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Problem

•When a pregnant woman phones, her fetus absorbs electromagnetic waves.

→֒ How much ?
→֒ Is that in higher quantity that the safe limit ?

• This quantity depends on several parameters (position, distance, . . .). We are able to mea-
sure the rate of electromagnetic waves absorbed when this parameters are fixed. Problem :
One measure is very expensive.

•We aim to estimate a quantile of 5% of the rate of electromagnetic waves absorption dis-
tribution with only 100 measures.

Modelisation

We introduce the following model :

Y = f(X)

with X ∼ U
(

[0,1]d
)

is the vector of parameters and f is a very expensive-to-

evaluate function .

Goal : Find a good estimation of a quantile of 5% of Y with only 100 evalua-
tions of f .

Active learning

We work with the following class of strategies :

1) We have at hand a grid of [0,1]d named X of size N .

2) Initialization : We evaluate the function f on a sub-grid X0 . We compute the estimator

q̂(0) of step 0 and we define the σ-field :

F0 = σ
(

X0, f (X0) , q̂
(0)

)

.

3) At each step n, using only Fn−1 , we choose the new point xn where f will be evaluated.

We deduce of f (xn) the new estimator q̂(n) and we update the σ-field :

Fn = σ
(

Fn−1,xn, f(xn), q̂
(n)

)

.

A first idea : the Stepwise Uncertainty Reduction strategy (see [1])

The idea is to minimize at each step the variance of the estimator. In fact, at step n, for
each point x of the grid, we evaluate what would be the variance of q̂(n) if
we had chosen x for xn . Unfortunately, we need for this the value of f (x). So we replace
it by the information we have at step n : the law of f (x) given Fn−1 . Finally
we choose x∗n = min

x∈X
Vn−1(x) with

Vn−1(x) =
∫

Var(q̂(n)(y)|F
(x,y)
n−1 )φ(mn−1(x),s2n−1(x))

(y)dy

where φ(mn−1(x),s2n−1
(x)) is the gaussian density.

Disadvantage : Vn has no analytic form =⇒ high computational complexity . In
fact the complexity is in N3 .

Mathematic toolbox : Krigeage

Classical hypothese : f is a realisation of a centered gaussian path with fixed
covariance function k .

Property : krigeage formula
Let be Y ∼ PG(0, k). Let Yn = (y1, . . . , yn) be the vector of evaluations in
Xn = (x1, . . . , xn). Then the law of Y (x) given the σ-field Fn := σ (Xn, f (Xn)) for x ∈ X
follows the gaussian distribution with parameters :

mn(x) = kn(x)
TK−1

n yn

cn(x, x
′) = k(x, x′)− kn(x)

TK−1
n kn(x

′)

with kn(x) = [k(x1, x), . . . , k(xn, x)]
′ and Kn = [k(xi, xj)]1≤i,j≤n. We now denote s2n(x) =

cn(x, x).

Estimator : In this model we have considered the two following estimators (denoting q̂∗n
the empirical quantile) : q̂(n) = q̂∗n(mn) and q̃(n) = En[q̂

∗
n(Y)].

Warning : Naive implementation leads us to inverse a big matrix =⇒ too expensive.

Active learning : We want strategies in which we choose points to evaluate one by one.

Property : 1-step update formula (see [3])

mn+1(x) = mn(x) +
cn(xn+1,x)
s2n(xn+1)

(Y (xn+1)−mn(xn+1))

s2n+1(x) = s2n(x)−
c2n(xn+1,x)
s2n(xn+1)

cn+1(x, y) = cn(x, y)−
cn(xn+1,x)cn(xn+1,y)

s2n(xn+1)

A new idea from Bayesian optimization

• In [2] and [4], the same class of strategies are used to minimize functions. At each
step n, we choose the point x∗n for which if xn = x∗n, we have the tiniest

probability to be mistaken, considering that ymin = y
(n)
min . Then we choose

x∗n = argminx∈X Γn−1(x) with

Γn−1(x) =
∫

X
Pn−1

(

f(z) ≤ y
(n)
min(y)|y = f(x)

)

dz

The advantage is that we don’t need to evaluate y = f (x) to compute the criterium
in practice. Contrary to the SUR strategy, we can obtain here an analytic expression
of Vn−1(x) depending only on x and Fn−1 thanks to the 1-step update formula
(and that’s why V is indexed by n− 1 instead of n despite we use it in step n).

• In our case, the probability to be mistaken is not the same, but we can use the same kind
of probability. At each step n, we choose the point x∗n = argminx∈X Γn−1(x) where Γn−1
measures the mean of the gap in absolute value between (1 − α) and the

probability that f is superior than q̂(n) .

Γn(x) =
∫

X

∣

∣

∣
Pn−1

(

f(z) ≥ q(n)(y)|y = f(x)
)

− (1− α)
∣

∣

∣
dz

• In fact this criteria can be written in this way :

Γn(x) =
∫

X

∣

∣

∣
Φn
1(x, z) +Φn

2(x, z) +Φn
3(z,x) +Φn

4(z,x)− (1− α)
∣

∣

∣
dz

where Φn
i are gaussian cumulative distribution functions whose parameters depends only

on x and Fn−1 thanks to the 1-step update formula .

•Advantage : The complexity is now in N .

Conclusion and Perspectives

•We found a new method as precise as the SUR method in dimension 2.

• But the new method is less expensive :
On my laptop :
SUR method : Gramacy (20 + 50) : 5h30, Ishigami (10 + 30) : 4h00.
New method : Gramacy (20 + 50) 1h30 (20+80 : 2H15), Ishigami (10 + 30) :
40min.

• Perspective 1 : Hope for superior dimension (the goal is d = 5) −→ increase of the
grid size and of the number of iterations.

• Perspective 2 : Think about a more efficient way to find the minimum .
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