Oral blanc BCPST2-Sujet 1

26 mai 2015

1 Sujet 1

Une urne contient trois boules indiscernables et numérotées 1, 2 et 3. On effectue une succession de tirages au hasard d'une boule de l'urne, avec, à chaque fois, remise de la boule obtenue avant le tirage suivant. Soit X le nombre aléatoire de tirages nécessaires pour obtenir la première fois trois fois de suite le même numéro. On note p_n la probabilité de l'événement [X = n] et c_n la probabilité de l'événement $[X \le n]$.

Les questions 1 et 2 traite de l'étude informatique du problème. Des rappels sur le logiciel Python sont disponibles à la fin du sujet. Les questions suivantes sont indépendates des deux premières et concernent l'étude théorique de l'exercice.

- 1) Proposer une représentation informatique de l'urne et une fonction permettant de simuler une expérience comme celle décrite (pour 100 tirages) ci-dessus et retournant la liste Z des boules tirées à chaque étape et la valeur de X pour cette expérience.
- 2) Toujours informatiquement, effectuer cette série de 100 tirages un grand nombre de fois et relever la valeur de X pour chacune des séries. Pourriezvous, grâce à ses simulation, donner une estimation de l'espérance de X?
- 3) a) Que valent p_1 et p_2 ? Calculer p_3 et p_4 .
 - b) Montrer que pour tout $n \ge 2$, $p_n = c_n c_{n-1}$.
- 4) a) Montrer que pour tout $n \ge 1$, $p_{n+3} = 2 \times \left(\frac{1}{3}\right)^3 (1 c_n)$.
 - b) En déduire que pour tout $n \ge 2$, $p_{n+3} p_{n+2} + \frac{2}{27}p_n = 0$.
- 5) a) Pour $n \ge 2$, on pose $u_n = p_{n+2} \frac{2}{3}p_{n+1} \frac{2}{9}p_n$. Calculer u_2 . En ddéuire que la suite (u_n) est la suite nulle.
 - b) En déduire que pour tout $n \ge 2$, $p_n = \frac{1}{6\sqrt{3}} \left(\left(\frac{1+\sqrt{3}}{3} \right)^{n-2} \left(\frac{1-\sqrt{3}}{3} \right)^{n-2} \right)$.

- c) Montrer que la série de terme général p_n est convergente et calculer $\sum_{n=2}^{\infty} p_n$. Que signifie le résultat obtenu?
- d) Montrer que X admet une espérance et la calculer.

Rappels:

La fonction randint(start, stop) renvoie un nombre entier aléatoire entre start et stop.

2 Sujet 2

On considère deux lois de probabilités :

$$\forall k \in \mathbb{N}, \ P_{\lambda}(k) = \exp(-\lambda) \frac{\lambda^k}{k!} \text{ et } \delta_0(k) = \begin{cases} 1 & \text{si k=0} \\ 0 & \text{sinon} \end{cases}$$

Pour p un réel fixé dans [0,1[, on pose : $P^p = (1-p)P_{\lambda} + p\delta_0$.

Les deux premières questions traitent le problème informatiquement. Des rappels sur le logiciel Python sont disponibles à la fin du sujet. La suite est indépendante et concerne la partie théorique de l'exercice.

- 1) Ecrire une fonction informatique permettant de simuler la loi P^0 (lorsque l'on entre λ).
- 2) En simulant un grand nombre de fois cette loi, en proposer une estimation de la moyenne et de la variance. Cela est-il cohérent avec les résultats que vous connaissez?
- 3) Montrer que la loi P^p est une loi de probabilité. Calculer l'espérance et la varaiance d'une variable de loi P^p (si elles existent).
- 4) Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes de loi P^p . On pose $Y_n = Card\{k \in \{1, \ldots n\}, X_k = 0\}$. Déterminer la loi de Y_n , son espérance et sa variance.
- 5) Soit $Z_n = \frac{1}{n} \sum_{i=1}^n X_i$. déterminer son espérance et sa variance (si elles existent).
- 6) Déterminer la covariance de Y_n et Z_n .

Rappels:

Pour simuler une loi de Poisson de paramètre l en Python, on peut utiliser la commande suivante (qui utilise la loi exponentielle) :

from random import *
def Poisson(1):
 t=1.0/expovariate(1)

return int(t)

De plus, la fonction randint(start, stop) renvoie un nombre entier aléatoire entre start et stop.

3 Sujet 3

Soit (X_n) une suite de variables aléatoires indépendantes et de même loi de Bernoulli de paramètre $p \in]0,1[$. Noit N la variable aléatoire suivant une loi de Poisson de paramètre λ , indépendante de la suite (X_n) . On définit alors une variable aléatoire Y par :

$$Y = \begin{cases} 0 & \text{si } N = 0\\ \sum_{k=1}^{N} X_k & \text{si } N \neq 0 \end{cases}$$

Dans les deux premières questions, on traitera le problème informatiquement. Des rappels sur le logiciel Python sont disponibles à la fin du sujet. La suite est indépendante et considère le problème de manière théorique.

- 1) Ecrire une fonction informatique permettant de simuler la loi de Y.
- 2) En simulant un grand nombre de fois Y pouvez-vous donner une estimation de son espérance et de sa variance?
- 3) Pour $r \in \mathbb{N}^*$, déterminer la loi de $S_r = \sum_{k=1}^r X_k$.
- 4) Calculer $\mathbb{P}(Y=0)$, puis $\mathbb{P}(Y=r)$, pour tout entier $r \in \mathbb{N}^*$.
- 5) Déterminer l'espérance de Y (si elle existe).

Rappels:

Pour simuler une loi de Poisson de paramètre l en Python, on peut utiliser la commande suivante (qui utilise la loi exponentielle) :

```
from random import *
def Poisson(1):
    t=1.0/expovariate(1)
    return int(t)
```

4 Sujet 4

Dans cet exercice, on va étudier le comportement de la série $\sum_{k} \frac{1}{k^2}$.

- 1) Ecrire un programme informatique permettant, lorsque l'on donne n d'avoir $S_n = \sum_{k=1}^n \frac{1}{k^2}.$
- 2) Etudier alors graphiquement le comportement de la suite (S_n) lorsque n est grand. Que pouvez-vous conjecturer?
- 3 Vérifier que

$$\forall n \in \mathbb{N}^*, \ \int_0^\pi \left(\frac{t^2}{2\pi} - t\right) \cos(nt) dt = \frac{1}{n^2}.$$

4) Soit $m \in \mathbb{N}^*$. vérifier que

$$\forall t \in]0,\pi], \ \frac{1 - \exp(imt)}{1 - \exp(it)} \exp(it) = \frac{\sin(\frac{mt}{2})}{\sin(\frac{t}{2})} \exp(i\frac{m+1}{2}t).$$

En déduire que

$$\forall t \in]0, \pi], \sum_{n=1}^{m} \cos(nt) = \frac{\cos(\frac{m+1}{2})\sin(\frac{m}{2}t)}{\sin(\frac{t}{2})}.$$

- 5) Soit l'application $f:[0,\pi]\to\mathbb{R}$ définie par $f(t)=\frac{t^2}{2\sin(\frac{t}{2})}$ si $0< t\leq \pi$ et f(0=)-1. Montrer que f est \mathcal{C}^1 sur $[0,\pi]$. Pouvez-vous illustrer cela graphiquement grâce à l'ordinateur?
- 6) Montrer que:

$$\sum_{n=1}^{m} \frac{1}{n^2} = \frac{\pi^2}{6} + \int_0^{\pi} f(t) \sin\left(\frac{2m+1}{2}t\right) dt.$$

En déduire que la série $\sum_{n\geq 1} \frac{1}{n^2}$ converge et que :

$$\sum_{n=1}^{+\infty} = \frac{\pi^2}{6}.$$

5 Sujet 5

Soit $\alpha \geq 1$.

1) Montrer que

$$\forall x \ge 0, \ \forall n \in \mathbb{N}, \ \frac{x^{\alpha - 1}}{1 + x} = \sum_{k=0}^{n} (-1)^k x^{k + \alpha - 1} + \frac{(-1)^{n+1} x^{n + \alpha}}{1 + x}.$$

2) Montrer que

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n+\alpha} = \int_0^1 \frac{x^{\alpha-1}}{1+x} dx.$$

3) En déduire que la suite $\sum_{n\geq 0}\frac{(-1)^n}{n+\alpha}$ converge. Ecrire une programme informa-

tique permettant de tracer en fonction de n les valeurs de $S_n = \sum_{k=1}^n \frac{(-1)^k}{k+\alpha}$.

Cela est-il cohérent avec la théorie?

4) Retrouver la formule

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n} = -\ln(2).$$

5) Grâce à votre ordinateur et aux résultats précédents, proposer une approximation de $\ln(2)$ à 10^{-5} près.

6 Sujet 6

On note $\mathbb{R}^{\mathbb{N}}$ l'ensemble des suites réelles. On note E l'ensemble des suites réelles (u_n) telles que

$$\forall n \in \mathbb{N}, \ u_{n+3} = u_{n+2} + u_{n+1} + 2u_n,$$

et F l'ensemble des suites réelles (a_n) telles que

$$\forall n \in \mathbb{N}, a_{n+1} = 2a_n,$$

et G l'ensemble des suites réelles (b_n) telles que

$$\forall n \in \mathbb{N}, b_{n+2} = -b_{n+1} - b_n.$$

- 1) Vérifier que E, F et G sont des sous-espaces vectoriels.
- 2) En mettant les termes initiaux et n en paramètres d'entrées, écrire trois fonctions informatiques permettant de calculer v_n et a_n et b_n . Grâce à ce programme, étudier graphiquement le comportement de ses suites lorsque n est grand. Que pouvez-vous en conjecturer? Y a-t-il une influence des termes initiaux?
- 3) Déterminer une base et la dimension de F.
- 4) Même question avec G.
- 5) En considérant l'application allant de E dans \mathbb{R}^3 , qui a (u_n) associe (u_0, u_1, u_2) , déterminer la dimension de E. Montrer de plus que $F \cap G = \{0_E\}$. On dit

- alors que F et G sont supplémentaires et on sait alors que l'ensemble des vecteurs des bases de F et de G forment une base de E.
- 6) Soit (u_n) la suite définie par $u_0 = 1$, $u_1 = 0$ et $u_2 = 2$ et appartenant à E. Déterminer l'expression de (u_n) en fonction de n.