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What is a stochastic code ?

Notation : X ∈ X ⊂ Rd .

Goal : Estimate the quantile of level α ∈]0, 1[ of the law
L (G(x , ε)) using as few as possible calls to the code.

T. Labopin-Richard, F. Gamboa, A. Garivier Conditional quantile sequantial estimation for stochastic codes



Problem and overview
Stochastic algorithms embeded in k-nearest neighbors method

Numerical simulations
First ideas
To another strategy

What is a stochastic code ?

Notation : X ∈ X ⊂ Rd .

Goal : Estimate the quantile of level α ∈]0, 1[ of the law
L (G(x , ε)) using as few as possible calls to the code.

T. Labopin-Richard, F. Gamboa, A. Garivier Conditional quantile sequantial estimation for stochastic codes



Problem and overview
Stochastic algorithms embeded in k-nearest neighbors method

Numerical simulations
First ideas
To another strategy

What is a stochastic code ?

Notation : X ∈ X ⊂ Rd .

Goal : Estimate the quantile of level α ∈]0, 1[ of the law
L (G(x , ε)) using as few as possible calls to the code.

T. Labopin-Richard, F. Gamboa, A. Garivier Conditional quantile sequantial estimation for stochastic codes



Problem and overview
Stochastic algorithms embeded in k-nearest neighbors method

Numerical simulations
First ideas
To another strategy

1 Problem and overview
First ideas
To another strategy

2 Stochastic algorithms embeded in k-nearest neighbors method
The algorithm
Results

3 Numerical simulations
Dimension 1
Dimensions 2 and 3

T. Labopin-Richard, F. Gamboa, A. Garivier Conditional quantile sequantial estimation for stochastic codes



Problem and overview
Stochastic algorithms embeded in k-nearest neighbors method

Numerical simulations
First ideas
To another strategy

To estimate the quantile of a law Z , one can

1) Build a sample (Z1, . . . ,Zn) of Z .
2) Use a quantile estimator as :

a) The empirical quantile Z(bnαc+1).
⇒ consistant and normaly Gaussian.

b) The Robbins-Monro stochastic algorithm
θ0 ∈ R

θn+1 = θn −
1
nγ

(1Zn+1≤θn − α) .

⇒ consistant and normaly Gaussian if γ ∈]1/2, 1].
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Application to our problem

We aim at estimate the quantile of the law L (G(x , ε)), we could
then

1) Provide several times the same input x to the stochastic code,
to build a sample of the target law.

2) Use one of the previous estimator.

Problem
We aim at estimating the conditional quantile for every input x .
If X is uncountable or if each call to the code is expensive, the is
not a solution.
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Type of strategy

1) A budget N of calls to the code is fixed.
2) We sample (X1, . . . ,XN) from the input law X .
3) We observe the corresponding responses (Y1, . . . ,YN).
4) We apply an algorithm wich allows, for every x and using only

the previous observations, to estimate the conditional quantile.
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Algorithm


θ0

(x)

∈ R

θn+1

(x)

= θn

(x)

− 1
nγ
(
1Zn+1≤θn

(x)

− α
)

1Xn+1∈kNNn+1(x)

où kn = bnβc.

• For which parameters (γ, β) is the algorithm convergent ?
⇒ Compromise needed.
• Could we prove some non-asymptotic results ?
• Are there optimal parameters ?
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Continuity assumption

Notations :

• Bx the set of the balls of Rd centered in x . B ∈ BX has a
radius rB.
• For B ∈ Bx , FB

Y is the cumulative distribution function of the
law L(g(X , ε)|X ∈ B).
• FY x is the cumulative distribution function of the law
L(g(x , ε)).

Assumption A1 For all x ∈ Supp(X ), there exists a constant
M(x) such that

∀B ∈ Bx , ∀t ∈ R, |FY B (t)− FY x (t)| ≤ M(x)rB .
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Technical asumptions
Assumption A2 The input law X has a density which is lower
bounded by a constant Cinputs > 0.

⇒ Useful to deal with E(||X − x ||(kn,n)) or P(X ∈ kNNn(x)).

Assumption A3 The code function g is at value in the compact
set [LY ,UY ].

⇒ ∀x , θn(x) is almost-surely bounded.

Assumption A4 For every x ∈ Supp(X ), the law of g(x , ε) has a
density which is lower bounded by a constant Cg(x) > 0.

⇒ There exists a constant C2(x , α) such that :

∀θn(x), [FY x (θn(x))− FY x (θ∗(x))] [θn(x)− θ∗(x)] ≥ C2(x , α) [θn(x)− θ∗(x)]2 .
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Results

Theorem : almost-sure convergence
Let x be a fixed input. Under assumptions A1 and A2, the
algorithm in x is almost surely convergent whenever
1
2 < γ < β < 1.

Comments on parameters :

• 1/2 < γ ≤ 1 ⇒ classical assumption for Robbins-Monro
algorithm.
• 0 < β ⇒ the number a neighbors goes to +∞ and then,
||X − x ||(kn,n) → 0.
• β < 1 ⇒ technical assumption.
• γ < β ⇒ effective learning rate.

T. Labopin-Richard, F. Gamboa, A. Garivier Conditional quantile sequantial estimation for stochastic codes



Problem and overview
Stochastic algorithms embeded in k-nearest neighbors method

Numerical simulations
The algorithm
Results

Results

Theorem : almost-sure convergence
Let x be a fixed input. Under assumptions A1 and A2, the
algorithm in x is almost surely convergent whenever
1
2 < γ < β < 1.

Comments on parameters :

• 1/2 < γ ≤ 1 ⇒ classical assumption for Robbins-Monro
algorithm.

• 0 < β ⇒ the number a neighbors goes to +∞ and then,
||X − x ||(kn,n) → 0.
• β < 1 ⇒ technical assumption.
• γ < β ⇒ effective learning rate.

T. Labopin-Richard, F. Gamboa, A. Garivier Conditional quantile sequantial estimation for stochastic codes



Problem and overview
Stochastic algorithms embeded in k-nearest neighbors method

Numerical simulations
The algorithm
Results

Results

Theorem : almost-sure convergence
Let x be a fixed input. Under assumptions A1 and A2, the
algorithm in x is almost surely convergent whenever
1
2 < γ < β < 1.

Comments on parameters :

• 1/2 < γ ≤ 1 ⇒ classical assumption for Robbins-Monro
algorithm.
• 0 < β ⇒ the number a neighbors goes to +∞ and then,
||X − x ||(kn,n) → 0.

• β < 1 ⇒ technical assumption.
• γ < β ⇒ effective learning rate.

T. Labopin-Richard, F. Gamboa, A. Garivier Conditional quantile sequantial estimation for stochastic codes



Problem and overview
Stochastic algorithms embeded in k-nearest neighbors method

Numerical simulations
The algorithm
Results

Results

Theorem : almost-sure convergence
Let x be a fixed input. Under assumptions A1 and A2, the
algorithm in x is almost surely convergent whenever
1
2 < γ < β < 1.

Comments on parameters :

• 1/2 < γ ≤ 1 ⇒ classical assumption for Robbins-Monro
algorithm.
• 0 < β ⇒ the number a neighbors goes to +∞ and then,
||X − x ||(kn,n) → 0.
• β < 1 ⇒ technical assumption.

• γ < β ⇒ effective learning rate.

T. Labopin-Richard, F. Gamboa, A. Garivier Conditional quantile sequantial estimation for stochastic codes



Problem and overview
Stochastic algorithms embeded in k-nearest neighbors method

Numerical simulations
The algorithm
Results

Results

Theorem : almost-sure convergence
Let x be a fixed input. Under assumptions A1 and A2, the
algorithm in x is almost surely convergent whenever
1
2 < γ < β < 1.

Comments on parameters :

• 1/2 < γ ≤ 1 ⇒ classical assumption for Robbins-Monro
algorithm.
• 0 < β ⇒ the number a neighbors goes to +∞ and then,
||X − x ||(kn,n) → 0.
• β < 1 ⇒ technical assumption.
• γ < β ⇒ effective learning rate.

T. Labopin-Richard, F. Gamboa, A. Garivier Conditional quantile sequantial estimation for stochastic codes



Problem and overview
Stochastic algorithms embeded in k-nearest neighbors method

Numerical simulations
The algorithm
Results

Classical algorithm :
• An update at each step
•
∑

n
γn = +∞ ⇒ γ ∈

]
1
2 , 1
]
.

Our algrithm :
• An update every kn

n ∼ nβ−1 steps
• At step n : N =

∑
k≤n

kβ−1 ∼ nβ updates

• At time t = n
1
β : N = n updates

• Effective learning rate : γkn = 1(
n

1
β

)γ .

•
∑

n
γkn = +∞ ⇒ γ < β.
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Rate of convergence of the MSE

Theorem

Under hypothesis A1, A2, A3 and A4, the MSE an(x) satisfies :
∀(γ, β, ε) such that 0 < γ ≤ β < 1 and 1 > ε > 1− β, ∀n ≥ N0,

an(x) ≤ exp

−2C2(x , α)
n∑

j=N0+1
j−ε−γ

C1

+
n∑

k=N0+1
exp

−2C2(x , α)
n∑

j=k+1
j−ε−γ

 dk + C1 exp
(
−3n1−ε

8

)

where

dn = C1 exp
(
−3n1−ε

8

)
+ 2
√

C1M(x)C3(d)γn

(
kn
n

) 1
d +1

+ γ2
n
kn
n .
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Compromise between the two errors

• The bias error gives the term

exp

−2C2(x , α)(x)
n∑

k=N0+1

1
kε+γ

 .
This term decreases to 0 if and only if γ + ε < 1 which implies
β > γ. Then β has to be chosen not too small.

• The online learning error gives the term
γn (kn/n)1/d+1 = n(1−β)(1+1/d)+γ .

We then need that β is as small as possible compared to 1.
Then β has to be chosen not too big.
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Corollary : optimal parameters
Under the same assumptions than in Theorem 1, the mean square
error decreases faster when parameters are γ = 1

1+d and
β = γ + ηβ where ηβ > 0 is as small as possible. Moreover, with
these parameters, there exists a constant C9(x , α, d) such that
∀n ≥ N4(x , α, d),

an(x) ≤ C9(x , α, d)
n

1
1+d−η

where η = ηε

2 + ηβ and ηε = 1− β − ε.
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Dimension 1 - almost-sure convergence
Two models with X ∼ U([−1, 1]), ε ∼ U([−0.5, 0.5]) and x = 0 :

g(X , ε) = X 2 + ε et g(X , ε) = |X |+ ε

Figure – Almost-sure convergence in function of β et γ.
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Mean Square Error

Figure – Convergence of the mean square error in function of β et γ.
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Dimensions 2 and 3
Two models with g(X , ε) = ||X ||2 + ε for X ∼ U([−1, 1]d),
ε ∼ U([−0.5, 0.5]) and x = 0Rd .

Figure – Mean Square Error in function of β and γ.
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Conclusion et perspectives

Conclusion :
• We introduced an algorithm to estimate the conditional
quantile of the output law of a stochastic code.
• We give the best parameters to tune the algorithme (to reach
the best rate of convergence of the MSE).
• Numerical simulations show that our algorithm is powerfull to
solve the problem.

Perspectives :
• What is happening if we relax the compact support
assumptions ?
• Could we find lower bound for the Mean Square Error ?
• Apply this algorithm to real data.
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Thanks for your attention.
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