[ Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series
of Images: from Schild's to pole Ladder, JMIV 50(1-2):5-17, 2013 ]



Parallel transport along geodesics
Simpler scheme along geodesics: Pole Ladder

X. Pennec - Geometric Statistics workshop, 04/09/2019 19

[ Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series
of Images: from Schild's to pole Ladder, JMIV 50(1-2):5-17, 2013 ]
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-u’ A’
C geodesic

P0
P’0

P1

u

−Π(u)
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λ/2

τ/2

τ/2
P’1
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Parallel transport along geodesics
Simpler scheme along geodesics: Pole Ladder

X. Pennec - Geometric Statistics workshop, 04/09/2019 20

P0
P’0

P1

u

−Π(u)
P’1

Pole ladder is exact in 1 step in 
symmetric space

• Symmetry preserves geodesics: 
𝑆𝑆𝑚𝑚 𝛾𝛾 𝑡𝑡 = 𝛾𝛾𝛾(𝑡𝑡)

• Parallel transport is differential of 
symmetry

m

𝛾𝛾 𝑡𝑡 = exp𝑃𝑃0 𝑡𝑡 𝑢𝑢

𝛾𝛾𝛾 𝑡𝑡

𝛾𝛾𝛾 𝑡𝑡 = exp𝑃𝑃1 −Π(𝑢𝑢)

[ XP. Parallel Transport with Pole Ladder: a Third Order Scheme in Affine 
Connection Spaces which is Exact in Affine Symmetric Spaces. Arxiv 1805.11436 ]



Accuracy of pole ladder

X. Pennec - Geometric Statistics workshop, 04/09/2019 21

ℎ𝑥𝑥 𝑣𝑣,𝑢𝑢 = log𝑥𝑥(Π𝑥𝑥
exp𝑥𝑥(𝑣𝑣) 𝑢𝑢)

= 𝑣𝑣 + 𝑢𝑢 + 1
6
𝑅𝑅 𝑢𝑢, 𝑣𝑣 𝑣𝑣 + 1

3
𝑅𝑅 𝑢𝑢, 𝑣𝑣 𝑢𝑢 + 1

24
𝛻𝛻𝑣𝑣𝑅𝑅 𝑢𝑢, 𝑣𝑣 2𝑣𝑣 + 5𝑢𝑢 + 1

24
𝛻𝛻𝑢𝑢𝑅𝑅 𝑢𝑢, 𝑣𝑣 𝑣𝑣 + 2𝑢𝑢 + 𝑂𝑂(5)

𝑢𝑢′ = 𝑢𝑢 +
1

12𝛻𝛻𝑣𝑣𝑅𝑅 𝑢𝑢, 𝑣𝑣 5𝑢𝑢 − 2𝑣𝑣 +
1

12𝛻𝛻𝑢𝑢𝑅𝑅 𝑢𝑢, 𝑣𝑣 𝑣𝑣 − 2𝑢𝑢 + 𝑂𝑂(5)

Find u’ that satisfies: 
ℎ𝑀𝑀 𝑣𝑣,−𝑢𝑢′ + ℎ𝑀𝑀 −𝑣𝑣,𝑢𝑢 = 0

Gavrilov’s double exponential series (2006):

• Error term is of order 4 in general affine manifolds
• Error is even zero for symmetric spaces: pole ladder is exact in one step!

[ XP. Parallel Transport with Pole Ladder: a Third Order Scheme in Affine 
Connection Spaces which is Exact in Affine Symmetric Spaces. Arxiv 1805.11436 ]



The Stationnary Velocity Fields (SVF)
framework for diffeomorphisms

 SVF framework for diffeomorphisms is algorithmically simple
 Compatible with “inverse-consistency”
 Vector statistics directly generalized to diffeomorphisms.
 Exact parallel transport using one step of pole ladder [XP arxiv 1805.11436 2018]

Longitudinal modeling of AD: 70 subjects extrapolated from 1 to 15 years

X. Pennec - CEP 19-02-2019 22

[Lorenzi, XP. IJCV, 2013 ]

Patient A

Patient B

? ?Template



The Stationnary Velocity Fields (SVF)
framework for diffeomorphisms

 SVF framework for diffeomorphisms is algorithmically simple
 Compatible with “inverse-consistency”
 Vector statistics directly generalized to diffeomorphisms.
 Exact parallel transport using one step of pole ladder [XP arxiv 1805.11436 2018]

Longitudinal modeling of AD: 70 subjects extrapolated from 1 to 15 years

X. Pennec - CEP 19-02-2019 23

[Lorenzi, XP. IJCV, 2013 ]

ObservedExtrapolated Extrapolated

year



Modeling longitudinal atrophy in AD from images

X. Pennec - Geometric Statistics workshop, 04/09/2019 24



Study of prodromal Alzheimer’s disease 
Linear regression of the SVF over time: interpolation + prediction

X. Pennec - Geometric Statistics workshop, 04/09/2019 25

0*))(~()( TtvExptT =

Multivariate group-wise comparison 
of the transported SVFs shows 
statistically significant differences 
(nothing significant on log(det) )

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]



Mean deformation / atrophy per group 
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M Lorenzi, N Ayache, X Pennec G B. Frisoni, for ADNI. Disentangling the normal aging from the pathological Alzheimer's disease 
progression on structural MR images. 5th Clinical Trials in Alzheimer's Disease (CTAD'12), Monte Carlo, October 2012. (see also 
MICCAI 2012)



References for Statistics on Manifolds and Lie Groups
Statistics on Riemannnian manifolds 

 Xavier Pennec. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric
Measurements. Journal of Mathematical Imaging and Vision, 25(1):127-154, July 2006. 
http://www.inria.fr/sophia/asclepios/Publications/Xavier.Pennec/Pennec.JMIV06.pdf

Invariant metric on SPD matrices and of Frechet mean to define manifold-
valued image processing algorithms
 Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian Framework for 

Tensor Computing. International Journal of Computer Vision, 66(1):41-66, Jan. 2006. 
http://www.inria.fr/sophia/asclepios/Publications/Xavier.Pennec/Pennec.IJCV05.pdf

Bi-invariant means with Cartan connections on Lie groups
 Xavier Pennec and Vincent Arsigny. Exponential Barycenters of the Canonical Cartan 

Connection and Invariant Means on Lie Groups. In Frederic Barbaresco, Amit Mishra, 
and Frank Nielsen, editors, Matrix Information Geometry, pages 123-166. Springer, 
May 2012. http://hal.inria.fr/hal-00699361/PDF/Bi-Invar-Means.pdf

Cartan connexion for diffeomorphisms: 
 Marco Lorenzi and Xavier Pennec. Geodesics, Parallel Transport & One-parameter

Subgroups for Diffeomorphic Image Registration. International Journal of Computer 
Vision, 105(2), November 2013 https://hal.inria.fr/hal-00813835/document
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds
Metric and Affine Geometric Settings for Lie Groups 

Advances Statistics: CLT & PCA
 Estimation of the empirical Fréchet mean & CLT
 Principal component analysis in manifolds
 Natural subspaces in manifolds: barycentric subspaces
 Rephrasing PCA with flags of subspaces
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Several definitions of the mean
Tensor moments of a random point on M

 𝔐𝔐1 𝑥𝑥 = ∫𝑀𝑀 𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑(𝑧𝑧) Tangent mean: (0,1) tensor field

 𝔐𝔐2(𝑥𝑥) = ∫𝑀𝑀 𝑥𝑥𝑥𝑥 ⊗ 𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑(𝑧𝑧) 2nd moment: (0,2) tensor field

 𝔐𝔐𝑘𝑘(𝑥𝑥) = ∫𝑀𝑀 𝑥𝑥𝑥𝑥 ⊗ 𝑥𝑥𝑥𝑥⊗⋯ ⊗ 𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑(𝑧𝑧) k-contravariant tensor field

 𝜎𝜎2 𝑥𝑥 = 𝑇𝑇𝑟𝑟𝑔𝑔 𝔐𝔐2 𝑥𝑥 = ∫𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡2 𝑥𝑥, 𝑧𝑧 𝑑𝑑𝑑𝑑(𝑧𝑧) Mean quadratic deviation

Mean value = optimum of the variance
 Frechet mean [1944] = (global) minima of p-deviation (includes median)
 Karcher mean [1977] = local minima
 Exponential barycenters = critical points (P(C) =0)
𝔐𝔐1 𝑥̅𝑥 = ∫𝑀𝑀 𝑥̅𝑥𝑧𝑧 𝑑𝑑𝑑𝑑(𝑧𝑧) = 0 (implicit definition)

Covariance at the mean
 Σ = 𝔐𝔐2 𝑥̅𝑥 = ∫𝑀𝑀 𝑥̅𝑥𝑧𝑧 ⊗ 𝑥̅𝑥𝑧𝑧 𝑑𝑑𝑑𝑑 𝑧𝑧

X. Pennec - Geometric Statistics workshop, 04/09/2019



Algorithms to compute the mean
Karcher flow (gradient descent)

𝑥̅𝑥𝑡𝑡+1 = exp𝑥̅𝑥𝑡𝑡 𝜖𝜖𝑡𝑡 𝑣𝑣𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑣𝑣𝑡𝑡 = E y𝐱𝐱 = 1
n
∑𝑖𝑖 log𝑥̅𝑥𝑡𝑡(𝑥𝑥𝑖𝑖)

 Usual algorithm with 𝜖𝜖𝑡𝑡 = 1 can diverge on SPD matrices 
[Bini & Iannazzo, Linear Algebra Appl., 438:4, 2013]

 Convergence for non-negative curvature (p-means) 
[Afsari, Tron and Vidal, SICON 2013]

Inductive / incremental weighted means

 𝑥̅𝑥𝑘𝑘+1 = exp𝑥̅𝑥𝑘𝑘
1
𝑘𝑘
𝑣𝑣𝑘𝑘 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑣𝑣𝑘𝑘 = log𝑥̅𝑥𝑘𝑘 𝑥𝑥𝑘𝑘+1

 On negatively curved spaces [Sturm 2003], 
BHV centroid [Billera, Holmes, Vogtmann, 2001]

 On non-positive spaces [G. Cheng, J. Ho, H. Salehian, B. C. Vemuri 2016]

Stochastic algorithm 
 [Bonnabel IEE TAC 58(9) 2013]
 [Arnaudon & Miclo, Stoch. Proc. & App. 124, 2014]
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Asymptotic behavior of the mean
Uniqueness of p-means with convex support

[Karcher 77 / Buser & Karcher 1981 / Kendall 90 / Afsari 10 / Le 11] 

 Non-positively curved metric spaces (Aleksandrov): OK [Gromov, Sturm]
 Positive curvature: [Karcher 77 & Kendall 89] concentration conditions:

Support in a regular geodesic ball of radius 𝑟𝑟 < 𝑟𝑟∗ = 1
2

min 𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀 ,𝜋𝜋/ 𝜅𝜅

Bhattacharya-Patrangenaru CLT [BP 2005, B&B 2008]
 Under suitable concentration conditions [KKC], for IID n-samples:

 𝑥̅𝑥𝑛𝑛 → 𝑥̅𝑥 (consistency of empirical mean)

 𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥(𝑥̅𝑥𝑛𝑛)→𝑁𝑁(0, 4�𝐻𝐻−1 𝛴𝛴 �𝐻𝐻−1) if  �𝐻𝐻 = ∫𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻𝑠𝑠𝑥̅𝑥 𝑑𝑑2 𝑦𝑦, 𝑥̅𝑥 𝜇𝜇(𝑑𝑑𝑑𝑑) invertible

 Problems for larger supports [Huckemann & Eltzner, H. Le]

Behavior in high concentration conditions?
 Interpretation of the mean Hessian? 
 What happens for a small sample size (non-asymptotic behavior)?
 Can we extend results to affine connection spaces?
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Concentration assumptions
 Uniqueness of the mean, support of diameter < ε

Riemannian manifold: Karcher & Kendall Concentr. Cond.
 Supp 𝜇𝜇 ⊂ 𝐵𝐵(𝑥𝑥, 𝑟𝑟) with r < 1

2
𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥)

 sup
𝑥𝑥∈𝐵𝐵(𝑥𝑥,𝑟𝑟)

𝜅𝜅(𝑥𝑥) < 𝜋𝜋2/ 4𝑟𝑟 2

Affine connection spaces: Arnaudon & Li convexity cond.
 𝜌𝜌:𝑀𝑀 × 𝑀𝑀 → 𝑅𝑅+ separating function

 Separability: 𝜌𝜌 𝑥𝑥,𝑦𝑦 = 0 ⇔ 𝑥𝑥 = 𝑦𝑦

 Convexity along geodesic: 𝜌𝜌 𝛾𝛾1 𝑡𝑡 , 𝛾𝛾2(𝑡𝑡) :𝑅𝑅 → 𝑅𝑅+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 p-convex geometry: c distp x, y ≤ 𝜌𝜌 𝑥𝑥,𝑦𝑦 ≤ 𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑝𝑝 𝑥𝑥,𝑦𝑦
 Uniqueness of exponential barycenter (compact support)
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Taylor expansion in manifolds

The mean is an exponential barycenter
 The zero of the tangent mean field (Brewin Taylor expansion) 

𝔐𝔐1 𝑥𝑥 = ∫𝑀𝑀 log𝑥𝑥(𝑧𝑧) 𝜇𝜇(𝑑𝑑𝑧𝑧) has a zero at 𝑥̅𝑥. 
Lots of additional terms in higher order derivatives since the vector 
field expression at 𝑥𝑥𝑣𝑣 = exp𝑥𝑥 𝑣𝑣 in a normal coordinates at x is 
modulated by Dexp𝑥𝑥 𝑣𝑣 .

 The zero of a mapping of vector spaces: the recenterd mean field 

𝑁𝑁𝑥𝑥 𝑣𝑣 = Π𝑥𝑥𝑣𝑣
𝑥𝑥 𝔐𝔐1 exp𝑥𝑥(𝑣𝑣) = �

𝑀𝑀
Π𝑥𝑥𝑣𝑣
𝑥𝑥 log𝑥𝑥𝑣𝑣 𝑦𝑦 𝜇𝜇(𝑑𝑑𝑑𝑑)

𝑥̅𝑥 is a Fréchet mean iff 𝑁𝑁𝑥𝑥 𝑣𝑣 has a zero at v = log𝑥𝑥(𝑥̅𝑥)

Goal: compute a series expansion w.r.t. v
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Taylor expansion in manifolds

Gavrilov’s double exponential series (2006):

Neighboring log expansion (new)

X. Pennec - Geometric Statistics workshop, 04/09/2019 8

𝑙𝑙𝑥𝑥 𝑣𝑣,𝑤𝑤 = Π𝑥𝑥𝑣𝑣
𝑥𝑥 log𝑥𝑥𝑣𝑣 exp𝑥𝑥(𝑤𝑤)

= 𝑤𝑤 − 𝑣𝑣 +
1
6𝑅𝑅 𝑤𝑤, 𝑣𝑣 𝑣𝑣 − 2𝑤𝑤

+
1

24𝛻𝛻𝑣𝑣𝑅𝑅 𝑤𝑤, 𝑣𝑣 2𝑣𝑣 − 3𝑤𝑤

+
1

24𝛻𝛻𝑤𝑤𝑅𝑅 𝑤𝑤, 𝑣𝑣 𝑣𝑣 − 2𝑤𝑤 + 𝑂𝑂 5

ℎ𝑥𝑥 𝑣𝑣,𝑢𝑢 = log𝑥𝑥(Π𝑥𝑥
exp𝑥𝑥(𝑣𝑣) 𝑢𝑢)

= 𝑣𝑣 + 𝑢𝑢 +
1
6
𝑅𝑅 𝑢𝑢, 𝑣𝑣 𝑣𝑣 +

1
3
𝑅𝑅 𝑢𝑢, 𝑣𝑣 𝑢𝑢

+
1

24
𝛻𝛻𝑣𝑣𝑅𝑅 𝑢𝑢, 𝑣𝑣 2𝑣𝑣 + 5𝑢𝑢

+
1

24
𝛻𝛻𝑢𝑢𝑅𝑅 𝑢𝑢, 𝑣𝑣 𝑣𝑣 + 2𝑢𝑢 + 𝑂𝑂 5



Taylor expansion of recentered mean map

Solving for the value v = log𝑥𝑥(𝑥̅𝑥) that zeros the polynomial

For an empirical an n-sample 𝐗𝐗𝐧𝐧 = 𝟏𝟏
𝒏𝒏
∑𝒊𝒊 𝜹𝜹𝒙𝒙𝒊𝒊

Compute the expectation for a random n-sample? 
X. Pennec - Geometric Statistics workshop, 04/09/2019 9



Non-Asymptotic behavior of empirical means

Expectation of product of empirical moments 
 𝐄𝐄 𝖃𝖃𝑘𝑘𝑛𝑛 𝑥𝑥 = 𝕸𝕸𝑘𝑘 𝑥𝑥

 𝐄𝐄 𝖃𝖃𝑝𝑝𝑛𝑛 ⊗𝖃𝖃𝑞𝑞𝑛𝑛 = 𝑛𝑛−1
𝑛𝑛
𝕸𝕸𝑝𝑝+𝑞𝑞 ⊗𝕸𝕸𝑝𝑝+𝑞𝑞 + 1

𝑛𝑛
𝕸𝕸𝑝𝑝+𝑞𝑞

 Etc…

First Moment of the empirical mean 

At the population mean:
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Non-Asymptotic behavior of empirical means

Second Moment of the empirical mean a the pop. mean:

In coordinates:
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Non-Asymptotic behavior of empirical means

X. Pennec - Geometric Statistics workshop, 04/09/2019 12

Moments of the Fréchet mean of a n-sample

 Unexpected bias in 1/n on empirical mean (gradient of curvature-cov.)

𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛(𝑥̅𝑥𝑛𝑛) = 𝑬𝑬 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 =
𝟏𝟏
𝟔𝟔𝟔𝟔

𝕸𝕸𝟐𝟐:𝛁𝛁𝑹𝑹:𝕸𝕸𝟐𝟐 + 𝑂𝑂 𝜖𝜖5, 1/𝑛𝑛2

 Concentration rate modulated by the curvature-covariance:

𝑪𝑪𝑪𝑪𝑪𝑪(𝑥̅𝑥𝑛𝑛) = 𝑬𝑬 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 ⊗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 =
𝟏𝟏
𝒏𝒏
𝕸𝕸𝟐𝟐 +

𝟏𝟏
𝟑𝟑𝟑𝟑

𝕸𝕸𝟐𝟐:𝑹𝑹:𝕸𝕸𝟐𝟐 + 𝑂𝑂 𝜖𝜖5, 1/𝑛𝑛2

 Asymptotically infinitely fast CV for negative curvature
 No convergence (LLN fails) at the limit of KKC condition

[XP, Curvature effects on the empirical mean in Manifolds 2019, arXiv:1906.07418 ]



Comparison with the BP CLT

Bhattacharya-Patrangenaru CLT [BP 2005, B&B 2008]
 Under suitable concentration conditions, for IID n-samples:

 𝑥̅𝑥𝑛𝑛 → 𝑥̅𝑥 (consistency of empirical mean)

 𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥(𝑥̅𝑥𝑛𝑛)→𝑁𝑁(0, 4�𝐻𝐻−1 𝛴𝛴 �𝐻𝐻−1) if  �𝐻𝐻 = ∫𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻𝑠𝑠𝑥̅𝑥 𝑑𝑑2 𝑦𝑦, 𝑥̅𝑥 𝜇𝜇(𝑑𝑑𝑑𝑑)
invertible

Same limiting expansion for large n

X. Pennec - Geometric Statistics workshop, 04/09/2019 13

Hessian: 1
2
�𝐻𝐻 = 𝐼𝐼𝐼𝐼 + 1

3
𝑅𝑅:𝔐𝔐2 + 1

12
𝛻𝛻𝛻:𝔐𝔐3 + 𝑂𝑂 𝜖𝜖4, 1/𝑛𝑛2



Isotropic distribution in constant curvature spaces

 Symmetric spaces: no bias

 Variance is modulated w.r.t. Euclidean: 𝑉𝑉𝑉𝑉𝑉𝑉 𝑥̅𝑥𝑛𝑛 = 𝛼𝛼 𝜎𝜎2

𝑛𝑛

High concentration expansion
 𝛼𝛼 = 1 + 2

3
1 − 1

𝑑𝑑
1 − 1

𝑛𝑛
𝜅𝜅𝜎𝜎2 + 𝑂𝑂(𝜖𝜖5)

Closed form for asymptotic BP-CLT expansion

 𝛼𝛼 = 1
𝑑𝑑

+ 1 − 1
𝑑𝑑
�ℎ

−2
+ 𝑂𝑂 𝑛𝑛−2
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Isotropic distribution in constant curvature spaces

 Variance is modulated w.r.t. Euclidean: 𝑉𝑉𝑉𝑉𝑉𝑉 𝑥̅𝑥𝑛𝑛 = 𝛼𝛼 𝜎𝜎2

𝑛𝑛
)

Asymptotic BP-CLT expansion

 𝛼𝛼 = 1
𝑑𝑑

+ 1 − 1
𝑑𝑑
�ℎ

−2
+ 𝑂𝑂 𝑛𝑛−2

Archetypal modulation factor
 Uniform distrib on 𝑆𝑆 𝑥̅𝑥,𝜃𝜃 ⊂ 𝑀𝑀 , 

large n, large d

 𝛼𝛼 = tan2 𝜅𝜅𝜃𝜃2

𝜅𝜅𝜃𝜃2
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Conclusions

High concertation expansion very accurate for low theta

Asymptotic expansion very accurate for n> 10

Main variable controlling the modulation is variance-
curvature tensor

𝑅𝑅(∎, °)∎:𝔐𝔐2

Main variable controling the bias
𝔐𝔐2:𝛻𝛻°𝑅𝑅(°,∎)∎:𝔐𝔐2
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds
Metric and Affine Geometric Settings for Lie Groups 
Parallel Transport to Analyze Longitudinal Deformations

Advances Statistics: CLT & PCA
 Estimation of the empirical Fréchet mean & CLT
 Principal component analysis in manifolds
 Natural subspaces in manifolds: barycentric subspaces
 Rephrasing PCA with flags of subspaces



 Beyond the 0-dim mean higher dimensional subspaces
 When embedding structure is already manifold (e.g. Riemannian):  

Not manifold learning (LLE, Isomap,…) but submanifold learning
 Natural subspaces for extending PCA to manifolds?

Low dimensional subspace approximation? 

X. Pennec - Geometric Statistics workshop, 04/09/2019 19

Manifold of cerebral ventricles
Etyngier, Keriven, Segonne 2007.

Manifold of brain images
S. Gerber et al, Medical Image analysis, 2009.



Tangent PCA (tPCA)

Maximize the squared distance to the mean 
(explained variance)

 Algorithm
 Unfold data on tangent space at the mean 

 Diagonalize covariance at the mean Σ 𝑥𝑥 ∝ ∑𝑖𝑖 𝑥̅𝑥𝑥𝑥𝑖𝑖 𝑥̅𝑥𝑥𝑥𝑖𝑖
𝑡𝑡

 Generative model: 
 Gaussian (large variance) in the horizontal subspace 
 Gaussian (small variance) in the vertical space

 Find the subspace of 𝑇𝑇𝑥𝑥𝑀𝑀 that best explains the variance

X. Pennec - Geometric Statistics workshop, 04/09/2019 20



Problems of tPCA

Analysis is done relative to the mean
 What if the mean is a poor description of the data? 

 Multimodal distributions
 Uniform distribution on subspaces
 Large variance w.r.t curvature

X. Pennec - Geometric Statistics workshop, 04/09/2019 21
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Bimodal distribution on S2



Principal Geodesic / Geodesic Principal Component Analysis

Minimize the squared Riemannian distance to a low 
dimensional subspace (unexplained variance) 

 Geodesic Subspace: 𝐺𝐺𝐺𝐺 𝑥𝑥,𝑤𝑤1, …𝑤𝑤𝑘𝑘 = exp𝑥𝑥 ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑤𝑤𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝛼𝛼 ∈ 𝑅𝑅𝑘𝑘

 Parametric subspace spanned by geodesic rays from point x
 Beware: GS have to be restricted to be well posed [XP, AoS 2018]
 PGA (Fletcher et al., 2004, Sommer 2014)
 Geodesic PCA (GPCA, Huckeman et al., 2010) 

 Generative model:
 Unknown (uniform ?) distribution within the subspace
 Gaussian distribution in the vertical space

Asymmetry w.r.t. the base point in 𝐺𝐺𝐺𝐺 𝑥𝑥,𝑤𝑤1, …𝑤𝑤𝑘𝑘
 Totally geodesic at x only
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Patching the Problems of tPCA / PGA 
Improve the flexibity of the geodesics

 1D regression with higher order splines [Gu, Machado, Leite, Vialard, 
Singh, Niethammer, Absil,…]

 Control of dimensionality for n-D Polynomials on manifolds?

Iterated Frame Bundle Development 
[HCA, Sommer GSI 2013]
 Iterated construction of  subspaces 
 Parallel transport in frame bundle

 Intrinsic asymmetry between components

Nested “algebraic” subspaces
 Principal nested spheres [Jung, Dryden, Marron 2012]
 Quotient of Lie group action [Huckemann, Hotz, Munk, 2010] 

 No general semi-direct product space structure in general 
Riemannian manifolds  

X. Pennec - Geometric Statistics workshop, 04/09/2019 23

Courtesy of S. Sommer



X. Pennec - Geometric Statistics workshop, 04/09/2019 24

Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds
Metric and Affine Geometric Settings for Lie Groups 
Parallel Transport to Analyze Longitudinal Deformations

Advances Statistics: CLT & PCA
 Estimation of the empirical Fréchet mean & CLT
 Principal component analysis in manifolds
 Natural subspaces in manifolds: barycentric subspaces
 Rephrasing PCA with flags of subspaces



Affine span in Euclidean spaces

Affine span of (k+1) points: 
weighted barycentric equation

Aff x0, x1, … xk = {x = ∑𝑖𝑖 𝜆𝜆𝑖𝑖 𝑥𝑥𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∑𝑖𝑖 𝜆𝜆𝑖𝑖 = 1} 
= x ∈ 𝑅𝑅𝑛𝑛 𝑠𝑠. 𝑡𝑡 ∑𝑖𝑖 𝜆𝜆𝑖𝑖 (𝑥𝑥𝑖𝑖−𝑥𝑥 = 0, 𝜆𝜆 ∈ 𝑃𝑃𝑘𝑘∗} 

Key ideas: 
 tPCA, PGA: Look at data points from the 
mean (mean has to be unique)

 Triangulate from several reference: 
locus of weighted means
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Barycentric subspaces and Affine span
in Riemannian manifolds

Fréchet / Karcher barycentric subspaces (KBS / FBS)
 Normalized weighted variance: σ2(x,λ) = ∑λ𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡2 𝑥𝑥, 𝑥𝑥𝑖𝑖 /∑λ𝑖𝑖
 Set of absolute / local minima of the 𝜆𝜆-variance
 Works in stratified spaces (may go accross different strata)

 Non-negative weights: Locus of Fréchet Mean [Weyenberg, Nye]

Exponential barycentric subspace and affine span
 Weighted exponential barycenters: 𝔐𝔐1 𝑥𝑥, 𝜆𝜆 = ∑𝑖𝑖 𝜆𝜆𝑖𝑖 𝑥𝑥𝑥𝑥𝑖𝑖 = 0
 EBS 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 = 𝑥𝑥 ∈ 𝑀𝑀∗ 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 𝔐𝔐1 𝑥𝑥, 𝜆𝜆 = 0}
 Affine span = closure of EBS in M 𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥0, …𝑥𝑥𝑘𝑘 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥0, … 𝑥𝑥𝑘𝑘

Questions
 Local structure: local manifold? dimension? stratification? 
 Relationship between KBS ⊂ FBS, EBS and affine span?
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[X.P. Barycentric Subspace Analysis on Manifolds. Annals of statistics. 2018. arXiv:1607.02833]



Analysis of Barycentric Subspaces
Assumptions:

 Restrict to the punctured manifold 𝑀𝑀∗ 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 = 𝑀𝑀 / ∪ 𝐶𝐶 𝑥𝑥𝑖𝑖
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 𝑥𝑥, 𝑥𝑥𝑖𝑖 , log𝑥𝑥(𝑥𝑥𝑖𝑖) are smooth but 𝑀𝑀∗ may be split in pieces

 Affinely independent points: 
𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 0≤𝑖𝑖 ≠𝑗𝑗≤𝑘𝑘

exist and are linearly independent for all i

Local well posedness for the barycentric simplex:
 EBS / KBS are well defined in a neighborhood of reference points
 For reference points in a sufficiently small ball and positive weights:

unique Frechet = Karcher = Exp Barycenter in that ball: smooth 
graph of a k-dim function [proof using Buser & Karcher 81]

SVD characterization of EBS:        𝔐𝔐1 x, λ = 𝑍𝑍 𝑥𝑥 𝜆𝜆 = 0
 SVD: 𝑍𝑍 𝑥𝑥 = [ 𝑥𝑥𝑥𝑥0, … 𝑥𝑥𝑥𝑥𝑘𝑘] = 𝑈𝑈 𝑥𝑥 𝑆𝑆 𝑥𝑥 𝑉𝑉𝑡𝑡(𝑥𝑥)

 𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 = Zero level-set of l>0 singular values of Z(x) 
 Stratification on the number of vanishing singular values
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Analysis of Barycentric Subspaces

Exp. barycenters are critical points of 𝜆𝜆-variance on M*
 𝛻𝛻σ2(x,λ)= −2𝔐𝔐1 x, λ = 0 𝑲𝑲𝑲𝑲𝑺𝑺 ∩ 𝑴𝑴∗ ⊂ 𝑬𝑬𝑩𝑩𝑩𝑩

Caractérisation of local minima: Hessian (if non degenerate)

𝐻𝐻(x,λ) = −2�
𝑖𝑖

𝜆𝜆𝑖𝑖𝐷𝐷𝑥𝑥 log𝑥𝑥 𝑥𝑥𝑖𝑖 = 𝐈𝐈𝐈𝐈 −
𝟏𝟏
𝟑𝟑
𝐑𝐑𝐑𝐑𝐑𝐑 𝕸𝕸𝟐𝟐 𝐱𝐱,𝝀𝝀 + HOT

Regular and positive pts (non-degenerated critical points)
 𝑬𝑬𝑬𝑬𝑬𝑬𝑹𝑹𝑹𝑹𝑹𝑹 𝒙𝒙𝟎𝟎, …𝒙𝒙𝒌𝒌 = 𝒙𝒙 ∈ 𝑨𝑨𝑨𝑨𝑨𝑨 𝒙𝒙𝟎𝟎, …𝒙𝒙𝒌𝒌 , 𝒔𝒔. 𝒕𝒕. 𝑯𝑯 𝒙𝒙,𝝀𝝀∗(𝒙𝒙) ≠ 𝟎𝟎
 𝑬𝑬𝑬𝑬𝑬𝑬+ 𝒙𝒙𝟎𝟎, …𝒙𝒙𝒌𝒌 = { 𝒙𝒙 ∈ 𝑨𝑨𝑨𝑨𝑨𝑨 𝒙𝒙𝟎𝟎, …𝒙𝒙𝒌𝒌 , 𝒔𝒔. 𝒕𝒕. 𝑯𝑯 𝒙𝒙,𝝀𝝀∗(𝒙𝒙) 𝑷𝑷𝑷𝑷𝑷𝑷.𝒅𝒅𝒅𝒅𝒅𝒅. }

Theorem: EBS partitioned into cells by the index of the Hessian
of λ-variance: KBS = EBS+ on M*
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Example on the sphere

Manifold
 Unit sphere ℳ = 𝑺𝑺𝒏𝒏 embedded in ℝ𝒏𝒏+𝟏𝟏

 ||x|| =1

Exp and log map
exp𝑥𝑥 𝑣𝑣 = cos 𝑣𝑣 𝑥𝑥 + sin( 𝑣𝑣 )

𝑣𝑣
𝑣𝑣

log𝑥𝑥 𝑦𝑦 = 𝑓𝑓 𝜃𝜃 𝑦𝑦 − cos 𝜃𝜃 with 𝜃𝜃 = arccos 𝑥𝑥𝑡𝑡𝑦𝑦

Distance       𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥, 𝑦𝑦 = log𝑥𝑥(𝑦𝑦) = 𝜃𝜃

(k+1)-pointed & punctured Sphere
 𝑋𝑋 = 𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 ∈ 𝑆𝑆𝑛𝑛 𝑘𝑘

 Punctured sphere: exclude antipodal points:  𝑆𝑆𝑛𝑛∗ = 𝑆𝑆𝑛𝑛/ −𝑋𝑋
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KBS / FBS with 3 points on the sphere
EBS: great subspheres spanned by reference points (mod cut loci)

EBS 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑋𝑋 ⋂𝑆𝑆𝑛𝑛 \𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋) 𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑋𝑋 ⋂𝑆𝑆𝑛𝑛

KBS/FBS: look at index of the Hessian of 𝜆𝜆-variance
H(x,𝜆𝜆) =∑λ𝑖𝑖𝜃𝜃𝑖𝑖 cot 𝜃𝜃𝑖𝑖 Id − xxt + ∑(1 − λ𝑖𝑖𝜃𝜃𝑖𝑖 cot 𝜃𝜃𝑖𝑖 ) 𝑥𝑥𝑥𝑥𝑖𝑖 𝑥𝑥𝑥𝑥𝑖𝑖

𝑡𝑡

 Complex algebric geometry problem [Buss & Fillmore, ACM TG 2001]
 3 points of the n-sphere: EBS partitioned in cell complex by index of critical point            
 KBS/EBS less interesting than EBS/affine span
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Example on the hyperbolic space

Manifold
 Unit pseudo-sphere ℳ = 𝑯𝑯𝒏𝒏

embedded in Minkowski space ℝ𝟏𝟏,𝒏𝒏

 𝑥𝑥 ∗
2 = −𝑥𝑥02 + 𝑥𝑥12 + ⋯𝑥𝑥𝑛𝑛2 = −1

Exp and log map
exp𝑥𝑥 𝑣𝑣 = cosh 𝑣𝑣 ∗ 𝑥𝑥 + sinh( 𝑣𝑣 ∗)

𝑣𝑣 ∗
𝑣𝑣

log𝑥𝑥 𝑦𝑦 = 𝑓𝑓∗ 𝜃𝜃 𝑦𝑦 − cosh 𝜃𝜃 with 𝜃𝜃 = arcosh − 𝑥𝑥 𝑦𝑦 ∗

Distance  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥, 𝑦𝑦 = log𝑥𝑥 𝑦𝑦 ∗ = 𝜃𝜃

Punctured hyperbolic space: no cut locus to exclude
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Example on the hyperbolic space
EBS = Affine span: great sub-hyperboloids spanned by reference points

EBS 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 = 𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥0, …𝑥𝑥𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑋𝑋 ∩ 𝐻𝐻𝑛𝑛

KBS: locus of maximal index of the Hessian of 𝜆𝜆-variance
H(x,𝜆𝜆) =∑λ𝑖𝑖𝜃𝜃𝑖𝑖coth 𝐽𝐽 + 𝐽𝐽xxt𝐽𝐽𝑡𝑡 + ∑(1 − 𝜆𝜆𝑖𝑖coth 𝜃𝜃𝑖𝑖 )𝐽𝐽 𝑥𝑥𝑥𝑥𝑖𝑖 𝑥𝑥𝑥𝑥𝑖𝑖

𝑡𝑡 𝐽𝐽𝑡𝑡

 Complex algebric geometry problem
 3 points on Hn: better than for spheres, but still disconnected components
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Geodesic subspaces are limit cases of affine span

Theorem
 𝐺𝐺𝐺𝐺 𝑥𝑥,𝑤𝑤1, …𝑤𝑤𝑘𝑘 = {exp𝑥𝑥 ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑤𝑤𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝛼𝛼 ∈ 𝑅𝑅𝑘𝑘 } is the limit 

of 𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥0, exp𝑥𝑥𝑜𝑜 𝜖𝜖 𝑤𝑤1 , … exp𝑥𝑥𝑜𝑜 𝜖𝜖 𝑤𝑤𝑘𝑘 when 𝜖𝜖 → 0.

 Reference points converge to a 1st order (k,n)-jet
 PGA [Fletcher et al. 2004, Sommer et al. 2014]
 GPGA [Huckemann et al. 2010]

Conjecture
 This can be generalized to higher order derivatives 

 Quadratic, cubic splines [Vialard, Singh, Niethammer]
 Principle nested spheres [Jung, Dryden, Marron 2012]
 Quotient of Lie group action [Huckemann, Hotz, Munk, 2010] 
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Application in Cardiac motion analysis

[ Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018 ]
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Application in Cardiac motion analysis

36X. Pennec - Geometric Statistics workshop, 04/09/2019

Take a triplet of 
reference images

Find weights λi and 
SVFs vi such that:

• 𝒗𝒗𝒊𝒊 registers image
to reference i

• ∑𝒊𝒊 𝝀𝝀𝒊𝒊 𝒗𝒗𝒊𝒊 = 𝟎𝟎 𝒗𝒗𝟎𝟎

𝒗𝒗𝟏𝟏

𝒗𝒗𝟐𝟐

Optimize reference 
images to achieve 
best registration 
over the sequence

[ Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018 ]



Application in Cardiac motion analysis

37X. Pennec - Geometric Statistics workshop, 04/09/2019

𝝀𝝀𝟎𝟎

𝝀𝝀𝟏𝟏

𝝀𝝀𝟐𝟐

[ Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018 ]

Barycentric coefficients curvesOptimal Reference Frames



Cardiac Motion Signature

38

Tested on 10 controls [1] and 16 Tetralogy of Fallot patients [2]

Dimension reduction from +10M voxels to 3 reference frames + 60 coefficients

Low-dimensional representation of motion using:
Barycentric coefficients curvesOptimal Reference Frames

[1] Tobon-Gomez, C., et al.: Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Medical Image Analysis (2013)

[2] Mcleod K., et al.: Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics. IEEE TMI (2015)
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Cardiac motion synthesis

39X. Pennec - Geometric Statistics workshop, 04/09/2019

Barycentric Reconstruction 

(3 images)
Original Sequence PCA Reconstruction 

(2 modes)

3 images + 2 coeff.

Reconstr. error: 18.75
Compression ratio: 1/10

30 images 1 image + 2 SVF + 2 coeff.

Reconstr. error: 26.32 (+40%) 
Compression ratio: 1/4

[ Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018 ]
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Geometric Statistics: Mathematical 
foundations and  applications in 

computational anatomy

Intrinsic Statistics on Riemannian Manifolds
Manifold-Valued Image Processing
Metric and Affine Geometric Settings for Lie Groups 
Parallel Transport to Analyze Longitudinal Deformations

Advances Statistics: CLT & PCA
 Estimation of the empirical Fréchet mean & CLT
 Principal component analysis in manifolds
 Natural subspaces in manifolds: barycentric subspaces
 Rephrasing PCA with flags of subspaces



Forward, Backward and Nested Analysis

Forward Barycentric Subspace (k-FBS) decomposition 
 Iteratively add points 𝑥𝑥𝑗𝑗 from j=0 to k
 𝑥𝑥0 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑦𝑦𝑗𝑗 , 𝑥𝑥1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2 (𝑥𝑥0, 𝑥𝑥) …    PGA-like
 Start with 2 points: x0, x1 = argmin(x,y) σout2 (x, y) GPGA-like

Backward analysis: Pure Barycentric Subspace (k-PBS)
 Find 𝐴𝐴𝐴𝐴𝑓𝑓 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 minimizing the unexplained variance:

𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 = ∑𝑗𝑗 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡2 𝑦𝑦𝑗𝑗 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥0…𝑥𝑥𝑘𝑘 (𝑦𝑦𝑗𝑗)
 Iteratively remove one point from  (𝑥𝑥0, … 𝑥𝑥𝑗𝑗) from j=0 to k
 One optimization only for k+1 points and discrete backward reordering 

From greedy to global optimization? 
 Optimal unexplained variance  non nested subspaces
 Nested forward / backward procedures  not optimal
 Optimize first, decide dimension later  Nestedness required

[Principal nested relations: Damon, Marron, JMIV 2014]
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Barycentric Subspace Analysis (k-BSA)

The natural object for PCA: Flags of subspaces in manifolds
 𝑥𝑥0 ≺ 𝑥𝑥1 ≺ ⋯ ≺ 𝑥𝑥𝑘𝑘 are k +1  n distinct ordered points of M. 

 𝐹𝐹𝐹𝐹(𝑥𝑥0 ≺ 𝑥𝑥1 ≺ ⋯ ≺ 𝑥𝑥𝑘𝑘) is the sequence of properly nested 
subspaces 𝐹𝐹𝐿𝐿𝑖𝑖 𝑥𝑥0 ≺𝑥𝑥1≺⋯≺𝑥𝑥𝑘𝑘 = 𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥0, … 𝑥𝑥𝑖𝑖

𝐴𝐴𝐴𝐴𝑓𝑓 𝑥𝑥0 = 𝑥𝑥0 ⊂ …𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 … ⊂ 𝐴𝐴𝐴𝐴𝑓𝑓 𝑥𝑥0, … 𝑥𝑥𝑛𝑛 = 𝑀𝑀
𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2 𝑥𝑥0 ≥ … ≥ 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2 𝑥𝑥0, … 𝑥𝑥𝑘𝑘 ≥ … ≥ 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2 𝑥𝑥0, … 𝑥𝑥𝑛𝑛 = 0

\
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Barycentric Subspace Analysis (k-BSA)

Accumulated unexplained variance (area under the curve)
 k-BSA optimizes:  𝐴𝐴𝐴𝐴𝑉𝑉 𝑘𝑘 = ∑𝑖𝑖=0𝑘𝑘 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2 𝑥𝑥0, …𝑥𝑥𝑖𝑖
 In a Euclidean space with Gaussian 𝑁𝑁(𝑥𝑥0,Σ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎12, …𝜎𝜎𝑛𝑛2)) 
𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2 𝑥𝑥0, … 𝑥𝑥𝑖𝑖 = 𝜎𝜎𝑖𝑖+12 + ⋯𝜎𝜎𝑛𝑛2 𝐴𝐴𝐴𝐴𝑉𝑉 𝑘𝑘 = ∑𝑖𝑖=0𝑘𝑘 𝑖𝑖 𝜎𝜎𝑖𝑖2 + 𝑘𝑘 + 1 ∑𝑖𝑖=𝑘𝑘+1𝑛𝑛 𝜎𝜎𝑖𝑖2

 minimal for ordered eigenmodes of Σ with 𝜎𝜎1 ≥ 𝜎𝜎2 … ≥ 𝜎𝜎𝑛𝑛
\

X. Pennec - Geometric Statistics workshop, 04/09/2019 45

Adapted from 3DM slides by Marc van Kreveld

[ Barycentric Subspace Analysis on Manifolds, Annals of Statistics 2018 ] 



Sample-limited barycentric subspace inference 
Restrict the inference to data points only 

 Fréchet mean / template [Lepore et al 2008]
 First geodesic mode [Feragen et al. 2013, Zhai et al 2016]
 Higher orders: challenging with PGA… but not with BSA
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• FBS: Forward Barycentric Subspace 

• k-PBS: Pure Barycentric Subspace with backward ordering

• k-BSA: Barycentric Subspace Analysis up to order k



Robustness with Lp norms

Affine spans is stable to p-norms 
 σ𝑝𝑝(x,λ) = 1

𝑝𝑝
∑λ𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑝𝑝 𝑥𝑥, 𝑥𝑥𝑖𝑖 /∑λ𝑖𝑖

 Critical points of σ𝑝𝑝(x,λ) are also critical points of  σ2(x,λ′) with
𝜆𝜆𝑖𝑖′ = 𝜆𝜆𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑝𝑝− 2 𝑥𝑥, 𝑥𝑥𝑖𝑖 (non-linear reparameterization of affine span)

Unexplained p-variance of residuals
 2 < 𝑝𝑝 → +∞: more weight on the tail,

at the limit: penalizes the maximal distance to subspace
 0 < 𝑝𝑝 < 2: less weight on the tail of the residual errors: 

statistically robust estimation
 Non-convex for p<1 even in Euclidean space
 But sample-limited algorithms do not need gradient information
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3 clusters on a 5D sphere
 10, 9 and 8 points (stddev 6 deg) around three orthogonal 

axes plus 30 points uniformly samples on 5D sphere

Experiments on the sphere
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p=2 p=1 p=0.1

• FBS: Forward Barycentric Subspace: mean and median not in clusters

• 1-PBS / 2-PBS: Pure Barycentric Subspace with backward ordering: ok for k=2 only

• 1-BSA / 2-BSA: Barycentric Subspace Analysis up to order k: less sensitive to p & k



3 clusters on a 5D hyperboloid (50% outliers)
 15 random points (stddev 0.015) around an equilateral triangle of 

length 1.57 plus 15 points of stddev 1.0 (truncated at max 1.5)

Experiments on the hyperbolic space
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p=2 p=1 p=0.5

• FBS: Forward Barycentric Subspace: ok for 𝒑𝒑≤0.5
• 1-PBS / 2-PBS: Pure Barycentric Subspace with backward ordering: ok for k=2 only 

• 1-BSA / 2-BSA: Barycentric Subspace Analysis up to order k: ok for 𝒑𝒑 ≤ 𝟏𝟏



Take home messages
Natural subspaces in manifolds

 PGA & Godesic subspaces: 
look at data points from the (unique) mean

 Barycentric subspaces: 
« triangulate » several reference points
 Justification of multi-atlases?

Critical points (affine span) rather than 
minima (FBS/KBS)
 Barycentric coordinates need not be 

positive (convexity is a problem)
 Affine notion (more general than metric)

 Generalization to Lie groups (SVFs)?

Natural flag structure for PCA
 Hierarchically embedded approximation 

subspaces to summarize / describe data
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Open research avenues

Other iterative least squares methods?
 ICA, PLS
 Manifold learning  Submanifold learning

Modulate BSA to account for within subspace distribution
 Gaussian: central points
 Clusters: mixtures of modes
 Extremal references: archetypal analysis

And applications
 Multi-atlases (brains, heart motion image sequences) 
 SPD matrices (BCI)
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Quotient spaces

Functions/Images modulo time/space parameterization
 Amplitude and phase discrimination problem
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[Allassoniere, Amit, Trouvé, 2005],
Example by Loic Devillier, IPMI 2017



The curvature of the template 
shape’s orbit and presence of 
noise creates a repulsive bias

𝜎𝜎
𝜎𝜎2: variance of 
measurement error

54

Bias �𝑻𝑻,𝑻𝑻 =
𝜎𝜎2

2
𝑯𝑯 𝑻𝑻 + 𝒪𝒪(𝜎𝜎4)

where 𝐇𝐇 𝑻𝑻 : mean curvature vector of template’s orbit

Theorem [Miolane et al. (2016)]: Bias of estimator �𝑻𝑻 of the template 𝑻𝑻

Bias
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Noise in top space = 
Bias in quotient spaces

Extension to Hilbert of ∞-dim: bias for  𝜎𝜎 > 0, asymptotic for 𝜎𝜎 → ∞,
[Devilliers, Allasonnière, Trouvé and XP. SIIMS 2017, Entropy, 2017] 

 Estimated atlas is topologically more complex than should be



References on Barycentric Subpsace Analysis
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 Barycentric Subspaces and Affine Spans in Manifolds Geometric Science of 
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 Barycentric Subspaces Analysis on Spheres Mathematical Foundations of Computational
Anatomy (MFCA'15), Oct 2015, Munich, Germany. pp.71-82, 2015. https://hal.inria.fr/hal-01203815

 Sample-limited L p Barycentric Subspace Analysis on Constant 
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 Low-Dimensional Representation of Cardiac Motion Using 
Barycentric Subspaces: a New Group-Wise Paradigm for Estimation, 
Analysis, and Reconstruction. M.M Rohé, M. Sermesant and X.P. Medical 
Image Analysis vol 45, Elsevier, April 2018, 45, pp.1-12.
 Barycentric subspace analysis: a new symmetric group-wise paradigm for 
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