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What is a stochastic code?

X ! G(.) - Y=G(X)

Numerical code : Y=G(X)
G(x) is a real number

y1
X =gl G(., ) |§y2 ?

yn

Stochastic code : Y=G(X, ¢€)
G(x, €) is a random variable
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Example 1 :

:> Value of my best card

Number of players ::>
Number of cards per player=>
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Example : property investme

urchase price S
p p Monte Carlo loops on :

localisation » - evolution of property prices benefits

- wear and tear

type ‘ - repairs price
age mmme-| -
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G(x) is a real number
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G(x, €) is a random variable
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What is a stochastic code?

X —pl  G() = y=G(x)

Numerical code : Y=G(X)
G(x) is a real number

y1
X =gl G(.,£) ‘éyZ ?

yn

Stochastic code : Y=G(X, ¢€)
G(x, €) is a random variable

Notation : X € X ¢ R9,

Goal : Estimate the quantile of level « €]0, 1] of the law
L (G(x,¢€)) using as few as possible calls to the code.
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To estimate the quantile of a law Z, one can

1) Build a sample (Z1,...,2Z,) of Z.
2) Use a quantile estimator as :

a) The empirical quantile Z(|5q+1)-
= consistant and normaly Gaussian.
b) The Robbins-Monro stochastic algorithm
0o € R

1
9n+1 =0,— HT (12n+1§9n - a)‘

= consistant and normaly Gaussian if v €]1/2,1].
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Application to our problem

We aim at estimate the quantile of the law £ (G(x,€)), we could
then

1) Provide several times the same input x to the stochastic code,
to build a sample of the target law.

2) Use one of the previous estimator.

Problem

We aim at estimating the conditional quantile for every input x.
If X is uncountable or if each call to the code is expensive, the is
not a solution.
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Type of strategy

1) A budget N of calls to the code is fixed.

2) We sample (X1, ..., Xy) from the input law X.
3)

4)

We observe the corresponding responses (Y1,..., Yn).

We apply an algorithm wich allows, for every x and using only
the previous observations, to estimate the conditional quantile.
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Algorithm

0o eR

1

Onsr =00 ——2 (1Zn+1§9n - a)
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Algorithm

0o eR

1

Onsr =00 —— (1Yn+1§0n - a)
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Algorithm

00(X) eR

1
On11(x) = 0(x) = — (Lv, 150,00 — @)

T. Labopin-Richard, F. Gamboa, A. Garivier Conditional quantile sequantial estimation for stochastic codes



The algorithm

Stochastic algorithms embeded in k-nearest neighbors method o N
Results

Algorithm

00(X) eR

1
Ont1(x) = 0n(x) — —= (Ly,,1<0,00) — @) 1x, 1 €kNN, 11 (x)
nv
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Algorithm

00(X) eR

Stochastic algorithms embeded in k-nearest neighbors method

1
Oni1(x) = On(x) — = (1 Y1 <On(x) — Oé) 1x, kNN i1 (%)

e For which parameters (v, 3) is the algorithm convergent ?
= Compromise needed.

e Could we prove some non-asymptotic results ?

e Are there optimal parameters?
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Continuity assumption

Notations :

e B, the set of the balls of RY centered in x. B € Bx has a
radius rg.

e For B € By, F{? is the cumulative distribution function of the
law L(g(X,€)|X € B).

e Fyx is the cumulative distribution function of the law
L(g(x;¢))-

Assumption Al For all x € Supp(X), there exists a constant
M(x) such that

VB € By, Vt € R, |Fys(t) — Fyx(t)] < M(x)rg .
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Technical asumptions

Assumption A2 The input law X has a density which is lower
bounded by a constant Cippues > 0.

= Useful to deal with E(||X — x|k, ) or P(X € kNN,(x)).

T. Labopin-Richard, F. Gamboa, A. Garivier Conditional quantile sequantial estimation for stochastic codes



The algorithm

Stochastic algorithms embeded in k-nearest neighbors method
Results

Technical asumptions

Assumption A2 The input law X has a density which is lower
bounded by a constant Cippues > 0.

= Useful to deal with E(||X — x|k, ) or P(X € kNN,(x)).

Assumption A3 The code function g is at value in the compact
set [Ly, Uy]

= Vx, Op(x) is almost-surely bounded.
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Technical asumptions

Assumption A2 The input law X has a density which is lower
bounded by a constant Cippues > 0.

= Useful to deal with E(||X — x|k, ) or P(X € kNN,(x)).

Assumption A3 The code function g is at value in the compact
set [Ly, Uy]

= Vx, Op(x) is almost-surely bounded.

Assumption A4 For every x € Supp(X), the law of g(x,¢) has a
density which is lower bounded by a constant Cz(x) > 0.

= There exists a constant Cx(x, a) such that :

¥0n(x), [Fy<(0n(x)) = Fy<(0"(x))] [0n(x) = 0" (x)] = Calx, @) [0a(x) — 0" (x)]*.
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Results

Theorem : almost-sure convergence

Let x be a fixed input. Under assumptions Al and A2, the
algorithm in x is almost surely convergent whenever
F<y<pB<L
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Results

Theorem : almost-sure convergence

Let x be a fixed input. Under assumptions Al and A2, the
algorithm in x is almost surely convergent whenever
F<y<pB<L

Comments on parameters :

e 1/2 <~ <1 = classical assumption for Robbins-Monro
algorithm.
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Results

Theorem : almost-sure convergence

Let x be a fixed input. Under assumptions Al and A2, the
algorithm in x is almost surely convergent whenever
F<y<pB<L

Comments on parameters :
e 1/2 <~ <1 = classical assumption for Robbins-Monro
algorithm.

e 0 < 3 = the number a neighbors goes to +00 and then,
HX - XH(kr,,n) — 0.
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Results

Theorem : almost-sure convergence

Let x be a fixed input. Under assumptions Al and A2, the
algorithm in x is almost surely convergent whenever
F<y<pB<L

Comments on parameters :
e 1/2 <~ <1 = classical assumption for Robbins-Monro
algorithm.

e 0 < 3 = the number a neighbors goes to +00 and then,
HX - XH(kr,,n) — 0.

e 3 <1 = technical assumption.
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Results

Theorem : almost-sure convergence

Let x be a fixed input. Under assumptions Al and A2, the
algorithm in x is almost surely convergent whenever
F<y<pB<L

Comments on parameters :
e 1/2 <~ <1 = classical assumption for Robbins-Monro
algorithm.
e 0 < 3 = the number a neighbors goes to +00 and then,
11X = X/l = 0.
e 3 < 1 = technical assumption.
e v < 3 = effective learning rate.
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Classical algorithm :

e An update at each step
. nyn:+oo:>'y€}%,1]
n

Our algrithm :
e An update every % ~ nP~1 steps

Atstepn: N = Z KB=1 ~ nf updates
k<n

1
At time t = n8 : N = n updates

Effective learning rate : vy, = ( L

INT
n5>

D =+o0 =y < B

n
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Rate of convergence of the MSE

Under hypothesis A1, A2, A3 and A4, the MSE a,(x) satisfies :
V(v,B,€) such that 0 <y < <landl>e>1—[,Vn> Ny,

an(x) < exp [ —2G(x, @) Z ) G

Jj=No+1
n n 3n1—e
+ Z exp [ —2G(x, @) Z J 7 | dk + Crexp (— 8 )
k=Nop+1 J=k+1
where
k7 Sk
d,,:Clexp< )+2\/?1M ) G( d)’Yn( ) +'Yn7~
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Compromise between the two errors

e The bias error gives the term

n
1
exp | —2G(x, a)(x) Z P
k=Np+1

This term decreases to 0 if and only if v+ ¢ < 1 which implies
B > . Then 3 has to be chosen not too small.

e The online learning error gives the term
- (kn/n)l/d—i-l — p(1=-p)(A+1/d)+v

We then need that [ is as small as possible compared to 1.
Then 3 has to be chosen not too big.
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Corollary : optimal parameters

Under the same assumptions than in Theorem 1, the mean square
error decreases faster when parameters are v = lJ%d and

B = 7 +ng where ng > 0 is as small as possible. Moreover, with
these parameters, there exists a constant Cy(x, o, d) such that

Vn > Na(x, a, d),

GCo(x,a, d
P CLL)
ni+
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Numerical simulations

Dimension 1 - almost-sure convergence
Two models with X ~ U/([—1,1]), € ~U([—-0.5,0.5]) and x =0 :

g(X,e)=X?teetg(X,e)=|X|+e

relative error in function of Beta and Gamma, n=5000 Relative error in function of Beta and Gamma, n=5000

Gamma
Gamma

FIGURE — Almost-sure convergence in function of g3 et 7.
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Mean Square Error

Mean square error, n=200 Mean square error n=300

030
@
= 04
025
- 03 0.20
E E
] 5 0.15
© < 02 © ’
S
0.10
0.1
S 0.05
00 0.00
02 04 06 08 1.0
Beta Beta

F1GURE — Convergence of the mean square error in function of 3 et 7.
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Numerical simulations

Dimensions 2 and 3

Two models with g(X,€) = ||X||? + € for X ~ U([-1,1]9),
e ~U([—0.5,0.5]) and x = Opa.

Mean square error, n=400, d=2, norm Mean square error, n=500, d=3, norm

Gamma
Gamma

0.0

FIGURE — Mean Square Error in function of 8 and ~.
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Conclusion et perspectives

Conclusion :

e We introduced an algorithm to estimate the conditional
quantile of the output law of a stochastic code.

e We give the best parameters to tune the algorithme (to reach
the best rate of convergence of the MSE).

e Numerical simulations show that our algorithm is powerfull to
solve the problem.

Perspectives :

e What is happening if we relax the compact support
assumptions ?

e Could we find lower bound for the Mean Square Error?
e Apply this algorithm to real data.
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Numerical simulations

Thanks for your attention.
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