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Abstract. We describe a new algorithm for the localization of an algebraic 
hypersurface V in R" or C". This algorithm computes a decreasing sequence of closed 
sets whose intersection is V. In the particular case of an hypersurface without any 
point at infinity, the notion of the asymptotic cone is used to determine a compact 
set containing this hypersurface. We give also a numerical version of this algorithm. 
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I. Introduction 

What is the exclusion algorithm? Let us explain the main idea of this process in a 
simple case. Suppose that you want to compute the different real solutions of a 
polynomial of a single variable: you start by giving a bounded interval [ -  M, M] 
containing the different real roots. For a polynomial 

P(x)  = ao + axx  + .. .  + a~x d 

and for any root r you have (Mignotte [6]) 

r < = l +  max = M .  
o_<i=<~-i 

In a second step you "eat" in the "cake" [ -M,  M] "slices" which do not contain 
any root of P. What remains gives an approximation for the roots of the equation. 
What do "eating" and "slices" mean? We define them in the following way. For any 
x we consider the polynomial 

M ( x ,  t) = [P(x) l -  ~ ]P(k)(x)l t k. 
k=l k! 

This polynomial possesses only one positive root, re(x). We will show that P(x )  4:0 
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and I x -  y] < rn(x) imply P(y)~ O. Therefore, if x is not a root, the set ] x -  re(x), 
x + m(x)[ does not contain any root. "Eating a slice" means remove ] x -  m(x), 
x + re(x)[ from [ -  M, M], you start again with another point and so on. This is 
exactly the exclusion algorithm! 

In this paper we deal with an algebraic hypersurface V of K" (K = R or C) defined 
by its equation P(x) = 0 for which we generalize the previous problem. For any t~K, 
It] is either the absolute value or the modulus of t. For any x~K", we will denote 
by B(x, r), ]1 x H, and d(x, y), the open ball centered at x with radius r, the norm and 
the distance corresponding to 

[[xlP = max [xi]. 
l<__i~n 

In Sect. 2 we define the polynomial M(x, t) and its positive root re(x). This poly- 
nomial seems to appear for the first time in Cauchy's work. More recently F. Ronga 
[8] has introduced it in the case of several variables. This paper revolves around 
the following theorem: 

For any x, y ~K" we have "P(x) ~ 0 and 1[ x - y I] < re(x)~ P(y) ~ 0". The same 
outcome would be obtained if you substitute d(x, V), the distance ofx  to V, for re(x). 
But the consideration of m(x) instead of d(x, V) or I P(x)] permits easier computations. 
The quantities re(x), d(x, V) and IP(x)] are in some sense equivalent as is shown by 
Lojasiewicz's inequality. In Sect. 3 we describe the exclusion algorithm in the affine 
case. The problem is to approximate the intersection of the hypersurface V with a 
general closed set F. We prove that the exclusion algorithm stops in a finite number 
of steps if and only if F is compact and F ~ V is the empty set. Next, in Sect. 4 we 
give a practical version of the exclusion algorithm in the case where F is a semi- 
algebraic compact set. Using Lojasiewicz's inequality we study the accuracy and 
the complexity of this process. In the last section we define the exclusion algorithm 
in the projective case which permits the localization of an algebraic hypersurface 
without any point at infinity. This new algorithm is obtained from the exclusion 
algorithm in the affine case by an homogeneization process on both the polynomial 
P(x) and the set F. 

2. Preliminaries 

Let P be a polynomial in K[x] ,  x = (xl . . . .  , x,), with degree (P)=  d. We consider 
the following polynomial in R[t]: 

d 

M(x, t) = IP(x) l - ~ bkt k 
k = l  

where the coefficients b k are given by 

1 ~ okn(x) 
bk = k l  1_<i ... . . .  ik <--n ]6~Xi, ' ' 'OXik] " 

Note that the degree of M(x, t) in t is d. This polynomial is concave and decreasing 
for t > O. As M(x, O) > O, this polynomial has a unique positive root which is denoted 
by m(x). A first estimation for this root is given by 
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Proposition 2.1. For each j = 1,...,  n such that bj ~ 0 we have 

k = l  

Proof. The right bound is obtained by 
d 

IP(x)l = ~ bkm(x) k > bsm(x) ~. 
k = l  

The left bound is given by the intersection of the t axis with the line joining the 
points (0,M(x,0)) and (S1,M(x, S1)). [] 

The number m(x) possesses many useful properties: 

Proposition 2.2. We have re(x) = 0 if and only if P(x) = O. Moreover x is a singular 
point of V if and only if re(x) = 0 is a root of multiplicity > 2 of M(x, t). 

The proof is easy and left to the reader. 

Proposition 2.3. The function re(x) is continuous and semi-algebraic. 

Proof. In the case K = C, we consider m(x) as function of x~R 2". Suppose now 
K = R. Considering the definition of re(x), we have 

Graph(m)={(x,2)~R" x R ' 2 > 0  and M(x,2)=0}.  

This proves the semi-algebraicity of re(x). For the continuity, recall that the roots 
of a monic polynomial are continuous functions of coefficients (see [5], I-7]). We 
have to show that the coefficients of M(x, t) are continuous functions of x and that 
the coefficient of d in M(x, t) never vanishes. These verifications are easy. [] 

Combining the propositions 2.2 and 2.3 we obtain: 

Corollary 2.4. Let (x p) be a sequence in K" converging to x. Suppose that 
lim m(x p) = 0 then we have P(x) = O, that is xe  V. 

p---~ oO 

The number m(x) can be interpreted as a measure for the distance of x to the 
hypersurface V. This is shown by the following results. 

Proposition 2.5. Let F be a compact subset of K". We have: 

cl IP(x)l < m(x) < c21e(x)l TM, 
for each xeF,  with 

c~- l=max  bkb(al-k)lalP(x)l (k-1)ld and c2=b2 TM. 
x ~ F  \ k = l  / 

Proof. From proposition 2.1 withj  = d we have: 

IP(x)] <m(x) <(IP(x)Iy/a .  

~. bkbtaX-k)lale(X)l(k-1)/a \ ba ./ 
k = l  

Notice that ba > 0 and independent of x. This proves our proposition. [] 
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The exclusion algorithm is based on the following result due to Ronga ([8], 
Lemma 1): 

Proposition 2.6. I f  P(x) # 0 then P(y) ~ O for each y~B(x, m(x)). 

Proof. From Taylor's formula we have: 

a 1 
P(y) = P(x) + k~l ~.. ~" hi1"'" hik Okp(x) 

= . l _ _ < i t  . . . . .  ik<=n ~Xil""~Xik' 

with h = (hi . . . . .  h,) = y - x. From the triangle inequality we get 

a l Z Okp(x) 
]P(y)[ _-> IP(x) I -  kE1 :~'=K! Ilhll~ x~-, ..... i,,~,, Oxi,'"Oxi,, ' 

that is 

[P(Y)[ > M(x, [[ y - x J[ ). 

If P(x) ~ 0 we have re(x) > 0 from Proposition 2.2, so that M(x, Jl Y - x [I ) > 0 for 
each y satisfying [I Y - x [I < re(x) as M(x, t) decreases over [0, + oo[. The inequality 
] P(x) J > 0 therefore holds and this proves our proposition. [] 

Proposition 2.7. Let F be a semi-algebraic compact subset of K" (in the case K = C, 
F is semi-algebraic as subset of R2"). There is a constant a x strictly positive and an 
integer n 1 non zero such that 

axd(x, V) ~' < re(x) < d(x, V) 

for each x ~ F. Moreover, when each point of V n F is non singular we can take n 1 = 1. 

Proof. We only have to consider the ease K = R. The inequality re(x) < d(x, V) is 
an easy consequence of Propositions 2.2 and 2.6. The other inequality 

aid(x, V) n' < m(x) 

is obtained via Lojasiewiez's inequality ([1], Corollaire 2.6.7) since re(x) and d(x, V) 
are continuous, semi-algebraic and have the same set of zeros. Let us now consider 
the non-singular case. In virtue of Proposition 2.5 we have: 

cx IP(x)l =< re(x) 

for each xeF.  Consequently it is sufficient to prove the following inequality 

b~d(x, V) <= IP(x)l 

for each x~F. Let us denote by [1 ]]e (resp. ( , ) and de) the usual Euclidean norm 
(resp. the scalar product and the distance) in R". We will establish the previous 
inequality with ddx, V) instead of d(x, V). Consider the function defined by 

IP(x) l 
i fxr  V 

f (x)  = de(x, V) 

H VP(x)]Je otherwise. 

Suppose f is continuous on F. From the hypothesis we get f (x)  > 0 for each x~F 
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so that  

We obtain  easily 

O < b x  = i n f f ( x ) .  
X~F 

bide(x, V) ~ IP(x)l 

for each xEF.  Let us now prove that  f is continuous.  For  each x E F \ V  let r~E V be 
such that  

de(x , rx) -= de(x , V). 

F r o m  the Tay lo r  formula  we get 

P(x) = P(rx) + ( x -- r x , V P (rx) ) + (x - rx)T H(y)(x -- rx) 

where H is the Hessian and y = ax + (1 - ct)rx for some a, (0 < ~ < 1). Since rxEV we 
have P(r~) = 0 so that  

I e (x)  l I < x - r~, VP(r~) > I 
I lx -r~l le  IIX--rxlle < AIIx--r~lle  

where A > 0 majorizes II H(y) II e in a ne ighbourhood  of F. Since each point  of  F n V is 
non  singular, for x close enough to V, rx is a non  singular point  of V and by a classical 
opt imizat ion a rgument  x - r x is o r thogona l  to the tangent  space T(rx) we have 

[ ( x - r x , V P ( r x ) ) [  
= II VP(r~)lie. 

I I x - r ~ l l e  

We obtain  

ip(x)l 
de(x, V) II Ve(r~) __< A II x -  rx lie, 

and consequently,  for each r e  V, 

IP(x)l 
lim - -  - II VP(r)II e '  

~,--,r de(x, V) 

This proves  the continuity of  f and completes  the proof. [ ]  

Remark 2.8. An est imation for the integer nl appear ing in Lojasiewicz inequality is 
given by P. Solerno in [9-1. 

3. The Exclusion Algorithm in the Affine Case 

3.1. Description of  the Algorithm 

Let F be a closed subset of K" and let 

V = {xEK": P(x) = 0}. 

O u r  aim is to localize the set V n F in F, that  is, roughly speaking, to find in F a 
subset a bit bigger than  V n F .  W h a t  is our  a lgor i thm? Pick up any point  xEF.  If  
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xr V we know from Proposition 2.6 that B(x, re(x))c~ V = ~b, or in other words 

V t~ F c VkB(x, re(x)). 

The set F\B(x, rn(x)), obtained by excluding B(x, re(x)) from F, is smaller than F and 
always countains V c~ F. Now you consider FkB(x, m(x)) instead o f f  and start again 
with another point...etc... 

We will now give a more formal description of this algorithm. We denote by (re) 
and (%) two sequences of strictly positive real numbers such that lira rp = lira ep = 0. 

p--+ oO p- -*~  

We will construct a decreasing sequence (Fp) of closed subsets of K" whose 
intersection will be F c~ V. 

We define Fo = F. 
Starting from Fp_ 1 we choose np points x~eK", 1 < i < np, such that 

Fp- lC U B(x~,rv). 
l~i~np 

The integer np is finite if Fp_ 1 is compact, infinite in the other case. For each i, 
1 <_ i <_ np, when P(x~) ~ O, we compute an approximation s~ ofm~ = m(x~) satisfying 

m~ - ep < s~ < m~. (1) 

Let us denote by 

B~={B(x~,sP) if P(x~)~O, 
otherwise, 

and we define 

F v--F._I\  U uf. 
l <i<-_np 

Stopping criterion. This algorithm stops when Fp = ~ ,  otherwise we construct 
an infinite decreasing sequence (Fp) of closed sets. 

Theorem 3.2. The sequence (Fp) is decreasing and 

("] F p= F rh V. 
p>O 

Proof. We have clearly F n  V c N F p  as, from Proposition 2.6, for each p and i, we 
have V c~ B~ p = ~ .  Let us show the other inclusion, that is 

N F p c V .  
p>O 

I f  ('~Fp = ~ this inclusion is obvious. Let xe OFp. For  each p, we have xeB(x~, rp) 
for some i. As lim rp = 0 we obtain 

p ~ o o  

x = lim x~'. (2) 
p ~ o o  

Now, as xeFp, we have x(~B~, that is 

sf < d(x, xf). (3) 
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The relations (1), (2), (3) and lim ep = 0 give 
p--~ oO 

lim m~' = 0. (4) 
p - r o e  

By (4), (2) and Corollary 2.5 we obtain P(x) = 0, that is x e V. [] 

Corollary 3.3. The exclusion algorithm stops if  and only if  F is compact and 
F c~ V = ~ .  In this case the set {B~:p > O, 1 < i <= np} is a finite open covering ofF.  

Proof. Let us suppose that Fp = ~ .  That  means Fp_ 1 = U B~' so that 
l <=i<np 

F = U  BR. 
l<-_k<-_p 
1 <-_i<-_nk 

This inclusion proves that F is compact and F c~ V = ~ (for each non-void B~ 
we have B~c~ V = ~) .  Suppose now that F is compact and F c~ V = ~ .  From 
Theorem 3.2 we have NFp = ~ ;  as F is compact Fp = ~ for some index p and the 
algorithm stops. [] 

Proposition 3.4. Let F be a semi-algebraic set such that F c~ V = ~ .  Take rp = ep = 
1/I) in the exclusion algorithm. Then Fp = ~ at step 

2 
p>= 

aid(F, V) "1' 

where al and n~ are defined in Proposition 2.7. 

Proof. We have to show that for each x~Fp_ ~ there is an i, 1 _< i _< n such that 
xeB(x~, sP). From the hypothesis we have 

rp = 1 < aid(x, V)"' - ep, 
P 

and from Proposition 2.7. 

Therefore by (1), for each i 

rp <= m(x) - ep. 

rp __< m ( x f )  - ~ __< sf .  

As we have Fp _ 1 c U B(x~, rp) the same inclusion remains with s~' instead of rp 
l <i<=np 

and this proves our proposition. [] 

Example 3.5. Localizing a circle. In this easy example we take K = R and: 

p ( x , y ) =  x 2 + y 2 _ 1 ,  F--{(x,y):0<=x,y<__2}. 

We have: 

M(x ,y , t )  = I x  2 -~- y2 _ 1 [ -  2(IX[ + [y[)t -- 2t 2. 
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t.5 

0.6 

0.5 ~ /2  1 1.5 2 

Fig. 1 

so that 

M(0, 0, t) = 1 - 2t 2 

M(1.5, 0.5, t) = 2.5 - 4t - 2t a 

M(1.5, 1.5, t) = 3.5 - 6t - 2t z 

M(0.5, 1.5, t) = M(1.5, 0.5, t). 

We obtain the following Fig. 1: 

m(0, 0) = x//2/2 

rn(1.5, 0.5) = 0.5 

m(1.5, 1.5) = 0.5 

4. The Exclusion Algorithm in Practice 

In the previous section we have described a "theoretic" version of  the exclusion 
algorithm. How can we implement it? Since some details need to be spelled out,  we 
shall investigate a more  practical situation. We only consider the case K = R. Let 
us define 

F= {XrRnlO ~ Xk <= 1, 1 < k < n}. 

Our  aim is to localize V in F. 
Let p be a given integer. We consider the following open cover of  F:  

l <i<np 
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with 

We have 

xf =\(2i~-+-p+ l 1 . . . . .  2i,+_l~,p+l / O<i~'"i"<P=2" 

247 

and 

We have 

Vp=F\  U Er" 
1 <i<np 

The set Vp is an approximation of F n V: 

Theorem 4.1. For each x~Vp we have 

1 + (2al l )  1/"' 
d(x, V) < pllnl 

where a~ and nl are the constants appearing in Proposition 2.7. 

Proof. From Proposition 2.7 we have 

aid(x, V)"' < re(x) 

for each x~F. Let i be such that 

- -  ~ d (x f ,  v l .  
ka lp /  

2 
- <= m(xD, 
P 

and we obtain 1/p < s~. Consequently for such an i, E~' = B(x~,s~). For any xeVp 

there is an i such that x~B x i , with d(x~, V) < (2~alp) 1/"'. We obtain 

d(x, V) < d(x, xl) + d(xi, V) < 1 ( 2 ~'/"' 1 + (2al 1)l/hi 
_ +  _ _  < [ ]  

p \alp  / pi/.1 

n 

For each i, we compute an approximation sf of m(x~V): 

m(x~) - 1_ < sf < m(x~). 
P 

Such an approximation can be computed using numerical analysis as it will be 
shown later. Let us define 

1 
{~x~,s~) if s~>-,  

E l =  P 
otherwise, 
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Corollary 4.2. Let e > 0 be given. I f  

then for each x e  Vp we have d(x, V) < e. 

Corollary 4.3. The sequence (lip) converges to V in the following sense: 

lira sup d(x, V) = O. 
p--+ c~ x ~ V  p 

The proofs of these corollaries are easy and left to the reader. 

4.4. Computing a Lower Bound of m(x) 

The exclusion algorithm requires to compute a lower bound of m(x) with a given 
accuracy e. In this sub-section we describe an algorithm based on Newton's iteration 
which solves this problem and we compute the complexity of this algorithm. Let 
f ( t )  be a real function defined over the interval [0, + oo[ two times continuously 
differentiable, such that f(0) > 0 and the derivatives f '(t), f"( t )  strictly negative over 
]0, + oe[. This function possesses a unique positive root denoted by m. Let ~, fl be 
such that: 0 < ~ < m < ft. Let us consider the sequence (Sk) given by 

f(Sk) 
S1--~" fl~ S k +  l ~ S k - - - -  

f'(Sk)" 

Since f i s  a concave function, the sequence (Sk) is decreasing and converges to the 
root m. A lower bound of m is given by the following algorithm. 

- Inputs :  f(t) ,  a, fl, and ~. 

f ' ( f l )~  < 0. Let be the first index k f(Sk) while f s k = 
k 

- C o m p u t e  s k + 1 = Sk  - -  f,(Sk) -- ~ / I  12 

such that: f Sk-- > 0. 

-- Compute S,+k while k < v where v is the first index such that 

1 
V >  

log 2 

We have the following result: 

l o g  . 

Proposition 4.4.1. Let e, v, # and s,+v be defined as before. Then 

m - g < s . + v - e < m .  

The number of steps to obtain a lower bound of m is in 

First we prove the following 
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Lemma 4.4.2. Le t  a, b be two real numbers such that c~ < a < m < b < fl and 

f" ( f l )  ,, , 
0 < C - 2 ~ - )  to - a) < 1. 

Le t  2 be the f irst  index such that sa < b. Then  for  each k greater than 

b - a ~ t  

�9 l o g - ~ -  

1 l o g  

log2  l o g l  

we have Sx+k -- m < e. 

Proof.  F r o m  the definition of  Sk + ~ and the Taylor  formula we deduce that Sk + ~ -- m 
is equal to 

f ( m )  - f (Sk+x-1)  -- f ' (Sk+x-  O(m -- Sk+x-1) - -  f " (u )  , __ m) z 
f '(Sk + ~- a) 2 f '(Sk + ~- 1) tSk + ~- 1 

with u e]m,  sk+ 4-1[ .  Since the derivatives f '  and f "  are descreasing and negative 
functions over [~, fl] we have, 

Sk+~ -- m <-- f " ( f l ) "  -- m) 2. 
- 2f'(~) tSk + ~- 1 

We get successively, 
, 

Sk+z--m<\2f~)J= ( s ' ~ - - m ) 2 k < =  2 f ' ( ~ )  (b-a)2k-Zf (~)C2kf"(fl) 
The conclusion of lemma follows immediately from the assumption C < 1. [ ]  

P r o o f  o f  Proposit ion 4.4.1. Since the sequence (Sk) converges to m, there exists an 

f ' (~)  index tt such that  0 < s, - - -  < m. The index # is determined by the signs of the 
f " ( f l )  

f ' ( f l ) ] .  The of the lemma satisfied with 
x 

quantities f Sk -- f,,(~) j hypotheses previous are 

f ' ( e )  
a = s u - - - -  and b = s u, since in this case C = 1/2. Thus the proposi t ion is 

f " ( f l )  
established. [ ]  

Remark  4.4.3. In  the case f ( t ) =  M(x ,  t), we can choose fl = $1 and a = 11, see 
Proposi t ion 2.1. 

4.5. Complex i ty  o f  this Algori thm 

Let e > 0 be a given accuracy, that  is 

sup d(x, V) < e. 
x~Vv 
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According to Corollary 4.2 we have 

P ~  (1 + (2al- 1)1/"') " l e  

Moreover, it has been shown that the open cover of F contains np balls with 

Consequently, our algorithm requires at most 

np ~ ( 2 -1/"1 -]- a l  l/m ) nnl 

steps, each of them consists in computing the approximation s~' of m(xP). In the 
non-singular case we can take nl = 1 (Proposition 2.7) so that 

,.~ a l  1 
n p  ~ ,g 

computation of an approximation sf of re(x)runs in O ( l o g l o g ! )  Since the 
\ v /  

(Proposition 4.4.1), the exclusion algorithm requires npO( log log! )  Newton's 

iterations of the function M(x, .). 
A sharper study of the complexity needs a lower bound of a: as a function of 

the degree and coefficient size of P(x). Unfortunately we didn't reach this goal... 

5. The Exclusion Algorithm in the Projective Case 

The main disadvantage of the algorithm described in the previous sections is, in the 
case of a compact hypersurface V and a non-compact set F, that an infinite number 
of steps is needed to localize V in F. To avoid this difficulty we use an homo- 
geneization process: the set F becomes compact in the projective space P(K" § 1) and 
the situation is once again favorable. 

Homogeneization of P. 
Let us denote (xo, x) = (Xo, xl . . . .  , x,) a point of K "+ 1. We define P* by 

\ X o /  

where d = degree(P). We denote by M*(xo, x, t) the polynomial in the variable t 
associated to P* and by m*(xo, x) its positive root. With these notations the 
Proposition 2.6 becomes: 

Proposition 5.1. For each x, if P*(0,x)r 0, then we have P(y ) r  0 for each y = 
(Xl + hx . . . . .  Xn + h,)/ho with max ]hil < m*(0, x) and ho # O. Moreover P*(0, z) -r 0 

O<_i<=n 

for each z = (x 1 + h I . . . . .  x, + h,) with max I hi] < m*(0, x) and z r O. 
l<_i<_n 
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Proof. Apply Proposition 2.6 to the polynomial P* at the point (0, x). We get 
P*(ho, z)r  for each (ho, z)=(O+ho, xl +hl , . . . , x ,+h , )  such that max [hi[< 

O<i<n  

m*(0, x). For y = z/h o, h o ~ 0, we obtain P(y) = hoaP*(ho, z) ~ 0, and this proves the 
first assertion. The second is obtained similarly with ho = 0. [] 

Remark 5.2. The Proposition 5.1 says that if (0, x) is not a point at infinity for the 
hypersurface V then P(y) ~ 0 on the unbounded set 

{(x + h)/ho: max lhil 

Homogeneization ofF. 
Let F be a closed subset of K ~. We will consider in the sequel the asymptotic 

cone F~o of F. This set has been defined by G. Choquet [2] in the convex case and 
by J. P. Dedieu [3], [4] for general sets. We now recall this construction. The set 
F~o consists of the cluster values of the sequences (~pXp) with ep > 0, lira ep = 0 and 

p ~ o o  

xpeF. It is a closed cone with its apex at the origin. Moreover, for 

C(F)={2(x, 1)sK"+I:2>O and xeF} 

we have 

cl(C(F)) = C(F)•(Foo x {0}). 

For V = {x~K":P(x) = 0} we denote 

Vi. f = {xeK":P*(O, x) = 0}. 

Notice that V~o c Vi, f. This inclusion can be strict: Voo (resp. Vinf) corresponds to 
the closure of C(V) for the Euclidean topology (resp. the Zariski topology). 

Description of the exclusion algorithm in the projective case. 
We use the same notations as before. The exclusion algorithm in the projective 

case is simply the exclusion algorithm in the affine case applied to the polynomial 
P*(0, x) and the set Foo c~ S(0, 1) where S(0, 1) is the unit sphere for the sup norm. 

We define Go = F~o ~S(0, 1) and L o = F. 
We choose np points x~', 1 < i < np such that 

Gp_l ~ ~ B(x~,rfl. 
l <i '<np 

If P*(0, x~) 4: 0, we compute s/p an approximation of m*(0, x/~) such that m *p - -  ~p 
Sf < m *p with m *p = m*(0, x~'). We now define the set 

{ ; l ~ + h e K ' : m a x l h i l < s f }  ifP*(O, x f ) r  O, 
g~ = l <_i<-. 

otherwise, 

and the set 

} (~x~+h~g":  max Ih, l<sf,  ho~O ifP*(0,xf)e0, 

otherwise. 
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The sets Gv and Lv are given by 

Gp = G,_ 1~ 1 <~i<=,p K~, 

Lv = L p- l~ l  ~npNV. 

Stoppino Criterion. The algorithm stops when G v = ~ .  Otherwise we construct an 
infinite sequence of closed sets (G;). 

Proposition 5.3. We have: 

c F o o ~ V i n  f. 
p>O \ p > O  ./ oo 

Proof. The first assertion is a direct consequence of Theorem 3.2. Let us prove the 

sec~176 /oo ' a ~ O ' A s ( p ~ o L p )  ~ and F~ n Vine are c~ 

with their summits at the origin, we can suppose that II a[I = 1. From the inclusion 
/ \ 

( ~ L p )  c F ~  we get a~F~o and consequently a~G o. Suppose now that a~ Vi. f. 
\ p ~ - o  / 

At some step of the algorithm we have found p, and i, 1 < i < nv such that a~K~. 
/ \ 

a~(  ~ Lv } . , t h e r e  are sequences (r/q)and (aq)with r/q > 0, limr/q = 0, a~v~_~_o Lw As 
\ p > 0  / o o  q - 

and a = lim r/qaq. The set K p is open so that, as a~K~, r/qaq~K p for each q sufficiently 
q 

large. Consequently aq~N~ for each q such that r/q < s p and this proves that aqq~Lv 
for each q large enough. This contradicts the fact xq~ ~ Lv for each q, and therefore 
the hypothesis a~ Vi~ f is false. [] p>O 

Corollary 5.4. The projective exclusion algorithm stops in a finite number of steps if 
and only if F ~ c~ Vin e = { 0 } .  In this case the set ~ L v is compact and contains F n F. 

p>-O 

Proof. The first assertion comes from Corollary 3.3. The inclusion F c~ V c ~ Lp 
p > O  

is given by Proposition 5.1, as ~ Lv is obtained from F by excluding the sets N~; 
p=>O 

for such a set Vc~N~ = ~ .  We shall prove that ~ Lp is compact. From Proposition 5.3 
p>_O 

we have (p~o Lv) = {0}. Suppose that (-] Fv is not compact. This set contains a 
co p > O  

sequence (aq) such that lim II aq [I = + ~ .  Consider the sequence bq = [I aq II - ~a~. As 
q 

IIb~ll = 1 we can extract a converging subsequence (also denoted by (bq)): 

limbq=b~O" We ~ b=limllaql[-laq s~ that b~( q v oo w i t h b ~ 0 ,  and 

thisc~ ={0}. [] 
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3.~t81 

2 

1.,581 

1 

1 1.~ll ~ ~1.581 

Fig. 2 

Corollary 5.5. Every hypersurface without any point at infinity can be localized in a 
finite number of steps. 

Proof. In this case F = R" and Vin f = {0}. We apply  Corol lary  5.4. 

Example 5.6. Localizing a circle in R 2. 
Let P(x,y) = x 2 + y2 _ 1 and F = {(x,y):x __> 0, y __> 0}. We have 

P*(w,x,y) = x 2 -~- y 2  _ w 2, 

M(w,x,y,t) = Ix 2 + y2 _ w 2 [ _  2(Ixl + lyl + [wl)t - 3t 2. 

F r o m  Propos i t ion  5.1, if P*(0, x, y) ~ 0 then P(x, y) # 0 for each (x + 2, y + #)Iv 
with max  {[21, I/~1, Ivl} < m*(O,x,y). We have: 

M(1,0,O,t)=M(O,l,0,t)= 1 - 2 t - 3 t  2 m*(1 ,0 ,0 )= �89  

M ( 1 , 1 , O , t ) = 2 - 4 t - 3 t  2 m(1, 1,0) = - 2  + v / ~  ~ 0.387, 
3 

We obta in  the following Fig. 2: the excluded regions are shaded. 

6. Examples 

The following curves have been obta ined f rom our  practical  exclusion a lgor i thm in 
the affine case with K = R. Fo r  each of the following pictures, we give the equat ion 
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of the curve, the coord ina tes  of the rectangle in which the curve has been localized 
and the value of the accuracy  1/p. We use float a r i thmet ic  on a Mack in tosh  2. 

The folium of  Descartes: 

P ( x , y ) =  x 3 + y 3 -  2xy, - 1 < x <  3, - 2 < y <  2,p -1 =0.02.  

The divergent parabola: 

P(x, y) = y2 _ x 3  _~_ 2X 2, -- 0.5 --< X < 3, -- 2 < y < 2, p -  1 = 0.02. 

The isola ted po in t  (0, 0) appears  in a small  rectangle.  
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A sextic: 

P(Jx, y) = (4y 2 -t- x y  - -  1 )  2 - -  (4y 2 - -  1 ) 2 ( 1  - -  y2), 

--  3.7 < x - <  3.7, - - 2 < y _ < 2 , p  -1 = 0 . 0 3 .  

The  curve o f  Gergueb: 

P(x ,  y) = - 7x  8 - 12x6y 2 + 28x  6 + 6x4y 4 + 44x4y  z - 42x  4 + 20x2y 6 + 68xZy 4 

- 52x2y 2 + 28x z + 9y 8 - 204y  6 + 70y 4 + 20y 2 - 7, 

- 2.5 _< x < 2.5, - 4 < y  < 4 , p  -1  = 0 . 0 2 .  

T h i s  c u r v e  a p p e a r s  in  t he  s t u d y  of  a g e o m e t r i c a l  p r o b l e m  via  t h e  W u  W e n - T s i i n  

m e t h o d .  
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