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Editors’ preface

This volume is composed of six contributions derived from the lectures given
during the UIMP–RSME Llúıs Santaló Summer School on “Recent Advances in
Real Complexity and Computation”. The goal of this Summer School was to present
some of the recent advances on Smale’s 17th Problem. This Problem was stated by
Steve Smale as follows:

Problem 1 (Smale’s 17th Problem). Can a zero of n complex polynomial equa-
tions in n unknowns be found approximately, on the average, in polynomial time
with a uniform algorithm?

These contributions cover several aspects around this problem: from numerical
to symbolic methods in polynomial equation solving, computational complexity as-
pects (both worse and average cases, both upper and lower complexity bounds) and
even aspects of the underlying geometry of the problem. Some of the contributions
also deal with either real or multiple solutions solving.

The School was oriented to graduate mathematicians, as to Master or Ph. D.
students in Mathematics and to senior researchers interested on this topic.

The School was promoted and supported by the Spanish Royal Mathematical
Society (RSME) and hosted by the Universidad Internacional Menéndez Pelayo
(UIMP), from July 16th to July 20th of 2012, in El Palacio de la Magdalena, San-
tander. Partial financial support was also granted by the University of Cantabria
and the Spanish Ministry of Science Grant MTM2010-16051. We thank these in-
stitutions and grants for their financial support.

The speakers (in alphabetical order) and their courses in this Summer School
were the following ones:

• Carlos Beltrán,“Stability, precision and complexity in some numerical
problems”.

• Marc Giusti, “Polar, co–polar and bipolar varieties: real solving of alge-
braic varieties with intrinsic complexity”.

• Joos Heintz, “On the intrinsic complexity of elimination problems in ef-
fective algebraic geometry”.

• Gregorio Malajovich, “From the quadratic convergence of Newton’s method
to problems of counting of the number of solutions”.

• Klaus Meer,“Real Number Complexity Theory and Probabilistically Check-
able Proofs (PCPs)”.

• Michael Shub,“The geometry of condition and the analysis of algorithms”.
• Jean-Claude Yakoubsohn, “ Tracking multiplicities”.

ix
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x EDITORS’ PREFACE

The present volume extends the Summer School by expository articles pre-
senting the state of art of each of the topics. The reader will find the following
contributions in forthcoming pages:

(1) Martijn Baartse and Klaus Meer,“Topics in real and complex num-
ber complexity theory”
The contribution intends to introduce into topics relevant in real and com-
plex number complexity theory. This is done in a survey style. Taking as
starting point the computational model introduced by Blum, Shub, and
Smale the following issues are addressed: Basic results concerning decid-
ability and NP -completeness, transfer results of open questions between
different models of computation, structural complexity inside NPR, com-
putational universality, and probabilistically checkable proofs over the real
and complex numbers.

(2) Bernd Bank, Marc Giusti and Joos Heintz, “Polar, bipolar and
copolar varieties: Real solving of algebraic varieties with intrinsic com-
plexity”.
This survey covers a decade and a half of joint work with L. Lehmann,
G. M. Mbakop, and L. M. Pardo. The authors address the problem of
finding a smooth algebraic sample point for each connected component
of a real algebraic variety, being only interested in components which are
generically smooth locally complete intersections. The complexity of their
algorithms is essentially polynomial in the degree of suitably defined gen-
eralized polar varieties and is therefore intrinsic to the problem under
consideration.

(3) Carlos Beltrán and Michael Shub, “The complexity and geometry
of numerical solving polynomial equations”.
This contribution contains a short overview on the state of the art of
efficient numerical analysis methods that solve systems of multivariate
polynomial equations. The authors focus on the work of Steve Smale
who initiated this research framework, and on the collaboration between
Stephen Smale and Michael Shub, which set the foundations of this ap-
proach to polynomial system–solving, culminating in the more recent ad-
vances of Carlos Beltrán, Luis Miguel Pardo, Peter Bürgisser and Felipe
Cucker.

(4) Marc Giusti and Jean–Claude Yakoubsohn, “Multiplicity hunting
and approximating multiple roots of polynomials systems”.
The computation of the multiplicity and the approximation of isolated
multiple roots of polynomial systems is a difficult problem. In recent
years, there has been an increase of activity in this area. Our goal is to
translate the theoretical background developed in the last century on the
theory of singularities in terms of computation and complexity. This paper
presents several different views that are relevant to address the following
issues : predict the multiplicity of a root and/or determine the number
of roots in a ball, approximate fast a multiple root and give complexity
results for such problems. Finally, we propose a new method to determine
a regular system, called equivalent but deflated, i.e., admitting the same
root as the initial singular one.
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EDITORS’ PREFACE xi

(5) Joos Heintz, Bart Kuijpers and Andrés Rojas Paredes, “On the
intrinsic complexity of elimination problems in effective algebraic geome-
try”.
The representation of polynomials by arithmetic circuits evaluating them
is an alternative data structure which allowed considerable progress in
polynomial equation solving in the last fifteen years. The authors present
in this contribution a circuit based computation model which captures
the core of all known symbolic elimination algorithms that avoid unneces-
sary branchings in effective algebraic geometry and show the intrinsically
exponential complexity character of elimination in this complexity model.

(6) Gregorio Malajovich, “Newton iteration, conditioning and zero count-
ing”.
This contribution deals with the problem of counting the number of real
solutions of a system of multivariate polynomial equations with real coef-
ficients. You can also find in this contribution a crash-course in Newton
iteration. We will state and analyze a Newton iteration based ‘inclusion-
exclusion’ algorithm to count (and find) roots of real polynomials.

In recent months, two members of our scientific community left us: our col-
league Mario Wschebor and our beloved friend Jean-Pierre Dedieu. Jean-Pierre
was invited to the Summer School and his talk was scheduled as the closing talk
of the School. Unfortunately, a long illness prevented him from being with us at
the School and, sadly, he left us on 15 June 2012. Let this volume serve as a
remembrance of both of them.

The editors wish to thank the RSME for giving us the opportunity to organize
this event. It is also a pleasure to thank the patronage of the UIMP. Their help
in the organization and the experience in Las Caballerizas del Palacio de la Mag-
dalena are not to be easily forgotten. Our deepest gratitude goes to the speakers,
who did an excellent job, and also to the students, whose interest and dedication
created a great atmosphere. We finally wish to thank the authors for their excellent
contributions to this volume.

José Luis Montaña & Luis M. Pardo
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Contemporary Mathematics
Volume 604, 2013
http://dx.doi.org/10.1090/conm/604/12067

Topics in real and complex number complexity theory

Martijn Baartse and Klaus Meer

Abstract. The paper intends to introduce into topics relevant in real and
complex number complexity theory. This is done in a survey style. Taking as
starting point the computational model introduced by Blum, Shub, and Smale
the following issues are addressed: Basic results concerning decidability and
NP-completeness, transfer results of open questions between different models
of computation, structural complexity inside NPR, computational universality,

and probabilistically checkable proofs over the real and complex numbers.

1. Introduction

Complexity theory as a mathematical discipline is a relatively young subject.
In a systematic way it was basically developed since the 1970’s in Theoretical Com-
puter Science based on the Turing machine as underlying model of computation.
This led to a theory nowadays basically devoted to study complexity issues of dis-
crete problems over finite structures. Problem instances are coded by sequences
of bits and the complexity of algorithms is measured by counting the number of
elementary bit operations necessary. It seems that Turing himself was as well inter-
ested in complexity and accuracy issues of numerical algorithms. He also addressed
an idealized model in which floating-point numbers are used as kind of entities and
was working on notions like the conditioning of a problem [104].

In contrast to the observation that complexity theory often is considered as
a discipline in computer science mathematicians have designed and analysed algo-
rithms already since centuries. Some of the most important and prominent ones
were developed long before computers existed. Their inventors certainly had as well
an intuition about complexity issues, though often under other perspectives. Think
about algorithms like Gaussian elimination, Newton’s method and notions like the
order of convergence in numerical analysis, or algorithms for deciding the existence
of complex solutions of a polynomial system related to Hilbert’s Nullstellensatz.

Algorithms located in more classical areas of mathematics usually work with
objects from uncountable continuous domains like the real or complex numbers,
respectively. Often the number of basic arithmetic operations and test operations

2010 Mathematics Subject Classification. Primary 68Q05, 68Q15; Secondary 68Q17, 03D15,
03D35.

The authors gratefully acknowledge support of both authors by project ME 1424/7-1 of the
Deutsche Forschungsgemeinschaft DFG. The second author wants to cordially thank L.M. Pardo
and J. L. Montaña for the hospitality during the Santaló summer school in Santander, on which
occasion this paper was written.

c©2013 American Mathematical Society
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2 MARTIJN BAARTSE AND KLAUS MEER

reflecting the underlying structure are of major interest. One then disregards the
influence of round-off errors and uses an idealized model that computes with real
or complex numbers as entities. This allows to focus on algebraic properties of
problems and algorithms solving them. One of the first formalizations of such
a viewpoint in complexity theory has been worked with in the area of Algebraic
Complexity Theory [25] and can be traced back at least to the 1950’s. Models of
computation used there are algebraic circuits and straight line programs. In 1989,
Blum, Shub and Smale introduced a model of computation now called the BSS
model, see [18, 19]. It gives a general approach to computability over rings and
fields with a particular emphasis on R and C. When considered over the finite field
Z2 it results in the classical Turing machine model, whereas over fields like the real
or complex numbers it gives a uniform model generalizing the ones previously used
in algebraic complexity theory.

Let us mention that different models of computation have become more and
more interesting in recent years both in computer science and mathematics. Think
about such diverse models as Neural Networks [48], Quantum Computers [81],
Analog Computers [101], Biological Computers [43] to mention a few. Beside
in algebraic complexity the BSS model is also used as underlying computational
model in the area of Information Based Complexity in which algorithms for numer-
ical problems without complete information are studied [82,108]. Computational
models dealing with real numbers are also studied in Recursive Analysis. Here,
objects like real numbers or real functions are coded in a certain way by Cauchy
sequences leading to notions like that of a computable real (already introduced by
Turing) and computable real number functions. The theory arising from this ap-
proach is focussing more on stability of real number algorithms and thus different
from the setting of this paper. For introduction and some additional controversial
discussions on the question which model to use in what situation we refer the reader
to the following literature: [16,22,53,96,107,108].

In this paper the Blum-Shub-Smale model builds the main topic of interest.
The intention is to give an introduction into problems and methods relevant in real
number complexity theory. The paper is organized as follows. Section 2 starts with
a motivating example from kinematics that leads to several interesting questions in
complexity, both with respect to the classical Turing and the real/complex number
model. These problems are outlined and lead to a formal introduction of the real
number model in the following section. There, basic complexity classes as well as the
concept of NPR-completeness are introduced and some first results are presented.
We then focus on structural complexity theory for the real and complex numbers by
discussing three different topics: Transfer results between different computational
models, analysis of the structure inside NPR and NPC along the lines of a classical
result by Ladner in the Turing model, and recursion theory over the reals. The
rest of the paper then focusses on Probabilistically Checkable Proofs PCPs. The
PCP theorem by Arora et al. [2, 3] was a cornerstone in Theoretical Computer
Science giving a new surprising characterization of complexity class NP and having
tremendous applications in the area of approximation algorithms. After introducing
the main ideas behind probabilistically checkable proofs we give a detailed proof of
the existence of long transparent proofs for NPR and NPC. Then, we outline how
one can obtain a real analogue of the PCP theorem along the lines of a more recent
proof of the classical PCP theorem by Dinur [38].
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TOPICS IN REAL AND COMPLEX NUMBER COMPLEXITY THEORY 3

The paper is written in the style of an exposition. We do not cover all the
interesting work that has been done since introduction of the Blum-Shub-Smale
model about 20 years ago. Instead, the focus will be on topics the authors have
also worked on themselves. With one exception dealing with long transparent
proofs we most of the time do not present full proofs of the results treated. Instead
it is tried to give the reader a feeling of the ideas behind such proofs, some more
detailed and some not. More interested readers will easily find all details in the
cited literature. Finally, we expect the reader to have a basic knowledge of classical
complexity theory and the theory of NP-completeness [44], [1]. This is not crucial
for understanding the flow of ideas, but we frequently refer to the Turing model
in order to pinpoint similarities and differences between real number and classical
complexity theory.

2. A motivating example

A typical problem in kinematics asks for finding suitable mechanisms that fulfil
given motion tasks. Having chosen a mechanism which in principle can solve the
problem the dimensions of the mechanism’s components have to be determined. In
its mathematical formulation this often leads to solving polynomial systems. As
example of such a motion synthesis task consider the following one. Construct a
mechanism which is able to generate a rigid body motion such that some constraints
are satisfied. Constraints, for example, could be certain positions that have to be
reachable by the mechanism. Figure 11 shows as typical example the motion of a
plane in relation to a fixed base. Here, a ξ− η-system with its origin P is attached
to the moving plane and a x − y-system is attached to the base. The rigid body
motion now can be defined by certain poses of the ξ− η-system with respect to the
x− y-system.

y

yp,1

xp,1 x

P1
P2

P3

P4
P5

A0

γ1

η

η
η

ηη
ξ

ξ

ξ

ξ

ξ

Figure 1. Synthesis-task “Motion generation for five precision poses”

The engineer’s task is to choose a suitable mechanism being able to solve the
task. Then, its precise dimensions have to be determined. Here it is often desirable
to perform a complete synthesis, i.e., to find all possible realizations of a synthe-
sis task. This gives the engineer the possibility to choose particular mechanisms
optimized with respect to additional criteria not reflected in the mathematical de-
scription, and to fine-tune. A class of mechanisms suitable for the above task are
so-called Stephenson mechanisms, one example of which is shown in Figure 2.

1the figures are taken from [92]
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4 MARTIJN BAARTSE AND KLAUS MEER

Figure 2. Six-bar Stephenson-1I mechanism; kinematic param-
eters such as lengths of linkages, sizes of angles etc. have to be
determined in the dimensional synthesis step.

Having chosen the kind of mechanism that is suitable to solve the problem
(structural synthesis), in the dimensional synthesis step the unknown kinematic
dimensions of the chosen mechanism have to be calculated. Mathematically, the
problem leads to a polynomial system that has to be solved either over the real or
the complex numbers depending on the formalization. Though both the number of
variables and the degrees of the involved equations remain moderate, computing a
complete catalogue of solutions in many cases already is demanding. Note that of
course not all solutions of the resulting polynomial system are meaningful from an
engineering point of view. A first complete dimensional synthesis for Stephenson
mechanisms has been performed in [92], for a general introduction to solution
algorithms for such kinematic problems see [100].

An important numerical technique to practically solve polynomial systems are
homotopy methods. Here, the basic idea for solving F (x) = 0 is to start with
another polynomial system G that in a certain sense has a similar structure as F .
The idea then is to build a homotopy between G and F and follow the zeros of G
numerically to those of F . A typical homotopy used is the linear one H(x, t) :=
(1− t) ·G(x) + t · F (x), 0 ≤ t ≤ 1. In order to follow this approach the zeros of the
starting system should be easily computable.

Homotopy methods for solving polynomial systems are a rich source for many
interesting and demanding questions in quite different areas. Their analysis has seen
tremendous progress in the last 20 years and is outside the scope of this survey.
There will be contributions in this volume by leading experts (which the authors of
the present paper are not!) in the area, see the articles by C. Beltrán, G. Malajovich,
and M. Shub. We just point to some of the deep results obtained and recommend
both the other contributions in this volume and the cited literature as starting
point for getting deeper into homotopy methods. Recent complexity analysis for
homotopy methods was strongly influenced by a series of five papers in the 1990’ies
starting with [94] and authored by M. Shub and S. Smale. A question that remained
open at the end of this series and now commonly is addressed as Smale’s 17th
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TOPICS IN REAL AND COMPLEX NUMBER COMPLEXITY THEORY 5

problem, see [98], was the following: ’Can a zero of n complex polynomial equations
in n unknowns be found approximately, on the average, in polynomial time with a
uniform algorithm?’ After a lot of work on the problem involving different authors a
major breakthrough was obtained by Beltrán and Pardo, see [11,13]. They showed
how to solve polynomial systems by a uniform randomized homotopy algorithm that
runs in polynomial time on the average. Another important progress based on that
work was made by Bürgisser and Cucker in [28], where a deterministic algorithm
for Smale’s problem running in pseudo-polynomial time was designed. For a more
accurate account on the history of the problem we refer to the survey [12].

For the purposes of the present paper we are just interested in some particular
aspects arising from the above discussions. They lead into different directions of
complexity theory, both with respect to the classical Turing model and real number
complexity theory. In the rest of this section we discuss a problem resulting from
the above approach that leads to a hard combinatorial optimization problem in
classical complexity theory. The following sections then deal with the problem to
decide solvability of such polynomial systems; as we shall see this is a task at the
heart of real and complex number complexity theory.

For the moment let us restrict ourselves to considering polynomial systems of
the form F : Cn �→ C

n, F := (f1, . . . , fn) over the complex numbers. Here, each
component polynomial fi is supposed to have a degree di ∈ N. Since the system has
as many equations as variables it is canonically solvable. For a successful application
of homotopy methods the choice of the starting system G is of huge importance.
One aspect is that if the zero structure of G significantly differs (for example,
with respect to its cardinality) from that of the target system F , then many zeros
from G are followed in vain, thus wasting computation time. A common idea for
choosing G therefore is to get as far as possible the same number of zeros as F .
There are different ways to estimate the number of complex zeros that a canonical
system F : Cn → C

n has. A first classical result is Bézout’s theorem which upper

bounds the number of isolated zeros by d :=
n∏

i=1

di. Though this number can be

easily calculated and a system G with d many isolated zeros is easily found, the
disadvantage is that it often drastically overestimates the number of zeros of F .
A prominent example is the computation of eigenvalues and -vectors of an (n, n)-
matrix M , formulated via the polynomial system Mx − λx = 0, ‖x‖2 − 1 = 0 in
variables (x, λ) ∈ C

n+1. The Bézout number is exponential in n, whereas clearly
only n solutions exist.

To repair this disadvantage one might try to use better bounds for the number
of solutions. A famous theorem by Bernstein [15] determines for generic systems
the exact number of zeros in (C∗)n. Though giving the exact number applying
this theorem algorithmically suffers from another aspect. In order to compute this
bound one has to calculate so-called mixed volumes. The latter is a computational
problem that is expected to be even much harder than solving problems in NP
because in suitable formulations it leads to #P -hard problems.2 Thus at least in
general one has to be careful whether to compute this bound for the target system
F in order to construct G.

A third approach has been used as well, relying on so-called multi-homogeneous
Bézout numbers, see [61,80] for more. Here, the idea is to obtain better estimates

2A bit more information about the class #P can be found at the end of section 4.
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6 MARTIJN BAARTSE AND KLAUS MEER

by first partitioning the problem’s variables into groups and then applying Bézout’s
theorem to each group. In many cases like the eigenvalue problem mentioned above
the resulting bound is much closer to the true number of zeros than it is the case
for the Bézout number. However, the question then again is how difficult it is to
find an optimal grouping of the variables such that the resulting upper bound is
minimal. Though we deal with solving numerically systems of polynomials over the
complex numbers, the above question leads to a typical problem about a combi-
natorial optimization problem and thus into the framework of classical complexity
theory. This is due to the structure of multi-homogeneous Bézout numbers. More
precisely, the optimal grouping mentioned above only depends on the support of the
given system, i.e., the structure of monomials with non-zero coefficients. It is not
important how these coefficients look like. As consequence, the problem changes to
a purely combinatorial one. The question of how difficult it is to compute the op-
timal variable partitioning has been answered in [66] which gives a hardness result
for the problem. It is therefore sufficient to focus on particular polynomial systems,
namely systems F := (f1, . . . , fn) = 0 in which all fi have the same support. More
precisely, consider n ∈ N, a finite A ⊂ N

n and a polynomial system

f1(z) =
∑

α∈A f1αz
α1
1 zα2

2 · · · zαn
n , . . . , fn(z) =

∑
α∈A fnαz

α1
1 zα2

2 · · · zαn
n ,

where the fiα are non-zero complex coefficients. Thus, all fi have the same sup-

port A. A multi-homogeneous structure is a partition of {1, . . . , n} into k subsets
(I1, . . . , Ik) , Ij ⊆ {1, . . . , n}. For each such partition we define the block of vari-
ables related to Ij as Zj = {zi|i ∈ Ij}; the corresponding degree of fi with respect
to Zj is dj := max

α∈A

∑
l∈Ij

αl. It is the same for all polynomials fi because all have

the same support.

Definition 2.1. a) The multi-homogeneous Bézout number with respect to

support A and partition (I1, . . . , Ik) is the coefficient of
∏k

j=1 ζ
|Ik|
j in the formal

polynomial (d1ζ1 + · · ·+ dkζk)
n, which is

Béz(A, I1, . . . , Ik) =

(
n

|I1| |I2| · · · |Ik|

) k∏

j=1

d
|Ij |
j .

Here, we assume the fi to be not yet homogeneous with respect to variable group
Zj ; otherwise, replace dj ’s exponent by |Ij | − 1.

b) The minimal multi-homogeneous Bézout number for a system having support
A is

min
I partition

Béz(A, I).

It is known that this minimal number bounds the number of isolated solutions
in a suitable product of projective spaces and trivially is never worse than the
Bézout number, see [64, 100] for a proof. Unfortunately, as it is the case with
Bernstein’s bound computing such an optimal partition is a hard task. Even if
one would be satisfied with only approximating the minimal multi-homogeneous
Bézout number using an efficient Turing algorithm this is not likely possible. More
precisely, the following holds:

Theorem 2.2 ([66]). a) Given a polynomial system F : Cn → C
n with support

A there is no polynomial time Turing-algorithm that computes the minimal multi-
homogeneous Bézout number for A unless P = NP.
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TOPICS IN REAL AND COMPLEX NUMBER COMPLEXITY THEORY 7

b) The same holds with respect to the task of efficiently approximating the
minimal multi-homogeneous Bézout number within an arbitrary constant factor of
the minimum.

Proof. As mentioned already above the task of computing the best variable
partition is a purely discrete one because its definition only depends on the discrete
structure of the support of the given system. The proof thus shows that an efficient
algorithm for any of the two mentioned tasks would result in an efficient algorithm
for the 3-colouring problem in graph theory. This problem is well known to be NP-
complete in discrete complexity theory. Relating graph colouring with the problem
at hand is done by assigning to a given graph G over vertex set V monomials
that have the vertices of G as its variables and reflect the presence of edges and
triangles in G. Doing this appropriately will result in a polynomial system whose

minimal multi-homogeneous Bézout number equals C := (3n)!
n!n!n! in case the graph

has a 3-colouring and otherwise is at least 4
3C. This gives claim a). For the non-

approximability result one performs a similar construction which allows to blow
up the factor 4

3 to an arbitrary constant. For this construction, a multiplicative
structure of the multi-homogeneous Bézout numbers is exploited. �

In practice this means that one has to decide whether one would prefer a longer
pre-computation for getting a better starting system either by using mixed volumes
or by determining a suitable multi-homogeneous structure or abstains from such a
pre-computation. Choosing a random starting system also in theory is an important
alternative here.

A more recent application of multi-homogeneous Bézout numbers can be found
in [7]. Finally note that they also play some role outside the realm of polynomial
equation solving. An example is given in [37], where the number of roots is used
to bound geometrical quantities such as volume and curvature which is applied to
the theory of Linear Programming.

The discussion in this section intended to show the wide range of interesting
questions arising from different areas related to polynomial system solving. In
engineering, many tasks can be formalized using such systems. Solving them then
leads to demanding problems in many different disciplines, ranging from algebraic
geometry over numerical analysis to algorithm design and complexity theory. Being
the focus of the present paper we concentrate on complexity theory. Above we
have seen a question arising from polynomial system solving and being located in
the framework of combinatorial opimization. This is a typical area of interest in
classical discrete complexity theory, where also (non-)approximability results like
the one given in Theorem 2.2 are studied, see [4,51,52,59].

However, taking into account domains like R and C over which the systems are
to be solved nearby other questions arise: Can we design deterministic algorithms
that decide whether a general such system has a solution at all in the respective
domain? General here in particular means that we do not longer relate the number
of variables and polynomials. If such decision algorithms exist what is the intrinsic
complexity of this problem, i.e., can we give good lower and upper bounds on the
running time of such algorithms? Is there a way to compare related problems with
respect to their complexity? These are also typical questions in classical complexity
theory when dealing with a class of problems. Since we are interested in real and/or
complex number instances the Turing model seems at least not appropriate to deal
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8 MARTIJN BAARTSE AND KLAUS MEER

with all above questions. Also the homotopy methods mentioned above usually are
formulated in a framework in which real numbers are considered as entities and
complexity is measured, for example, in terms of Newton steps that are applied to
follow the homotopy.

This led Blum, Shub, and Smale [19] to introduce a computational model for-
malizing algorithms over quite general domains together with a related complexity
theory. This model will be the central one considered in this paper. In the next
section we give a short summary of its definition, focussing on the real and complex
numbers as underlying domains.

3. The real number model by Blum, Shub, and Smale

As already mentioned when dealing with algorithms over uncountable struc-
tures like R and C as they often occur in many areas of mathematics it is quite
natural to formulate such algorithms in a computational model which does not
take care about a concrete representation of objects in modern computers. Then
the real or complex numbers to compute with are considered as entities and each
elementary operation on such numbers is supposed to take unit time. Of course,
this does not mean that issues related to such a number representation are not im-
portant in algorithm design and analysis. But if one focusses on certain aspects of a
computational problem, for example, on the number of basic arithmetic operations
intrinsically necessary to solve it, this abstraction makes sense. One important new
aspect for the algorithmic treatment of algebraic problems is to place them into
the framework of a uniform P versus NP question. This has also inspired a lot of
further interesting new questions in the area of algebraic complexity, see [24,25].

In 1989 Blum, Shub, and Smale [19] introduced a formal framework that allows
to carry over important concepts from classical complexity theory in the Turing
machine model to computational models over a large variety of structures. For
computations over the real and complex numbers they obtained an analogue of the
currently most important open question of classical complexity theory, namely the
P versus NP problem. We remark that the Blum-Shub-Smale model was introduced
over general ring structures; in case the underlying ring is the finite field Z2 it gives
back the classical Turing model.

We now give a brief introduction into the model, its main complexity classes and
then turn to the above mentioned version of a P versus NP question. Full details
can be found in [18]. We give the basic definitions for real number computations;
they easily extend to other structures.

Definition 3.1. A (real) Blum-Shub-Smale (shortly: BSS) machine is a Ran-
dom Access Machine over R. Such a machine has a countable number of registers
each storing a real number. It is able to perform the basic arithmetic operations
{+,−, ∗, :} together with branch instructions of the form: is a real number x ≥ 0?
These operations are performed on the input components and the intermediate re-
sults; moreover, there is a finite number of constants from the underlying domain
used by the algorithm. They are called machine constants. In addition, there are
instructions for direct and indirect addressing of registers. A BSS machine M now
can be defined as a directed graph. Each node of the graph corresponds to an
instruction. An outgoing edge points to the next instruction to be performed; a
branch node has two outgoing edges related to the two possible answers of the
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TOPICS IN REAL AND COMPLEX NUMBER COMPLEXITY THEORY 9

test. Such a machine handles finite sequences of real numbers as inputs, i.e., ele-
ments from the set R∞ :=

⋃
k∈N

R
k. Similarly, after termination of a computation

it outputs an element from R
∞ as result.

A machine does not necessarily terminate for each of the suitable inputs. For
computations over other structures one has to adjust the set of operations that can
be performed accordingly. For example, when computing with complex numbers
there is no ordering available, therefore tests are of the form: is a complex number
z = 0? In a more formal treatment of the model one additionally has to specify
how inputs are presented to the machine in form of a start configuration and how
a terminal configuration leads to the output. This can easily be done by specifying
a set of registers in which an input is placed and others where the result of a
computation has to be delivered. However, being almost straightforward we skip
to go through the related formalism and refer instead once more to [18].

The problems we are mainly interested in are decision problems.

Definition 3.2. A set A ⊆ R
∞ is called real decision problem. It is called

decidable if there is a real BSS algorithm that decides it, i.e., given an input x ∈ R
∞

the algorithm terminates with result 1 in case x ∈ A and result 0 otherwise.
The problem is semi-decidable if the algorithm stops for all x ∈ A with result

1 but computes forever for inputs x �∈ A. Similarly for complex decision problems.

Before turning to complexity issues one natural question in computability the-
ory is whether there exist decision problems that cannot be decided at all by an
algorithm in the respective model.

Definition 3.3 (Real Halting Problem). The real Halting Problem HR is the
following decision problem: Given a code cM ∈ R

∞ of a real BSS machine M and
an x ∈ R

∞, does machine M stop its computation on input x?

The Halting Problem was one of the first that has been shown to be undecid-
able in the real number model in [19]. There are further problems shown to be
undecidable by simple topological arguments. Recall that the Mandelbrot setM is
defined as the set of those c ∈ C whose iterates under the map z �→ z2 + c remain
bounded when starting the iteration in z = 0.

Theorem 3.4 ([19]). The following problems are undecidable in the real number
model: The real Halting problem HR, the problem Q to decide whether a given real
number is rational, the Mandelbrot set M seen as subset of R2. Moreover, HR,Q
and the complement of M in R

2 are semi-decidable.
In the complex BSS model, the corresponding complex version of the Halting

problem is undecidable. The same holds for deciding the integers Z. Both problems
are semi-decidable.

Proof. For proving undecidability of HR in a first step one constructs a uni-
versal BSS machine, i.e, a machine U that takes as its input pairs (cM , x), where
cM ∈ R

∞ codes a BSS machine M as element in R
∞ and x ∈ R

∞ is an input for
this machine M . Machine U on such an input simulates the computation of M on
x. The computational model is strong enough to guarantee U ’s existence, though
the precise construction is tedious. Now, undecidability is obtained by a typical
diagonalization argument in which x is taken to be cM . Semi-decidability easily
follows from performing U ’s computation. If the universal machine halts the input
belongs to HR by definition, otherwise not. The argument over C is the same.
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10 MARTIJN BAARTSE AND KLAUS MEER

For the other two real number problems undecidability follows from the topo-
logical structure of the respective problems. First, every semi-decidable set in R

∞

is an at most countable union of semi-algebraic sets.3 This follows from the alge-
braic structure of the basic operations allowed in algorithms. Both the complement
of Q in R and the Mandelbrot set are known not to be such a countable union,
so it follows these that sets cannot be semi-decidable. But since decidability of a
problem A is equivalent to semi-decidability of both A and its complement both
problems can neither be decidable. Semi-decidability of Q is straightforward by
enumerating Q, that of R2 \M follows immediately from M’s definition: As soon
as an iterate of an input c ∈ R

2 in absolute value becomes larger than 2 this c
belongs toM’s complement. This condition as well characterizes the complement.

As to undecidability of the integers over C another frequently used topological
argument is helpful. Consider a potential machine deciding the problem. Then
any input x∗ that is algebraically independent of the extension field obtained when
joining the complex machine constants to Q must be branched along the not-equal-
alternative of each test node. This computation path must be finite. But the set
of inputs that are branched at least once along an equal-alternative is finite by
the fundamental theorem of algebra. Thus there must exist integers for which the
machine uses the same computation path and gives the same result as for x∗. On
such integers the computed result is false and thus the machine has to fail. �

The above statements for Q and Z are closely related to so called definability
issues in real and algebraically closed fields, see [20]. We shall exploit similar argu-
ments again below when analysing computationally universal problems in section
4.3.

Next, algorithms should be equipped with a time measure for their execution.
As usual, in order to then classify problems with respect to the running time needed
to solve them one also has to define the size of an instance. The time consumption
is considered as function in the input size. The intuitive approach for measuring
the algebraic complexity of a problem described at the beginning of this section is
now made more precise as follows.

Definition 3.5. Let M be a real BSS machine. The size of an element x ∈ R
k

is sizeR(x) := k. The cost of each basic operation is 1. The cost of an entire
computation is the number of operations performed until the machine halts. The
(partial) function from R

∞ to R
∞ computed by M is denoted by ΦM . The cost

of M ’s computation on input x ∈ R
∞ is also called its running time and denoted

by TM (x). If ΦM (x) is not defined, i.e., M does not terminate on x we assign the
running time TM (x) :=∞.

Most of the well known Boolean time-complexity classes can now be defined
analogously over the reals. We give a precise definition of the two main such classes.

Definition 3.6 (Complexity classes, completeness).

a) A problem A ⊆ R
∞ is in class PR (decidable in polynomial time over R)

iff there exist a polynomial p and a real BSS machine M deciding A such
that TM (x) ≤ p(sizeR(x)) ∀x ∈ R

∞.

3A semi-algebraic set in R
n is a finite Boolean combination of sets defined as solution of

finitely many polynomial equalities and inequalities.
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TOPICS IN REAL AND COMPLEX NUMBER COMPLEXITY THEORY 11

b) A is in NPR (verifiable in non-deterministic polynomial time over R ) iff
there exist a polynomial p and a real BSS machine M working on input
space R

∞ × R
∞ such that

(i) ΦM (x, y) ∈ {0, 1} ∀x ∈ R
∞, y ∈ R

∞

(ii) ΦM (x, y) = 1 =⇒ x ∈ A
(iii) ∀x ∈ A ∃y ∈ R

∞ ΦM (x, y) = 1 and TM (x, y) ≤ p(sizeR(x))
c) A problem A in NPR is NPR-complete iff every other problem in NPR can

be reduced to it in polynomial time. Polynomial time reducibility from
problem B to problem A means: There is a polynomial time computable
function f : R∞ → R

∞ which satisfies: ∀x ∈ R
∞ : x ∈ B ⇔ f(x) ∈ A.

This type of reduction is also called polynomial time many one reduction.
d) The corresponding definitions over C lead to classes PC,NPC, and NPC-

completeness.

When talking about a problem A ∈ NPR, for an input x ∈ A the y whose
existence is required in part b,ii) above can be seen as a proof of x’s membership
in A. The definition then requires that correctness of this proof can be checked
efficiently in the size of x. Below we often use the phrase that on input x machine
M guesses a proof y for establishing x ∈ A.

The definition directly implies that PK is included in NPK for K ∈ {R,C}. The
currently most important open question in real and complex number complexity
theory is whether these inclusions are strict. This is easily seen to be equivalent to
the existence of already one single NPK-complete problem which does not belong
to the corresponding class PK.

The following closely related two problems turn out to be extremely important
for the entire theory and will occur in one or the other form throughout the rest of
this paper.

Definition 3.7. Let K be a field of characteristic 0.
a) The Hilbert-Nullstellensatz problem is the problem to decide whether a

given system of polynomial equations

p1(x1, . . . , xn) = 0 , . . . , pm(x1, . . . , xn) = 0,

where all pi are polynomials in K[x1, . . . , xn] has a common solution in K
n.

We denote the problem by QPSK for Quadratic Polynomial Systems if, in ad-
dition, all pi have a total degree bounded by 2.

b) If K = R the feasibility problem 4-FEASR is the task to decide whether a
polynomial f ∈ R[x1, . . . , xn] of total degree at most 4 has a zero in R

n.

We shall see that the above problems in the BSS models over R and C, respec-
tively, take over the role of the famous 3-SAT problem in the Turing model.

Example 3.8. The following problems are easily seen to belong to the respec-
tive class NP over R or C.

a) QPSK belongs to NPK for K ∈ {R,C}, 4-FEASR belongs to NPR. In all
cases the verification procedure guesses a common zero of the given system or the
given polynomial, respectively. The polynomials then are evaluated in this point
and it is finally checked whether the guess actually was a zero. The (algebraic)
size of the guess equals the number of variables the polynomials depend on. The
evaluation procedure obviously only needs a number of arithmetic steps and tests
that is polynomially bounded in the input size of the system. For the latter we
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12 MARTIJN BAARTSE AND KLAUS MEER

take a dense representation, i.e., also zero-coefficients for monomials not present
contribute to the size by 1. This in principle could be done differently, but here we
want to avoid discussions about sparse polynomials.

As an easy example of a polynomial time reduction note that QPSR straight-
forwardly is reducible to 4-FEASR by defining an instance of the latter as the sum
of the squared degree-2-polynomials of the given QPSR instance. Obviously, over
C this reduction does not work correctly.

b) Another example of a problem in NPR is the Linear Programming problem
LPR. Here, the input is a real (m,n)-matrix A together with a vector b ∈ R

m. The
question to decide is whether there is a real solution x ∈ R

n satisfying A·x ≤ b. The
input size is O(mn+m), a verification proof once again guesses a potential solution
x and then verifies whether it solves the system. The problem, when restricted to
rational input data and considered in the Turing model, is known to be decidable
in polynomial time. This is the well known result implied by the ellipsoid and
the interior-point methods. The running time of those algorithms, however, are
polynomial in the input size only because the discrete input size is larger than the
algebraic one, taking into account the bit-length necessary to represent the rational
data. It is a major open question in the theory of Linear Programming whether a
polynomial time algorithm also exists in the real number model [98].

By introducing slack variables and reducing the number of variables per equa-
tion to at most 3 by using additional variables, the real Linear Programming prob-
lem is polynomial time reducible to QPSR. Even though it is currently open whether
LPR ∈ PR it is not expected that the problem becomes much harder in terms of
complexity classes it belongs to, for example, becoming NPR-complete. This would
have strange consequences [69]. So LPR might well be a kind of intermediate prob-
lem between PR and NPR-complete ones. However, even the theoretical existence
of such ’intermediate’ problems is currently open. We comment on this point once
again below after Theorem 4.12.

In order to justify the importance of the NPR-completeness notion first it has
to be shown that such problems exist.

Theorem 3.9 ([19]). For K ∈ {R,C} the Hilbert-Nullstellensatz problem QPSK
is NPK-complete. Over the reals the same holds for 4-FEAS.

Proof. The proof in principle follows the structure of the one for Cook’s
theorem, i.e., the proof of NP-completeness of the 3-SAT problem in the Turing
model. However, certain adjustments to the framework are needed. Given a prob-
lem A ∈ NPR, a BSS machine M witnessing this membership, and an input x ∈ R

∞

a quadratic polynomial system has to be constructed that is solvable if and only
if x ∈ A. The system is obtained by representing M ’s possible computation on
x and a suitable guess y by a rectangular matrix. Rows represent the time steps
of M during computations, columns represent the registers in which input, guess
and intermediate results are stored. Given the polynomial running time of M this
matrix has polynomial size only. Now for each assignment to the matrix with real
numbers one tries to express by polynomial equations that the first row’s assign-
ment corresponds to the input configuration for M on x, each row’s assignment
implies that of the next row by applying a computational step of M , and the last
row-assignment indicates that M ’s computation is accepting. Then x ∈ A if and
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TOPICS IN REAL AND COMPLEX NUMBER COMPLEXITY THEORY 13

only if a suitable assignment of the matrix exists if and only if the generated QPSR
instance is solvable. �

The list of complete problems still is relatively small compared to the thou-
sands of discrete problems that since Cook’s theorem have been established to be
NP-complete. For some further completeness results related to NPR and NPC,
respectively, we refer (non-exhaustively) to [27,36,57,58,90].

An important difference between NPR and its discrete counterpart NP is the
fact that the guess y in the above definition of NPR is taken from an uncountable
space. This is very much different to the classical setting where the search space
for a correct membership proof is an element in {0, 1}∗, i.e., a finite bit-string.
Since the length of the guess is polynomially bounded in the length of the input,
over finite alphabets the search space is finite, implying that each problem in NP
is decidable in single exponential time. Over the reals and the complex numbers
this turns out to be true as well relying on much deeper results.

Theorem 3.10. Let d ∈ N and let A be a (basic) semi-algebraic set that is
given as

A := {x ∈ R
n|pi(x)Δi0, 1 ≤ i ≤ s} ,

where each pi is a polynomial of degree at most d with real coefficients and Δi ∈
{=, �=,≥, >}.

Then emptiness of A can be decided by an algorithm in the BSS model that
runs in O

(
(s · d)O(n)

)
arithmetic steps, i.e., in single exponential time.

A similar statement is true for the complex numbers. It follows that both all
problems in NPR and in NPC can be decided by a BSS algorithm of the respective
model in single exponential time.

The proof of this theorem is out of the scope of this paper. It is a special case
of Quantifier Elimination (the existential quantifiers are removed by the decision
procedure), a question having a long tradition for real and algebraically closed fields.
The first procedure for general quantifier elimination in these structures was given
by Tarski [102]. Then, starting in the 1970’ies research has focussed on getting
better complexity estimates, until finally for existentially quantified problems single
exponential complexity bounds could be established. Significant contributions to
the complexity of such methods have been made, for example, in [9, 47, 49, 88].
The above result in this particular form if taken from [88]. Once again, with M.
Giusti and J. Heintz two experts in complexity aspects of elimination theory will
contribute with related issues to this volume, so the interested reader should consult
their article [6].

Thus we arrived at some first cornerstones in BSS complexity theory. There
are problems that are algorithmically undecidable in the model. And there is a
reasonable theory of efficient algorithms and hard problems in form of the PR versus
NPR question. Its importance is justified by the existence of natural NPR-complete
problems, and all such problems can be decided within the algorithmic framework in
single exponential time. It is currently not known whether more efficient algorithms
exist. Similar statements are true in the complex number model. In the following
sections we shall discuss several structural questions taking their starting points in
the above results.
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14 MARTIJN BAARTSE AND KLAUS MEER

4. Structural complexity

In this section we exemplify typical methods and questions analysed in struc-
tural complexity theory for the BSS model over R and C on the basis of three
thematic areas. These topics include transfer theorems, the structure inside NPR,
and recursion theory on R.

4.1. Transfer principles for P versus NP. One of the research lines from
the beginning of real and complex number complexity theory was to study simi-
larities and differences between classical complexity theory for the Turing model
dealing with finite alphabets and complexity theory in alternative than discrete
structures. Defining literally the main problem whether the classes P and NP coin-
cide is an easy task once the underlying model has been specified, but this of course
does not automatically make the question interesting. Nevertheless, it fortunately
turned out to be the case that several non-trivial problems arise in such alternative
models. The most prominent one certainly again is the P versus NP question, this
time over R and C.

It is natural to wonder whether the answer(s) to this question are related for
different structures. More generally, it seems interesting to combine major open
complexity theoretic question in one computational model with related questions
in another. Ideally, this enlarges the tools of methods that could be used to attack
such open problems. Results following this guideline are usually called transfer
theorems. This subsection intends to highlight some such transfer results relating
different versions of the BSS model with classical complexity theory.

Of course in general it is not clear what difficulties one meets when studying a
problem over continuous domains which literally is similar to the respective question
in the Turing model. Sometimes, an easy solution over the reals is possible because
new arguments can be used that are not applicable in the Turing model. Sometimes,
a deep analysis combines different models, and sometimes, new interesting questions
arise which do not have a significant counterpart in the discrete world. All of that
has been observed, and the present section tries to outline some results into these
directions.

Note that we saw already one good example where a seemingly similar question
needs much more efforts to be solved in the real number model. The decidability
of all problems in class NPR mentioned in the previous section relies on the non-
trivial task to perform quantifier elimination in real closed fields. And obtaining a
comparable time bound to the discrete world, where NP trivially can be decided in
simple exponential time, becomes even more difficult.

An opposite example where a question being extremely difficult in the Turing
setting turned out to be much easier in the BSS framework is the following early
result by Cucker on non-parallelizability of the class PR. The real number class
NCR used in the statement intuitively is defined as those decision problems in PR

that can be parallelized. This means they can be solved using a polynomial number
of BSS machines working in parallel which but all running in poly-logarithmic time
only. The theorem states that not all problems in PR can be parallelized that way.

Theorem 4.1 ([33]). NCR � PR
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Proof. The proof relies on an irreducibility argument by defining a decision
problem whose solution requires to compute an irreducible polynomial of exponen-
tial degree. It is then shown that this computation basically cannot be split into
different parallel branches. �

The above argument relies on the structure of irreducible varieties over R.
Thus, it cannot be applied to the analogue question for the Turing model. It is still
is one of the major open problems in classical complexity theory.

Comparing different models is most interesting when dealing with problems
that somehow can be considered in both models. This often can be achieved by
restricting the set of input instances. An important example is the Hilbert Null-
stellensatz problem. Given a system of polynomial equations as input on the one
hand side can be considered as problem for both NPR and NPC, depending on the
set of coefficients. Solvability accordingly can be required either over the reals or
the complex numbers. If we restrict coefficients to be rationals or integers the ques-
tion as well makes sense in the Turing model, even when asking for real solutions.
Moreover, if one is interested in {0, 1}-solutions this can be forced by binding each
single variable x through an additional equation x ·(x−1) = 0. Note that also in the
Turing model it is an NP-complete task to decide whether a system of quadratic
equations with integer coefficients has a real or complex solution, respectively.

Thus, for a comparison of these models an important question to solve is:
Suppose, the real (or complex) QPS problem could be decided by an efficient al-
gorithm. Could this algorithm somehow be turned into a Turing algorithm such
that the changed algorithm turns out to be efficient as well for the discrete variant
of QPS? Clearly, a main aspect for attacking this question is whether the poten-
tially real or complex machine constants which the given algorithm uses could be
replaced somehow in order to obtain a Turing algorithm. This topic of replacement
of machine constants has turned out to be extremely interesting and demanding. In
the results below such a replacement in one or the other way always is crucial. The
resulting effects can be quite different. For some tasks constants can be replaced
without much harm to complexity aspects, for some others such a replacement in-
troduces new aspects like non-uniformity of algorithms, and there are situations
where it remains an open question whether a replacement is possible.

A first deep result dealing with such issues was given in [17]. Here, the QPS
problem is studied over arbitrary algebraically closed fields of characteristic 0. The
proof of Theorem 3.9 shows that QPS defined accordingly is complete for the cor-
responding class NP in all such fields. Thus it is natural to ask whether an answer
to any of the related P versus NP problems would have implications for the other
fields as well. In fact, this is true.

Theorem 4.2 ([17]). For all algebraically closed fields K of characteristic 0 the
P versus NP question has the same answer in the BSS model over K, i.e., either
in all these fields NPK = PK or in all such fields PK is strictly contained in NPK.

Proof. The theorem’s first proof in [17] performs the elimination of constants
using number theoretic arguments. We outline an alternative proof given by Koiran
[56] which is based on results on quantifier elimination. A first observation using
the introductory remarks before the statement of the theorem shows that a central
problem to consider is QPS over the algebraic closure Q̄ of the rational number
field. Since each field K under consideration has to contain Q̄ it suffices to analyse
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16 MARTIJN BAARTSE AND KLAUS MEER

the QPS problem over K and over Q̄. There are then two directions to prove;
the first asserts that the existence of an efficient algorithm for a hard problem
over K implies the same for a hard problem over Q̄. This is the more difficult
statement. The converse direction states that an efficient algorithm for the Hilbert
Nullstellensatz problem in Q̄ can be lifted to one for the same problem over K. It
is true by well known results from model theory, basically applying the so called
strong transfer principle for the theory of algebraically closed fields. This was first
done by Michaux [79]. Since its proof does not rely on techniques for eliminating
machine constants we do not go into more details here.

Let us thus focus on the other direction. Note that a QPS instance with
coefficients from Q̄ has a solution over K if and only if it has a solution over Q̄.
This follows from Hilbert’s Nullstellensatz. Below we choose K := C, but the
arguments remain basically the same for any other K.

Suppose then there were an efficient algorithm solving QPS over C, i.e., proving
PC = NPC. This algorithm also solves QPS over Q̄ efficiently, but in order to
conclude P

Q̄
= NP

Q̄
the algorithm is not allowed to use constants from K \ Q̄.

Suppose the potential decision algorithm uses transcendental constants; with a
moderate technical effort one can additionally assume without loss of generality that
all these machine constants are algebraically independent. For the computation on
a fixed input from Q̄ one can view each equality test performed by the algorithm
as a polynomial with coefficients in Q̄ that is evaluated in the set of transcendental
machine constants. Thus, no such algebraic equality test is answered positively in
a reasonably small neighbourhood of the set of machine constants. Consequently,
for all such points the machine computes the same yes-no answers. The task is
then to find a rational point in such a neighbourhood. A clever application of the
complexity statements behind Theorem 3.10 for C guarantees such points to exist
and being not too large. ’Not too large’ here means that they can be computed
fast enough starting from the constant 1 by a machine working over Q̄. Thus,
replacement of transcendental constants by efficiently computable algebraic ones
can be accomplished and an efficient algorithm for the NPQ̄-complete problem QPS
is found. �

The theorem unfortunately does not solve the P versus NP problem in any of
those structures but just guarantees the currently unknown answer to be the same
for all related fields. The next transfer theorem discussed relates the P versus NP
question in the complex BSS model with randomized complexity classes in classical
complexity. Here, the well known class BPP denotes decision problems L that can
be solved by randomized polynomial time algorithms allowing a small two-sided
error, i.e., the procedure might fail both on elements in L and its complement
with a small constant probability. BPP thus stands for bounded error probability
polynomial time. The precise placement of class BPP in discrete complexity theory
with respect to its relations to P and NP is a major open problem. Though recent
results have led to the reasonable possibility that BPP equals P, it is not even
known whether BPP is a proper subset of the set of problems that can be solved in
non-deterministic exponential time, see [1]. The next result shows an interesting
connection between the complex BSS model and BPP. The main ingredients for its
proof were independently given by Koiran [54] and Smale [97], though in the cited
sources the theorem seems not outspoken explicitly.
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TOPICS IN REAL AND COMPLEX NUMBER COMPLEXITY THEORY 17

Theorem 4.3 ([54, 97]). Suppose PC = NPC in the complex number BSS
model, then NP ⊆ BPP in the Turing model.

Proof. Once again, the main idea is to extract from an efficient complex algo-
rithm for QPSC a randomized Turing algorithm for a suitable NP-complete variant
of QPS. In order to replace non-rational constants used by the given algorithm ran-
domization enters at two places. First, relying once more on arguments like those
used in the previous theorem one tries to find small rational constants that could
be used instead of the original ones. These constants are chosen by random from a
large enough set and their appropriateness with high probability is established by
using the famous Schwartz-Zippel Lemma [111]. However, even if the new rational
coefficients work fine, it might be the case that intermediate results produced in
the initial PC algorithm get too large when counting bit-operations in the Turing
model. This is solved by doing all computations modulo randomly chosen inte-
gers located in a suitable set. For most of them the computation then still works
correctly, but now running in polynomial time as well in the Turing model. �

Even though the relation between BPP and NP is currently unknown nobody
expects NP ⊆ BPP to be true. The inclusion would have dramatical consequences
concerning complexity classes above NP, and here foremost the collapse of the so
called polynomial hierarchy. So if one could prove that this hierarchy does not
collapse in classical complexity theory it would follow PC �= NPC in the complex
number model.

The two previous results are not known to hold for the real numbers as well.
The attempt to obtain transfer results here seems to meet more obstacles. We shall
encounter this phenomenon once again in the next subsection. It is then natural to
first consider restrictions of the real number model in order to figure out whether
more could be said for such restricted models. In addition, this might shed more
light on where the difficulties lie.

The first such restriction considered here is called additive BSS model. The
difference with the full real model is that only additions and subtractions are allowed
as arithmetic operations. For the following discussion we also restrict ourselves to so
called constant-free additive algorithms, i.e., there are no other machine constants
used than 0 and 1. Nevertheless note that for an NPadd

R
verification algorithm it is

still allowed to work with real guesses. Similar results as those described below can
be obtained as well if arbitrary constants are allowed. We comment on that at the
end of this subsection.

In the additive model classes Padd
R

and NPadd
R

are defined analogously to the
full model.4 Algorithms in the additive model still can work with inputs being
vectors of real numbers. However, when inputs are restricted to stem from {0, 1}∗,
each additive computation can be simulated with only polynomial slow down by
a Turing machine. This is true because the sizes of intermediate results in such a
computation cannot grow too much, in contrast to the case in the full model when
repeated squaring of a number is performed. The following theorem by Fournier
and Koiran shows that proving lower bounds in the additive model is of the same
difficulty as in classical complexity theory.

4In literature the constant-free classes usually are denoted with an additional superscript 0.
We skip that here in order to minimize the notational overhead.
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18 MARTIJN BAARTSE AND KLAUS MEER

Theorem 4.4 ([41]). It is P = NP in the Turing model if and only if it holds

Padd
R

= NPadd
R

in the additive (constant-free) model over R.

Proof. In a first step one analyses the power of additive machines on discrete
languages. For L ⊆ R

∗ one denotes it Boolean (i.e., discrete) part as BP (L) :=
L ∩ {0, 1}∗, and similarly for entire complexity classes. The above argument on

a moderate growing of intermediate results implies the equality BP (Padd
R

) = P.

The analogue equality BP (NPadd
R

) = NP is true as well, though for proving it
one first has to show that guessing real components in a verification proof can be
replaced by guessing small rational components. This is only known to be true in
the additive model, for the full BSS model it is an open question and conjectured
to be false. These observations suffice to show the easier direction, namely that
Padd
R

= NPadd
R

implies P = NP. The difficult one is the converse, and as usual we
only outline the main proof ingredients. Suppose that P = NP. The idea is to
show that any problem in NPadd

R
can be efficiently decided by an additive machine

which has access to a discrete oracle for NP. The latter means that the algorithm
is allowed to generate questions to a classical NP-complete problem and gets a
correct answer at unit cost.5 Since we assume P = NP such an oracle device can be
replaced by an efficient algorithm in the Turing model, which of course is efficient
as well in the additive model. This would yield the assertion. The design of this
oracle algorithm is the heart of the proof. It relies on a deep result by Meyer
auf der Heide [77, 78] on point location for arrangements of hyperplanes. This
result establishes how to construct non-uniformly a so called linear decision tree
for solving the point location problem. The proof shows how this algorithm can be
made uniform if an NP oracle is available. We only outline it very roughly here.
Given a problem L ∈ NPadd

R
the non-deterministic additive algorithm generates an

exponential family of hyperplanes describing membership in L. These hyperplanes
arise from accepting computations, and since it suffices to guess small rational
numbers only in non-deterministic algorithms the coefficients of those hyperplanes
remain small rational numbers. Moreover, the set of hyperplanes decomposes the
respective part of the input space Rn into regions each of which either belongs to L
or its complement. The main part of the proof now shows that an additive machine
which is allowed to use a classical NP oracle can solve the following task: For an
input x ∈ R

n it computes a set S described by few affine inequalities with small
coefficients such that x ∈ S and S is either completely contained in L or in its
complement. The construction of S needs Meyer auf der Heide’s results in a clever
way, using at several stages the oracle. The final decision whether S ⊆ L or not
again is decided by means of the NP oracle. �

The theorem shows that there are deep relations between major open questions
in classical complexity theory and real number models. If additive machines are
allowed to use real constants similar results have been proved in the same paper
[41] relying on results from [34,55]. Basically the use of such constants introduces

non-uniformity for discrete problems, that is Boolean parts of the class Padd
R

when
constants can be used turn out to equal the class P/poly in the Turing model;
the latter defines problems that can be decided efficiently by additional use of a
moderate non-uniformity, see also below. The same is true for NPadd

R
and leads to

a corresponding version of the previous theorem. Note that further restricting the

5Oracle algorithms will be considered once more in Section 4.3.
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TOPICS IN REAL AND COMPLEX NUMBER COMPLEXITY THEORY 19

model, for example by only allowing equality branches and therefore considering
R as unordered vector space does not lead to a similar transfer result. In such a
model the corresponding class P provably is a proper subclass of NP, see [68].

Of course, it is challenging to extend connections to discrete complexity like
the ones shown above to the full real number model as well.

4.2. Inside NPR and NPC. The problems to be considered in this subsection
as well require to deal with the machine constants of algorithms and how to replace
them by more suitable ones. This time, however, the goal will not be to replace
arbitrary constants by rational ones. Instead, a family of constants used non-
uniformly should be replaced by a single fixed set of machine constants. Before
understanding the task and how the replacement in some situations can be achieved
we introduce the problem to be studied now.

Starting point of the investigations is the following classical result by Ladner
[60], which in the Turing model analyses the internal structure of complexity class
NP in case P �= NP is supposed to be true:

Theorem 4.5 ([60]). Suppose NP �= P. Then there are problems in NP \ P
which are not NP-complete under polynomial time many-one reductions.

Proof. The proof relies intrinsically on the countability of both the family
{P1, P2, . . .} of polynomial time Turing machines and the family {R1, R2, . . .} of
polynomial time reduction machines in the Turing model. A diagonalization argu-
ment is performed to fool one after the other each machine in the two sets. This is
briefly done as follows. Given an NP-complete problem L one constructs a problem
L̃ ∈ NP such that all machines Ri fail to reduce L to L̃ on some input and all ma-
chines Pi fail to decide L̃ correctly on some input. Towards this aim the definition
of L̃ proceeds dimension-wise while intending to fool step by step P1, R1, P2, R2, . . ..
In order to fool an Pi the language L̃ is taken to look like L for inputs of sufficiently
large size. Conversely, in order to fool reduction algorithm Ri for sufficiently many
of the following input-sizes L̃ is defined to look like an easy problem. Both steps to-
gether imply that none of the machines Pi, Ri works correctly for the new language
L̃. Finally, a typical padding argument guarantees L̃ ∈ NP. �

Extensions of Ladner’s result can be found, for example, in [91].

Considering computational models over uncountable structures like R and C

the above diagonalization argument - at least at a first sight - fails since the cor-
responding algorithm classes become uncountable. So it is not obvious whether
similar statements hold for NPR and/or NPC. We shall now see that studying this
question in the extended framework leads to interesting insights and new open
problems.

As it was the case in the previous subsection also for Ladner’s problem the
complex BSS model is easier to handle than the real model. The first Ladner like
result in the BSS framework in [65] was shown for the complex classes PC and NPC:

Theorem 4.6 ([65]). Suppose NPC �= PC. Then there are problems in NPC\PC

which are not NPC-complete under polynomial time many-one reductions in the
complex number BSS model.

Proof. The proof relies on Theorem 4.2 from the previous subsection. It will
be crucial to transfer the question from the uncountable structure C of complex
numbers to the countable one Q̄, the algebraic closure of Q in C.
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20 MARTIJN BAARTSE AND KLAUS MEER

In a first step we answer Ladner’s problem positively in the BSS model over
Q̄. This can be done along the lines of the classical proof sketched above since
both families of algorithms mentioned therein are countable. Let L̃ be the diagonal
problem constructed.

In order to apply Theorem 4.2 some observations are necessary. They all are
immediate consequences of Theorem 3.9 and Tarski’s Quantifier Elimination for
algebraically closed fields of characteristic 0. First, the Hilbert Nullstellensatz deci-
sion problem is NPK-complete in the BSS model over K for K ∈ {Q̄,C}. The strong
transfer principle mentioned already in the proof of Theorem 4.2 implies that an
instance over Q̄ is solvable over C if and only if it is as well solvable already over Q̄.
Since the Hilbert Nullstellensatz problem can be defined without additional com-
plex constants Theorem 4.2 can be applied. This allows to lift the diagonal problem
L̃ from Q̄ to C such that the lifted problem has the same properties there. Thus,
Ladner’s theorem holds as well over the complex numbers. �

Since Theorem 4.2 is not known to be true for the real number model the
above proof cannot be applied to show Ladner’s result for NPR. Thus a new idea is
necessary. If we could group an uncountable set of real algorithms into a countable
partition, then may be one could at least construct diagonal problems for such a
partition. But how should a reasonable partition look like?

This idea was first considered by Michaux who introduced the notion of basic
machines in [79].

Definition 4.7. A basic machine over R in the BSS-setting is a BSS-machine
M with rational constants and with two blocks of parameters. One block x stands
for a concrete input instance and takes values in R

∞, the other block c represents
real constants used by the machine and has values in some R

k (k ∈ N fixed for M).
Basic machines for variants of the BSS model are defined similarly.

Basic machines split the discrete skeleton of an original BSS machine from its
real machine constants. That is done by regarding those constants as a second
block of parameters. Fixing c we get back a usual BSS machine M(•, c) that uses
the same c as its constants for all input instances x. Below, when we speak about
the machine’s constants we refer to the potentially real ones only.

Basic machines give rise to define a non-uniform complexity class P/const for
the different model variants we consider. The non-uniformity is literally weaker than
the well-known P/poly class from classical complexity theory since the non-uniform
advice has fixed dimension for all inputs. In P/poly it can grow polynomially with
the input size.

Definition 4.8 ([79]). A problem L is in class PR/const if and only if there
exists a polynomial time basic BSS machine M and for every n ∈ N a tuple c(n) ∈
[−1, 1]k ⊂ R

k of real constants for M such that M(•, c(n)) decides L for inputs up
to size n.

Similarly for other models.

Note that in the definition c(n) works for all dimensions ≤ n. The reason for
this becomes obvious below. Note as well that assuming all machine constants to
be bounded in absolute value is no severe restriction; if a larger constant should
be used it can be split into the sum of its integer part and its non-integral part.
The integer part then is taken as rational machine constant, thus belonging to the
discrete skeleton.
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TOPICS IN REAL AND COMPLEX NUMBER COMPLEXITY THEORY 21

The class P/const turned out to be important in unifying Ladner like results
in different models and to get as well a (weaker) real version. The class of basic
machines clearly is countable as long as the particular choice of machine constants is
not fixed. Thus, in principle we can diagonalize over P/const decision and reduction
machines in the different models.

Theorem 4.9 ([14]). Suppose NPR �⊆ PR/const. Then there exist problems in
NPR \ PR/const not being NPR-complete under PR/const reductions.

Similarly for the other model variants.

Proof. The proof again uses the usual padding argument along the classical
line. The main new aspect, however, is the necessity to establish that for each
basic machine M which is supposed to decide the intended diagonal problem L̃ an
input-dimension where M ’s result disagrees with L̃’s definition can be computed
effectively. The condition thatM disagrees with L̃ for all possible choices of machine
constants can be expressed via a quantified first-order formula. Deciding the latter
then is possible due to the existence of quantifier elimination algorithms in the
respective structures. �

Since the assumption of Theorem 4.9 deals with PR/const instead of PR it gives
a non-uniform version of Ladner’s result. Note that because of PR ⊆ PR/const the
theorem’s implication also holds for uniform reductions. In order to achieve stronger
versions one next has to study the relation between the classes P and P/const. If
both are equal, then a uniform version of the theorem follows.

At this point some model theory enters. Very roughly, a structure is called
recursively saturated if for each recursive family of first-oder formulas {ϕn(c)|n ∈
N} with free variables c the following holds: if each finite subset of formulas can be
commonly satisfied by a suitable choice for c, then the entire family is satisfiable.6

Theorem 4.10 ([79],[14]). If a structure is recursively saturated, then it holds
P = P/const.

Proof. Let L be a language in P/const and M the respective basic machine.
The proof basically is a combination of the definition of saturation with a reasonable
description of M ’s behaviour on instances up to a given dimension. This descrip-
tion, being folklore in BSS theory, gives the recursive family {ϕn(c)}n of formulas
required, where n stands for the input dimension and the free variables c for the
machine constants taken for the basic machine M . Saturation then implies that a
single choice for the machine constants can be made which works for all dimensions.
This choice turns M into a uniform polynomial time algorithm for L. �

As a consequence, Ladner’s results holds uniformly over structures like {0, 1}
and C which are well known to be recursively saturated. Thus, Ladner’s original
result as well as Theorem 4.6 are reproved.

However, since R is not recursively saturated – take as family ϕn(c) ≡ c > n
for c ∈ R – the theorem’s consequence does not apply to R. So once again the

6Recursiveness here is understood in the Turing sense and just requires that one should
be able to enumerate the formulas without using additional machine constants. In the present
applications the formulas of the family always represent computations of certain basic machines
up to a certain dimension. By ’hiding’ constants from the underlying computational structure as
variables it follows that such a family satisfies the recursiveness assumption. For more details see
[79]
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22 MARTIJN BAARTSE AND KLAUS MEER

above technique does not give a uniform analogue of Ladner’s result over the reals
and additional ideas seem necessary. Due to its importance for the above questions
Chapuis and Koiran in [30] have undertaken a deep model-theoretic analysis of
P/const and related classes. They argue that for the full real model already the
equality PR = PR/1 is highly unlikely unless some major complexity theoretic
conjecture is violated. Here, PR/1 is defined by means of basic machines which
use a finite number of uniform and a single non-uniform machine constant only.
Nevertheless, for the reals with addition and order (additive model) they were able

to show once again Padd
R

= Padd
R

/const and thus

Theorem 4.11 ([30]). Suppose NPadd
R

�= Padd
R

. Then there are problems in

NPadd
R
\ Padd

R
which are not NPadd

R
-complete.

Their proof for showing the inclusion Padd
R

/const ⊆ Padd
R

once more makes use
of the moderate growth of intermediate results in an additive computation. This
allows to bound the size of and compute efficiently and uniformly for each input
dimension n a set of rational machine constants c(n) such that the given Padd

R
/const-

machine works correctly on R
≤n if c(n) is taken as vector of constants.

This idea is one of the starting points to extend the result to yet another variant
of the full real number model named restricted model in [73]. In this model, the
use of machine constants is restricted in that all intermediate results computed by
a restricted algorithm should only depend linearly on the machine constants. In
contrast to additive machines input variables can be used without limitation, i.e.,
they can be multiplied with each other. The motivation of considering this model
is that it is closer to the original full real BSS model than the additive one. As one
indication for this fact note that the NPR-complete feasibility problem QPS over R
is NPrc

R
-complete as well in the restricted model, where the superscript rc is used

to denote respective complexity classes in the restricted model. Since Theorem 4.9
holds as well here the main task once more is to analyse the relation between Prc

R

and Prc
R
/const.

Theorem 4.12 ([73]). It is Prc
R

= Prc
R
/const. As a consequence, supposing

QPS �∈ NPrc
R

there exist non-complete problems in NPrc
R
\ Prc

R
.

Proof. Crucial for showing Prc
R

= Prc
R
/const is a certain convex structure

underlying the set of suitable machine constants. Given a problem L ∈ Prc
R
/const

and a corresponding basic machine M using k constants define En ⊂ R
k as set of

constants that can be used by M in order to decide L ∩ R
≤n correctly. It can be

shown that without loss of generality the {En}n build a nested sequence of bounded
convex sets. If the intersection of all En is non-empty any point in it can be taken as
uniform set of machine constants and we are done. Thus suppose the intersection
to be empty. The main point now is to establish by a limit argument in affine
geometry the following: There exist three vectors c∗, d∗, e∗ ∈ R

k such that for all
n ∈ N and small enough μ1 > 0, μ2 > 0 (μ2 depending on μ1 and both depending
on n ) machine M correctly decides L∩R

≤n when using c∗ + μ1 · d∗ +μ2 · e∗ as its
constants. This is sufficient to change M into a polynomial time restricted machine
that decides L and uses c∗, d∗, e∗ as its uniform machine constants. �

Let us summarize the methods described so far in view of the main open prob-
lem in this context, namely Ladner’s result for NPR. The diagonalization technique
used above allows some degree of freedom as to how to define PR/const. This means
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that we can put some additional conditions onto the set of constants that we al-
low for a fixed dimension to work. To make the diagonalization work there are
basically two aspects that have to be taken into account. First, the resulting class
has to contain PR. Secondly, the conditions we pose on the constants have to be
semi-algebraically definable without additional real constants. Playing around with
suitable definitions might be a way to attack Ladner’s problem as well in the full
real number model. However, for a problem L in PR/const the topological structure
of the set of suitable constants is more complicated since now each branch results
in a (potentially infinite) intersection of semi-algebraic conditions. Then one has

to study how the topology of the sets
N⋂

i=1

Ei evolves for increasing N. For example,

could one guarantee the existence of say a semi-algebraic limit curve along which
one could move from a point c∗ into an En? In that case, a point on the curve
might only be given by a semi-algebraic condition. As consequence, though one
would likely not be able to show PR/const ⊆ PR may be at least a weaker uniform
version of Ladner’s result could be settled.

To finish this subsection let us refer the interested reader to [23], where similar
questions concerning Ladner like results are studied in Valiant’s model of compu-
tation.

4.3. Recursion theory. Whereas so far the focus was on decidable problems,
in this subsection we consider problems of increased computational difficulty, i.e.,
undecidable ones in the BSS model. Recursion theory which deals with degrees of
undecidability certainly was one of the main topics that at the beginning stimulated
research in classical computability theory, see [84]. For alternative models it is in
particular interesting with respect to the so called area of hypercomputation, i.e.,
whether there are (natural) computational devices that are more powerful than
Turing machines and thus violate the famous Church-Turing hypothesis. For an
introduction to hypercomputation and an extended list of references see [101], and
[110] for a particular focus on real hypercomputation.

The real Halting Problem HR was already mentioned earlier. We consider it
here in the following version: Given a code cM ∈ R

∞ of a real BSS machine M , does
this machine stop its computation on input 0? The problem was the first that has
been shown to be undecidable in the real number model in [19]. We now deal with
the following question: Are there problems which in a reasonable sense are strictly
easier than HR yet undecidable? In the Turing model this was a famous question
asked by Post in 1944 and solved about 15 years later independently by Friedberg
and Muchnik, see [99]. Nevertheless, until today there is no natural problem with
this properties known in the Turing model. We shall see that the question turns out
to be much easier (though not trivial) in our framework. A second question to be
discussed then is that of finding as well more natural problems that are equivalent
to HR, i.e., have the same degree of undecidability. Finally, aspects of bounded
query computation are treated briefly.

Before explaining some of the results obtained we have to be more specific
on what should be understood under terms like easier and equivalent if we deal
with computability issues. As above with NPR-completeness this again is formal-
ized using special reductions, this time focussing on computability only instead of
complexity.
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24 MARTIJN BAARTSE AND KLAUS MEER

Definition 4.13. A real decision problem A ⊆ R
∞ is Turing reducible to

another problem B ⊆ R
∞ iff there exists an oracle BSS machine M working as

follows. For inputs x ∈ R
∞ M works like a normal BSS machine except that it

additionally has repeatedly access to an oracle for B. In such an oracle state the
machine queries the oracle whether a previously computed y ∈ R

∞ belongs to B
and gets the correct answer in one step. After finitely many steps (normal and
oracle) M stops and gives the correct answer whether x belongs to A or not.

Turing reducibility gives a straightforward way to compare undecidable prob-
lems. If A can be decided by an oracle machine using B as oracle but not vice versa,
then A is strictly easier than B. If both are Turing reducible to each other they are
said to be equivalent. Note that all problems below (i.e., easier than) or equivalent
to HR at least are semi-decidable: there is an algorithm which halts exactly for
inputs from the problem under consideration. This follows from the existence of a
Turing reduction and semi-decidability of HR. Problems equivalent to HR are also
called computationally complete for the real BSS model.

Now our first question, the real version of Post’s problem reads: Is there a
semi-decidable problem A which is neither decidable nor reducible from HR?

Theorem 4.14 ([75]). The rational numbers Q represent an undecidable de-
cision problem which is strictly easier than HR. Thus, there is no real BSS oracle
machine that decides HR by means of accessing Q as oracle.

Proof. Undecidability of Q was already shown in Theorem 3.4. The same
arguments give undecidability of the real algebraic numbers A. The main step now
is to show that Q is strictly easier than A. Note that this implies the result because
A easily can be decided by a machine accessing HR as oracle. So if the statement
was false, i.e., HR would be Turing reducible to Q, transitivity of the reduction
notion implies that A should also be decidable using Q as oracle.

Assume to the contrary that M is an oracle algorithm deciding A by means of
accessing Q. The arguments used to get a contradiction combine some elementary
topology and number theory similar to those used in the proof of Theorem 3.4.
Topology enters for dealing with inequality branches of M , whereas number theory
is used for branches caused by queries to the Q-oracle. Since all intermediate
results computed by M are rational functions in the input it turns out to be crucial
for analysing the outcome of oracle queries to see how a rational function maps
algebraic numbers to rationals. The main observation is the following: Suppose
f is a rational function computed by M as oracle query for an input x ∈ R, i.e.,
M asks whether f(x) ∈ Q. If f maps a large enough yet finite set of algebraic
numbers to Q, then f will map all algebraic numbers of a large enough degree to a
non-rational real. Consequently, such an oracle query is not able to distinguish any
algebraic number of large enough degree from a transcendental number. Using this
fact together with basic continuity and counting arguments one can conclude that
an oracle machine for A accessing Q will always fail on certain algebraic numbers.
Thus, M cannot work correctly. �

The above proof actually can be extended to get an infinite family of prob-
lems that are all strictly easier than HR but pairwise incomparable with respect to
Turing reductions. Thus there is a rich structure between decidable problems and
computationally complete ones in the real BSS model. Similar results have been
obtained in [45] for the additive BSS model, whereas [32] studies related questions
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for higher levels of undecidability above HR. Degrees of undecidability in the BSS
model are as well studied in [109] and [29].

Having solved Post’s problem we turn to the question whether there are other
problems beside HR being computationally universal in the BSS model. In the
Turing model several very different problems turned out to be such examples. To
mention some of the most prominent ones there is Post’s Correspondence Problem
[86] which asks for matching a finite set of strings according to some rules, Hilbert’s
10th problem [67] which asks for solvability of diophantine equations, and the word
problem in finitely presented groups [21, 83]. The problems considered so far in
BSS theory naturally have a very strong connection to semi-algebraic geometry
because of the underlying set of operations implying that all intermediate results
in an algorithm are related to rational functions. So it is demanding to find other
significant problems in the theory which basically are not problems in semi-algebraic
geometry. We shall now discuss that a suitable variant of the discrete word problem
is such an example. Note that the first two of the above mentioned problems do not
provide such examples. The Post Correspondence Problem by nature has strong
discrete aspects as a kind of matching problem, whereas a real analogue of Hilbert’s
10th problem, i.e., deciding real solvability of a real polynomial system is decidable
by quantifier elimination.

To understand the word problem let us start with an easy discrete example.
Suppose we are given a formal string bab2ab2aba in a free group 〈{a, b}〉 generated
by the two generators a, b. Here, xi denotes the i-fold repetition of element x,
and concatenation represents the group operation. Now we add some relations
between certain elements of the freely generated group. That way a quotient group
of the original free group is obtained. For example, assume the equation ab = 1 to
hold. It is then easy to see that the given element in the resulting quotient group
represents b2. But it cannot be reduced to 1 in this group. However, if as well the
relation a4 = a2 holds, then the given word in the resulting new quotient group
does represent the neutral element 1.

This leads to the definition of the word problem.

Definition 4.15. a) Let X denote a set. The free group generated by
X, denoted by (〈X〉, ◦), is the set (X ∪ X−1)∗ of all finite sequences
w̄ = xα1

1 · · ·xαn
n with n ∈ N, xi ∈ X, αi ∈ {−1,+1}, equipped with

concatenation ◦ as group operation subject to the rules

(4.1) x ◦ x−1 = 1 = x−1 ◦ x, x ∈ X ,

where x1 := x and 1 denotes the empty word, that is, the unit element.
b) A group (G, •) is called finitely presented if G ∼= 〈X〉/〈R〉〈X〉 =: 〈X|R〉 is

(isomorphic to) the quotient of a free group 〈X〉 with finite set of gener-
ators X and the normal subgroup 〈R〉〈X〉 of 〈X〉 generated by the finite
set R ⊆ 〈X〉.

c) The word problem for 〈X|R〉 is the task of deciding, given w̄ ∈ 〈X〉,
whether w̄ = 1 holds in 〈X|R〉.

Intuitively, R describes finitely many rules “r̄ = 1”, r̄ ∈ R additional to those
necessarily satisfied in a group. The famous work of Novikov and, independently,
Boone establishes the existence of a finitely presented group 〈X|R〉 whose associated
word problem is many-one reducible by a Turing Machine from the discrete Halting
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26 MARTIJN BAARTSE AND KLAUS MEER

Problem H and thus computationally complete in the Turing model. The result
is interesting in linking a purely algebraic problem with recursion theory. Since
algebra of course is not restricted to discrete groups it is natural to ask whether
similar relations can be established between other groups and BSS recursion theory.
In the following we shall outline that this indeed is possible.

A natural generalization of Definition 4.15 to the real number setting is ob-
tained by allowing the sets X and R to become uncountable. Formally, this is
expressed by considering sets X := {xr}r of abstract generators indexed with real
vectors r ranging over some subset of R∞, and similarly for the relations R. Then
interesting word problems arise by putting restrictions on these sets in R

∞. For
sake of notational simplicity we identify X with the sets in R

∞ the corresponding
r’s belong to, and similarly for R and the rules.

Definition 4.16. Let X ⊆ R
∞ and R ⊆ 〈X〉 ⊆ R

∞. The elements in 〈X〉
are coded as elements in R

∞. The tuple (X,R) is called a presentation of the
real group G = 〈X|R〉. This presentation is algebraically generated if X is BSS-
decidable and X ⊆ R

N for some N ∈ N. G is termed algebraically enumerated if R
in addition is BSS semi-decidable; and if R is BSS-decidable we call G algebraically
presented. The word problem for the presented real group G = 〈X|R〉 is the task
of BSS-deciding, given w̄ ∈ 〈X〉, whether w̄ = 1 holds in G.

Example 4.17 ([76]). The following three examples should clarify the above
notions. The first two give different presentations 〈X|R〉 of the additive group
(Q,+) of rational numbers with decidable word problem, whereas the third has an
undecidable word problem due to its connection to deciding Q in R.

i) X =
{
xr : r ∈ Q

}
, R =

{
xrxs = xr+s : r, s ∈ Q

}
;

ii) X = {xp,q : p, q ∈ Z, q �= 0},
R =

{
xp,qxa,b = x(pb+aq,qb) : p, q, a, b ∈ Z

}
∪

{
xp,q = x(np,nq) : p, q, n ∈

Z, n �= 0
}
;

iii) X = {xr : r ∈ R}, R =
{
xnr = xr, xr+k = xr : r ∈ R, n ∈ N, k ∈ Z

}
.

Case ii) yields an algebraic presentation, i) is not even algebraically generated, but
iii) is algebraically presented. The word problem is trivially decidable for i) because
after embedding the task into (R,+) one can simply compute on the indexes and
check whether the result is 0. Also for ii) it is decidable by a similar argument.
For iii) the word problem is undecidable because it holds xr = x0 ⇔ r ∈ Q. Note,
however, that case iii) by means of Theorem 4.14 does not provide a group for
which the word problem is computationally universal.

It is not hard to establish that for all algebraically enumerated groups the
corresponding word problem is semi-decidable in the BSS model. This just requires
a folklore argument based on quantifier elimination. The more interesting result is

Theorem 4.18 ([76]). There exists an algebraically presented real group H =
〈X|R〉 such that the real Halting problem HR is reducible to the word problem in H.
This word problem thus is computationally universal for the real BSS model.

The proof in a first step embeds the membership problem for any set in R
∞

to the word problem in a suitable group. Then, it proceeds showing that for HR

this embedding can be arranged such that the resulting group is algebraically pre-
sented. We skip further details because they rely on a lot of classical techniques
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in combinatorial group theory such as HNN extensions and Britton’s lemma. For
more on that see [63] and the full proof in [76].

The theorem is interesting in that it gives a problem computationally signifi-
cant in the BSS model over R yet only indirectly related to semi-algebraic features.
The list of such problems at the moment is much smaller than in classical recursion
theory and it seems an interesting topic for future research to find more such prob-
lems. Open questions related immediately to the above theorem are the following.
Can the corresponding universality result be established for algebraically presented
groups for which as well the set R of rules comes from a finite dimensional space
R

k? In the construction of the proof it turns out to be crucial that R lives in R
∞,

i.e., there have to be included rules for vectors of arbitrarily large dimension. Recall
that in the original result by Boone and Novikov both X and R are finite, and it
seems that a suitable analogue of finiteness in the discrete setting is finite dimen-
sionality of these sets in the real number framework. Another interesting question
is that of finding particularly structured groups whose respective word problems
are universal for complexity classes. One such task thus would be to find particular
algebraically generated groups for which the word problem is NPR-complete.

To close this section we briefly mention yet another area of recursion theory
which has intensively been studied in the Turing model and only seen some initial
considerations in our framework, namely bounded query computations. Here, the
interest is shifted from the direct consideration of decision problems, i.e., comput-
ing the characteristic function χA of an A ⊆ R

∞ to the following type of ques-
tions: Given an n ∈ N how many oracle queries to a set B ⊆ R

∞ are needed
in order to compute the n-fold characteristic function χn

A of A on n many inputs
xi ∈ R

∞, 1 ≤ i ≤ n. More precisely, this function is defined as χn
A(x1, . . . , xn) :=

(χA(x1), . . . , χA(xn)). Different choices of A and B, where also A = B is possible,
give quite different results. An easy example shows that by using binary search
for each semi-decidable set A the n-fold characteristic function can be computed
by �log2 n+ 1� many calls to an oracle for HR. The following result is much less
obvious

Theorem 4.19 ([74]). Let n ∈ N and consider the n-fold characteristic function
χn
Q

on Q. Let B ⊆ R be an arbitrary subset of the reals. Then no BSS oracle
machine having access to B as oracle can compute χn

Q
with less many than n queries.

Proof. Suppose such an oracle machine exists it must in a certain way reduce
n questions about Q to at most n− 1 many questions about the arbitrary real set
B. Now the main idea is to arrange the situation for an application of the implicit
function theorem for functions from R

n �→ R
n−1 . Along the one-dimensional

solution curve which the theorem guarantees to exist the oracle machine then can
be shown to necessarily err. �

The application of classical tools from analysis like the implicit function theo-
rem shows a significant difference to proofs in the Turing framework. So we expect
a lot of interesting problems to exist in this area which need other methods not
available in discrete recursion theory.

This section aimed to present some challenging questions and techniques in
structural complexity theory for real or complex number computations. The prob-
lems treated just reflect a small fraction of topics studied in the last two decades
in this area. We close by pointing to some more literature.
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28 MARTIJN BAARTSE AND KLAUS MEER

A prominent class of problems that have been studied intensively in classical
complexity theory are counting problems. This has lead to the definition of a
counting analogue of NP denoted by #P and the search for complete problems in
that class. Roughly speaking, #P captures functions that count the number of
accepting computations of an NP-algorithm. Assuming P �= NP this counting class
contains much harder problems than those in NP. This is justified by Toda’s famous
result [103] which says that using an oracle from #P in deterministic polynomial
time computations captures all problems in the so called polynomial hierarchy, a set
conjectured to be much larger than NP. A prominent result by Valiant [105] shows
that the computation of the permanent for a matrix with {0, 1}-entries reflects the
difficulty of this class, i.e., is a #P-complete problem.

In the real number framework counting problems have been extensively stud-
ied in several papers by Bürgisser, Cucker and co-authors. Many of the relevant
problems have a strong algebraic flavour, for example tasks like computing Betti
numbers of algebraic varieties. As a starting point for readers being interested in
such questions we just refer to [26,27]. Analogues of Toda’s theorem both in real
and complex number complexity theory were recently obtained in [8,10].

Another branch of complexity theory that was studied in the real number frame-
work is descriptive complexity. Here the goal is to describe complexity classes in-
dependently of the underlying computational model. Instead, the logical shape in
which a problem can be expressed reflects the algorithmic complexity sufficient to
solve it. The first result into this direction can be found in [46], where both for
PR and NPR such logical characterizations are given. [35] contains further such
results, [70] deals with counting problems from a logical point of view.

Transfer results, one of the main topics in this section, have as well been anal-
ysed with respect to other algebraic approaches to complexity, and here foremost
Valiant’s complexity classes VP and VNP, see [106]. This approach focusses on
families of polynomials over a field that have a polynomially bounded degree in
the number of their variables and can be computed by a non-uniform family of
small circuits. This constitutes class VP, whereas VNP essentially is the family of
polynomials whose coefficients are functions in VP, though there might be expo-
nentially many monomials. A notion of reduction then is introduced by using a
projection operator and once again the permanent polynomials turn out to be a
complete family for VNP. This gives another algebraic variant of a P versus NP
problem, this time for VP versus VNP and it is nearby to ask whether this ques-
tion as well is related to some of the other problems of that style mentioned before.
Readers interested in learning more about progress being made into this direction
are refered to [24] as starting point.

5. Probabilistically checkable proofs over R

For the rest of this paper we shall now turn to the area of probabilistically
checkable proofs, for short PCPs. The PCP theorem first shown by Arora et al.
[2,3] certainly is one of the landmark results in Theoretical Computer Science in
the last two decades. It gives a new characterization of class NP in the Turing
model and had tremendous impact on obtaining non-approximability results in
combinatorial optimization. More recently, an alternative proof of the theorem was
given by Dinur [38].
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The first subsection below briefly surveys the classical PCP theorem and its
currently existing proofs. The main part of this section is then devoted to studying
PCPs in the BSS model. We shall give a complete proof of the existence of so-called
long transparent proofs for both NPR and NPC, see [71]. Then, we outline how the
full PCP theorem can be shown to hold as well in these two models.

5.1. The classical PCP theorem: A short outline. The PCP theorem
gives a surprising alternative characterization of the class NP. It is based on a new
point of view concerning the verification procedure necessary to establish member-
ship of a problem L in class NP. Recall that according to the definition of NP
verifying that an input x belongs to L can be done by guessing a suitable proof y
and then verifying by a deterministic polynomial time algorithm in the size of x
that the pair (x, y) satisfies the property defining L. For example, verifying sat-
isfiability of a given Boolean formula x := φ in conjunctive normal form can be
done by guessing a satisfying assignment y and then evaluating φ(y). Clearly such
a verification algorithm in general must read all components of y in order to work
correctly. Note that for x ∈ L at least one such y has to exist, whereas for x �∈ L
all potential proofs y have to be rejected.

In the PCP theorem the requirements for the verification procedure are changed.
Here is a brief outline of these new aspects, precise definitions are given in the next
subsection. Suppose membership of x in L should be verified using proof y. The
verifier is randomized in that it first generates a random string. This string and
input x are then used to determine a number of proof components in y it wants to
read. This number is intended to be dramatically smaller than the size of y, actu-
ally only constant in the PCP theorem. Finally, using the input, the random string
and those particular proof components the verifier makes its decision whether to
accept or rejct the input. This way there will be a possibility that the verifier comes
to a wrong conclusion, but as long as this probability is not too big this is allowed.
PCP(r(n), q(n)) denotes the class of those languages that have a verifier using r(n)
random bits and inspecting q(n) components of the given proof y for inputs x of
size n. The PCP theorem states that PCP(O(log(n)), O(1)) = NP. It thus shows
that there exists a format of verification proofs for languages in NP which is stable
in the following sense: If x ∈ L, then there is a proof y that is always accepted
(just as in the original definition of NP); and if x �∈ L for each proof y the verifier
detects a fault in that proof with high probability by reading a constant number
of components only. The number of components of y to be seen in particular is
independent of the length of the input!

The PCP theorem implies lots of inapproximability results. One of the first
such result is this one. Assume that P �= NP. Given a propositional Boolean
formula φ in conjunctive normal form having m clauses, there is no algorithm
running in polynomial time in the size of φ which for an arbitrary given ε > 0 does
the following. It computes a value k such that for the maximum number max(φ)
of clauses of φ that are satisfiable in common the inequality max(φ)/k ≤ 1 + ε
holds. Thus the results tells us that unless P = NP this maximal number of clauses
satisfiable in common cannot be approximated efficiently with arbitrary relative
accuracy. Recall that we saw a similar negative result in Theorem 2.2, part b).
However, that result was much easier to obtain than the one above which could
only be shown as an application after the PCP theorem was proven. The close
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30 MARTIJN BAARTSE AND KLAUS MEER

relation between PCPs and approximability is the starting point of Dinur’s proof
and will also be important for studying such questions in the real number setting.

Let us shortly outline the two existing proofs of the PCP theorem. The orig-
inal one by Arora et al. is very algebraic in nature. Here, different verifiers are
constructed which are then combined to a single new verifier with the desired prop-
erties. The particular way how verifiers are combined requires a new technique
called verifier-composition that was developed in [3]. One of the verifiers used for
the composition needs a large amount of randomness but inspects constantly many
proof components only. It is based on coding a satisfying assignment of a Boolean
formula via certain linear functions. The second verifier uses logarithmic random-
ness but needs to read more components. Here, the used coding of an assignment
is done via multivariate polynomials of not too high degree. Both verifiers are then
cleverly combined by the above mentioned technique of verifier-composition. This
yields a third verifier with the required resources.

The second proof of the PCP theorem given by Dinur [38] in 2005 is more com-
binatorial in structure. The basic idea of this proof is to exploit the strong relation
between PCPs and (non-)approximability results. More precisely, Dinur’s proof
uses an NP-complete problem called CSP which stands for constraint satisfiability
problem; such problems are extensions of the Boolean satisfiability problem. An
instance of the CSP problem consists of a number of constraints in a finite number
of variables taking values in a finite alphabet. The question is again whether there
exists an assignment of the variables that satisfies all constraints. Instead of directly
constructing a verifier for this problem one considers the following approximation
problem: Is there an efficient algorithm which for any given ε > 0 approximates
the maximal number of constraints that are commonly satisfiable within a factor
at most 1 + ε. Clearly, since the decision problem is NP-complete computing the
maximal number exactly is an NP-hard problem as well. But it is not clear whether
the above optimization task can be accomplished more easily. This question is in-
timately related to the PCP theorem as follows. Suppose there exists a polynomial
time reduction from CSP instances to CSP instances such that a satisfiable CSP
instance is mapped to a satisfiable CSP instance and a non-satisfiable CSP instance
is mapped to a CSP instance for which no assignment satisfies more than a certain
fixed fraction of the constraints. Then the PCP theorem would follow from the
existence of that reduction. A verifier for CSP first performs the reduction on an
input instance. It then expects the proof to give an assignment to the variables
of the instance resulting from the reduction. Now if this resulting instance is not
satisfiable, then the assignment the proof encodes violates at least a fixed fraction
of the constraints. So the verifier can check the proof by selecting a constant num-
ber of constraints, reading the constantly many values that the proof assigns to the
variables occurring in these constraints, and checking if one of these constraints is
violated by the assignment. Due to the existence of the fixed fraction repeating this
test constantly many times will guarantee that the verifier respects the necessary
error bounds.

Dinur’s proof constructs such a polynomial time reduction between CSP in-
stances. There are two major steps involved in the construction. Given an unsat-
isfiable set of constraints at the beginning we only know that at least one among
the constraints is not satisfiable together with the remaining ones. Thus at the
beginning we have no constant fraction of unsatisfied constraints. The first step is
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an amplification step that increases this fraction by a constant factor. Repeating it
logarithmically many times would yield a constant fraction. However, the amplifi-
cation also increases the size of the finite alphabet used. To control this a second
step called alphabet reduction is necessary. This second step as well heavily relies
on the existence of long transparent proofs, i.e., verifiers that accept CSP using a
large (super-logarithmic) amount of randomness and inspecting constantly many
proof components. Note that for using the corresponding verifier, in both proofs its
structure is much more important than the values of the parameters r and q. This
is due to the fact that the long-transparent-proof verifier is applied to instances of
constant size only. This as well will be important below in the real number setting.

This short outline of the classical proof structures should be sufficient here.
Similar ideas will be described much more explicitly in the next subsections in
relation to PCPs for the real and complex BSS model. Complete descriptions of
the two classical proofs can be found in the already cited original papers as well as
in [1,50,87].

5.2. Verifiers in BSS setting; long transparent proofs. For K ∈ {R,C}
consider once again the Hilbert Nullstellensatz decision problem QPSK studied
in previous sections. To show its membership in NPK one can guess a potential
solution y ∈ K

n, plug it into the polynomials of the system and verify whether all
equations are satisfied by y. Clearly, this verification algorithm in general has to
inspect all components of y. So the above question for the discrete satisfiability
problem as well makes perfect sense here: Can we give another verification proof for
solvability of such a system that is much more stable in the sense of detecting errors
with high probability by inspecting only a small amount of proof components?

This kind of question is made more precise by defining the corresponding ver-
ification procedures as well as the languages in K

∗ which are accepted by such
verifiers.

Definition 5.1. Let r, q : N �→ N be two functions. An (r(n), q(n))-restricted
verifier V in the BSS model over K,K ∈ {R,C} is a randomized BSS algorithm over
K working as follows. For an input x ∈ K

∗ of algebraic size n and another vector
y ∈ K

∗ representing a potential membership proof of x in a certain set L ⊆ K
∗,

the verifier in a first phase generates non-adaptively a sequence of O(r(n)) many
random bits (under the uniform distribution on {0, 1}O(r(n))). Given x and these
O(r(n)) many random bits V in the next phase computes in a deterministic manner
the indices of O(q(n)) many components of y. This again is done non-adaptively,
i.e., the choice of components does not depend on previously seen values of other
components. Finally, in the decision phase V uses the input x together with the
random string and the values of the chosen components of y in order to perform
a deterministic polynomial time algorithm in the BSS model. At the end of this
algorithm V either accepts (result 1) or rejects (result 0) the input x. For an input
x, a guess y and a sequence of random bits ρ we denote by V (x, y, ρ) ∈ {0, 1} the
result of V in case the random sequence generated for (x, y) was ρ.

The time used by the verifier in the decision phase 3 is also called its decision-
time. It should be polynomially bounded in the size of x.

An easy example of such a verifier is given below in the proof of Lemma 5.10.

Remark 5.2. Concerning the running time of a verifier the following has to be
pointed out. In general, generating a random bit is assumed to take one time unit,
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and the same applies when the verifier asks for the value of a proof component.
Below in relation to long transparent proofs we need more than polynomially many
random bits. In such a situation the time for generating a random string would be
superpolynomial. We then assume that the entire random string can be generated
at unit cost. Note however that this is of no concern since the existence of long
transparent proofs will be used in the proof of the full PCP theorem only for
instances of constant size and thus the number of random bits is constant as well.
We comment on this point once more after Theorem 5.7 below.

Using the above notion of a verifier it is immediate to define the languages
accepted by verifiers.

Definition 5.3. (PCPK-classes) Let K ∈ {R,C} and let r, q : N �→ N; a
decision problem L ⊆ K

∗ is in class PCPK(r(n), q(n)) iff there exists an (r(n), q(n))-
restricted verifier V such that conditions a) and b) below hold:

a) For all x ∈ L there exists a y ∈ K
∗ such that for all randomly generated

strings ρ ∈ {0, 1}O(r(sizeK(x))) the verifier accepts. In other words:

Pr
ρ
{V (x, y, ρ) = 1} = 1 .

b) If x �∈ L, then for all y ∈ K
∗

Pr
ρ
{V (x, y, ρ) = 0} ≥ 3

4
.

In both cases the chosen probability distribution is the uniform one over all strings
ρ ∈ {0, 1}O(r(sizeK(x))).

In this section we will discuss the existence of transparent long proofs for prob-
lems in NPK in detail. Our exposition and the given proof below basically follow
[71], where this existence was shown for NPR. Note however that though the al-
most same analysis is used it seems that a longer verification proof is needed than
the one given there; so we adapt the required arguments accordingly. This change
nevertheless is of no concern with respect to the role long transparent proofs play in
the full PCP Theorem 5.14 below. There, they are applied to constant size inputs
only, so the length of a long transparent proof a verifier wants to inspect is constant
anyway. The more important aspect is the structure of the verification proof, see
below.

We shall construct such a verifier for the NPK-complete problem QPSK. The
construction is described for K := R, always pointing out where some care has to
be taken when K = C is considered instead.

The system’s coefficients can be arbitrary real numbers. The verifier will receive
the following three objects as input: A family of degree two polynomials, a (possibly
incorrect) proof of the existence of an assignment under which the polynomials
evaluate to zero, and a sequence of random bits. The verifier outputs either ”accept”
if it believes the proof to be correct or ”reject” otherwise. The polynomials and
the proof will be in the form of a sequence of real numbers whereas the random
string is a sequence over {0, 1}. Randomness is used to decide which locations in
the proof to query. Since the corresponding addresses can be coded discretely only
discrete randomness is needed.

Throughout this subsection let n denote the number of variables of the input
polynomials. Let P := {p1, . . . , pm} denote the system. All polynomials pi are of
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degree at most two and depend on at most three variables. For r ∈ {0, 1}m define

P (x, r) :=
m∑

i=1

pi(x) · ri. The following is easy to see: Let x ∈ R
n be fixed. If x is a

common zero of all pi(x), then P (x, r) = 0 for all r. And if x is no common zero
the probability for uniformly taken r that P (x, r) = 0 is at most 1

2 . We work with
P (x, r) in order to capture both the real and the complex case in common.

Of course, if we want to verify whether an a ∈ R
n solves the system it does not

make sense to plug it into P (a, r) and evaluate because this requires again reading
all components of a. We therefore rewrite P (a, r) as follows:

(5.2) P (a, r) = E(r) +A ◦ LA(r) +B ◦ LB(r),

where functions E,A,B, LA, and LB have the following properties. A and B are
linear functions with n and n2 many inputs, respectively. The coefficient vectors
that represent these mappings depend on the chosen a only. More precisely,

A : Rn �→ R such that A(x1, . . . , xn) =
n∑

i=1

ai · xi ∀ x ∈ R
n;

B : Rn2 �→ R such that B(y11, . . . , ynn) =
n∑

i=1

n∑

j=1

ai · aj · yij ∀ y ∈ R
n2

.

The functions E,LA and LB are linear as well. They take as arguments inputs

from Z
m
2 := {0, 1}m and give results in the spaces R,Rn and R

n2

, respectively. It
is important to note that these mappings do only depend on the coefficients of the
polynomials p1, . . . , pm but not on a. Therefore, given the system and a random
vector r ∈ Z

m
2 these functions can be evaluated deterministically without inspecting

a component of the verification proof. As an immediate consequence of equation
(1), for evaluating P (a, r) it is sufficient to know two function values of certain
linear functions, namely the value of A in LA(r) ∈ R

n and that of B in LB(r). The
verifier expects from the verification proof to contain these two real values.

More precisely, the proof is expected to contain so-called linear function en-
codings of the coefficient vectors defining A and B. This means that instead of
expecting the proof to just write down those vectors we do the following. We define
a finite subset D of Rn and require the proof to contain all values of A(x) := at · x
for all x ∈ D; similarly for B and a subset of Rn2

. In order to work out this idea sev-
eral problems have to be handled. First, though A in principle is a linear function
over all Rn the verification proof must be finite. It can only contain finitely many
components representing values of A. Among these components we of course must
find those values in arguments that arise as images LA(r) for r ∈ Z

m
2 . Secondly,

the verifier cannot trust the proof to represent a linear function which maps D to
R. All it can do is to interpret the proof as giving just a function A from D to R

and try to find out if it is linear. Thirdly, even if the functions A and B are indeed
linear on their corresponding domains and encode coefficient vectors a and b the
verifier has to find out whether b is consistent with a, i.e., whether the coefficient
vector {bij} defining B satisfies bij = ai · aj .

To verify all requirements within the necessary resources and error bounds the
verifier tries to realize the following tasks: It expects the proof to provide two
function value tables representing A and B on suitable domains (to be specified).
Then first it checks whether both tables with high probability represent a linear
function on the respective domains and if ’yes’ how to compute the correct values
of those functions in a given argument with high probability. In a second part
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34 MARTIJN BAARTSE AND KLAUS MEER

the verifier checks consistency of the two involved coefficient vectors with high
probability. Finally, it evaluates (1) to check whether the result equals 0.

A correct proof will provide the tables of two linear functions on the appropriate

domains of form A(x) = at · x and B(x) = bt · x with vectors a ∈ R
n, b ∈ R

n2

such
that bij = ai · aj , 1 ≤ i, j ≤ n. In this ideal case, equation (1) can be evaluated by
reading only two components of the entire proof, namely one value of A and one of
B. If the proof is correct the verifier will always accept.

Suppose then that the given QPSR instance has no solution. The verifier has to
detect this for any proof with high probability. There are different cases to consider
where in the proof errors can occur. The first such case is the one in which one
of the two functions which the proof provides is in a certain sense far from being
linear. The verifier will be able to detect this with high probability by making
only a few queries into the function value table and then reject. A more difficult
situation occurs when the given function is not linear but close to linear. In this
case the verifier’s information about the proof is not sufficient to conclude that it
is not completely correct. To get around this problem a procedure that aims to
self-correct the values which the proof gives is invoked. For A and B as given in
the tables we shall define self-corrections fA, fB. Assuming that the function value
tables are almost linear will guarantee that these self-corrected functions are linear
on the part of the domain which is important for us. Furthermore, the values of
these self-corrected functions can be computed correctly with high probability at
any argument in this part of the domain by making use of constantly many other
values in the table only. In case A is linear fA equals A on the domain on which it
is defined.

We will now carry out the following plan:

(1) Define the domains on which we want the verification proof to define
functions A and B;

(2) check linearity of these functions such that if they are far from linear it
will be discovered with high probability;

(3) assuming no contradiction to linearity has been detected so far define
the self-corrections fA and fB ; use these to detect with high probability
an error if consistency between the coefficient vectors of the two linear
functions is violated;

(4) for random r ∈ Z
m
2 obtain the correct values of fA(LA(r)) and fB(LB(r))

with high probability and use these values together with E(r) to evaluate
P (a, r). Check whether the result is zero.

5.2.1. Appropriate domains for linearity. We will now describe the domain D

on which the values of A should be provided by the proof. The domain on which
we want the proof to define the function B will be constructed analogously.

The function LA : Zm
2 → R

n which generates the arguments in which A poten-
tially has to be evaluated has a simple structure depending on the input coefficients
of the polynomials pi. Written as a matrix its entries are either 0 or such coeffi-
cients, i.e., real numbers that constitute the QPSR instance. Let Λ := {λ1, . . . , λK}
denote this set of entries in LA, considered as a multiset. Since each pi depends on
at most 3 variables it is K = O(m). In order to simplify some of the calculations
below we assume without loss of generality that m = O(n); if not we can add a
polynomial number of dummy variables to the initial instance. Thus K = O(n).
Without loss of generality we also assume λ1 = 1. The components of any vector
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occurring as argument of A now are 0-1 linear combinations of elements in Λ. We
therefore define

X0 := {
K∑

i=1

si · λi | si ∈ {0, 1}}n.

This set contains Zn
2 and thus a basis of Rn. If we could guarantee additivity on

pairs taken from X0 as well as scalar multiplicativity with respect to all scalars taken
from Λ we could be sure to work with a correct linear function for our purposes.

Here a first problem occurs: For getting almost surely a linear function A on X0

from a table for A we need to know and test values of A on a much larger domain
X1. So a larger test domain is needed in order to get a much smaller safe domain,
compare [89]. The idea behind constructing X1 is as follows: We want X1 to be
almost closed under addition of elements from X0. With this we mean that for
every fixed x ∈ X0, picking a random y ∈ X1 and adding x to it results with high
probability again in an element in X1. Similarly, X1 should be almost closed under
scalar multiplication with a factor λ ∈ Λ. These properties of X1 will be important
in proving linearity of fA on X0 if A satisfies the tests on X1 to be designed. Note
that when we speak about linearity of fA on X0 we mean that for all x, y ∈ X0 it
holds fA(x) + fA(y) = fA(x + y), even though the sum x + y in most cases does
not belong to X0; similarly for arguments λx.

We remark that the above requirements are more difficult to be satisfied than
in the corresponding construction of a long transparent proof in the Turing model.
There, all domains are subsets of some Z

N
2 and thus arguments are performed on a

highly structured set with a lot of invariance properties of the uniform distribution.
Secondly, there are no scalars other than 0 and 1, so additivity implies linearity.
In the BSS setting some difficulties arise because some of the elements in Λ can be
algebraically independent.

The above motivates the following definition. Let two sets M and M+ be

defined as M := {
∏K

i=1 λ
ti
i |ti ∈ {0, . . . , n2}}, M+ := {

∏K
i=1 λ

ti
i |ti ∈ {0, . . . , n2+1}}

and let

X1 :=

⎧
⎨

⎩

1

α

∑

β∈M+

sβ · β | sβ ∈ {0, . . . , n3}, α ∈M

⎫
⎬

⎭

n

.

We now prove that X1 does indeed have the desired properties. To keep things
simple we will think of elements in X0, X1 (and later also in D) as formal sums of
products defining M+. This means for example that we distinguish elements in X1

which have the same numerical value because some λi’s in Λ could be the same, but
arise from formally different sums. Such elements are counted twice below when
talking about the uniform distribution on the respective domains. Doing it this
way simplifies some counting arguments because we don’t have to take algebraic
dependencies between the λi’s into account.

Lemma 5.4. Let ε > 0 and let n ∈ N be large enough, then the following holds:
a) For every fixed x ∈ X0 it is Pr

y∈X1

{y + x ∈ X1} ≥ 1− ε.

Here, the probability distribution is the uniform one on X1, taking into account
the above mentioned way how to count elements in X1.

b) Similarly, for fixed λs ∈ Λ it is Pr
y∈X1

{λs · y ∈ X1} ≥ 1− ε.

c) For fixed λ ∈ Λ it is Pr
α∈M

{α/λ ∈M} ≥ 1− ε.
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36 MARTIJN BAARTSE AND KLAUS MEER

Proof. For part a) let us focus on a single coordinate j. Then xj is a 0-1 sum
of the λi’s. We have yj of the form 1

α

∑
β∈M+ sβ · β with α ∈ M and sβ ≤ n3 for

β ∈M+. If the sum for xj contains a term 1 · λi and the corresponding coefficient
of monomial λi in yj is < n3, then yj + xj also has the required form. Since
K = O(n) let K ≤ cn for a suitable constant c > 0. Thus for each of the at most
K many addends in xj there are n3 out of n3 + 1 choices for the coefficient of the
corresponding monomial in yj that imply xj + yj to be of the required form with
respect to this monomial. Since this argument applies for all n components one
obtains

Pr
y∈X1

{y + x ∈ X1} =
(

n3

n3+1

)K·n
=
(
1− 1

n3+1

)O(n2)

≥
︸︷︷︸

Bernoulli

1− O(n2)
n3+1

≥ 1− c
n ≥ 1− ε.

For part b) consider an arbitrary fixed λs ∈ Λ together with a random y ∈ X1.
Consider again a fixed component j of y. The α in the representation of this yj has

the form
∏K

i=1 λ
ti
i with ti ∈ {0, . . . , n2}. If the particular exponent ts of λs in this

α satisfies ts > 0, then λs · y will belong to X1 (and for some cases with ts = 0 as
well). The probability that ts > 0 and thus λs · y ∈ X1 is therefore bounded from
below by

Pr
y∈X1

{λs · y ∈ X1} =
(

n2

n2 + 1

)n

≥ 1− c

n
≥ 1− ε.

Part c) is trivial. �

In order to verify (almost) linearity of A on X0 with respect to scalars from Λ
a test is designed that works on arguments of the forms x+ y, where x, y ∈ X1 and
α ·x with α ∈M,x ∈ X1. The function value table expected from a proof therefore
must contain values in all arguments from the set D := {x+y|x, y ∈ X1}∪{α ·x|α ∈
M,x ∈ X1}. In the next subsection a test is designed on D that verifies with high
probability linearity of A on X0.

5.2.2. The linearity test and self-correction. As in the previous section we will
only describe how things work for the function A : D → R. In the ideal case this
function A is linear and thus uniquely encodes the coefficient vector a ∈ R

n of the
related linear function.

In order to make the formulas look a bit simpler we define the abbreviation
Aα(x) := A(α · x)/α. We repeat the following test a constant number of times:

Linearity test:

• Uniformly and independently choose random x, y from X1 and random
α, β from M ;

• check if A(x+ y) = Aα(x) +Aβ(y).

If all checks were correct the test accepts. Otherwise the test rejects.

Each round will inspect at most three different proof components, namely A(x+
y), A(α · x) and A(β · y). Thus in finitely many rounds O(1) components will be
inspected.

Clearly the linearity test accepts any linear function A with probability 1. For
any δ > 0 and ε > 0 we can choose the number of repetitions of the linearity test
so large that if

(5.3) Pr
x,y∈X1,α,β∈M

{A(x+ y) = Aα(x) +Aβ(y)} > 1− δ
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does not hold, then the test rejects with probability 1− ε. The following cases have
to be analyzed. If the linearity test rejects the verifier rejects the proof and nothing
more is required. So suppose the linearity test does not give an error. If (5.3) is
not satisfied, i.e., in particular the function value table does not come from a linear
function, the verifier would err. Luckily it is easy to show that the probability for
this to happen is small. And according to the definition of the PCPR classes we
are allowed to accept incorrect proofs with small probability. It remains to deal
with the only more difficult situation: The linearity test accepts and (5.3) holds.
This of course does not mean that all values in the table necessarily are the correct
ones. If the verifier asks for a particular such value we must therefore guarantee
that at least with high probability we can extract the correct one from the table.
One can get around this problem by defining a so-called self-correction fA on X1

which can be shown to be linear on X0. This self-correction looks as follows: For
x ∈ X1 define

fA(x) = Majorityy∈X1,α∈M{Aα(x+ y)−Aα(x)}.
Hence fA(x) is the value that occurs most often in the multiset {Aα(x + y) −
Aα(x)|y ∈ X1, α ∈ M}. It could be the case that Aα(x + y) is not defined. If this
happens we just do not count this ’value’.

Lemma 5.5. Under the above assumptions the function fA is linear on X0 with
scalars from Λ, i.e., for all v, w ∈ X0 we have fA(v + w) = fA(v) + fA(w) and for
all x ∈ X0, λ ∈ Λ we have fA(λ · x) = λ · fA(x).

Proof. For arbitrary fixed v ∈ X0 and random x ∈ X1 by Lemma 5.4 it is
x+ v ∈ X1 with probability ≥ 1 − ε assuming n is large enough. Since x �→ x + v
is injective and due to the use of the uniform distribution in (5.3) replacing x by
x+ v in (5.3) gives

Pr
x,y∈X1,α,β∈M

{A(x+ v + y) = Aα(x+ v) +Aβ(y)} > 1− δ − ε.

Doing the same with y instead of x yields

Pr
x,y∈X1,α,β∈M

{A(x+ v + y) = Aα(x) +Aβ(v + y)} > 1− δ − ε

and combining these two inequalities results in

Pr
x,y∈X1,α,β∈M

{Aα(x+ v)−Aα(x) = Aβ(v + y)−Aβ(y)} > 1− 2δ − 2ε.

From this it follows that

(5.4) Pr
x∈X1,α∈M

{fA(v) = Aα(x+ v)−Aα(x)} ≥ 1− 2δ − 2ε.

Similarly, for a fixed w ∈ X0 one obtains

Pr
x∈X1,α∈M

{fA(w) = Aα(x+ w)−Aα(x)} ≥ 1− 2δ − 2ε

and using again the fact that shifting a random x ∈ X1 by a fixed v ∈ X0 does not
change the distribution too much we obtain

(5.5) Pr
x∈X1,α∈M

{fA(w) = Aα(x+ v + w)−Aα(x+ v)} ≥ 1− 2δ − 3ε.

Using the above argument a third time, now with v + w instead of v (and thus 2ε
instead of ε) we get

(5.6) Pr
x∈X1,α∈M

{fA(v + w) = Aα(x+ v + w)−Aα(x)} ≥ 1− 2δ − 4ε.
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38 MARTIJN BAARTSE AND KLAUS MEER

Combining (5.4), (5.5) and (5.6) it follows

Pr
x∈X1,α∈M

{fA(v + w) = fA(v) + fA(w)} ≥ 1− 6δ − 9ε.

This is independent of both x and α, so the probability is either 0 or 1. Hence,
choosing δ and ε small enough it will be 1 and the first part of the linearity condition
is proved.

Concerning scalar multiplicativity let ei ∈ R
n be a unit vector and λ ∈ Λ. Since

λ · ei ∈ X0 one can apply Lemma 5.4 together with (5.4) to get

Pr
x∈X1,α∈M

{fA(λ · ei) = Aα/λ(λ · ei + λ · x)−Aα/λ(λ · x)} ≥ 1− 2δ − 4ε.

Since Aα/λ(λ · ei + λ · x)−Aα/λ(λ · x) = λ(Aα(ei + x)−Aα(x)) and by (5.4)

Pr
x∈X1,α∈M

{fA(ei) = Aα(ei + x)− Aα(x)} ≥ 1− 2δ − 2ε

it follows that

Pr
x∈X1,α∈M

{fA(λ · ei) = λfA(ei)} ≥ 1− 4δ − 6ε.

This is again independent of x and α, so choosing δ and ε small enough yields
fA(λ · ei) = λfA(ei). Finally, given additivity on X0 and scalar multiplicativity for
scalars λ ∈ Λ on the standard basis the claim follows. �

5.2.3. Checking consistency. If the function value tables for both A and B have
been tested with high probability to be close to unique linear functions fA and fB
it remains to deal with consistency of these two functions. If a ∈ R

n, b ∈ R
n2

are
the corresponding coefficient vectors consistency means that bij = ai · aj . In this
subsection it is outlined how to test it.

For any x ∈ X0 and ε > 0 it has been shown how to compute the correct value
of fA(x) with probability 1 − ε by making only a constant number of queries. We
can therefore from now on pretend to simply get the correct values of fA(x) and
fB(z). The probabilities of obtaining an incorrect value at the places where these
functions are used are added to the small probability with which we are allowed to
accept incorrect proofs.

For x ∈ R
n, let x⊗ x denote the vector y ∈ R

n(n+1)/2 for which yi,j = xi · xj ,
1 ≤ i ≤ j ≤ n. Now a is consistent with b if and only if for all x ∈ Z

n
2 it is the

case that fA(x)
2 = fB(x ⊗ x).7 This is the property that will be tested. Repeat

the following consistency test a constant number of times:
Consistency test:

• Uniformly choose random x from Z
n
2 ;

• check if fA(x)
2 = fB(x⊗ x).

If in every round of the test the check is correct the verifier accepts, otherwise
it rejects.

As with the linearity test the interesting case to deal with is when the verifier
accepts the consistency test with high probability.

Lemma 5.6. With the above notations if the consistency test accepts with prob-
ability > 3

4 , then consistency of a and b holds.

7The appropriate domain on which fB can be shown to be linear in particular contains x⊗x
for all x ∈ Z

n
2 .
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Proof. The proof basically relies on the fact that if two vectors in some R
N

are different multiplying both with a random x ∈ Z
N
2 will give different results with

probability at least 1
2 . This is applied to the two linear functions on R

n2

resulting
from a⊗ a and b. The same is true over C. For details see [71]. �

5.2.4. Putting everything together. The linearity and consistency tests together
ensure that any proof for which the self-corrections fA and fB are not linear on X0

or are not consistent are rejected with high probability. So the only thing left to
do is to verify whether a is indeed a zero of the polynomial system. This is done by
evaluating equation (1). If it evaluates to zero the verifier accepts, otherwise not.

Summarizing the results of this section we finally get the following theorem.
Due to the fact that the verifier uses a proof of doubly exponential length in the
theorem’s statement we slightly deviate from the properties of a verifier as given
in Definition 5.1. This is of no major concern as will be commented on after the
theorem.

Theorem 5.7. For every problem L ∈ NPR there is a verifier working as fol-
lows: Given an instance w of size n the verifier expects a proof of length f(n),
where f is doubly exponential in n. The verifier generates uniformly a finite num-
ber of random strings. Using those strings it computes the addresses of finitely
many proof-components it wants to read. This computation is done without reading
the input w, i.e., the components to be seen only depend on the random strings
generated. In its decision phase the verifier uses input w together with the finitely
many components and accepts L according to the requirements of Definition 5.1. It
has a decision time that is polynomially bounded in the input size n.

The according statement holds for NPC.

Let us comment on the theorem in view of Remark 5.2 above. Recall that
the size of D in our proof is doubly exponential in the input size n. Therefore, the
random strings used in the proof above are exponential in length. In the verification
procedure they are used to compute the proof-components which the verifier wants
to see. In contrast to Definition 5.1 these components are computed independently
of the concrete input w (but dependent on n). The reason to require this is that we
want to forbid the verifier to potentially use exponential time in the query phase
in order to decide the input. After having read the values of the finitely many
components the verifier uses the input and the values of those components (and
not any longer the random string) in order to make its decision after a running
time being polynomial in the size of the input. The verifier constructed above thus
is more restricted than general verifiers because it is limited with respect to how it
computes the components to be seen.

Note however that the decisive point behind Theorem 5.7 is the structure of the
verification proof. In the next section we shall see that for the full PCPR theorem
transparent long proofs are invoked in a situation where inputs are of constant
size. In this situation of course also the length of each random string remains
constant. Then the structure of the verification procedure is more important than
the parameter values; the latter automatically are constant. Therefore, when used
in the framework of the full PCP theorem the verifier in Theorem 5.7 can again be
chosen according to Definition 5.1.

The proof of Theorem 5.7 can be adapted word by word for the complex number
BSS model. There is no argument involved that uses the presence of an ordering,
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except that in the definition of P (x, r) we avoided to use instead the sum of the
squared single polynomials of the system as could be done over the reals. This
would save some small amount of randomness, introducing at the same time a
more complicated polynomial of degree 4.

5.3. The full PCP theorem. In 2005 Dinur [38] gave an alternative proof
for the classical PCP theorem. This proof was much more combinatorial than the
original one by Arora et al. In this subsection we outline how to transform Dinur’s
proof to the BSS model both over R and C. We only sketch the main ideas and
refer to [5] for full proof details. The next subsection then discusses our current
knowledge concerning a potential proof that closer follows the lines of the original
one by Arora et al.

Central aspect of Dinur’s proof is the design of a very particular reduction be-
tween instances of a Constraint Satisfiability Problem CSP. The latter is a general-
ization of the 3-Satisfiability problem. An instance of CSP consists of a collection
of constraints over a finite alphabet and the question is whether all can be satisfied
in common by an assignment for variables taken from the underlying alphabet. The
reduction we are looking for creates a gap in the following sense. If a given CSP
instance is satisfiable so is the one generated by the reduction. But if the given
instance is not satisfiable, then for the one obtained by the reduction at least a
constant fraction of constraints cannot be satisfied in common. This constant frac-
tion is the gap. It has been well known early that the existence of such an efficient
gap-creating reduction is equivalent to the PCP theorem. However, before Dinur’s
proof it could only be designed using the PCP theorem.

It is easy to see that for a suitable variant of the QPS problem the existence of
a gap reduction as well would imply the PCP theorem over both R and C. So the
strategy is to adapt Dinur’s proof to the BSS framework. This in fact turns out to
be possible. Below we describe the main ideas for the real number model. Over C
nothing changes significantly.

5.3.1. The problem to consider. A problem in the real number model which is
similar to the above mentioned CSP problem is the following variant of the QPSR
problem. Here, the way to look upon a system of polynomial equations is slightly
changed.

Definition 5.8. Let m, k, q, s ∈ N. An instance of the QPSR(m, k, q, s) prob-
lem is a set of m constraints. Each constraint consists of at most k polynomial
equations each of degree at most two. The polynomials in a single constraint de-
pend on at most q variable arrays which have dimension s, i.e., they range over
R

s.

Hence, a single constraint in a QPSR(m, k, q, s)-instance depends on at most
qs variables in R. So if there are m constraints the whole instance contains at
most qm arrays and at most qsm variables. For what follows parameters q and
s are most important; q will be chosen to be 2, i.e., each constraint will depend
on 2 variable arrays. Controlling s so that it remains constant is a crucial goal
during the different design steps of the gap reduction. Note that the problem is
NPR-complete for most values of (q, s), for example if q ≥ 2, s ≥ 3.

Definition 5.9. A QPSR(m, k, q, s)-instance φ is satisfiable if there exists an
assignment in R

mqs which satisfies all of its constraints. A constraint is satisfied
by an assignment if all polynomials occurring in it evaluate to zero. The minimum
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fraction of unsatisfied constraints, where the minimum is taken over all possible
assignments, is denoted by UNSAT(φ). So if φ is satisfiable UNSAT(φ) = 0 and if
φ is unsatisfiable, then UNSAT(φ) ≥ 1/m.

With a gap reduction we mean an algorithm which in polynomial time trans-
forms a QPSR(m, k, q, s)-instance φ into a QPSR(m

′, k′, q, s)-instance ψ such that
there exists a fixed constant ε > 0 and

• if φ is satisfiable, then ψ is satisfiable and
• if φ is not satisfiable, then UNSAT(ψ) ≥ ε.

Thus either all constraints in the output instance ψ are satisfiable or at least
an ε-fraction is violated, no matter which values are assigned to the variables. Most
important, ε is a fixed constant not depending on the size of the given instances.

The following easy lemma shows the importance of gap-reductions for the PCP
theorem:

Lemma 5.10. Suppose for an NPR-complete QPSR(m, k, q, s) there exists a
gap-reduction with a fixed ε > 0. Then the PCPR theorem holds, i.e., NPR =
PCPR(O(logn), O(1)).

Proof. The task is to construct a (O(logn), O(1))-verifier V for the problem
QPSR(m, k, q, s). Supposing the existence of a gap-reduction the verifier works as
follows on an instance φ. First, it applies the reduction and computes ψ. As proof
of satisfiability of ψ (and thus of φ) it expects an assignment for the variables of
ψ. Then, finitely many times the following is repeated: V selects at random a
constraint in ψ and evaluates it in the given assignment. Since each constraint of
ψ depends on at most qs variables this bounds the number of proof components V
reads in a single round. In case that φ is not satisfiable each assignment violates an
ε-fraction of clauses in ψ. Thus V randomly picks with probability ≥ 1

ε such a con-
straint for the assignment given by the proof. Repeating this procedure constantly
many times the error probability can be made arbitrarily small, thus proving the
PCPR theorem. �

5.3.2. Outline for creating a gap reduction. The goal now is to design such a
gap reduction following Dinur’s original construction. This is done in a number of
rounds. Each of them increases the gap by a factor of at least 2 if the instance
on which the round was performed still had a small gap below a suitable constant
εfinal. Since for the original instance φ it holds that either φ is satisfiable or at
least a 1

m -fraction of its constraints is always unsatisfied (i.e., one constraint), in
principle it suffices to perform a logarithmic in m number of such rounds in order
to create an instance which has a gap of at least εfinal. The number of rounds
not being constant it is important that in a single round the size of the instance
grows linearly only. That way a logarithmic number of rounds creates a polynomial
growth in size only.

Each round consists of three steps, a preprocessing, a gap amplification step
and a dimension reduction step. These steps use QPSR-instances with different
values for the number q of variable arrays the constraints of an instance depend on.
The two important values for this q are 2 in the amplification step and a constant
Q coming from the constant query complexity of long transparent proofs.

A round starts on an instance of the problem QPSR(m, k,Q, 1), whereQ denotes
the number of queries the verifier of Section 5.2 needs to verify the long transparent
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proofs. So in these instances every constraint depends on at most Q arrays of
dimension 1, i.e., variables ranging over R

1. The first main step in a single round
is the amplification step which amplifies the gap. However, this step requires the
array dimension to be q = 2 as well as some nice structure on its input instances. To
fulfil these requirements a preprocessing step is necessary. Though amplification
increases the gap it has the disadvantage of enlarging the dimension of variable
arrays. To get finally back arrays of dimension 1 it is necessary to continue after
amplification with a dimension reduction step. For this step long transparent proofs
are crucial.

Both the preprocessing step and the dimension reduction step decrease the gap.
Since the amplification factor can be taken large enough in comparison to the two
factors by which the other steps reduce the gap, in total there will be a sufficient
increase of the gap after logarithmically many rounds.

Preprocessing consists of a number of relatively simple constructions, so we
omit this technical step and just summarize its outcome.

Proposition 5.11. There exist a constant d ∈ N and a polytime computable
reduction from QPSR instances to QPSR instances such that the following holds.
The reduction maps an instance φ in QPSR(m, k, q, s)-instance to a nice instance
ψ in QPSR(3qd

2m, k + qs, 2, qs) such that

- if φ is satisfiable, then ψ is satisfiable;
- if φ is not satisfiable, then UNSAT(ψ) ≥ UNSAT(φ)/(240qd2).

The term nice in the above statement refers to a special structure the resulting
instances exhibit. This structure is related to so-called expander graphs which are
heavily used in the amplification step. Expanders in particular are regular graphs
and the parameter d used in the statement denotes this regularity. Without being
too technical below it will be pointed out what kind of properties of expanders are
needed.

5.3.3. The amplification step. As already mentioned amplification requires a
QPSR(m, k, 2, s)-instance ψ as input. To such an instance one can canonically
attach a constraint graph in which vertices correspond to variable arrays and edges
correspond to the constraints depending on at most two arrays each. Constraints
depending on a single array only give loops in the constraint graph.

Starting with an instance ψ obtained at the end of preprocessing a new instance
ψt is constructed as follows. The ultimate goal is to amplify the occurence of
a constraint in ψ in such a way that it influences much more constraints in ψt.
Since constraints correspond to edges in the constraint graph this amplification
is obtained by Dinur invoking deep results about expander graphs. Very roughly,
constraints of the new instance collect several constraints (edges) of ψ in such a way
that each violated old constraint forces violation of many of the new constraints
in which it occurs. In order to make this idea working the structure of d-regular
expander graphs is important.

Here is a brief outline of how the new instance ψt is obtained. Its construction
depends both on the regularity d and an additional constant parameter t ∈ N

that can be chosen arbitrarily. Both determine the factor with which the gap is
amplified.

The new instance ψt will have the same number of variable arrays but they
will be of larger dimension. For every vertex in the constraint graph of the input
instance ψ a new array will be defined. The dimension of these new arrays will
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be so large that they can claim values for all old arrays which can be reached in
the constraint graph within at most t +

√
t steps. By this we mean that blocks

of components of suitable size in such a new array are identified with the variable
components of a particular old array. Due to the increased dimension each single
new array that way will cover several old arrays.

Since one of the conditions on the input instance is that its constraint graph
is regular of degree d for some constant d the size of the new arrays is bounded by

the constant dt+
√
t+1 · s. So for every array in the old instance ψ there will be lots

of arrays in the new instance ψt that claim a value for it. Of course these claimed
values can be different. In the proof for the classical case there is the guarantee that
at least a certain fraction of the claims will be equal because of the finite alphabet.
In the real number case we do not have this guarantee because there the ”alphabet”
is of course infinite. However, this technical problem can easily be circumvented by
adding some consistency requirements to the constraints in the new instance ψt.

The constraints in ψt will be sets of constraints of the old instance ψ together
with consistency requirements as mentioned above. For every path of length 2t+1
in the constraint graph of ψ a constraint will be added to the new instance ψt. This
constraint will depend on the two arrays corresponding to the endpoints of the path.
The new arrays claim values for all old arrays in a t +

√
t + 1-neighbourhood of

the vertex. Therefore, all old arrays related to vertices in a certain middle segment
of such a path get values from the new arrays corresponding to both end-points.
The constraint that we add will express that these claimed values are consistent
and that they satisfy the constraints of the old instance ψ. This finishes the rough
description of how to construct the new instance.

It is easy to see that the construction transfers satisfiability from ψ to ψt.
The hard part of Dinur’s proof is to show that if the input instance ψ is not
satisfiable, then the fraction of unsatisfied constraints in the new instance ψt is
increased by a constant factor depending on t. This is shown by Dinur as follows and
basically can be done similarly in the real and complex number framework. Take
any assignment for the new arrays. From this assignment a plurality assignment is
defined for the old arrays. More precisely, perform a random walk of t steps on the
constraint graph starting in the vertex of the old array. Its plurality value is the
assignment that most frequently is claimed for the old array by those new arrays
that occur as an endpoint of such a walk. The further analysis now exploits both the
expander properties of the constraint graph together with an additional structural
requirement called niceness before. It basically addresses the number of loops each
vertex in the constraint graph has. This in a suitable way makes random walks
of length t basically look like walks that either have a slightly shorter or longer
length. It finally guarantees the quantity UNSAT (ψt) to grow proportionally in√
t · UNSAT (ψ).
The formal statement resulting from the above ideas reads

Theorem 5.12. There exists an algorithm which works in polynomial time
that maps a nice QPSR(m, k, 2, s)-instance ψ to a QPSR(d

2tm, 2
√
tk + (2

√
t +

1)s, 2, dt+
√
t+1s)-instance ψt and has the following properties:

• If ψ is satisfiable, then ψt is satisfiable.

• If ψ is not satisfiable and UNSAT(ψ) < 1
d
√
t
, then UNSAT(ψt) ≥

√
t

3520d ·
UNSAT(ψ).

Licensed to University Paul Sabatier.  Prepared on Mon Dec 14 09:01:17 EST 2015for download from IP 130.120.37.54.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



44 MARTIJN BAARTSE AND KLAUS MEER

5.3.4. Dimension reduction. Amplification increases the gap but also the di-
mension of variable arrays. However, the latter in the end has to remain constant
because it is directly related to the query complexity. Thus in the final step of a
single round the array dimension has to be reduced. Actually, it can be put down
to 1 before the next round starts.

To achieve this aim the structure of transparent long proofs as explained above
plays the decisive role. First, there is a natural close relation between the compu-
tation of verifiers and sets of constraints. To each string of random bits a verifier
generates one can associate a constraint. This constraint expresses the verifier’s
computation after the random string has been generated. It is satisfied if the ver-
ifier accepts the proof with the corresponding random bits. If the input instance
of the verifier is satisfiable, then there exists an assignment (i.e., a proof) which
satisfies all of these constraints; and if the input instance is not satisfiable every
assignment violates at least half of the constraints.

Now we apply this viewpoint to the instance ψt generated after amplification.
The idea is to view every constraint in ψt as an input instance for the long trans-
parent proof verifier and replace this constraint with the set of constraints which
we described in the lines above. Note that a single constraint in ψt still has con-

stant size. It depends on two arrays of dimension s(t) := dt+
√
t+1 · s. Since the

verifier checks this for a concrete assignment within a time bound depending on
the constraint size, all of the derived constraints described above also are constant
in size. It therefore is of no concern that the verifier needs long transparent proofs;
they all still have constant size. More important is the structure of the verifier.

In order to realize this idea for dimension reduction first parts of the prepro-
cessing step are applied once more; to do so the original constraints in ψt have to
be decoupled. This means that different constraints have to depend on different ar-
rays. It is achieved by using formal copies. Of course, the intended reduction must
carry over satisfiability, so the decoupling of variables has to be repaired afterwards
by introducing consistency constraints.

Now the particular structure of the long transparent proof guarantees that
both the original constraints in ψ and the consistency constraints can be replaced
by constraints that depend on at most Q variable arrays of dimension 1 each. Here,
Q is the query complexity of the long transparent verifier.

Dimension reduction thus gives

Theorem 5.13. There exists a reduction which works in polynomial time and

maps a QPSR(m(t), k(t), 2, s(t))-instance ψt to a QPSR(m̂(t),C,Q, 1)-instance ψ̂t,
where C,Q are constants, m̂(t) is linear in m(t) (the multiplication factor being
double exponential in s(t)) and the following holds:

• If ψt is satisfiable, then so is ψ̂t and

• if ψt is unsatisfiable, then UNSAT(ψ̂t) ≥ UNSAT(ψt)/(160(d+ 1)2).

The final argument is to apply the above steps a logarithmic in m number of
times for a given QPSR(m, k, q, s)-instance. A suitable choice of t guarantees that
the amplification factor in each round is at least 2. So starting with a fraction of
1
m unsatisfied constraints the gap is increased to a constant fraction. We finally
obtain
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Theorem 5.14 (PCP theorem for NPR, [5]). The PCP theorem holds both in
the real and the complex number model, i.e.,

NPR = PCPR(O(logn), O(1)) and NPC = PCPC(O(logn), O(1)).

All proof details are given in the full version of [5]. None of the arguments rely
on the ordering available over the real numbers and so the statement holds as well
for the complex number BSS model.

5.4. Almost transparent short proofs. Though we have seen in the pre-
vious sections that Dinur’s proof of the PCP theorem can be adapted to the BSS
model another interesting question remains open. Can the real number PCP theo-
rem be proved as well along the lines of the classical proof by Arora et al.? In this
final section we briefly indicate what is currently known concerning this problem.

The classical proof uses long transparent proofs as well as two additional con-
structions. Another verifier is designed that uses a logarithmic amount of random-
ness and inspects a polylogarithmic number of components. The ’almost transpar-
ent short’ proof that this verifier requires in addition must obey a certain structure
in order to make the final step applicable. This is a composition step of the two
verifiers resulting in the final verifier whose existence implies the PCP theorem. So
far it is possible to construct an almost transparent short proof for NPR. However,
at the time being it is not clear to the authors how to put this verifier into a more
specific structure in order to make the final step working. We comment on this
point at the end.

Let us shortly explain the main ideas in designing this verifier following [72].
Instead of using tables of linear functions as coding objects for a zero of a polynomial
system now multivariate polynomials of a not too large degree are employed. They
are usually called low-degree polynomials in this framework.

5.4.1. The problem setting. Starting point once again is the QPSR problem in
the version of Definition 3.7. For it the verifier is constructed. Given the NPR-
completeness proof of QPSR in [19] an instance system P in variables x1, . . . , xn

can be further assumed to be of the following particular form. Each polynomial
has one the types below:

Type 1: xi1−c�, where c� is one among finitely many fixed real constants,
Type 2: xi1 − (xi2 − xi3),
Type 3: xi1 − (xi2 + xi3) or
Type 4: xi1 − (xi2 · xi3).

Here the i1, i2 and i3 do not have to be different. As with the linear encod-
ings used before we change a bit the viewpoint on an assignment for the system’s
variables.

To do this the index set of the variables in P is coded differently. Choose
integers h, k such that hk ≥ n and set H := {1, . . . , h}. Now Hk is used as index
set instead of {1, . . . , n}. Thus a real assignment a ∈ R

n to the variables is a
function fa : Hk → R. Next, the way to look upon the system P is altered. More
precisely, for each polynomial in P its type is extracted by means of using certain
characteristic functions for the types.

Towards this end P is seen as a subset of some universe U to be specified; now
identify P with the function χ : U → {0, 1} which maps elements, i.e., polynomials
in P to 1 and elements outside P to 0. Actually, we will first split P in four parts
P1, P2, P3 and P4. Part P1 further splits into finitely many parts P1

� , one for each
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real coefficient c� of the system introduced via a polynomial of type 1. A triple
(i1, i2, i3) ∈ H3k uniquely identifies a polynomial in each part. For example, in
part P1

� it identifies the polynomial xi1 − c�, in part P2 it identifies the polynomial
xi1 − (xi2 − xi3), and so on. Hence, each part of P can be identified with a subset
of H3k. The characteristic functions of the respective parts are denoted by χ1

� , χ
2,

χ3, and χ4, respectively.
The solvability question this way is transformed into the question of the exis-

tence of a function fa : Hk → R such that for all (i1, i2, i3) ∈ H3k the following
equations hold:

χ1
�(i1, i2, i3) · (f(i1)− c�) = 0 for all �,

χ2(i1, i2, i3) · (f(i1)− (f(i2)− f(i3))) = 0,

χ3(i1, i2, i3) · (f(i1)− (f(i2) + f(i3))) = 0,

χ4(i1, i2, i3) · (f(i1)− (f(i2) · f(i3))) = 0.

Squaring and adding lead to
∑

(i1,i2,i3)∈H3k g(i1, i2, i3) = 0, where g : H3k → R is

defined as

g(i1, i2, i3) :=
∑

�

[
χ
(1)
� (i1, i2, i3) · (f(i1)− c�)

]2

+
[
χ(2)(i1, i2, i3) · (f(i1)− (f(i2)− f(i3)))

]2

+
[
χ(3)(i1, i2, i3) · (f(i1)− (f(i2) + f(i3)))

]2

+
[
χ(4)(i1, i2, i3) · (f(i1)− (f(i2) · f(i3)))

]2
.

Summarizing, an assignment a ∈ R
n is a zero of the given system P if and

only if the sum
∑

(i1,i2,i3)∈H3k g(i1, i2, i3) = 0, where g is defined as above using an

encoding fa : Hk → R for a. The degree of g in each of its variables is d := O(h).
5.4.2. Sum check and low degree extensions. At the moment not much is gained.

If the sum is evaluated term by term there are at least |H|k ≥ n many terms that
depend on at least one value of fa, thus such a direct evaluation would inspect too
many proof components. However, the particular form allows to proceed differ-
ently in order to circumvent this problem. The first step is to apply a well-known
technique called sum-check procedure [62] in order to evaluate the above huge sum
more efficiently using randomization. The idea is to express the sum recursively as
iterated sum of univariate polynomials and including an encoding of those univari-
ate polynomials in the verification proof. More precisely, for 1 ≤ i ≤ 3k one defines
partial-sum polynomials of g as

gi(x1, . . . , xi) :=
∑

yi+1∈H

∑

yi+2∈H

. . .
∑

y3k∈H

g(x1, . . . , xi, yi+1, . . . , y3k).

Note that
∑

r∈H3k

g(r) =
∑

x1∈H

g1(x1) and gi(x1, . . . , xi) =
∑

y∈H

gi+1(x1, . . . , xi, y) for

all i.
In order to make the probability analysis of the following procedure working it

turns out that the polynomials g and gi have to be defined on a larger set F 3k, where
H ⊂ F (even though the sum to be computed still ranges over H3k). The verifier
expects a proof to contain for each 1 ≤ i ≤ 3k, (r1, . . . , ri−1) ∈ F i−1 a univariate
polynomial x → g′i(r1, . . . , ri−1, x) of degree at most d. The proof is required to
represent such a polynomial by specifying its d+1 many real coefficients. An ideal
proof is supposed to use the corresponding restriction x→ gi(r1, . . . , ri−1, x) of the
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partial-sum polynomial gi as g
′
i(r1, . . . , ri−1, x). The basis of the sum-check proce-

dure now is to verify for all i the relation gi(x1, . . . , xi) =
∑

y∈H

gi+1(x1, . . . , xi, y)

together with
∑

y∈H g1(y) = 0. In the corresponding test this is done finitely many

times using a random choice (r1, . . . , r3k) ∈ F 3k of points in F for the xi’s. It can
be shown that this test when accepted guarantees with high probability that the
pairs (gi, gi+1) are consistent and that the entire sum evaluates to 0. Most im-
portant, this part of the verifier needs the following resources. Choosing 3k many
points from F randomly requires O(k · log |F |) many random bits. For each of
the O(k) many equations tested the verifier reads d + 1 many proof components
representing the univariate polynomial y �→ gi(r1, . . . , ri−1, y). For the final check∑

y∈H g1(y) = 0 a constant number of values from fa is required.

The analysis (not given here) then guarantees everything to work fine when
the involved parameters are chosen according to k = O(logn), h = O(logn), |F | =
poly log n.

There is one major new problem that has been tacitly introduced in the above
sum-check procedure. Its probability analysis makes it necessary to consider the
gi on a larger domain F 3k. But fa originally is defined on Hk only. So if in the
sum-check part a value of fa in an argument outside Hk has to be inspected, we
must first extend fa consistently to domain F k. Consistency of course is crucial
here in order to make sure that still the same fa, and thus the same assignment
a ∈ R

n, is used.
Dealing with this problem is the main task for obtaining the desired verifier.

By interpolation every function f : Hk → R can in a unique way be seen as a
polynomial in k variables that ranges over H and with degree at most h−1 in each
variable. This polynomial of course is defined as well on any larger set F k since we
consider both H and F as subsets of R. It is this low-degree extension that should
be used in the sum-check. Note that the above g in fact is obtained in a similar
way using as well the low-degree extensions of the χ(i) functions in its definition.

But then we are left with a question that is very similar to what has been
discussed in relation to long transparent proofs. The verifier expects a function
value table of a function f̃ : F k → R. As part of its test it first has to convince
itself that the table with high probability is close to a unique low-degree polynomial
f : F k → R. This polynomial is identical to the low-degree extension of a function
fa. It is this a which then is expected by the verifier to solve the given polynomial
system.

So it is necessary to design a test which checks such a function f̃ for being
close to a low-degree polynomial with high probability. Once again, a problem for
doing it is that the domains H and F cannot be taken to have a nice structure
such as finite fields which are used in the Turing setting. However, based on work
by Friedl et al. [42] it is shown in [72] that such a test can be developed and
additionally respects the required resource bounds. Putting this low-degree test
and the sum-check procedure together one obtains

Theorem 5.15 ([72]). NPR = PCPR(O(logn), poly log n).

It remains open whether the full PCPR theorem can be obtained pushing the
above ideas forward by combining the two verifiers using a long transparent and
a short almost transparent proof, respectively. The reason why we are doubtful is
that in order to apply a real version of verifier composition - a technique introduced
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by [3] and similar to the use of the long transparent proof in Dinur’s approach - the
verifier of Theorem 5.15 needs to obey an improved structure. In the classical proof
this better structure is obtained by designing yet another low-degree test which
considers the total degree of polynomials. In contrast, the low-degree test used
above is dealing with the maximal degree of each variable. What is the problem
here? It seems that designing a better structured total degree test over the reals
might use a much larger domain to be tested, thus leading to a higher amount of
randomness necessary. We do not know at the time being whether such a test can
be designed respecting the required resourse bounds. This certainly is an interesting
research question of independent interest since it deals with a typical example of
property testing in real domains.
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Polar, bipolar and copolar varieties:
Real solving of algebraic varieties with intrinsic complexity

Bernd Bank, Marc Giusti, and Joos Heintz

Abstract. This survey covers a decade and a half of joint work with L.
Lehmann, G. M. Mbakop, and L. M. Pardo. We address the problem of
finding a smooth algebraic sample point for each connected component of a
real algebraic variety, being only interested in components which are generi-
cally smooth locally complete intersections. The complexity of our algorithms
is essentially polynomial in the degree of suitably defined generalized polar
varieties and is therefore intrinsic to the problem under consideration.

1. Introduction

The modern concept of polar varieties was introduced in the 1930’s by F. Severi
([35], [34]) and J. A. Todd ([38], [37]), while the intimately related notion of a
reciprocal curve goes back to the work of J.-V. Poncelet in the period of 1813–1829.
As pointed out by Severi and Todd, generic polar varieties have to be understood
as being organized in certain equivalence classes which embody relevant geometric
properties of the underlying algebraic variety S. This view led to the consideration
of rational equivalence classes of the generic polar varieties. For historical details
we refer to [30,36].

About 16 years ago (classic) polar varieties became our fundamental tool to
tackle the task of real equation solving with a new view. We used them for the design
of a pseudo-polynomial computer procedure with an intrinsic complexity bound
which finds for a given complete intersection variety S with a smooth compact real
trace SR algebraic sample points for each connected component of SR if there are
such points ([1,2]).

Actually the geometric resolution of polar varieties led directly to a good
pseudo–polynomial complexity, thanks to the algoritm Kronecker developed by
the TERA-group [16,18,19,24].

Then we dropped successively the hypothesis on compactness of SR (leading to
dual polar varieties [3,4]) and eventually the hypothesis on smoothness of SR.

The presence of real singularities of SR led us to the introduction of copolar
incidence and bipolar varieties ([6,7]).

2010 Mathematics Subject Classification. Primary 68W30, 14P05, 14B05, 14B07, 68W10.
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56 BERND BANK, MARC GIUSTI, AND JOOS HEINTZ

2. Notations and statement of results

2.1. Notations. Let Q, R and C be the fields of rational, real and complex
numbers, respectively, let X := (X1, . . . , Xn) be a vector of indeterminates over C

and let F1, . . . , Fp be a regular sequence of polynomials in Q[X] defining a closed,
Q–definable subvariety S of the n–dimensional complex affine space A

n := C
n.

Thus S is a non–empty equidimensional affine variety of dimension n− p, i.e., each
irreducible component of S is of dimension n − p. Said otherwise, S is a closed
subvariety of An of pure codimension p (in A

n).
Let A

n
R

:= R
n be the n–dimensional real affine space. We denote by SR :=

S ∩ A
n
R

the real trace of the complex variety S. Moreover, we denote by P
n the

n–dimensional complex projective space and by P
n
R

its real counterpart. We shall
use also the following notations:

{F1 = 0, . . . , Fp = 0} := S and {F1 = 0, . . . , Fp = 0}R := SR.

We call the regular sequence F1, . . . , Fp reduced if the ideal (F1, . . . , Fp) generated
in Q[X] is the ideal of definition of the affine variety S, i.e., if (F1, . . . , Fp) is radical.
We call (F1, . . . , Fp) strongly reduced if for any index 1 ≤ k ≤ p the ideal (F1, . . . , Fk)
is radical. Thus, a strongly reduced regular sequence is always reduced.

A point x of An is called (F1, . . . , Fp)–regular if the Jacobian J(F1, . . . , Fp) :=[
∂Fj

∂Xk

]
1≤j≤p
1≤k≤n

has maximal rank p at x. Observe, that for each reduced regular

sequence F1, . . . , Fp defining the variety S, the locus of (F1, . . . , Fp)–regular points
of S is the same. In this case we call an (F1, . . . , Fp)–regular point of S simply
regular (or smooth) or we say that S is regular (or smooth) at x. The set Sreg of
regular points of S is called the regular locus, whereas Ssing := S \ Sreg is called
the singular locus of S. Remark that Sreg is a non–empty open and Ssing a proper
closed subvariety of S. We say that a connected component C of SR is generically
smooth if C contains at least one smooth point.

We are going to use the expression generic according to Thom’s terminology.
A property that depends on parameters belonging to a certain configuration space
Ω is called generic if there exists an Zariski open and dense subset of Ω, where the
parameters are taken from, to insure the property.

We suppose now that there are given natural numbers d, L and an essentially
division–free arithmetic circuit β in Q[X] with p output nodes such that the fol-
lowing conditions are satisfied.

- The degrees degF1, . . . ,degFp of the polynomials F1, . . . , Fp are bounded
by d.

- The p output nodes of the arithmetic circuit β represent the polynomials
F1, . . . , Fp by evaluation.

- The size of the arithmetic circuit β is bounded by L.

For the terminology and basic facts concerning arithmetic circuits we refer to [10,
12,18].

2.2. Statement of the results. For the sake of simplicity we suppose that
the variables X1, . . . , Xn are in generic position with respect to the variety S.
Observe that we allow SR to have singular points.
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In this paper we comment a series of complexity results which concern the
computational task to find in each, in the sense of Section 2.1 generically smooth,
connected component of SR at least one suitably encoded smooth point.

The most general result we are going to present is the following statement about
the existence of an algorithm with certain properties (see Theorem 6.2 below).

For each 1 ≤ i ≤ n − p there exists a, by a sequence of algebraic computation
trees (for this terminology we refer to [10]) realized, non–uniform deterministic
or uniform probabilistic procedure Πi over Q and an invariant δi satisfying the
following specification.

(i) The invariant δi is a positive integer depending on F1, . . . , Fp and having
asymptotic order not exceeding (n d)O(n). We call δi the degree of the real
interpretation of the equation system F1 = 0, . . . , Fp = 0.

(ii) The algorithm Πi decides on input β whether the variety S contains a
smooth real point and, if it is the case, produces for each generically smooth
connected component of S a suitably encoded smooth real algebraic sample
point.

(iii) In order to achieve this goal, the algorithm Πi performs on input β a
computation in Q with

(
n
p

)
L(n d)O(1)δ2

i arithmetic operations (additions,
subtractions, multiplications and divisions) and comparisons.

The worst case complexity of the procedure Πi meets the already known extrinsic
bound of (n d)O(n) for the elimination problem under consideration (compare the
original papers [8,11,20,25–27,31,32] and the comprehensive book [9]).

The complexity of the procedure Πi depends polynomially on the extrinsic pa-
rameters L, n,

(
n
p

)
and d and on the degree δi of the real interpretation of the

equation system F1 = 0, . . . , Fp = 0 which represents an intrinsic parameter mea-
suring the input size of our computational task. In this sense we say that the
procedure Πi is of intrinsic complexity.

Since for fixed p the complexity
(
n
p

)
L(n d)O(1)δ2

i is polynomial in all its pa-
rameters, including the intrinsic parameter δi, we say that the procedure Πi is
pseudo-polynomial.

The lower complexity bounds of [22,23] for different elimination problems sug-
gest that intrinsic complexity and pseudo-polynomiality constitute the best runtime
behavior of Πi which can be expected.

The above result is the consequence of a reduction to the case that SR is smooth,
where a similar, but somewhat simpler, complexity statement is true (see Theorem
4.1 below). For this reduction we considered in [7] a new type of geometrical objects,
called copolar incidence and bipolar varieties.

First complexity results in this direction were obtained for the case that SR

is smooth and compact using classic polar varieties [1, 2]. In order to treat the
smooth unbounded case we introduced in [3,4] the concept of dual polar varieties.

In the present paper we put emphasis on the geometrical ideas which together
with the Kronecker algorithm [16, 18, 19, 24], that solves polynomial equation
systems over the complex numbers, lead to our complexity statements.

3. Polar varieties

Let notations be as in Subsection 2.1. Let F1, . . . , Fp ∈ Q[X] be a reduced
regular sequence defining a (non–empty) subvariety S of An of pure codimension p.
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Let 1 ≤ i ≤ n− p and let a := [ak,l] 1≤k≤n−p−i+1
0≤l≤n

be a complex ((n− p− i+ 1)×
(n+ 1)–matrix and suppose that [ak,l] 1≤k≤n−p−i+1

1≤l≤n
has maximal rank n− p− i+ 1.

In case (a1,0, . . . , an−p−i+1,0) = 0 we denote by K(a) := Kn−p−i(a) and in case
(a1,0, . . . , an−p−i+1,0) �= 0 by K(a) := K

n−p−i(a) the (n−p− i)–dimensional linear
subvarieties of the projective space P

n which for 1 ≤ k ≤ n− p− i+ 1 are spanned
by the points (ak,0 : ak,1 : · · · : ak,n).

The hyperplane at infinity of Pn is the set of points whose first coordinate is
zero. It determines an embedding of An into P

n. The classic and the dual ith polar
varieties of S associated with the linear varieties K(a) and K(a), respectively,
are geometrically defined as the Zariski closures of the set of points of S, where
the tangent space of S is not transversal to the affine traces of K(a) and K(a),
respectively.

Algebraically, the classic and the dual ith polar varieties of S associated with
the linear varieties K(a) and K(a), respectively, can be described as the closures
of the loci of the smooth points of S where all (n− i+ 1)–minors of the respective
polynomial ((n− i + 1) × n)–matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂F1

∂X1
· · ·

∂F1

∂Xn

...
...

...
∂Fp

∂X1
· · ·

∂Fp

∂Xn
a1,1 · · · a1,n

...
...

...
an−p−i+1,1 · · · an−p−i+1,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂F1

∂X1
· · ·

∂F1

∂Xn

...
...

...
∂Fp

∂X1
· · ·

∂Fp

∂Xn
a1,1 − a1,0X1 · · · a1,n − a1,0Xn

...
...

...
an−p−i+1,1 − an−p−i+1,0X1 · · · an−p−i+1,n − an−p−i+1,0Xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

vanish.
If a is a real ((n− p− i+ 1)× (n+ 1)–matrix, we denote the real traces of the

polar varieties WK(a)(S) and WK(a)(S) by

WK(a)(SR) := WKn−p−i(a)(SR) := WK(a)(S) ∩ A
n
R

and
WK(a)(SR) := W

K
n−p−i(a)(SR) := WK(a)(S) ∩ A

n
R

and call them the real polar varieties.
Observe that this definition of classic and dual polar varieties may be extended

to the case that there is given a Zariski open subset O of An such that the equations
F1 = 0, . . . , Fp = 0 intersect transversally at any of their common solutions in O
and that S is now the locally closed subvariety of An given by

S := {F1 = 0, . . . , Fp = 0} ∩O,

which is supposed to be non-empty.
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In Section 6 we shall need this extended definition of polar varieties in order to
establish the notion of a bipolar variety of a given reduced complete intersection.
For the moment let us suppose again that S is the closed subvariety of An defined
by the reduced regular sequence F1, . . . , Fp.

In [3] and [4] we have introduced the notion of dual polar varieties of S (and SR)
and motivated by geometric arguments the calculatory definition of these objects.
Moreover, we have shown that, for a complex ((n − p − i + 1) × (n + 1))–matrix
a = [ak,l] 1≤k≤n−p−i+1

0≤l≤n
with [ak,l] 1≤k≤n−p−i+1

1≤l≤n
generic, the polar varieties WK(a)(S)

and WK(a)(S) are either empty or of pure codimension i in S. As mathematical
facts, we have shown that WK(a)(S) and WK(a)(S) are normal and Cohen–Macaulay
(but for 1 < p ≤ n not necessarily smooth) at any of their (F1, . . . , Fp)–regular
points (see [5], Corollary 2 and Section 3.1). This motivates the consideration
of the so–called generic polar varieties WK(a)(S) and WK(a)(S), associated with
complex ((n− p− i+1)× (n+1))–matrices a which are generic in the above sense,
as invariants of the complex variety S (independently of the given equation system
F1 = 0, . . . , Fp = 0). However, when a generic ((n − p − i + 1) × (n + 1))–matrix
a is real, we cannot consider WK(a)(SR) and WK(a)(SR) as invariants of the real
variety SR, since for suitable real generic ((n− p− i+ 1)× (n+ 1))–matrices these
polar varieties may turn out to be empty, whereas for other real generic matrices
they may contain points (see [5], Theorem 1 and Corollary 2 and [6], Theorem 8
and Corollary 9).

In case that SR is smooth and a is a real ((n − p − i + 1) × (n + 1))–matrix,
the real dual polar variety WK(a)(SR) contains at least one point of each connected
component of SR, whereas the classic (complex or real) polar varieties WK(a)(S)
and WK(a)(SR) may be empty (see [3] and [4], Proposition 2).

4. The smooth case

In this section we suppose that SR is smooth. We choose a generic rational
((n − p) × n)–matrix a := [ak,l] 1≤k≤n−p

1≤l≤n
. For 1 ≤ i ≤ n − p we consider the ((n −

p− i+1)× (n+1)–matrices a(i) :=
[
a
(i)
k,l

]
1≤k≤n−p−i+1

0≤l≤n

and a(i) :=
[
a
(i)
k,l

]
1≤k≤n−p−i+1

0≤l≤n

with a
(i)
k,l = a

(i)
k,l = a

(i)
k,l for 1 ≤ k ≤ n − p − i + 1 and 1 ≤ l ≤ n and a

(i)
1,0 = · · · =

a
(i)
n−p−i+1,0 = 0 and a

(i)
1,0 = · · · = a

(i)
n−p−i+1,0 = 1. Then

WK(a(n−p))(S) ⊂ · · · ⊂ WK(a(1))(S) ⊂ S

and
WK(a(n−p))(S) ⊂ · · · ⊂ WK(a(1))(S) ⊂ S

form two flags of generic classic and dual polar varieties of S.
If SR is compact, then, for 1 ≤ i ≤ n − p, the classic real polar variety

WK(ai)(SR) contains a point of each connected component of SR and, in partic-
ular, WK(ai)(S) is of pure codimension i in S. The inclusion relations in the first
flag are therefore strict and WK(a(n−p))(S) is a zero–dimensional algebraic variety.
Mutatis mutandis the same statement holds true for the second flag without the
assumption that SR is compact.
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Let

δ := max{max{deg{F1 = 0, . . . , Fs = 0|1 ≤ s ≤ p}},
max{WK(ai)|1 ≤ i ≤ n− p}}}

and

δ := max{max{deg{F1 = 0, . . . , Fs = 0|1 ≤ s ≤ p}},
max{WK(ai)|1 ≤ i ≤ n− p}}}.

We call δ and δ the degrees of the real interpretation of the equation system
F1 = 0, . . . , Fp = 0.

Our most general complexity result for the case that SR is smooth is the following.

Theorem 4.1 ([4]). Let n, p, d, δ, L be natural numbers. Let X1, . . . , Xn and
Z be indeterminates over Q and let X := (X1, . . . , Xn).

There exists an algebraic computation tree N over Q, depending on certain
parameters and having depth

L (n d)O(1) δ2 = (n d)O(n)

such that N satisfies the following condition:
Let F1, . . . , Fp ∈ Q[X] be polynomials of degree at most d and assume that

F1, . . . , Fp are given by an essentially division–free arithmetic circuit β in Q[X] of
size L. Suppose that F1, . . . , Fp form a strongly reduced regular sequence in Q[X],
that {F1 = 0, . . . , Fp = 0}R is empty or smooth and that δ ≤ δ holds.

Then the algorithm represented by the algebraic computation tree N starts from
the circuit β as input and decides whether the variety {F1 = 0, . . . , Fp = 0} contains
a real point. If this is the case, the algorithm produces a circuit representation of
the coefficients of n + 1 polynomials P, G1, . . . , Gn ∈ Q[Z] satisfying for G :=
(G1, . . . , Gn) the following conditions:

- P is monic and separable,
- degG < degP ≤ δ,
- the zero–dimensional complex affine variety {G(z) | z ∈ A

1, P (z) = 0}
contains at least one smooth real algebraic sample point for each connected
component of {F1 = 0, . . . , Fp = 0}R.

In order to represent these sample points the algorithm returns an encoding ”à la
Thom” (see e.g. [13] ) of the real zeros of the polynomial P .

The parameters of N may be chosen randomly. This yields an uniform bounded
error probabilistic algorithm which works in time L (n d)O(1)δ2 = (n d)O(n) (count-
ing arithmetic operations and comparisons in Q at unit costs).

In the mainly algebraic statement of Theorem 4.1 the relation to the real zeros
of F1 = 0, . . . , Fp = 0 becomes established by the fact that the zero–dimensional
variety {G(z) | z ∈ A

1, P (z) = 0} coincides with the generic dual polar variety
WK(a(n−p))(S) which contains a point of each connected component of SR.

The complexity result has an interpretation in the non–uniform deterministic
as well as in the uniform probabilistic computational model. If we add the condition
that {F1 = 0, . . . , Fp = 0}R must be compact the statement of Theorem 4.1 holds
true for δ replaced by δ ([1] and [2]).
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Interpretation of Theorem 4.1 in the hypersurface case. We are going
to comment Theorem 4.1 in the case of a smooth compact real hypersurface given
by a regular polynomial equation. So let p := 1 and F := F1 ∈ Q[X] be a squarefree
polynomial of positive degree d and S := {F = 0}. For sake of simplicity we assume
that the variables X1, . . . , Xn are in generic position with respect to S and that SR

is non-empty, smooth and compact (see Section 2.1 for our notion of genericity).
Let F be given by an essentially division–free arithmetic circuit β in Q[X]

of size L. The algebraic version of the Bertini–Sard Theorem (see [14]) and our
assumptions imply that for each 1 ≤ i < n the polynomials F, ∂F

∂X1
, . . . , ∂F

∂Xi
form

a strongly reduced regular sequence in the ring of fractions Q[X] ∂F
∂Xi+1

. It is not
hard to see that the set

F = 0, ∂F

∂X1
= 0, . . . , ∂F

∂Xi
= 0, ∂F

∂Xi+1
�= 0

is the locus of a generic classic polar variety of S where ∂F
∂Xi+1

does not vanish.
Therefore, the degree of the Zariski closure of this set is bounded by δ. For the
same reason {

F = 0, ∂F

∂X1
= 0 , . . . , ∂F

∂Xn−1
= 0 , ∂F

∂Xn
�= 0

}

is a finite set that contains a point of each connected component of SR.
We are now in conditions to apply the Kronecker algorithm to the given circuit

β in order to find the complex solutions of the system

F = 0, ∂F

∂X1
= 0 , . . . , ∂F

∂Xn−1
= 0 , ∂F

∂Xn
�= 0

Between these solutions we filter out the real ones. We control the complexity of
the algoritm computing for 1 ≤ i < n at its (i+ 1)th step a lifting fiber [19] of the
system F = 0, ∂F

∂X1
= 0 , . . . , ∂F

∂Xi
= 0 , ∂F

∂Xi+1
�= 0. This can be done performing

L (n d)O(1) δ2 = (n d)O(n) arithmetic operations in Q.

5. Tools to handle the singular case

In this section we consider the algorithmic problem of finding for each geomet-
rically smooth connected component of SR an (F1, . . . , Fp)–regular point when SR

may be singular. In the next two sections we are going to prepare the geometrical
tools for this task.

5.1. Two families of copolar incidence varieties. Let i be a natural num-
bers with 1 ≤ i ≤ n − p and let B := [Bk,l] 1≤k≤n−i

1≤l≤n
, Λ := [Λr,s]1≤r,s≤p and

Θ := [Θk,r] 1≤k≤n−i
1≤r≤p

be matrices of indeterminates over C.
We denote by F := (F1, . . . , Fp) the sequence of the given polynomials and by

J(F ) :=
[
∂Fs

∂Xl

]
1≤s≤p
1≤l≤n

the Jacobian of F . Observe that the rank of J(F ) is generically

p on any irreducible component of the complex variety S := {F1 = · · · = Fp = 0}.
We write J(F )T for the transposed matrix of J(F ) and for any point x ∈ A

n we
denote by rk J(F )(x) the rank of the complex matrix J(F )(x).

We are now going to introduce two families of varieties which we shall call
copolar incidence varieties. In order to define the first one we consider in the
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ambient space
Ti := A

n × A
(n−i)×n × A

p×p × A
(n−i)×p

the Q–definable locally closed incidence variety
Hi := {(x, b, λ, ϑ) ∈ Ti| x ∈ S, rk b = n− i, rk ϑ = p, J(F )(x)Tλ + bTϑ = 0}.

Observe that the isomorphy class of Hi does not depend on the choice of the
generators F1, . . . , Fp of the vanishing ideal of S. The canonical projection of Ti

onto A
n maps Hi into S.

Let us state three facts, namely Lemma 5.1 and Propositions 5.1 and 5.2 below,
which will be fundamental in the sequel.

Lemma 5.1. Let (x, b, λ, ϑ) be a point of Hi. Then x belongs to Sreg and λ is a
regular complex (p× p)–matrix. Moreover, the canonical projection of Ti onto A

n

maps Hi onto Sreg and (Hi)R onto (SR)reg .

Proposition 5.1. Let Di be the closed subvariety of Ti defined by the condi-
tions rk B < n− i or rk Θ < p. Then the polynomial equations

F1(X) = · · · = Fp(X) = 0,
∑

1≤s≤p

Λr,s
∂Fs

∂Xl
(X) +

∑
1≤k≤n−i

Bk,l Θk,r = 0,

1 ≤ r ≤ p, 1 ≤ l ≤ n,

(5.1)

intersect transversally at any of their common solutions in Ti \Di. Moreover, Hi

is exactly the set of solutions of the polynomial equation system (5.1) outside of the
locus Di.

In particular, Hi is an equidimensional algebraic variety which is smooth and
of dimension n(n− i + 1) + p(p− i− 1) ≥ 0.

For algorithmic applications Proposition 5.1 contains too many open condi-
tions, namely the conditions rk B = n − i and rk Θ = p. By means of a suitable
specialization of the matrices B and Θ we are going to eliminate these open con-
ditions. However, we have to take care that these specialization process does not
exclude to many smooth points of the variety S. The following result, namely
Proposition 5.2 below seems to represent a fair compromise. We shall need it later
for the task of finding smooth points of S. For the formulation of this proposition
we need some notations.

Let B and Θ be the following matrices

B :=

⎡
⎢⎣
B1,n−i+1 · · · B1,n

... · · ·
...

Bp,n−i+1 · · · Bp,n

⎤
⎥⎦ and Θ :=

⎡
⎢⎣

Θp+1,1 · · · Θp+1,p
... · · ·

...
Θn−i,1 · · · Θn−i,p,

⎤
⎥⎦ .

Let σ be a permutation of the set {1, . . . , n} (in symbols, σ ∈ Sym (n)) and apply
σ to the columns of the ((n− i) × n)–matrix[

Ip Op×(n−p−i) B
O(n−p−i)×p In−p−i O(n−p−i)×i

]
.

In this way we obtain a ((n−i)×n)–matrix which we denote by Bi,σ. Furthermore,
let

Θi :=
[
Ip
Θ

]
and Δσ := det

[
∂Fs

∂Xσ(r)

]
1≤s,r≤p

.
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If we specialize in Bi,σ the submatrix B to b ∈ A
p×i and in Θi the submatix Θ to

ϑ ∈ A
(n−p−i)×p then the resulting complex matrices become denoted by bi,σ and

ϑi, respectively.
We consider now in the ambient space

Fi := A
n × A

p×i × A
p×p × A

(n−p−i)×p

a copolar incidence variety of more restricted type, namely
Hi,σ := {(x, b, λ, ϑ) ∈ Fi | x ∈ S, J(F )(x)Tλ + bTi,σϑi = 0}.

Observe that Hi,σ is a Q–definable closed subvariety of Fi whose isomorphy class
does not depend on the choice of the polynomials F1, . . . , Fp of the vanishing ideal
of S.

In the statement of the next result we make use of the Kronecker symbol
δr,l, 1 ≤ r, l ≤ p which is defined by δr,l := 0 for r �= l and δr,r := 1.

Proposition 5.2. Let notations and definitions be as before. For the sake
of simplicity assume that σ is the identity permutation of Sym (n). Then the
polynomial equations

F1 = 0, . . . , Fs = 0,
∑

1≤s≤p

Λr,s
∂Fs

∂Xl
(X) + δr,l = 0, 1 ≤ r ≤ p, 1 ≤ l ≤ p,

∑
1≤s≤p

Λr,s
∂Fs

∂Xl
(X) + Θl,r = 0, 1 ≤ r ≤ p, p < l ≤ n− i,

∑
1≤s≤p

Λr,s
∂Fs

∂Xl
(X) + Br,l = 0, 1 ≤ r ≤ p, n− i < l ≤ n

(5.2)

intersect transversally at any of their common solutions in Fi. Moreover, Hi,σ is
exactly the set of solutions of the equation system (5.2). In particular, Hi,σ is a
closed equidimensional algebraic variety which is empty or smooth and of dimension
n− p.

The image of Hi,σ under the canonical projection of Fi onto A
n is the set of

(smooth) points of S where Δσ does not vanish. For each real point x ∈ S with
Δσ(x) �= 0 there exists a real point (x, b, λ, ϑ) of Hi,σ.

In the sequel we shall refer to Hi and Hi,σ as the copolar incidence varieties
of S := {F1 = · · · = Fp = 0} associated with the indices 1 ≤ i ≤ n − p and
σ ∈ Sym (n).

The notion of a copolar incidence variety is inspired by the Room-Kempf canon-
ical desingularization of determinantal varieties [28,33].

5.2. Copolar varieties. Let notations and assumptions be as in previous
section and let b ∈ A

(n−i)×n be a full rank matrix. We observe that the set
Ṽb(S) := {x ∈ S | ∃ (λ, ϑ) ∈ A

p×p × A
(n−p)×p : rk ϑ = p and (x, b, λ, ϑ) ∈ Hi}

does not depend on the choice of the generators F1, . . . , Fp of the vanishing ideal of
S. We call the Zariski closure in A

n of Ṽb(S) the copolar variety of S associated with
the matrix b and we denote it by Vb(S). Obviously we have Ṽb(S) = Vb(S) ∩ Sreg .

Observe that a point x of S belongs to Ṽb(S) if and only if there exist p rows
of the ((n − i) × n)–matrix b which generate the same affine linear space as the
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rows of the Jacobian J(F ) at x. In case p := 1 and F := F1 the copolar variety
Vb({F = 0}) coincides with the ith classic polar variety WKn−1−i(b)({F = 0}) of
the complex hypersurface {F = 0} (here b denotes the ((n − i) × (n + 1))–matrix
whose column number zero is a null-vector, whereas the columns numbered 1, . . . , n
are the corresponding columns of b).

Proposition 5.3. If b ∈ A
(n−i)×n is a generic matrix, then the copolar variety

Vb(S) is empty or an equidimensional closed subvariety which is smooth at any point
of Vb(S) ∩ Sreg and has (non-negative) dimension n− (i + 1)p.

Observe that for a generic b ∈ A
(n−i)×n the emptiness or non-emptiness and in

the latter case also the geometric degree of the copolar variety Vb(S) is an invariant
of the variety S. The incidence varieties Hi and Hi,σ may be interpreted as suitable
algebraic families of copolar varieties. In [6] we considered in the case p := 1 three
analogous incidence varieties which turned out to be algebraic families of dual polar
varieties. Here we have a similar situation since in the hypersurface case, namely
in the case p := 1, the copolar varieties are classic polar varieties.

6. Bipolar varieties and real point finding in the singular case

In order to measure the complexity of the real point finding procedures of this
paper for complete intersection varieties, we consider for 1 ≤ p ≤ n, 1 ≤ i ≤ n− p
and σ ∈ Sym (n) the generic dual polar varieties of the copolar incidence varieties
Hi and Hi,σ. In analogy to the hypersurface case tackled in [6], we call them the
large and the small bipolar varieties of S.

Definition 6.1. The bipolar varieties B(i,j) and B(i,σ,j) are defined as follows:
• for 1 ≤ j ≤ n(n− i+ 1) + p(p− i− 1) let B(i,j) a (n(n− i+ 1) + p(p− i−

1) − j + 1)th generic dual polar variety of Hi and,
• for 1 ≤ j ≤ n − p and σ ∈ Sym (n) let B(i,σ,j) a (n− p− j + 1)th generic

dual polar variety of Hi,σ.
We call B(i,j) the large and B(i,σ,j) the small bipolar variety of S, respectively.

The bipolar varieties B(i,j) and B(i,σ,j) are well defined geometric objects which
depend on the equation system F1(X) = · · ·Fp(X) = 0, although the copolar
incidence variety Hi is not closed (compare the definition of the notion of polar
variety in Section 3, where we have taken care of this situation). Moreover, our
notation is justified because we are only interested in invariants like the dimension
and the degree of our bipolar varieties and these are independent of the particular
(generic) choice of the linear projective varieties used to define the bipolar varieties.

Observe that the large bipolar varieties of S form a chain of equidimensional
varieties

Hi � B(i,n(n−i+1)+p(p−i−1)) ⊃ · · · ⊃ B(i,1).

The variety B(i,1) is empty or zero–dimensional. If B(i,1) is nonempty, then the
chain is strictly decreasing.

Similarly the small bipolar varieties B(i,σ,j) of S form also a chain of equidi-
mensional varieties

Hi,σ � B(i,σ,n−p) ⊃ · · · ⊃ B(i,σ,1).

The variety B(i,σ,1) is empty or zero–dimensional. If B(i,σ,1) is nonempty, then the
chain is strictly decreasing.
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We denote by degB(i,j) and degB(i,σ,j) the geometric degrees of the respective
bipolar varieties in their ambient spaces Ti and Fi (see [21] for a definition and
properties of the geometric degree of a subvariety of an affine space).

Observe that degB(i,j) remains invariant under linear transformations of the
coordinates X1, . . . , Xn by unitary complex matrices.

From [6], Lemma 1 and [5], Theorem 3 we deduce that for 1 ≤ j ≤ n− p

(6.1) degB(i,σ,j) ≤ degB(i,n(n−i))+p(p−i)+j)

holds.
Suppose that S contains a regular real point x. The there exists a permutation

σ ∈ Sym (n) with Δσ(x) �= 0. From Proposition 5.2 we deduce that (Hi,σ)R
is nonempty. This implies that Hi,σ is given by a reduced regular sequence of
polynomials, namely the polynomials in the equation system (5.2). Moreover, the
real variety (Hi,σ)R is smooth. Therefore we may apply [3, 4], Proposition 2 to
conclude that (B(i,σ,j))R contains for each connected component of (Hi,σ)R at least
one point. This implies

1 ≤ degB(i,σ,1) ≤ degB(i,n(n−i))+p(p−i)+1).

For 1 ≤ r ≤ p, 1 ≤ l ≤ n and σ ∈ Sym (n) we are going to analyze in the following
closed subvarieties S

(i)
(r,l) and S

(i,σ)
(r,l) of the affine subspaces Ti and Fi, respectively.

For this purpose we consider the lexicographical order < of the set of all pairs (r, l)
with 1 ≤ r ≤ p, 1 ≤ l ≤ n.

Let S(i)
(r,l) be the Zariski closure of the locally closed subset of Ti defined by the

conditions
F1(X) = · · · = Fp(X) = 0

∑
1≤s≤p

Λr′,s
∂Fs

∂Xl′
+

∑
1≤k≤n−i

Bk,l′Θk,r = 0,

1 ≤ r′ ≤ p, 1 ≤ l′ ≤ n, (r′, l′) ≤ (r, l) and
rk B = n− i, rk Θ = p and rk J(F ) = p.

(6.2)

Observe that the particular structure of the Jacobian of the equations of system
(6.2) implies that the corresponding polynomials form a reduced regular sequence
at any of their common zeros outside of the closed locus given by the conditions

rk B < n− i, rk Θ < p or rk J(F ) < p.

Furthermore, let S
(i,σ)
(r,l) be the locally closed subset of Fi defined by the conditions

F1(X) = · · · = Fp(X) = 0,
∑

1≤s≤p

Λr′,s
∂Fs

∂Xl′
+ δr′,l′ = 0, 1 ≤ r′ ≤ r, 1 ≤ l′ ≤ p, (r′, l′) ≤ (r, l),

∑
1≤s≤p

Λr′,s
∂Fs

∂Xl′
+ Θl′,r′ = 0, 1 ≤ r′ ≤ r, p < l′ ≤ n− i, (r′, l′) ≤ (r, l),

∑
1≤s≤p

Λr′,s
∂Fs

∂Xl′
+ Br′,l′ = 0, 1 ≤ r′ ≤ r, n− i < l ≤ n, (r′, l′) ≤ (r, l)

and Δσ(X) �= 0.

(6.3)
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Again the particular structure of the Jacobian of the equations of system (6.3)
implies that the corresponding polynomials form a reduced regular sequence at any
of their common zeros outside of the closed locus given by the condition Δσ(X) = 0.

In conclusion, the polynomials of the systems (5.1) and (5.2) form strongly
reduced regular sequences at any of their common zeros outside of the corresponding
closed loci.

For the next statement recall that the degree of the polynomials F1, . . . , Fp is
bounded by d (see Section 2.1).

Proposition 6.1. Let 1 ≤ r ≤ p and 1 ≤ l ≤ n. Then we have the extrinsic
estimate

degS(i)
(r,l) = (n d)O(n).

This bound relies on the multi-homogenous Bézout Inequality [29]. Simpler to
prove is the following result.

Proposition 6.2. Let 1 ≤ r ≤ p and 1 ≤ l ≤ n. Then we have the estimate

degS(i,σ)
(r,l) = (nd)O(n).

Let 1 ≤ i ≤ n − p. We proceed now to state two extrinsic estimates for the
degrees of the bipolar varieties B(i,j), 1 ≤ j ≤ n(n − i + 1) + p(p − i + 1), and
B(i,σ,j), σ ∈ Sym (n), 1 ≤ j ≤ n− p.

Proposition 6.3. For 1 ≤ j ≤ n(n− i+1)+ p(p− i− 1) one has the extrinsic
estimate degB(i,j) = (n d)O(n2). In particular, for n(n − i) + p(p − i) < j ≤
n(n− i + 1) + p(p− i− 1) one has the estimate degB(i,j) = (nd)O(n).

Proposition 6.4. The extrinsic estimate degB(i,σ,j) = (nd)O(n) is valid for
any σ ∈ Sym (n) and 1 ≤ j ≤ n− p.

We associate now with 1 ≤ i ≤ n−p, σ ∈ Sym (n) and the polynomial equation
system F1 = · · · = Fp = 0 the following discrete parameters, namely

δi := max{max{deg{F1 = 0 · · · = Fs = 0} | 1 ≤ s ≤ p},
max{degS(i)

(r,l) | 1 ≤ r ≤ p, 1 ≤ l ≤ n},
max{degBi,n(n−i)+p(p−i)+j | 1 ≤ j ≤ n− p}}

and

δi,σ := max{max{deg{F1 = 0 · · · = Fs = 0} | 1 ≤ s ≤ p},
max{degS(i,σ)

(r,l) | 1 ≤ r ≤ p, 1 ≤ l ≤ n},
max{degB(i,σ,j) | 1 ≤ j ≤ n− p}}.

Adapting the terminology of [6], Section 4.2 and taking into account that for
1 ≤ j ≤ n − p the degree of B(i,n(n−i)+p(p−i)+j) remains invariant under linear
transformations of the coordinates X1, . . . , Xn by unitary complex matrices, we
call δi and δi,σ the unitary-independent and the unitary-dependent degree of the
real interpretation of the equation system F1 = · · · = Fp = 0 associated with i and
σ.

Observe that (6.1) and the Bézout Inequality imply

(6.4) δi,σ ≤ δi for any σ ∈ Sym (n).
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From Propositions 6.2, 6.3 and 6.4 and the Bézout Inequality we deduce the
following extrinsic estimates

(6.5) δi = (nd)O(n)

and

(6.6) δi,σ = (n d)O(n)

(compare for the case p := 1 the estimates (16) and (17) given in [6], Section 4.2).
For the rest of the paper we fix a family {σ1, . . . , σ(np)} of permutations from

Sym (n) such that for any choice 1 ≤ k1 < · · · < kp ≤ n there exists an index
1 ≤ k ≤

(
n
p

)
with σk(1) = k1, . . . , σk(p) = kp.

For each 1 ≤ k ≤
(
n
p

)
the varieties {F1 = 0, . . . , Fr = 0}, 1 ≤ r ≤ p, S

(i,σk)
(r,l) , 1 ≤

r ≤ p, 1 ≤ l ≤ n and B(i,σk,j), 1 ≤ j ≤ n − p form a descending chain which is
strict in case that there exists a real point x of S with Δσk

(x) �= 0. We may now
apply a suitably adapted version of the Kronecker algorithm (see [7], Section 5) to
this chain in order to determine the points of the complex variety B(i,σk,1) which is
empty or zero-dimensional.

Observe that B(i,σk,1) contains a point of each connected component of SR where
Δσk

does not vanish identically. Therefore we obtain for each such component at
least one point.

All this can be done using L (n d)O(1)δ2
i,σk

arithmetic operations and compar-
isons in Q. Repeating this procedure for each 1 ≤ k ≤

(
n
p

)
and taking into account

the estimate 6.4 and 6.6 we obtain the following result.

Theorem 6.2. Let n, p, d, i, δ, L be natural numbers with d ≥ 1, 1 ≤ i ≤ n−p.
Let X1, . . . , Xn and Z be indeterminates over Q and let X := (X1, . . . , Xn).

There exists an algebraic computation tree N over Q, depending on certain
parameters and having depth

(
n

p

)
L (n d)O(1) δ2 = (n d)O(n)

such that N satisfies the following condition:
Let F1, . . . , Fp ∈ Q[X] be polynomials of degree at most d and assume that

F1, . . . , Fp are given by an essentially division–free arithmetic circuit β in Q[X] of
size L. Suppose that F1, . . . , Fp form a strongly reduced regular sequence in Q[X]
and that δi ≤ δ holds.

Then the algorithm represented by the algebraic computation tree N starts from
the circuit β as input and decides whether the variety {F1 = 0, . . . , Fp = 0} contains
a smooth real point. If this is the case, the algorithm produces a circuit represen-
tation of the coefficients of n + 1 polynomials P,G1, . . . , Gn ∈ Q[Z] satisfying for
G := (G1, . . . , Gn) the following conditions:

- P is monic and separable,
- degG < degP ≤ δ,
- the zero–dimensional complex affine variety {G(z) | z ∈ A

1, P (z) = 0}
contains a smooth real algebraic sample point for each generically smooth
connected component of {F1 = 0, . . . , Fp = 0}R.

In order to represent these sample points the algorithm returns an encoding ”à la
Thom” of the real zeros of the polynomial P .
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The parameters of N may be chosen randomly. This yields a uniform bounded
error probabilistic algorithm which works in time

(
n
p

)
L (n d)O(1)δ2 = (n d)O(n).

Interpretation of Theorem 6.2 in the hypersurface case. We are going
to comment the geometric aspects of the method which leads to Theorem 6.2 in the
case of a hypersurface. Let p := 1 and F := F1 ∈ Q[X] be a squarefree polynomial
of degree d and S := {F = 0}. Suppose that F is given by an essentially division–
free arithmetic circuit β in Q[X] and, for sake of simplicity, that the variables
X1, . . . , Xn are in generic position with respect to S. For each generically smooth
connected component of SR we wish to find a representative point.

Let 1 ≤ i ≤ n− 1, B := [Bk,l] 1≤k≤n−i
1≤l≤n

be a matrix and (Bn−i+1, , . . . , Bn) and
Θ = (Θ1, . . . ,Θn−i) row vectors of indeterminates over C. Furthermore let Λ be a
single indeterminate over C and let J(F ) = ( ∂F

∂X1
, . . . , ∂F

∂Xn
) be the gradient (i.e.,

the Jacobian) of F . Let Ti := A
n × A

(n−i)×n × A
1 × A

n−i and Fi := A
n × A

i ×
A

1 × A
n−i−1. The equations

F (X) = 0,

Λ ∂F

∂Xl
(X) +

∑
1≤k≤n−i

Bk,l Θk = 0, 1 ≤ l ≤ n,

define outside of the locus given by the condition rk B < n− i or Θ = 0 in Ti the
copolar incidence variety Hi of S and intersect transversally at any point of Hi. In
particular, Hi is smooth and of dimension (n− i)(n + 1).

Since the variables X1, . . . , Xn are in generic position with respect to S, the
partial derivative ∂F

∂X1
does not vanish identically on any generically smooth con-

nected component of SR. It suffices therefore to consider Hi,σ only for the identity
permutation σ of {1, . . . , n}.

The equations

F (X) = 0,

Λ ∂F

∂X1
(X) + 1 = 0,

Λ ∂F

∂Xl
(X) + Θl = 0, 2 ≤ l ≤ n− i,

Λ ∂F

∂Xl
(X) + BlΘ1 = 0, n− i < l ≤ n

define in Fi the copolar incidence variety Hi,σ. In particular Hi,σ is smooth and of
dimension n− 1. For δi and δi,σ we obtain the estimates δi,σ ≤ δi = (n d)O(n).

The algorithmic considerations are now similar as in the general complete in-
tersection case and yield the statement of Theorem 6.2 for p := 1 and δi ≤ δ.
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Seidenberg, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 13, 825–830 (French, with
English summary). MR1055203 (92c:12012)

[27] Joos Heintz, Marie-Françoise Roy, and Pablo Solernó, Sur la complexité du principe de Tarski-
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The complexity and geometry of numerically solving
polynomial systems.

Carlos Beltrán and Michael Shub

This paper is dedicated to the memory of our beloved friend and colleague Jean Pierre Dedieu.

Abstract. These pages contain a short overview on the state of the art of effi-
cient numerical analysis methods that solve systems of multivariate polynomial
equations. We focus on the work of Steve Smale who initiated this research
framework, and on the collaboration between Stephen Smale and Michael
Shub, which set the foundations of this approach to polynomial system–solving,
culminating in the more recent advances of Carlos Beltrán, Luis Miguel Pardo,
Peter Bürgisser and Felipe Cucker.

1. The modern numerical approach to polynomial system solving

In this paper we survey some of the recent advances in the solution of poly-
nomial systems. Such a classical topic has been studied by hundreds of authors
from many different perspectives. We do not intend to make a complete historical
description of all the advances achieved during the last century or two, but rather
to describe in some detail the state of the art of what we think is the most successful
(both from practical and theoretical perspectives) approach. Homotopy methods
are used to solve polynomial systems in real life applications all around the world.

The key ingredient of homotopy methods is a one–line thought: given a goal
system to be solved, choose some other system (similar in form, say with the same
degree and number of variables) with a known solution ζ0, and move this new
system to the goal system, tracking how the known solution moves to a solution of
the goal. Before stating any notation, we can explain briefly why this process is
reasonable: if for every t ∈ [0, 1] we have a system of equations ft (f0 is the system
with a known solution, f1 is the one we want to solve), then we are looking for a path
ζt, t ∈ [0, 1], such that ft(ζt) = 0. As long as the derivative dft(ζt) is invertible for
all t we can continue the solution from f0 to f1, by the implicit function theorem.
Now we have various methods to accomplish this continuation. We can slowly
increment t and use iterative numerical solution methods such as Newton’s method
to track the solution or we may differentiate the expresion ft(ζt) = 0 and solve for
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d/(dt)(ζt) = ζ̇t. Then, we can write our problem as an initial value problem:

(1.1)

{
ζ̇t = −Dft(ζt)

−1ft(ζt)

ζ0 known

Systems of ODEs have been much studied and hence this is an interesting idea:
we have reduced our original problem to a very much studied one. One can just
plug in a standard numerical ODE solver such as backward Euler or a version of
Runge–Kutta’s method. Even then, in practice, it is desirable to, from time to time,
perform some steps of Newton’s method z → x−Dft(x)

−1ft(x) to our approxima-
tion zt of ζt, to get closer to the path (ft, ζt). After some testing and adjustment
of parameters, this näıve idea can be made to work with impressive practical per-
formance and there are several software packages which attain spectacular results
(solving systems with many variables and high degree) in a surprisingly short run-
ning time, see for example [7,41,42,63]

From a mathematical point of view, there are several things in the process we
have just described that need to be analyzed: will there actually exist a path ζt
(maybe it is only defined for, say, t < 1/2)? what is the expected complexity of
the process (in particular, can we expect average polynomial running time in some
sense)? what “simple system with a known solution” should we start at? how
should we join f0 and f1, that is what should be the path ft?

In the last few decades a lot of progress has been made in studying these
questions. This progress is the topic of this paper.

2. A technical description of the problem

We will center our attention in Smale’s 17–th problem, which we recall now.

Problem 2.1. Can a zero of n complex polynomial equations in n unknowns be
found approximately, on the average, in polynomial time with a uniform
algorithm?

We have written in bold the technical terms that need to be clarified.
In order to understand the details of the problem and the solution suggested

in Section 1, we need to describe some important concepts and notation in detail.
Maybe the first one is our understanding of what a “solution” is: clearly, one
cannot expect solutions of polynomial systems to be rational numbers, so one can
only search for “quasi–solutions” in some sense. There are several definitions of
such a thing, the most stable being the following one (introduced in [57], see also
[23,39,40]):

Definition 2.2. Given a polynomial system, understood as a mapping f :
C

n → C
n, an approximate zero of f with associated (exact) zero ζ is a vector

z0 ∈ C
n such that

‖zk − ζ‖ ≤ 1

22k−1
‖z0 − ζ‖, k ≥ 0,

where zk is the result of applying k times Newton’s operator z �→ z−Df(z)−1f(z)
(note that the definition of approximate zero implicitly assumes that zk is defined
for all k ≥ 0.)

The power of this definition is that, as we will see below, given any polynomial
system f and any exact zero ζ ∈ C

n, approximate zeros of f with associated zero
ζ exist whenever Df(ζ) is an invertible matrix.
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POLYNOMIAL SYSTEM SOLVING 73

Recall that our first goal is to transform the problem of polynomial system
solving into an implicit function problem or an ODE system like that of (1.1).
There exist two principal reasons why the solution of such a system can fail to be
defined for all t > 0: that the function defining the derivative is not everywhere
defined (this corresponds naturally to Dft(ζt) not being invertible), and that the
solution escapes to infinity. The first problem seems to be more delicate and difficult
to solve, but the second one is actually very easily dealt with: we just need to define
our ODE in a compact manifold, instead of just in C

n. The most similar compact
manifold to C

n is P(Cn+1), and the way to take the problem into P(Cn+1) is just
homogenizing the equations.

Definition 2.3. Let f : C
n → C

n be a polynomial system, that is f =
(f1, . . . , fn) where fi : C

n → C is a polynomial of degree some di,

f(x1, . . . , xn) =
∑

α1+···+αn≤di

a(i)α1,...,αn
xα1
1 · · ·xαn

n .

The homogeneous counterpart of f is h : Cn+1 → C
n defined by h = (h1, . . . , hn)

where

h(x0, x1, . . . , xn) =
∑

α1+···+αn≤di

a(i)α1,...,αn
x
di−

∑n
i=1 αi

0 xα1
1 · · ·xαn

n .

We will talk about such a system h simply as a homogeneous system.

Note that if ζ is a zero of f then (1, ζ) is a zero of the homogeneous counter-
part h of f . Reciprocally, if ζ = (ζ0, ζ1, . . . , ζn) is a zero of h and if ζ0 �= 0, then
(ζ1/ζ0, . . . , ζn/ζ0) is a zero of f . Thus, the zeros of f and h are in correspondence
and we can think of solving h and then recovering the zeros of f (this is not a com-
pletely obvious process when we only have approximate zeros, see [15].) Moreover,
it is clear that for any complex number λ ∈ C and for x ∈ C

n+1 we have

h(λx) = Diag(λd1 , . . . , λdn)h(x),

and thus the zeros of h lie naturally in the projective space P(Cn+1).
As we will be working with homogeneous systems and projective zeros, we need

a definition of approximate zero in the spirit of Definition 2.2 which is amenable
to a projective setting. The following one, which uses the projective version [50]
of Newton’s operator, makes the work. Here and throughout the paper, given a
matrix or vector A, by A∗ we mean the complex conjugate transpose of A, and by
dR(x, y) we mean the Riemannian distance from x to y, where x and y are elements
in some Riemannian manifold.

Definition 2.4. Given a homogeneous system h, an approximate zero of h
with associated (exact) zero ζ ∈ P(Cn+1) is a vector z0 ∈ P(Cn+1) such that

dR(zk, ζ) ≤
1

22k−1
dR(z0, ζ), k ≥ 0,

where zk is the result of applying k times the projective Newton operator z �→ z −
Dh(z) |−1

z⊥ h(z) (again, the definition of approximate zero implicitly assumes that zk
is defined for all k ≥ 0.) Here, byDf(z) |z⊥ we mean the restriction of the derivative
of h at z, to the (complex) orthogonal subspace z⊥ = {y ∈ C

n+1 : y∗z = 0}.
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74 CARLOS BELTRÁN AND MICHAEL SHUB

It is a simple exercise to verify that (projective) Newton’s method is well de-
fined, that is the point it defines in projective space does not depend on the repre-
sentative z ∈ C

n+1 chosen for a point in projective space.
A (projective) approximate zero of h is thus a projective point such that the

successive iterates of the projective Newton operator quickly approach an exact
zero of h. Thus finding an approximate zero is an excellent output of a numerical
zero–finding algorithm to solve h.

Because we are going to consider paths of systems {ht}t∈[a,b], it is convenient
to fix a framework where one can define these nicely. To this end, we consider the
vector space of homogeneous polynomials of fixed degree s ≥ 1:

Hs = {h ∈ C[x0, . . . , xn] : h is homogeneous of degree s}.
It is convenient to consider an Hermitian product (and the associated metric) on
Hs. A desirable property of such a metric is the unitary invariance, namely, we
would like to have an Hermitian product such that

〈h, g〉Hs
= 〈h ◦ U, g ◦ U〉Hs

, ∀ U ∈ Un+1,

where Un+1 is the group of unitary matrices of size n+1. Such property was studied
in detail in [52]. It turns out that there exists a unique (up to scalar multiplication)
Hermitian product that satisfies it, the one defined as follows:

〈
∑

α0+···+αn=s

aα0,...,αn
xα0
0 · · ·xαn

n ,
∑

α0+···+αn=s

bα0,...,αn
xα0
0 · · ·xαn

n 〉Hs
=

∑

α0+···+αn=s

α0! · · ·αn!

s!
aα0,...,αn

bα0,...,αn
,

where · just means complex conjugation. Note that this is just a weighted version
of the standard complex Hermitian product in complex affine space.

Then, given a list of degrees (d) = (d1, . . . , dn), we consider the vector space

H(d) =

n∏

i=1

Hdi
.

Note that an element h of H(d) can be seen both as a mapping h : Cn+1 → C
n or as

a polynomial system, and can be identified by the list of coefficients of h1, . . . , hn.
We denote by P(H(d)) the projective space associated to H(d), by N the complex
dimension of P(H(d)) (so the dimension of H(d) is N + 1) and we consider the
following Hermitian structure in H(d):

〈h, g〉 =
n∑

i=1

〈hi, gi〉Hdi
, ‖h‖ = 〈h, h〉1/2.

This Hermitian product (and the associate Hermitian structure and metric) is also
called the Bombieri–Weyl or the Kostlan product (structure, metric). As usual,
this Hermitian product in H(d) defines an associated Riemannian structure given
by the real part of 〈·, ·〉. We can thus consider integrals of functions defined on
H(d).

We denote by S the unit sphere in H(d), and we endow S with the inherited
Riemannian structure from that of H(d). Then, P(H(d)) has a natural Riemannian
structure, the unique one making the projection S → P(H(d)) a Riemannian sub-
mersion. That is the derivative of the projection restricted to the normal to the

Licensed to University Paul Sabatier.  Prepared on Mon Dec 14 09:01:17 EST 2015for download from IP 130.120.37.54.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



POLYNOMIAL SYSTEM SOLVING 75

fibers is an isometry. We can thus also consider integrals of functions defined in S or
P(H(d)). We can now talk about probabilities in S or P(H(d)): given a measurable
(nonnegative or integrable) mapping X defined in S or P(H(d)), we can consider its
expected value:

ES(X) =
1

ν(S)

∫

S

X(h) dh or EP(H(d))(X) =
1

ν(P(H(d)))

∫

P(H(d))

X(h) dh,

where we simply denote by ν(E) the volume of a Riemannian manifold E. Simi-
larly, one can talk about probabilities in H(d) according to the standard Gaussian
distribution compatible with 〈·, ·〉: given a measurable (nonnegative or integrable)
mapping X defined in H(d), its expected value is:

EH(d)
(X) =

1

(2π)N+1

∫

H(d)

X(h)e−‖h‖2/2 dh.

We can now come back to Problem 2.1 and see what do each of the terms in
that problem mean: Smale himself points out that one can just solve homogeneous
systems (as suggested above). We still have a few terms to clarify:

• found approximately. This means finding an approximate zero in the sense
of Definition 2.4.

• on the average, in polynomial time. This now means that, if X(h) is the
time needed by the algorithm to output an approximate zero of the input
system h, then the expected value of X is a quantity polynomial in the
input size, that is polynomial in N . The number of variables, n, and the
maximum of the degrees, d, are smaller than N , and hence one attempts
to get a bound on the expected value of X, as a polynomial in n, d,N .

• uniform algorithm. Smale demands an algorithm in the Blum–Shub–
Smale model [20,21], that is exact operations and comparisons between
real numbers are assumed. This assumption departs from the actual per-
formance of our computers, but it is close enough to be translated to
performance in many situations. Uniform means that the same algorithm
works for all (d) and n.

3. Geometry and condition number

We can now set up a geometric framework for homotopy methods. Consider
the following set, usually called the solution variety:

(3.1) V = {(h, ζ) ∈ P(H(d))× P(Cn+1) : h(ζ) = 0}.
This set is actually a smooth complex submanifold (as well as a complex algebraic
subvariety) of P(H(d))×P(Cn+1), see [20], and is clearly compact. It will be useful
to consider the following diagram.

(3.2)

V
π1 ↙ ↘ π2

P(H(d)) P(Cn+1)

It is clear that π−1
1 (h) is a copy of the zero set of h. Reciprocally, for fixed ζ ∈

P(Cn+1), the set π−1
2 (ζ) is the vector space of polynomial systems that have ζ as a

zero.
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76 CARLOS BELTRÁN AND MICHAEL SHUB

Let Σ′ ⊆ V be the set of critical points of π1 and Σ = π1(Σ
′) ⊆ P(H(d)) the set

of critical values of π1. It is not hard to prove that:

• π1 restricted to the set V \ π−1
1 (Σ) is a (smooth) D–fold covering map,

where D = d1 · · · dn is the Bezóut number.
• Σ′ = {(h, ζ) ∈ V : Dh(ζ) |ζ⊥ has non–maximal rank}. In that case, we
say that ζ is a singular zero of h. Otherwise, we say that ζ is a regular
zero of h.

This means, in particular, that the homotopy process described above can be carried
out whenever the path of systems lies outside of Σ:

Theorem 3.1. Let {ht : t ∈ [a, b]} be a C1 curve in P(H(d)) \ Σ and let ζ be

a zero of ha. Then, there exists a unique lift of ht through π1, that is a C1 curve
(ht, ζt) ∈ V such that ζa = ζ. In particular, ζb is a zero of hb. Moreover, the lifted
curve satisfies:

(3.3)
d

dt
(ht, ζt) =

(
ḣt,−Dht(ζt) |−1

ζ⊥
t
ḣt(ζt)

)
.

Finally, the set Σ ⊆ P(H(d)) is a complex projective algebraic variety, thus it has
real codimension 2 and the projection of most real lines in H(d) to P(H(d)) does not
intersect Σ.

The last claim of Theorem 3.1 must be understood as follows. Let g, f ∈ H(d)

be chosen at random. Then, with probability one, the projection to P(H(d)) of the
line containing g and f does not intersect Σ.

In the case the thesis of Theorem 3.1 holds we just say that ζa can be continued
to a zero ζb of ha. One can be even more precise:

Theorem 3.2. Let {ht : t ∈ [a, b]} be a C1 curve in P(H(d)) \ Σ and let ζ be
a zero of ha. Then, every zero ζ of ha can be continued to a zero of hb, defining a
bijection between the D zeros of ha and those of hb.

Remark 3.3. Even if ht crosses Σ some solutions may be able to be continued
while others may not.

The (normalized) condition number [52] is a quantity describing “how close to
singular” a zero is. Given h ∈ H(d) and z ∈ P(Cn+1), let

(3.4) μ(f, z) = ‖f‖‖(Dh(z) |z⊥)−1Diag(‖z‖di−1d
1/2
i )‖2,

and μ(f, z) = +∞ if Dh(z) |z⊥ is not invertible. Sometimes μ is denoted μnorm

or μproj but we prefer to keep the more simple notation here. One of the most
important properties of μ is that it is an upper bound for the norm of the (locally

defined) implicit function related to π1 in (3.2). Namely, let (ḣ, ζ̇) ∈ T(h,ζ)V where
(h, ζ) ∈ V is such that μ(h, ζ) < +∞. Then,

(3.5) ‖ζ̇‖ ≤ μ(h, ζ)‖ḣ‖, μ(h, ζ) ≥
√
n.

We also have the following result.

Theorem 3.4 (Condition Number Theorem,[52]).

μ(h, ζ) =
1

sin (dR(h,Σζ))
,

where dR is the Riemannian distance in P(H(d)) and

Σζ = {h ∈ P(H(d)) : h(ζ) = 0, and Dh(ζ) |ζ⊥ is not invertible}.
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POLYNOMIAL SYSTEM SOLVING 77

Note that this is a version of the classical Condition Number Theorem of linear
algebra (see Theorem 6.5 below). The existence of approximate zeros in the sense
of Definition 2.4 above is also guaranteed by this condition number, as was noted
in [52]. More precisely:

Theorem 3.5 (μ–Theorem, [52]). There exists a constant u0 > 0 (u0 =
0.17586 suffices) with the following property. Let (h, ζ) ∈ V and let z ∈ P(Cn+1)
satisfy

dR(z, ζ) ≤
u0

d3/2 μ(h, ζ)
.

Then, z is an approximate zero of h with associated zero ζ.

4. The complexity of following a homotopy path

The sentence “can be continued” in the discussion of Section 3 can be made
much more precise, by defining an actual path–following method. It turns out that
the unique method that has actually been proved to correctly follow the homotopy
paths and at the same time achieve some known complexity bound is the most
simple one, which only uses the projective Newton operator, and not an ODE
solver step.

Problem 4.1. It would be an interesting project to compare the overall cost of
using a higher order ODE solver to the projective Newton–based method we describe
below. Higher order methods or even predictor–corrector methods may require fewer
steps but be more expensive at each step so a total cost comparison is in order.
Some experience indicates that higher order methods are rarely cheaper, if ever.
See [39,40].

More precisely, the projective Newton–based homotopy method is as follows.
Given a C1 path {ht : a ≤ t ≤ b} ⊆ P(H(d)), and given za an approximate zero of
ha with associated (exact) zero ζa, let t0 > 0 be “small enough” and let

za+t0 = za − (Dha+t0(za) |z⊥
a
)−1ha+t0(za),

that is za+t0 is the result of one application of the projective Newton operator
based on ha+t0 to the point za. If za is an approximate zero of ha and t0 is small
enough, then za can be close enough to the actual zero ζa+t0 of ha+t0 to satisfy
Theorem 3.5 and thus be an approximate zero of ha+t0 as well. Then, by definition
of approximate zero, za+t0 will be half–closer to ζa+t0 than za. This leads to an
inductive process (choosing t1, then t2, etc. until hb is reached) that, analysed
in detail, can be made to work and actually programmed. The details on how to
choose t0 would take us too far apart from the topic, so we just give an intuitive
explanation: if we are to move from (ha, ζa) to (ha+t0 , ζa+t0) we must be sure
that we are far enough from Σ′ to have our algorithm behaving properly. As the
condition number essentially measures the distance to Σ′, it should be clear that
the bigger the condition number, the smaller step t0 we can take. This idea lead to
the following result (see [56] for a weaker, earlier result):

Theorem 4.2 ([51]). Let (ht, ζt) ⊆ V \ Σ′, t ∈ [a, b] be a C1 path. If the steps
t0, t1, . . . are correctly chosen, then an approximate zero of hb is reached at some

point, namely there is a k ≥ 1 such that
∑k

i=0 ti = b− a (k is the number of steps
in the inductive process above.) Moreover, one can bound

k ≤ �Cd3/2Lκ�,
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where d is the maximum of the degrees in (d), C is some universal constant, and

(4.1) Lκ =

∫ b

a

μ(ht, ζt)‖(ḣt, ζ̇t)‖ dt

is called the condition length of the path (ht, ζt). Moreover, the amount of arithmetic
operations needed in each step is polynomial in the input size N , and hence the total
complexity of the path–following procedure is a quantity polynomial in N and linear
in Lκ

There exist several ways to algorithmically produce the steps t0, t1, . . . in this
theorem (and indeed the process has been programmed in two versions [12,13],)
but the details are too technical for this report, see [8,27,31]. We also point out
that, if the path we are following is linear, i.e. ht = (1− t)h0+ th1, and if the input
coordinates are (complex) rational numbers, then all the operations can be carried
out over the rationals without a dramatic increase of the bit size of intermediate
results, see [13].

Note that since Lκ is a length it is independent of the C1 parametrization of
the path. If we specify a path of polynomial systems in H(d) then we project the
path of polynomials and solutions into V to calculate the length. We may project
from H(d) to S first and reparametrize if we wish. For example, we project the
straight line segment ht = (1− t)g + th for 0 ≤ t ≤ 1 into S and reparametrize by
arc–length. If ‖g‖ = ‖h‖ = 1 the resulting curve is

ht = g cos(t) +
h− 〈h, g〉g
‖h− 〈h, g〉g‖ sin(t)

which is an arc of great circle through g and h. If 0 ≤ t ≤ dR(g, h), then the arc
goes from g to h. Here dR(g, h) is the Riemannian distance in S between g and h
which is the angle between them.

5. The problem of good starting points

We now come back to the original question in Smale’s 17-th problem. Our plan
is to analyse the complexity of an algorithm that we could call “linear homotopy”:
choose some g ∈ S, ζ ∈ P(Cn+1) such that g(ζ) = 0 (we will call (g, ζ) a “starting
pair”). For input h ∈ S, consider the path contained in the great circle :

(5.1) ht = g cos(t) +
h− 〈h, g〉g
‖h− 〈h, g〉g‖ sin(t), t ∈ [0, dR(g, h)].

Then, use the method described in Theorem 4.2 to track how ζ0 moves to ζdR(g,h),
a zero of hdR(g,h) = h, thus producing an approximate zero of h. We call this linear
homotopy (maybe a more appropriate name would be “great circle homotopy”)
because great circles are projections on S of segments in H(d).

Assuming that the input h is uniformly distributed on S, we can give an upper
bound for the average number of arithmetic operations needed for this task (that
is, the average complexity of the linear homotopy method) by a polynomial in N
multiplied by the following quantity:

1

ν(S)

∫

h∈S

∫ dR(g,h)

0

μ(ht, ζt)‖(ḣt, ζ̇t)‖ dt dS,
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POLYNOMIAL SYSTEM SOLVING 79

where ht is defined by (5.1) and ζt is defined by continuation (the fact that ht∩Σ =
∅, and thus the existence of such ζt, is granted by Theorem 3.1 for most choices of
g, h). It is convenient to replace this last expected value by a similar upper bound:

A1(g, ζ) =
1

ν(S)

∫

h∈S

∫ π

0

μ(ht, ζt)‖(ḣt, ζ̇t)‖ dt dS.

Note that we are just replacing the integral from 0 to dR(g, h) by the distance from
0 to π.

We thus have:

Theorem 5.1. Let (g, ζ) ∈ V. The average complexity of linear homotopy with
starting pair (g, ζ) is bounded above by a polynomial in N multiplied by A1(g, ζ).

This justifies the following definition:

Definition 5.2. Fix some polynomial1 p ∈ R[x, y, z]. We say that (g, ζ) is a
good starting pair w.r.t. p(x, y, z) if A1(g, ζ) ≤ p(n, d,N) (which implies that the
average number of steps of the linear homotopy is O(d3/2p(n, d,N)).) From now

on, if nothing is said, we assume p(x, y, z) =
√
2πxz. Thus, (g, ζ) ∈ V is a good

initial pair if A1(g, ζ) ≤
√
2πnN .

So, if a good sequence of initial pair is known for all choices of n and the list of
degrees (d), then the total average complexity of linear homotopy is polynomial in
N . In other words, finding good starting pairs for every choice of n and (d) gives
a satisfactory solution to Problem (2.1).

In [56] the following pair2 was conjectured to be a good starting pair (for some
polynomial p(x, y, z)) :

(5.2) g(z) =

⎧
⎪⎪⎨

⎪⎪⎩

d
1/2
1 zd1−1

0 z1,
...

d
1/2
n zdn−1

0 zn

, ζ = (1, 0, . . . , 0).

To this date, proving this conjecture is still an open problem. Some experimental
data supporting this conjecture was shown in [12].

5.1. Choosing initial pairs at random: an Average Las Vegas al-
gorithm for problem (2.1). One can study the average value of the quantity
A1(g, ζ) described above. Most of the results in this section are based on the fact
that the expected value of the square of the condition number is relatively small.
This was first noted in [53], then this expected value was computed exactly in [16]:

Theorem 5.3. Let h ∈ S be chosen at random, and let ζ be chosen at random,
with the uniform distribution, among the zeros of h. Then, the expected value of
μ2(h, ζ) is at most nN . More exactly:

Eh∈S

⎛

⎝ 1

D
∑

ζ:h(ζ)=0

μ(h, ζ)2

⎞

⎠ = N

(

n

(

1 +
1

n

)n+1

− 2n− 1

)

≤ nN.

1Because n, d ≤ N , we could just talk about a one variable polynomial p(x) and change
p(n, d,N) to p(N) in the following definition. However, we prefer here to be a bit more precise.

2The pair conjectured in [56] does not contain the extra d
1/2
i factors. There is, however,

some consensus that these extra factors should be added, for with these factors the condition
number μ(g, ζ) = n1/2 is minimal.
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In particular, in the case of one homogeneous polynomial of degree d (i.e. n = 1,)
we have:

Eh∈S

⎛

⎝
∑

ζ:h(ζ)=0

μ(h, ζ)2

⎞

⎠ = d(d+ 1).

Now we use some arguments which are very much inspired by ideas from in-
tegral geometry, one of the main contributions of Lluis Santaló to XX century
mathematics. We can try to compute the expected value of A1(g, ζ). Although
this can be done directly (see [18],) it is easier to first consider an upper bound of
A1: let us note from (3.5) that

(5.3) A1(g, ζ) ≤
√
2

ν(S)

∫

h∈S

∫ π

0

μ(ht, ζt)
2 dt dS.

So, we have

Eg∈S

⎛

⎝
∑

ζ:g(ζ)=0

A1(g, ζ)

⎞

⎠ ≤ Eg∈S

⎛

⎝
∑

ζ:h(ζ)=0

√
2

ν(S)

∫

h∈S

∫ π

0

μ(ht, ζt)
2 dt dS.

⎞

⎠ =

√
2 E(g,h)∈S×S

⎛

⎝
∫

f∈Lg,h

∑

ζ:f(ζ)=0

μ(f, ζ)2

⎞

⎠ ,

where Lg,h is the half–great circle in S containing g, h, starting at g and going to
−g (we have to remove from this argument the case h = −g but this is unimportant
for integration purposes.) Note that we can define a measure and more generally
a concept of integral in S as follows: given any measurable function q : S→ [0,∞),
its integral is

(5.4) E(g,h)∈S×S

(∫

f∈Lg,h

q(f)

)

.

Now, this last formula describes an invariant (with respect to the group of sym-
metries of S, that can be identified with the unitary group of size N + 1 or with
the orthogonal group of size 2N + 2) measure in S and is thus equal to a multiple
of the usual measure in S. In words, averaging over S or over great circles in S is
the same, up to a constant. The constant is easy to compute by considering the
constant function q ≡ 1. What we get is:

Eg∈S

⎛

⎝
∑

ζ:g(ζ)=0

A1(g, ζ)

⎞

⎠ ≤ π√
2
Eh∈S

⎛

⎝
∑

ζ:h(ζ)=0

μ(h, ζ)2

⎞

⎠ .

After this argument is made rigorous, we have (see [14,15] for earlier versions of
the following result:)

Theorem 5.4 ([16]). Let g ∈ S be chosen at random with the uniform dis-
tribution, and let ζ be chosen at random, with the uniform (discrete) distribution
among the roots of g. Then, the expected value of A1(g, ζ) is at most π√

2
nN . In

particular, for such a randomly chosen pair (g, ζ), with probability at least 1/2 we

have A1(g, ζ) ≤
√
2πnN , that is, (g, ζ) is a good starting pair3.

3Note that we are computing there the average of A1 not that of the integral of μ2 as in [16].

From (5.3), the constant
√
2 has to be added to the formula in [16] in this context.
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POLYNOMIAL SYSTEM SOLVING 81

The previous result would be useless for describing an algorithm (because choos-
ing a random zero of a randomly chosen g ∈ S might be a difficult problem) without
the following one.

Theorem 5.5 ([16]). The process of choosing a random g ∈ S and a random
zero ζ of g can be emulated by a simple linear algebra procedure.

The details of the linear algebra procedure of Theorem 5.5 require the intro-
duction of too much notation. We just describe the process in words: one has to
choose a random n × (n + 1) matrix M with complex entries, compute its kernel
(a projective point ζ ∈ P(Cn+1)) and consider the system g ∈ S that has ζ as a
zero and whose linear part is given by M . A random higher–degree term has to be
added to g, and then linear and higher–degree terms must be correctly weighted.
This whole process has running time polynomial in N . We thus have:

Corollary 5.6. The linear homotopy algorithm with the starting pair obtained
as in Theorem 5.5 has average complexity4 Õ(N2).

The word “average” in Corollary 5.6 must be understood as follows. For an
input system h, let T (h) be the expected running time of the linear homotopy
algorithm, when (g, ζ) is randomly chosen following the procedure of Theorem 5.5.

Then, the average value of T (h) for random h is Õ(N2). This kind of algorithm
is called Average Las Vegas, the “Las Vegas” term coming from the fact that a
random choice has to be done. The user of the algorithm plays the role of a Las
Vegas casino, not of a Las Vegas gambler: the chances of winning (i.e. getting a
fast answer to our problem) are much higher than those of loosing (i.e. waiting for
a long time before getting an answer.)

Some of the higher moments of A1(g, ζ) have also been proved to be small. For
example, the second moment (thus, also the variance) of A1(g, ζ) is polynomial in
N , as the following result shows:

Theorem 5.7 ([18]). Let 2 ≤ k < 3. Then, the expectation of A1(g, ζ)
k

satisfies
E
(
A1(g, ζ)

k
)
<∞.

Moreover, let 2 ≤ k < 3− 1
2 lnD . Then, the expectation E

(
A1(g, ζ)

k
)
satisfies,

E
(
A1(g, ζ)

k
)
≤ 22k+k/2+4 e πkn3k−4N2D4k−8 lnD.

In particular, E(A1(g, ζ)
2) ≤ 512eπ2n2N2 lnD.

We have been concentrating on finding one zero of a polynomial system. But
we could find k zeros 0 ≤ k ≤ D by choosing k different random initial pairs using
Theorem 5.5. This process is known from [16] to output every zero of the goal
system h with the same probability 1/D, if h �∈ Σ. Another option is to choose
some initial system g which has k known zeros, and simultaneously continuing the
k homotopy paths with the algorithm of Theorem 4.2. In the case of finding all
zeros the sum of the number of steps to follow each path, is by Theorem 4.2 and
(3.5), bounded above by a constant times

d3/2
∫ dR(g,h)

0

∑

ζt:ht(ζt)=0

μ(ht, ζt)
2 dt.

4We use here the Õ(X) notation: this is the same as O(X log(X)c) for some constant c, that
is logarithmic factors are cleaned up to make formulas look prettier.
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So for the great circle homotopies we have been discussing an analogue of Theorem
5.4 holds:

Theorem 5.8 ([16]). Let g ∈ S be chosen at random with the uniform dis-

tribution. Then, the expected value of
∫ dR(g,h)

0

∑
ζt:ht(ζt)=0 μ(ht, ζt)

2 dt is at most
π√
2
nND. In particular, for such a randomly chosen g, with probability at least 1/2

we have
∫ dR(g,h)

0

∑
ζt:ht(ζt)=0 μ(ht, ζt)

2 dt ≤
√
2πnND, that is, the linear homotopy

for finding all zeros starting at g takes at most a constant times d3/2nND steps to
output all zeros of h, on the average.

Note that in general, one cannot write down all the D zeros of g to begin with,
so Theorem 5.8 does not immediately yield a practical algorithm.

We point out that, even for the case n = 1, no explicit descriptions of pairs
(g, ζ) satisfying A1(g, ζ) ≤ dO(1) are known. Of course, no explicit polynomial g ∈ S

is known in that case satisfying the claim of Theorem 5.8. An attempt to determine
such a polynomial has led to some progress in the understanding of elliptic Fekete
points, see Section 8.

5.2. The roots of unity combined with a method of Renegar: a quasi–
polynomial time deterministic algorithm for problem (2.1). One can also
ask for an algorithm for Problem (2.1) which does not rely on random choices (a
deterministic algorithm). The search of a deterministic algorithm with polynomial
running time for Problem (2.1) is still open, but a quasi–polynomial algorithm is
known since [27].

This algorithm is actually a combination of two: on one hand, we consider the
initial pair

(5.5) g =

⎧
⎪⎪⎨

⎪⎪⎩

1√
2n

(xd1
0 − xd1

1 )

...
1√
2n

(xd1
0 − xdn

n )

, ζ = (1, . . . , 1)

Then, we have:

Theorem 5.9 ([27]). The projective Newton–based homotopy method with ini-
tial pair ( 5.5) has average running time polynomial in N and nd (recall that d is
the maximum of the degrees).

Theorem 5.9 is a consequence of the following stronger result:

Theorem 5.10 ([27]). The projective Newton–based homotopy method with ini-
tial pair (g, ζ) ∈ V has average running time polynomial in N and in max{μ(g, η) :
g(η) = 0}.

Theorem 5.9 follows from Theorem 5.10 and the fact that μ(g, η) ≤ 2(n + 1)d

for g given by (5.5) for every zero η of g.
For small (say, bounded) values of d, the quantity nd is polynomial in n and

thus polynomial in N , but for big values of d the quantity nd is not bounded
by a polynomial in N , and thus Theorem 5.9 does not claim the existence of a
polynomial running time algorithm. However, it turns out that there is a previously
known algorithm, based on the factorization of the u–resultant, that has exponential
running time for small degrees, but polynomial running time for high degrees (this
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may seem contradictory, but it is not: when the degrees are very high, the input
size is big, and thus bounding the running time by a polynomial in the input size
is sometimes possible in this case.) More precisely:

Theorem 5.11 ([27, 48]). There is an algorithm with average running time
polynomial in N and D that, on input h ∈ P(H(d)) \ Σ, outputs an approximate
zero associated to every single exact zero of h.

Note that D is usually exponential in n, but as suggested above, if the degrees
are very high compared to n, then D can be bounded above by a polynomial in
the input size N and thus the algorithm of Theorem 5.11 becomes a polynomial
running time algorithm.

An appropriate combination of theorems 5.9 and 5.11, using the homotopy
method of Theorem 5.9 for moderately low degrees and the symbolic–numeric
method of Theorem 5.11 for moderately high degrees turns out to be quasipolyno-
mial for every choice of n and (d) . Indeed:

Theorem 5.12 ([27]). The average (for random h ∈ S) running time of the
following procedure is O(N log logN ): on every input h ∈ P(H(d))\Σ, run simultane-
ously the algorithms of theorems 5.9 and 5.11, stopping the computation whenever
one of the two algorithms gives an output.

Note that the running time of this algorithm is thus quasi–polynomial in N .
Moreover, the algorithm is deterministic because it does not involve random choices.

5.3. Homotopy paths based on the evaluation at one point. Another
approach to construct homotopies was considered in [57] and generalized in [4].

Given h ∈ H(d) and ζ ∈ P(Cn+1), consider g = h− ĥζ , where ĥζ ∈ H(d) is defined
as

ĥζ(z) = Diag

(
〈z, ζ〉di

〈ζ, ζ〉di

)

h(ζ).

Then, g(ζ) = 0. So, we consider the homotopy ht = (1− t)g + th = h− (1− t)ĥζ .
We continue the zero ζ from h0 = g to h1 = h. For any fixed ζ, for example
ζ = e0 = (1, 0, . . . , 0), the homotopy may be continued for almost all h ∈ H(d). Let

K(h, ζ) = number of steps sufficient to continue ζ to a zero of h,

and

K(h) = Eζ∈P(Cn+1)(K(h, ζ)).

Then,

Theorem 5.13 ([4]).

Eh∈H(d)
(K(h)) ≤ Cd3/2Γ(n+ 1)2n−1

(2π)Nπn

∫

h∈H(d)

⎛

⎝
∑

η:h(η)=0

μ(h, η)2

‖h‖2 Θ(h, η)

⎞

⎠ e−‖h‖2/2 dh,

where

Θ(h, η) =

∫

ζ∈B(h,η)

(‖h‖2 − T 2)1/2

T 2n−1
Γ(T 2/2, n)eT

2/2 dζ,

T = ‖Diag(‖ζ‖−di))h(ζ)‖,
and Γ(α, n) =

∫ +∞
α

tn−1e−t dt is the incomplete gamma function.
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In Theorem 5.13, B(h, η) is the basin of η, which we now define. Suppose η
is a non–degenerate zero of h ∈ H(d). We define the basin of η, B(h, η), as those

ζ ∈ P(Cn+1) such that the zero ζ of g = h − ĥζ continues to η for the homotopy
ht = (1− t)g + th. We observe that the basins are open sets.

Not much is known about E(K). See [4] for precise questions and motivations.
Here is one:

Problem 5.14. Is E(K) a quantity polynomial in N?

6. The condition Lipschitz–Riemannian structure

Let us know turn our sight back to (4.1). If we drop the condition number
μ(ht, ζt) from that formula, we get

L =

∫ b

a

‖ḣt, ζ̇t)‖ dt,

that is simply the length of the path (ht, ζt) in the solution variety V , taking on V
the natural metric: the one inherited from that of the product P(H(d))× P(Cn+1).
The formula in (4.1) can now be seen under a geometrical perspective: Lκ is just the
length of the path (ht, ζt) when V is endowed with the conformal metric obtained
by multiplying the natural one by the square of the condition number. Note that
this new metric is only defined on W = V \ Σ′. We call this new metric the
condition metric in W . This justifies the name condition length we have given
to Lκ. Theorem 4.2 now reads simply as follows: the complexity of following a
homotopy path (ht, ζt) is at most a small constant cd3/2 times the length of (ht, ζt)
in the condition metric. This makes the condition metric an interesting object of
study: which are the theoretical properties of that metric? given p, q ∈ W , what is
the condition length of the shortest path joining p and q?

The first thing to point out is that μ is not a C1 function, as it involves a
matrix operator norm. However, μ is locally Lipschitz. Thus, the condition metric
is not a Riemannian metric (usually, one demands smoothness or at least C1 for
Riemannian metrics,) but rather we may call it a Lipschitz–Riemannian structure.
This departs from the topic of most available books and papers dealing with ge-
ometry of manifolds, but there are still some things we can say. It is convenient to
take a tour to a slightly more general kind of problems; that’s the reason for the
following section.

6.1. Conformal Lipschitz–Riemann structures and self–convexity. Let
M be a finite–dimensional Riemannian manifold, that is a smooth manifold with a
smoothly varying inner product defined at the tangent space to each point x ∈ M,
let us denote it 〈·, ·〉x. Let α : M → [0,∞) be5 a Lipschitz function, that is, there
exists some constant K ≥ 0 such that

|α(x)− α(y)| ≤ KdR(x, y), ∀x, y ∈ M,

where dR(x, y) is the Riemannian distance from x to y. Then, consider on each
point x ∈ M the inner product 〈·, ·〉α,x = α(x)〈·, ·〉x. Note that this need no longer
be smoothly varying with x, for α(x) is just Lipschitz. We call such a structure

5The reader may have in mind the case α(h, ζ) = μ(h, ζ)2 defined in M = V.
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POLYNOMIAL SYSTEM SOLVING 85

a (conformal) Lipschitz–Riemannian structure in M, and call it the α–structure.
The condition length of a C1 path γ(t) ⊆ M, a ≤ t ≤ b, is just

Lα(γ) =

∫ b

a

‖γ̇(t)‖α,γ(t) dt =
∫ b

a

〈γ̇(t), γ̇(t)〉1/2α,γ(t) dt

The distance between any to points p, q ∈ M in this α–structure is defined as

(6.1) dα(p, q) = inf
γ(t)⊆V

Lα(γ), p, q ∈ M,

where the infimum is over all C1 paths with γ(0) = p, γ(1) = q.
A path γ(t), a ≤ t ≤ b is called a minimizing geodesic if Lα(γ) = dα(γ(a), γ(b))

and ‖γ̇(t)‖α,γ(t) ≡ 1, that is, if it minimizes the length of curves joining its extremal
points and if it is parametrized by arc–length. Then, a curve γ(t) ⊆ M, for t in
some (possibly unbounded) interval I is called a geodesic if it is locally minimizing,
namely if for every t in the interior of I there is some interval [a, b] ⊆ I containing
t and such that γ |[a,b] is a minimizing geodesic.

Each connected component of the set M with the metric given by dα is a path
metric space, and it is locally compact because M is a smooth finite–dimensional
manifold. We are in a position to use Gromov’s version of the classical Hopf–Rinow
theorem [36, Th.1.10], and we have:

Theorem 6.1. Let M and α be as in the discussion above. Assume additionally
that M is connected and that (M, dα) is a complete metric space. Then:

• each closed, bounded subset is compact,
• each pair of points can be joined by a minimizing geodesic.

Theorem 6.1 gives us sufficient conditions for conformal Lipschitz–Riemannian
structures to be “well defined” in the sense that the infimum of (6.1) becomes a
minimum. We can go further:

Theorem 6.2 ([11]). In the notation above, any geodesic is of class C1+Lip,
that is it is C1 and has a Lipschitz derivative.

See [22] for an early version of Theorem 6.2 and for experiments related to this
problem.

One often thinks of the function α as some kind of “squared inverse of the
distance to a bad set”, so for each connected component of M the set (M, dα) will
actually be complete.

A natural property to ask about is the following: given p, q ∈ M, and given a
geodesic γ(t) such that γ(a) = p, γ(b) = q, does α attain its maximum on γ in the
extremes? Namely, if we think on α as some kind of squared inverse to a bad set,
do we have to get closer to the bad set than what we are in the extremes?

Example 6.3. A model to think of is Poincaré half–plane with the metric given
by the usual scalar product in R

2∩{y > 0}, multiplied by α(x, y) = y−2. Geodesics
then become just portions of vertical lines or half–circles with center at the axis
y = 0. It is clear that, to join any two points, the geodesic does not need to become
closer to the bad set {y = 0}.

We can ask for more: we say that α is self–convex (an abbreviation for self–
log–convex) if for any geodesic γ(t), the following is a convex function:

t �→ log(α(γ(t))).
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Note that this condition is stronger than just asking for t �→ α(γ(t)) to be convex,
and thus stronger than asking for the maximum of α on γ to be at the extremal
points.

6.2. Convexity properties of the condition number. We have the fol-
lowing result:

Theorem 6.4 ([10]). Let k ≥ 1 and let N ⊆ R
k be a C2 submanifold without

boundary of R2. Let U ⊆ R
n \ N be the biggest open set all of whose points have

a unique closest point in N. Then, the function α(x) = distance(x,N)−2 is self–
convex in U .

Note that Theorem 6.4 is a more general version of Example 6.3, where the
horizontal line {y = 0} is changed to a submanifold N.

A well–known result usually attributed to Eckart and Young [35] and to Schmidt
and Mirsky (see [61]) relates the usual condition number of a full rank rectangular
matrix to the inverse distance to the set of rank–deficient matrices:

Theorem 6.5 (Condition Number Theorem of linear algebra). Let A ∈ C
mn be

a m× n matrix for some 1 ≤ m ≤ n. Let σ1(A), . . . , σm(A) be its singular values.
Then,

σm(A) = distance(A, {rank–deficient matrices}).
In particular, in the case of square maximal rank matrices, we can rewrite this as
‖A−1‖ = distance(A, {rank–deficient matrices})−1, that is the (unscaled) condition
number ‖A−1‖ equals the inverse of the distance from A to the set of singular ma-
trices. We more generally call σ−1

m (A) the unscaled condition number of a (possibly
rectangular) full–rank matrix A.

One feels tempted to conclude from theorems 6.4 and 6.5 that the function
sending a full–rank complex matrix A to the squared inverse of its smallest singular
value (i.e. to the square of its unscaled condition number) should be self–convex.
Indeed, one cannot apply Theorem 6.4 because the set of rank–deficient matrices
is not a C2 manifold, and because the distance to it is for many matrices (more
precisely: whenever the multiplicity of the smallest singular value is greater than
1) not attained in a single point. It takes a considerable effort to prove that the
result is still true:

Theorem 6.6 ([11]). The function defined in the space of full–rank m × n
matrices, 1 ≤ m ≤ n, as the squared inverse of the unscaled condition number, is
self–convex.

Note that this implies that, given any two complex matrices A,B of size m×n,
and given any geodesic γ(t), a ≤ t ≤ b in the α–structure defined in

C
mn \ { rank–deficient matrices}

by α(C) = σm(C)−2 such that γ(a) = A, γ(b) = B, the maximum of α along γ is
α(A) or α(B).

Note that, if a similar result could be stated for the α–structure defined by
(h, ζ) �→ μ(h, ζ)2 in W , we would have quite a nice description of how geodesics in
the condition metric of W are. Proving this is still an open problem:

Problem 6.7. Prove or disprove μ2 is a self–convex function in W.
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Note that from Theorem 3.4, the function μ2 is not exactly the squared inverse
of the distance to a submanifold, but it is still something similar to that. This
makes it plausible to believe that Problem 6.7 has an affirmative answer. A partial
answer is known:

Theorem 6.8 ([11]). The function h �→ μ2(h, e0) defined in the set {h ∈
P(H(d)) : h(e0) = 0} is self–convex. Here, e0 = (1, 0, . . . , 0).

7. Condition geodesics and the geometry of W
Although we do not have an answer to Problem 6.7, we can actually state some

bounds that give clues on the properties of the geodesics in the condition structure
in W . More precisely:

Theorem 7.1 ([17]). For every two pairs (h1, ζ1), (h2, ζ2) ∈ W, there exists a
curve γt ⊆ W joining (h1, ζ1) and (h2, ζ2), and such that

Lκ(γt) ≤ 2cnd3/2 + 2
√
n ln

(
μ(h1, ζ1)μ(h2, ζ2)

n

)

,

c a universal constant.

In the light of Theorem 4.2, this means that if one can find geodesics in the
condition structure inW , one would be able to follow these paths in very few steps:
just logarithmic in the condition number of the starting pair and the goal pair.

Corollary 7.2. A sufficient number of projective Newton steps to follow some
path inW starting at the pair (g, e0) of ( 5.2) to find an approximate zero associated
to a solution ζ of a given system h ∈ P(H(d)) is

cd3/2
(

nd3/2 +
√
n ln

(
μ(h, ζ)√

n

))

,

c a universal constant.

Note that only the logarithm of the condition number appears in Corollary
7.2. Thus, if one could find an easy way to describe condition geodesics in W , the
average complexity of approximating them using Theorem 4.2 would involve just
the expectation of the average of ln(μ), not that of μ2 as in Theorem 5.3. As a
consequence, the average number of steps needed by such an algorithm would be
O(nd3 lnN). See [18, Cor. 3] for a more detailed statement of this fact. At this
point we ask a rather naive, vague question:

Problem 7.3. May homotopy methods be useful in solving linear systems of
equations? Might using geodesics help as in Corollary 7.2 and the comments above?

Large sparse systems are frequently solved by iterative methods and the con-
dition number plays a role in the error estimates. So Problem (7.3) has some
plausibility.

Remark 7.4. There is an exponential gap between the average number of
steps needed by linear homotopy O(d3/2nN) and those promised by the condition
geodesic–based homotopy (which stays at a theoretical level by now, because one
cannot easily describe those geodesics). This exponential gap occurs frequently in
theoretical computer science. For example NP–complete problems are solvable in
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simply exponential time but polynomial with a witness. The estimates for homo-
topies with condition geodesics may likely serve as a lower bound for what can be
achieved. Also, properties of geodesics as we learn them can inform the design of
homotopy algorithms.

There is more we can say about the geometry (and topology) ofW , by studying
the Frobenius condition number in W , which is defined as follows:

μ̃(h, ζ) = ‖h‖ ‖Dh(ζ)† Diag(‖ζ‖di−1d
1/2
i )‖F , ∀(h, ζ) ∈W,

where ‖ · ‖F is Frobenius norm (i.e. Trace(L∗L)1/2 where L∗ is the conjugate
transpose of L) and † is Moore-Penrose pseudoinverse.

Remark 7.5. The Moore-Penrose pseudoinverse L† : F→ E of a linear operator
L : E→ F of finite dimensional Hilbert spaces is defined as the composition

(7.1) L† = iE ◦ (L |Ker(L)⊥)
−1 ◦ πImage(L),

where πImage(L) is the orthogonal projection on image L, Ker(L)⊥ is the or-
thogonal complement of the nullspace of L, and iE is the inclusion. If A is a
m × (n + 1) matrix and A = UDV ∗ is a singular value decomposition of A,
D = Diag(σ1, . . . , σk, 0, . . . , 0) then we can write

(7.2) A† = V D†U∗, D† = Diag(σ−1
1 , . . . , σ−1

k , 0, . . . , 0).

In [19] we prove that μ̃ is an equivariant Morse function defined in W with a
unique orbit of minima given by the orbit B of the pair of (5.2) under the action of
the unitary group (U, (h, ζ)) �→ (h ◦ U∗, Uζ).

The function A1(g, ζ) or even its upper bound (up to a
√
2 factor) estimate 6

B1(g, ζ) =
1

ν(S)

∫

h∈S

∫ π

0

μ(ht, ζt)
2 dt dS

is an average of μ2 in great circles. This remark motivates the following

Problem 7.6. Is A1(g, ζ) or B1(g, ζ) also an equivariant Morse function whose
only critical point set is a unique orbit of minima?

If so, due to symmetry considerations, it is the orbit through the conjectured
good starting point (5.2). Here, one may want to replace the condition number μ in
the definition of B1 with a smooth version such as the Frobenius condition number.
A positive solution to this problem solves our main problem: the conjectured good
initial pair (5.2) is not only good but even best.

Because the Frobenius condition number is an equivariant Morse function, the
homotopy groups of W are equal to those of B, that can be studied with standard
tools from algebraic topology. In the case that n > 1, for example, we get:

π0(W) = {0}
π1(W) = Z/aZ

π2(W) = Z

π3(W) = πk(SUn+1) (k ≥ 3),

where SUn+1 is the set of special unitary matrices of size n + 1, a = gcd(n, d1 +
· · ·+ dn − 1) and Z/aZ is the finite cyclic group of a elements.

6see (5.3).
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POLYNOMIAL SYSTEM SOLVING 89

In particular, we see that if all the d′is are equal then a = 1 and W is simply
connected; in particular, any curve can be continously deformed into a minimizing
geodesic. See [19] for more results concerning the geometry of W . We can also
prove a lower bound similar to the upper bound of Theorem 7.1:

Theorem 7.7. let α : [a, b] → W be a C1 curve. Then, its condition length is
at least

1

d3/2
√
n+ 1

∣
∣
∣
∣ln

(
μ(α(a))

μ(α(b))

)

− ln
√
n+ 1

∣
∣
∣
∣ .

Remark 7.8. We have written Theorem 7.7 using the condition metric as
defined in this paper. The original result [19, Prop. 11] was written for the so–
called smooth condition length, obtained by changing μ to μ̃ in the definition of
the condition length. This change produces the

√
n+ 1 factors in Theorem 7.7.

In his article [59], Smale suggests that the input size of an instance of a nu-
merical analysis problem should be augmented by logW (y) where W (y) is a weight
function “... to be chosen with much thought...” and he suggests that “ the weight
is to resemble the reciprocal of the distance to the set of ill–posed problems.” That
is the case here. The condition numbers we have been using are comparable to
the distance to the ill–posed problems and figure in the cost estimates. It would
be good to develop a theory of computation which incorporates the distance to
ill–posedness, or condition number and distance to ill-posedness in case they may
not be comparable, (and precision in the case of round–off error) more systemat-
ically so that a weight function will not require additional thought. For the case
of linear programming Renegar [49] accomplished this. It is our main motivating
example as well as the work we have described on polynomial systems. The book
[28] is the current state of the art. The geometry of the condition metric will to
our mind intervene in the analysis. If floating point arithmetic is the model of
arithmetic used then ill-posedness will include points where the output is zero as
well as points where the output is not Lipschitz.

8. The univariate case and elliptic Fekete points

Let us now center our attention in the univariate case, that, once homogenized,
is the case of degree d homogeneous polynomials in two variables. Then,

μ(h, ζ) = d1/2‖‖h‖‖(Dh(ζ) |ζ⊥)−1‖ζ‖d−1.

If we are given a univariate polynomial f(x) and a complex zero z of f , we can also
use the following more direct (and equivalent) formula for μ(h, ζ) where h is the
homogeneous counterpart of f and ζ = (1, z) :

μ(h, ζ) =
d1/2(1 + |z|2) d−2

2

|f ′(z)| ‖h‖.

It was noted in [54] that the condition number is related to the classical problem
of finding elliptic Fekete points, which we recall now in its computational form (see
[9] for a survey on the state of art of this problem.)

Given d different points x1, . . . , xd ∈ R
3, let X = (x1, . . . , xd) and

E(X) = E(x1, . . . , xd) = −
∑

i<j

log ‖xi − xj‖
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90 CARLOS BELTRÁN AND MICHAEL SHUB

be its logarithmic potential. Sometimes E(X) is denoted by E0(X), E(0, X) or
VN (X). Let S(1/2) be the Riemann sphere in R

3, that is the sphere of radius 1/2
centered at (0, 0, 1/2), and let

md = min
x1,...,xd∈S(1/2)

E(x1, . . . , xd)

be the minimum value of E . A minimising d–tuple X = (x1, . . . , xd) is called a set
of elliptic Fekete points 7.

The computational problem of finding elliptic Fekete points is another of the
problems in Smale’s list 8.

Smale’s 7th problem [60]: Can one find X = (x1, . . . , xd) such that

(8.1) E(X)−md ≤ c log d, c a universal constant.

The first clue that this problem is hard comes from the fact that the value of md

is not known, even to O(d). A general technique (valid for Riemannian manifolds)
given by Elkies shows that

md ≥
d2

4
− d log d

4
+O(d).

Wagner [64] used the stereographic projection and Hadamard’s inequality to get
another lower bound. His method was refined by Rakhmanov, Saff and Zhou [45],
who also proved an upper bound for md using partitions of the sphere. The lower
bound was subsequently improved upon by Dubickas and Brauchart [34], [24]. The
following result summarizes the best known bounds:

Theorem 8.1. Let Cd be defined 9 by

md =
d2

4
− d log d

4
+ Cdd.

Then,

−0.4375 ≤ lim inf
d→∞

Cd ≤ lim sup
d→∞

Cd ≤ −0.3700708...

The relation of this problem to the condition number relies on the fact that
sets of elliptic Fekete points are naturally “well separated”, and are thus good
candidates to be the zeros of a “well–conditioned” polynomial, that is a polynomial
all of whose zeros have a small condition number. In [54] Shub and Smale proved
the following relation between the condition number and elliptic Fekete points.

Theorem 8.2 ([54]). Let ζ1, . . . , ζd ∈ P(C2) be a set of projective points, and
consider them as points in the Riemann sphere S(1/2) with the usual identification
P(C2) ≡ S(1/2). Let h be a degree d homogeneous polynomial such that its zeros
are ζ1, . . . , ζd. Then,

max{μ(h, ζi) : 1 ≤ i ≤ d} ≤
√
d(d+ 1) eE(ζ1,...,ζd)−md .

7Such a d–tuple can also be defined as a set of d points in the sphere which maximize the
product of their mutual distances.

8Smale thinks on points in the unit sphere, but we may think on points in the Riemann
sphere, as the two problems are equivalent by sending (a, b, c) ∈ S(1/2) to 2(a, b, c)− (0, 0, 1).

9The result in the original sources is written for the unit sphere, we translate it here to the
Riemann sphere.
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POLYNOMIAL SYSTEM SOLVING 91

In particular, is x1, . . . , xd are a set of elliptic Fekete points, then

max{μ(h, ζi) : 1 ≤ i ≤ d} ≤
√
d(d+ 1).

Remark 8.3. Let Re and Im be, respectively, the real and complex part of a
complex number. Here is alternative, equivalent definition for h and the ζi. Instead
of considering projective points in P(C2) we may just consider a set of complex
numbers z1, . . . , zd ∈ C. Then, for 1 ≤ i ≤ d, we can define ζi ∈ S as

(8.2) ζi =

(
Re(zi)

1 + |zi|2
,
Im(zi)

1 + |zi|2
,

1

1 + |zi|2

)T

∈ S(1/2), 1 ≤ i ≤ d,

f as the polynomial whose zeros are z1, . . . , zd, and h as the homogeneous counter-
part of f .

There exists no explicit known way of describing a sequence of polynomials
satisfying max{μ(h, ζ) : h(ζ) = 0} ≤ dc, for any fixed constant c and d ≥ 1.
Theorem 8.2 implies that, if a d–tuple satisfying (8.1) can be described for any d,
then such a sequence of polynomials can also be generated. From Theorem 5.10,
such h′s are good starting points for the linear homotopy method, both for finding
one root and for finding all roots. So, solving the elliptic Fekete points problem
solves the starting point problem for n = 1. The reciprocal question is: does solving
the starting point problem for n = 1 help with the Fekete point problem?

Problem 8.4. Suppose n = 1 and g ∈ S minimizes
∑

ζ:g(ζ)=0 μ(g, ζ)
2. Do

ζ1, . . . , ζd (the zeros of g, seen as points in S(1/2)) solve Smale’s 7–th problem?

We have seen in Theorem 5.3 that the condition number of (h, ζ) where h is
chosen at random and ζ is uniformly chosen at random among the zeros of h, grows
polynomially in d. Then, Theorem 8.2 suggests that spherical points associated with
zeros of random polynomials might produce small values of E . We can actually put
some numbers to this idea. First, one can easily compute the average value of E
when x1, . . . , xd are chosen at random in S(1/2), uniformly and independently with
respect to the probability distribution induced by Lebesgue measure in S(1/2):

EX∈S(1/2)dE(X) =
d2

4
− d

4
.

By comparing this with Theorem 8.1, we can see that random choices of points in
the sphere already produce pretty low values of the minimal energy. One can prove
that random polynomials actually produce points which behave better with respect
to E :

Theorem 8.5 ([3]). Let n = 1 and h ∈ S be chosen at random w.r.t. the
uniform distribution in S. Let ζ1, . . . , ζd ∈ S(1/2) be the zeros of h. Then, the
expected value of E(ζ1, . . . , ζd) equals

d2

4
− d log d

4
− d

4
.

By comparing this with Theorem 8.1, we conclude that spherical points coming
from zeros of random polynomials agree with the minimal value of E , to order O(d).
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92 CARLOS BELTRÁN AND MICHAEL SHUB

This result fits into a more general10 result related to random sections on Riemann
surfaces, see [65,66].

9. The algebraic eigenvalue problem

The double fibration scheme proposed in (3.2) has been – at least partly –
successfully used in other contexts. For example, in [1] a similar projection scheme
(9.1)

Veig = {((A, λ), v) ∈ P(Cn2+1)× P(Cn) : Av = λv}
π1 ↙ ↘ π2

P(Cn2+1) P(Cn+1)

was used to study the complexity of a homotopy–based eigenvalue algorithm, ob-
taining the following:

Theorem 9.1. A homotopy algorithm can be designed that continues an eigenvalue–
eigenvector pair (λ0, v0) of a n×n matrix A0 to one (λ1, v1) of another matrix A1,
the number of steps bounded above by

c

∫ 1

0

‖(Ȧ, λ̇, v̇)‖μeig(A, λ, v) dt,

c a universal constant. Here, μeig is the condition number 11 for the algebraic
eigenvalue problem , defined as

(9.2) μeig(A, λ, v) = max
{
1, ‖A‖F ‖πv⊥(λIn −A) |−1

v⊥ ‖
}
,

where ‖A‖F = trace(A∗A)1/2 is the Frobenius norm of A.

Of course, we do not intend to summarize here the enormous amount of methods
and papers dealing with the eigenvalue problem (see [61] for example). We just
point out that there exists no proven polynomial–time algorithm for approximating
eigenvalues (although different numerical methods achieve spectacular results in
practice.) See [44] for some statistics about the QR (and Toda) algorithms for
symmetric matrices. We don’t know a good reference for the more difficult general
case. Unshifted QR is not the fast algorithm of choice. The QR algorithm with
Francis double shift executed on upper Hermitian matrices should be the gold
standard.

Problem 9.2. Does the QR algorithm with Francis double shift fail to attain
convergence on an open subset of upper Hessenberg matrices?

See [6] for open sets where Rayleigh quotient iteration fails, and [5] for a proof
of convergence for normal matrices as well as a good introduction to the dynamics
involved.

Theorem 9.1 can probably be used in an analysis similar to that of Section 5
to complete a complexity analysis. Note that the integral in Theorem 9.1 is very
similar in spirit to that of (4.1). This allows to introduce a condition metric in

10Steve Zelditch tells us that “the relation between the special case of the round metric on
S(1/2) and the general metric on any Riemann surface is that the expansion terminates on S(1/2)
because the Fubini-Study metric is balanced,i.e. the szego kernel is constant on the diagonal. For
general metrics it will not terminate.”

11A quantity similar in spirit to the condition number μ for the polynomial system solving
problem.

Licensed to University Paul Sabatier.  Prepared on Mon Dec 14 09:01:17 EST 2015for download from IP 130.120.37.54.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



POLYNOMIAL SYSTEM SOLVING 93

Veig. Some of the results in previous sections can be adapted to this new case. For
example, an analogue of Theorem 7.1 holds (i.e. short geodesics exist,) see [2].

The eigenvalue problem and the problem of finding roots of a polynomial in
one variable are, of course, connected. Given an n × n matrix A we may com-
pute the characteristic polynomial of A, p(z) = det(zI − A) and then solve p(z).
The zeros of p(z) are the eigenvalues of A. Trefethen and Bau [62] write “This
algorithm is not only backward unstable but unstable and should not be used”.
Indeed when presented with a univariate polynomial p(z) to solve, numerical linear
algebra packages may convert the problem to an eigenvalue problem by consid-
ering the companion matrix of p(z) and then solve the eigenvalue problem. If
p(z) = zd + ad−1z

d−1 + · · ·+ a0 the companion matrix is
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
...

. . .
. . .

...
...

...
. . .

. . . 0 −ad−2

0 · · · · · · 0 1 −ad−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which is already in upper Hessenberg form. So conceivably Francis double shifted
QR may fail to converge on an open set of companion matrices?

Let us recall that the condition number of a polynomial and root is a property
of the output map as a function of the input. So it doesn’t depend on the algorithms
to solve the problem. This motivates the following

Problem 9.3. What might explain the experience of numerical analysts, re-
lating the polynomial solving methods versus that of eigenvalue solving? Might the
condition number of the eigenvalue problem have small average over the set of n×n
matrices with a given characteristic polynomial?

Finally, we can consider the problem Av = λv as a system of n quadratic
equations in n unknowns. By Bezout’s theorem, after we homogenize, we expect
2n roots counted with multiplicity. But there are only n eigenvalues. In [1, 2]
it is shown that the use of multihomogeneous Bezóut theorem yields the correct
zero count for this problem. Thus, a reasonable thing to do is to introduce a new
variable α and consider the bilinear equation Aαv = λv which is bilinear in (α, λ)
and v.

Problem 9.4 (see [32]). Prove an analogue of Theorem 9.1 in the general
multihomogeneous setting.

Appendix A. A model of computation for machines with round-off and
input errors

This section has been developed in discussions with Jean Pierre Dedieu and his
colleagues Paola Boito and Guillaume Chèze. We thank Felipe Cucker for helpful
comments.

A.1. Introduction. During the second half of the 20th century, with the
emergence of computers, algorithms have taken a spectacular place in mathemat-
ics, especially numerical algorithms (linear algebra, ode’s, pde’s, optimization), but
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94 CARLOS BELTRÁN AND MICHAEL SHUB

also symbolic computation. In this context, complexity studies give a better un-
derstanding of the intrinsic difficulty of a problem, and describe the performance
of algorithms which solve such problems. One can associate the classical Turing
model to symbolic computation based on integer arithmetic, and the BSS model
to scientific computation on real numbers. However this ideal picture suffers from
an important defect. Scientific computation does not use the exact arithmetic of
real numbers but floating-point numbers and a finite precision arithmetic. Thus, a
numerical algorithm designed on real numbers and the same algorithm running in
finite precision arithmetic give a priori two different results. Any numerical analysis
undergraduate book has at least one chapter dealing with the precision of numerical
computations. See for example [62] or [38]. Yet, there is no solid approach to the
definition and study of a model of computation including this aspect, as well as the
role that conditioning of problems should play in the complexity estimates.

Besides linear algebra problems and iterative processes, a key point to bear
in mind is that we sometimes use floating point computers to answer decision (i.e
Yes/No) problems, as is this matrix singular? or does this polynomial have a real
zero?. The first attempts to use round-off machines to study decision problems
are [30], and [29]. The authors consider questions like: under which conditions
is the decision taken by a BSS machine the same as the decision taken by the
corresponding round-off machine? Or, under which conditions is the decision taken
by a round-off machine for a given input the same as the decision taken by the BSS
machine on a nearby input?

In these pages we point towards the development of a theory of finite precision
computation via a description of round–off machines, size of an input, cost of a com-
putation, single (resp. multiple) precision computations (a computation is “single
precision” when a sufficient round-off unit δ to reach relative precision u for any
input x in the considered range is proportional to u), finite precision computability
and finite precision decidability. These concepts have to be related to the intrinsic
characteristics of the problem: its condition number (the local Lipschitz constant
of the solution map), and its posedness (the distance to ill-posed problems).

The model we propose is inspired by the BSS model but it stays close to real-life
numerical computation. We prefer relative errors to absolute ones (this is the basis
of the usual floating-point arithmetic.) We mention two papers of interest about
the foundations of scientific computing, [25,26], with a point of view different than
ours.

A.2. Round–off machine. A round-off machine is an implementation of a
BSS-machine accounting for input error and round-off error of computations. These
errors may mimic a particular floating point arithmetic but are designed to be more
general. In particular, they are not tied down to a particular floating point model.
Let R

∞ be the disjoint union of the sets R
n, n ≥ 0. For given x ∈ R

∞ we define
‖x‖ = maxi |xi|. A subset U ⊆ R

∞ is open if it is the disjoint union of Un with
Un ⊆ R

n an open set. For this topology, a mapping f : R∞ → R is continuous iff
each restriction fn = f |Rn is continuous.

A (real number) BSS machine M is a directed graph with with several kinds
of nodes including an input node, with input x ∈ R

∞, output nodes, computation
nodes where rational functions are generally computed but here we restrict ourselves
without loss of generality to the standard arithmetic operations, branching nodes
(we branch on an inequality of the form y ≥ 0.) A machine is a decision machine
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when the output is −1 or 1. The halting setH ofM is the set of inputs giving rise to
an output. We denote by O : H → R

∞ the output map. There are a few technical
concepts (mainly the input map IM (x) and the computing endomorphism HM )
associated toM , the nonfamiliar reader may find formal definitions in [20, Chapters
2 and 3].

Given a BSS machine M with nodes {1, . . . , N} and state space R∞, we aug-
ment the state space R∞ by an extra copy of R so the new state space is R×R∞.
The state space component of the input map is (1, IM (x)). We define a new next

node next state map ĤM by

ĤM (η, k, x) = (π1(HM (η, x)), k + 1, π2(HM (η, x)),

so the first coordinate acts as a counter (of the number of nodes visited by M). We

say that the machine defined ĤM is a counting BSS machine. A little programming
shows that adding this extra coordinate does nothing to change the computability
or complexity theory of real BSS machines (indeed because R × R∞ ≡ R∞, one
can easily see that this newly defined machine is actually a BSS machine). We will
moreover assume that our BSS machines are elementary, that is that the computa-
tion nodes of our machines contain only elementary operations, that is operations of
the form a◦b where a, b ∈ R and ◦ ∈ {+,−,×, /}. It is a routine task to convert any
given BSS machine into a counting elementary machine (this process can be done
in many ways, because there are many different ways to compute a polynomial).

Definition A.1 (Round–off machine associated to a given BSS machine).
Given a counting, elementary BSS machine M defined over the real numbers and
0 ≤ δ ≤ 1, a round-off machine associated to M and δ is another machine (i.e. a
directed graph with the same type of nodes as a BSS machine) denoted (M, δ). The
nodes and state space of (M, δ) are the same as for M . The input map I(M,δ) of
(M, δ) satisfies |I(M,δ)(x)j − IM (x)j | < δ|IM (x)j | that is to say the relative error of
the input is less than δ for every coordinate j. The next node next state of (M, δ) at
a computation node has the same next node component as HM , and the jth compo-
nents of the next states satisfy |H(M,δ),state(x)j −HM,state(x)j | < δ|HM,state(x)j |,
unless HM,state(x)j = xj in which case there is no error (i.e. H(M,δ),state(x)j = xj).
The next node next state map is unchanged at a branch node or at a shift node.

Given any BSS machine M defined over the real numbers and 0 ≤ δ ≤ 1, a
round–off machine associated to M and δ is a round–off machine (M̃, δ) associated

to M̃ and δ where M̃ is some counting, elementary version of M .

Remark A.2. The rounding error introduced at each computation node de-
pends on the whole state and, because M is assumed to be a counting machine,
the rounding error may thus depend on the counter. Thus, the rounding error in-
troduced at a given node visited twice may be different (because the counter may
be different). Note that the counter is also affected by rounding errors.

Note that a round off machine is not necessarily a BSS machine, and that given
M and δ, there are many machines satisfying this definition. For example, M itself
satisfies this definition for every δ. The power of the definition is that certain claims
will hold for every such a round–off machine, allowing us to use just the defining
properties and not the particular structure of a given round–off machine.
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Definition A.3. Given a BSS machine M and 0 < δ < 1, a δ pseudo–
computation with input x is the sequence of pairs (node, state) generated by some
round–off machine associated to some counting, elementary version of M .

We also point out that not every BSS machine can be (reasonably) converted
into a round–off machine. For example, assume that a BSS machine performs the
operation x = (x1, . . . , xN ) �→ x1+xN . This machine must contain a loop counting
up to N . If the form of the if node defining the loop is k ≥ 0 (k the counter which
is, say, diminished by 1 at each step) then an arbitrarily small error in the counter
of the loop may produce that an associated round–off machine on input x outputs
x1 + xN−1 instead of x1 + xN . A clear way out is to consider the slightly different
BSS machine which checks if −1/2 ≤ k ≤ 1/2 instead of k ≥ 0. Then, a round–off
machine with reasonable precision δ = O(1/N) will do the job. Note that this fits
perfectly into the definition of single precision computation (A.7) below. This also
reflects the fact, known to every numerical analyst or programmer, that not every
program is suitable for floating point conversion: a little care needs to be taken!

A.3. Computability. In the sequel, we will only consider functions f : Ω ⊆
R

∞ → R
∞ such that, for each n, the restriction fn of f to Ωn = Ω ∩ R

n takes its
values in R

m for an m depending only on n.
Such a function is round-off computable when there exists a BSS machine M

such that for any x ∈ Ω and any 0 < ε < 1, there exists a δ(x, ε) such that any

round–off machine (M, δ(x, ε)) outputs Õ(x) with

|Õ(x)j − f(x)j | ≤ ε|f(x)j |,
that is the output of (M, δ(x, ε)) is coordinatewise equal to f(x) up to relative error
ε. Equivalently, we say that M round–off computes f if given x ∈ Ω and 0 < ε < 1,
there is δ(x, ε) such that all δ(x, ε) pseudo–computations of M on input x output
f(x) with relative precision ε.

Example A.4. The function f : R2 → R, f(x, y) = xy (we can let it be zero
in R

∞ \ R2) is round–off computable. Indeed, let x, y �= 0 and 0 < ε < 1. The
output of a round–off machine (M, δ) associated to the natural BSS machine for
computing f(x, y) is a number

z = xy(1 + δ1)(1 + δ2)(1 + δ3),

for some δ1, δ2, δ3 bounded in absolute value by δ. It is useful to note the elementary
inequality

∣
∣
∣
(
1 +

u

n

)n

− 1
∣
∣
∣ ≤ 2u, ∀ 0 ≤ |u| ≤ 1.(A.1)

From this, we obviously have |z − xy| ≤ ε|xy| by taking

δ((x, y), ε) =
ε

6
,(A.2)

The output of any round–off machine if x = 0 or y = 0 is clearly 0, and hence the
same value for ε of (A.2) suffices to satisfy the definition of computability.

Example A.5. The same argument proves that the function f : R∞ → R given
by f(x1, . . . , xn) = x1 · · ·xn is round–off computable (say, we compute first x1x2

then x1x2x3 and so on) with

δ((x, y), ε) =
ε

4n− 2
,(A.3)
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Example A.6. A longer computation shows that the function f : {(x, y) ∈
R

2 : x + y �= 0} → R, f(x, y) = x + y (again, we let it be zero in R
∞ \ R2) is also

round–off computable. It suffices to take

δ((x, y), ε) =
ε

2max
(
1,
∣
∣
∣ x
x+y

∣
∣
∣ ,
∣
∣
∣ y
x+y

∣
∣
∣
) .

A more simple and still valid formula is

δ((x, y), ε) =
|x+ y|

3
√
2
√
x2 + y2

ε.(A.4)

Example A.7. Let us now see that f(x) = x1+. . .+xn is round–off computable
in the set Ω = {x ∈ R

∞ : xi ≥ 0 ∀i}. Indeed, let 0 < ε < 1 and let us consider
the most simple BSS machine which computes first x1 + x2, then adds x3 and so
on12 A round–off machine with precision δ will produce, on input x = (x1, . . . , xn),
a number

x1

(
n∏

k=1

(1 + δ
(k)
1 )

)

+ x2

(
n∏

k=1

(1 + δ
(k)
2 )

)

+ · · ·+ xn

(
n∏

k=n−1

(1 + δ(k)n )

)

,

for some δ
(k)
i bounded in absolute value by δ. This follows from the fact that, in

addition to the input error on each coordinate, x1 and x2 go through n−1 additions
(which generate n+1 errors), x3 goes though n− 2 additions and so on. Note that

x1(1− δ)n ≤ x1

(
n∏

k=1

(1 + δ
(k)
1 )

)

≤ x1(1 + δ)n.

Choosing δ = αε/(2n), 0 < α ≤ 1 and using (A.1) we conclude that
∣
∣
∣
∣
∣
x1

(
n∏

k=1

(1 + δ
(k)
1 )

)

− x1

∣
∣
∣
∣
∣
≤ αεx1,

and the same formula holds for x2, . . . , xn. The output of a round–off machine thus
satisfies

Õ(x) =

n∑

i=1

xi(1 + αεi), 0 ≤ |εi| ≤ ε.

That is, ∣
∣
∣
∣
∣
Õ(x)−

n∑

i=1

xi

∣
∣
∣
∣
∣
=

n∑

i=1

xiαεi ≤
n∑

i=1

xiα|εi| ≤ αε
n∑

i=1

xi,

proving that f(x) is round–off computable in that set (just take α = 1).

Example A.8. Let us now see that f(x) = x1+. . .+xn is round–off computable
in the set Ω = {x ∈ R

∞ :
∑

xi �= 0}. We consider the BSS machine that first adds
all the nonnegative numbers, call a the result, then adds all the negative numbers,
call b the result, and then computes a − b. Let 0 < ε < 1. We note that from
Example A.7 by choosing δ = αε/(2n) (some 0 < α ≤ 1) the round–off computation
of the sum of positive (resp. negative) terms will be

ã = a(1 + αε1), b̃ = b(1 + αε2), for some 0 ≤ |ε1|, |ε2| ≤ ε.

12This is not the algorithm of choice in practical programming but is sufficient for our pur-
poses here.
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From Example A.6, if we let

α =
|a+ b|

3
√
2
√
a2 + b2

,

that is if we let

δ(x, ε) ≤ |a+ b|
3
√
2
√
a2 + b2

ε

2n
,

then Õ(x) =
∑

i xi up to relative precision ε. Using that a2 + b2 ≤ n
∑

x2
i , we can

also use the formula

δ(x, ε) =
|
∑n

i=1 xi|
6
√
2n3/2

√∑n
i=1 x

2
i

ε.(A.5)

Example A.9. Combining examples A.5 and A.8 we see that the evaluation
map of any multivariate polynomial p(x1, . . . , xn) is round–off computable in the
complement of its zero set (just compute first the monomials and them add all the
results).

A.4. Ill–conditioned instances, condition number, posedness. Let us
think of a function f : Ω ⊆ R

∞ → R
∞ as the solution map associated with some

problem to be solved. The condition number associated with f and x measures the
first–order (relative) componentwise or normwise variations of f(x) in terms of the
first–order (relative) variations of x.

First assume that f : Ω → R, that is the function is real–valued. We say that
x ∈ Ω̄ (the topological closure of Ω) is well–conditioned when:

• Either ‖x‖ �= 0, and f can be extended to a Lipschitz function defined
in a neighborhood of x in Ω̄ with |f(x)| �= 0. In that case we define the
componentwise condition number by

κf (x) = lim sup
x′ →x,x′∈Ω̄

|f(x′)−f(x)|
|f(x)|
‖x′−x‖
‖x‖

,

• or f is constant in a neighborhood of x with |f(x)| = 0. In this later case
we define the condition number by κf (x) = 0.

Otherwise, we say that x ∈ Ω̄ is ill–conditioned. The set of ill–conditioned instances
is denoted by Σf , and for x ∈ Σf , we let κf (x) =∞.

For a general f : Ω→ R
∞, we define

κf (x) = sup
j

κfj (x) (componenwise condition number)

that is the condition number of f is the supremum of the condition numbers of
its coordinates. Sometimes it is more useful to consider the normwise condition
number, that we denote by the same letter as the context should make clear which
one is used on each problem:

κf (x) = lim sup
x′ →x,x′∈Ω̄

‖f(x′)−f(x)‖
‖f(x)‖
‖x′−x‖
‖x‖

(normwise condition number),

We define the posedness of a problem instance x with ‖x‖ �= 0 as the distance
to ill–posed problems:

πf (x) =
d(x,Σf )

‖x‖ .
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Here, d(x,Σf ) = inf{d(x, y) : y ∈ Σf}. The relation between condition number and
posedness is an important but unclear problem. Following [33], we may expect a
relation of the type

πf (x) ≈ κf (x)
−1

(condition number theorem) or at least inequalities like

C1πf (x)
ρ1 ≤ κf (x)

−1 ≤ Cwπf (x)
ρ2

for suitable positive constants Ci, ρi (cf. Lojasiewicz’s inequality.) To get such
a relation ill–posed problems should correspond to infinite condition numbers, but
this is not always the case. Consider for example the decision problem: Is x2+y2 ≤
Π? The problem is well conditioned except on the circle x2+y2 = Π, but the distance
to this circle determines the precision we need in the computation.

Let Kf (x) = max(κf (x), πf (x)
−1).

Example A.10. For f(x) = x1 · · ·xn defined in R
∞, it is easy to see that

κf (x) =
√
x2
1 + · · ·+ x2

n

√
1

x2
1

+ · · ·+ 1

x2
n

,

whenever x1, . . . , xn �= 0. If xi = 0 for any i then κf (x) =∞.
On the other hand,

πf (x) =
min(|x1|, . . . , |xn|)√

x2
1 + · · ·+ x2

n

.

Thus, we have

κf (x) ≤
√
x2
1 + · · ·+ x2

n

√
n

min(|x1|, . . . , |xn|)2
=
√
nπf (x)

−1,

and

κf (x) ≥
√
x2
1 + · · ·+ x2

n

√
1

min(|x1|, . . . , |xn|)2
= πf (x)

−1.

Namely,

πf (x)
−1 ≤ κf (x) ≤

√
nπf (x)

−1.

Example A.11. For f(x) = x1+ · · ·+xn defined in Ω = {x ∈ R
∞ :

∑
xi �= 0},

we have:

• For x ∈ Ω, a simple computation shows that

κf (x) =

√
n
√∑

x2
i

|
∑

xi|
.

• For x ∈ ∂Ω, that is
∑

xi = 0, we have κf (x) =∞.

Thus, we have

πf (x) =
d(x, {x :

∑
xi = 0})

√∑
x2
i

=
|
∑

xi|√
n
√∑

x2
i

= κf (x, y)
−1.

Namely,

Kf (x) =

√
n
√∑

x2
i

|
∑

xi|
.(A.6)
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A.5. Single, multiple precision. Let f be a round–off computable function,
and let M be a BSS machine satisfying the definition of round–off computability
above. This computation is single precision when for every 0 < ε < 1 there is a
δ = δ(ε) such that any round–off machine (M, δ) attains relative precision ε for any
input x ∈ Ω, and such that

(A.7) δ ≥ c0ε

Kf (x)c2 dim(x)c3

for some positive constants c0, c2, c3. This computation is multiple precision when
there exists δ such that

(A.8) δ ≥ c0ε
c1

Kf (x)c2 dim(x)c3
,

for some c1 > 1. We say that the computation is strictly multiple precision when
it is multiple precision but not single precision.

Example A.12. The inductive, naive algorithm for computing the round–off
computable function f(x1, . . . , xn) = x1 · · ·xn defined in R

∞ is single precision,
from (A.3). The algorithm given in Example A.8 for computing the round–off
computable function f(x) = x1 + · · ·+ xn defined in {x ∈ R

∞ :
∑

xi �= 0} is single
precision from (A.5) and (A.6).

A.6. Size of an input. In many practical problems, we want to specify an
output precision ε. From our definition of round–off computable function, given
x ∈ Ω and 0 < ε < 1 some δ(x, ε) will exist guaranteeing the desired precision,
although it may be very hard to compute this δ in some cases. Moreover, from
(A.8), the number Kf (x) will in general play a role in the value of δ(x, ε) needed
for any machine solving the problem. This dependence suggests that maybe the
input should be considered as (x, ε) and not just as x. These thoughts justify our
definition of the size of an input, which includes a term related to ε and another
related to Kf (x):

(A.9) dim(x) + | log ε|+ log(Kf (x) + 1).

A.7. Cost of a computation. The cost of a computation on a round-off
machine (M, δ) which outputs ỹ on input x is

T (x, δ) ·
(
max

i
dim(y(i)) + | log δ|

)
,

where T (x, δ) is the time for the computation to halt and

x = y(0), . . . , yT (x,δ) = ỹ

are the different vectors computed by (M, δ) on input x.
We say that a function f : Ω → R

∞ is polynomial cost computable if there
exists a BSS machine M such that for every x ∈ Ω and 0 < ε < 1 there exists
δ(x, ε) such that any round–off machine (M, δ(x, ε)) computes ỹ which equals f(x)
to relative error ε, with cost polynomially bounded by the input size (A.9).

The most important cases of polynomial cost computability will be in the cases
where we restrict the space of functions to single (multiple) precision functions,
for example in the case of single precision to the definition of polynomial cost we
add the restriction that δ(x, ε) must satisfy (A.7). These two possibilities (single
or multiple precision) will give us two theories, both of which deserve to be worked
out.
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POLYNOMIAL SYSTEM SOLVING 101

Now that we have the notion of polynomial cost the classes P and NP may be
defined and the problem: Does P = NP? stated.
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Multiplicity hunting and approximating multiple roots of
polynomial systems

M. Giusti and J.-C. Yakoubsohn

Abstract. The computation of the multiplicity and the approximation of
isolated multiple roots of polynomial systems is a difficult problem. In recent
years, there has been an increase of activity in this area. Our goal is to trans-
late the theoretical background developed in the last century on the theory
of singularities in terms of computation and complexity. This paper presents
several different views that are relevant to address the following issues: pre-
dict the multiplicity of a root and/or determine the number of roots in a ball,
approximate fast a multiple root and give complexity results for such prob-
lems. Finally, we propose a new method to determine a regular system, called
equivalent but deflated, i.e., admitting the same root as the initial singular
one.

1. Introduction

Let x ∈ Cn and f(x) = (f1(x), . . . , fm(x)) ∈ C[x]m. We denote by I the ideal
generated by f . A multiple isolated root w of f(x) is by definition the only root w
of f(x) in a certain ball at which its Jacobian matrix Df(w) is not full rank. We
use equally in the text singular root and multiple root. It is well known that the
quadratic convergence of the Newton’s method is lost in the neighbourhood of a
multiple root. From starting points close to such roots, Newton’s method is found to
converge linearly or to diverge. For example the behaviour of the Newton sequence
associated to the system x − y2 = 0, 2cy3 − 2xy = 0 studied by Griewank and
Osborne in [23] close to the root (0, 0) of multiplicity 3 depends on the parameter
c. For c = 5/32 there is linear convergence and for c = 29/32 we can observe
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106 M. GIUSTI AND J.-C. YAKOUBSOHN

divergence (see Fig. 1 and Fig. 2).

Fig. 1. Linear convergence of Newton
sequence from (0.1,−0.2) with c = 5/32.

Fig. 2. Divergence of Newton
sequence from (0.1,−0.2) with c = 29/32.

Our purpose is to recover this quadratic convergence. In the example above, it
is easy to determine a regular system admitting the same root as the initial one
(we say an equivalent system). For that we remark the gradient of 2cy3 − 2xy is
zero at (0, 0). Hence we can replace the polynomial 2cy3 − 2xy by the two partial
derivatives : y and 3cy2 − x. It turns out that the system (x − y2, y, 3cy2 − x)
is now regular at (0, 0). We will develop this idea in section 6 to propose a new
method to compute an equivalent system. More formally, from the initial system
we compute a sequence of systems and stop when appears a regular system. A step
in this iterative method consists of two operations called respectively deflating and
kerneling [42]. The deflating operation replaces the polynomials by their gradient
when the latter vanishes at the root. After the deflating operation we have ensured
that all the rows of the Jacobian matrix evaluated at the root are non-zero. If
this Jacobian matrix is not full rank, the kerneling operation consists to add the
numerators of coefficients of a formal Schur complement of this Jacobian matrix.
The multiplicity of the root obtained after a step decreases in the number of distinct
polynomials added by the deflating and kerneling operations.

The goal of hunting the multiplicity is ambitious. This is a long standing
challenge in many areas as optimization, dynamical systems, computer algebra and
numerical algorithms dealing with polynomial or analytic systems. The univariate
case is well understood : the Taylor series is a useful tool to describe the multiplicity
of a root. For instance two iterations of Newton’s method close to a multiple root
are enough to predict the multiplicity. In fact the Newton sequence converges to the

multiple root following a quasi straight line. More precisely, if Nf (x) = x − f(x)

f ′(x)
is the Newton operator associated to a univariate function f , the iterate xk+1 =
Nf (xk), (k ≥ 0), defining the Newton sequence starting from an initial point x0, it
is easy to see that

xk+1 − w =

(

1− 1

m

)k

(x0 − w) +O((x0 − w)2), k ≥ 0.
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MULTIPLICITY HUNTING 107

Schröder points out in [51] that the quadratic convergence is recovered using the
generalized Newton operator

Sf,m(x) = x−m
f(x)

f ′(x)
.

This has been hugely studied in the literature see Ostrowski [45], Rall [47], House-
holder [26], Traub [59]. α-theory in the spirit of Smale [55] for multiple roots
in the univariate case has been done by Giusti-Lecerf-Salvy-Yakoubsohn in [18]
and Yakoubsohn in [62], [63] : the links between Rouché’s theorem and Schröder-
Newton’s method for multiple roots are precisely studied. To sum up, the order
of Taylor series at the neighbourhood of the root defines the multiplicity in the
univariate case. But unfortunately, Taylor series are not sufficient to determine
the multiplicity in the multivariate case. In order to recover the quadratic con-
vergence, the behaviour of Newton’s method has been extensively investigated by
Reddien [48], [49], Decker-Keller-Kelley in [12], [13], [11], Griewank in [20], [21],
Griewank-Osborne in [22], [23], Rabier-Reddien [46]. These papers give character-
izations of certain singular points and assumptions to get convergence. Sometimes
the authors propose modifications to accelerate the convergence. In areas other
than numerical analysis, the question of the multiplicity theory has also been in-
tensively studied. There are many different way to introduce the concept of multi-
ple root but, this is a more complicated matter than it is in one dimension : this
requires background from algebra and analysis. The elimination theory provides
algebraic objects like standard bases and the introduction of local rings reduces
the multiplicity to the dimension of a quotient space. From an algebraic point of
view, Fulton [16] chapter 7 gives a more general framework and explain different
approaches. Milnor in Appendix B of [37] defines the multiplicity as the degree
of a certain map. Using a similar approach Arnold, Varchenko, Gusein-Zade [5]
rely the multiplicity to the index of a holomorphic germ. Another presentation is
treated by Aizenberg and Yuzhakov in [1] where the multiplicity is defined via a
perturbation of an analytic map. This last definition is directly linked to homotopy
continuation methods which can be a reliable and an efficient way to numerically
approximate isolated roots. After these theoretical studies on the multiplicity, we
don’t forget the heuristic book of Stetter, Numerical Polynomial Algebra, [57] and
especially the chapter nine including the work of Thallinger.

The paper is organized as follows, first a survey part: in section 2 we present
the algebraic geometric point of view on the multiplicity. Next, via the notion
of duality, we give relationship to linear algebra where the multiplicity appears
as the dimension of the kernel of a Macaulay matrix. In section 3, we explain
how the multiplicity comes numerically from Rouché’s theorem and recall some
results. We also state an open problem concerning an efficient Rouché’s theo-
rem. In section 4, we justify why the homotopy methods work in the regular
case and discuss the complexity of the linear homotopy in the singular case. The
section 5 is devoted to describe the theoretical background of some deflation meth-
ods which are implemented in ApaTools of Zhonggang Zeng (recently upgraded to
NAClab) http://www.neiu.edu/˜zzeng/NAClab.html [64] and, PHCpack of Jan
Verschelde http://www.math.uic.edu/˜jan/download.html [60].

Section 6 is original. We propose a new way to determine an equivalent regular
system from an initial singular system. We end by examples to show how this new
method works.
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108 M. GIUSTI AND J.-C. YAKOUBSOHN

2. Multiplicity. Algebraic geometric point of view

This theoretical material belongs to folklore. An exposition can be found e.g.
in Cox, Little, O’Shea in [8], among others.

2.1. Number of roots and dimension. Let x = (x1, . . . , xn) ∈ Cn and I be
the ideal generated by the polynomials f1(x), . . . fm(x) of C[x]. The first question is
the number of isolated roots of a polynomial system. This is given by the following
Bézout’s Theorem which is the equivalent of the fundamental theorem of algebra
for univariate polynomials:

Theorem 1. The number of isolated roots of a polynomial system is less than
the product of degrees of each polynomial.

We refer to Heintz [25] for a proof using the dimension theory. Evidently the
bound of theorem 1 is reached. If V (I) means the variety associated to I then the
following theorem gives a necessary and sufficient condition for V (I) to be a set
of isolated points. In this case the cardinal of V (I) is the dimension of a quotient
space. More precisely :

Theorem 2. Under the previous notations we have :
1– The dimension of C[x]/I is finite if and only if the dimension of V (I) is

zero.
2– In the finite dimension case we have :

dimC[x]/I ≥ #V (I)

where #V (I) is the number of distinct points of V (I). This equality holds
if and only if the ideal I is radical.

In fact we will see below that when the ideal I is not radical we can associate
a multiplicity at each point of V (I) so that the sum of multiplicities equals the
dimension of C[x]/I. A way to determine dimC[x]/I is to compute a Gröbner
basis of the ideal I.

Theorem 3. Let G a Gröbner basis of an ideal I. Let LT (G) the ideal generated
by the leading terms of G. Define SM(G) = {monomials /∈ LT (G) }. Then

dimC[x]/I = #SM(G).

Example 1. Let f1(x, y) = x2 + x3, f2(x, y) = x3 + y2. Then V (I) =
{(0, 0), (−1, 1), (−1,−1)}. Let us choose the lexicographic ordering induced by x >
y; the leading term is the Sup. A Gröbner basis of I is {y4 − y2, xy2 + y2, x2 − y2}
and SM(G) = {1, x, y, y2, y3, xy}. We deduce dimC[x]/I = 6. We will see that the
root (0, 0) has multiplicity 4. ◦

Some computer algebra systems compute Gröbner bases, among them Maple,
Magma, Singular. For instance, most classical algorithms are implemented in
Maple.

2.2. Multiplicity and dimension. A way to define the multiplicity at a
point of w = (w1, . . . , wn) ∈ V (I) is to consider the local ring C{x−w} of conver-
gent series in n variables with the maximal ideal generated by x1−w1, . . .xn−wn.
We denote by IC{x−w} the ideal generated by I in C{x−w}. Finally we consider
the local quotient space Aw = C{x − w}/IC{x − w}. The link between the local
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quotient spaces associated to points of V (I) and the quotient space C[x]/I is given
by the :

Theorem 4. Let V (I) = {w(1), . . . , w(N)}. Then
1– C[x]/I ∼ Aw(1) × . . .×Aw(N) .

2– dimC[x]/I =

N∑

i=1

dimAw(i) .

We then can define the algebraic multiplicity.

Definition 1. Let w ∈ V (I). The dimension of local quotient space Aw is the
algebraic multiplicity of w.

To determine the dimension of Aw, a similar way to the affine global setting
is to compute a standard basis of Aw. We then have an equivalent result to the
theorem 3.

Theorem 5. Let S a standard basis of the ideal IC{x − w}. Let LT (S) the
ideal generated by the leading terms of S. Define SM(S) = {monomials /∈ LT (S) }.
Then

dimAw = #SM(S).

Example 2. Let f1(x, y) and f2(x, y) be as the example 1. We are interested
first in the root (0, 0). Let us choose an ordering refining the valuation; the lead-
ing term will be the Inf. A standard basis of IC{(x, y)} is S = {x2, y2}. Hence
SM(S) = {1, x, y, xy} and dimA(0,0) = 4.

In the same way a standard basis of IC{(x, y)−(−1, 1)} (respectively IC{(x, y)
−(−1,−1)}) is S = {x, y}. Hence SM(S) = {1} and dimA(−1,1) = dimA(−1,−1) =
1. The identity dimC[x]/I = dimA(0,0)+dimA(−1,1)+dimA(−1,−1) is satisfied. ◦

The tangent cone algorithm [38] allows to compute standard bases. An im-
proved version of this algorithm is implemented in Singular by Greuel and Pfis-
ter [19].

2.3. Multiplicity and Duality. The link between multiplicity and duality
is described first by Macaulay in [34] and perhaps also Gröbner [24]. A modern
exposition is done by Emsalem [15]. More recent developments are given by Mari-
nara, Möller, Mora in [36], Alonso, Marinari, Mora in [3], [4]. Also improvements
concerning complexity are proposed by Mantzaflaris, Mourrain [35], [41]. For a
multiple index α = (α1, . . . , αn) ∈ Nn, we denote by ∂α the differential operator

g → ∂αg(x)

∂xα
. The operator ∂α

w is the evaluation operator of ∂α at a point w of Cn.

Also, if L =
∑

|α|≤k

Lα∂
α then Lw =

∑

|α|≤k

Lα∂
α
w.

It is classical that there is an isomorphism between the dual space C[x]∗ of C[x]
and the set of formal series in ∂w. Macaulay in [34] introduce the inverse system
of the ideal I

I⊥ = {L ∈ C[x]∗ : ∀g ∈ I, L(g) = 0}
The result is that we can identify I⊥ and the dual of C[x]/I :

Theorem 6. There is a canonical C-isomorphism between I⊥ and the dual of
C[x]/I.
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The link between the duality and the multiplicity is explained by the relation
between the quotient rings Aw and the subspaces

Dk
w(I) = {L =

∑

|α|≤k

Lα∂
α : ∀g ∈ I, Lw(g) = 0}.

We will write Dk
w for Dk

w(I). We have :

Theorem 7. A root w of f is isolated if and only if there exists an integer δ
satisfying Dδ−1

w = Dδ
w. In this case Dδ

w is the dual space of Aw and the dimension
of Dδ

w is equal to the multiplicity of w. In other words

dimAw = dimDδ
w.

We call δ the thickness of the multiple root w.

Remark 1.

We adopt the term thickness which is the translation of the french word épais-
seur introduced by Ensalem in [15] rather than the term depth more recently used
by Mourrain, Matzaflaris in [35] or Dayton, Li, Zeng [10], [9]. ◦

To compute the dimension of the vector space Dk
w, let us introduce the Macaulay

matrices
Sk = ( ∂α[w]((x− w)αfi(x)) )|α|≤k−1

1≤i≤m

Theorem 8. The vector space Dk
w is isomorphic to the kernel of Sk.

Consequently the multiplicity μ of w satisfies μ= dimKer(Sδ−1)= dimKer(Sδ).

Example 3. Let f1 = x2 + y2 − 2, f2 = xy − 1. w = (1, 1). Let us construct
the Macaulay matrices in w = (1, 1) :

∂00 ∂10 ∂01 ∂20 ∂11 ∂02

S0 f1 0 | 2 2 | 2 0 2
S1 f2 0 | 1 1 | 0 1 0

−−− − − −
(x− 1)f1 0 0 0 4 2 0

S2 (x− 1)f2 0 0 0 2 1 0
(y − 1)f1 0 0 0 0 2 4
(y − 1)f2 0 0 0 0 1 2

We have successively rank(S0) = 0, rank(S1) = 1, rank(S2) = 4. Hence
corank(S1) = corank(S2) = 2. It follows the multiplicity of (1, 1) is 2. ◦

We now explain how the knowledge of the structure of the dual space permits
to find a regular system at w. Let μ the dimension of Dk

w and Λ = {Λ1, . . . ,Λμ} a
basis of Dk

w. We introduce the polynomial system of mμ equations and n variables :

Λ(f) = (Λ1(f), . . . ,Λμ(f))

with Λk(f) = (Λk(f1), . . . ,Λk(fm)). Mantzaflaris and Mourrain state the following :

Theorem 9 ([35]). The polynomial system Λ(f) is regular at w.

Example 4. A basis of the kernel of the Macaulay matrix S2 of the example 3
is
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MULTIPLICITY HUNTING 111

{(1, 0, 0, 0, 0, 0), (0, 1,−1, 0, 0, 0)}. Hence the set {∂(0,0), ∂(1,0)− ∂(0,1)} is a basis of
D2

(1,1). Consequently

Λ(f1, f2) = (x2 + y2 − 2, xy − 1, 2x− 2y, y − x).

It is easy to see the Jacobian of Λ(f1, f2) has rank 2.

3. Multiplicity. Numerical point of view

3.1. Multiplicity and perturbation. From a numerical point of view an
exact multiple root makes no sense. We must think of a cluster of roots which
comes from perturbations of the data. In this way we can consider the initial
system as close to another system which admits an exact multiple root.

Definition 2. A root w of f = (f1, . . . , fm) is regular if the Jacobian matrix
Df(w) has full rank (in the opposite case w is a singular root).

The link to the algebraic multiplicity is given by the following.

Proposition 1. The algebraic multiplicity of a regular root is equal to 1.

Proof. We denote by Df(w)∗ the adjoint of Df(w). Let I the ideal generated
by f . Since Df(w) has full rank Df(w)∗Df(w) is invertible. Hence the ideal
generated by g(x) = (Df(w)∗Df(w))−1f(x) is equal to I. But

(Df(w)∗Df(w))−1f(x) = x− w +
∑

k≥2

1

k!
(Df(w)∗Df(w))−1Dkf(w)(x− w)k.

Consequently LT (g) is generated by x− w. Its follows that dimAw = 1. �

A very useful result is the Rouché’s theorem [50] which links a perturbation
of analytic functions to the number of roots in a ball, see also Lojasiewicz for a
version in several variables [33].

Theorem 10. Let f and g two analytic functions defined in a real ball B(x, r) ⊂
Cn. If for all z ∈ ∂B(x, r) we have

||f(z)− g(z)|| < ||f(z)||
then f and g have the same number of roots in B(x, r) where each root is counted
as many times as its multiplicity.

Proposition 2. w is a singular isolated root of f if and only if the multiplicity
of w is strictly greater than 1.

Proof. Since w is an isolated root there exists a ball B(w, r) where f admits
only this root. There exists z0 ∈ ∂B(w, r) such that for all z ∈ ∂B(w, r) one has
||f(z)|| ≥ ||f(z0)||. Then the function g(z) = f(z) + y with ||y|| < ||f(z0)||/2
satisfies the inequality of Rouché’s theorem on ∂B(w, r). Consequently the number
of roots of g in B(w, r) is the multiplicity, say μ, of w. Moreover for almost every
y, Sard’s theorem insures that Dg(z) has full rank at each of the roots. Hence the
roots of g, say w(1), . . . , w(μ), are regular in the ball B(w, r). Let us consider the
homotopy

h(z, t) = (1− t)g(z) + tf(z) = f(z)− (1− t)y.

We have h(w(k), 0) = 0 for every k and h(w, 1) = 0. For almost every y, from
implicit function theorem there exists μ regular curves x(k)(t): [0, 1[→ B(w, r) such
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112 M. GIUSTI AND J.-C. YAKOUBSOHN

that f(x(k)(t)) = (1 − t)y and x(k)(t)′ = −Df(x(k)(t))−1y. Hence if μ > 1 the
quantities x(k)(1)′ make no sense and the root w is singular. �

The link between Rouché’s theorem and the local ring theory can be summa-
rized by the identity

dimAf
w =

∑

w̄∈B(w,r)∩g−1(0)

dimAg
w̄

where Af
w (respectively Ag

w̄) is the local quotient ring associated to f (respectively
g). Here we find again the classical idea from a numerical point of view that we
deal with clusters of roots rather than exact multiple roots.

In the case where the system has no root or only one regular root in a ball, it
is possible to give an effective version of Rouché’s theorem : this is obtained from
the Taylor series of f . It is also valid when the system f is analytic.

Theorem 11 ([17]). Let us consider a ball B(x, r).
1– If

||f(x)|| >
∑

k≥1

1

k!
||Dkf(x)||rk

there is no root in B(x, r).
2– Let r be a positive real number smaller than the radius of convergence of

∑

k≥0

1

k!
||Dkf(x)||rk. If

||Df(x)−1f(x)|| < r −
∑

k≥2

1

k!
||Df(x)−1Dkf(x)||rk

there is only one regular root of f in B(x, r).

The case of a simple double root has been studied by Dedieu-Shub [14].

Theorem 12. Let c = 0.19830 . . . . For v, x ∈ Cn, ||v|| = 1, we define the
linear operator :

A(x, f, v) = Df(x) +
1

2
D2f(x)(v,Πv)

where Πv is the projection on the space spanned by v. Let L be the linear operator
defined by L(v) = Df(x)v and L(w) = 0 if w is orthogonal at v. Let B(x, f, v) =
A(x, f, v)− L. We introduce the quantity

γ2(f, x, v) = max

(

1, sup
k≥2

∣
∣
∣
∣

∣
∣
∣
∣
1

k!
B(f, x, v)−1Dkf(x)

∣
∣
∣
∣

∣
∣
∣
∣

1
k−1

)

.

If we have

||f(x)||+ ||Df(x)v|| c

2γ2(f, x, v)2
<

c3

4||B(f, x, v)−1||γ2(f, x, v)4

then f has two zeros (counting multiplicities) in the ball of radius
c

2γ2(f, x, v)2

around x.

In fact the previous case describes double roots of corank one : they are clus-
ters of two roots of embedding dimension one. A quantitative version of Rouché’s
theorem in the embedding dimension 1 case is given by Giusti, Lecerf, Salvy, Yak-
oubsohn in [17] but, the statement is technically too difficult to appear here.
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MULTIPLICITY HUNTING 113

Open problem 1.

Find a qualitative version of Rouché’s theorem for clusters of roots of analytic
systems. ◦

Let us remark that the theorem 11 applied to the dual system Λ(f) of theorem 9
can prove the existence of a (regular) root of Λ(f).

4. Multiplicity and homotopy methods

Homotopy methods consist to deform smoothly a system with known roots to
the initial system with unknown roots. These methods are currently used to solve
systems of equations : the textbook of Allgower and Georg [2] or Morgan [39] are
classical references. The homotopy used in this section is the linear homotopy h
:[0, 1]×Cn → Cn defined by

h(x, t) = (1− t)ga,b(x) + tf(x)

where ga,b(x) = (a1x
d1
1 − b1, . . . , anx

dn
n − bn). There are three kinds of curves

x(t) solutions of h(t, x(t)) = 0. First, the regular curves defined on [0, 1] which
correspond to a regular root of f(x). Next, the curves which are only regular on
[0, 1[ due to the existence of a multiple root of f(x). Finally, the curves which go
to infinity as t → 1 and which correspond to infinite roots of f(x). Infinite roots
are explicitly described using complex projective space CPn. Wright in [61] give a
proof of Bézout’s theorem using the linear homotopy. More precisely

Theorem 13 ([61]). Let F (x0, x) =
(
xd1
0 f1(x/x0), . . . , x

dn
0 fn(x/x0)

)
, Ga,b(x0, x) =

(a1x
d1
1 − b1x

d1
0 , . . . , anx

dn
n − bnx

dn
0 ) and

Ha,b(t, x0, x) = (1− t)Ga,b(x0, x) + tF (x0, x).

Let Za,b = {(t, x0, x) ∈ [0, 1[×CPn : Ha,b(t, x0, x) = 0}. For almost (a, b) ∈ C2n

we have :

1– 0 ∈ Cn is a regular value of Ha,b(t, 1, x) = 0, i.e, DxH(t, 1, x) has full
rank of for all (t, x) ∈ [0, 1[×Cn such that Ha,b(t, 1, x) = 0.

2– Za,b consists of d1 . . . dn disjoint half-open arcs in CPn× [0, 1), where the
endpoint of each arc is a known root of Ga,b(x0, x) in CPn × {0}, and
where the limit of the other end of the arc is a root of F (x0, x).

In fact linear homotopy methods are useful to prove Bézout’s theorem : see
Blum, Cucker, Shub, Smale [7] page 199 and references inside.

A straightforward consequence of this result is the multiplicity can be computed
thanks to homotopy methods. More precisely

Corollary 1. Let us consider the linear homotopy of the theorem 13. Each
isolated root (respectively root at infinity) of multiplicity μ generates μ homotopy
paths x(t) converging towards it.

To find one regular root, the complexity and the analysis of this homotopy
method is studied by Shub and Smale in [53] and [54]. A better complexity bound
is given by Shub [52]. We give a simplified version of this complexity result in the
linear homotopy case.
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114 M. GIUSTI AND J.-C. YAKOUBSOHN

Theorem 14 ([52], [6]). The number of numerical homotopy steps performed
by the projective Newton’s method to yield an approximate zero of the initial system
is bounded by

71d3/2L

where d is the maximum of degrees of f ′
is and L is the condition length of the linear

homotopy (see the references above for this definition).

The paper of T.Y Li [32] gives a good review on homotopy continuation meth-
ods and their improvement for deficient polynomial systems, i.e., for which the
isolated solutions are fewer than the Bézout’s number.

Open problem 2.

Estimate the complexity to approximate a multiple root using linear homo-
topy. ◦

In the chapter 10 of [56], Sommese and Wampler give some numerical heuristics
to deal with singular end games based on power series, Cauchy integral and trace
theorem. In the same vein, Huber and Verschelde in [27] explore links between
polyhedral end game and power series to give some refinements. Another interesting
way is proposed by Kobayashi, Suzuki and Sakai in [28] using Zeuthen’s rule but
unfortunately without study of complexity.

5. Recovering the quadratic convergence

The idea is to compute from the initial system another one which is regular
at the singularity. The theorem 9 gives an augmented system computed from
the kernel of the Macaulay matrices Sk. But the size of Sk is very huge i.e.,
m
∑k

j=0

(
n+j−1

j

)
×
(
n+k+1

n

)
. In the sequel, we describe two kinds of what is called

a deflation method.

5.1. Lecerf deflation method. [29] The idea is to differentiate well chosen
equations and to select new equations at each step of the method in order to obtain
a regular system at the root w.

From now we adopt the Matlab notation : xi:j is the vector (xi, . . . xj).
Initial Step : the system f = (f1, . . . , fm) is considered as a subset of C{x−w}.

We set Φ1 = f and R1 = 1.
Step k ≥ 1. We compute a new system Φk+1 and a new integer Rk+1 from Φk

and Rk. Let mk be the valuation of Φk and

Φ̃k =
∂mk−1

∂xmk−1
Rk

Φk :=

{
∂j

∂xj
Rk

Φk : 1 ≤ j < mk

}

Let rk the rank of Jacobian of Φ̃k with respect to the variables xRk:n evaluated at
wRk:n. Then we set Rk+1 = rk + Rk. Next we extract a subset Ωk from Φ̃k such
that the gradient of Ωk has rank rk at wRk:n.

Finally, thanks to the implicit function theorem, there exist rk power series
yRk:Rk+1−1 in C{xRk+1:n − wRk+1:n} expressing xRk:Rk+1−1 in terms of xRk+1:n

such that Ωk(yRk:Rk+1−1, xRk+1:n) = 0. Then

Φk+1(xRk+1:n) = Φk(yRk:Rk+1−1, xRk+1:n).

Stopping criterion. The above construction stops when Rk+1 = n+ 1.
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MULTIPLICITY HUNTING 115

Output of the method. Let us suppose that there are ν steps. The output is the
system Ω = (Ω1(xR1:n, . . . ,Ων(xRν :n)). The properties of this deflation sequence
are given by

Theorem 15. Without loss of generality we can assume that at each step of
the deflation process the variable xRk

is in Weierstrass position with respect to the
ideal generated by Φk ( i.e. there exists an element of this ideal of valuation mk

having xmk

Rk
in its support). The construction above works up to a permutation of

the variables. Moreover :
1– 1 ≤ rk ≤ n−Rk + 1.
2– 1 ≤ mkdim

(
C{xRk:n − wRk:n}/Φ̃k

)
≤ dim (C{xRk:n − wRk:n}/Φk).

3– The system Ω is regular at the root w.
4– m1 . . .mμ ≤ dimAw.

Example 5. Let f := (f1, f2, f3) = (x2+x+y+z, y2+y+x+z, z2+z+x+y).
The root w = (0, 0, 0) has multiplicity 4.

We denote by Ok a generic power series
∑

|α|≥k

aα(x− w)α.

Let Φ1 = {f1, f2, f3} and R1 = 1. The rank of the Jacobian matrix of f is
r1 = 1 at x. We find m1 = 1 and Φ̃1 = Φ1 and R2 = 2. We choose Ω1 = {f1}. The
power series solution of f1(y1, y, z) = 0 is

y1(y, z) = −y − z − y2 − 2 zy − z2 +O3.

Substituting x by y1 in Φ1 we find

Φ2 = {O3,−2zy − z2 +O3,−y2 − 2zy +O3}.
For the next step m2 = 2 and

Φ̃2 :=
∂Φ2

∂y
= {Φ2,−2z +O2,−2y − 2z +O2}.

The rank of the Jacobian matrix of Φ̃2 is r2 = 2. We choose Ω2 = {−2z+O2,−2y−
2z + O2} Since R3 = R2 + r2 = 4. The deflation construction stops. The regular
system at w is

Ω = {f1,−2z +O2,−2y − 2z +O2}.
We refer to [29] for the study of the complexity of this construction. Another type
of deflation method mixing symbolic and numerical computations have been consid-
ered by Ojika, Watanabe, and Mitsui in [44], [43] : the new equations are generated
by symbolic Gaussian eliminations but it remains to perform the numerical analysis
and to study the complexity of this modified deflation method.

5.2. Augmented systems and deflation methods. From the knowledge
of the structure of the local quotient algebra, Mantzaflaris and Mourrain determine
a regular system given in the theorem 9. We sketch now another construction of
deflation sequence based on a augmentation of the number of equations and of the
number of variables. First, one defines a deflation operator which associates to
the initial system f , a new system Defl(f, x, y) where (x, y) ∈ Cn+j . Next, one
iterates this operator to obtain the deflation sequence :

x0 = x, y0 = y, F0 = f, xk+1 = (xk, yk), Fk+1 = Defl(fk, x
k, yk), k ≥ 0.

Licensed to University Paul Sabatier.  Prepared on Mon Dec 14 09:01:17 EST 2015for download from IP 130.120.37.54.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



116 M. GIUSTI AND J.-C. YAKOUBSOHN

The length of the deflation is the vector (n0, . . . , nk, . . .) where nk is the dimension
of the kernel of the Jacobian matrix DFk(x

k). The thickness of the deflation is the
number N such that nN+1 = 0.

In this way such a type of deflation operator had been proposed by Leykin,
Verschelde, Zhao in [30], and extended in [31]. From an original system f =
(f1, . . . , fm) with rankDf(w) = r they define the following :

LV Z(f, x, y) := LV Z(f,B, h, x, y) =

⎧
⎨

⎩

f(x)
Df(x)By
h∗y − 1

where B is a random n× (r+ 1) matrix and h a random r + 1 vector. The matrix
Df(x)B has generically a rank equal to r and the dimension of KernelDf(w)B is
1. Hence there exists a unique λ ∈ Cr+1 such that Df(w)Bλ = 0 and h∗λ− 1 = 0.

Theorem 16 ([30], [31]). The multiplicity of the root (w, λ) of the system
LV Z(f, x, y) is strictly less than the multiplicity of the root w of the system f .

Unfortunately the deflated system LV Z(f, x, y) is not regular at its root (w, λ).
In this case the method consists to deflate more until to find a regular system. We
have

Theorem 17 ([30], [31]). The number of deflation steps to obtain a regular
system is bounded by the multiplicity of w. If N is the number of deflations, the
regular system has n+N +

∑N
k=1 rk variables and 2N (n+ 1)− 1 equations.

Example 6 ([11]). Let f(x, y) = (x+ y3, x2y− y4) with (0, 0) has multiplicity
3. The number of deflations steps is 3 and the coranks of the Jacobian matrices
of the deflated systems are equal to 1. The regular system has 16 variables and 23
equations. ◦

Example 7 ([10]). Let f = (x4 − yzt, y4 − zxt, z4 − xyt, t4 − xyz). The root
has multiplicity 131. Two steps of LVZ deflation are needed with length (4, 4). The
regular system has 7 variables and 19 equations. ◦

Another way to construct deflated systems by adding variables and equations
has been proposed par Dayton and Zeng in [10] for the polynomial case and Dayton,
Li, Zeng in [9] for the analytic case.

The deflation operator proposed by these authors is

DLZ(f, x, y) := DLZ(f,R, e1, x, y) =

⎧
⎨

⎩

f(x)
Df(x)y
Ry − e1

where R is p × n random matrix in order that
[

Df(w)
R

]

has full rank and e1 =

(1, 0, . . . , 1)T with size p is the dimension of the kernel of Df(x).

Theorem 18 ([10], [9]). The number of steps of the DLZ deflation is bounded
by the thickness δ of the root w defined in theorem 7. The last deflated system has

2δ variables and 2δn+

δ−1∑

k=0

2kpk where pk is the corank of DLZ system k.
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MULTIPLICITY HUNTING 117

Example 8 ([10]). Let f = (x4 − yzt, y4 − zxt, z4 − xyt, t4 − xyz). The root
has multiplicity 131. Two steps of DLZ deflation are needed with length (4, 4). The
regular system has 16 variables and 28 equations. ◦

The example 6 lies to the class of systems of “breadth one” as defined by Dayton
and Zeng in [10], i.e., the length is (1, . . . , 1). Note that this notation corresponds
to the embedding dimension 1 as introduced by Giusti, Lecerf, Salvy, Yakoubsohn
in [17]. For this class the DLZ deflation can be modified in order to obtain μn
variables and μm equations.

6. Deflating and kerneling

We propose a new construction to deflate a system without adding new vari-
ables. It is based on two operations we called deflating and kerneling in the intro-
duction.

6.1. Deflating. This operation consists to replace an equation g(x) = 0 by
the n equations ∂ig(x) = 0, i = 1 : n when we have simultaneously g(w) = 0 and
∂ig(w) = 0, i = 1 : n. We then can define the following recursive algorithm.

deflating(f, w̄, ε)

- Input : f = (f1, . . . , fm), w̄ a point close to a multiple root w of f , and ε
a precision.

- Let J := Df(x) and Jw̄ := Df(w̄).
- Let mJ the number of lines of J .
- fdeflated = ∅
- for k = 1 : mJ

- if max1≤j≤n |Jw̄(k, j)| ≤ ε then
- deflating(J(k, :), w̄, ε)
- else
- fdeflated = fdeflated ∪ {fk/LT (fk)}
- end if
- end for
- Output fdeflated

Remark 2.

The assignment fdeflated = fdeflated ∪ {fk/LT (fk)} must be understood in the
following way : the polynomial fk/LT (fk) is added if it is not already an element
of the set fdeflated. ◦

6.2. Kerneling. Let us consider a system f = (f1, . . . , fm) such that each
line of Df(w) is non zero and Df(w) has a rank r < n. Without loss of generality
we can write

Df(w) =

(
A(w) B(w)
C(w) D(w)

)

∈ Cm×n

where A(w) is an invertible matrix of size r × r. Then the Schur complement
D(w)− C(w)A−1B(w) is zero. Hence w is a root of the system

D(x)− C(x)A−1(x)B(x) = 0.

The kerneling operation consists of adding to the initial system at most the
(m− r)× (n− r) polynomials given by the non zero numerators of the coefficients
of the Schur complement. We then can define the following algorithm.
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118 M. GIUSTI AND J.-C. YAKOUBSOHN

kerneling(f, w̄, ε)
- Input : f = (f1, . . . , fm), w̄ a point close to a multiple root w of f , and ε

a precision. Each line of Df(w̄) is non zero.
- Determine r the numerical rank of Df(w̄).
- Determine an invertible submatrix A(w̄) of Df(w̄) of size r × r.
- Compute S(x) = det(A(x))D(x)− det(A(x))C(x)A−1B(x).
- fdeflated = f ∪ {elements of S(x)}
- Output fdeflated

6.3. Equivalent system. Combining deflating and kerneling operations we
compute a equivalent system of n variables and n equations.

equivalent(f, w̄, ε)
- Inputs : f = (f1, . . . , fm), w̄ a point close to a multiple root w of f and ε

a precision.
- fdeflated = f .
- while Dfdelated(w̄) is not numerically full rank
- fdeflated = deflating(fdeflated, w̄, ε)
- fdeflated = kerneling(fdeflated, w̄, ε)
- end while
- fdeflated = {n equations of full rank from fdeflated}
- Output fdeflated

6.4. Example. Let us consider

f(x, y) = (x3/3 + xy2 + x2 + 2xy + y2, x2y + x2 + 2xy + y2)

The point (0, 0) is a root of f(x, y) = 0 with multiplicity 6. The deflating algorithm
applied with w = (0, 0) gives :

∂1 ∂2 ∂1 ∂2
x2 + y2 + 2x+ 2y 2yx+ 2x+ 2y 2xy + 2x+ 2y x2 + 2x+ 2y

All these previous quantities vanish at w. An additional step of deflating operation
gives

∂11 ∂12 ∂21 ∂22 ∂11 ∂12 ∂11 ∂12
2x+ 2 2y + 2 2y + 2 2x+ 2 2y + 2 2x+ 2 2x+ 2 2

All these quantities are non zero at w. Hence the deflated system is :

fdeflated(x, y) = (x2 + y2 + 2x+ 2y, xy + x+ y, x2 + 2x+ 2y)

Now we can use the kerneling algorithm of this new system.

Dfdeflated(x, , y) =

⎛

⎝
2x+ 2 2y + 2
y + 1 x+ 1
2x+ 2 2

⎞

⎠ .

Then Dfdeflated(0, 0) has rank one. We can consider A(x) = 2x + 2. The Schur
complement of Dfdeflated(x, y) associated to 2x+ 2 is

(
x+ 1
2

)

− 2y + 2

2x+ 2

(
y + 1
2x+ 2

)

=
1

x+ 1

(
x2 + 2x− y2 − 2y

−2xy − 2y

)

.

Finally from the system

(x2 + y2 + 2x+ 2y, xy + x+ y, x2 + 2x+ 2y, x2 + 2x− y2 − 2y, y)
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MULTIPLICITY HUNTING 119

we can choose
fdeflated(x, y) = (x+ y + xy, y)

which is regular at w.

6.5. Why the multiplicity decreases? Let I be the ideal generated by
f1, . . . , fm and w a multiple isolated root of f1 = . . . = fm = 0. We deal with
C{x− w} the local ring of convergent power series at w and IC{x− w} the ideal
generated by I in C{x−w}. Then the multiplicity of w is the dimension of the local
quotient algebra C{x− w}/IC{x− w}. This dimension is finite if and only if the
root w is isolated. We denote by {g1, . . . , gp} a local standard basis of IC{x−w}.
Let 〈LT (IC{x−w})〉 the ideal generated by the leading monomials of IA. Then the
multiplicity is the number of monomial that are not contained in 〈LT (IC{x−w})〉.
This number is independent of the chosen order on the monomials. We have the
two classical results :

Lemma 1. Let h not in IA and h(w) = 0. Then the multiplicity of w as
root of f1 = . . . = fm = 0 is strictly greater than the multiplicity of w as root of
h = f1 = f2 = . . . = fm = 0.

Proof. Since the leading term of h is not in IC{x − w} the lemma follows
easily. �

The result we use to explain why the the multiplicity decreases under the action
of the algorithm deflated is stated by Arnold, Gusein-Zade and Varchenko in [5]
page 100 :

Lemma 2. Let g = (g1, . . . , gn) ∈ C[x]n. Then the Jacobian det(Dg(x)) is not
in the ideal 〈g1, . . . , gn〉.

The two lemmas below explain why the multiplicity decreases under the oper-
ations of deflating and kerneling.

Lemma 3. Let w a multiple root of a system f1 = . . . = fm = 0 such that
grad f1(w) = 0. Then the multiplicity of w as root of f1 = . . . = fm = 0 is strictly
greater than the multiplicity of w as root of ∂1f1 = . . . = ∂nf1 = f2 = . . . = fm = 0.

Proof. Let g = (f1, g2 . . . , gn), the g′is being selected from the f2, . . . , fm.
Since the jacobian of g is not is the ideal generated by g, see lemma 2, then each
line of the jacobian matrix of g has at least one element which is not in 〈g〉. In
particular at least one of ∂if1’s is not in 〈g〉. Following the lemma 1 we are done. �

Lemma 4. Let w a multiple root of f1 = . . . = fm = 0 such that grad fi(w) �= 0,
i = 1 : m. Let r be the rank of Df(w) and

Df(w) =

(
A(w) B(w)
C(w) D(w)

)

where A(w) is an invertible matrix of size r × r. Let S(x) = det(A(x))D(x) −
C(x)Δ(x)B(x) where Δ(x) = det(A(x))A(x)−1. Then the multiplicity of w as
root of f1 = . . . = fm = 0 is strictly greater than the multiplicity of w as root of
S11 = . . . = Sm−r,n−r = f1 = f2 . . . = fm = 0.
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120 M. GIUSTI AND J.-C. YAKOUBSOHN

Proof. It is sufficient to prove that one of Sij ’s is not in the ideal 〈 f1, . . . , fm〉.
Then, by lemma 1, the multiplicity of w as root of f1 = . . . = fm = 0 is strictly
greater than the multiplicity of w as root of Sij = f1 = f2 . . . = fm = 0.

Let F = (f1, . . . , fr, h1, . . . , hn−r) with hi ∈ {fr+1, . . . , fm}.
We have det(DF (x)) = det(A(x) det(SF (x)) where SF (x) is the Schur com-

plement of DF (x) associated to A(x). From lemma 2, det(DF (x)) is not in the
ideal 〈F 〉. So it is the same for det(A(x) and det(SF (x)) which divide det(DF (x)).
Hence there exists at least n − r coefficients of the matrix SF (x) which are not in
the ideal 〈F 〉. Since the coefficients of SF (x) are also coefficients of the matrix S(x)
the conclusion follows. �

How much the multiplicity drops at each step of the equivalent algorithm ?

Theorem 19. For k ≥ 1, let F0 = f and Fk−1 the deflated system obtained
at the step k − 1 of equivalent algorithm and mk−1 the number of polynomials of
Fk−1. Let pk be the number of polynomials we add by deflating operation at the
step k. We note by Gk the system Fk augmented by these pk polynomials. Let rk
be the rank of the jacobian matrix of Gk at w. Then the number N of steps of the
algorithm stops is equal to

min{k : rk = n or
N∑

k=1

sk + tk ≤ μ}

where max(0,min(1, pk)) ≤ sk ≤ pk and 1 ≤ tk ≤ pk(n− rk).

Proof. From the lemmas 3 and 4 the multiplicity decreases at least by one.
But we can be more precise. Let μk be the multiplicity of w as root of Fk. The
deflating algorithm gives pk polynomials. Then the multiplicity of the root w of
Gk drops by μk−1 − sk where max(0,min(1, pk) ≤ sk ≤ pk. Next, if the jacobian
matrix of Gk at w has rank rk = n the equivalent algorithm stops. Otherwise, the
multiplicity of w as root of Fk is μk−1 − sk − tk where 1 ≤ tk ≤ pk(n − rk). This
bound is justified because all the polynomials of the Schur complement computed
by the kerneling algorithm can be equal. �

7. Examples

We first treat three examples given in [65]. These examples show it is not
necessary to know the complete structure of the local quotient algebra to determine
a regular equivalent system from the initial one with a multiple root.

Example 9. [65]

fk(x1, . . . , xn) = x1 + . . .+ xn + x2
k, k = 1 : n.

The jacobian matrix Df(x) =

⎛

⎜
⎜
⎜
⎝

2x1 + 1 1 . . . 1
1 2x2 + 1 . . . 1
...
1 1 . . . 2xn + 1

⎞

⎟
⎟
⎟
⎠

has rank one

at (0, . . . , 0). The Schur complement associated to 2x1 + 1 gives the equations:

x1 = 0

(2x1 + 1)(2xk + 1)− 1 = 0, k ≥ 2.
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MULTIPLICITY HUNTING 121

Example 10 ([65]).

fk(x1, . . . , xn) = x3
k − xk+1xk+2, k = 1 : n− 2

fn−1(x1, . . . , xn) = x3
n−1 − xnx1

fn(x1, . . . , xn) = x3
n − x1x2

A multiple root is (0, . . . , 0). In the first deflation step we replace the fk’s by
their gradients. We obtain the equations :

x1 = . . . = xn = 0.

Example 11 ([65]).

fk(x1, . . . , xn) = xk + . . .+ xn−2, k = 1 : n− 2

fn−1(x1, . . . , xn) = x1 + . . .+ xn−2 + x5
n−1 + x2

n

fn(x1, . . . , xn) = x1 + . . .+ xn−2 + x2
n

A multiple zero is (0, . . . , 0). The Jacobian matrix Df(x) =

⎛

⎝
In−2 0 0
1 . . . 1 5x4

n−1 2xn

1 . . . 1 0 2xn

⎞

⎠

has rank n − 2 at the multiple root (0, . . . , 0). The Schur complement associated
to In−2 furnishes the equations

5x4
n−1 = 2xn = 0.

After one step of deflation we obtain the system

f1 = . . . = fn−2 = xn−1 = xn = 0.

Example 12 ([58, cmbs1]).

f(x, y, z) = (x3 − yz, y3 − xz, z3 − xy).

A multiple root is (0, 0, 0). A first of deflation gives the equations x = y = z =
0.

Example 13 ([58, cmbs2]).

f(x, y, z) =(x3 − 3x2y + 3xy2 − y3 − z2,

z3 − 3z2x+ 3zx2 − x3 − y2,

y3 − 3y2z + 3yz2 − z3 − x2).

A multiple root is (0, 0, 0). A first step of deflation gives the equations x = y =
z = x− y = x− z = y − z = 0.

Example 14 ([40]). caprasse

f(x, y, z, t) =(−x3z + 4xy2z + 4x2yt+ 2 y3t+ 4x2 − 10 y2 + 4xz − 10 yt+ 2,

− xz3 + 4 yz2t+ 4xzt2 + 2 yt3 + 4xz + 4 z2 − 10 yt− 10 t2 + 2

y2z + 2xyt− 2x− z,

2 yzt+ xt2 − x− 2 z).
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122 M. GIUSTI AND J.-C. YAKOUBSOHN

The multiple root is (2,−i
√
3, 2, i

√
3). The gradient of each fk is non zero at

w and the jacobian matrix Df(w) has rank 2. The step of kerneling adds the four
polynomials before we get a regular system at w.

−10xt−5xy−5zt+ 17
4 xyt2z2−7/2yt2x2z3+11/4yt4x2z+ 17

4 yt2x2z−2y2txz4+ 47
8 y2txz2+ 49

8 xt3z2y2

−7x2z3t−3/4x2zt3+ 31
4 x2zt+ 37

4 y2z3t−5y2zt3−25y2zt+5xyt4+ 103
8 xz2t+xyz4+ 15

4 xyz2+15yzt2−xt3

+ 19
4 z3t+11zt3−5/2yz3+5/4y3t2z3−y3t4z+11y3t2z−3y2t5x+7y2t3x+ 13

4 yt2z3−yt4z−1/2x3t3z2

− 7
8xt

3z2−3/2x3tz2+4xty2+x3tz4−xtz4−3/2x2yz3+2x2yz− 9
8x

3t5+3xt5+3/4x3t3+3/8x3t,

5/2xy2z+ 25
2 xzt2+5/4y3t− 25

4 y2− 25
4 t2− 25

2 yt+ 55
4 yt3+15yzxt+1/2yz4x2t−5/4yz2x2t3−4yz2x2t

−19/2y2zxt2−5/4yz3xt+3yzxt3− 13
8 xt2y2z3+ 25

4 t4− 23
4 t2z2x2+15/2t2z2y2+1/4y3z4t−3/2y3z2t3

−3/2y3z2t+1/2y2z5x−3y2z3x−yz2t3+x3t2z3−3/8x3t4z−1/8x3t2z+3/2x2t5y−11/2x2t3y− 13
8 xt2z3

+1/2xt4z+5t2z2−3/2t4x2−15/2t4y2−5/2t2x2+ 55
4 t2y2+15/2z2y2−5/4z4y2+y3t5−5/4yt5−9/4y3t3,

−5xt−10xy−15yz−10zt+9/4xyt2z2+24yt2x2z+ 25
4 y2txz2−7/2y2x2z3t+ 43

8 y2x2zt3− 7
8 y

2x2zt

+ 33
4 y3t2xz2−6yt2x3z2−3/2x2z3t− 11

8 x2zt3+ 103
8 x2zt+5y2z3t+6y2zt3+2y2zt+7xyt4−15xyt2

+ 31
4 xz2t−1/2xyz4+ 43

2 xyz2+5yzt2−5xt3+3/8z3t+3zt3+11/4yz3+15y3t2z+11y2t3x−7x3tz2

+23xty2−9x2yz3+8x2yz+ 21
8 y4z3t−5y4zt3+4y4zt−3y3xt4−3y3xt2−3/2y3xz4+2y3xz2−yz2x3

+ 25
4 x3t3+ 19

4 x3t−5y3z+ 21
4 y3z3+ 13

4 yt2x3−x4tz+7/4yt4x3+yz4x3+x4z3t−zx4t3,

10xy2z+10/3yz2t+ 20
3 xzt2+10y3t− 25

3 y2− 25
3 t2− 50

3 yt+10yt3+20yzxt− 47
6 yz2x2t−6y2zxt2−4/3yz3xt

−4yzxt3+x3yz3t−5/6x3yzt3−7/6xy3z3t+2/3xy3zt3−2/3xy3zt−5/4y2t2x2z2−4/3t2z2x2−8/3t2z2y2

−2/3y3z2t−7/2y2z3x−13/2x3t2z+4/3x2t3y−5/3t4y2+10t2x2+ 80
3 t2y2+10/3z2y2−1/4z4y2− 34

3 y3t3

−5/3y4t2+2y4z2+4/3y4t4−3/4y4z4−2/3x2y2t4+2/3x2y2z4− 23
12x

2y2z2+x4t2z2

Example 15 ([11, decker2]).

f(x, y) =(x+ y3, x2y − y4).

A multiple root is (0, 0, 0). A first step of deflation gives the equations x+y3 =
x = y = 0.

Example 16 ([30, mth191]).

f(x, y) =(x3 + y2 + z2 − 1, x2 + y3 + z2 − 1, x2 + y2 + z3 − 1).

A multiple root is w = (0, 1, 0). The gradients of each polynomials are non
zero at w. The jacobian matrix has rank 1. The step of kerneling adds the four
polynomials :

x (9xy − 4)

z (3 y − 2)

x (3 y − 2)

z (9 zy − 4)

The system f1 = x (9xy − 4) = z (3 y − 2) = 0 is regular at w.

Example 17 ([10, DZ1]).

f(x, y, z, t) =(x4 − yzt, y4 − xzt, z4 − xyt, t4 − xyz).
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MULTIPLICITY HUNTING 123

A multiple root is w = (0, 0, 0, 0). A step of deflation gives x = y = z = t = 0.

Example 18 ([10, DZ2]).

f(x, y, z) =(x4, x2y + y4, z + z2 − 7x3 − 8x2).

A multiple root is w = (0, 0,−1). A step of deflation adds the equation x =
y = 0.

Example 19 ([10, DZ3]).

f(x, y) =(14 x+33 y−3
√
5(x2+4 xy+4 y2+2)+

√
7+x3+6x2y+12 xy2+8 y3

41
8 x−9/4 y−1/8

√
5+x3−3/2 x2y+3/4 xy2−1/8 y3+3/8

√
7(4 xy−4 x2−y2−2).

A multiple root is w = ((2
√
7 +

√
5)/5, (2

√
5−

√
7)/5). The gradients of each

polynomials are non zero. The step of kerneling adds the polynomial

−360x2
√
5y+630xy2

√
5+240xy−180

√
7x3+360

√
7y3+1260x2+1440y2−360x3

√
5+540x3y+45x2y2

−540xy3−180y3
√
5+540

√
7x

√
5y+180x4+180y4+1605−960

√
7x+480

√
7y−600

√
5x−1200

√
5y

+360
√
7
√
5x2−630

√
7x2y−360

√
7xy2−360

√
7
√
5y2

Its gradient is zero at w. The step of deflation replaces it by the two following
polynomials:

1/3y+7/2x+x3+3/4
√
7
√
5y−4/3

√
7−5/6

√
5−3/4

√
7x2−3/2x2

√
5+9/4x2y+1/8xy2−3/4y3−x

√
5y

+ 7
8 y

2
√
5+

√
7
√
5x−7/4

√
7xy−1/2

√
7y2

4/9x+16/3y+4/3y3+
√
7
√
5x+ 8

9

√
7− 20

9

√
5+2

√
7y2+x3+1/6x2y−3xy2−y2

√
5−2/3x2

√
5+7/3x

√
5y

−7/6
√
7x2−4/3

√
7xy−4/3

√
7
√
5y

The system build from f1, f2 and from the two previous polynomials is regular at
w.

Example 20 ([43, Ojika2]).

f(x, y, z) =(x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1).

A multiple root is w = (1, 0, 0). The rank of Df(w) is 2. The step of kerneling
adds the equation 4xyz − x− y − z + 1 = 0.

Example 21 ([43, Ojika3]).

f(x, y, z) =(x+ y + z − 1, 2x3 + 5y2 − 10z + 5z3 + 5, 2x+ 2y + z2 − 1).

A multiple root is w = (−5/2, 5/2, 1). The rank of Df(w) is 2. The step of
kerneling adds the equation 3x2z − 5yz + 5y − 3x2 = 0.

Example 22 ([29, Lecerf]).

f(x, y, z) =( 2x+ 2x2 + 2 y + 2 y2 + z2 − 1,

(x+ y − z − 1)3 − x3,
(
2x3 + 2 y2 + 10 z + 5 z2 + 5

)3 − 1000x5 ).

Licensed to University Paul Sabatier.  Prepared on Mon Dec 14 09:01:17 EST 2015for download from IP 130.120.37.54.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



124 M. GIUSTI AND J.-C. YAKOUBSOHN

A multiple root is w = (0, 0,−1). The rank of Df(w) is one. There is only one
step of deflation to obtain the regular system

x+ x2 + y + y2 + 1/2 z2 − 1/2,

y − z − 1,

x+ y − z − 1,

9

14
x5 +

5

28

(
2x3 + 2 y2 + 10 z + 5 z2 + 5

)
x2 − 625

126
x,

y,

x,

1 + z.

8. Conclusion and future work

We have shown how to derive an equivalent regular system from a singular
initial one, when we know the root. The stability of this process will be done in a
future work and we describe briefly how to proceed. But from a numerical point of
view a multiple root makes no sense and it is more realistic to speak of a cluster of
roots : a m–cluster of roots is a open ball which contains m isolated regular roots
of the system. Moreover we would hope for results with a “small” size of the cluster.

The operation of deflating is based on the evaluation of the gradient of a func-
tion, say g(x), at given point w̄. To decide whether there exists a root (or a cluster
of roots) of this gradient closed to w̄ we need to know if there exists x̄1 such that
(x̄1, w̄2, . . . , w̄n) is closed to w̄ and cancels the gradient of g. This can be done
with the theoretical background developed in [18] where the words ”closed to” and
”small” are quantified.

The operation of kerneling requires more attention since we must discover the
numerical rank of a jacobian matrix at a point w̄ “closed to” the multiple root or
the cluster of roots. The difficulty is that the rank drops only at the multiple root
or in the cluster of roots. We propose to fix a coordinate, say x1, and to perform
a LU decomposition of the jacobian evaluated at (x1, w̄2, . . . , w̄n). Each element of
the diagonal of the matrix U of the LU decomposition is a polynomial in x1. The
numerical rank of the jacobian matrix is the number of these polynomials having a
root “closed to” w̄1.

We illustrate these principles on Lecerf’s example 22 [29]. We first show
how to numerically discover that there is probably a point w near (x0, y0, z0) =
(0.1, 0.09,−1.1 + 0.1i) where the jacobian matrix has a rank one. For that we de-
termine the matrix U of the LU decomposition at (x0, y0, z). The diagonal of U is
given by

2.4

2.28+4.51z+2.28z2,

3633.58+25322.98z+75771.82z2+126177.32z3+126276.08z4+75944.48z5+25413.69z6

+3650.4z7.

The Newton iteration (or more generally the Schröder iteration) initialized to z0
and applied respectively to the polynomials U22(z) and U33(z) converges respec-
tively to −0.99 + 0.14i and −0.98 + 0.05i. The initial point z0 is an approximated
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MULTIPLICITY HUNTING 125

zero of U22(z) and U33(z). This is the meaning given to the word “closed to”. We
will deduce that the numerical rank of the jacobian is one.

In this example we can numerically prove that there exists a point w where the
two last lines of the jacobian matrix are zero. In fact the evaluation of the gradients
of f2 and f3 at (x0, y0, z) gives

∇f2(x0, y0, z) =(2.91 + 5.94 z + 3.0 z2, 0.0003 (99 + 100 z)2 , −0.0003 (99 + 100 z)2),

∇f3(x0, y0, z) =(4.03 + 18.06 z + 27.03 z2 + 18.0 z3 + 4.5 z4,

− 0.0000000432
(
25091 + 50000 z + 25000 z2

)2
,

0.0000012
(
25091 + 50000 z + 25000. z2

)2
(1 + z)).

Thanks to Newton iteration initialized at z0 and applied successively to each poly-
nomial coordinate of these two gradients we find a root closed to z0. From this
we can prove the existence of a perturbed system of the initial one with the two
last lines of the jacobian matrix are zero. With this information we deflate the
two corresponding equations of the initial system. This heuristic approach will be
completely justified in a future work.
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On the intrinsic complexity of elimination problems
in effective algebraic geometry

Joos Heintz, Bart Kuijpers, and Andrés Rojas Paredes
Dedicated to the memory of Jean-Pierre Dedieu

Abstract. The representation of polynomials by arithmetic circuits evaluat-
ing them is an alternative data structure which allowed considerable progress in
polynomial equation solving in the last fifteen years. We present a circuit based
computation model which captures the core of all known symbolic elimination
algorithms that avoid unnecessary branchings in effective algebraic geometry
and show the intrinsically exponential complexity character of elimination in
this complexity model.

1. Introduction

Modern elimination theory starts with Kronecker’s 1882 paper [Kro82] where
the argumentation is essentially constructive, i.e., algorithmic. Questions of effi-
ciency of algorithms become only indirectly and marginally addressed in this paper.
However, later criticism of Kronecker’s approach to algebraic geometry emphasized
the algorithmic inefficiency of his argumentation ([Mac16], [vdW50]). In a se-
ries of more recent contributions, that started with [CGH89] and ended up with
[GHM98], [GHH97], [HMW01] and [GLS01], it became apparent that this crit-
icism is based on a too narrow interpretation of Kronecker’s elimination method. In
fact, these contributions are, implicitly or explicitly, based on this method, notwith-
standing that they also contain other views and ideas coming from commutative
algebra and algebraic complexity theory.

A turning point was achieved by the combination of a new, global view of
Newton iteration with Kronecker’s method ([GHM98], [GHH97]). The outcome
was that elimination polynomials, although hard to represent by their coefficients,
allow a reasonably efficient encoding by evaluation algorithms. This circumstance
suggests to represent in elimination algorithms polynomials not by their coefficients
but by arithmetic circuits (see [HS81], [Kal88] and [FIK86] for the first steps in
this direction). This idea became fully realized by the “Kronecker” algorithm for
the resolution of polynomial equation systems over algebraically closed fields. The
algorithm was anticipated in [GHMP95], [GHM98], [HMW01], [GLS01] and
implemented in a software package of identical name (see [Lec]).
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This paper deals with lower complexity bounds mainly for elimination algo-
rithms.

After some preparation of algebraic geometric tools in Section 2 we introduce in
Section 3 the notion of a robust parameterized arithmetic circuit which represents in
a suitable sense the branching–free evaluation of parameter dependent polynomials
when divisions become replaced by suitable limits.

In Section 4 we exhibit an infinite family of parameter dependent elimination
polynomials which require exponentially many operations for their evaluation by ro-
bust parameterized arithmetic circuits, whereas the circuit size of the corresponding
elimination problems grows only polynomially.

In the past, many attempts to show the non–polynomial character of the elim-
ination of just one existential quantifier block in the arithmetic circuit based ele-
mentary language over C, employed the reduction to the claim that an appropriate
candidate family of specific polynomials was hard to evaluate (this approach was
introduced in [HM93] and became adapted to the BSS model in [SS95]). We give
here the first example of such a family where hardness really can be proved (see
also [HKR13]).

In Section 5 we present, along the lines of software engineering, a computa-
tional model containing a particular architectural feature, called procedure. This
model constitutes a simplified, abstract version of that introduced in [HKR13].
It captures the core of all known elimination algorithms that avoid unnecessary
branchings.

In particular, we exhibit in Section 6.1 an infinite family of arithmetic input
circuits encoding efficiently certain elimination problems such that any procedure
solving them requires exponential time. It turns out that the Kronecker algorithm
is an optimal procedure. It follows that any arithmetic circuit based elimination
method, designed by commonly accepted rules of software engineering, needs ex-
ponential time to solve these problems when unnecessary branchings are avoided.

2. Concepts and tools from algebraic geometry

In this section, we use freely standard notions and notations from commuta-
tive algebra and algebraic geometry. These can be found for example in [Lan84],
[ZS60], [Kun85] and [Sha94]. In Sections 2.1 and 2.3, we introduce the notions
and definitions which constitute our fundamental tool for the modelling of elimina-
tion problems and algorithms. Most of these notions and their definitions are taken
from [GHMS11].

2.1. Basic notions and notations. For any n ∈ N, we denote by A
n :=

A
n(C) the n–dimensional affine space C

n equipped with its respective Zariski and
Euclidean topologies over C.

Let X1, . . . , Xn be indeterminates over C and let X := (X1, . . . , Xn). We denote
by C[X] the ring of polynomials in the variables X with complex coefficients.

Let V be a closed affine subvariety of A
n, i.e. the set of common zeroes of

finitely many polynomials of C[X]. As usual, we write dimV for the dimension of
the variety V .

For f1, . . . , fs ∈ C[V ] we shall use the notation {f1 = 0, . . . , fs = 0} in order
to denote the closed affine subvariety V of An defined by f1, . . . , fs.
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We denote by C[V ] := {ϕ : V → Ce; there exists f ∈ C[X] with ϕ(x) = f(x)
for any x ∈ V } the coordinate ring of V . If V is irreducible, then C[V ] is zero–
divisor free and we denote by C(V ) the field formed by the rational functions of
V with maximal domain (C(V ) is called the rational function field of V ). Observe
that C(V ) is isomorphic to the fraction field of the integral domain C[V ].

In the general situation where V is an arbitrary closed affine subvariety of An,
the notion of a rational function of V has also a precise meaning. The only point
to underline is that the domain, say U , of a rational function of V has to be a
maximal Zariski open and dense subset of V to which the given rational function
can be extended. In particular, U has a nonempty intersection with any of the
irreducible components of V .

As in the case where V is irreducible, we denote by C(V ) the C–algebra formed
by the rational functions of V . In algebraic terms, C(V ) is the total quotient ring
of C[V ] and is isomorphic to the direct product of the rational function fields of the
irreducible components of V .

Let be given a partial map φ : V ��� W , where V and W are closed subvarieties
of some affine spaces A

n and A
m, and let φ1, . . . , φm be the components of φ. The

map φ is called a morphism of affine varieties or just a polynomial map if the
complex valued functions φ1, . . . , φm belong to C[V ]. Thus, in particular, φ is a
total map.

We call φ a rational map of V to W , if the domain U of φ is a Zariski open and
dense subset of V and φ1, . . . , φm are the restrictions of suitable rational functions
of V to U .

Observe that our notion of a rational map differs from the usual one in algebraic
geometry, since we do not require that the domain U of φ is maximal. Hence, in
the case m := 1, our concepts of rational function and rational map do not coincide
(see also [GHMS11]).

2.2. Constructible sets and constructible maps. Let M be a subset of
some affine space A

n and, for a given nonnegative integer m, let φ : M ��� A
m be

a partial map.

Definition 1 (Constructible set). We call the set M constructible if M is
definable by a Boolean combination of polynomial equations.

A basic fact we shall use in the sequel is that if M is constructible, then its
Zariski closure is equal to its Euclidean closure (see, e.g., [Mum88], Chapter I,
§10, Corollary 1). In the same vein we have the following definition.

Definition 2 (Constructible map). We call the partial map φ constructible if
the graph of φ is constructible as a subset of the affine space A

n × A
m.

We say that φ is polynomial if φ is the restriction of a morphism of affine
varieties A

n → A
m to the constructible subset M of A

n and hence a total map
from M to A

m. Furthermore, we call φ a rational map of M if the domain U of
φ is contained in M and φ is the restriction to M of a rational map of the Zariski
closure M of M. In this case U is a Zariski open and dense subset of M.

Since the elementary, i.e., first–order theory of algebraically closed fields with
constants in C admits quantifier elimination, constructibility means just elementary
definability. In particular, φ is constructible implies that the domain and the image
of φ are constructible subsets of An and A

m, respectively.
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Remark 3. A partial map φ : M ��� A
m is constructible if and only if it is

piecewise rational. If φ is a constructible total map there exists a Zariski open and
dense subset U of M such that the restriction φ|U of φ to U is a rational map of
M (and of M).

For details we refer to [GHMS11], Lemma 1.

2.3. Geometrically robust constructible maps. The main mathematical
tool of this paper is the notion of geometrical robustness which we are going to
introduce now.

Let M be a constructible subset of the affine space A
n and let φ : M → A

m

be a (total) constructible map with components φ1, . . . , φm.
We consider now the Zariski closure M of the constructible subset M of An.

Observe that M is a closed affine subvariety of An and that we may interpret C(M)
as a C[M]–module (or C[M]–algebra).

Fix now an arbitrary point x of M. By Mx we denote the maximal ideal
of coordinate functions of C[M] which vanish at the point x. By C[M]Mx

we
denote the local C–algebra of the variety M at the point x, i.e., the localization
of C[M] at the maximal ideal Mx. By C(M)Mx

we denote the localization of the
C[M]–module C(M) at Mx.

Following Remark 3, we may interpret φ1, . . . , φm as rational functions of the
affine variety M and therefore as elements of the total fraction ring C(M) of C[M].
Thus C[M][φ1, . . . , φm] and C[M]Mx

[φ1, . . . , φm] are C–subalgebras of C(M) and
C(M)Mx

which contain C[M] and C[M]Mx
, respectively.

The following result establishes for constructible maps a bridge between a topo-
logical and an algebraic notion. It will be fundamental in the context of this paper.
Theorem–Definition 4. Let notations and assumptions be as before. We call the
constructible map φ : M → A

m geometrically robust if φ is continuous with respect
to the Euclidean topologies of M and A

m or equivalently, if φ1, . . . , φm, interpreted
as rational functions of the affine variety M, satisfy at any point x ∈ M the
following two conditions:

(i) C[M]Mx
[φ1, . . . , φm] is a finite C[M]Mx

–module.
(ii) C[M]Mx

[φ1, . . . , φm] is a local C[M]Mx
–algebra whose maximal ideal is

generated by Mx and φ1 − φ1(x), . . . , φm − φm(x).
For a proof of this result, which is based on Zariski’s Main Theorem ([Ive73],

§IV.2) we refer to [HKR13] (see also [CGH03] and [GHMS11]).
From the topological definition of a geometrically robust constructible map one

deduces immediately the following statement.
Corollary 5. If we restrict a geometrically robust constructible map to a

constructible subset of its domain of definition we obtain again a geometrically ro-
bust map. Moreover the composition and the cartesian product of two geometrically
robust constructible maps are geometrically robust. The geometrically robust con-
structible functions form a commutative C–algebra which contains the polynomial
functions.

The origin of the concept of a geometrically robust map can be found, implicitly,
in [GH01]. It was introduced explicitly for constructible maps with irreducible
domains of definition in [GHMS11], where it is used to analyze the complexity
character of multivariate Hermite–Lagrange interpolation.
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ON THE INTRINSIC COMPLEXITY OF ELIMINATION PROBLEMS 133

For a constructible subset of an affine space we denote by C 〈M〉 the C–algebra
of all geometrically robust constructible functions defined on M.

The constructible subsets of affine spaces together with the geometrically robust
constructible maps between them form a category which we denote throughout this
paper by D.

3. Robust parameterized arithmetic circuits

We shall use freely standard concepts from algebraic complexity theory which
can be found in [BCS97].

Let us fix natural numbers n and r, indeterminates X1, . . . , Xn and a non–
empty constructible subset M of Ar. By π1, . . . , πr we denote the restrictions to
M of the canonical projections A

r → A
1.

A (by M) parameterized arithmetic circuit β (with basic parameters π1, . . . , πr

and inputs X1, . . . , Xn) is a labelled directed acyclic graph (labelled DAG) satisfy-
ing the following conditions:
each node of indegree zero is labelled by a scalar from C, a basic parameter
π1, . . . , πr or a input variable X1, . . . , Xn. Following the case, we shall refer to
the scalar, basic parameter and (standard) input nodes of β. All other nodes of
β have indegree two and are called internal. They are labelled by arithmetic op-
erations (addition, subtraction, multiplication, division). A parameter node of β
depends only on scalar and basic parameter nodes, but not on any input node of
β (here “dependence” refers to the existence of a connecting path). A parameter
node of outdegree zero or with an outgoing edge into a node that depends on an
input is called essential. Moreover, at least one circuit node becomes labelled as
output. Without loss of generality we may suppose that all nodes of outdegree zero
are outputs of β.

We consider β as a syntactical object which we wish to equip with a certain
semantics. In principle there exists a canonical evaluation procedure of β assigning
to each node a rational function of M × A

n which, in case of a parameter node,
may also be interpreted as a rational function of M. In either situation we call
such a rational function an intermediate result of β.

The evaluation procedure may fail if we divide at some node an intermediate
result by another one which vanishes on a Zariski dense subset of a whole irreducible
component of M× A

n. If this happens, we call the labelled DAG β inconsistent,
otherwise consistent.

If nothing else is said, we shall from now on assume that β is a consistent
parameterized arithmetic circuit. The intermediate results associated with output
nodes will be called final results of β.

We call an intermediate result associated with a parameter node a parameter
of β and interpret it generally as a rational function of M. If this node is essential,
we call the corresponding parameter also essential. In the sequel we shall refer to
the constructible set M as the parameter domain of β.

We consider β as a syntactic object which represents the final results of β, i.e.,
the rational functions of M× A

n assigned to its output nodes.
Now we suppose that the consistent parameterized arithmetic circuit β has been

equipped with an additional structure, linked to the semantics of β. We assume
that for each node ρ of β there is given a total constructible map M × A

n → A
1

which extends the intermediate result associated with ρ. In this way, if β has K
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nodes, we obtain a total constructible map Ω : M× A
n → A

K which extends the
rational map M× A

n ��� A
K given by the intermediate results of β.

Definition 6 (Robust circuit). Let notations and assumptions be as before.
The pair (β,Ω) is called a robust parameterized arithmetic circuit if the constructible
map Ω is geometrically robust.

Observe that the above rational map M × A
n ��� A

K can be extended to at
most one geometrically robust constructible map Ω : M×A

n → A
K . Therefore we

shall apply from now on the term “robust” also to the consistent circuit β.
Robust parameterized arithmetic circuits may be pulled back as follows:

Let N be a constructible subset of an affine space and let ϕ : N → M be a geo-
metrically robust constructible map (i.e. a morphism of the category D). Suppose
that (β,Ω) is robust. Then Corollary 5 implies that the pullback Ω ◦ (ϕ× idAn) is
still a geometrically robust constructible map.

Hence (β,Ω) induces a by N parameterized arithmetical circuit ϕ∗(β). Observe
that ϕ∗(β) may become inconsistent. If ϕ∗(β) is consistent then (ϕ∗(β),Ω ◦ (ϕ ×
idAn)) is robust. The nodes where the evaluation of ϕ∗(β) fails correspond to divi-
sions of zero by zero which may be replaced by so called approximative algorithms
having unique limits (see [HKR13], Section 3.3.2). These limits are given by the
map Ω ◦ (ϕ× idAn). We call (ϕ∗(β),Ω ◦ (ϕ× idAn)), or simply ϕ∗(β), the pullback
of (β,Ω) or β to N .

We cannot exclude inconsistent parameterized arithmetic circuits from our con-
siderations. However we may restrict our attention to such ones which are pullbacks
of consistent robust parameterized arithmetic circuits. These inconsistent parame-
terized arithmetic circuits will also be called robust.

We say that the parameterized arithmetic circuit β is totally division–free if
any division node of β corresponds to a division by a non–zero complex scalar.

We call β essentially division–free if only parameter nodes are labelled by di-
visions. Thus the property of β being totally division–free implies that β is essen-
tially division–free, but not vice versa. Moreover, if β is totally division-free, the
rational map given by the intermediate results of β is polynomial and therefore a
geometrically robust constructible map. Thus, any by M parameterized, totally
division–free circuit is in a natural way robust.

We observe the following elementary fact.

Lemma 7. Let notations and assumptions be as before and suppose that the
parameterized arithmetic circuit β is robust. Then all intermediate results of β are
polynomials in X1, . . . , Xn over C 〈M〉.

For a proof of Lemma 7 we refer to [HKR13], Section 3.1.
The statement of this lemma should not lead to confusions with the notion of

an essentially division–free parameterized circuit. We say just that the intermediate
results of β are polynomials in X1, . . . , Xn and do not restrict the type of arithmetic
operations contained in β (as we did defining the notion of an essentially division–
free parameterized circuit).

To our parameterized arithmetic circuit β we may associate different complexity
measures and models. In this paper we shall mainly be concerned with sequential
computing time, measured by the size of β. Here we refer with “size” to the number
of internal nodes of β which count for the given complexity measure. Our basic
complexity measure is the non–scalar one (also called Ostrowski measure) over the
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ground field C. This means that we count, at unit costs, only essential multiplica-
tions and divisions (involving basic parameters or input variables in both arguments
in the case of a multiplication and in the second argument in the case of a division),
whereas C–linear operations are free (see [BCS97] for details).

In [HKR13] we defined three operations on robust parameterized arithmetic
circuits, namely the operations join which mimicks composition of circuit repre-
sented polynomial maps and reduction and broadcasting which embody rewriting
of circuits by means of polynomial identities. In the present paper only reduction
will be relevant. A circuit which at different nodes computes the same result may
be simplified into a circuit which computes this result only once. The intermediate
results of the new circuit are the same as those of the original one. This is the
meaning reduction of circuits. For details we refer to [HKR13].

4. A family of hard elimination polynomials

As a major result of this paper we are now going to exhibit an infinite family
of parameter dependent elimination polynomials which require exponential many
operations for their evaluation by essentially division–free robust parameterized
arithmetic circuits, whereas the circuit size of the corresponding input problems
grows only polynomially. The proof of this result, which is absolutely new in his
kind, is astonishly elementary and simple.

Let T, U1, . . . , Un and X1, . . . , Xn be indeterminates and let U := (U1, . . . , Un)
and X := (X1, . . . , Xn). Consider for given n ∈ N the polynomial H(n) :=∑

1≤i≤n 2i−1 Xi + T
∏

1≤i≤n(1 + (Ui − 1)Xi). Observe that H(n) can be evalu-
ated using n− 1 non–scalar multiplications involving X1, . . . , Xn.

The set O := {
∑

1≤i≤n 2i−1Xi + t
∏

1≤i≤n(1 + (ui − 1)Xi); (t, u1, . . . , un) ∈
A

n+1} is contained in a finite–dimensional C–linear subspace of C[X] and therefore
O and its closure O are constructible sets.

From [GHMS11], Section 3.3.3 we deduce the following facts:
there exist K := 16n2 + 2 integer points ξ1, . . . , ξK ∈ Z

n of bit length at most 4n
such that for any two polynomials f, g ∈ O the equalities f(ξk) = g(ξk), 1 ≤ k ≤ K,
imply f = g. Thus the polynomial map Ξ : O → A

K defined for f ∈ O by
Ξ(f) := (f(ξ1), . . . , f(ξK)) is injective. Moreover M := Ξ(O) is an irreducible
constructible subset of AK and we have M = Ξ(O). Finally, the constructible map
φ := Ξ−1, which maps M onto O and M onto O, is a restriction of a geometrically
robust map and therefore by Corollary 5 itself geometrically robust.

For ε ∈ {0, 1}n we denote by φε the map M → A
1 which assigns to each point

v ∈ M the value φ(v)(ε). From Corollary 5 we conclude that φε is a geometri-
cally robust constructible function which belongs to the function field C(M) of the
irreducible algebraic variety M.

Observe that for t ∈ A
1 and u ∈ A

n the identities φε(Ξ(H(n)(t, u,X))) =
φ(Ξ(H(n) (t, u,X)))(ε) = ((Ξ−1 ◦ Ξ)(H(n)(t, u,X)))(ε) = H(n)(t, u, ε) hold.

Let P (n) :=
∏

ε∈{0,1}n(Y − φε). Then P (n) is a geometrically robust con-
structible function which maps M× A

1 (and hence M× A
1) into A

1.
Consider now the polynomial F (n) :=

∏
ε∈{0,1}n(Y−H(n)(T, U, ε)) =

∏
0≤j≤2n−1

(Y − (j+T
∏

1≤i≤n U
[j]i
i )), where [j]i denotes the i–th digit of the binary represen-

tation of the integer j, 0 ≤ j ≤ 2n − 1, 1 ≤ i ≤ n. We have for t ∈ A
1 and u ∈ A

n

the identities
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(1)

P (n)(Ξ(H(n)(t, u,X)), Y ) =
∏

ε∈{0,1}n

(Y − φε(Ξ(H(n)(t, u,X)))) =
∏

ε∈{0,1}n

(Y −H(n)(t, u, ε)) = F (n)(t, u, Y )

Let S1, . . . , SK be new indeterminates and observe that the existential first
order formula of the elementary theory of C, namely

(2)
(∃X1) . . . (∃Xn)(∃T )(∃U1) . . . (∃Un)(X2

1 −X1 = 0 ∧ · · · ∧X2
n −Xn = 0∧∧

1≤j≤K

Sj = H(n)(T, U, ξj) ∧ Y = H(n)(T, U,X))

describes the constructible subset {(s, y) ∈ A
K+1; s ∈ M, y ∈ A

1, P (n)(s, y) =
0} of A

K+1. Moreover, P (n) is the greatest common divisor in C(M)[Y ] of all
polynomials of C[M][Y ] which vanish identically on the constructible subset of
A

K+1 defined by the formula (2). Hence P (n) ∈ C(M)[Y ] is a (parameterized)
elimination polynomial.

Observe that the polynomials contained in the formula (2) can be represented
by a totally division–free arithmetic circuit of size O(n3). Therefore, the formula
(2) is also of size O(n3).

Theorem 8. Let notations and assumptions be as before and let γ be an es-
sentially division–free, robust parameterized arithmetic circuit with domain of def-
inition M such that γ evaluates the elimination polynomial P (n). Then γ has size
at least Ω(2n).

Proof. We fix the natural number n. Let us write H := H(n) =
∑

1≤i≤n 2i−1

Xi +
∏

1≤i≤n T (Ui − 1)Xi as a polynomial in the main indeterminates X1, . . . , Xn

with coefficients θκ1,...,κn
∈ C[T, U ], κ1, . . . , κn ∈ {0, 1}, namely

H =
∑

κ1,...,κn∈{0,1}
θκ1,...,κn

Xκ1
1 , . . . , Xκn

n .

Observe that for κ1, . . . , κn ∈ {0, 1} the polynomial θκ1,...,κn
(0, U) ∈ C[U ] is of

degree at most zero, i.e., a constant complex number, independent of U1, . . . , Un.
Let θ := (θκ1,...,κn

)κ1,...,κn∈{0,1} and observe that the vector θ(0, U) is a fixed
point of the affine space A

2n . We denote by M the vanishing ideal of the C–algebra
C[θ] at this point. We interpret θ as a geometrically robust constructible map
A

n+1 → A
2n with (constructible) image T .

Let us write F := F (n) =
∏

0≤j≤2n−1(Y −(j+T
∏

1≤i≤n U
[j]i
i )) as a polynomial

in the main indeterminate Y with coefficients ϕκ ∈ C[T, U ], 1 ≤ κ ≤ 2n, namely
F = Y 2n + ϕ1Y

2n−1 + · · · + ϕ2n .
Observe that for 1 ≤ κ ≤ 2n the polynomial ϕκ(0, U) ∈ C[U ] is of degree at

most zero. Let λκ := ϕκ(0, U), λ := (λκ)1≤κ≤2n and ϕ := (ϕκ)1≤κ≤2n . Then λ is
a fixed point of the affine space A

2n .
Let ν : An+1 → A

K be the polynomial map defined for t ∈ A
1 and u ∈ A

n by
ν(t, u) := Ξ(H(t, u,X)) = (H(t, u, ξ1), . . . , H(t, u, ξK)). Observe that there exists
a geometrically robust constructible map σ : T → A

K such that σ ◦ θ = ν holds.
Since by assumption the parameterized arithmetic circuit γ is essentially division–
free and robust, there exists a geometrically robust constructible map ψ defined on
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M such that the entries of ψ constitute the essential parameters of the circuit γ.
Moreover, for m being the number of components of ψ, there exists a vector ω of
m–variate polynomials over C such that the entries of ω(ψ) = ω ◦ ψ become the
coefficients of the elimination polynomial P := P (n) =

∏
ε∈{0,1}n(Y − φε).

One sees easily that there exists a totally division–free ordinary arithmetic
circuit γ′ which evaluates the polynomials H(T, U, ξ1), . . . , H(T, U, ξK).

The join γ ∗ γ′ of γ′ with γ at the basic parameter nodes of γ is an essentially
division–free robust parameterized circuit with domain of definition A

n+1 which by
(1) evaluates the polynomial F (T, U, Y ) := F (n)(T, U, Y ). The entries of the vector
ν̃ := ψ ◦ ν constitute the essential parameters of the circuit γ ∗ γ′ and the entries of
ω ◦ ν̃ = ω ◦ ψ ◦ ν become by (1) the coefficients of the polynomial F (T, U, Y ) with
respect to Y . So we have ϕ = ω ◦ ν̃.

Taking into account ν̃ = ψ ◦ ν = ψ ◦ σ ◦ θ, Theorem–Definition 4 (i) and
[GHMS11], Corollary 12 we conclude that the entries of ν̃ are polynomials of
C[T, U ] which are integral over the local C–subalgebra C[θ]M of C(T, U).

Let μ ∈ C[T, U ] be such an entry. Then there exists an integer s and polynomi-
als a0, a1, . . . , as ∈ C[θ] with a0 /∈ M such that the algebraic dependence relation
(3) a0μ

s + a1μ
s−1 + · · · + as = 0

is satisfied in C[T, U ]. From (3) we deduce the algebraic dependence relation
(4) a0(0, U)μ(0, U)s + a1(0, U)μ(0, U)s−1 + · · · + as(0, U) = 0
in C[U ].

Since the polynomials a0, a1, . . . , as belong to C[θ] and θ(0, U) is a fixed point
of A

2n , we conclude that α0 := a0(0, U), α1 := a1(0, U), . . . , αs := as(0, U) are
complex numbers. Moreover, a0 /∈ M implies α0 �= 0.

Thus (4) may be rewritten into the algebraic dependence relation
(5) α0μ(0, U)s + α1μ(0, U)s−1 + · · · + αs = 0
in C[U ] with α0 �= 0.

This implies that the polynomial μ(0, U) of C[U ] is of degree at most zero.
Therefore w := ν̃(0, U) is a fixed point of the affine space A

m.
Recall that λ = (λκ)1≤κ≤2n with λκ := ϕκ(0, U), 1 ≤ κ ≤ 2n, is a fixed point

of the affine space A
2n .

From [CGH03], Lemma 6 we deduce that for 1 ≤ κ ≤ 2n the coefficient ϕκ of
F is an element of C[T, U ] of the form
(6) ϕκ = λκ + TLκ + terms of higher degree in T

where L1, . . . , L2n ∈ C[U ] are C–linearly independent.
Consider now an arbitrary point u ∈ A

n and let εu : A
1 → A

m and δu :
A

1 → A
2n be the polynomial maps defined for t ∈ A

1 by εu(t) := ν̃(t, u) and
δu(t) := ϕ(t, u). Then we have εu(0) = ν̃(0, u) = w and δu(0) = ϕ(0, u) = λ,
independently of u. Moreover, from ϕ = ω ◦ ν̃ we deduce δu = ω ◦ εu.

Thus (6) implies

(7) (L1(u), . . . , L2n(u)) = ∂ϕ

∂t
(0, u) = δ′u(0) = (Dω)w(ε′u(0)),

where (Dω)w denotes the (first) derivative of the m–variate polynomial map ω
at the point w ∈ A

m and δ′u(0) and ε′u(0) are the derivatives of the parameterized
curves δu and εu at the point 0 ∈ A

1. We rewrite now (7) in matrix form, replacing
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(Dω)w by the corresponding transposed Jacobi matrix M ∈ A
m×2n and δ′u(0) and

ε′u(0) by the corresponding points of A2n and A
m, respectively.

Then (7) takes the form

(8) (L1(u), . . . , L2n(u)) = ε′u(0)M,

where the complex (m× 2n)–matrix M is independent of u.
Since the polynomials L1, . . . , L2n ∈ C[U ] are C–linearly independent, we may

choose points u1, . . . , u2n ∈ A
n such that the complex (2n × 2n)–matrix

N := (Lκ(ul))1≤l,κ≤2n

has rank 2n.
Let K be the complex (2n ×m)–matrix whose rows are ε′u1

(0), . . . , ε′u2n
(0).

Then (8) implies the matrix identity

N = K ·M.

Since N has rank 2n, the rank of the complex (m × 2n)–matrix M is at least 2n.
This implies

(9) m ≥ 2n.

Therefore the circuit γ contains m ≥ 2n essential parameters.
Let L be the number of multiplications that are executed by the parameterized

arithmetic circuit γ and that involve at least one factor depending on Y (C–linear
operations and multiplications between parameters are free). Then, after a well–
known standard rearrangement [PS73] of γ, we may suppose without loss of gen-
erality, that there exists a constant c > 0 (independent of the input circuit γ) such
that L ≥ cm holds.

From the estimation (9) we deduce now that the circuit γ performs at least
Ω(2n) multiplications. Therefore the size of γ is at least Ω(2n). This finishes the
proof of the theorem. �

Theorem 8 is essentially contained in the arguments of the proof of [GH01],
Theorem 5 and [CGH03], Theorem 4.

Observe that a quantifier–free description of M by means of circuit repre-
sented polynomials, together with an essentially division–free, robust parameterized
arithmetic circuit γ with domain of definition M, which evaluates the elimination
polynomial P (n) captures the intuitive meaning of an algorithmic solution of the
elimination problem described by the formula (2), when we restrict our attention
to solutions of this kind and minimize the number of equations and branchings.
In particular the circuit γ can be evaluated for any input point (s, y) with s ∈ M
and y ∈ C and the intermediate results of γ are polynomials of C(M)[Y ] whose
coefficients are geometrically robust constructible functions defined on M.

With respect to the indeterminate Y , the coefficients of the polynomial P (n) ∈
C(M)[Y ] are geometrically robust constructible functions of the parameter domain
M. In order to consider P (n) as an elimination polynomial as we did, the reader
might expect that the coefficients of P (n) should belong, for any point s ∈ M, to the
local ring of M at s. This would be true if the algebraic variety M would be normal
at any s ∈ M (see [GHMS11], Corollary 12). From [CGH03], Corollary 3 we
deduce that the variety M is definitely not normal. This leads us to the question
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how elimination polynomials should look like when the closure of the parameter
domain is not normal.

In order to elucidate this question we shall consider the following general sit-
uation. It turns out that the requirement that the coefficients of elimination poly-
nomials should be geometrically robust constructible functions is quite natural.

Let ϕ : V → W be a finite surjective morphism of irreducible affine varieties V
and W over C such that there exists a coordinate function y ∈ C[V ] with C[V ] =
C[W ][y]. Let d := [C(V ) : C(W )] be the degree of ϕ and suppose that for any
point w ∈ W the cardinality of the fiber ϕ−1(w) is exactly d. Finally, let Y be a
new indeterminate and F := Y d + ϕd−1Y

d−1 + · · · + ϕ0 ∈ C(W )[Y ] the minimal
polynomial of y. Observe that coefficients of F , namely ϕ0, . . . , ϕd−1 ∈ C(W ),
are integral over C[W ]. We are now going to discuss a condition under which F
may be considered as an elimination polynomial. This condition will imply that
ϕ0, . . . , ϕd−1 are geometrically robust constructible functions.

We shall use the following abbreviations: A := C[W ], B := A[ϕ0, . . . , ϕd−1],
C := A[y], D := B[y]. We have the following commutative diagram of integral
C–algebra extensions:

B

A D

C

���

���

���

���

Observe that D is isomorphic to B[Y ]/B[Y ] · F and in particular a free B–module
of rank d.

Proposition 9. Suppose that for any maximal ideal m of A the canonical
C–algebra homomorphism A/m → C/mC is unramified ([Ive73], Chapter I) and
that m is contained in at most d maximal ideals of D (thus, intuitively, F is an
elimination polynomial). Then ϕ0, . . . , ϕd−1 are geometrically robust constructible
functions of W .

Proof. Let m be an arbitrary maximal ideal of A. Since A → B is an integral
ring extension, we deduce from Theorem–Definition 4 that it suffices to show that
there exists a single maximal ideal n of B which contains m. Our assumptions yield
a commutative diagram

A/m C/mC∼= ∼=

C C
d

�

�

Taking into account C = A[y] we conclude that there exists a monic polynomial
G ∈ A[Y ] of degree d with discriminant ρ ∈ A such that C/mC is isomorphic to
A[Y ] divided by the ideal generated m and G and such that ρ does not belong to
m.
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Let n be an arbitrary maximal ideal of B which contains m and let F and G be
the images of F and G in B/n[Y ]. Then we have D/nD ∼= B/n[Y ]/B/n[Y ] · F and
therefore F divides G in B/n[Y ]. From d = deg F = deg G and the fact that F
and G are monic we deduce F = G. Since the discriminant ρ of G does not belong
to m we have ρ /∈ n and therefore the polynomial F is separable. Thus we obtain a
commutative diagram

B/n D/nD∼= ∼=

C C
d

�

�

and in particular the canonical C–algebra homomorphism B/n → D/nD is
unramified. Hence the number of maximal ideals of D which contain n is exactly d.
By assumption there are at most d maximal ideals of D containing m. Therefore
any such ideal must contain n. Since B → D is an integral ring extension, we
conclude that n is the unique maximal ideal of B which contains m. �

5. A computation model with robust parameterized arithmetic circuits

This section is devoted to a deeper understanding of the assumptions which
lead to Theorem 8. It will become clear why all known elimination methods in ef-
fective algebraic geometry which avoid unnecessary branchings are exponential. To
this end we introduce a computation model which will be comprehensive enough
to capture the hard core of all known circuit based elimination algorithms and,
mutatis mutandis, also of all other (linear algebra and truncated rewriting) elim-
ination procedures (see [Mor03], [Mor05], and the references cited therein, and
for truncated rewriting methods especially [DFGS91]). However, this has to be
understood with some caution. We do not claim that all elimination algorithms
become completely captured by this model. For example, deformation based elim-
ination procedures may contain ingredients which will escape from our modelling.
Our computation model will constitute a simplified version of that of [HKR13].

The elimination problem and polynomial of Section 4 were somewhat artificial.
We shall show that the conclusions of Theorem 8 are still valid for much more
natural elimination problems and polynomials if we restrict the notion of algorithm
to the computation model we are going to introduce in this section.

In the sequel we shall use freely basic notions of category theory (see [Mitchell]).
Let X1, . . . , Xn, . . . be indeterminates over C.
Throughout this paper we shall consider the following contravariant functor O

which maps the category D of constructible sets of Section 3 into the category of
commutative C–algebras. The functor O associates with a constructible subset M
of an affine space the C–algebra

O(M) := {(Hn)n≥0;Hn ∈ C 〈M〉 [X1, . . . , Xn],#{n;Hn �= 0} < ∞}
and with a geometrically robust constructible map ϕ : N → M the canonical C–
algebra homomorphism O(ϕ) : O(M) → O(N ) induced by the pullback by ϕ of
the polynomials with coefficients in C 〈M〉.

Let M be a constructible subset of an affine space, x a point of M and H =
(Hn)n≥0 with Hn ∈ C 〈M〉 [X1, . . . , Xn] an element of O(M). Then for any n ≥ 0
the coefficients of Hn belong to C 〈M〉 and may therefore be evaluated in x. Hence
we obtain from Hn a polynomial of C[X1, . . . , Xn] which we denote by Hn(x). Let
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H(x) := (Hn(x))n≥0 and observe that for the inclusion map ϕ of the constructible
subset {x} of M the following holds:
O(ϕ) : O(M) → O({x}) assigns H(x) to H.

Note also that for two points x and y of two affine spaces the canonical map
ϕ : {x} → {y} is geometrically robust and O(ϕ) : O({y}) → O({x}) is the identity
map.

A specification of a computational problem with polynomials is given by two
(contravariant) subfunctors G and F of O which map the category D in the category
of sets and by a natural transformation S : G → F .

Thus for any constructible subset M of an affine space and for any geometrically
robust constructible map ϕ : N → M the objects G(M) and F(M) are subsets of
O(M) and the diagrams

G(M) ↪→ O(M)

G(N ) ↪→ O(N ),
�
G(ϕ)

�
O(ϕ)

F(M) ↪→ O(M)

F(N ) ↪→ O(N )
�
F(ϕ)

�
O(ϕ)

and
G(M) F(M)

G(N ) F(N )
�

G(ϕ)

�eS(M)e

�

F(ϕ)

�eS(N )e

commute.
With these notations let be given a specification S : G → F . Then S is

isoparametric in the following sense (compare [HKR13]):

Lemma 10. Let M be a constructible subset of an affine space and let be given
G ∈ G(M), F ∈ F(M) with S(M)(G) = F and two points x, y ∈ M. Then
G(x) = G(y) implies F (x) = F (y).

Proof. Consider the canonical map ϕ : {x} → {y} which is geometrically
robust and constructible. Recall that O(ϕ) : O({y}) → O({x}) is the iden-
tity map. Therefore the same is true for G(ϕ) : G({y}) → G({x}) and F(ϕ) :
F({y}) → F({x}). Observing that S(M)(G) = F implies S({x})(G(x)) = F (x)
and S({y})(G(y)) = F (y), we deduce from G(x) = G(y) and the commutative
diagram

G({y}) F({y})

G({x}) F({x})
�
G(ϕ)

�eS({y})e

�
F(ϕ)

�eS({x})e
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that F (x) = F (y) holds. �

Since the elementary theory of algebraically closed fields of characteristic zero
admits quantifier elimination we deduce from Lemma 10 the following statement.

Corollary 11. Let notations and assumptions be as in Lemma 10. Let θ be
the coefficient vector of the non–zero polynomials contained in G. Then there exists
m ∈ N and a constructible map σG : θ(M) → A

m such that σG ◦ θ is the coefficient
vector of the non–zero polynomials contained in F .

Definition 12. We call the specification S : G → F continuous if for any
constructible subset M of an affine space and any G ∈ F(M) the constructible map
σG is geometrically robust (i.e. continuous with respect to the Euclidean topology).

Observe that compositions of continuous specifications are again continuous
specifications.

We are now ready to define the notion of an algorithm which implements a
given continuous specification.

Definition 13. Let notations be as before and let S : G → F be a continuous
specification. An algorithm A which implements S is a partial mapping between
consistent robust and essentially division–free parameterized arithmetic circuits over
the same parameter domain which assigns to each (for A admissible) input circuit
β an output circuit A(β) such that the following conditions are satisfied:

- for any constructible subset M of an affine space and any for A admissible
robust and essentially division–free, by M parameterized arithmetic circuit
β which computes the non–zero polynomials contained in an element G of
G(M), the circuit A(β) computes the non-zero polynomials contained in
S(M)(G).

- the parameters of the circuit A(β) are obtained by composing the vector of
essential parameters of β with a suitable geometrically robust constructible
map.

The idea behind this notion of algorithm is to avoid branchings by replacing
them by suitable divisions which become evaluated using limits. In this sense we
speak about branching–parsimonious algorithms. This concept is consistent with
that of an (output isoparametric) algorithm introduced in [HKR13].

Definition 14. Let notations be as before and let A be an algorithm that
implements a continuous specification S : G → F . We call A a procedure if for
any (for A admissible) input circuit β the parameters of the output circuit A(β)
are obtained by composing the vector of coefficients of the final results of β with a
suitable geometrically robust constructible map.

Our notions of specified algorithm and procedure constitute our computation
model. For motivations and a concrete realization of these concepts we refer to
[HKR13].

We finish this section with some comments motivating the notions of (contin-
uous) specification, algorithm and procedure and three examples.

A specification S : G → F as above encodes a computation problem with
polynomials. Let M be a constructible subset of an affine space, G ∈ G(M) and
F ∈ F(M) with F = S(M)(G). Then G and F represent (finite length) vectors
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of input and output polynomials and S(M) the underlying computational problem
which transforms the input G into the output F .

We try now to explain why we define specifications as natural transformations
between suitable functors. For this purpose let us consider the simple case that M
and N are constructible subsets of the same affine space, N a subset of M and
ϕ : N → M the inclusion map of N into M. Clearly, ϕ is geometrically robust and
constructible. Then we wish to be able to specialize the computational problem
represented by S(M) : G(M) → F(M) to the constructible subset N of M. Such
a specialization yields a new computational problem S(N ) : G(N ) → F(N ) with
commutative diagram

G(M) F(M)

G(N ) F(N ).
�

G(ϕ)

�eS(M)e

�

F(ϕ)

�eS(N )e

The requirement that S should be a natural transformation between functors is a
straight forward generalization of this reasoning.

The property of continuity of specifications embodies a necessary condition
which has to be satisfied if we look for branching–parsimonious algorithms im-
plementing the given specification. We refer to [HKR13] for a discussion of the
relationship between branching–parsimoniousness and continuity.

We exhibit now three examples of our concepts of continuous specification,
algorithm and procedure.

Example 1. For any constructible subset M of an affine space let G(M) be the
set of all elements of O(M) with at most one entry different from zero. Furthermore,
let F := O. For M as above let S(M) : G(M) → F(M) be the map which
assigns to any G ∈ G(M), with Gn ∈ C 〈M〉 [X1, . . . , Xn] being the unique entry
of G possibly different from zero, the element of F(M) composed by zeroes and
the partial derivatives ∂Gn

∂X1
, . . . , ∂Gn

∂Xn
. Obviously G and F may be interpreted as

(contravariant) subfunctors of O and S as a natural transformation between them.
Observe that S is a continuous specification.

We have two algorithms A and B which implement S and are defined as follows:
Let M be a constructible subset of an affine space and β a robust and essentially
division–free, by M parameterized arithmetic circuit with a single output node
which evaluates the unique possibly non–zero polynomial occurring in an element
G of G(M).

Then A transforms the circuit β into a circuit A(β) by means of the forward
mode and B transforms β into B(β) by means of the reverse mode of automatic
differentiation (see [GW08] for the notions of forward and reverse mode). The
algorithms A and B use recursion on the internal structure of the input circuit and
they do not constitute procedures. They are efficient in the sense that the size of
A(β) is linear in n times the size of β and the size of B(β) is linear in the size of β.

Example 2. For any constructible subset M of an affine space let G(M) be
the set of all elements (Gn)n∈N of O(M) where at most G1 is different from zero.
Furthermore, let F := G and let S(M) : G(M) → F(M) be the map which assigns
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to any G ∈ G(M) the element F = (Fn)n≥0 of F(M) where F1 is the primitive
integral of G1 satisfying the condition F1(0) = 0 and where the other entries of F
are zero.

Again G and F may be interpreted as subfunctors of O and S as a natural
transformation between them. Moreover S is a continuous specification.

The most obvious algorithm A which implements S can be described as follows.
Let M be a constructible subset of an affine space and β a robust and essentially
division–free by M parameterized arithmetic circuit with a single output node
which evaluates the polynomial G1 occurring in an element G = (Gn)n≥0 of G(M).
Then A computes the coefficients of the polynomial G1 and produces finally a
robust and essentially division–free parameterized arithmetic circuit A(β) which
evaluates the primitive integral of G1 applying term–by–term integration to the
coefficient representation of the polynomial G1.

The algorithm A is clearly a procedure. However it may be very inefficient if β
is a small circuit which evaluates a polynomial of high degree. Therefore one may
imagine alternative algorithms which do not have this drawback and which make a
clever use of integration by substitution and by parts.

It is not likely that a general purpose integration algorithm of this type exists.
For example the polynomial Xd

1 + · · · + X1 + 1, d ∈ N, may be evaluated using
O(log d) arithmetic operations whereas the complexity status of its primitive inte-
gral, namely 1

d+1X
d+1
1 + · · · + 1

2X
2
1 + X1, is unknown. There exists a conjecture

that this latter polynomial is hard to evaluate.
Let M be a constructible subset of an affine space, (zk)k∈N a (not necessarily

convergent) sequence of points of M and β a robust and essentially division–free
by M parameterized arithmetic circuit with a single output node such that β
evaluates a polynomial P ∈ C 〈M〉 [X1]. Suppose that the sequence of polynomials
(P (zk, X1))k∈N converges to a polynomial Q ∈ C[X1] such that there exists a point
z ∈ M with Q = P (z,X1). Then the primitive integrals of P (zk, X1) ∈ C[X1],
k ∈ N, converge to the primitive integral of Q. Let be given a procedure A that
implements the continuous specification S. Then the parameters of the circuit A(β)
constitute a geometrically robust constructible map ν with domain of definition M.
Since A is a procedure, ν depends constructibly and continuously on the coefficients
of P . Therefore the sequence (ν(zk))k∈N converges to a point, say ζ. We may
interpret A(β) as a composition of ν with a robust and essentially division–free
parameterized arithmetic circuit whose parameter domain is the image of ν. If we
specialize the parameters of this circuit into ζ we obtain an ordinary arithmetic
circuit in C[X1] which evaluates the primitive integral of Q.

Therefore procedures may be used to compute primitive integrals by limits.
We are now going to show that any procedure for the computation of primitive

integrals becomes intrinsically inefficient.

Theorem 15. Let A be a procedure for the computation of primitive integrals
as above and let d ∈ N. Then there exists a constructible subset M of an affine
space and a polynomial Pd ∈ C 〈M〉 [X1] of degree d such that P can be evaluated
by a robust and essentially division–free by M parameterized arithmetic circuit βd

of size O(log d) and the size of A(βd) is at least Ω(d).

Proof. As in Example 1 let S1 : F → G the specification corresponding to
derivation and let A1 be the algorithm implementing S1 which is defined by the

Licensed to University Paul Sabatier.  Prepared on Mon Dec 14 09:01:17 EST 2015for download from IP 130.120.37.54.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
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forward mode of automatic differentiation. Thus S1 ◦ S : G → G is the identity
specification and the composition B of A1 and A represents a procedure which
implements this specification.

Let M := A
1, d ∈ N and Pd := (T d+1 − 1)

∑
0≤k≤d T

kXk
1 .

We interpret Pd as a polynomial of C 〈M〉 [X1]. Observe that Pd can be eval-
uated by an ordinary division–free arithmetic circuit βd of size O(log d). The size
of B(β) = A1(A(β)) is at most three times the size of A(β). On the other hand
we may interpret B(β) as the composition of the vector of parameters ν of A(β)
with a robust and essentially division–free parameterized arithmetic circuit γ whose
parameter domain is the image of ν. Let m be the vector length of ν. Since A is a
procedure there exists a geometrically robust constructible map which, composed
with the coefficient vector of Pd, yields ν. Mimicking now the proof of [GHMS11],
Proposition 22 we see that m ≥ d + 1 holds. This implies that the size of γ and
hence that of B(β) and A(β) is at least of order Ω(d). �

6. Applications to elimination theory

In this section we apply our conceptual tools to the discussion of the complexity
of some basic problems in computational elimination theory.

Example 3. Let G be the subfunctor of O(M) which associates at each con-
structible subset M of an affine space the set of all elements of O(M) whose
entries are all zero except for an (n + 1)–tuple of polynomials G(1), . . . , G(n), H ∈
C 〈M〉 [X1, . . . , Xn] such that for any point z ∈ M the ideal of C[X1, . . . , Xn] gen-
erated by G(1)(z,X1, . . . , Xn), . . . , G(n)(z,X1, . . . , Xn) is radical and of dimension
zero. Moreover we require that the zero–dimensional algebraic variety defined by
G(1)(z,X1, . . . , Xn), . . . , G(n)(z,X1, . . . , Xn) has for any z ∈ M the same number
of points.

Furthermore, let F := O. For M as above let S(M) : G(M) → F(M) be the
map which assigns to any G ∈ G(M) the element F = (Fn)n≥0 of F(M) where all
entries except Fn+1 are zero and where Fn+1 belongs to C 〈M〉 [Xn+1] and satisfies
for any point z ∈ M the following condition:

Fn+1(z,Xn+1) =
∏

ξ ∈ {G(1)(z,X1, . . . , Xn) = 0, . . . ,
G(n)(z,X1, . . . , Xn) = 0}

(Xn+1 −H(z, ξ)).

Observe that the Implicit Function Theorem implies that there really exists
such a polynomial Fn+1 ∈ C 〈M〉 [Xn+1] and that S is a continuous specification
of an elimination task.

Typical branching–parsimonious elimination methods implement restrictions of
the continuous specification S to subfunctors of G. They are all procedures.

Let A be a procedure which implements S. We are now going to discuss a
mathematical property of A which is, in terms of software engineering, a quality
attribute of A. To this end, let M be a constructible subset of an affine space, G an
element of G(M) given by polynomials G(1), . . . , G(n) and H of C 〈M〉 [X1, . . . , Xn]
and let β be a robust and essentially division–free parameterized arithmetic circuit
with parameter domain M which computes the polynomials G(1), . . . , G(n) and H.
Then S(M)(G) is given by a single polynomial Fn+1 ∈ C 〈M〉 [Xn+1] as above and
A(β) is a robust and essentially division–free arithmetic circuit with parameter
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domain M which computes Fn+1. The parameters of the circuit A(β) form the
entries of a geometrically robust constructible map ψ with domain of definition M.

Let us consider a (not necessarily convergent) sequence (zk)k∈N of points zk ∈
M such that (G(1)(zk, X1, . . . , Xn), . . . , G(n)(zk, X1, . . . , Xn), H(zk, X1, . . . , Xn))k∈N

converges for some z ∈ M to (G(1)(z,X1, . . . , Xn), . . . , G(n)(z,X1, . . . , Xn), H(z,
X1, . . . , Xn)). Then the assumption that A is a procedure implies that (ψ(zk))k∈N

converges to ψ(z).
This means that A transforms any approximative computation (in the sense

of [Ald84] and [Lic90] §A) which for some z ∈ M represents the polynomials
G(1)(z, X1, . . . , Xn), . . . , G(n)(z,X1, . . . , Xn) and H(z,X1, . . . , Xn) into an ordinary
arithmetic circuit computing the polynomial Fn+1(z,Xn+1). This constitutes a
natural quality attribute of the procedure A. This quality attribute represents also
a fundamental ingredient of deformation based elimination methods and is essential
for the proof of Theorem 16 below.

We are now going to explain, in terms of software engineering, in which sense
all known branching–parsimonious elimination methods which implement the spec-
ification S are procedures. First they are all designed by means of specification
languages which express only mathematical relations between polynomials and al-
gebraic varieties as abstract data types and encapsulate their representations. Let
Σ be an expression in such a language denoting a branching–parsimonious descrip-
tive program which allows the derivation of an algorithm A that implements the
specification S. Using the terminology of [LG01] we are now going to analyze
how Σ acts on the polynomials G(1), . . . , G(n) and H whose circuit representations
remain encapsulated. In the given situation Σ produces a branching–free non–
recursive program Π of the specification language which is composed by observers
and constructors and, applied to G(1), . . . , G(n) and H, computes the polynomial
Fn+1. In a first stage the observers become applied to G(1), . . . , G(n) and H and
precomputed intermediate results of Π which are geometrically robust constructible
functions with domain of definition M. Moreover these functions can be obtained
by composing the coefficient vector of G(1), . . . , G(n) and H with suitable geometri-
cally robust constructible maps. The outputs of the observers are of the same kind.
They may be combined with constructors which do not involve the indeterminate
Y .

All these results become processed in a second stage in order to compute with-
out branchings the polynomial Fn+1 by means of the constructors contained in
Π. The first and the second stage of this interpretation of the descriptive pro-
gram Σ yield now a procedure which implements the continuous specification S. In
this sense, Theorem 16 below implies that any arithmetic circuit based elimination
method, designed by commonly accepted rules of software engineering, needs expo-
nential time to solve the computational task given by the specification S when we
require that outputs are represented by robust parameterized arithmetic circuits.

Here a word of caution is at order: the method used to prove Theorem 16
indicates only that the design of branching–parsimonious algorithms by means of
specifications like above leads to an exponential complexity blow up. The question
remains open whether there exist more efficient alternative algorithms which do
not encapsulate the representation of polynomials. The previous Theorem 8 con-
tains a condition of branching–parsimoniousness which cannot be satisfied by such
algorithms (if they exist).
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6.1. A hard elimination problem. Let n ∈ N and S1, . . . , Sn, T, U1, . . . , Un

and X1, . . . , Xn be indeterminates. Let U := (U1, . . . , Un), S := (S1, . . . , Sn),
X := (X1, . . . , Xn) and G(1) := X2

1 − X1 − S1, . . . , G
(n) := X2

n − Xn − Sn,
H :=

∑
1≤i≤n 2i−1Xi + T

∏
1≤i≤n(1 + (Ui − 1)Xi).

Observe that the polynomials G(1), . . . , G(n) form a reduced regular sequence in
C[S, T, U,X] and that they define a subvariety V of the affine space A

n×A
1×A

n×
A

n which is isomorphic to A
n × A

1 × A
n and hence irreducible and of dimension

2n+ 1. Moreover, the morphism V → A
n ×A

1 ×A
n which associates to any point

(s, t, u, x) ∈ V the point (s, t, u), is finite and generically unramified. Therefore the
morphism π : V → A

n × A
1 × A

n × A
1 which associates to any (s, t, u, x) ∈ V

the point (s, t, u,H(t, u, x)) ∈ A
n × A

1 × A
n × A

1 is finite and its image π(V )
is a hypersurface of A

n × A
1 × A

n × A
1 with irreducible minimal equation P ∈

C[S, T, U, Y ].
Thus, P is an irreducible elimination polynomial of degree 2n. Therefore any

equation of C[S, T, U, Y ] which defines π(V ) in A
n ×A

1 ×A
n ×A

1 is up to a scalar
factor a power of P .

The equations G(1) = 0, . . . , G(n) = 0 and the polynomial H represent a so
called flat family of zero–dimensional elimination problems with associated elimi-
nation polynomial P (see [HKR13], Section 4.1 for the notion of a flat family of
zero–dimensional elimination problems).

We consider again the continuous specification S : G → F of Example 3. Let
M := {(s1, . . . , sn); s1 �= −1

4 , . . . , sn �= −1
4}×A

1×A
n. We interpret G(1), . . . , G(n), H

and P as polynomials with coefficients in C 〈M〉. Ones sees easily that there exists
an element G of G(M) whose entries are all zero except n + 1 of them which are
the polynomials G(1), . . . , G(n) and H.

The entries of F := S(M)(G) are all zero except one which is the polynomial
P .

Let A be a procedure of our computation model which implements the contin-
uous specification S. Then we have the following complexity result.

Theorem 16. There exist an ordinary division–free arithmetic circuit β of size
O(n) over C with inputs S1, . . . , Sn, T , U1, . . . , Un, X1, . . . , Xn and final results
G(1), . . . , G(n), H. The robust and essentially division–free, parameterized arith-
metic circuit γ := A(β) depends on the basic parameters S1, . . . , Sn, T , U1, . . . , Un

and the input Xn+1 and its single final result is the polynomial P . The circuit γ
has size at least Ω(2n).

The proof of Theorem 16 is similar as that of Theorem 8. Moreover, Theorem
16 implies that the Kronecker algorithm is an asymptotically optimal procedure.
For details we refer the reader to [HKR13], Section 4, where also other exam-
ples of elimination problems are exhibited which are hard for procedures of our
computation model.

Branching–parsimoniousness is a substantial ingredient of the proof of Theorem
16. If we allow arbitrary branchings, the number of arithmetic operations necessary
to solve certain elimination problems may become polynomial in the size of the input
(see [GriHK12]).
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[BCS97] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi, Algebraic complexity
theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 315, Springer-Verlag, Berlin, 1997. With the collaboration
of Thomas Lickteig. MR1440179 (99c:68002)
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Newton iteration, conditioning and zero counting

Gregorio Malajovich

Abstract. Those lectures revolve around the following problem: given a sys-
tem of n real polynomials in n variables, count the number of real roots. The
first lecture is a course on Newton iteration and alpha-theory. The second
describes an inclusion-exclusion algorithm for real polynomials, developed by
Felipe Cucker, Teresa Krick, Mario Wschebor and myself. The third lecture in-
troduces tools for complexity analysis of numerical algorithms, and uses those
tools to analyze our root-counting algorithm.

1. Introduction

Mathematicians’ obsession with counting led to many interesting and far-
fetched problems. These lectures are structured around a seemingly innocent count-
ing problem:

Problem 1.1 (Real root counting). Given a system f = (f1, . . . , fn) of real
polynomial equations in n variables, count the number of real solutions.

You can also find here a crash-course in Newton iteration. We will state and
analyze a Newton iteration based ‘inclusion-exclusion’ algorithm to count (and find)
roots of real polynomials.

That algorithm was investigated in a sequence of three papers by Felipe Cucker,
Teresa Krick, Mario Wschebor and myself (2008, 2009, 2012). Good numerical
properties are proved in the first paper. For instance, the algorithm is tolerant to
controlled rounding error. Instead of covering such technicalities, I will present a
simplified version and focus on the main ideas.

The interest of Problem 1.1 lies in the fact that it is complete for the com-
plexity class #PR over the BSS (Blum-Shub-Smale) computation model over R.
See Blum et al. (1998) for the BSS model of computation. The class #PR was
defined by Meer (2000) as the class of all functions f : R∞ → {0, 1}∞ ∪ {∞} such
that there exists a BSS machine M working in polynomial time and a polynomial
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The author was partially supported by CNPq and CAPES (Brazil) and by the MathAmSud
grant complexity.

c©2011, 2012 Gregorio Malajovich. Sections 2 through 6 appeared previously in Malajovich (2011)

151

Licensed to University Paul Sabatier.  Prepared on Mon Dec 14 09:01:17 EST 2015for download from IP 130.120.37.54.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



152 GREGORIO MALAJOVICH

q satisfying

f(y) = #{z ∈ R
q(size(y) : M(y, z) is an accepting computation.}

We refer to Bürgisser and Cucker (2006) for the proof of completeness and to
Cucker et al. (2008) for references on the subject of counting zeros.

Counting real polynomial roots in R
n can be reduced to counting polynomial

roots in S
n+1. Given a degree d polynomial f(x1, . . . , xn), its homogenization is

fhomo(x0, . . . , xn) = xd
0f(x1/x0, . . . , xn/x0).

Exercise 1.1 (Beware of infinity1). Find an homogeneous polynomial g =
g(y, u) of degree 2 in n+ 2 variables such that

#{x ∈ R
n : f1(x) = · · · = fn(x) = 0}+ 1 =

=
1

2
#{(y, u) ∈ S

n+1 : fhomo
1 (y) = · · · = fhomo

n (y) = g(y, u) = 0}.

Because of the exercise above, replacing n by n− 1, Problem 1.1 reduces to:

Problem 1.2 (Real root counting on Sn). Given a system f = (f1, . . . , fn)
of real homogeneous polynomial equations in n+ 1 variables, count the number of
solutions in Sn.

These lectures are organized as follows. We start by a review of alpha-theory.
This theory originated with a couple of theorems proved by Steve Smale (2006) and
improved subsequently by several authors. It allows to guarantee (quantitatively)
from the available data that Newton iterations will converge quadratically to the
solution of a system of equations.

Then I will speak about the inclusion-exclusion algorithm. It uses crucially
several results of alpha-theory.

The complexity of the inclusion-exclusion algorithm depends upon a condi-
tion number. By endowing the input space with a probability distribution, one
can speak of the expected value of the condition number and of the expected
running time. The final section is a review of the complexity analysis performed
in Cucker et al. (2009) and Cucker et al. (2012).

A warning: these lectures are informal. The model of computation is cloud
computing. This means that we will allow for exponentially many parallel pro-
cessors (essentially, BSS machines) at no additional cost. Moreover, we will be
informal in the sense that we will assume that square roots and operator norms can
be computed exactly in finite time. While this does not happen in the BSS model,
those can be approximated and all our algorithms can be rewritten as rigorous BSS
algorithms at the cost of a harder complexity analysis (Cucker et al., 2008).

Exercise 1.2. What would happen if you could design a true polynomial time
algorithm to solve Problem 1.2?

Acknowledgments. I would like to thank Teresa Krick, Felipe Cucker, Mike
Shub and an anonymous referee for pointing out some mistakes in previous versions.

1Hint for exercise 1.1: Tryg(y,u)=y2
0+y2

1+···+y2
n−y0u.
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Part 1. Newton Iteration and Alpha theory

2. Outline

Let f be a mapping between Banach spaces. Newton Iteration is defined by

N(f ,x) = x−Df(x)−1f(x)

wherever Df(x)−1 exists and is bounded. Its only possible fixed points are those
satisfying f(x) = 0. When f(x) = 0 and Df(x) is invertible, we say that x is a
nondegenerate zero of f .

It is well-known that Newton iteration is quadratically convergent in a neigh-
borhood of a nondegenerate zero ζ. Indeed, N(f ,x)− ζ = 1

2D
2f(ζ)(x− ζ)2 + · · · .

There are two main approaches to quantify how fast is quadratic convergence.
One of them, pioneered by Kantorovich (1996) assumes that the mapping f has
a bounded second derivative, and that this bound is known.

The other approach, developed by Smale (1985, 2006) and described here,
assumes that the mapping f is analytic. Then we will be able to estimate a neigh-
borhood of quadratic convergence around a given zero (Theorem 4.2) or to certify
an ‘approximate root’ (Theorem 5.3) from data that depends only on the value and
derivatives of f at one point.

A more general exposition on this subject may be found in Dedieu (1997b),
covering also overdetermined and undetermined polynomial systems.
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3. The gamma invariant

Throughout this chapter, E and F are Banach spaces, D ⊆ E is open and
f : E→ F is analytic.

This means that if x0 ∈ E is in the domain of E, then there is ρ > 0 with the
property that the series

(1) f(x0) +Df(x0)(x− x0) +
1

2
D2f(x0)(x− x0,x− x0) + · · ·

converges uniformly for ‖x−x0‖ < ρ, and its limit is equal to f(x) (For more details
about analytic functions between Banach spaces, see Nachbin (1964, 1969)).

In order to abbreviate notations, we will write (1) as

f(x0) +Df(x0)(x− x0) +
∑

k≥2

1

k!
Dkf(x0)(x− x0)

k

where the exponent k means that x − x0 appears k times as an argument to the
preceding multi-linear operator.

The maximum of such ρ will be called the radius of convergence. (It is ∞
when the series (1) is globally convergent). This terminology comes from univariate
complex analysis. When E = C, the series will converge for all x ∈ B(x0, ρ) and

diverge for all x �∈ B(x0, ρ). This is no longer true in several complex variables, or
Banach spaces (Exercise 4.1).

The norm of a k-linear operator in Banach Spaces (such as the k-th derivative)
is the operator norm, for instance

‖Dkf(x0)‖E→F = sup
‖u1‖E=···=‖uk‖E=1

‖Dkf(x0)(u1, . . . ,uk)‖F.

As long as there is no ambiguity, we drop the subscripts of the norm.

Definition 3.1 (Smale’s γ invariant). Let f : D ⊆ E → F be an analytic
mapping between Banach spaces, and x0 ∈ D. When Df(x0) is invertible, define

γ(f ,x0) = sup
k≥2

(
‖Df(x0)

−1Dkf(x0)‖
k!

) 1
k−1

.

Otherwise, set γ(f ,x0) =∞.

In the one variable setting, this can be compared to the radius of convergence
ρ of f ′(x)/f ′(x0), that satisfies

ρ−1 = lim sup
k≥2

(
‖f ′(x0)

−1f (k)(x0)‖
k!

) 1
k−1

.

More generally,

Proposition 3.2. Let f : D ⊆ E → F be a C∞ map between Banach spaces,
and x0 ∈ D. Then f is analytic in x0 if and only if, γ(f, x0) is finite. The series

(2) f(x0) +Df(x0)(x− x0) +
∑

k≥2

1

k!
Dkf(x0)(x− x0)

k

is uniformly convergent for x ∈ B(x0, ρ) for any ρ < 1/γ(f ,x0)).
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Proof of the if in Prop.3.2. The series

Df(x0)
−1f(x0) + (x− x0) +

∑

k≥2

1

k!
Df(x0)

−1Dkf(x0)(x− x0)
k

is uniformly convergent in B(x0, ρ) where

ρ−1 < lim sup
k≥2

(
‖Df(x0)

−1Dkf(x0)‖
k!

) 1
k

≤ lim sup
k≥2

γ(f ,x0)
k−1
k

= lim
k→∞

γ(f ,x0)
k−1
k

= γ(f ,x0)

�

Before proving the only if part of Proposition 3.2, we need to relate the norm
of a multi-linear map to the norm of the corresponding polynomial.

Lemma 3.3. Let k ≥ 2. Let T : Ek → F be k-linear and symmetric. Let
S : E→ F, S(x) = T (x,x, . . . ,x) be the corresponding polynomial. Then,

‖T‖ ≤ ek−1 sup
‖x‖≤1

‖S(x)‖

Proof. The polarization formula for (real or complex) tensors is

T(x1, · · · ,xk) =
1

2kk!

∑

εj=±1
j=1,...,k

ε1 · · · εkS
(

k∑

l=1

εlxl

)

It is easily derived by expanding the expression inside parentheses. There will be
2kk! terms of the form

ε1 · · · εkT (x1,x2, · · · ,xk)

or its permutations. All other terms miss at least one variable (say xj). They
cancel by summing for εj = ±1.

It follows that when ‖x‖ ≤ 1,

T(x1, · · · ,xk) ≤ 1

k!
max
εj=±1
j=1,...,k

∥
∥
∥
∥
∥
S

(
k∑

l=1

εlxl

)∥
∥
∥
∥
∥

≤ kk

k!
sup

‖x‖≤1

‖S(x)‖

The Lemma follows from using Stirling’s formula,

k! ≥
√
2πkkke−ke1/(12k+1).

We obtain:

‖T‖ ≤
(

1√
2πk

e−
1

12k+1

)

ek sup
‖x‖≤1

‖S(x)‖.

Then we use the fact that k ≥ 2, hence
√
2πk ≥ e. �
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Proof of Prop.3.2, only if part. Assume that the series (2) converges uni-
formly for ‖x − x0‖ < ρ. Without loss of generality assume that E = F and
Df(x0) = I.

We claim that

lim sup
k≥2

sup
‖u‖=1

‖ 1
k!
Dkf(x0)u

k‖1/k ≤ ρ−1.

Indeed, assume that there is δ > 0 and infinitely many pairs (k,u) with ‖ui‖ = 1
and

‖ 1
k!
Dkf(x0)u

k‖1/k > ρ−1(1 + δ).

In that case,

‖ 1
k!
Dkf(x0)

(
ρ√
1 + δ

u

)k

‖ >
(√

1 + δ
)k

infinitely many times, and hence (2) does not converge uniformly on B(x0, ρ).
Now, we can apply Lemma 3.3 to obtain:

lim sup
k≥2

‖ 1
k!
Dkf(x0)‖1/(k−1) ≤ e lim sup

k≥2
sup

‖u‖=1

‖ 1
k!
Dkf(x0)u

k‖ 1
k−1

≤ e lim
k→∞

ρ−(1+1/(k−1))

= eρ−1

and therefore ‖ 1
k!D

kf(x0)‖1/(k−1) is bounded. �

Exercise 3.1. Show the polarization formula for an Hermitian product:

〈u,v〉 = 1

4

∑

ε4=1

ε‖u+ εv‖2

Explain why this is different from the one in Lemma 3.3.

Exercise 3.2. If one drops the uniform convergence hypothesis in the definition
of analytic functions, what happens to Proposition 3.2?

4. The γ-Theorems

The following concept provides a good abstraction of quadratic convergence.

Definition 4.1 (Approximate zero of the first kind). Let f : D ⊆ E → F be
as above, with f(ζ) = 0. An approximate zero of the first kind associated to
ζ is a point x0 ∈ D, such that

(1) The sequence (x)i defined inductively by xi+1 = N(f ,xi) is well-defined
(each xi belongs to the domain of f and Df(xi) is invertible and bounded).

(2)

‖xi − ζ‖ ≤ 2−2i+1‖x0 − ζ‖.

The existence of approximate zeros of the first kind is not obvious, and requires
a theorem.
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Figure 1. y = ψ(u)

Theorem 4.2 (Smale). Let f : D ⊆ E→ F be an analytic map between Banach
spaces. Let ζ be a nondegenerate zero of f . Assume that

B = B

(

ζ,
3−

√
7

2γ(f , ζ)

)

⊆ D.

Every x0 ∈ B is an approximate zero of the first kind associated to ζ. The
constant (3−

√
7)/2 is the smallest with that property.

Before going further, we remind the reader of the following fact.

Lemma 4.3. Let d ≥ 1 be integer, and let |t| < 1. Then,

1

(1− t)d
=
∑

k≥0

(
k + d− 1
d− 1

)

tk.

Proof. Differentiate d − 1 times the two sides of the expression 1/(1 − t) =
1 + t+ t2 + · · · , and then divide both sides by d− 1! �

Lemma 4.4. The function ψ(u) = 1− 4u+ 2u2 is decreasing and non-negative

in [0, 1−
√
2/2], and satisfies:

u

ψ(u)
< 1 for u ∈ [0, (5−

√
17)/4)(3)

u

ψ(u)
≤ 1

2
for u ∈ [0, (3−

√
7)/2] .(4)

The proof of Lemma 4.4 is left to the reader (but see Figure 1).
Another useful result is:

Lemma 4.5. Let A be a n× n matrix. Assume ‖A− I‖2 < 1. Then A has full
rank and, for all y,

‖y‖
1 + ‖A− I‖2

≤ ‖A−1y‖2 ≤
‖y‖

1− ‖A− I‖2
.
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158 GREGORIO MALAJOVICH

Proof. By hypothesis, ‖Ax‖ > 0 for all x �= 0 so that A has full rank. Let
y = Ax. By triangular inequality,

‖Ax‖ ≥ ‖x‖ − ‖(A− I)x‖ ≥ (1− ‖(A− I)‖2)‖x‖.
Also by triangular inequality,

‖Ax‖ ≤ ‖x‖+ ‖(A− I)x‖ ≤ (1 + ‖(A− I)‖2)‖x‖.
�

The following Lemma will be needed:

Lemma 4.6. Assume that u = ‖x− y‖γ(f ,x) < 1−
√
2/2. Then,

‖Df(y)−1Df(x)‖ ≤ (1− u)2

ψ(u)
.

Proof. Expanding y �→ Df(x)−1Df(y) around x, we obtain:

Df(x)−1Df(y) = I +
∑

k≥2

1

k − 1!
Df(x)−1Dkf(x)(y− x)k−1.

Rearranging terms and taking norms, Lemma 4.3 yields

‖Df(x)−1Df(y)− I‖ ≤ 1

(1− γ‖y − x‖)2 − 1.

By Lemma 4.5 we deduce that Df(x)−1Df(y) is invertible, and

(5) ‖Df(y)−1Df(x)‖ ≤ 1

1− ‖Df(x)−1Df(y)− I‖ =
(1− u)2

ψ(u)
.

�

Here is the method for proving Theorem 4.2 and similar ones: first we study
the convergence of Newton iteration applied to a ‘universal’ function. In this case,
set

hγ(t) = t− γt2 − γ2t3 − · · · = t− γt2

1− γt
.

(See figure 2).
The function hγ has a zero at t = 0, and γ(hγ , 0) = γ. Then, we compare the

convergence of Newton iteration applied to an arbitrary function to the convergence
when applied to the universal function.

Lemma 4.7. Assume that 0 ≤ u0 = γt0 < 5−
√
17

4 . Then the sequences

ti+1 = N(hγ , ti) and ui+1 =
u2
i

ψ(ui)

are well-defined for all i, limi→∞ ti = 0, and

|ti|
|t0|

=
ui

u0
≤
(

u0

ψ(u0)

)2i−1

.

Moreover,
|ti|
|t0|

≤ 2−2i+1

for all i if and only if u0 ≤ 3−
√
7

2 .
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Figure 2. y = hγ(t)

Proof. We just compute

h′
γ(t) =

ψ(γt)

(1− γt)2

th′
γ(t)− hγ(t) = − γt2

(1− γt)2

N(hγ , t) = − γt2

ψ(γt)
.

When u0 < 5−
√
17

4 , (3) implies that the sequence ui is decreasing, and by
induction

ui = γ|ti|.
Moreover,

ui+1

u0
=

(
ui

u0

)2
u0

ψ(ui)
≤
(
ui

u0

)2
u0

ψ(u0)
<

(
ui

u0

)2

.

By induction,

ui

u0
≤
(

u0

ψ(u0)

)2i−1

.

This also implies that lim ti = 0.
When furthermore u0 ≤ (3 −

√
7)/2, u0/ψ(u0) ≤ 1/2 by (4) hence ui/u0 ≤

2−2i+1. For the converse, if u0 > (3−
√
7)/2, then

|t1|
|t0|

=
u0

ψ(u0)
>

1

2
.

�
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Before proceeding to the proof of Theorem 4.2, a remark is in order.
Both Newton iteration and γ are invariant with respect to translation and to

linear changes of coordinates: let g(x) = Af(x − ζ), where A is a continuous and
invertible linear operator from F to E. Then

N(g,x+ ζ) = N(f ,x) + ζ and γ(g,x+ ζ) = γ(f ,x).

Also, distances in E are invariant under translation.

Proof of Th.4.2. Assume without loss of generality that ζ = 0 and Df(ζ) =
I. Set γ = γ(f ,x), u0 = ‖x0‖γ, and let hγ and the sequence (ui) be as in Lemma 4.7.

We will bound

(6) ‖N(f ,x)‖ =
∥
∥x−Df(x)−1f(x)

∥
∥ ≤ ‖Df(x)−1‖‖f(x)−Df(x)x‖.

The Taylor expansions of f and Df around 0 are respectively:

f(x) = x+
∑

k≥2

1

k!
Dkf(0)xk

and

(7) Df(x) = I +
∑

k≥2

1

k − 1!
Dkf(0)xk−1.

Combining the two equations, above, we obtain:

f(x)−Df(x)x =
∑

k≥2

k − 1

k!
Dkf(0)xk.

Using Lemma 4.3 with d = 2, the rightmost term in (6) is bounded above by

(8) ‖f(x)−Df(x)x‖ ≤
∑

k≥2

(k − 1)γk−1‖x‖k =
γ‖x‖2

(1− γ‖x‖)2 .

Combining Lemma 4.6 and (8) in (6), we deduce that

‖N(f ,x)‖ ≤ γ‖x‖2
ψ(γ‖x‖) .

By induction, ui ≤ γ‖xi‖. When u0 ≤ (3−
√
7)/2, we obtain as in Lemma 4.7

that

‖xi‖
‖x0‖

≤ ui

u0
≤ 2−2i+1.

We have seen in Lemma 4.7 that the bound above fails for i = 1 when u0 >
(3−

√
7)/2. �

Notice that in the proof above,

lim
i→∞

u0

ψ(ui)
= u0.

Therefore, convergence is actually faster than predicted by the definition of
approximate zero. We proved actually a sharper result:
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1/32 1/16 1/10 1/8 3−
√
7

2

1 4.810 3.599 2.632 2.870 1.000
2 14.614 11.169 8.491 6.997 3.900
3 34.229 26.339 20.302 16.988 10.229
4 73.458 56.679 43.926 36.977 22.954
5 151.917 117.358 91.175 76.954 48.406

Table 1. Values of −log2(ui/u0) in function of u0 and i.

Figure 3. Values of log2(ui/u0) in function of u0 for i = 1, . . . , 4.

Theorem 4.8. Let f : D ⊆ E→ F be an analytic map between Banach spaces.
Let ζ be a nondegenerate zero of f . Let u0 < (5−

√
17)/4.

Assume that

B = B

(

ζ,
u0

γ(f , ζ)

)

⊆ D.

If x0 ∈ B, then the sequences

xi+1 = N(f ,xi) and ui+1 =
u2
i

ψ(ui)

are well-defined for all i, and

‖xi − ζ‖
‖x0 − ζ‖ ≤

ui

u0
≤
(

u0

ψ(u0)

)−2i+1

.

Table 1 and Figure 3 show how fast ui/u0 decreases in terms of u0 and i.

To conclude this section, we need to address an important issue for numerical
computations. Whenever dealing with digital computers, it is convenient to perform
calculations in floating point format. This means that each real number is stored as
a mantissa (an integer, typically no more than 224 or 253) times an exponent. (The

Licensed to University Paul Sabatier.  Prepared on Mon Dec 14 09:01:17 EST 2015for download from IP 130.120.37.54.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



162 GREGORIO MALAJOVICH

IEEE-754 standard for computer arithmetic (IEEE, 2008) is taught at elementary
numerical analysis courses, see for instance Higham (2002, Ch.2)).

By using floating point numbers, a huge gain of speed is obtained with regard to
exact representation of, say, algebraic numbers. However, computations are inexact
(by a typical factor of 2−24 or 2−53). Therefore, we need to consider inexact
Newton iteration. An obvious modification of the proof of Theorem 4.2 gives us
the following statement:

Theorem 4.9. Let f : D ⊆ E→ F be an analytic map between Banach spaces.
Let ζ be a nondegenerate zero of f . Let

0 ≤ 2δ ≤ u0 ≤ 2−
√
14

2
! 0.129 · · ·

Assume that

(1)

B = B

(

ζ,
u0

γ(f , ζ)

)

⊆ D.

(2) x0 ∈ B, and the sequence xi satisfies

‖xi+1 −N(f ,xi)‖γ(f , ζ) ≤ δ

(3) The sequence ui is defined inductively by

ui+1 =
u2
i

ψ(ui)
+ δ.

Then the sequences ui and xi are well-defined for all i, xi ∈ D, and
‖xi − ζ‖
‖x0 − ζ‖ ≤

ui

u0
≤ max

(

2−2i+1, 2
δ

u0

)

.

Proof. By hypothesis,
u0

ψ(u0)
+

δ

u0
< 1

so the sequence ui is decreasing and positive. For short, let q = u0

ψ(u0)
≤ 1/4. By

induction,

ui+1

u0
≤ u0

ψ(ui)

(
ui

u0

)2

+
δ

u0
≤ 1

4

(
ui

u0

)2

+
δ

u0
.

Assume that ui/u0 ≤ 2−2i+1. In that case,

ui+1

u0
≤ 2−2i+1

+
δ

u0
≤ max

(

2−2i+1+1, 2
δ

u0

)

.

Assume now that 2−2i+1, ui/u0 ≤ 2δ/u0. In that case,

ui+1

u0
≤ δ

u0

(
δ

4u0
+ 1

)

≤ 2δ

u0
= max

(

2−2i+1+1, 2
δ

u0

)

.

From now on we use the assumptions, notations and estimates of the proof of
Theorem 4.2. Combining (5) and (8) in (6), we obtain again that

‖N(f ,x)‖ ≤ γ‖x‖2
ψ(γ‖x‖) .
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This time, this means that

‖xi+1‖γ ≤ δ + ‖N(f ,x)‖γ ≤ δ +
γ2‖x‖2
ψ(γ‖x‖) .

By induction that ‖xi − ζ‖γ(f , ζ) < ui and we are done. �

Exercise 4.1. Consider the following series, defined in C
2:

g(x) =

∞∑

i=0

xi
1x

i
2.

Compute its radius of convergence. What is its domain of absolute convergence ?

Exercise 4.2. The objective of this exercise is to produce a non-optimal algo-
rithm to approximate

√
y. In order to do that, consider the mapping f(x) = x2−y.

(1) Compute γ(f, x).
(2) Show that for 1 ≤ y ≤ 4, x0 = 1/2 + y/2 is an approximate zero of the

first kind for x, associated to
√
y.

(3) Write down an algorithm to approximate
√
y up to relative accuracy 2−63.

Exercise 4.3. Let f be an analytic map between Banach spaces, and assume
that ζ is a nondegenerate zero of f .

(1) Write down the Taylor series of Df(ζ)−1 (f(x)− f(ζ)).
(2) Show that if f(x) = 0, then

γ(f , ζ)‖x− ζ‖ ≥ 1/2.

This shows that two nondegenerate zeros cannot be at a distance less than 1/2γ(f , ζ).
Results of this type appeared in Dedieu (1997a), but some of them were known
before Malajovich (1993, Th.16).

5. Estimates from data at a point

Theorem 4.2 guarantees quadratic convergence in a neighborhood of a known
zero ζ. In practical situations, ζ is not known. A major result in alpha-theory is
the criterion to detect an approximate zero with just local information. We need
to slightly modify the definition.

Definition 5.1 (Approximate zero of the second kind). Let f : D ⊆ E → F

be as above. An approximate zero of the second kind associated to ζ ∈ D,
f(ζ) = 0, is a point x0 ∈ D, such that

(1) The sequence (x)i defined inductively by xi+1 = N(f ,xi) is well-defined
(each xi belongs to the domain of f and Df(xi) is invertible and bounded).

(2)

‖xi+1 − xi‖ ≤ 2−2i+1‖x1 − x0‖.
(3) limi→∞ xi = ζ.

For detecting approximate zeros of the second kind, we need:

Definition 5.2 (Smale’s β and α invariants).

β(f ,x) = ‖Df(x)−1f(x)‖ and α(f ,x) = β(f ,x)γ(f ,x).

The β invariant can be interpreted as the size of the Newton step N(f ,x)− x.
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Theorem 5.3 (Smale). Let f : D ⊆ E→ F be an analytic map between Banach
spaces. Let

α ≤ α0 =
13− 3

√
17

4
.

Define

r0 =
1 + α−

√
1− 6α+ α2

4α
and r1 =

1− 3α−
√
1− 6α+ α2

4α
.

Let x0 ∈ D be such that α(f ,x0) ≤ α and assume furthermore that B(x0, r0β(f ,x0))
⊆ D. Then,

(1) x0 is an approximate zero of the second kind, associated to some zero
ζ ∈ D of f .

(2) Moreover, ‖x0 − ζ‖ ≤ r0β(f ,x0).
(3) Let x1 = N(f ,x0). Then ‖x1 − ζ‖ ≤ r1β(f ,x0).

The constant α0 is the largest possible with those properties.

This theorem appeared in Dedieu (2006). The value for α0 was found by
Wang Xinghua Wang (1993). Numerically,

α0 = 0.157, 670, 780, 786, 754, 587, 633, 942, 608, 019 · · ·

Other useful numerical bounds, under the hypotheses of the theorem, are:

r0 ≤ 1.390, 388, 203 · · · and r1 ≤ 0.390, 388, 203 · · · .

The proof of Theorem 5.3 follows from the same method as the one for Theo-
rem 4.2. We first define the ‘worst’ real function with respect to Newton iteration.
Let us fix β, γ > 0. Define

hβγ(t) = β − t+
γt2

1− γt
= β − t+ γt2 + γ2t3 + · · · .

We assume for the time being that α = βγ < 3 − 2
√
2 = 0.1715 · · · . This

guarantees that hβγ has two distinct zeros ζ1 = 1+α−
√
Δ

4γ and ζ2 = 1+α+
√
Δ

4γ with

of course Δ = (1 + α)2 − 8α. An useful expression is the product formula

(9) hβγ(x) = 2
(x− ζ1)(x− ζ2)

γ−1 − x
.

From (9), hβγ has also a pole at γ−1. We have always 0 < ζ1 < ζ2 < γ−1.
The function hβγ is, among the functions with h′(0) = −1 and β(h, 0) ≤ β and

γ(h, 0) ≤ γ, the one that has the first zero ζ1 furthest away from the origin.

Proposition 5.4. Let β, γ > 0, with α = βγ ≤ 3 − 2
√
2. let hβγ be as above.

Define recursively t0 = 0 and ti+1 = N(hβγ , ti). then

(10) ti = ζ1
1− q2

i−1

1− ηq2i−1
,

with

η =
ζ1
ζ2

=
1 + α−

√
Δ

1 + α+
√
Δ

and q =
ζ1 − γζ1ζ2
ζ2 − γζ1ζ2

=
1− α−

√
Δ

1− α+
√
Δ
.
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Figure 4. y = hβγ(t).

Proof. By differentiating (9), one obtains

h′
βγ(t) = hβγ(t)

(
1

t− ζ1
+

1

t− ζ2
+

1

γ−1 − t

)

and hence the Newton operator is

N(hβγ , t) = t− 1
1

t−ζ1
+ 1

t−ζ2
+ 1

γ−1−t

.

A tedious calculation shows that N(hβγ , t) is a rational function of degree 2.
Hence, it is defined by 5 coefficients, or by 5 values.

In order to solve the recurrence for ti, we change coordinates using a fractional
linear transformation. As the Newton operator will have two attracting fixed points
(ζ1 and ζ2), we will map those points to 0 and∞ respectively. For convenience, we
will map t0 = 0 into y0 = 1. Therefore, we set

S(t) =
ζ2t− ζ1ζ2
ζ1t− ζ1ζ2

and S−1(y) =
−ζ1ζ2y + ζ1ζ2
−ζ1y + ζ2

Let us look at the sequence yi = S(ti). By construction y0 = 1, and subsequent
values are given by the recurrence

yi+1 = S(N(hβγ , S
−1(yi))).

It is an exercise to check that

(11) yi+1 = qy2i ,

Therefore we have yi = q2
i−1, and equation (10) holds. �
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Proposition 5.5. Under the conditions of Proposition 5.4, 0 is an approximate
zero of the second kind for hβγ if and only if

α = βγ ≤ 13− 3
√
17

4
.

Proof. Using the closed form for ti, we get:

ti+1 − ti =
1− q2

i+1−1

1− ηq2i+1−1
− 1− q2

i−1

1− ηq2i−1

= q2
i−1 (1− η)(1− q2

i

)

(1− ηq2i+1−1)(1− ηq2i−1)

In the particular case i = 0,

t1 − t0 =
1− q

1− ηq
= β

Hence
ti+1 − ti

β
= Ciq

2i−1

with

Ci =
(1− η)(1− ηq)(1− q2

i

)

(1− q)(1− ηq2i+1−1)(1− ηq2i−1)
.

Thus, C0 = 1. The reader shall verify in Exercise 5.1 that Ci is a non-increasing
sequence. Its limit is non-zero.

From the above, it is clear that 0 is an approximate zero of the second kind
if and only if q ≤ 1/2. Now, if we clear denominators and rearrange terms in

(1 + α−
√
Δ)/(1 + α+

√
Δ) = 1/2, we obtain the second degree polynomial

2α2 − 13α+ 2 = 0.

This has solutions (13 ±
√
17)/2. When 0 ≤ α ≤ α0 = (13 −

√
17)/2, the

polynomial values are positive and hence q ≤ 1/2. �
Proof of Th.5.3. Let β = β(f ,x0) and γ = γ(f ,x0). Let hβγ and the se-

quence ti be as in Proposition 5.4. By construction, ‖x1 − x0‖ = β = t1 − t0. We
use the following notations:

βi = β(f ,xi) and γi = γ(f ,xi).

Those will be compared to

β̂i = β(hβγ , ti)) and γ̂i = γ(hβγ , ti)).

Induction hypothesis: βi ≤ β̂i and for all l ≥ 2,

‖Df(xi)
−1Dlf(xi)‖ ≤ −

h
(l)
βγ(ti)

h′
βγ(ti)

.

The initial case when i = 0 holds by construction. So let us assume that the
hypothesis holds for i. We will estimate

(12) βi+1 ≤ ‖Df(xi+1)
−1Df(xi)‖‖Df(xi)

−1f(xi+1)‖
and

(13) γi+1 ≤ ‖Df(xi+1)
−1Df(xi)‖

‖Df(xi)
−1Dkf(xi+1)‖
k!

.
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By construction, f(xi) +Df(xi)(xi+1 − xi) = 0. The Taylor expansion of f at
xi is therefore

Df(xi)
−1f(xi+1) =

∑

k≥2

Df(xi)
−1Dkf(xi)(xi+1 − xi)

k

k!

Passing to norms,

‖Df(xi)
−1f(xi+1)‖ ≤

β2
i γi

1− γi
The same argument shows that

−hβγ(ti+1)

h′
βγ(ti)

=
β(hβγ , ti)

2γ(hβγ , ti)

1− γ(hβγ , ti)

From Lemma 4.6,

‖Df(xi+1)
−1Df(xi)‖ ≤

(1− βiγi)
2

ψ(βiγi)
.

Also, computing directly,

(14)
h′
βγ(ti+1)

h′
βγ(ti)

=
(1− β̂γ̂)2

ψ(β̂γ̂)
.

We established that

βi+1 ≤
β2
i γi(1− βiγi)

ψ(βiγi)
≤ β̂2

i γ̂i(1− β̂iγ̂i)

ψ(β̂iγ̂i)
= β̂i+1.

Now the second part of the induction hypothesis:

Df(xi)
−1Dlf(xi+1) =

∑

k≥0

1

k!

Df(xi)
−1Dk+lf(xi)(xi+1 − xi)

k

k + l

Passing to norms and invoking the induction hypothesis,

‖Df(xi)
−1Dlf(xi+1)‖ ≤

∑

k≥0

−
h
(k+l)
βγ (ti)β̂

k
i

k!h′
βγ(ti)

and then using Lemma 4.6 and (14),

‖Df(xi+1)
−1Dlf(xi+1)‖ ≤

(1− β̂iγ̂i)
2

ψ(β̂iγ̂i)

∑

k≥0

−
h
(k+l)
βγ (ti)β̂

k
i

k!h′
βγ(ti)

.

A direct computation similar to (14) shows that

−
h
(k+l)
βγ (ti+1)

k!h′
βγ(ti+1)

=
(1− β̂iγ̂i)

2

ψ(β̂iγ̂i)

∑

k≥0

−
h
(k+l)
βγ (ti)β̂

k
i

k!h′
βγ(ti)

.

and since the right-hand-terms of the last two equations are equal, the second part
of the induction hypothesis proceeds. Dividing by l!, taking l − 1-th roots and
maximizing over all l, we deduce that γi ≤ γ̂i.

Proposition 5.5 then implies that x0 is an approximate zero.

The second and third statement follow respectively from

‖x0 − ζ‖ ≤ β0 + β1 + · · · = ζ1
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1/32 1/16 1/10 1/8 13−3
√
17

4

1 4.854 3.683 2.744 2.189 1.357
2 14.472 10.865 7.945 6.227 3.767
3 33.700 25.195 18.220 14.41 7.874
4 72.157 53.854 38.767 29.648 15.881
5 149.71 111.173 79.861 60.864 31.881
6 302.899 225.811 162.49 123.295 63.881

Table 2. Values of −log2(‖xi − ζ‖/β) in function of α and i.

and
‖x1 − ζ‖ ≤ β1 + β2 + · · · = ζ1 − β.

�
The same issues as in Theorem 4.2 arise. First of all, we actually proved a

sharper statement. Namely,

Theorem 5.6. Let f : D ⊆ E→ F be an analytic map between Banach spaces.
Let

α ≤ 3− 2
√
2.

Define

r =
1 + α−

√
1− 6α+ α2

4α
.

Let x0 ∈ D be such that α(f ,x0) ≤ α and assume furthermore that B(x0, rβ(f ,x0)) ⊆
D. Then, the sequence xi+1 = N(f ,xi) is well defined, and there is a zero ζ ∈ D
of f such that

‖xi − ζ‖ ≤ q2
i−1 1− η

1− ηq2i−1
rβ(f ,x0).

for η and q as in Proposition 5.4.

Table 2 and Figure 5 show how fast ‖xi − ζ‖/β decreases in terms of α and i.

The final issue is robustness. There is no obvious modification of the proof of
Theorem 5.3 to provide a nice statement, so we will rely on Theorem 4.9 indeed.

Theorem 5.7. Let f : D ⊆ E→ F be an analytic map between Banach spaces.
Let δ, α and u0 satisfy

0 ≤ 2δ < u0 =
rα

(1− rα)ψ(rα)
< 2−

√
14

2

with r = 1+α−
√
1−6α+α2

4α . Assume that

(1)
B = B (x0, 2rβ(f ,x0)) ⊆ D.

(2) x0 ∈ B, and the sequence xi satisfies

‖xi+1 −N(f ,xi)‖
rβ(f, x0)

(1− rα)ψ(rα)
≤ δ

(3) The sequence ui is defined inductively by

ui+1 =
u2
i

ψ(ui)
+ δ.
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NEWTON ITERATION, CONDITIONING AND ZERO COUNTING 169

Figure 5. Values of −log2(‖xi − ζ‖/β) in function of α for i = 1
to 6.

Then the sequences ui and xi are well-defined for all i, xi ∈ D, and
‖xi − ζ‖
‖x1 − x0‖

≤ rui

u0
≤ rmax

(

2−2i+1, 2
δ

u0

)

.

Numerically, α0 = 0.074, 290 · · · satisfies the hypothesis of the Theorem. A
version of this theorem (not as sharp, and another metric) appeared as Theorem 2
in Malajovich (1994).

The following Lemma will be useful:

Lemma 5.8. Assume that u = γ(f ,x)‖x− y‖ ≤ 1−
√
2/2. Then,

γ(f ,y) ≤ γ(f ,x)

(1− u)ψ(u)
.

Proof. In order to estimate the higher derivatives, we expand:

1

l!
Df(x)−1Dlf(y) =

∑

k≥0

(
k + l
l

)
Df(x)−1Dk+lf(x)(y− x)k

k + l

and by Lemma 4.3 for d = l + 1,

1

l!
‖Df(x)−1Dlf(y)‖ ≤ γ(f ,x)l−1

(1− u)l+1
.

Combining with Lemma 4.6,

1

l!
‖Df(y)−1Dlf(y)‖ ≤ γ(f ,x)l−1

(1− u)l−1ψ(u)
.

Taking the l − 1-th power,

γ(f ,y) ≤ γ(f ,x)

(1− u)ψ(u)
.

�
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170 GREGORIO MALAJOVICH

Proof of Theorem 5.7. We have necessarily α < 3− 2
√
2 or r is undefined.

Then (Theorem 5.6) there is a zero ζ of f with ‖x0 − ζ‖ ≤ rβ(f, x0). Then,
Lemma 5.8 implies that ‖x0 − ζ‖γ(f , ζ) ≤ u0. Now apply Theorem 4.9.

�

Exercise 5.1. The objective of this exercise is to show that Ci is non-increasing.

(1) Show the following trivial lemma: If 0 ≤ s < a ≤ b, then a−s
b−s ≤

a
b .

(2) Deduce that q ≤ η.
(3) Prove that Ci+1/Ci ≤ 1.

Exercise 5.2. Show that

ζ1γ(ζ1) =
1 + α−

√
Δ

3− α+
√
Δ

1

ψ
(

1+α−
√
Δ

4

) .

Part 2. Inclusion and exclusion

6. Eckart-Young theorem

The following classical theorem in linear algebra is known as the singular
value decomposition (svd for short).

Theorem 6.1. Let A : Rn �→ R
m (resp. C

n → C
m) be linear. Then, there are

σ1 ≥ · · · ≥ σr > 0, r ≤ m,n, such that

A = UΣV ∗

with U ∈ O(m) (resp. U(m)), V ∈ O(n) (resp. U(n)) and Σij = σi for i = j ≤ r
and 0 otherwise.

It is due to Sylvester (real n× n matrices) and to Eckart and Young (1939) in
the general case, now exercise 6.1 below.

Σ is a m×n matrix. It is possible to rewrite this in an ‘economical formulation
with Σ an r × r matrix, U and V orthogonal (resp. unitary) m × r and n × r
matrices. The numbers σ1, . . . , σr are called singular values of A. They may be
computed by extracting the positive square root of the non-zero eigenvalues of A∗A
or AA∗, whatever matrix is smaller. The operator and Frobenius norm of A may
be written in terms of the σi’s:

‖A‖2 = σ1 ‖A‖F =
√
σ2
1 + · · ·+ σ2

r .

The discussion and the results above hold when A is a linear operator between
finite dimensional inner product spaces. It suffices to choose an orthonormal basis,
and apply Theorem 6.1 to the corresponding matrix.

When m = n = r, ‖A−1‖2 = σ−1
n . In this case, the condition number of A

for linear solving is defined as

κ(A) = ‖A‖∗‖A−1‖∗∗.
The choice of norms is arbitrary, as long as operator and vector norms are consistent.
Two canonical choices are

κ2(A) = ‖A‖2‖A−1‖2 and κD(A) = ‖A‖F ‖A−1‖2.
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NEWTON ITERATION, CONDITIONING AND ZERO COUNTING 171

The second choice was suggested by Demmel (1988). Using that definition he
obtained bounds on the probability that a matrix is poorly conditioned. The exact
probability distribution for the most usual probability measures in matrix space
was computed in Edelman (1992).

Assume that A(t)x(t) ≡ b(t) is a family of problems and solutions depending
smoothly on a parameter t. Differentiating implicitly,

Ȧx+Aẋ = ḃ

which amounts to

ẋ = A−1ḃ−A−1Ȧx.

Passing to norms and to relative errors, we quickly obtain

‖ẋ‖
‖x‖ ≤ κD(A)

(
‖Ȧ‖F
‖A‖F

+
‖ḃ‖
‖b‖

)

.

This bounds the relative error in the solution x in terms of the relative er-
ror in the coefficients. The usual paradigm in numerical linear algebra dates
from Turing (1948) and Wilkinson (1963). After the rounding-off during com-
putation, we obtain the exact solution of a perturbed system. Bounds for the
perturbation or backward error are found through line by line analysis of the
algorithm. The output error or forward error is bounded by the backward error,
times the condition number.

Condition numbers provide therefore an important metric invariant for numer-
ical analysis problems. A geometric interpretation in the case of linear equation
solving is:

Theorem 6.2. Let A be a nondegenerate square matrix.

‖A−1‖2 = min
det(A+B)=0

‖B‖F

In particular, this implies that

κD(A)−1 = min
det(A+B)=0

‖B‖F
‖A‖F

A pervading principle in the subject is: the inverse of the condition num-
ber is related to the distance to the ill-posed problems.

It is possible to define the condition number for a full-rank non- square matrix
by

κD(A) = ‖A‖F σmin(m,n)(A)−1.

Theorem 6.3. (Eckart and Young, 1936) Let A be an m × n matrix of
rank r. Then,

σr(A)−1 = min
σr(A+B)=0

‖B‖F .

In particular, if r = min(m,n),

κD(A)−1 = min
σr(A+B)=0

‖B‖F
‖A‖F

.

Exercise 6.1. Prove Theorem 6.1. Hint: let u, v, σ such that Av = σu with
σ maximal, ‖u‖ = 1, ‖v‖ = 1. What can you say about A|v⊥?
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Exercise 6.2. Prove Theorem 6.3.

Exercise 6.3. Assume furthermore that m < n. Show that the same interpre-
tation for the condition number still holds, namely the norm of the perturbation of
some solution is bounded by the condition number, times the perturbation of the
input.

7. The space of homogeneous polynomial systems

We will denote by HR

d the space of polynomials of degree d in n+ 1 variables.
This space can be associated to the space of symmetric d-linear forms. For instance,
when d = 2, the polynomial

f(x0, x1) = f0x
2
0 + f1x0x1 + f2x

2
1 =

[
x0 x1

]
[

f0 f1/2
f1/2 f0

] [
x0

x1

]

can be associated to a symmetric bilinear form and can be represented by a matrix.
In general, a homogeneous polynomial can be represented by a symmetric tensor

f(x) =
∑

|a|=d

fax
a0
0 · · ·xan

n =
∑

0≤i1,...,id≤n

Ti1i2...idxi1xi2 · · ·xid

where
fa =

∑

1≤i1,...,in≤n
ei1+ei2+···eid=a

Ti1i2...id

and ei denotes the i-th vector of the canonical basis of Rn.
The canonical inner product for tensors is given by

〈S, T 〉 =
∑

0≤i1,...,id≤n

Si1i2...idTi1i2...id

Writing polynomials f and g as symmetric tensors, we obtain Weyl’s inner
product in the space of polynomials:

〈f, g〉 =
∑

|a|=d

faga(
d
a

) .

where

(
d
a

)

= d!
a0!a1!···an!

is the coefficient of (x0 + · · ·+ xn)
d in xa.

Lemma 7.1. Let Q be an orthogonal n× n matrix, that is QTQ = I. Then,

〈f ◦Q, g ◦Q〉 = 〈f, g〉
Exercise 7.1. Prove Lemma 7.1

We say that the above inner product is invariant under orthogonal action.
We will always assume this inner-product for HR

d .

It is also important to notice that HR

d is that it is a reproducing kernel
space. Let

Kd(x,y) = 〈x,y〉d.
Then

f(y) = 〈f(·),Kd(·,y)〉,
Df(y)u = 〈f(·), DyKd(·,y)u〉,

etc...
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8. The condition number

Now, let’s denote by HR

d the space of systems of homogeneous polynomials of
degree d = (d1, . . . , dn). The condition number measures how the solution of an
equation depends upon the coefficients.

Therefore, assume that both a polynomial system f ∈ S(HR

d) and a point
x ∈ S(Rn+1) depend upon a parameter t. Say,

ft(xt) ≡ 0.

Differentiating, one gets

Dft(xt)ẋt = −ḟt(xt)

so

(15) ‖ẋt‖ ≤ ‖Dft(xt)
−1
|x⊥

t
‖‖ḟt(xt)‖.

The normalized condition number is defined for f ∈ HR

d and x ∈ R
n+1 as

μ(f ,x) = ‖f‖

∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

d
−1/2
1 ‖x‖−d1+1

. . .

d
−1/2
n ‖x‖−dn+1

⎤

⎥
⎥
⎦Df(x)|x⊥

⎞

⎟
⎟
⎠

−1∥∥
∥
∥
∥
∥
∥
∥

.

In the special case f ∈ S(HR

d) and x ∈ S(Rn+1),

μ(f ,x) =

∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

d
−1/2
1

. . .

d
−1/2
n

⎤

⎥
⎥
⎦Df(x)|x⊥

⎞

⎟
⎟
⎠

−1∥∥
∥
∥
∥
∥
∥
∥

.

Proposition 8.1.

(1) If ft and xt are paths in S(HR

d) and S(Rn+1) respectively, and ft(xt) ≡ 0
then

‖ẋt‖ ≤ μ(ft,xt)‖ḟt‖.
(2) Let x ∈ S(Rn+1) be fixed. Then the mapping

π : HR

d → L(x⊥,Rn),

f �→

⎡

⎢
⎢
⎢
⎢
⎣

d
−1/2
1

d
−1/2
2

. . .

d
−1/2
n

⎤

⎥
⎥
⎥
⎥
⎦
Df(x)|x⊥

restricts to an isometry π|(kerπ)⊥ : (kerπ)⊥ → L(x⊥,Rn).

(3) Let f ∈ S(HR

d) and x ∈ S(Rn+1). Then,

μ(f ,x) =
1

ming∈HR

d
{‖f − g‖ : Dg(x)|x⊥ singular} .

(4) If furthermore f(x) = 0,

μ(f ,x) =
1

ming∈HR

d
{‖f − g‖ : g(x) = 0 and Dg(x)|x⊥ singular} .
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Proof. Item 1 follows from (15). In order to prove item 2, let x ∈ S(Rn+1)
be fixed and let f ∈ HR

d. Assume that y ⊥ x. We can write f(x+ y) as

f(x+ y) = f(x) +Df(x)|x⊥y +
1

2
D2f(x)|x⊥(y − x,y − x) + · · ·

This suggests a decomposition of HR

d into terms that are ‘constant’, ‘linear’ or
‘higher order’ at x.

HR

d = H0 ⊕H1 ⊕H2 ⊕ · · · .
An orthonormal basis for H1 would be

(
1√
d

∂Kdi
(·,x)

∂uj
ei

)

where (u1, . . . ,un) is an orthonormal basis of x⊥ and (e1, . . . , en) is the canonical
basis of Rn.

In this basis, the projection of f in H1 is just

⎡

⎢
⎢
⎢
⎣

...

· · ·
〈
fi,

1√
d

∂Kdi
(·,x)

∂uj

〉
· · ·

...

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎣

d
−1/2
1

· · ·
d
−1/2
n

⎤

⎥
⎦Df(x)|x⊥ .

Thus, the subspace H1 of HR

d is isomorphic to the space of n × n matrices.
Moreover, π : HR

d → H1 is an orthogonal projection. Items 3 and 4 follow now
easily from Theorem 6.3. �

Exercise 8.1. Deduce that for all f ∈ HR

d, 0 �= x ∈ R
n+1, μ(f ,x) ≥ √n.

We denote by ρ(x,y) = (̂x0y) the angular distance between x ∈ Sn and y ∈ Sn.
The following estimate is quite useful:

Theorem 8.2. Let f ,g ∈ S(HR

d) and let x,y ∈ S(Rn+1). Let

u = (max di)μ(f ,x)ρ(x,y) and v = μ(f ,x)‖f − g‖.
Then,

1

1 + u+ v
μ(f ,x) ≤ μ(g,y) ≤ 1

1− u− v
μ(f ,x).

Remark 8.3. Similar formulas were given by Bürgisser and Cucker (2011)
and Dedieu et al. (2013). The final form here appeared in Malajovich (2011)
and generalizes to the sparse condition number.

Proof. Let R be a rotation taking y to x. Then, μ(g,y) = μ(g ◦ R,x).
Moreover, it is easy to check that ‖g ◦R− g‖ ≤ (max di)ρ(x,y). Thus,

μ(f ,x)‖f − g ◦R‖ ≤ (u+ v).

Now, notice that Proposition 8.1(3) implies:

1

μ(f ,x)
− ‖f − g ◦R‖. ≤ 1

μ(g ◦R,x)
≤ 1

μ(f ,x)
+ ‖f − g ◦R‖.

The theorem follows by taking inverses. �

Licensed to University Paul Sabatier.  Prepared on Mon Dec 14 09:01:17 EST 2015for download from IP 130.120.37.54.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



NEWTON ITERATION, CONDITIONING AND ZERO COUNTING 175

9. The inclusion theorem

Let f ∈ HR

d. For any x ∈ Sn, we denote by Ax be the affine space x+ x⊥ and
by Fx : Ax → R

n, X �→ f(x+X) the restriction of f to Ax. Then Fx is an n-variate
polynomial system of degree d.

Lemma 9.1. (Shub and Smale, 1993)

γ(Fx, 0) ≤
(max di)

3/2

2
‖f‖μ(f ,x)

Proof. For simplicity assume ‖f‖ = 1. Let k ≥ 2 and

Δ =

⎡

⎢
⎣

√
d1

. . . √
dn

⎤

⎥
⎦ .

1

k!

∥
∥DFx(0)

−1DkFx(0)
∥
∥ =

1

k!

∥
∥
∥Df(x)−1

|x⊥D
kf(x)|x⊥

∥
∥
∥

≤ 1

k!

∥
∥
∥Df(x)−1

|x⊥Δ
∥
∥
∥
∥
∥Δ−1Dkf(x)|x⊥

∥
∥

≤ μ(f ,x)
1

k!

∥
∥Δ−1Dkf(x)|x⊥

∥
∥

Now, notice that

|Dkfi(x)| = |〈fi, DkKdi
(·,x)〉| ≤

≤ ‖fi‖ sup
‖u1‖=···=‖uk‖=1

u1,...,uk⊥x

‖DkKdi
(·,x)(u1, . . . ,uk)‖

where Kdi
(y,x) = 〈y,x〉di is the reproducing kernel of HR

di
. Differentiating Kdi

with respect to y, one obtains:

1

k!
DkKdi

(y,x)(u1, . . . ,uk) =

(
di
k

)

〈y,x〉d−k〈y,u1〉 · · · 〈y,uk〉.

The norm of 1
k!D

kKdi
(y,x)(u1, . . . ,uk) (as a polynomial of y) can be computed

using the reproducing kernel property.
∥
∥
∥
∥
1

k!
DkKdi

(·,x)(u1, . . . ,uk)

∥
∥
∥
∥

2

=

=

〈
1

k!
DkKdi

(·,x)(u1, . . . ,uk),
1

k!
DkKdi

(·,x)(u1, . . . ,uk)

〉

=
1

k!

∂y

∂u1
· · · ∂y

∂uk

(
di
k

)

〈y,x〉d−k〈y,u1〉 · · · 〈y,uk〉

=
1

k!

(
di
k

)

Perm
[
〈ui,uj〉

]

≤
(
di
k

)

It follows that

1

k!

∥
∥DFx(0)

−1DkFx(0)
∥
∥ ≤ μ(f ,x)max

1√
di

(
di
k

)

.
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Estimating

(
di
k

)

≤ dki 2
−k and using Exercise 8.1,

γ(Fx, 0) ≤
d3/2

2
μ(f ,x).

�

Whenever the sequence (Xk)k∈N defined by X0 = 0, Xk+1 =
= N(Fx,Xk) converges, let X

∗ = limXk and define

ζx =
x+X∗

‖x+X∗‖ ∈ Sn+1.

As in Theorem 5.3, define

r0(α) =
1 + α−

√
1− 6α+ α2

4α

Let α∗ the smallest positive root of

α∗ = α0(1− α∗r0(α∗))
2.

Numerically, α∗ > 0.116. (This is better than (Cucker et al., 2008)). Let Bx =
{y ∈ Sn : ρ(x,y) ≤ rx} with rx = r0(α∗)μ(f ,x)‖f(x)‖.

Theorem 9.2. Let f ∈ S(HR

d) and x ∈ Sn be such that

(max di)
3/2μ(f ,x)2‖f(x)‖ ≤ α∗.

Then,

(1) α(F, 0) ≤ α∗.
(2) 0 is an approximate zero of the second kind of Fx, and in particular

f(ζx) = 0.
(3) ζx ∈ Bx.
(4) For any z ∈ Bx, ζz = ζx.

Proof. (1) By Lemma 9.1,

α(Fx, 0) ≤ (max di)
3/2μ(f ,x)

∥
∥Df(x)−1

x⊥f(x)
∥
∥ ≤

≤ (max di)
3/2μ(f ,x)2‖f(x)‖ ≤ α∗.

(2) Since α∗ ≤ α, we can apply Theorem 5.3 to Fx and 0.
(3) Since 0 is a zero of the second kind for Fx,

Fx(X
∗) = f(‖x+X∗‖ζx) = 0

and hence by homogeneity f(ζx) = 0.
(4)

ρ(x, ζx) ≤ tan ρ(x, ζx) ≤ r0(α∗)β(f ,x) ≤ r0(α∗)μ(f ,x)‖f(x)‖
(5) By Theorem 8.2,

μ(f , z) ≤ 1

1− (max di)μ(f ,x)ρ(x, z)
μ(f ,x) ≤ 1

1− α∗r0(α∗)
μ(f ,x)

and hence, as in item 1:

α(Fz, 0) ≤
1

(1− α∗r0(α∗))2
α∗ ≤ α0.

�
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This theorem appeared inCucker et al. (2008). For other inclusion/exclusion
theorems based in alpha-theory, see Giusti et al. (2007).

Open Problem 9.3 (Mike Shub). Is it possible to improve α∗ by replacing
alpha-theory in Theorem 9.2 by the implicit gamma theorem ofDedieu et al. (2003)?

10. The exclusion lemma

Lemma 10.1. Let f ∈ S(HR

d) and let x,y ∈ Sn with ρ(x,y) ≤
√
2. Then,

‖f(x)− f(y)‖ ≤
√
max(di)ρ(x,y).

In particular, let δ = min(‖f(x)‖/
√
max(di),

√
2). If f(x) �= 0, then there is no

zero of f in

B(x, δ) = {y ∈ Sn+1 : ρ(x,y) ≤ δ}.

Proof. First of all,

|fi(x)− fi(y)| = |〈fi(·),Kdi
(·,x)−Kdi

(·,y)〉|
≤ ‖fi‖‖Kdi

(·,x)−Kdi
(·,y)‖

≤ ‖fi‖
√
Kdi

(x,x) +Kdi
(y,y)− 2Kdi

(x,y)

= ‖fi‖
√
2
√
1− cos(θ)d

with θ = ρ(x, y). Since θ ≤ π <
√
30, we have always

cos(θ) = 1− 1

2
θ2 +

1

4!
θ4 − 1

6!
θ6 + · · · > 1− 1

2
θ2.

The reader will check that for ε < 1, (1 − ε)d > 1 − dε. Therefore, using

θ < 1/
√
2,

|fi(x)− fi(y)| ≤ ‖fi‖
√
diθ

and

‖f(x)− f(y)‖ ≤
√
max(di)θ.

�

Part 3. The algorithm and its complexity

11. Convexity and geometry Lemmas

Definition 11.1. Let y1, . . . ,ys ∈ Sn belong to the same hemisphere, that is
〈yi, z〉 > 0 for a fixed z. The spherical convex hull of y1, . . . ,ys is defined as

SCH(y1, . . . ,ys) =

{
λ1y1 + · · ·+ λsys

‖λ1y1 + · · ·+ λsys‖
: λ1, . . . , λs ≥ 0

and λ1 + · · ·+ λs = 1

}

.

This is the same as the intersection of the sphere with the cone {λ1y1 +
· · · + λsys : λ1, . . . , λs ≥ 0}. We will need the following convexity Lemma from
Cucker et al. (2008):
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178 GREGORIO MALAJOVICH

Lemma 11.2. Let y1, . . . ,ys ∈ Sn belong to the same hemisphere. Let r1, . . . ,
rs > 0 and let B(yi, ri) = {x ∈ Sn : ρ(x,yi) < ri}. If ∩B(yi, ri) �= ∅, then

SCH(y1, . . . ,ys) ⊂ ∪B(yi, ri).

Exercise 11.1. Prove Lemma 11.2 above.

For the root counting algorithm, we will need to define a mesh on the sphere.

Lemma 11.3. For every η = 2−t, we can construct a set C(η) ⊆ Sn satisfying:

(1) For all z ∈ Sn, ∃x ∈ C(η) such that ρ(z,x) ≤ η
√
n/2.

(2) For all x ∈ Sn, let Y = {y ∈ C(η) : ρ(x,y) ≤ √nη}. Then x ∈ SCH(Y ).
(3) #C(η) ≤ 2n(1 + 2t+1)n.

Proof. Just set

C(η) =

{
x

‖x‖ : x ∈ R
n+1, xiη

−1 ∈ Z, ‖x‖∞ = 1

}

.

This corresponds to dividing Q = {x : ‖x‖∞ = 1} into n-cubes of side η̃. The
maximal distance in Q between a point Z ∈ Q and a point X in the mesh is half of
the diagonal, or η

√
n. Then

ρ(Z/‖Z‖,X/‖X‖) < η
√
n.

Now, let Y ′ be the set of points y ∈ C(η) such that the distance along Q
between x/‖x‖∞ and y/‖y‖∞ is at most η. Then clearly x ∈ SCH(Y ′). Moreover,
Y ′ ⊂ Y .

The last item is trivial. �

12. The counting algorithm

Given f ∈ S(HR

d) and η = 2−t, we construct a graph Gη = (Vη, Eη) as follows.
Let

A(f) = {x ∈ Sn : max d
3/2
i μ(f ,x)2‖f(x)‖ < α∗}

be the set of points satisfying the hypotheses of Theorem 9.2. The set of vertices
of Gη is Vη = C(η) ∩A(f).

Recall that Let Bx = {y ∈ Sn : ρ(x,y) ≤ rx} with rx = r0(α∗)μ(f ,x)‖f(x)‖.
The set of edges of Gη is Eη = {(x,y) ∈ Vη × Vη : Bx ∩ By �= ∅}. This graph is
clearly constructible. Theorem 9.2 implies that for any edge (x,y) ∈ Eη, ζx = ζy.
More generally,

Lemma 12.1. The vertices of any connected component of G(η) are approximate
zeros associated to the same zero of f . Moreover, if x,y belong to distinct connected
components of G(η), then ζx �= ζy.

The algorithm is as follows:

Algorithm RootCount

Input: f ∈ S(HR

d).
Output: #ζ ∈ Sn : f(ζ) = 0.

η ← 2−�log2(1/
√
2n)�.
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NEWTON ITERATION, CONDITIONING AND ZERO COUNTING 179

Repeat
η ← η/2.
Let U1, . . . ,Ur be the connected components of Gη.
Until ∀1 ≤ i < j ≤ r, ∀x vertex of Ui, ∀y vertex of Uj ,

(16) ρ(x,y) > 2η
√
n.

and ∀x ∈ C(η) \A(f),

(17) ‖f(x)‖ > η
√

nmax di/2.

Return r.

Theorem 12.2. If the algorithm RootCount stops, then r is the correct number
of roots of f in Sn.

Proof of Th.12.2. Suppose the algorithm stopped at a certain value of η. As
each connected component Ui determines a distinct and unique zero of f , it remains
to prove that there is no zero of f outside ∪x∈Vη

Bx.
Therefore, assume by contradiction that there is ζ ∈ Sn with f(ζ) = 0 and

ζ �∈ Bx for any x ∈ Vη.
Let Y be the set of y ∈ C(η) with ρ(ζ,y) ≤ η

√
n.

If there is y ∈ Y with y �∈ A(f) let δ = ‖f(y)‖/
√
max di. Equation (17) guar-

antees that η
√
n/2 < δ. By construction, η

√
n/2 <

√
2. Therefore, the exclusion

lemma 10.1 guarantees that f(ζ) �= 0, contradiction.
Therefore, we assume that Y ⊂ A(f). Equation (16) guarantees that Y ⊂ Uk

for a same connected component of Gη. Therefore, ∩y∈Y By % ζ is not empty.
By Lemma 11.3(2), x ∈ SCH(Y ). Lemma 11.2 says that

SCH(Y ) ⊆ ∪y∈Y By

Thus, x ∈ By for some y, contradiction again.
�

A consequence of Th.12.2 is that if the algorithm stops, one can obtain an
approximate zero of the second kind for each root of f by recovering one vertex for
each connected component.

13. Complexity

We did not prove that algorithm RootCount stops. It actually stops almost
surely, that is for input f outside a certain measure zero set.

Define

κ(f ,x) =
1

√
μ(f ,x)−2 + ‖f(x)‖2

and notice that
κ(f ,x) ≤ μ(f ,x) and κ(f ,x) ≤ ‖f(x)‖−1.

Reciprocally,

min(μ(f ,x), ‖f(x)‖−1) ≤
√
2κ(f ,x).

If f(x) = 0, then κ(f ,x) = μ(f ,x).

Definition 13.1. The condition number for for Problem 1.2 (counting real
zeros on the sphere) is

κ(f) = max
x∈Sn

κ(f ,x).
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Assume that f has no degenerate root. Then the denominator is bounded away
from zero, and κ(f) is finite. We will prove later that the algorithm stops for κ(f)
finite. But before, we state and prove the condition number theorem to obtain
some geometric intuition on κ(f).

Theorem 13.2. (Cucker et al., 2009) Let ΣR = {g ∈ HR

d : ∃ζ ∈ Sn : g(ζ) =
0 and rk(Dg(ζ)) < n}. Let f ∈ S(HR

d), f �∈ ΣR. Then,

κ(f) =
1

ming∈ΣR ‖f − g‖ .

In particular, κ(f) ≥ 1.

Proof. It suffices to prove that

κ(f ,x) =
1

min g∈HR

d
g(x)=0

rk(Dg(x))<n

‖f − g‖ .

We proceed as in the proof of Prop.8.1. We decompose

HR

d = H0 ⊕H1 ⊕H2 ⊕ · · ·
where H0 and H1 correspond to the constant and linear terms of y �→ f(x + y).
Let u1, . . . ,un be an orthonormal basis for x⊥.

An orthonormal basis for H0 ⊕H1 is
(

Kdi
(·,x), 1√

d

∂Kdi
(·,x)

∂uj

)

.

The projection of f in H0 ⊕H1 is

[
〈f(·),Kdi

(·,x)〉
]
⊕

⎡

⎢
⎢
⎢
⎣

...

· · ·
〈
fi,

1√
d

∂Kdi
(·,x)

∂uj

〉
· · ·

...

⎤

⎥
⎥
⎥
⎦
=

= f(x)⊕

⎡

⎢
⎣

d
−1/2
1

d
−1/2
2

d
−1/2
n

⎤

⎥
⎦Df(x)|x⊥ .

This is an orthogonal projection onto R
n × R

n×n.
Now,

κ(f ,x)−2 = ‖f(x)‖2 + σn

⎛

⎜
⎝

⎡

⎢
⎣

d
−1/2
1

d
−1/2
2

d
−1/2
n

⎤

⎥
⎦Df(x)|x⊥

⎞

⎟
⎠ .

Again, we apply Th.6.3. �

Lemma 13.3. Let ζ1, ζ2 be distinct roots of f in Sn. Then,

ρ(ζ1, ζ2) ≥
1

max d
3/2
i κ(f)
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Proof.

‖ζ1 − ζ2‖ ≥
1

2γ(f , ζ1)
by Ex.4.3

≥ 1

max d
3/2
i μ(f , ζ1)

by Lem.9.1

≥ 1

max d
3/2
i κ(f)

because f(ζ1) = 0.

The Lemma follows. �

Lemma 13.4. Assume that

η <
1

2max d
3/2
i

√
nκ(f)

(1− 2α∗r0(α∗)).

Then (16) holds.

Proof. Recall that x and y belong to Af , so that

max d
3/2
i μ(f ,x)2‖f(x)‖ < α∗

and the same for y. In particular, the radius rx of Bx satisfies

r0(α∗)μ(f ,x)‖f(x)‖ <
α∗r0(α∗)

max d
3/2
i μ(f ,x)

≤ α∗r0(α∗)

max d
3/2
i κ(f ,x)

.

By Lemma 13.3 and the triangle inequality,

ρ(x,y) ≥ ρ(ζx, ζy)− r0(α∗)μ(f ,x)‖f(x)‖ − r0(α∗)μ(f ,y)‖f(y)‖

≥ 1

max d
3/2
i κ(f)

(1− 2α∗r0(α∗)).

�

Lemma 13.5. Let x �∈ Af . Then,

‖f(x)‖ ≥ α∗

κ(f ,x)2max d
3/2
i

.

Proof. Let x �∈ Af , so that

max d
3/2
i

2
μ(f ,x)2‖f(x)‖ ≥ α∗.

Recall that

min(μ(f ,x), ‖f(x)‖−1) ≤
√
2κ(f ,x)

There are two possibilities. If μ(f ,x) ≤
√
2κ(f ,x), then

‖f(x)‖ ≥ α∗

max d
3/2
i κ(f ,x)2

.

Otherwise,

‖f(x)‖ ≥ 1√
2κ(f ,x)

≥ α∗

max d
3/2
i κ(f ,x)2

.

�

Now we can state the ‘cloud complexity’ theorem.
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Theorem 13.6. The algorithm RootCount will stop for

η <
1

max d
3/2
i κ(f)2

min

(

α∗ ,
κ(f)

2
√
n
(1− 2α∗r0(α∗))

)

that is, after O(log κ(f) + logmax di) iterations. The total number of evaluations
of f and Df is

2n(1 + 4max d
3/2
i

√
nκ(f)2)n.

That means that 2n(1+4max d
3/2
i

√
nκ(f)2)n processors in parallel can compute

the root count in time O(log κ(f)+logmax di) times a polynomial in n for the linear
algebra.

For people concerned with the overall computing cost, a price tag exponential
in n is known as the curse of dimensionality. It usually plagues divide and
conquer and Monte-Carlo algorithms.

But the situation n = 2 is already interesting. How efficiently can we count
zeros of a system of polynomials on the 2-sphere? As the parallel and sequential
running time depends upon κ(f), it is useful to known more about the condition
number.

14. Probabilistic and smoothed analysis

One possibility is to pick the input system f at random, and treat κ(f) as a
random variable. For instance, let f ∈ HR

d be random with Gaussian probability
distribution

1

(2π)dimHR

d/2
e−‖f‖2/2 dHR

d.

The tail for the random variable κ(f) and the expected value of log κ(f) can be
bounded by

Theorem 14.1 ((Cucker, Krick, Malajovich, and Wschebor, 2012)). Let
f be as above. Assume that n ≥ 3. Then,

(i) For a > 4
√
2 (max di)

2n7/2N1/2 we have

Prob
(
κ(f) > a

)
≤ Kn

√
2n(1 + ln(a/

√
2n))1/2

a
,

where N = dimHR

d, Kn := 8(max di)
2D1/2 N1/2n5/2 + 1 and D =

∏
di.

(ii)

E(lnκ(f)) ≤ lnKn + (lnKn)
1/2 + (lnKn)

−1/2 +
1

2
ln(2n).

Notice as a consequence that the expected running time of RootCount is

E(lnκ(f)) ∈ O(n lnmax di).

This is cloud computing time, of course.

Average time analysis depends upon an arbitrary distribution.
Spielman and Teng (2004) suggested looking instead at a small random per-
turbation for each given input. This is known as smoothed analysis.

For a given f ∈ S(HR

d), we will consider the uniform distribution in the ball
B(f , arcsinσ) ⊂ S(HR

d) where σ is an arbitrary radius, and Riemannian metric
on the sphere is assumed. The strange looking arcsine comes from the fact that
B(f , arcsinσ) is the projection on the sphere of the ball B(f , σ) ⊂ HR

d. The reason
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for looking at the uniform distribution for perturbations instead of Gaussian is the
following result:

Theorem 14.2. (Bürgisser et al., 2008) Let Σ ⊂ R
N be contained in a pro-

jective hypersurface H of degree at most D and let κ : SN−1 → [1,∞] be given
by

κ(f) =
‖f‖

ming∈Σ ‖f − g‖ .

Then, for all σ ∈ (0, 1],

sup
f∈SN−1

Eh∈B(f ,arcsin σ)⊆SN−1(lnκ(h)) ≤ 2 ln(N − 1) + 2 lnD − lnσ + 5.5.

In the context of the root counting problem, the degreeD of Σ = ΣR is bounded
by n2(

∏
di)(max di). Therefore,

Corollary 14.3. (Cucker et al., 2009)

sup
f∈S(HR

d)

Eh∈B(f ,arcsin σ)⊆S(HR

d)
(lnκ(h)) ≤ 2 ln(dim(HR

d)) + 4 ln(n)

+2 ln(
∏

di) + ln 1/σ + 6.

15. Conclusions

We sketched the average time analysis and a smoothed analysis of an algorithm
for real root counting and, incidentally, root finding. The same algorithm can also
decide if a given polynomial system admits a root.

Loosely speaking, deciding (resp. counting) roots of polynomial systems are
NP-complete (resp. #P complete) problems. The formal NP-complete and #P-
complete problems refer to sparse polynomial systems.

Our algorithm uses polynomial evaluations, so it can take advantage of the
sparse structure. Moreover, the degree of the sparse discriminant is no more than
the degree of the usual discriminant. In that sense Corollary 14.3 is still valid. The
running time of the algorithm is polynomial in n and in the dimension of the input
space. Again, this is a massively parallel algorithm so the number of processors is
exponential in n.
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