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What is a stochastic code ?

Goal : Estimate the quantile of the law L (G(X , ε)|X = x) using
as few as possible calls to the code.
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• Stochastic algorithm for the quantile of level α for the law X :
θ0(x) ∈ R

θn+1(x) = θn(x)−
1
nγ
(
1Xn+1≤θn(x) − α

)
Problem : each call to the code is very expensive. We want a
method which gives a good approximation of every conditional
quantile.
Idea :

Fix a budget N.
Take an inputs sample (X1, . . . ,XN).
Observe the corresponding outputs (Y1, . . . ,YN).
Develop an algorithm we can apply for each x and using only
the previous information.
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• Stochastic algorithm for the quantile of level α for the law X :
θ0(x) ∈ R

θn+1(x) = θn(x)−
1
nγ
(
1Xn+1≤θn − α

)

• New algorithm using stochastic algorithm and k-nearest
neighborhoods theory :

θ0(x) ∈ R

θn+1(x) = θn(x)−
1
nγ
(
1Yn+1≤θn(x) − α

)
1Xn+1∈kNNn(x)

where kn = bnβc.
• What are the optimal parameters γ and β ? Under which
assumptions is the algorithm convergent ? What about
non-asymptotic results ?
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Hypothesis

Let us introduce the map

C :
{
(E , dH) −→ (M1(µ), dVT )

A 7−→ L(Y |X ∈ A)

• (E , dH) : set of the sets on the metric space
(
Rd , ||.||

)
with

dH the Hausdorff distance.
• (M1(µ), dVT ) : set of the probability measures with dVT is
the total variation distance.

Assumption A1 The function C is M- Lipschitz.
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Hypothesis
Assumption A2 The law of inputs has a density function and this
density is lower-bounded by a constant Cinputs > 0 on its support.

⇒ ∀θ1 ∈ Supp(X ), (F (θ1)− F (θ∗)) (θ1 − θ∗) ≥ Cinputs(θ1 − θ∗)2.

Assumption A3 The code function g is at values in a compact
[a, b].

⇒ ∀x , θn(x) is bounded a.s uniformly in ω. Let us denote R the
such uniform bound of (θn − θ∗)2.

Assumption A4 For each x , the law g(X , ε)|X = x has a density
which is lower-bounded by a constant Dcode(x) > 0.

⇒ avoids technical developments to deal with E(||X − x ||(kn,n)) of
P(X ∈ kPPVn(x)).
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Theorical results

Theorem : almost sure convergence
Let x be a fixed input. Under assumptions A1 and A2, the
algorithm at x is a.s convergent if and only if 1

2 < γ < β < 1.
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Theorem : rate of convergence
Let x be an fixed input. Under hypothesis A1, A2, A3 and A4, for
all 0 < γ < 1, 0 < β < 1 and 1 > ε > 1− β, for
n ≥ 2

1
ε−(1−β) := N0,

E
[
(θn(x)− θ∗(x))2

]
≤R exp

(
−3n1−ε

8

)
+ a0(x) exp

(
−2Dcode(x)

n∑
k=1

1
kγ+ε

)

+
n∑

k=1
exp

(
−2Dcode(x)

n∑
i=k

1
iγ+ε

)
βk

where
βn = R exp

(
−3n1−ε

8

)
+ 2
√

RMD(d)γn+1
(

kn
n+1

) 1
d +1

+ γ2
n+1

kn
n+1 ,

D(d) = d√2
(
1+ 8

3d + 1
d
√

CinputH(d)

)
and H(d) = π

5
2

Γ( d
2 )+1 .
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Theorem : best parameters
Under the same hypothesis, the mean square error decreases more
rapidly when parameters are γ = 1

1+d and β = γ + η where η > 0
is as small as possible. We indeed obtain with these parameters for
n ≥ max(N0,N1)

E
[
(θn(x)− θ∗(x))2

]
≤ C1

n
1

1+d−η′

where constants are explicitly known.
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Dimension 1

We tested two models for X ∼ U([−1, 1]), ε ∼ U([−0.5, 0.5]) and
x = 0 : g(X , ε) = X 2 + ε and g(X , ε) = |X |+ ε :

Figure: Convergence of the mean square error in function of β and γ.
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Dimension 2 and 3

We tested the model g(X , ε) = ||X ||2 + ε for X ∼ U([−1, 1]d),
ε ∼ U([−0.5, 0.5]) and x = 0Rd .

Figure: Convergence of the mean square error in function of β and γ.

T. Labopin-Richard, F. Gamboa, A. Garivier Conditional quantile sequantial estimation for stochastic codes



Conclusion and perspectives

Conclusion :
• We have introduced an algorithm to estimate the conditional
quantile of the outpout of a stochastic code.
• We know how to tune the parameters to obtain the best rate
of convergence.
• Numerical simulations show that results are good in practice.

Perspectives :
• Adapt the proof for less restrictive assumptions.
• Improve the rank N0.
• Apply this algorithm on real data (EDF and renewable
energies).
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Thank you for your attention
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