Suites et raisonnements avec des ϵ

Tatiana Labopin-Richard

Il existe 3 manières de faire un raisonnement avec des ϵ .

0.1 On fixe un ϵ quelconque

Ici, on choisit une valeur bien précise de ϵ , uniquement pour fixer les idées du lecteur. Le résultat prouvé est relativement grossier (souvent bien moins fort que les hypothéses que l'on a sur le probléme), puisqu'il suffit de choisir un ϵ , qui plus est, sans contrainte, pour obtenir le résultat.

Exercice 1 : Montrer que toute suite convergente est bornée.

0.2 On fixe un ϵ bien choisi

Ici, on applique les définitions pour des valeurs bien déterminées de ϵ . Il s'agit souvent de démontrer des résultats plus fins (on a calé notre ϵ pour démontrer quelque chose de vraiment précis).

Exemples:

- Montrer l'unicité de la limite en cas d'existence.
- Montrer qu'une suite ne converge pas vers l.
- Exercice 2 : Montrer qu'une suite de nombres entiers relatifs convergente est stationnaire.

0.3 Pour tout ϵ

Ici, on utilise les définitions pour tout ϵ (souvent lorsqu'il s'agit de démontrer un résultat impliquant quelque chose pour tout ϵ , par exemple, montrer qu'une suite converge).

Exercices 3 : Soit (u_n) une suite convergente, de limite l. Montrer que la suite de terme général $v_n = \sup(\{u_k, k \ge n\})$ converge aussi vers l.

1 Exercices

1.1 Exercice 4:

Soient (u_n) et (v_n) deux suites réelles convergeant vers l et l' avec l < l'. Montrer qu'à partir d'un certain rang, $u_n < v_n$.

1.2 Exercice 5:

Soit (u_n) une suite de réels non nuls vérifiant

$$\frac{u_{n+1}}{u_n} \to 0.$$

Déterminer la limite de (u_n) .

1.3 Exercice 6:

Soit K un réel strictement supérieur à 1 et (ϵ_n) une suite de réels positifs convergeant vers 0. Soit (u_n) une suite de réels de [0,1] vérifiant

$$\forall n \in \mathbb{N}, \ 0 \le u_{n+1} \le \frac{u_n + \epsilon_n}{K}.$$

La suite (u_n) converge-t-elle vers 0?