Conditional quantile sequantial estimation for stochastic codes

T. Labopin-Richard F. Gamboa A. Garivier

Institut de mathématiques de Toulouse

March 23, 2016

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Table of contents

Problem and overview

- First ideas
- To another strategy

2 Stochastic algorithms embeded in k-nearest neighbors method

- The algorithm
- Results

3 Numerical simulations

- Dimension 1
- Dimensions 2 and 3

4 3 6 4 3

First ideas Fo another strategy

Problem and overview

- First ideas
- To another strategy

Stochastic algorithms embedded in k-nearest neighbors method
 The algorithm

• Results

- 3 Numerical simulations
 - Dimension 1
 - Dimensions 2 and 3

・ 同 ト ・ ヨ ト ・ ヨ ト

Stochastic algorithms embeded in k-nearest neighbors method Numerical simulations First ideas To another strateg

What is a stochastic code?

< ロ > < 同 > < 三 > < 三

rest neighbors method Numerical simulations

Example 1 :

メロト メポト メヨト メヨ

Stochastic algorithms embeded in k-nearest neighbors method Numerical simulations First ideas To another strateg

Example : property investment

イロト イポト イヨト イヨ

Stochastic algorithms embeded in k-nearest neighbors method Numerical simulations First ideas To another strategy

What is a stochastic code?

Stochastic code : $Y=G(X, \epsilon)$ G(x, ϵ) is a random variable

< ロ > < 同 > < 三 > < 三

Stochastic algorithms embeded in k-nearest neighbors method Numerical simulations First ideas To another strateg

What is a stochastic code?

Notation : $X \in \mathbb{X} \subset \mathbb{R}^d$.

・ 同 ト ・ ヨ ト ・ ヨ

Stochastic algorithms embeded in *k*-nearest neighbors method Numerical simulations First ideas To another strateg

What is a stochastic code?

Notation : $X \in \mathbb{X} \subset \mathbb{R}^d$.

Goal : Estimate the quantile of level $\alpha \in]0,1[$ of the law $\mathcal{L}(G(x,\epsilon))$ using as few as possible calls to the code.

First ideas To another strategy

Problem and overview

- First ideas
- To another strategy

Stochastic algorithms embedded in k-nearest neighbors method
 The algorithm

Results

- 3 Numerical simulations
 - Dimension 1
 - Dimensions 2 and 3

・ 同 ト ・ ヨ ト ・ ヨ ト

First ideas To another strategy

To estimate the quantile of a law Z, one can

- 1) Build a sample (Z_1, \ldots, Z_n) of Z.
- 2) Use a quantile estimator as :
 - a) The empirical quantile $Z_{(\lfloor n\alpha \rfloor + 1)}$. \Rightarrow consistant and normaly Gaussian.
 - b) The Robbins-Monro stochastic algorithm

$$\begin{cases} \theta_0 \in \mathbb{R} \\\\ \theta_{n+1} = \theta_n - \frac{1}{n^{\gamma}} \left(\mathbf{1}_{Z_{n+1} \leq \theta_n} - \alpha \right). \end{cases}$$

 \Rightarrow consistant and normaly Gaussian if $\gamma \in]1/2, 1]$.

- 4 同 1 4 三 1 4 三 1

First ideas To another strategy

Application to our problem

We aim at estimate the quantile of the law $\mathcal{L}(G(x, \epsilon))$, we could then

- 1) Provide several times the same input x to the stochastic code, to build a sample of the target law.
- 2) Use one of the previous estimator.

Problem

We aim at estimating the conditional quantile for every input x. If \mathbb{X} is uncountable or if each call to the code is expensive, the is not a solution.

イロト イポト イヨト イヨト

First ideas To another strategy

To another strategy

2 Stochastic algorithms embedded in k-nearest neighbors method
 • The algorithm

Results

- 3 Numerical simulations
 - Dimension 1
 - Dimensions 2 and 3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

First ideas To another strategy

Stochastic algorithms embeded in *k*-nearest neighbors method Numerical simulations

Type of strategy

- 1) A budget N of calls to the code is fixed.
- 2) We sample (X_1, \ldots, X_N) from the input law X.
- 3) We observe the corresponding responses (Y_1, \ldots, Y_N) .
- 4) We apply an algorithm wich allows, for every x and using only the previous observations, to estimate the conditional quantile.

< ロ > < 同 > < 回 > < 回 > .

- First ideas
- To another strategy

Stochastic algorithms embedded in k-nearest neighbors method The algorithm

- Results
- 3 Numerical simulations
 - Dimension 1
 - Dimensions 2 and 3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The algorithm Results

Algorithm

$$\begin{cases} \theta_0 & \in \mathbb{R} \\ \theta_{n+1} & = \theta_n & -\frac{1}{n^{\gamma}} \left(\mathbf{1}_{Z_{n+1} \le \theta_n} & -\alpha \right) \end{cases}$$

・ロト ・四ト ・ヨト ・ヨト

æ

The algorithm Results

Algorithm

$$\begin{cases} \theta_0 & \in \mathbb{R} \\ \theta_{n+1} & = \theta_n & -\frac{1}{n^{\gamma}} \left(\mathbf{1}_{Y_{n+1} \le \theta_n} & -\alpha \right) \end{cases}$$

æ

Stochastic algorithms embeded in *k*-nearest neighbors method Numerical simulations

The algorithm Results

Algorithm

$$\begin{cases} \theta_0(x) \in \mathbb{R} \\ \theta_{n+1}(x) = \theta_n(x) - \frac{1}{n^{\gamma}} \left(\mathbf{1}_{Y_{n+1} \le \theta_n(x)} - \alpha \right) \end{cases}$$

・ロト ・四ト ・ヨト ・ヨト

æ

The algorithm Results

Algorithm

$$\begin{cases} \theta_0(x) \in \mathbb{R} \\ \theta_{n+1}(x) = \theta_n(x) - \frac{1}{n^{\gamma}} \left(\mathbf{1}_{Y_{n+1} \le \theta_n(x)} - \alpha \right) \mathbf{1}_{X_{n+1} \in kNN_{n+1}(x)} \\ \text{où } k_n = \lfloor n^{\beta} \rfloor. \end{cases}$$

Ξ.

The algorithm Results

Algorithm

$$\begin{cases} \theta_0(x) \in \mathbb{R} \\\\ \theta_{n+1}(x) = \theta_n(x) - \frac{1}{n^{\gamma}} \left(\mathbf{1}_{Y_{n+1} \le \theta_n(x)} - \alpha \right) \mathbf{1}_{X_{n+1} \in kNN_{n+1}(x)} \\\\ \text{pù } k_n = \lfloor n^{\beta} \rfloor. \end{cases}$$

- For which parameters (γ, β) is the algorithm convergent ?
 ⇒ Compromise needed.
- Could we prove some non-asymptotic results?
- Are there optimal parameters?

< ロ > < 同 > < 三 > < 三 >

The algorithm Results

Example

メロト メポト メヨト メヨ

The algorithm Results

Example

メロト メポト メヨト メヨ

The algorithm Results

Example

メロト メポト メヨト メヨ

The algorithm Results

Example

メロト メポト メヨト メヨ

The algorithm Results

Example

イロト イボト イヨト イヨ

- First ideas
- To another strategy

Stochastic algorithms embedded in *k*-nearest neighbors method The algorithm

Results

3 Numerical simulations

- Dimension 1
- Dimensions 2 and 3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The algorithm Results

Continuity assumption

Notations :

- \mathcal{B}_x the set of the balls of \mathbb{R}^d centered in x. $B \in \mathcal{B}_X$ has a radius r_B .
- For $B \in \mathcal{B}_x$, F_Y^B is the cumulative distribution function of the law $\mathcal{L}(g(X, \epsilon)|X \in B)$.
- *F*_{Y^x} is the cumulative distribution function of the law *L*(g(x, ε)).

Assumption A1 For all $x \in \text{Supp}(X)$, there exists a constant M(x) such that

$$\forall B \in \mathcal{B}_x, \ \forall t \in \mathbb{R}, \ |F_{Y^B}(t) - F_{Y^{\times}}(t)| \leq M(x)r_B$$
.

くロ と く 同 と く ヨ と 一

The algorithm Results

Technical asumptions

Assumption A2 The input law X has a density which is lower bounded by a constant $C_{inputs} > 0$.

 \Rightarrow Useful to deal with $\mathbb{E}(||X - x||_{(k_n,n)})$ or $\mathbb{P}(X \in kNN_n(x))$.

イロト イポト イヨト イヨト

The algorithm Results

Technical asumptions

Assumption A2 The input law X has a density which is lower bounded by a constant $C_{inputs} > 0$.

 \Rightarrow Useful to deal with $\mathbb{E}(||X - x||_{(k_n,n)})$ or $\mathbb{P}(X \in kNN_n(x))$.

Assumption A3 The code function g is at value in the compact set $[L_Y, U_Y]$.

 $\Rightarrow \forall x, \theta_n(x) \text{ is almost-surely bounded.}$

The algorithm Results

Technical asumptions

Assumption A2 The input law X has a density which is lower bounded by a constant $C_{inputs} > 0$.

 \Rightarrow Useful to deal with $\mathbb{E}(||X - x||_{(k_n,n)})$ or $\mathbb{P}(X \in kNN_n(x))$.

Assumption A3 The code function g is at value in the compact set $[L_Y, U_Y]$.

 $\Rightarrow \forall x, \theta_n(x) \text{ is almost-surely bounded.}$

Assumption A4 For every $x \in \text{Supp}(X)$, the law of $g(x, \epsilon)$ has a density which is lower bounded by a constant $C_g(x) > 0$.

 \Rightarrow There exists a constant $C_2(x, \alpha)$ such that :

 $\forall \theta_n(x), \ \left[F_{Y^{\times}}(\theta_n(x)) - F_{Y^{\times}}(\theta^*(x)) \right] \left[\theta_n(x) - \theta^*(x) \right] \geq C_2(x,\alpha) \left[\theta_n(x) - \theta^*(x) \right]^2.$

・ロッ ・行 ・ ・ ヨッ ・ 日 ・

The algorithm Results

Results

Theorem : almost-sure convergence

Let x be a fixed input. Under assumptions A1 and A2, the algorithm in x is almost surely convergent whenever $\frac{1}{2} < \gamma < \beta < 1$.

< ロ > < 同 > < 三 > < 三 >

The algorithm Results

Results

Theorem : almost-sure convergence

Let x be a fixed input. Under assumptions A1 and A2, the algorithm in x is almost surely convergent whenever $\frac{1}{2} < \gamma < \beta < 1$.

Comments on parameters :

• $1/2 < \gamma \leq 1 \Rightarrow$ classical assumption for Robbins-Monro algorithm.

イロト イヨト イヨト

The algorithm Results

Results

Theorem : almost-sure convergence

Let x be a fixed input. Under assumptions A1 and A2, the algorithm in x is almost surely convergent whenever $\frac{1}{2} < \gamma < \beta < 1$.

Comments on parameters :

- $1/2 < \gamma \leq 1 \Rightarrow$ classical assumption for Robbins-Monro algorithm.
- $0 < \beta \Rightarrow$ the number a neighbors goes to $+\infty$ and then, $||X - x||_{(k_n,n)} \rightarrow 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

The algorithm Results

Results

Theorem : almost-sure convergence

Let x be a fixed input. Under assumptions A1 and A2, the algorithm in x is almost surely convergent whenever $\frac{1}{2} < \gamma < \beta < 1$.

Comments on parameters :

- $1/2 < \gamma \leq 1 \Rightarrow$ classical assumption for Robbins-Monro algorithm.
- $0 < \beta \Rightarrow$ the number a neighbors goes to $+\infty$ and then, $||X x||_{(k_n,n)} \to 0.$
- $\beta < 1 \Rightarrow$ technical assumption.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

The algorithm Results

Results

Theorem : almost-sure convergence

Let x be a fixed input. Under assumptions A1 and A2, the algorithm in x is almost surely convergent whenever $\frac{1}{2} < \gamma < \beta < 1$.

Comments on parameters :

- $1/2 < \gamma \leq 1 \Rightarrow$ classical assumption for Robbins-Monro algorithm.
- $0 < \beta \Rightarrow$ the number a neighbors goes to $+\infty$ and then, $||X x||_{(k_n,n)} \to 0.$
- $\beta < 1 \Rightarrow$ technical assumption.
- $\gamma < \beta \Rightarrow$ effective learning rate.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

The algorithm Results

Classical algorithm :

• An update at each step

•
$$\sum_{n} \gamma_n = +\infty \Rightarrow \gamma \in \left[\frac{1}{2}, 1\right].$$

Our algrithm :

- An update every $rac{k_n}{n} \sim n^{eta-1}$ steps
- At step $\mathsf{n}: \mathsf{N} = \sum_{k \leq n} k^{eta 1} \sim n^eta$ updates

• At time
$$t = n^{\frac{1}{\beta}} : N = n$$
 updates

• Effective learning rate :
$$\gamma_{k_n} = \frac{1}{\left(n^{\frac{1}{\beta}}\right)^{\gamma}}$$
.

•
$$\sum_{n} \gamma_{k_n} = +\infty \Rightarrow \gamma < \beta.$$

< 同 ト < 三 ト < 三 ト

The algorithm Results

Rate of convergence of the MSE

Theorem

Under hypothesis A1, A2, A3 and A4, the MSE $a_n(x)$ satisfies : $\forall (\gamma, \beta, \epsilon)$ such that $0 < \gamma \le \beta < 1$ and $1 > \epsilon > 1 - \beta$, $\forall n \ge N_0$, $a_n(x) \le \exp\left(-2C_2(x, \alpha)\sum_{j=N_0+1}^n j^{-\epsilon-\gamma}\right)C_1$ $+\sum_{k=N_0+1}^n \exp\left(-2C_2(x, \alpha)\sum_{j=k+1}^n j^{-\epsilon-\gamma}\right)d_k + C_1\exp\left(-\frac{3n^{1-\epsilon}}{8}\right)$

where

$$d_n = C_1 \exp\left(-\frac{3n^{1-\epsilon}}{8}\right) + 2\sqrt{C_1}M(x)C_3(d)\gamma_n\left(\frac{k_n}{n}\right)^{\frac{1}{d}+1} + \gamma_n^2\frac{k_n}{n}.$$

Conditional quantile sequantial estimation for stochastic codes

The algorithm Results

Compromise between the two errors

• The bias error gives the term

$$\exp\left(-2C_2(x,\alpha)(x)\sum_{k=N_0+1}^n\frac{1}{k^{\epsilon+\gamma}}\right)$$

.

くロ と く 同 と く ヨ と 一

This term decreases to 0 if and only if $\gamma + \epsilon < 1$ which implies $\beta > \gamma$. Then β has to be chosen not too small.

• The online learning error gives the term $\gamma_n (k_n/n)^{1/d+1} = n^{(1-\beta)(1+1/d)+\gamma}.$

We then need that β is as small as possible compared to 1. Then β has to be chosen not too big.

Corollary : optimal parameters

Under the same assumptions than in Theorem 1, the mean square error decreases faster when parameters are $\gamma = \frac{1}{1+d}$ and $\beta = \gamma + \eta_{\beta}$ where $\eta_{\beta} > 0$ is as small as possible. Moreover, with these parameters, there exists a constant $C_9(x, \alpha, d)$ such that $\forall n \ge N_4(x, \alpha, d)$,

$$a_n(x) \leq \frac{C_9(x, \alpha, d)}{n^{\frac{1}{1+d}-\eta}}$$

where $\eta = \frac{\eta_{\epsilon}}{2} + \eta_{\beta}$ and $\eta_{\epsilon} = 1 - \beta - \epsilon$.

< 同 > < 三 > < 三 > -

- First ideas
- To another strategy

2 Stochastic algorithms embedded in k-nearest neighbors method
 • The algorithm

Results

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Dimension 1 Dimensions 2 and 3

Dimension 1 - almost-sure convergence

Two models with $X \sim \mathcal{U}([-1,1])$, $\epsilon \sim \mathcal{U}([-0.5,0.5])$ and x = 0 :

 $g(X,\epsilon) = X^2 + \epsilon$ et $g(X,\epsilon) = |X| + \epsilon$

FIGURE – Almost-sure convergence in function of β et γ .

Dimension 1 Dimensions 2 and 3

Mean Square Error

FIGURE – Convergence of the mean square error in function of β et γ .

▲ 同 ▶ ▲ 三 ▶ ▲

- First ideas
- To another strategy

Stochastic algorithms embedded in k-nearest neighbors method
 The algorithm

Results

- Dimension 1
- Dimensions 2 and 3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Dimension 1 Dimensions 2 and 3

Dimensions 2 and 3

Two models with $g(X, \epsilon) = ||X||^2 + \epsilon$ for $X \sim \mathcal{U}([-1, 1]^d)$, $\epsilon \sim \mathcal{U}([-0.5, 0.5])$ and $x = 0_{\mathbb{R}^d}$.

FIGURE – Mean Square Error in function of β and γ .

通り イヨト イヨト

Dimension 1 Dimensions 2 and 3

Conclusion et perspectives

Conclusion :

- We introduced an algorithm to estimate the conditional quantile of the output law of a stochastic code.
- We give the best parameters to tune the algorithme (to reach the best rate of convergence of the MSE).
- Numerical simulations show that our algorithm is powerfull to solve the problem.

Perspectives :

- What is happening if we relax the compact support assumptions ?
- Could we find lower bound for the Mean Square Error?
- Apply this algorithm to real data.

< ロ > < 同 > < 回 > < 回 > .

Thanks for your attention.

▲ 同 ▶ ▲ 国 ▶ ▲ 国