UNCERTAINTY PROPAGATION AND ESTIMATION OF A QUANTILE

UNIVERSITE
TOULOUSE I

! ro !!'

e When a pregnant woman phones, her fetus absorbs electromagnetic waves.

— How much?
— Is that in higher quantity that the safe limit 7

e This quantity depends on several parameters (position, distance, ...). We are able to mea-
sure the rate of electromagnetic waves absorbed when this parameters are fixed. Problem :
One measure is very expensive.

e We aim to estimate a quantile of 5% of the rate of electromagnetic waves absorption dis-
tribution with only 100 measures.

We introduce the following model :

Y = f(X)
with X ~ U ([O, 1]d) is the vector of parameters and f is a very expensive-to-
evaluate function .

Goal : Find a good estimation of a quantile of 5% of Y with only 100 evalua-
tions of f .

!!!l!l!l! |!”! : rlgeage

Classical hypothese : f is a realisation of a centered gaussian path with fixed
covariance function £ .

Property : krigeage formula
Let be Y ~ PG(0,k). Let Yy, = (y1, - - ., yn) be the vector of evaluations in
Xn = (x1,...,2n). Then the law of Y () given the o-field F;, := o (X, f (Xy)) forx € X

follows the gaussian distribution with parameters :
mn(z) = kn(x)! Ky,
cn(z,2") = k(z, o) — kp(2) K ke (2)

with kp(z) = [k(x1,2), ..., k(zn, )] and K, = [k(z;, T))1<i j<n- We now denote 3%(:1:) =
cnl(x, x).

Estimator : In this model we have considered the two following estimators (denoting ¢,
the empirical quantile) : §'® = §*(mpn) and @™ = En[q%(Y)].
Warning : Naive implementation leads us to inverse a big matrix = too expensive.

Active learning : We want strategies in which we choose points to evaluate one by one.

Property : 1-step update formula (see [3])
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We work with the following class of strategies :
1) We have at hand a grid of [0,1]9 named X of size N.

2) Initialization : We evaluate the function f on a sub-grid Xy . We compute the estimator
Q(O) of step 0 and we define the o-field :

Fo=o (XO, £ (Xp) ,q<0>).

3) At each step n, using only F,, 1 , we choose the new point x,, where f will be evaluated.
We deduce of f(x) the new estimator '™ and we update the o-field :

Fn=0 (]—"n_l, xn, £(Xn), q<n>),

The idea is to minimize at each step the variance of the estimator. In fact, at step n, for
each point x of the grid, we evaluate what would be the variance of c}(n> if
we had chosen x for x,, . Unfortunately, we need for this the value of f(x). So we replace
it by the information we have at step n : the law of f(z) given F,,_; . Finally
we choose x), = Hél/% Vi—1(xz) with

X

Vi 1(%) = [ Var(@® )| 75 )0 m, 005200, (Y)Y

where gb 2 (7)) is the gaussian density.

mn— ) Sp—1
Disadvantage : V), has no analytic form = high computational complexity . In

fact the complexity is in N2 .

! new 1ea I'OHl ayesmn oplmlzalon

e In 2] and [4], the same class of strategies are used to minimize functions. At each
step n, we choose the point z; for which if z,, = z;, we have the tiniest

(1)

i . Then we choose

probability to be mistaken, considering that vy, = v

T = argmingc y Fn_l(x) with

Tao1(x) = f Pao1 (£(z) <yl (v)ly = £(x)) dz

The advantage is that we don’t need to evaluate y = f(x) to compute the criterium
in practice. Contrary to the SUR strategy, we can obtain here an analytic expression
of V,,_i(z) depending only on = and F,_| thanks to the 1-step update formula
(and that’s why V is indexed by n — 1 instead of n despite we use it in step n).

e In our case, the probability to be mistaken is not the same, but we can use the same kind
of probability. At each step n, we choose the point z7; = argmin,cy I';,—1(z) where I',, 1
measures the mean of the gap in absolute value between (1 — «) and the
probability that f is superior than (j<”> .

Pax) = fic[Pac1(£2) = a™(y)ly = £x)) = (1 - a)|dz

e In fact this criteria can be written in this way :

T(x) = [x |<1>;1<X, z) + BL(x, ) + BL(z,x) + BU(z,x) — (1 — oz)‘dz

where @7 are gaussian cumulative distribution functions whose parameters depends only
on r and F,,_| thanks to the 1-step update formula .

e Advantage : The complexity is now in N .
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Grid size = 500,
alpha=0.95,
gaussian kernel with covariance 1=0.15.
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e We found a new method as precise as the SUR method in dimension 2.

e But the new method is less expensive :
On my laptop :
SUR method : Gramacy (20 4 50) : 5h30, Ishigami (10 + 30) : 4h0O0.
New method : Gramacy (20 + 50) 1h30 (20+80 : 2H15), Ishigami (10 + 30) :

40min.

e Perspective 1 : Hope for superior dimension (the goal is d =5) — increase of the
orid size and of the number of iterations.

e Perspective 2 : Think about a more efficient way to find the minimum .
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