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Abstract. At the beginning of the 1980s, M. Shub and S. Smale developed a
quantitative analysis of Newton’s method for multivariate analytic maps. In particular,
their α-theory gives an effective criterion that ensures safe convergence to a simple
isolated zero. This criterion requires only information concerning the map at the
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initial point of the iteration. Generalizing this theory to multiple zeros and clusters of
zeros is still a challenging problem. In this paper we focus on one complex variable
function. We study general criteria for detecting clusters and analyze the convergence
of Schröder’s iteration to a cluster. In the case of a multiple root, it is well known
that this convergence is quadratic. In the case of a cluster with positive diameter, the
convergence is still quadratic provided the iteration is stopped sufficiently early. We
propose a criterion for stopping this iteration at a distance from the cluster which is
of the order of its diameter.
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Introduction

If ζ is a simple zero of an analytic function f , then the iteration of the classical
Newton operator

N ( f ; x) := x − f (x)

f ′(x)
converges quadratically to ζ , provided the initial point is “sufficiently close” to it.
A quantitative analysis of this convergence has been given by Shub and Smale [51],
[49], [52], [50]. They relate the convergence of Newton’s method to point esti-
mates—estimates on f and its derivatives at a point. These results extend to the
multivariate case and are often referred to as “Smale’s α-theory.”

In this paper, we generalize the α-theory in order to treat multiple zeros and
clusters of zeros of analytic functions in the univariate case. In the case of a zero
of multiplicity m, the convergence of Newton’s operator is no longer quadratic,
but one can use Schröder’s modified Newton operator [48]:

Nm( f ; x) := x − m
f (x)

f ′(x)

which has quadratic convergence. Another possibility is to apply Newton’s operator
to the (m − 1)th derivative of f . Both methods are covered by our analysis of a
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family of Schröder operators:

Nm−l( f (l); x) := x − (m − l)
f (l)(x)

f (l+1)(x)
, 0 ≤ l ≤ m − 1. (1)

A cluster of zeros only means a set of zeros. Informally speaking, we use this
term to refer to a set of zeros whose diameter is small compared to the distance
to other zeros. In the context of numerical analysis, a natural request is to isolate
and approximate clusters of zeros, simple or not. From a practical point of view,
a cluster behaves like a multiple zero when seen from a distance. This is the basis
of our method: we present an algorithm that treats the cluster as a multiple zero
as long as the iterates are “far” from it, using a Schröder operator. We show that
during this first stage, the iterates converge quadratically to the cluster. In the case
of a multiple zero, convergence is quadratic to the zero. In the case of a cluster with
positive diameter, the termination of our algorithm is given by a criterion detecting
that the vicinity of the cluster has been reached. We show that the algorithm stops
at a distance from the cluster which is of the order of its diameter.

Preliminaries

We start by setting the main notation and conventions used throughout this text.
Then we briefly recall the α-theory before presenting our main results.

Definitions and Conventions. We denote by R the field of real numbers, by C
the field of complex numbers, and by ı ∈ C the square root of −1 with positive
imaginary part. For any z ∈ C, |z| denotes the modulus of z. For any ζ ∈ C and
r ≥ 0 being a real number, we use the following notation for balls, B(ζ, r) :=
{x ∈ C: |x − ζ | < r} denotes an open ball and B̄(ζ, r) := {x ∈ C: |x − ζ | ≤ r}
denotes a closed ball. For any real number u and any integer m ≥ 1 we introduce
the family of auxiliary functions

ψm(u) := 2(1 − u)m+1 − 1.

We useψ(u) := ψ1(u) = 1−4u +2u2. For a compact subset Z ofC the diameter
of Z is the maximum distance between any two points of Z . We always count
numbers of zeros with multiplicities.

We denote by R{t} the algebra of the real power series with positive radius of
convergence. For convenience, we sometimes treat the elements of R{t} similar to
their corresponding analytic functions defined on a neighborhood of 0.

If f is an analytic function, we make use of the following notation for the
generating series of the absolute values of the derivatives of f at a point z in the
region of analyticity of f :

[ f ]z :=
∑
k≥0

| f (k)(z)| t k

k!
∈ R{t}.
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We consider the following partial order ≤ over R{t}. Let F and G be in R{t},
we write F ≤ G when F (k)(0) ≤ G(k)(0) for all k ≥ 0. Then we say that a
power series F ∈ R{t} is a majorant series for an analytic function f at a point z
if [ f ]z ≤ F . For completeness, in Appendix A we give the main basic properties
of majorant series.

Point estimates of a given function f at a given point z are quantities that only
depend on the series [ f ]z .

Convergence to Simple Zeros. We first recall the basic results of the α-theory.
For precise results, for a complete historical presentation, and for the multivariate
case, we refer to [2, Chap. 8].

Three important quantities are defined in this analysis: γ , β, and α. The first
one, namely γ ( f ; z), helps control the function locally:

γ ( f ; z) := sup
k≥2

∣∣∣∣ f (k)(z)

k! f ′(z)

∣∣∣∣
1/(k−1)

.

In particular, the radius of convergence of the power series expansion of f at z
is at least 1/γ . The second quantity is the length of the iteration step, β( f ; z) :=∣∣ f (z)/ f ′(z)

∣∣; the third quantity is their product, α( f ; z) := β( f ; z)γ ( f ; z).
Most of the proofs handling these quantities hide geometric majorant series

techniques, these are majorant series whose sequence of coefficients forms a geo-
metric progression. In particular, γ ( f ; z) can be defined in terms of the minimal
geometric majorant series of ( f − f (z))/ f ′(z) at z of the form:[

f − f (z)

f ′(z)

]
z

≤ t

1 − γ ( f ; z)t
.

Roughly speaking, theα-theory provides two types of theorem. The so-called γ -
theorems [2, Chap. 8, Theorem 1] show that Newton’s method converges quadrat-
ically within a ball centered at ζ , whose diameter is universally (with respect to
f ) proportional to 1/γ ( f ; ζ ). In particular, this also provides lower bounds for
the distance between simple zeros [9]. As to the so-called α-theorems [2, Chap. 8,
Theorem 2], which have given their name to the α-theory, they are more rele-
vant to practical concerns: they show that Newton’s method with an initial point x0

converges quadratically, provided α( f ; x0) is sufficiently small. Moreover, the dis-
tance from x0 to the zero is then bounded by β( f ; x0) times a universal constant.
The optimal constants are due to Wang and Han [57].

Our Contributions

Overview. In this paper we extend the α-theory in order to obtain estimates
for clusters of zeros of analytic functions. The text is organized around three
central problems: cluster location, bounds on the diameter of clusters, and cluster
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approximation. For any pair of integers m ≥ 1 and l ∈ {0, . . . ,m − 1}, the
following central characters, introduced in [58], are natural generalizations of the
quantities α, β, γ . If f (m)(z) 
= 0, we define them as

γm( f ; z) := sup
k≥m+1

(
m! | f (k)(z)|
k! | f (m)(z)|

)1/(k−m)

,

βm,l( f ; z) := sup
l≤k≤m−1

(
m! | f (k)(z)|
k! | f (m)(z)|

)1/(m−k)

,

αm,l( f ; z) := γm( f ; z)βm,l( f ; z). (2)

Briefly, we also write βm := βm,0 and αm := αm,0. In other words, we have at our
disposal a straightforward majorant series Fm( f, z; t) for

[
m! f

f (m)(z)

]
z

≤ Fm( f, z; t) :=
m−1∑
j=0

βm− j
m ( f ; z)t j + tm

1 − γm( f ; z)t
, (3)

and therefore f is analytic in B(z, 1/γm( f ; z)), or can be continued analytically
there. When γm( f ; z) = 0 (that is, f is a polynomial of degree m) it is convenient
to stipulate that 1/γm( f ; z) is ∞.

The paper is structured as follows. We start with cluster location (Section 1)
and find a lower bound on the diameter of the cluster (Section 2). Convergence of
the Schröder operators to the cluster is analyzed in Section 3 in terms of estimates
at the cluster. In Section 4 we turn this analysis into an algorithm that needs
only the estimates at the initial point. In Section 5 we explain how to compute
approximations of theses estimates. Finally, in Section 6, we report on numerical
experiments on families of exponential polynomials.

Inequalities. Majorant series are a convenient tool to handle point estimates.
Appendix A provides a useful toolbox for computing with majorant series, we
shall refer to it several times in proofs. This toolbox is also intended to be used in
practice in order to compute approximations of γm , as illustrated in Section 5.

Most of our inequalities generalize some classical ones of the α-theory. For
instance, Proposition 4.3 generalizes [2, Chap. 8, Prop. 3] when m > 1. In most
cases, inequalities are first proved in terms of majorant series.

In designing our algorithms, we allow the user to specify a function Bm,l( f,
x0; x1) that returns a (possibly rough) numerical approximation ofβm,l( f ; x1), with
the possible use of information located at x0 (see the definition in Section 4.2).
In Section 5, we provide two practical cases: the first one uses computations with
power series expansions, while the second one is purely numerical and relies on
the well-known discrete Fourier transform interpolation scheme.

Cluster Location. In 1881, Pellet [39] gave a simple location criterion: let f , F ,
and z be such that

[
m! f/ f (m)(z)

]
z ≤ F and let r > 0 be a real number smaller
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than the radius of convergence of F . If

F(r)

rm
− F (m)(0)

m!
< 1,

then f has m zeros in B̄(z, r), counted with multiplicities. In Section 1.1, we
recall a proof of this criterion based on Rouché’s theorem [45]. Then we extend
this method to deduce information from αm,l( f ; z) on the location of zeros of
the derivatives f (l) of the analytic function f around z. If αm,l is less than a
universal (with respect to f ) constant, then we determine two balls centered at
z and containing the cluster: a smaller one, of radius universally proportional to
βm,l( f ; z) and a larger one of radius universally proportional to 1/γm( f ; z).

Cluster Diameter. From the location criterion at a point ζ in the convex hull of a
cluster of m zeros of f (counting multiplicities), we deduce an upper bound on the
diameter of this cluster in terms of βm( f ; ζ ). In Section 2, we provide the converse
bound: we give a quantitative formula bounding βm( f ; ζ ) in terms of the diameter
of the cluster. When speaking informally, we will treat the diameter of the cluster
and βm( f ; ζ ) similarly.

On occasion, we also say informally that a point lies far or close to a cluster,
bearing in mind the implicit scale given by the diameter of the cluster.

Cluster Approximation. Informally speaking, if f (l) admits a cluster of m − l
zeros, and as long as βm,l at the current iterate is larger than the diameter of
the cluster, then the cluster behaves like a multiple zero. Therefore the Schröder
iteration (1) converges quadratically to the cluster. Then, in the case of a cluster
with positive diameter, when arriving close to the cluster, it is well known that the
iteration may behave in a chaotic way.

The following basic situation exemplifies this difficulty. Consider the analytic
map f : x �→ x2 − ε2 with ε 
= 0. Here f has two zeros, namely −ε and ε, the
diameter of this cluster is 2|ε| and β2( f ; 0) = |ε|. The use of the corrected Newton
iteration

x1 := N2( f ; x0) = x0 − 2
f (x0)

f ′(x0)
= ε2

x0
,

in order to approximate this cluster, leads to the following discussion. If |x0| is
very large compared to |ε|, then x1 is very close to the cluster; if |x0| is very small
compared to |ε|, then x1 is very far from the cluster, and, finally, if |x0| is about
the same as |ε|, then |x1| is also about the same as |ε|.

This is the main difficulty to be overcome in the general case: we detect when
the Schröder iterates are well defined and stop the iteration once it has arrived
very close to the cluster, i.e., at a distance which is of the order of the diameter of
the cluster. We refer to the combination of Schröder’s operator with our stopping
criterion as an approximation algorithm. This algorithm is presented in Section 4.
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Special Cases. In general, it is recommended using formula (1) with l = 0:
this way no high-order derivative needs to be computed. In this paper we show
that rough approximations of βm,l , namely Bm,l( f, x0; x1) and Bm,l( f, x1; x0),
are sufficient (here x0 and x1 are two consecutive iterates). In particular, using
the method given in Section 5, the computation of Bm,l( f, x0; x1) boils down to
computing a polynomial of degree at most 2m − 1 that interpolates f at 2m points
equidistributed on the circle of center x1 and radius |x0 − x1| (the same holds for
Bm,l( f, x1; x0)). This is a serious advantage over Newton’s iteration on f (m−1).

When using our algorithm with l = m − 1, the convergence to a simple zero of
f (m−1) is quadratic. However, instead of iterating toward this zero, our stopping
criterion allows us to stop the iteration as soon as the iterates are close to the cluster
of zeros of f . This shows another advantage of our unified presentation for any
l ∈ {0, . . . ,m − 1}.

Related Works

Location and approximation of roots of polynomials are classical subjects in nu-
merical analysis. Some general references are [26], [40]. An extended bibliography
is collected in [27], [28], and a recent survey on root location can be found in [29].

In contrast to polynomials, few algorithms are known for locating and approx-
imating clusters of zeros of analytic functions. Yet such clusters naturally arise in
many theoretical and practical situations. The results of this paper are used in [12],
which deals with the location and approximation of special types of clusters of
multivariate analytic maps: even when starting with polynomial maps, the algo-
rithm of [12] needs to compute with functions that are implicitly defined, hence
generally not polynomial.

Cluster Location. Our analysis of Pellet’s criterion in Section 1 follows Yakoub-
sohn’s approach via Rouché’s theorem [58], [59]. We slightly improve the criteria
of [58], [53], [59], and generalize them to clusters of roots of derivatives. Other
cluster location algorithms have been proposed in the analytic case. For instance,
the algorithms of [22], [24], [23] rely on numerical path integration: they are more
powerful albeit more expensive. In [46], Pellet’s criterion is compared to nine other
location methods based on several families of polynomials.

Cluster Approximation. The quadratic convergence of Newton’s iteration ceases
to hold in the presence of multiple zeros. Instead, the convergence becomes linear
and a large amount of works focus on this problem, including [48], [33], [41],
[42], [43], [13], [6], [7], [56], [5], [15], [60], [14], [8], [58] (some of them also
deal with the more complicated multivariate case). In order to reestablish quadratic
convergence, Schröder [48] introduced his corrected Newton operator. The cor-
rection requires prior knowledge of the multiplicity. This multiplicity may also
be approximated dynamically at the price of slowing down the convergence [54],
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[18], [55], [21], [58]. Higher-order operators have also been adapted to multiple
zeros [11]. In this paper we deal with clusters, not only with multiples zeros. We
assume that the multiplicity is known in advance. Our theoretical γ -analysis of the
convergence of Schröder’s operator to a cluster (Section 3) mainly follows [58],
where a similar analysis is performed for Newton’s operator.

Applications to Polynomial Root Finding. Besides our primary interest in the
several variables case [12], we now discuss the potential applications of our meth-
ods in the field of univariate polynomial root finders. As observed in [1], [37],
univariate polynomials produced by eliminating variables in multivariate polyno-
mial systems (e.g., by means of Gröbner basis computation) are often huge and
“ill-conditioned.” Thus, clusters and even sequences of nested clusters are not a
rare phenomenon in practice. These situations require special attention in order
to avoid a precision blow-up in the computations. In the following paragraphs we
briefly discuss the main known strategies to handle clusters of roots of polynomials.
A detailed survey on root-finder algorithms can be found in [36].

On one hand, nearly optimal root finders have been well established for a
decade [34], [35], [30], [31], [20], [38], following earlier ideas by Schönhage [47].
The fastest algorithms from the theoretical point of view, namely [31], [38], are
based on balanced splittings and make use of the nontrivial generalizations of the
Grace–Heawood theorem given in [4], which can be seen as a complexification
of Rolle’s theorem. More precisely, if k + 1 roots of a polynomial p of degree
n are contained in a ball of radius ρ, then, for any � ≤ k, at least k + 1 − �

roots of p(�) lie in a ball of radius in O(ρ), centered at the average of the k + 1
roots. Our location results of Section 1 yield a similar result starting from an α
estimate. For “ill-conditioned” polynomials, balanced splitting requires increased
precision in the computations (see discussions in [36, Sect. 7]). Recently, Pan has
proposed an algorithm to compute splittings that are not necessarily balanced but
favor clusters [38]: his algorithm is still nearly optimal in the worst case, but also
optimal for the “well-conditioned” case. His construction relies on Turan’s theorem
for approximating the distances of a given point to the roots of the polynomial. All
these techniques deeply exploit nontrivial results for polynomials, which are less
connected to the techniques presented in this paper.

On the other hand, other kinds of polynomial root finders have been designed
in order to exploit “ill-conditioned” situations. They are theoretically slower than
the previous methods but they are often efficient in practice. In [44], Renegar
speeds up Weyl’s quad-tree construction (combined to the Schur–Cohn algorithm)
thanks to the α-theory for simple roots. Clusters are treated by relating them
to clusters of derivatives. This approach is closer to ours than the one of [4],
since it only needs to consider clusters that are far from the other roots. In [37],
Pan profoundly revisits Renegar’s strategy: clusters are treated very efficiently by
means of Schröder’s operator combined to a stopping criterion relying on Turan’s
theorem. These techniques do not readily extend to the analytic case, where our
main contribution lies. In [1], Bini and Fiorentino describe their implementation
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based on many heuristics. Their program is well suited to sparse polynomials and
takes advantage of “ill-conditioned” situations. The precision in the computations
is only increased when necessary. When dealing with a well-separated cluster of
m zeros they propose to combine the main result of [4] to Newton’s iteration on
the (m − 1)st derivative. Ultimately, computations are verified by Gerschgorin’s
theorem (see [32] for a recent improvement of this theorem). Concerning these
algorithms [44], [37], [1], it is legitimate to ask if our methods could apply, could
improve intrinsic complexities, and could extend them to approximate a finite set
of the zeros of an analytic function in a bounded domain. Such a study has yet to
be done.

Finally, in the vast literature on polynomial root finding and cluster detection,
it is worth mentioning a few other important approaches proposed in [16], [19],
[17], [61], that are less connected to our work.

1. Cluster Location

We present point estimate criteria for cluster location that are based on Rouché’s
theorem. The first and most general criterion relates the existence of a cluster of
zeros of f to the sign of a certain algebraic expression built from majorant series
evaluations. Then we deduce criteria in terms of βm and γm . Finally, we generalize
these criteria in order to locate zeros of the derivatives of f . In this section, f
denotes an analytic function defined on an open subset U ⊆ C.

1.1. Location from Majorant Series

We start with the most general location criterion in terms of majorant series. This
is a consequence of Rouché’s theorem.

Proposition 1.1. Let m ≥ 0 be an integer, let z ∈ U be such that f (m)(z) 
= 0
and let F ∈ R{t} be such that |m! f/ f (m)(z)|z ≤ F . Then, for any real number
r > 0 smaller than the radius of convergence of F such that B̄(z, r) ⊆ U and

F(r)

rm
− F (m)(0)

m!
< 1, (4)

f has m zeros in B̄(z, r), counted with multiplicities.

Proof. We introduce the function g: U → C,

g(x) = f (x)−
m−1∑
j=0

f ( j)(z)

j!
(x − z) j .
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Let w be such that |w − z| = r , we start with

∣∣∣∣m! ( f (w)− g(w))

f (m)(z)

∣∣∣∣ ≤
m−1∑
j=0

F ( j)(0)

j!
r j ,

∣∣∣∣m! g(w)

f (m)(z)

∣∣∣∣ ≥ rm −
∑

j≥m+1

F ( j)(0)

j!
r j .

It follows that (4) implies | f (w)− g(w)| < |g(w)|. In particular, g(w) does not
vanish and therefore Rouché’s theorem asserts that f and g have the same number
of zeros in B̄(z, r), counting multiplicities. In order to conclude the proof it remains
to show that z is the only zero of g in this ball, with multiplicity m. This multiplicity
of z is clear. Now let w ∈ B̄(z, r) and w 
= z, let s := |w − z|, we have

m! |g(w)|
| f (m)(z)|sm

≥ 1 −
∑

j≥m+1

F ( j)(0)

j!
s j−m ≥ 1 −

∑
j≥m+1

F ( j)(0)

j!
r j−m > 0,

where the last inequality follows from (4).

Observe that, for m = 0, this proposition can be used to certify the absence
of zeros of f in a given ball. Furthermore, for positive m, this criterion is sharp:
let a > 0 denote a real number, with f = am − xm , F = am + tm , and z = 0,
inequality (4) rewrites am < rm .

The next lemma provides a reformulation of (4) showing that the set of possible
values for r is an interval, under reasonable assumptions. The extremities of this
interval correspond to the diameters of the largest annulus isolating the cluster in
its inner disk. The main argument involved is convexity. We use Gantmacher’s
notation x1:s to denote the s-tuple x1, . . . , xs andR+∗ represents the set of positive
real numbers. In the next subsection, we will use this result in a particular case, in
order to produce a location criterion for clusters of f (l), in terms of αm,l .

Lemma 1.2. Let V denote a connected open set of Rs × R and let F(x1:s, t)
denote a real valued analytic map on V . Let V0 be the canonical projection of
V ∩ (Rs × {0}) to Rs . Assume, for all p1:s ∈ V0:

(a) F(p1:s, t) ≥ 0, for the partial order on R{t};
(b) (∂m F/∂tm)(p1:s, 0) 
= 0;
(c) αm(F(p1:s, ·); 0) 
= 0;
(d) V ∩ ({p1:s} × R) = {p1:s} × (−ρ(p1:s), ρ(p1:s)), where ρ(p1:s) denotes

the radius of convergence of F(p1:s, ·) at 0;
(e) limr→ρ(p1:s ) F(p1:s, r) = +∞.

Then there exists a real valued analytic map A(x1:s) defined on V0 and two real
valued analytic maps r−(x1:s), r+(x1:s) defined on VA := {p1:s ∈ V0: A(p1:s) < 1}
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such that, for any p1:s ∈ V0, the following equivalence holds:

F(p1:s, r)

rm
− (∂m F/∂tm)(p1:s, 0)

m!
< 1 and 0 < r < ρ(p1:s) (5)

if and only if A(p1:s) < 1 and r−(p1:s) < r < r+(p1:s).

Proof. We introduce R(x1:s, r) := F(x1:s, r)/rm − (∂m F/∂tm)(x1:s, 0)/m!, that
is defined on V + := V ∩ (Rs ×R+∗), so that the first inequality of (5) is equivalent
to R(p1:s, r) < 1. On V +, from hypothesis (a) we deduce (∂2 R/∂r2) ≥ 0 which
becomes strict because of (c). Because of (c) again, R(p1:s, r) tends to infinity
when r tends to 0 and with (e) the same holds when r tends to ρ(p1:s). From (d),
we deduce that, for any p1:s ∈ V0, the maximum analyticity domain of R(p1:s, ·)
is the canonical projection of V ∩ ({p1:s}×R+∗) to R and that R(p1:s, r) admits a
unique minimum at r = rm(p1:s), given by (∂R/∂r)(p1:s, rm(p1:s)) = 0. It follows
that rm is analytic on V0. We introduce A := R(x1:s, rm(x1:s)) and then inequality
A(p1:s) < 1 is equivalent to the existence of two values r−(p1:s) and r+(p1:s) such
that (5) is satisfied with r if and only if r−(p1:s) < r < r+(p1:s).

1.2. Location from αm,l

Our aim is now to derive a location criterion for clusters of f (l) from Proposition 1.1
that only depends on αm,l .

Inequality (3) can be generalized in order to treat the derivatives of f . For this
purpose, we introduce

Fm,l( f, z; t) :=(
m

l

)−1
(

m−1∑
j=l

(
j

l

)
βm,l( f ; z)m− j t j−l + tm−l

∑
j≥0

(
m + j

l

)
γm( f ; z) j t j

)
. (6)

Of course, Fm,0 and Fm coincide and Fm,l( f, z; t) satisfies

F (m−l)
m,l ( f, z; 0)

(m − l)!
= 1.

The following lemma will also be used in Section 3:

Lemma 1.3. According to the above notation, we have

[
(m − l)! f (l)

f (m)(z)

]
z

≤ Fm,l( f, z; t).
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Proof. Thanks to Proposition A.9, the proof follows from a direct calculation
through l derivations of the following inequality:[

m! f

f (m)(z)

]
z

≤
l−1∑
j=0

m! | f ( j)(z)|
j! | f (m)(z)| t j +

m−1∑
j=l

β
m− j
m,l ( f ; z)t j + tm

1 − γm( f ; z)t
,

which is clearly established from definitions.

Combining this lemma with Proposition 1.1 applied to f (l) and the series
Fm,l( f, z; t), we derive a first criterion, in terms of βm,l and γm .

Corollary 1.4. Let m ≥ 1 be an integer, let z ∈ U be such that f (m)(z) 
= 0, and
let l ∈ {0, . . . ,m − 1}. Then, for any real number r > 0 such that γm( f ; z)r < 1,
B̄(z, r) ⊆ U , and

Fm,l( f, z; r)

rm−l
< 2, (7)

f (l) has m − l zeros in B̄(z, r), counting multiplicities.

We now apply Lemma 1.2 in the particular case of Fm,l( f, z; t): the variables
x1 and x2 will, respectively, represent βm,l( f ; z) and γm( f ; z) and we take

F(x1, x2, t) :=
(

m

l

)−1
(

m−1∑
j=l

(
j

l

)
xm− j

1 t j−l + tm−l
∑
j≥0

(
m + j

l

)
(x2t) j

)

and V := {(p1, p2, r) ∈ R2
+∗ × R: p2|r | < 1}, so that Lemma 1.3 reads[

(m − l)! f (l)

f (m)(z)

]
z

≤ F(βm,l( f ; z), γm( f ; z), t) = Fm,l( f, z; t).

Since ρ(p1, p2) = 1/p2 and taking m − l instead of m, conditions (a)–(e)
of Lemma 1.2 are satisfied: let A, r− and r+ be the corresponding maps. We
now describe these maps. First observe that R(x1, x2), as defined in the proof of
Lemma 1.2, can be expressed in terms of the variables v := x1x2 and u := x2r ,

R(x1, x2, r) =
(

m

l

)−1
(

m−1∑
j=l

(
j

l

)
(v/u)m− j +

∑
j≥1

(
m + j

l

)
u j

)
=: R̃(v, u).

From the definition of A we deduce

A(x1, x2) = min
0<r<ρ(x1,x2)

R(x1, x2, r) = min
0<u<1

R̃(v, u) =: Ã(v).

Let um(v) denote the abscissa where the minimum of R̃(v, ·) is attained. By con-
struction, um is analytic and satisfies

∂ R̃

∂u
(v, um(v)) = 0,
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from which we deduce

Ã′(v) = d

dv
(R̃(v, um(v))) = ∂ R̃

∂v
(v, um(v))+ ∂ R̃

∂u
(v, um(v))u

′
m(v)

= ∂ R̃

∂v
(v, um(v)) > 0.

Then it is crucial to observe that letting u = √
v proves that R̃ tends to 0 when v

tends to zero, hence limv→0 Ã(v) = 0. On the other hand, the rough lower bound

Ã(v) ≥ m − l

m

v

um(v)
≥ m − l

m
v

implies that limv→+∞ Ã(v) = +∞. Since Ã is increasing, we deduce that there
exists a smallest positive real number ᾱm,l such that Ã(ᾱm,l) = 1. In particular, we
get VA = {(p1, p2): 0 < p1 p2 < ᾱm,l}.

We conclude that Corollary 1.4 reformulates in terms of point estimates: if
0 < αm,l( f ; z) < ᾱm,l and

r−(βm,l( f ; z), γm( f ; z)) < r < r+(βm,l( f ; z), γm( f ; z)),

then f (l) admits m − l zeros in B̄(z, r).
We refer to the universal constant ᾱm,l as the critical value forαm,l . One practical

difficulty lies in obtaining sharp approximations of these critical values in terms
of l and m. Next, we focus on expressing lower bounds on these critical values. In
short, we write ᾱm := ᾱm,0.

1.3. Lower Bounds on Critical Values ᾱm

In order to determine an explicit lower bound on the critical values ᾱm,l , as previ-
ously defined, we first treat the case l = 0.

We assume l = 0 for the moment and let r > 0 be such that γmr < 1. First, we
observe that (7) rewrites

m∑
k=1

(
βm

r

)k

+ γmr

1 − γmr
< 1, (8)

where we let αm := αm( f ; z), βm := βm( f ; z), and γm := γm( f ; z), for short.
Then we write

m∑
k=1

(
βm

r

)k

+ γmr

1 − γmr
= βm/r − (βm/r)m+1

1 − βm/r
+ γmr

1 − γmr
, (9)

so that if γm > 0, letting u := γmr , inequalities βm < r , u < 1, and

αm

u − αm

(
1 −

(αm

u

)m)
+ u

1 − u
< 1 (10)
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imply (7). If m = 1 the critical value ᾱ1 we find this way is the first positive root
of the discriminant (with respect to u) of 2u2 − (1 + α1)u + α1, that is, ᾱ1 =
3 − 2

√
2 > 0.1715, also given in [57, Prop. 2]. Then, numerical approximations

give ᾱ2 > 0.1225, ᾱ3 > 0.1142. For large m one can neglect the term (αm/u)m ,
so that we can focus on the condition

αm

u − αm
+ u

1 − u
≤ 1, (11)

which implies (10) if αm 
= 0. The latter inequality is equivalent to

P(u) := 2αm − (1 + 3αm)u + 2u2 ≤ 0,

which is itself equivalent to αm ≤ 1
9 , and r− ≤ r ≤ r+, where

r− := 2βm
2

1 + 3αm +√
1 − 10αm + 9α2

m

,

r+ := 1 + 3αm +√
1 − 10αm + 9α2

m

4γm
.

Furthermore, it is easy to observe that ᾱm >
1
9 for all m and that limm→+∞ ᾱm = 1

9 .
It follows that 1

9 is the best critical value uniform with respect to m that one can
deduce from Proposition 1.1.

The next theorem summarizes this discussion and also includes the degener-
ate cases. Thus, similar results for polynomials (contained in the proof of [59,
Lemma 6] and also [53, Theorem 11]) are generalized to analytic functions.

Theorem 1.5. Let m ≥ 1 be an integer and let z ∈ U be such that f (m)(z) 
= 0.
In short, let αm := αm( f ; z), βm := βm( f ; z), γm := γm( f ; z), and suppose
αm ≤ 1

9 .

(a) If αm > 0, then for any r such that r− ≤ r ≤ r+ and B̄(z, r) ⊆ U the
function f has m zeros, counting multiplicities, in B̄(z, r) and

2βm ≤ 2βm(1 + αm) ≤ r− ≤ 2βm(1 + 9αm/2) ≤ 3βm

≤ 1

3γm
≤ 1 − 3αm

2γm
≤ r+ ≤ 1 − αm

2γm
≤ 1

2γm
.

(b) If βm = 0, then for any r such that γmr < 1
2 and B̄(z, r) ⊆ U the function

f has m zeros, counting multiplicities, in B̄(z, r).
(c) If γm = 0, then for any r ≥ 2βm such that B̄(z, r) ⊆ U the function f has

m zeros, counting multiplicities, in B̄(z, r).

Proof. Only the degenerate cases are left out of the previous discussion. If βm =
0, then (8) becomes equivalent to γmr < 1

2 . If γm = 0 and βm 
= 0 for any
r ≥ 2βm , then (8) holds again. In both cases (b) and (c), the conclusions follow
from Corollary 1.4.
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Here follows a useful corollary.

Corollary 1.6. Assume that U is connected, let m ≥ 1 be an integer and let
z ∈ U be such that f (m)(z) 
= 0. Suppose αm( f ; z) ≤ 1

9 and B̄(z, 3βm( f ; z)) ⊆
U . Then f has m zeros, counted with multiplicities, in B̄(z, 3βm( f ; z)) and in
B̄(z, 1/(3γm( f ; z))) ∩ U .

1.4. Inequalities Between Different Orders of Derivation

In order to explicit lower bounds on ᾱm,l from the previous one on ᾱm (namely
1
9 ), we will use the following proposition that relates various quantities of type γ ,
β, and α associated to f and its higher derivatives. More precisely, we show that
γm( f ; z) (resp., βm,l( f ; z)) and γm−l( f (l); z) (resp., βm−l,0( f (l); z)) are roughly
equivalent, for fixed values of m and l.

Proposition 1.7. Let z ∈ U and let m ≥ 1 be an integer such that f (m)(z) 
= 0,
then, for any l ∈ {0, . . . ,m − 1} and l ′ ∈ {0, . . . ,m − l − 1}:

(a) αm−l,l ′( f (l); z) ≤ m + 1

m + 1 − l

m − l

m
αm,l+l ′( f ; z) ≤ αm,l+l ′( f ; z);

(b)
l ′ + 1

l + l ′ + 1
βm,l+l ′( f ; z) ≤ βm−l,l ′( f (l); z) ≤ m − l

m
βm,l+l ′( f ; z);

(c) γm( f ; z) ≤ γm−l( f (l); z) ≤ m + 1

m + 1 − l
γm( f ; z).

Proof. We introduce the following quantity cm,l, j :

cm,l, j :=

(
l + j

l

)
(

m

l

) = (l + j)!

j!

(m − l)!

m!
.

Now, setting j := k − l we can compare the terms occurring in definition (2) of γ
and β associated to f and its higher derivatives

m! | f (k)(z)|
k! | f (m)(z)| = m! | f (l+ j)(z)|

(l + j)! | f (m)(z)|
= (cm,l, j )

−1 (m − l)! | f (l+ j)(z)|
j! | f (m)(z)| .

We start with part (c). Taking the supremum of the adequate powers of the ex-
pression above, we just check that the range of summations fits the definitions to
obtain

γm( f ; z) = sup
k≥m+1

(
m! | f (k)(z)|
k! | f (m)(z)|

)1/(k−m)
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= sup
j≥m−l+1

(cm,l, j )
−1/( j+l−m)

(
(m − l)! | f (l+ j)(z)|

j! | f (m)(z)|
)1/( j+l−m)

≤ sup
j≥m−l+1

(cm,l, j )
−1/( j+l−m)γm−l( f (l); z).

Conversely, reexpressing γm−l( f (l); z), we get

γm−l( f (l); z) ≤ γm( f ; z) sup
j≥m−l+1

(cm,l, j )
1/( j−m+l).

For j ≥ m − l + 1 the following lower and upper bounds for cm,l, j conclude
part (c):

(
j + l

j

) j−m+l

≤ cm,l, j =
j∏

i=m−l+1

i + l

i
≤
(

m + 1

m + 1 − l

) j−m+l

.

As for part (b) we get, similarly,

βm−l,l ′( f (l); z) ≤ βm,l+l ′( f ; z) sup
j=l ′,...,m−l−1

(cm,l, j )
1/(m−l− j)

and

βm,l+l ′( f ; z) ≤ βm−l,l ′( f (l); z) sup
j=l ′,...,m−l−1

(cm,l, j )
−1/(m−l− j).

For j = l ′, . . . ,m − l − 1 we have

(
j + 1

j + l + 1

)m−l− j

≤ cm,l, j =
m−l∏

i= j+1

i

i + l
≤
(

m − l

m

)m−l− j

,

which yields part (b). Part (a) follows easily from (b) and (c) since

m − l

m − l + 1

m + 1

m
≤ 1.

1.5. Lower Bounds on Critical Values ᾱm,l

For zeros of polynomials, the Gauss–Lucas theorem [25] asserts that the zeros of
the derivatives of P belong to the convex hull of the zeros of P . The following
corollary can be seen as a weak generalization of this result for analytic functions:
zeros of derivatives remain close to a cluster. This result is obtained by combining
Proposition 1.7 and the previous corollary to f (l), which provides lower bounds
for ᾱm,l .
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Corollary 1.8. Assume that U is connected, let m ≥ 1 be an integer, l ∈
{0, . . . ,m − 1}, z ∈ U , and assume f (m)(z) 
= 0,

m − l

m

m + 1

m + 1 − l
αm,l( f ; z) ≤ 1

9

and let B̄(z, 3[(m − l)/m]βm,l( f ; z)) ⊆ U . Then, f (l) has m − l zeros
(counting multiplicities) in B̄(z, 3[(m − l)/m]βm,l( f ; z)) and B̄(z, (m + 1 − l)/
[3(m + 1)γm( f ; z)]) ∩ U .

Proof. From Proposition 1.7 we have

3βm−l( f (l); z) ≤ 3
m − l

m
βm,l( f ; z) =: r, 3γm−l( f (l); z) ≤ 3(m + 1)γm( f ; z)

m + 1 − l
.

Using the assumption on αm,l( f ; z), we deduce αm−l( f (l); z) ≤ 1
9 , and

r ≤ m + 1 − l

3(m + 1)γm( f ; z)
≤ 1

3γm−l( f (l); z)
.

The conclusion follows from the previous corollary applied with f (l): f (l) has
m − l zeros in the ball B̄(z, 3βm−l( f (l); z)), counting multiplicities, and also in
B̄(z, 1/[3γm−l( f (l); z)]) ∩ U .

2. Cluster Diameter

In the previous section we have shown that if αm is small enough, then there exists
a cluster Z of m zeros of f , that has a diameter D bounded in terms of βm at
points in the convex hull of Z . In this section we focus on the converse inequality,
that is, upper bounding βm in terms of the diameter of the cluster. Throughout this
section, f denotes an analytic function from a connected open subset U ⊆ C. We
will show:

Theorem 2.1. Let m ≥ 1 be an integer and let ζ ∈ U be such that f (m)(ζ ) 
= 0.
Suppose mαm( f ; ζ ) < 1

12 and B̄(ζ, 3βm( f ; ζ )) ⊆ U . Then f has a cluster Z of m
zeros in B̄(z, 3βm( f ; z)), counting multiplicities. In addition, if ζ is in the convex
hull of Z , then βm( f ; ζ ) ≤ 24m2 D, where D denotes the diameter of Z .

We postpone the proof until the end of this section. Let Z := {z1, . . . , zr } denote
zeros of f in U with respective multiplicities n1, . . . , nr . Let m := n1 + · · · + nr

and let ζ be a point in the convex hull of Z . Assume f (m)(ζ ) 
= 0 and, in short,
let αm := αm( f ; ζ ), βm := βm( f ; ζ ), and γm := γm( f ; ζ ). By D we denote the
diameter of Z and we introduce p(x) := ∏r

i=1(x − zi )
ni and g := f/p. We start

with a technical lemma on majorant series.
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Lemma 2.2. Assume αm ≤ 1 and there exists ε > 0 such that γm D < 1 − ε,
then [

m! g

f (m)(ζ )

]
ζ

≤ 1

ε

1

(1 − ε − γm D)m
1

1 − [γm/(1 − ε)]t
.

Proof. If γm = 0, then g = f (m)(ζ )/m!, hence the inequality holds trivially.
Assume now that γm 
= 0. Cauchy’s formula for the kth coefficient Ik in the Taylor
expansion of g(x) at ζ gives the integral representation

Ik = 1

2iπ

∮
C

f (z)

p(z)

dz

(z − ζ )k+1
,

where the contour C can be chosen as the circle of radius r = γ−1
m (1−ε) around ζ ,

since f/p is analytic in the enclosed disk. Changing the variable to z = ζ +
r exp(ıθ), we see that this integral is bounded by

|Ik | ≤ maxz∈C | f (z)|
minz∈C |p(z)|

1

rk
.

Since [ f ]ζ has nonnegative Taylor coefficients, the maximum of | f | on C is
bounded by the value of [ f ]ζ at t = r . On the other hand, the distance between C
and the zi is at least r − D, which implies that |p| is at least (r − D)m . Thus we
get

m! |Ik |
| f (m)(ζ )| ≤ 1

(r − D)m

(
m−1∑
i=0

βm−i
m r i + rm

1 − γmr

)
1

rk
.

Multiplying by t k and summing over k yields

[
m! g

f (m)(ζ )

]
ζ

≤ 1

(r − D)m

(
m−1∑
i=0

βm−i
m r i + rm

1 − γmr

)
1

1 − t/r
.

The conclusion of the lemma follows from replacing r by its value and boundingβm

by γ−1
m , since αm ≤ 1.

From this lemma we deduce the following bound:

Proposition 2.3. According to the above notation and assumptions, if αm ≤ 1
and γm D < 1, then, for any ε > 0 such that γm D < 1 − ε, we have

βm ≤ sup
0≤k≤m−1

(
λg

k∑
i=0

(
m

k − i

)
ρi

g Dm−k+i

)1/(m−k)

,

where λg := ε−1(1 − ε − γm D)−m and ρg := γm/(1 − ε).
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Proof. First, from the previous lemma we deduce[
m! g

f (m)(ζ )

]
ζ

≤ λg

1 − ρgt
.

Second, from Proposition A.4, we also have

[p]ζ ≤
r∏

i=1

[x − zi ]
ni
ζ ≤ (D + t)m .

Then the result follows from bounding termwise the product in the right-hand side
of [

m! f

f (m)(ζ )

]
ζ

≤ [p]ζ

[
m! g

f (m)(ζ )

]
ζ

,

coming from Proposition A.4 again.

We now deduce simplified bounds.

Corollary 2.4. Under the assumptions of the previous proposition and if mρg D <

1 holds, then we have

βm ≤ λgm D

1 − mρg D
.

Proof. The proof follows from the previous proposition and the following in-
equalities:

λg

k∑
i=0

(
m

k − i

)
ρi

g Dm−k+i ≤ λg

k∑
i=0

mm−k+iρi
g Dm−k+i

≤ λg(m D)m−k
k∑

i=0

(mρg D)i

≤ (λgm D)m−k

1 − mρg D
.

We immediately draw from the previous bound:

Corollary 2.5. According to the above notation and assumptions, if αm ≤ 1,
then, for any positive real numbers a and b such that 0 < a < a + b/m < 1 and
mγm D < a, we have

βm ≤ m D

1 − a

1 − b/m

1

b

m

(
1 − b

m
− a

m

)m .
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Proof. The proof follows from taking ε = b/m < 1 in the previous corollary,
which is valid since we have γm D ≤ a < 1−ε and mρg D = mγm D/(1−b/m) ≤
a/(1 − b/m) < 1.

Setting a and b to some suitable values we deduce:

Corollary 2.6. According to the above notation and assumptions, if αm ≤ 1 and
mγm D < 1

2 , then βm ≤ 24m2 D.

Proof. If m = 1, then D = 0 and βm = 0, hence we can assume m ≥ 2. Letting
a = 1

2 , b = 1
2 in the previous corollary we deduce

βm ≤ m D

1 − 1
2

1− 1
4

1
1
2

m

(
1 − 1

m

)m .

The conclusion follows from (1 − 1/m)−m ≤ 4.

Finally, combining Corollary 1.6 to this statement, we achieve:

Proof of Theorem 2.1. Since mαm( f ; ζ ) < 1
12 implies αm( f ; ζ ) ≤ 1

9 , Corol-
lary 1.6 applies: this gives the existence of Z and the inequality D ≤ 6βm( f ; ζ ).
It follows that, if ζ is in the convex hull of Z , then the conditions of the previous
corollary are satisfied.

3. Convergence Analysis

In the previous sections we have shown how the number of zeros in a cluster can
be estimated in terms of estimates at a given point. Now we show that similar
estimates make it possible to bound an annulus, centered at the cluster, within
which the corrected Newton iterator is well defined, and a smaller annulus within
which its convergence is quadratic. Intuitively, while the iterates are inside the
annulus, they are far from the cluster and the iteration behaves as if the cluster
were a multiple zero, whereas in the inner area of the annulus, the cluster does not
behave like a multiple zero.

In this section f still denotes an analytic function defined on an open subset
U ⊆ C. For any l ∈ {0, . . . ,m − 1} we analyze the convergence of Schröder’s
iterates for f (l). First we focus on the definition domain of the iterator, then we
analyze the behavior of one iteration. Last, we examine the convergence of the
iterates and present a stopping criterion in terms of data at the cluster. These data
are a priori unknown but we will derive our stopping criterion from them in the
next section.
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3.1. Zero-Free Areas for the Derivatives

Now we show how to bound an annulus, centered at a cluster, within which the
corrected Newton iterator (1) is well defined, that is, in which f (l+1) does not
vanish. The analysis proceeds first in terms of majorant series and then in terms
of βm,l and γm .

Lemma 3.1. Assume that U is connected, let ζ ∈ U , m ≥ 1 be such that
f (m)(ζ ) 
= 0 and let F be a majorant series such that [m! f/ f (m)(ζ )]ζ ≤ F . For
all z ∈ U , z 
= ζ , such that r := |z − ζ | is smaller than the radius of convergence
of F and

F ′(r)
mrm−1

− F (m)(0)

m!
< 1,

one has:

(a)
m! f ′(z)
f (m)(ζ )

= m(z − ζ )m−1(1 + B), where

|B| ≤ F ′(r)
mrm−1

− F (m)(0)

m!
;

(b) f ′(z) 
= 0 and
| f (m)(ζ )|
m! | f ′(z)| ≤ 1

mrm−1

1

1 − |B| .

Proof. A Taylor expansion at ζ gives

m! f ′(z)
f (m)(ζ )

= (z − ζ )m−1

(∑
j≥1

j
m! f ( j)(ζ )

j! f (m)(ζ )
(z − ζ ) j−m

)

= m(z − ζ )m−1(1 + B),

where

B := 1

m

∑
j≥1, j 
=m

j
m! f ( j)(ζ )

j! f (m)(ζ )
(z − ζ ) j−m .

Then we deduce from the hypothesis that

|B| ≤ F ′(r)
mrm−1

− F (m)(0)

m!
< 1,

which gives part (a). Part (b) follows from the triangle inequality |1 + B| ≥
1 − |B|.

Now these estimates extend to the derivatives of f as follows, using majorant
series in terms of βm,l and γm .
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Corollary 3.2. Assume that U is connected, let m ≥ 1 and ζ ∈ U be such
that f (m)(ζ ) 
= 0. Let l ∈ {0, . . . ,m − 1}, then for all z ∈ U , z 
= ζ , such that
u := max

(
βm,l( f ; ζ )/r, γm( f ; ζ )r) < 1−( 1

2 )
1/(l+2) (with r := |z − ζ |), one has:

(a)
(m − l)! f (l+1)(z)

f (m)(ζ )
= (m − l)(z − ζ )m−(l+1)(1 + B), where

|B| ≤ 1

(1 − u)l+2
− 1 < 1;

(b) f (l+1)(z) 
= 0 and
| f (m)(ζ )|

(m − l)! | f (l+1)(z)| ≤ (1 − u)l+2

(m − l)rm−(l+1)ψl+1(u)
.

Proof. From Lemma 1.3, one has[
(m − l)! f (l)

f (m)(ζ )

]
ζ

≤ Fm,l( f, ζ ; t).

Let

A := 1

m − l

F ′
m,l( f, ζ ; r)

rm−(l+1)
− F (m−l)

m,l ( f, ζ ; 0)

(m − l)!
,

we claim that

A ≤ 1

(1 − u)l+2
− 1. (12)

Since u < 1 − ( 1
2 )

1/(l+2), we deduce A < 1 and therefore the previous lemma
applies with f (l) and Fm,l( f, ζ ; t):

(m − l)! f (l+1)(z)

f (m)(ζ )
= (m − l)(z − ζ )m−(l+1)(1 + B),

with |B| ≤ A. Then parts (a) and (b) follow from direct calculations.
Differentiating Fm,l( f, ζ ; t), given by formula (6), we obtain

A ≤
(

m

l + 1

)−1
(

m−(l+1)∑
j=1

(
m − j

l + 1

)
u j +

∑
j≥1

(
m + j

l + 1

)
u j

)
.

Thanks to ∑
j≥1

(
j + l + 1

l + 1

)
u j = 1

(1 − u)l+2
− 1,

inequality (12) reduces to proving that, for all i = l + 1 ∈ {1, . . . ,m},(
m − j

i

)
+
(

m + j

i

)
≤
(

m

i

)(
j + i

i

)
for j ≥ 1, (13)
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with the natural convention that

(
m − j

i

)
= 0 if j ≥ m − i + 1. We prove

inequality (13) by induction on m. If m = 1, then the only possible case to examine
is i = 1 and the verification is immediate. Assuming that (13) holds for m ≥ 1,
we now show that it holds for m + 1. The case i = m + 1 holds trivially, hence
we can suppose i ≤ m and apply the induction hypothesis, after using Pascal’s
triangle equality (which always holds with the aforementioned convention):(

m + 1 − j

i

)
+
(

m + 1 + j

i

)

=
(

m − j

i

)
+
(

m + j

i

)
+
(

m − j

i − 1

)
+
(

m + j

i − 1

)

≤
(

m

i

)(
j + i

i

)
+
(

m

i − 1

)(
j + i − 1

i − 1

)

=
(

m + 1

i

)(
j + i

i

)(
m − i + 1

m + 1
+ i

m + 1

i

j + i

)

=
(

m + 1

i

)(
j + i

i

)(
1 − i j

(m + 1)( j + i)

)

≤
(

m + 1

i

)(
j + i

i

)
.

3.2. Analysis of One Iteration

The following proposition shows the existence of an annulus around the cluster in
which the convergence of one iteration of Nm−l( f (l); ·) is quantified in terms ofβm,l

and γm . The following formulas constitute the cornerstone of our approximation
algorithm.

Proposition 3.3. Assume that U is connected, let m ≥ 1 be an integer and let
ζ ∈ U be such that f (m)(ζ ) 
= 0, x0 ∈ U , x0 
= ζ . Let l ∈ {0, . . . ,m − 1},
uβ := βm,l( f ; ζ )/|x0 − ζ |, uγ := γm( f ; ζ )|x0 − ζ |, u := max(uβ, uγ ), and
suppose u < 1 − (1/2)1/(l+2). Then f (l+1)(x0) 
= 0, hence x1 := Nm−l( f (l); x0) is
well defined and

|x1 − ζ | ≤ |x0 − ζ |
(m − l)ψl+1(u)

(
m − l

m
uβ + m + 1

m − l + 1
uγ

)
.

Proof. Let r := |x0 − ζ |. According to Lemma 1.3, we start with[
(m − l)! f (l)

f (m)(ζ )

]
ζ

≤ Fm,l( f, ζ ; t).
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Corollary 3.2 asserts that f (l+1)(x0) 
= 0 and

| f (m)(ζ )|
(m − l)! | f (l+1)(x0)| ≤ (1 − u)l+2

(m − l)rm−(l+1)ψl+1(u)
. (14)

On the other hand, we have∣∣∣∣ (x0 − ζ ) f (l+1)(x0)− (m − l) f (l)(x0)

f (m)(ζ )/(m − l)!

∣∣∣∣ ≤ rG ′(r)− (m − l)G(r),

where

G(t) := −
m−l−1∑

j=0

F ( j)
m,l ( f, ζ ; 0)

j!
t j +

∑
j≥m−l

F ( j)
m,l ( f, ζ ; 0)

j!
t j .

From formula (6) and letting

cm,l, j := ( j − l)

(
j

l

)
− (m − l)

(
j

l

)
= ( j − m)

(
j

l

)
,

we deduce

rG ′(r)− (m − l)G(r) = rm−l(
m

l

)
(
−

m−1∑
j=l

cm,l, j u
m− j
β +

∑
j≥m+1

cm,l, j u
j−m
γ

)
. (15)

From

x1 − ζ = f (m)(ζ )

(m − l)! f (l+1)(x0)

(x0 − ζ ) f (l+1)(x0)− (m − l) f (l)(x0)

f (m)(ζ )/(m − l)!

and combining (14) and (15), we deduce

|x1 − ζ | ≤ (1 − u)l+2r

(m − l)

(
m

l

)
ψl+1(u)

(
−

m−1∑
j=l

cm,l, j u
m− j
β +

∑
j≥m+1

cm,l, j u
j−m
γ

)
.

(16)
For all l ∈ {0, . . . ,m − 1}, we claim

− cm,l, j ≤ m − l

m

(
m

l

)(
l + m − j

l + 1

)
for l ≤ j ≤ m − 1, (17)

hence

−
m−1∑
j=l

cm,l, j u
m− j
β ≤ m − l

m

(
m

l

)
uβ

(1 − uβ)l+2
. (18)

We also claim

cm,l, j ≤ m + 1

m + 1 − l

(
m

l

)(
l + j − m

l + 1

)
for j ≥ m + 1, (19)
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hence ∑
j≥m+1

cm,l, j u
j−m
γ ≤ m + 1

m − l + 1

(
m

l

)
uγ

(1 − uγ )l+2
. (20)

Combining (16), (18), and (20) we deduce

|x1 − ζ | ≤ r

(m − l)ψl+1(u)

(
m − l

m
uβ + m + 1

m − l + 1
uγ

)
.

It remains to prove (17) and (19). First, concerning (17), for j = m − 1 this
inequality is an equality and then it is sufficient to check that

−cm,l, j

(
l + m − j

l + 1

)−1

increases with respect to j . Last, concerning (19), observe again that it is an equality
when j = m + 1 and that

cm,l, j

(
l + j − m

l + 1

)−1

is a decreasing sequence with respect to j .

3.3. Stopping the Iteration

The next result shows quadratic convergence to the cluster while Schröder’s iterates
remain far enough from it. We introduce the following universal quantities:

θm,l,δ := δ
1

m
+ m + 1

(m − l + 1)(m − l)
,

um,l,δ := max

{
u ≥ 0 such that u < 1 − (

1
2

)1/(l+2)
and

θm,l,δu

ψl+1(u)
≤ 1

}
.

Observe that this maximum is well defined since 1 − (
1
2

)1/(l+2)
is the first positive

zero of ψl+1.

Proposition 3.4. Let f be an analytic function from an open subset U ⊆ C.
Let ζ ∈ U , m ≥ 1 be an integer, l ∈ {0, . . . ,m − 1}, and let r ≥ 0 be a real
number such that B̄(ζ, r) ⊆ U and f (m)(ζ ) 
= 0. Let δ := 1 if βm,l( f ; ζ ) 
= 0 and
δ ∈ {0, 1} otherwise. Let u := γm( f ; ζ )r and assume u ≤ um,l,δ .

Let x0 ∈ B̄(ζ, r) and consider the sequence (xk)k≥0 recursively defined by
xk+1 := Nm−l( f (l); xk). Let K ≥ 0 be the smallest integer k such thatβm,l( f ; ζ ) ≥
γm( f ; ζ )|xk − ζ |2 (K may be infinite). Then, for all 0 ≤ k ≤ K − 1, the iterate
xk+1 is well defined, belongs to B̄(ζ, r), and

|xk+1 − ζ | ≤ θm,l,δγm( f ; ζ )
ψl+1(u)

|xk − ζ |2.
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Proof. In short, let βm,l := βm,l( f ; ζ ) and γm := γm( f ; ζ ). The case K = 0
is trivial, so that we can assume K ≥ 1. When k = 0, x0 ∈ B̄(ζ, r) and βm,l <

γm |x0 − ζ |2. In particular, x0 
= ζ and, therefore, the previous proposition applies

|x1 − ζ | ≤ |x0 − ζ |
(m − l)ψl+1(u0)

(
m − l

m

βm,l

|x0 − ζ |δ +
m + 1

m − l + 1
u0

)

≤ θm,l,δγm

ψl+1(u0)
|x0 − ζ |2,

where u0 := γm |x0 − ζ |. Using the fact that 1/ψl+1(u) is an increasing function,
we deduce

|x1 − ζ | ≤ θm,l,δγm

ψl+1(u)
|x0 − ζ |2 ≤ θm,l,δu

ψl+1(u)
|x0 − ζ |,

whence x1 ∈ B̄(ζ, r). Then a straightforward induction on k concludes the
proof.

Remark that ifγm( f ; ζ ) = 0, then K = 0 in the previous proposition. Ifγm( f ; ζ ) 
=
0 and βm,l( f ; ζ ) = 0 this proposition asserts that the sequence (xk)k∈N converges
quadratically to ζ . But if βm,l( f ; ζ ) > 0, then K is finite. Unfortunately, it is not
possible to handle the computation of K from the only data at the current iter-
ates. In the algorithm proposed in the next section we relax the conditions of the
previous proposition.

Analysis of the Last Iteration

Speaking informally and according to the notation of the previous proposition, we
show that xK or xK+1 is very close to the cluster of f (l) when the iteration stops.
More generally, for any l ′ ≤ l, we provide a stopping criterion to get close to the
cluster of f (l

′). In particular, if l = m − 1 one can take l ′ = 0, in order to stop the
approximation close to the cluster of f . Recall that βm,l ′ ≥ βm,l .

Proposition 3.5. Assume that U is connected, let m ≥ 1 be an integer, let ζ ∈ U
be such that f (m)(ζ ) 
= 0, and let x0 ∈ U . Let l ∈ {0, . . . ,m − 1}, l ′ ≥ 0, l ′ ≤ l,
δ := 1 if βm,l( f ; ζ ) 
= 0 and δ ∈ {0, 1} otherwise. Assume

γm( f ; ζ )|x0 − ζ | ≤ um,l,δ.

(a) If f (l+1)(x0) = 0, then

|x0 − ζ | ≤ βm,l ′( f ; ζ )
um,l,δ

.



Clusters of Zeros of Analytic Functions 283

(b) If f (l+1)(x0) 
= 0, then x1 := Nm−l( f (l); x0) is well defined and if
βm,l ′( f ; ζ ) ≥ γm( f ; ζ )|x0 − ζ |2, then the following inequality holds:

min(|x0 − ζ |, |x1 − ζ |) ≤ βm,l ′( f ; ζ )
um,l,δ

.

Proof. Part (a) follows directly from Proposition 3.3 and the definition of um,l,δ .
Concerning part (b), if |x0 − ζ | ≤ βm,l ′( f ; ζ )/um,l,δ , then we are done, so that
we can now assume that the contrary holds, that is, βm,l ′( f ; ζ )/|x0 − ζ | < um,l,δ .
Then, using hypothesis γm( f ; ζ )|x0 − ζ | ≤ βm,l ′( f ; ζ )/|x0 − ζ | =: uβ , Proposi-
tion 3.3 yields

|x1 − ζ | ≤ θm,l,δ|x0 − ζ |
ψl+1(uβ)

uβ = θm,l,δ

ψl+1(uβ)
βm,l ′( f ; ζ )

≤ θm,l,δ

ψl+1(um,l,δ)
βm,l ′( f ; ζ ) ≤ βm,l ′( f ; ζ )

um,l,δ
.

4. Cluster Approximation

In this section, we undertake the problem of stopping Schröder’s operator in the
case of clusters with positive diameters. Informally speaking, we turn into prac-
tice the theoretical convergence analysis of the previous section. Here we start
by presenting crucial formulas bounding point estimates starting from other es-
timates at a close point. In Section 4.2 we introduce the function Bm,l that aims
at computing approximations of βm,l . This is followed by the main lemma, that
provides a stopping criterion from the data at the current iterates only. Conditions
depending on data at the cluster appear in the main theorem, which summarizes
our approximation algorithm. Section 4.5 is devoted to testing these conditions
from the initial point only.

4.1. Translation of Point Estimates

From now on, f denotes an analytic function defined on an open set U ⊆ C. The
next lemmas concern bounds in terms of majorant series. They are used in the next
proposition, which gives bounds on translations of point estimates.

Lemma 4.1. For any k ≤ m we have

(
1

k!

tm

1 − γmt

)(k)
≤

(
m

k

)
tm−k

(1 − γmt)k+1
.
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Proof. An easy rewriting of the left-hand side of the inequality yields

(
1

k!

tm

1 − γmt

)(k)
=
(∑

i≥0

1

k!
γ i

mtm+i

)(k)
= tm−k

∑
i≥0

(
m + i

k

)
(γmt)i .

The right-hand side is(
m

k

)
tm−k

(1 − γmt)k+1
=
(

m

k

)
tm−k

∑
i≥0

(
k + i

k

)
(γmt)i ,

so that it is enough to prove(
m + i

k

)
≤
(

m

k

)(
k + i

k

)
.

But this follows from the fact that the sequence

ui :=
(

m + i

k

)(
k + i

i

)−1

is decreasing since

ui+1

ui
= m + i + 1

k + i + 1

i + 1

m + i + 1 − k
≤ 1.

Lemma 4.2. Let ζ ∈ U , m ≥ 1 be an integer and assume that f (m)(ζ ) 
= 0. Let
γm := γm( f ; ζ ) and βm,l := βm,l( f ; ζ ), for short.

(a) If 0 ≤ l ≤ m − 1, then

[
m! f (l)

l! f (m)(ζ )

]
ζ

≤ βm,l(βm,l + (m − 1)t)m−l−1 +

(
m

l

)
tm−l

(1 − γmt)l+1
.

(b) If l ≥ m, then

[
m! f (l)

l! f (m)(ζ )

]
ζ

≤ γ l−m
m

(1 − γmt)l+1
.

(c)

[
f (m)(ζ )

f (m)

]
ζ

≤ (1 − γmt)m+1

2(1 − γmt)m+1 − 1
.

Proof. By Lemma 1.3, we get

[
m! f (l)

l! f (m)(ζ )

]
ζ

≤
m−1∑
i=l

(
i

l

)
βm−i

m,l t i−l +
(

1

l!

tm

1 − γmt

)(l)
.
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When l ≤ m − 1, we bound the first sum as follows:

m−1∑
i=l

(
i

l

)
βm−i

m,l t i−l ≤ βm,l

m−l−1∑
j=0

(
m − l − 1

j

)
β

m−l−1− j
m,l t j (l + j)!

l!

≤ βm,l(βm,l + (m − 1)t)m−l−1,

for (l + j)! / l! ≤ (l + j) j ≤ (m − 1) j . For the second term, we use Lemma 4.1,
this yields part (a). If l ≥ m, then part (b) follows from Leibniz’s rule[

m! f (l)

l! f (m)(ζ )

]
ζ

≤
(

1

l!

tm

1 − γmt

)(l)
= γ l−m

m

(1 − γmt)l+1
.

Part (c) follows easily from (b), letting l = m and using Proposition A.8 from the
appendix.

We are now able to deduce the following useful bounds:

Proposition 4.3. Assume that U is connected, let ζ ∈ U , m ≥ 1 be an integer
such that f (m)(ζ ) 
= 0 and l ∈ {0, . . . ,m − 1}. Let γm := γm( f ; ζ ) and βm,l :=
βm,l( f ; ζ ), for short. Let z ∈ U , r := |z − ζ | be such that u := γm( f ; ζ )r <
1 − ( 1

2 )
1/(m+1), then f (m)(z) 
= 0 and

(a) αm,l( f ; z) ≤ 1

ψm(u)2
(αm,l(1 − u)(l+1)/(m−l) + (2m − 1)u);

(b) βm,l( f ; z) ≤ 1 − u

ψm(u)
(βm,l(1 − u)(l+1)/(m−l) + (2m − 1)r);

(c) γm( f, z) ≤ γm

ψm(u)(1 − u)
;

(d)

∣∣∣∣ f (m)(ζ )

f (m)(z)

∣∣∣∣ ≤ (1 − u)m+1

ψm(u)
;

(e)

∣∣∣∣ f (m)(z)

f (m)(ζ )

∣∣∣∣ ≤ 1

(1 − u)m+1
.

Proof. Parts (d) and (e) follow from parts (b) and (c) of the previous Lemma 4.2
and majorant series evaluation via Proposition A.3. Part (a) follows from (b) and (c).
Concerning (b), thanks to Proposition A.3 again, evaluating the series inequalities
of parts (a) and (c) of the previous lemma yields, for l ≤ k ≤ m − 1,

m! | f (k)(z)|
k! | f (m)(z)| = | f (m)(ζ )|

| f (m)(z)|
m! | f (k)(z)|
k! | f (m)(ζ )|

≤ (1 − u)m+1

ψm(u)


βm,l(βm,l + (m − 1)r)m−k−1 +

(
m

k

)
rm−k

(1 − u)k+1



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≤ (1 − u)m+1

ψm(u)
(βm,l + (m − 1)r)m−k + (mr(1 − u))m−k

ψm(u)
,

for

(
m

k

)
≤ mm−k . Since ψm(u) ≤ 1 we deduce part (b). As for part (c), we use

parts (b) and (c) of the previous Lemma 4.2: for k ≥ m + 1 we have

m! | f (k)(z)|
k! | f (m)(z)| = m! | f (k)(z)|

k! | f (m)(ζ )|
| f (m)(ζ )|
| f (m)(z)| ≤ γ k−m

m

(1 − u)k−mψm(u)
.

4.2. Approximation of βm,l

One of the important features of our algorithm is that it needs to compute only rough
approximations of βm,l in order to check the stopping criterion. We thus specify
our algorithm in terms of a function Bm,l( f, y; z) returning an approximation
of βm,l( f ; z), with the possible help of information computed at another point y.
Specific approximation functions can be devised for various classes of functions f ,
this is discussed below.

For any two points y and z, we introduce γ̄m := max(γm( f ; y), γm( f ; z)).
An important quantity to capture the behavior of the iterates is provided by v :=
γ̄m |y − z|. In order to quantify the approximation provided byBm,l , we also assume
that we are given a positive constant vm,l ≤ +∞ and two increasing functions
τm,l,0 and τm,l,1 defined on the interval [0, vm,l), such that, for any two points y, z
with v < vm,l , one has

Bm,l( f, y; z) ≤ τm,l,1(v)βm,l( f ; z)+ τm,l,0(v)γ̄m |y − z|2, (21)

βm,l( f ; z) ≤ τm,l,1(v)Bm,l( f, y; z)+ τm,l,0(v)γ̄m |y − z|2. (22)

As an extreme example, one can take Bm,l( f, y; z) := βm,l( f ; z), vm,l := +∞,
τm,l,1(v) := 1, and τm,l,0(v) := 0. In Section 5 we propose a numerical scheme
based on interpolation at roots of unity.

4.3. Main Lemma

The convergence analysis of the previous section gave us the theoretical stopping
criterion βm,l ′( f ; ζ ) ≥ γm( f ; ζ )|xk − ζ |2. Of course, testing this inequality from
estimates at each kth iterate xk is not possible since ζ is a priori unknown. We
bypass this problem by relaxing this condition. Informally speaking, the criterion
we provide is based on the observation that if the latter inequality does not hold,
then Bm,l ′( f, xk; xk+1) ≤ G|xk+1 − xk |2 for a certain value G. We stop the iteration
once the latter inequality is violated. The idea is to combine Propositions 3.3
and 4.3. Under the conditions of Proposition 3.4 the following lemma provides a
criterion for stopping the corrected Newton iteration close to the cluster by giving
a suitable value for G.
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Lemma 4.4. Let f be an analytic function defined on a connected open set U ⊆
C. Let ζ ∈ U , m ≥ 1 be an integer such that f (m)(ζ ) 
= 0. Let l ∈ {0, . . . ,m − 1},
l ′ ≤ l, x0 ∈ U , u := γm( f ; ζ )|x0 − ζ |, δ := 1 if βm,l( f ; ζ ) 
= 0 and δ ∈ {0, 1}
otherwise. If

u < um,l,δ and βm,l ′( f ; ζ ) < γm( f ; ζ )|x0 − ζ |2, (23)

then x1 := Nm−l( f (l); x0) is well defined and:

(a) βm,l ′( f ; x1) ≤ Cm,l,l ′,δ(u)γm( f ; ζ )|x0 − x1|2, where

Cm,l,l ′,δ(u) := 1 − u

ψm(u)

(1 − u)(l
′+1)/(m−l ′) + θm,l,δ(2m − 1)

ψl+1(u)(
1 − θm,l,δu

ψl+1(u)

)2 ;

(b) Let γ̄m := max(γm( f ; x0), γm( f ; x1)), v = γ̄m |x0 − x1|, if v < vm,l ′ , then

Bm,l ′( f, x0; x1) ≤ (τm,l ′,1(v)Cm,l,l ′,δ(u)γm( f ; ζ )+ τm,l ′,0(v)γ̄m)|x0 − x1|2.

Proof. In short, let r := |x0 − ζ |, γm := γm( f ; ζ ), and βm,l ′ := βm,l ′( f ; ζ ).
Thanks to (23), Proposition 3.4 applies: x1 is well defined and we have

|x1 − ζ | ≤ θm,l,δγm

ψl+1(u)
r2 < r. (24)

Let u1 := γm |x1 − ζ |, we have u1 ≤ u and from Proposition 4.3(b) we deduce

βm,l ′( f ; x1) ≤ 1 − u1

ψm(u1)
(βm,l ′(1 − u1)

(l ′+1)/(m−l ′) + (2m − 1)|x1 − ζ |)

≤ 1 − u1

ψm(u1)

(
(1 − u1)

(l ′+1)/(m−l ′) + θm,l,δ(2m − 1)

ψl+1(u)

)
γmr2.

Now the triangle inequality r ≤ |x1 − x0| + |x1 − ζ | and (24) yield

r ≤ 1

1 − θm,l,δu

ψl+1(u)

|x0 − x1|.

Finally, using the fact that the function u �→ (1 − u)1+(l
′+1)/(m−l ′)/ψm(u) in-

creases, we reach part (a). Part (b) follows straightforwardly using (21).

4.4. Algorithm

For the sake of simplicity, we assume from now on that analytic functions are de-
fined on maximal analyticity domains. Before stating the main result, we introduce
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universal functions that quantify the behavior of the convergence:

κm,l,l ′,δ(u, v) := τm,l ′,1(v)

1 − τm,l ′,0(v)

C

,

κ̄m,l,l ′,δ(u, v) := τm,l ′,1(v)+ τm,l ′,0(v)

C ,

χm,l,l ′,δ(u) := 1 − 3u

ψm(3u)

(
(1 − 3u)(l

′+1)/(m−l ′) + 2m − 1

um,l,δ

)
,

�m,l,l ′,δ(u, v) := κm,l,l ′,δ(u, v)τm,l ′,1(v)

1 − τm,l ′,0(v)

C κm,l,l ′,δ(u, v)κ̄m,l,l ′,δ(u, v)
χm,l,l ′,δ(u),

ηm,l,l ′,δ(u, v) :=
3

m − l ′

m
C̄(

1 − 3
m − l ′

m
C̄v

)2 ,

where C := τm,l ′,1(v)Cm,l,l ′,δ(u)+ τm,l ′,0(v) and C̄ := τm,l ′,1(v)C + τm,l ′,0(v).
The following theorem presents our stopping criterion and summarizes the main

properties:

Theorem 4.5. Let f be an analytic function defined on a maximal connected
open set U ⊆ C. Let ζ ∈ U and m ≥ 1 be an integer such that f (m)(ζ ) 
= 0,
l ∈ {0, . . . ,m − 1} and l ′ ≤ l. Let δ := 1 if βm,l( f ; ζ ) 
= 0 and δ ∈ {0, 1}
otherwise. Let r ≥ 0, γm and γ̄m be given. Let u := γmr , ū := 3u, v := 2γ̄mr , and
assume

γ̄m ≥ γm ≥ γm( f ; ζ ),
γ̄m ≥ maxz∈B̄(ζ,3r) γm( f ; z),

u < um,l,δ,

ū < 1 − ( 1
2 )

1/(m+1),

v < vm,l ′ .




(25)

Let C := τm,l ′,1(v)Cm,l,l ′,δ(u)+ τm,l ′,0(v), G := Cγ̄m , C̄ := τm,l ′,1(v)C + τm,l ′,0(v).
For any x0 ∈ B̄(ζ, r), let x1 := Nm−l( f (l); x0), then one of the following three

exclusive cases holds:

(a) If f (l+1)(x0) = 0 or f (l+1)(x0) 
= 0 and x1 /∈ B̄(x0, 2r), then

βm,l ′( f ; x0) ≤ χm,l,l ′,δ(u)βm,l ′( f ; ζ ). (26)

(b) If f (l+1)(x0) 
= 0, x1 ∈ B̄(x0, 2r) and Bm,l ′( f, x0; x1) > G|x0 − x1|2, then

min(βm,l ′( f ; x0), βm,l ′( f ; x1)) ≤ χm,l,l ′,δ(u)βm,l ′( f ; ζ ). (27)
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In addition, we have

Bm,l ′( f, x0; x1) ≤ κm,l,l ′,δ(u, v)βm,l ′( f ; x1), (28)

βm,l ′( f ; x1) ≤ κ̄m,l,l ′,δ(u, v)Bm,l ′( f, x0; x1), (29)

Bm,l ′( f, x1; x0) ≤ τm,l ′,1(v)βm,l ′( f ; x0)

+ τm,l ′,0(v)

C Bm,l ′( f, x0; x1), (30)

βm,l ′( f ; x0) ≤ τm,l ′,1(v)Bm,l ′( f, x1; x0)

+ τm,l ′,0(v)

C Bm,l ′( f, x0; x1). (31)

Let z0 := x0 if Bm,l ′( f, x1; x0) < Bm,l ′( f, x0; x1) and z0 := x1, otherwise. If

τm,l ′,0(v)κm,l,l ′,δ(u, v)κ̄m,l,l ′,δ(u, v) < C, (32)

then we have

βm,l ′( f ; z0) ≤ �m,l,l ′,δ(u, v)βm,l ′( f ; ζ ). (33)

(c) Otherwise ( f (l+1)(x0) 
= 0, x1 ∈ B̄(x0, 2r), and Bm,l ′( f, x0; x1) ≤
G|x0 − x1|2) we have

βm,l ′( f ; x1) ≤ C̄γ̄m |x0 − x1|2. (34)

In addition, if

3
m − l ′

m
C̄v < 1, (35)

then

m − l ′

m

m + 1

m + 1 − l ′
αm,l ′( f ; x1) ≤ 1

9 , (36)

and f (l
′) admits a cluster Z1 of m − l ′ zeros in

B̄

(
x1, 3

m − l ′

m
βm,l ′( f ; x1)

)
.

If ζ belongs to the convex hull of Z1, then

|x1 − ζ | ≤ ηm,l,l ′,δ(u, v)γ̄m |x0 − ζ |2. (37)

Proof. In short, we let βm,l ′ := βm,l ′( f ; ζ ).
Let us start with inequalities (26) and (27). If x0 = ζ , then they trivially hold,

since χm,l,l ′,δ(u) ≥ χm,l,l ′,δ(0) ≥ 1.
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Let us suppose now that x0 
= ζ . If f (l+1)(x0) = 0, then Proposition 3.5(a)
gives

|x0 − ζ | ≤ βm,l ′

um,l,δ
. (38)

If f (l+1)(x0) 
= 0 and x1 /∈ B̄(x0, 2r), then we claim that

βm,l ≥ γm( f ; ζ )|x0 − ζ |2.
If the latter inequality were not true then, thanks to u < um,l,δ , we would ob-
tain f (l+1)(x0) 
= 0 and |x1 − ζ | ≤ r via Proposition 3.4, whence |x0 − x1| ≤
|x0 − ζ | + |x1 − ζ | ≤ 2r , which contradicts x1 /∈ B̄(x0, 2r). In consequence, one
has βm,l ′ ≥ γm( f ; ζ )|x0 − ζ |2 and |x1 − ζ | ≥ |x0 − ζ |, so that Proposition 3.5
implies that (38) also holds in this case.

Since u ≤ ū < 1 − (1/2)1/(m+1), Proposition 4.3(b) yields

βm,l ′( f ; x0) ≤ 1 − ū

ψm(ū)
(βm,l ′(1 − ū)(l

′+1)/(m−l ′) + (2m − 1)|x0 − ζ |),

hence (26). This concludes part (a).
Before going further, we need to remark that using the assumption γ̄m ≥

maxz∈B̄(ζ,3r) γm( f ; z), if x1 ∈ B̄(x0, 2r) ⊆ B̄(ζ, 3r), then one has

γ̄m ≥ max(γm( f ; x0), γm( f ; x1)),

hence γ̄m |x0 − x1| ≤ v < vm,l ′ .
Now let us deal with part (b). If we had βm,l ′ < γm( f ; ζ )|x0 − ζ |2, then all

conditions of Lemma 4.4 would be satisfied, which would implyBm,l ′( f, x0; x1) ≤
G|x0 − x1|2. This yields a contradiction, hence we necessarily have βm,l ′ ≥
γm( f ; ζ )|x0 − ζ |2. Then Proposition 3.5(b) provides

min(|x0 − ζ |, |x1 − ζ |) ≤ βm,l ′

um,l,δ
.

Because

γm max(|x0 − ζ |, |x1 − ζ |) ≤ γm(|x0 − x1| + |x0 − ζ |) ≤ ū < 1 −
(

1

2

)1/(m+1)

,

Proposition 4.3(b) applies again and leads to (27).
Let us now deal with (28). Since γ̄m |x0 − x1| ≤ v we deduce, from (21),

Bm,l ′( f, x0; x1) ≤ τm,l ′,1(v)βm,l ′( f ; x1)+ τm,l ′,0(v)γ̄m |x0 − x1|2

≤ τm,l ′,1(v)βm,l ′( f ; x1)+ τm,l ′,0(v)

C Bm,l ′( f, x0; x1),

hence (28). Inequalities (29), (30), and (31) follow in exactly the same way.
Let us prove (33). We distinguish two cases. First, if z0 = x0, then we deduce,

from (31) and (28),

βm,l ′( f ; x0) ≤ κ̄m,l,l ′,δ(u, v)κm,l,l ′,δ(u, v)βm,l ′( f ; x1).
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Since κ̄m,l,l ′,δ(u, v) ≥ 1 and κm,l,l ′,δ(u, v) ≥ 1, we deduce

βm,l ′( f ; z0) ≤ κ̄m,l,l ′,δ(u, v)κm,l,l ′,δ(u, v)min(βm,l ′( f ; x0), βm,l ′( f ; x1)). (39)

On the other hand, if z0 = x1, applying successively (29), (30), and (28) we get

βm,l ′( f ; x1) ≤ κ̄m,l,l ′,δ(u, v)Bm,l ′( f, x0; x1) ≤ κ̄m,l,l ′,δ(u, v)Bm,l ′( f, x1; x0)

≤ κ̄m,l,l ′,δ(u, v)

(
τm,l ′,1(v)βm,l ′( f ; x0)

+ τm,l ′,0(v)

C κm,l,l ′,δ(u, v)βm,l ′( f ; x1)

)
,

so that using hypothesis (32) we deduce

βm,l ′( f ; z0) ≤ κ̄m,l,l ′,δ(u, v)τm,l ′,1(v)min(βm,l ′( f ; x0), βm,l ′( f ; x1))

1 − τm,l ′,0(v)

C κm,l,l ′,δ(u, v)κ̄m,l,l ′,δ(u, v)
. (40)

Combining (39), (40), (27), κm,l,l ′,δ ≥ 1, and κ̄m,l,l ′,δ ≥ 1 yields (33).
Now, let us examine case (c). By assumption (22) we deduce

βm,l ′( f ; x1) ≤ τm,l ′,1(v)Bm,l ′( f, x0; x1)+ τm,l ′,0(v)γ̄m |x0 − x1|2

≤ C̄γ̄m |x1 − x0|2,
which provides (34). Then we deduce

αm,l ′( f ; x1) ≤ C̄γ̄ 2
m |x1 − x0|2 ≤ C̄v2.

In order to prove (36), we first check

C̄ ≥ C ≥ Cm,l,l ′,δ(u) ≥ Cm,l,l ′,δ(0)

≥ θm,l,δ(2m − 1) ≥ (m + 1)(2m − 1)

(m − l + 1)(m − l)
. (41)

Then, squaring both sides of (35) gives

C̄v2 ≤ 1

9

(
m

m − l ′

)2
(m − l + 1)(m − l)

(m + 1)(2m − 1)
,

from which follows:

m − l ′

m

m + 1

m + 1 − l ′
αm,l ′( f ; x1) ≤ 1

9

m + 1

m + 1 − l ′
m

m − l ′
(m − l + 1)(m − l)

(m + 1)(2m − 1)

≤ 1

9

m + 1

m + 1 − l

m

m − l

(m − l + 1)(m − l)

(m + 1)(2m − 1)

≤ 1

9

m

2m − 1
≤ 1

9
.
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Then Corollary 1.8 implies the existence of a cluster Z1 of zeros of f (l
′), and if ζ

belongs to the convex hull of Z1, then

|x1 − ζ | ≤ 3
m − l ′

m
βm,l ′( f ; x1) ≤ 3

m − l ′

m
C̄γ̄m |x1 − x0|2.

Finally, inequality (37) follows from

|x1 − x0| ≤ |x1 − ζ | + |x0 − ζ | ≤ 3
m − l ′

m
C̄γ̄m |x1 − x0|2 + |x0 − ζ |,

hence

|x1 − x0| ≤ |x0 − ζ |
1 − 3

m − l ′

m
C̄v
.

If x0 = ζ is a multiple zero of multiplicity m, then conditions (25) and (35) are
trivially satisfied with r = 0, γ̄m = γm = γm( f ; ζ ). In practice, the functions
Bm,l that we use ensure that condition (32) also holds for r = 0. This shows by
continuity that this theorem actually performs cluster approximation.

Informally speaking, if ζ belongs to the convex hull of the cluster of f (l
′),

then Theorem 2.1, combined with Proposition 4.3, tells us that βm,l ′ is about the
diameter of this cluster (assuming that αm( f ; ζ ) is sufficiently small). Thus, x0 in
case (a) and z0 in case (b) are located at a distance from the cluster which is of the
order of its diameter. We leave out the details here.

4.5. Checking Conditions from the Initial Point

Combining the point estimate cluster location criterion underlying Corollary 1.8
with the latter theorem and Proposition 4.3 makes it possible to ensure condi-
tions (25), (32), (35), and

ηm,l,l ′,δ(u, v)γ̄mr < 1, (42)

from point estimates at x0 only.
More precisely, let x0 ∈ U and m ≥ 1 be an integer such that f (m)(x0) 
= 0.

Let l ∈ {0, . . . ,m − 1}, l ′ ≤ l, and assume

m − l ′

m

m + 1

m + 1 − l ′
αm,l ′( f ; x0) ≤ 1

9 ,

then f (l
′) admits a cluster of m − l ′ zeros in B̄(x0, 3[(m − l ′)/m]βm,l ′( f ; x0)),
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according to Corollary 1.8. We take

δ := 1,

r := 3
m − l ′

m
βm,l ′( f ; x0),

γm := γm( f ; x0)

(1 − γm( f ; x0)r)ψm(γm( f ; x0)r)
,

γ̄m := γm

(1 − 3γmr)ψm(3γmr)
.

(43)

Let ζ be a point in the convex hull of this cluster. Assuming the stronger conditions

γm( f ; x0)r < 1−(
1
2

)1/(m+1)
and 3γmr < 1−(

1
2

)1/(m+1)
, Proposition 4.3(c) yields

γm ≥ γm( f ; ζ ) and γ̄m ≥ maxz∈B̄(ζ,3r) γm( f ; z). One can then apply the previous
theorem with these quantities.

According to formulas (43), it follows that the quantities u, ū, v, C, C̄, and
ηm,l,l ′,δ(u, v)γ̄mr depend only on αm,l ′( f ; x0). Therefore, if αm,l ′( f ; x0) is suf-
ficiently small, then conditions (25), (35), and (42) are satisfied. In Section 6
we compute the supprema of the admissible values for αm,l ′( f ; x0) according
to different approximation functions Bm,l . As mentioned earlier, in all our cases
condition (32) is always satisfied.

Once all these conditions are satisfied, we compute x1 := Nm−l( f (l); x0). Let
us consider case (c) of Theorem 4.5: we are to show that Z1 = Z . Thanks to (36),
Corollary 1.8 applies: we deduce that the elements of Z1 are the only zeros of f (l

′)

in B̄(x1, (m + 1 − l ′)/[3(m + 1)γ̄m]). On the other hand, for any z ∈ Z we have
|z − x1| ≤ |x0 − x1| + |z − x0| ≤ 3r . Therefore it suffices to verify

3r ≤ m + 1 − l ′

3(m + 1)γ̄m
or, equivalently, v ≤ 2

9

m + 1 − l ′

m + 1
.

These inequalities are true if m ≥ 2. They are a consequence of (35) and (41),

v ≤ 1

3

m

m − l ′
(m − l)(m + 1 − l)

(m + 1)(2m − 1)
≤ 1

3

m

2m − 1

m + 1 − l ′

m + 1

≤ 2

9

m + 1 − l ′

m + 1
.

Using (37) and (42), we deduce |x1 − ζ | ≤ r . Since this inequality holds for any
ζ in the convex hull of Z we deduce Z ⊆ B̄(x1, r).

Now consider the sequence (xk)k∈N, formally defined by

xk+1 := Nm−l( f (l); xk).

Let K be the first integer k such that the stopping criterion is satisfied at xk , that
is, f (l+1)(xk) = 0 or xk+1 /∈ B̄(xk, 2r) or Bm,l ′( f, xk; xk+1) > G|xk − xk+1|2. For
all k ≤ K − 1, it follows by induction that xk+1 is well defined, that xk+1 belongs
to B̄(ζ, r), and that Z ⊆ B̄(xk+1, r).

Before presenting numerical experiments in Section 6, the next section describes
two possible families of functions Bm,l and details the computations of upper
bounds on γm .
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5. Approximations of Point Estimates

Our approximation algorithm presented in the previous section requires upper
bounds γm and γ̄m as input, and performs several estimations of βm,l in a certain
neighborhood of the cluster. In practice, input upper bounds are expected to be
available from location criteria as explained previously. In this section we provide
elementary devices for these point estimate computations. First of all, we give a
purely numerical scheme to approximate βm,l by means of interpolation. In this
way a valid Bm,l used in the next section is specified. After that we describe a
mixed symbolic numerical scheme to compute upper bounds on γm for functions
that depend polynomially in x and in some exponentials exp(ak x), for certain
complex numbers ak .

5.1. Approximation of βm,l

Now we design a purely numerical device for computing a valid Bm,l( f, y; z),
introduced in the previous section.

Let m and z be such that f (m)(z) 
= 0 and let γm ≥ γm( f ; z). Consider a fixed
integer k ≥ m + 1, let r be a positive real number, and w a kth primitive root of
unity. Let q denote the interpolating polynomial of degree at most k − 1, such that
q(zj ) = f (zj ), where zj = z + rw j for j ∈ {0, . . . , k − 1}. Let v := γmr . The
following proposition quantifies the approximation of βm,l( f ; z) obtained from q.

Proposition 5.1. According to the above notation, if v+vk−m < 1, then we have

βm,l( f ; z) ≤ βm,l(q; z)

(
1 + vk−m

1 − v

)
+
(
vk−m

1 − v

)1/(m−l)

r,

βm,l(q; z) ≤ 1 − v

1 − v − vk−m

(
βm,l( f ; z)+

(
vk−m

1 − v

)1/(m−l)

r

)
.

In order to treat the case r = 0 in a continuous way we define the corresponding
q as the limit of the interpolating polynomials when r tends to zero. This limit is
nothing else but the truncated Taylor expansion of f at z. Remark that this case
never occurs in the frame of the approximation algorithm of the previous section,
unless one of the iterates is a zero.

It follows from these definitions that, taking k := 2m − l, Bm,l( f, y; z) :=
βm,l(q; z) for q computed with r := |y − z|, we obtain a valid approximation
function that satisfies (21) and (22), with

τm,l,1(v) := 1 + vm−l

1 − v − vm−l
and τm,l,0(v) := τm,l,1(v)

(
1

1 − v

)1/(m−l)

,

(44)
vm,l being the first positive root of v + vm−l = 1.
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Proof of Proposition 5.1. We introduce the Vandermonde matrix:

V (w) :=




1 1 . . . 1
1 w . . . wk−1

...
...

. . .
...

1 wk−1 . . . w(k−1)2


 .

Now writing q(x) := ∑k−1
i=0 qi (x − z)i , the following relation holds:

V (w)




q0

q1r
...

qk−1rk−1


 = V (w)




f (z)
f ′(z)r
...

f (k−1)(z)

(k − 1)!
rk−1


+




R0
...

Rk−1


 ,

where Rj := ∑
i≥k( f (i)(z)/i!)(zj − z)i . From the definition of zj we deduce∣∣∣∣ m! Rj

f (m)(z)

∣∣∣∣ ≤ γ k−m
m rk

1 − γmr
for j ∈ {0, . . . , k − 1}.

Then, using the classical fact V (w)−1 = V (w−1)/k, we deduce

qi − f (i)(z)

i!
= 1

k

k−1∑
j=0

Rj

r i
w− j i for i ∈ {0, . . . , k − 1},

hence ∣∣∣∣ m!

f (m)(z)

(
qi − f (i)(z)

i!

)∣∣∣∣ ≤ γ k−m
m rk−i

1 − γmr
. (45)

For i = m (since k ≥ m + 1) we deduce∣∣∣∣ m! qm

f (m)(z)
− 1

∣∣∣∣ ≤ vk−m

1 − v
.

Using v + vk−m < 1, it follows that qm 
= 0 and∣∣∣∣ f (m)(z)

m! qm

∣∣∣∣ ≤ 1 − v

1 − v − vk−m
. (46)

Equation (45) leads to∣∣∣∣m! f (i)(z)

i! f (m)(z)

∣∣∣∣ ≤
∣∣∣∣ qi

qm

∣∣∣∣
∣∣∣∣ m! qm

f (m)(z)

∣∣∣∣+
∣∣∣∣ m!

f (m)(z)

(
f (i)(z)

i!
− qi

)∣∣∣∣
≤

∣∣∣∣ qi

qm

∣∣∣∣
(

1 + vk−m

1 − v

)
+ vk−m

1 − v
rm−i ,
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hence the first inequality. For the second one we deduce, in a similar way from (45)
and (46),∣∣∣∣ qi

qm

∣∣∣∣ ≤
∣∣∣∣ f (m)(z)

m! qm

∣∣∣∣
(∣∣∣∣m! f (i)(z)

i! f (m)(z)

∣∣∣∣+
∣∣∣∣ m!

f (m)(z)

(
f (i)(z)

i!
− qi

)∣∣∣∣
)

≤ 1 − v

1 − v − vk−m

(
βm,l( f ; z)m−i + vk−m

1 − v
rm−i

)
.

5.2. Upper Bounds on γm

In most practical cases, upper bounds on γm can be obtained from geometric
majorant series manipulations: Appendix A gives rules for computing majorant
series for products, compositions, derivatives, etc.

Designing a complete algorithm for upper bounding γm that covers a large class
of analytic functions would lead us too far from the scope of this paper. In order to
illustrate our methods in the next section, we restrict our analysis to the functions
that depend polynomially on x and on a finite set of exponentials exp(ak x) where
the ak are in C. Any function f of this kind can be written in the following form:

f = p1(x) exp(a1x)+ · · · + pn(x) exp(an x),

where p1, . . . , pn are polynomials.
Since the exponential is an entire function, there exists geometric majorant series

of the form λt/(1−ρt) for any positive ρ. The following proposition explains the
optimal corresponding value for λ.

Proposition 5.2. For any positive ρ ≤ 1, we have
[
exp

]
0 ≤ 1 + λt/(1 − ρt),

where λ := 1/[K ! ρK−1] and K := �ρ−1� (i.e., the largest integer less than or
equal to ρ−1).

Proof. We rewrite the series inequality as 1/k! ≤ λρk−1 for k ≥ 1, and then as
log(k!) ≥ −log(λ/ρ)+k log(ρ−1), by taking logarithms. The function of i , defined
by its graph G as the union of the segments [(i, log(i!)), (i + 1) log((i + 1)!)] for
i ≥ 0, is convex of slope log(i + 1) between abscissas i and i + 1. Because
the graph of the right-hand side of the previous inequality is a straight line with
nonnegative slope, the largest possible value of −log(λ/ρ) is obtained by making
this line tangent to G at K . This leads to the announced value for λ.

We introduce ā := maxk∈{1,...,n} |ak | and ρ̄ := āρ, for any ρ such that 0 <
ρ ≤ 1. Let λ denote the corresponding value given in the previous proposition.
Applying the previous proposition and Proposition A.4, we deduce

[ f ]z ≤
(

1 + λāt

1 − ρ̄t

) n∑
i=1

|exp(ai z)| [pi ]z =: P(t)+ λ̄

1 − ρ̄t
,
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where λ̄ and the polynomial P are obtained by means of Euclidean division by
1 − ρ̄t . Finally, the following proposition gives an upper bound on γm( f ; z) from
the computation of the Taylor expansion of f at z at precision k and the above
series inequality.

Proposition 5.3. According to the above notation, let m be an integer such that
f (m)(z) 
= 0, σm := m!/| f (m)(z)|, and let pm := max(0, P (m)(0)/m!). For k ≥
max(m, deg(P))+ 1, let q denote the unique polynomial of degree at most k − 1
such that f (x)− q(x) ∈ Oz((x − z)k), then

γm(q; z) ≤ γm( f ; z) ≤ max(γm(q; z), ρ̄(σm(pm + λ̄ρ̄m))1/(k−m)).

Proof. By construction we have σm(pm + λ̄ρ̄m) ≥ 1, hence

sup
j≥k

(
σm

| f ( j)(z)|
j!

)1/( j−m)

≤ sup
j≥k
(σm λ̄ρ̄

j )1/( j−m)

≤ sup
j≥k

ρ̄(σm(pm + λ̄ρ̄m))1/( j−m)

≤ ρ̄(σm(pm + λ̄ρ̄m))1/(k−m).

For instance, let

f :=
(

1 − 14 − 3ı

20
x

)
exp(x)+

(
1 − 6 + 23ı

20
x − 9 − 3ı

20
x2

)
exp(ı x)− 2,

m := 3 and z := 0.3 (recall ı := √−1). We have ā = 1; we take ρ := 0.15 and
k := 9, and we get λ ≈ 18.3, γm(q; z) ≈ 0.53, and ρ̄(σm(pm + λ̄ρ̄m))1/(k−m) ≈
0.31. This way we obtain an accurate approximation of γm( f ; z).

6. Numerical Experiments

In this section we illustrate Theorem 4.5, of which we use the notation. We let
l := 0, l ′ := 0, δ := 1 and consider three families of examples, each parametrized
by a real positive number N :

Example 1.

f := (xm + 10−m N )(xm − 1).

This polynomial admits a cluster of m roots around 0. The other roots are simple
and lie on the unit circle.
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Table 1. Critical values for the symbolic algorithm.

α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 α̂8

0.0053 0.0040 0.0035 0.0032 0.0029 0.0027 0.0025 0.0024

Example 2.

f :=
(

1 − 14 − 3ı

20
x

)
exp(x)

+
(

1 − 6 + 23ı

20
x − 9 − 3ı

20
x2

)
exp(ı x)− 2 + 10−3N .

This function admits a cluster of three zeros around 0. In order to get accurate
upper bounds on γm we use Proposition 5.3 with ρ := 0.15 and k := 9.

Example 3.

f :=
(

1 − 2 − ı

3
x

)
exp(x)+

(
1 − 1 + 4ı

3
x − 2

3
x2

)
exp(ı x)− 2 + 10−4N .

This function admits a cluster of four zeros around 0. In order to get accurate upper
bounds on γm we use Proposition 5.3 with ρ := 0.15 and k := 12.

Computations are performed with the Maple computer algebra system version 7.
The Digits environment variable controls the number of decimal digits that Maple
uses when calculating with software long floating-point numbers. Heuristically, in
order to avoid round-off problems, we set this variable to 2m N . This problem is
beyond the scope of the present work.

The starting point x0 is taken as exp(ıπ/4) times the largest negative power
of 2 that satisfies conditions (25), (32), (35) of Theorem 4.5 and also (42). These
conditions are checked by computing point estimates at x0 only, by means of
formulas (43), as explained in Section 4.5.

Once all these conditions are satisfied we compute the sequence (xk)k∈N re-
cursively defined by xk+1 := Nm( f ; xk). As in Section 4.5, let K be the first
integer k such that the stopping criterion is satisfied at xk , that is, f ′(xk) = 0 or
xk+1 /∈ B̄(xk, 2r) or Bm,l ′( f, xk; xk+1) > G|xk − xk+1|2. Recall that xk+1 is well
defined while k ≤ K − 1 and belongs to B̄(ζ, r).

At the end of the process, that is, for k = K , different situations occur. If xK+1

is not well defined or outside B̄(xk, 2r), we indicate ∞ in the column βm( f ; xK+1)

Table 2. Critical values for the numerical algorithm.

α̃1 α̃2 α̃3 α̃4 α̃5 α̃6 α̃7 α̃8

0.0037 0.0031 0.0028 0.0026 0.0024 0.0023 0.0021 0.0020
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of Tables 3–8. Otherwise we indicate both βm( f ; xK ) and βm( f ; xK+1). If

Bm,l ′( f, xK+1; xK ) < Bm,l ′( f, xK ; xK+1),

then we underline the first one (resp., xK ), or else we underline the second one
(resp., xK+1).

Recall that this approximation scheme depends on the functionBm,l ′ . We discuss
a symbolic and then a purely numerical algorithm, corresponding to different
choices of Bm,l ′ .

Symbolic Algorithm. In this case we takeBm,l ′( f, y; z) = βm,l ′( f ; z) and perform
the required computations of βm,l ′ by means of power series expansions. In Table 1,
we provide approximations of the supremum values α̂m for αm( f ; x0) having the
following properties: if αm( f ; x0) < α̂m , then conditions (25), (32), (35), and (42)
are satisfied. The following approximations are obtained as the first positive zero
α̂m of ηm,l,l ′,δ(u, v)γ̄mr = 1, since this equation rewrites in terms ofαm( f ; x0) only
(as observed in Section 4.5). We provide approximations of α̂m rounded toward
zero at precision 10−4. Sequences of iterates are presented in Tables 3 and 5.

Numerical Algorithm. Here we consider the function Bm,l ′ , given in Section 5
according to formulas (44), that performs interpolation from the evaluations of f
at 2m points; no high-order derivatives are required. We illustrate the numerical
approach in the same way as in the previous symbolic case. We define critical
values α̃m for αm( f ; x0) as previously; we report them in Table 2. As expected,
these values are slightly smaller than in the symbolic case. Nevertheless, it is
worth noting that they are of the same order of magnitude. Sequences of iterates
are presented in Tables 4, 6, 7, and 8.

Comments on Tables. In all our examples the diameter of the cluster is about
10−N . The election among the points xK and xK+1 always returns the one inducing
the smallest value for βm . As expected, this value is of the order of the diameter
of the cluster.

Example 1 displays a case of over-quadratic convergence. This is due to the
vanishing of f (m+1) at 0. The same phenomenon occurs in Example 2, where
f (4)(0) tends to 0 for large values of N . Note that all the cases of the algorithm
actually appear in these example. Example 4 is the only one realizing a strict
quadratic convergence, as observed in Table 8.

Last, note that the symbolic and numerical algorithms produce very close out-
puts in Tables 5 and 6.

Conclusion and Further Research

The main contribution of this paper lies in the precise analysis of the Newton–
Schröder iteration with quadratic convergence toward clusters of zeros, together
with a criterion for stopping this iteration when the cluster has been reached.



300 M. Giusti, G. Lecerf, B. Salvy, and J.-C. Yakoubsohn

Table 3. Symbolic algorithm with Example 1 and m = 2.

N |x0| K |xK | |xK+1| βm( f ; xK ) βm( f ; xK+1)

4 1.95 · 10−3 0 1.95 · 10−3 5.11 · 10−6 3.90 · 10−3 1.00 · 10−4

8 1.95 · 10−3 1 7.45 · 10−9 1.34 · 10−8 1.49 · 10−8 2.68 · 10−8

16 1.95 · 10−3 2 9.28 · 10−25 1.07 · 10−8 1.00 · 10−16 2.15 · 10−8

32 1.95 · 10−3 2 4.13 · 10−25 2.41 · 10−40 8.27 · 10−25 9.99 · 10−33

64 1.95 · 10−3 3 7.07 · 10−74 1.41 · 10−55 1.00 · 10−64 2.82 · 10−55

128 1.95 · 10−3 3 7.07 · 10−74 1.41 · 10−183 1.41 · 10−73 1.00 · 10−128

Table 4. Numerical algorithm with Example 1 and m = 2.

N |x0| K |xK | |xK+1| βm( f ; xK ) βm( f ; xK+1)

4 9.76 · 10−4 0 9.76 · 10−4 1.02 · 10−5 1.95 · 10−3 1.00 · 10−4

8 9.76 · 10−4 1 9.31 · 10−10 1.07 · 10−7 1.00 · 10−8 2.14 · 10−7

16 9.76 · 10−4 1 9.31 · 10−10 1.07 · 10−23 1.86 · 10−9 1.00 · 10−16

32 9.76 · 10−4 2 8.07 · 10−28 1.23 · 10−37 1.61 · 10−27 9.99 · 10−33

64 9.76 · 10−4 3 5.27 · 10−82 1.89 · 10−47 1.00 · 10−64 3.79 · 10−47

128 9.76 · 10−4 3 5.27 · 10−82 1.89 · 10−175 1.05 · 10−81 1.00 · 10−128

Table 5. Symbolic algorithm with Example 1 and m = 4.

N |x0| K |xK | |xK+1| βm( f ; xK ) βm( f ; xK+1)

4 4.88 · 10−4 0 4.88 · 10−4 8.58 · 10−7 1.95 · 10−3 9.99 · 10−5

8 4.88 · 10−4 1 2.77 · 10−17 4.67 · 1017 1.00 · 10−8 ∞
16 4.88 · 10−4 1 2.77 · 10−17 4.67 · 10−15 1.11 · 10−16 1.87 · 10−14

32 4.88 · 10−4 1 2.77 · 10−17 4.67 · 10−79 1.11 · 10−16 1.00 · 10−32

64 4.88 · 10−4 2 1.64 · 10−83 2.23 · 10−8 9.99 · 10−65 8.94 · 10−8

128 4.88 · 10−4 2 1.64 · 10−83 2.23 · 10−264 6.58 · 10−83 1.00 · 10−128

Table 6. Numerical algorithm with Example 1 and m = 4.

N |x0| K |xK | |xK+1| βm( f ; xK ) βm( f ; xK+1)

4 4.88 · 10−4 0 4.88 · 10−4 8.58 · 10−7 1.95 · 10−3 9.99 · 10−5

8 4.88 · 10−4 1 2.77 · 10−17 4.67 · 1017 1.00 · 10−8 ∞
16 4.88 · 10−4 1 2.77 · 10−17 4.67 · 10−15 1.11 · 10−16 1.87 · 10−14

32 4.88 · 10−4 1 2.77 · 10−17 4.67 · 10−79 1.11 · 10−16 1.00 · 10−32

64 4.88 · 10−4 2 1.64 · 10−83 2.23 · 10−8 9.99 · 10−65 8.94 · 10−8

128 4.88 · 10−4 2 1.64 · 10−83 2.23 · 10−264 6.58 · 10−83 1.00 · 10−128

Table 7. Numerical algorithm with Example 2.

N |x0| K |xK | |xK+1| βm( f ; xK ) βm( f ; xK+1)

4 1.95 · 10−3 0 1.95 · 10−3 1.40 · 10−6 5.85 · 10−3 1.75 · 10−4

8 1.95 · 10−3 1 1.13 · 10−9 4.18 · 10−6 1.75 · 10−8 1.25 · 10−5

16 1.95 · 10−3 1 1.13 · 10−9 2.19 · 10−28 3.39 · 10−9 1.75 · 10−16

32 1.95 · 10−3 2 2.20 · 10−28 1.10 · 10−40 6.62 · 10−28 1.75 · 10−32

64 1.95 · 10−3 3 1.63 · 10−84 2.00 · 10−24 1.75 · 10−64 6.02 · 10−24

128 1.95 · 10−3 3 1.63 · 10−84 2.00 · 10−216 4.90 · 10−84 1.75 · 10−128
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Table 8. Numerical algorithm with Example 3.

N |x0| K |xK | |xK+1| βm( f ; xK ) βm( f ; xK+1)

4 9.76 · 10−4 0 9.76 · 10−4 6.40 · 10−7 3.90 · 10−3 1.63 · 10−4

8 9.76 · 10−4 1 1.45 · 10−7 2.34 · 10−11 5.81 · 10−7 1.63 · 10−8

16 9.76 · 10−4 2 3.21 · 10−15 2.16 · 10−20 1.28 · 10−14 1.63 · 10−16

32 9.76 · 10−4 3 1.57 · 10−30 1.84 · 10−38 6.29 · 10−30 1.63 · 10−32

64 9.76 · 10−4 4 3.77 · 10−61 1.34 · 10−74 1.50 · 10−60 1.63 · 10−64

128 9.76 · 10−4 5 2.16 · 10−122 7.09 · 10−147 8.66 · 10−122 1.63 · 10−128

Our main motivation is the application of these methods for implicit functions
computed in our extended algorithm for multivariate analytic maps [12]. There we
consider maps whose Jacobian matrix has corank 1. Using the implicit function
theorem, we decouple the study into a regular system and an analytic univariate
function which concentrates the multiplicity. This function is then subjected to
the methods developed here. This way, our stopping criterion is extended to this
multivariate case.
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Appendix A. Majorant Series

For convenience, this appendix gathers the basic properties of majorant series,
that are commonly known but spread in the literature. Even though we deal only
with one complex variable map in this paper, all the results are stated with several
complex variable maps, without inducing more difficulties. These results are used
in [12] for several variables. We establish a list of basic properties, such as eval-
uation, composition, products, differentiation, etc. The results are systematically
stated in their most general form before being specialized into geometric majorant
series.

Majorant series techniques belong to the “point de vue de Weierstrass,” as
mentioned by Henri Cartan in [3, see Chap. 1 and pp. 218–225]. These are a crucial
tool for the effective manipulation of power series expansions, that lie at the heart
of Smale’s α-theory. From the computational viewpoint, only a finite number of
derivatives can be computed at any point, while estimates on the convergence of
Newton’s iteration require more global information. The idea is that sufficient
information can be provided by a majorant series of the Taylor expansion. For
practical applications we will make use of geometric majorant series, that can be
represented very compactly.
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All the vector spaces we consider are finite dimensional overC. Let f denote an
analytic map from an open subset U of a normed vector space E (containing a) to
another normed vector space F. Then the kth derivative Dk f (a) of f at a belongs
to the set Lk(E;F) of C-multilinear maps from k copies of E to F. Let E1, . . . ,El

denote normed vector spaces, the norm we use on the space L(E1, . . . ,El;F) of
C-multilinear maps from E1 × · · · × El to F is defined by

‖L‖ := sup
u1∈E1 ,...,ul∈El
‖u1‖=···=‖ul ‖=1

‖L(u1, . . . , ul)‖,

for any L ∈ L(E1, . . . ,El;F). When no confusion is possible we use the same
notation ‖·‖ for norms over different spaces. Throughout this appendix, E, F,
G, . . . denote normed vector spaces.

A.1. Partial Order over Series

We consider the following partial order ≤ over R{t}. Let F and G be in R{t}, we
write F ≤ G when F (k)(0) ≤ G(k)(0) for all k ≥ 0. Then we say that a power
series F ∈ R{t} is a majorant series for an analytic map f at a point a if [ f ]a ≤ F .

With several variables, the quantity γ is given by

γ ( f ; x) := sup
k≥2

∥∥∥∥D f (x)−1 Dk f

k!
(x)

∥∥∥∥
1/(k−1)

,

and one of its important roles stems from the following inequality:

[D f (a)−1( f − f (a))]a ≤
∑
k≥1

γ ( f ; a)k−1t k = t

1 − γ ( f ; a)t
,

which means that the rational function in the right-hand side represents a majorant
series for D f (a)−1( f − f (a)) at a.

Proposition A.1. The partial order over R{t} defined above satisfies the follow-
ing compatibility rules:

(1) for all nonnegative x in R, one has x ≥ 0, when x is seen in R{t};
(2) for all F in R{t}, F ≥ 0 is equivalent to −F ≤ 0;
(3) for all F , G, and H in R{t}, if F ≤ G, then F + H ≤ G + H ;
(4) for all F , G, and H in R{t}, if F ≤ G, and H ≥ 0, then F H ≤ G H ;
(5) for all F , G, P , and Q in R{t}, if 0 ≤ F ≤ G and 0 ≤ P ≤ Q, then

F P ≤ G Q.

Proof. Part (5) follows directly from part (4), which is the only one not completely
straightforward. Denoting by Fi , Gi , and Hi the i th coefficient of F , G, and H ,
respectively, we can write the i th coefficient of F H as

∑
k+l=i Fk Hl which can be

bounded term by term by
∑

k+l=i Gk Hl (since all the Hl are nonnegative).
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The map [·]a is defined on the set of analytic maps at a and has values in R{t}.
Let a ∈ E and let f and g be analytic maps defined in a neighborhood of a, the
basic properties of [·]a are:

(1) [ f ]a ≥ 0;
(2) [ f ]a = 0 is equivalent to f = 0 in a neighborhood of a;
(3) [c f ]a = |c| [ f ]a for all c ∈ C;
(4) [ f + g]a ≤ [ f ]a + [g]a .

All of these are direct consequences of the definition.

A.2. Geometric Majorant Series

One of the aims of this appendix is to provide a toolbox for the practical use of
majorant series. For this purpose most of our general statements on majorant series
will be specialized into a tractable subclass of R{t}. This subclass is composed of
geometric majorant series, that are series of the form λt

∑
k≥0 ρ

k tk = λt/(1 − ρt)
with λ ≥ 0 and ρ ≥ 0.

Indeed, most of the properties of the γ quantity can be recovered by easy
computations on geometric series that are summarized in the following proposition:

Proposition A.2. The series [ f − f (a)]a and the constant γ ( f ; a) are related
via

[ f − f (a)]a ≤ λt

1 − ρt
⇒ γ ( f ; a) ≤ ‖D f (a)−1‖λρ

and

[D f (a)−1( f − f (a))]a ≤ t

1 − γ ( f ; a)t
.

Keeping track of two quantities λ and ρ instead of one γ not only allows one
to deal with situations when γ is not defined (or is infinite) but also leads to better
bounds in some cases.

A.3. Evaluation

The first useful elementary property concerns the compatibility of the partial or-
dering on majorant series with evaluation.

Proposition A.3. Let f be an analytic map defined on a connected open subset
U of E and with values in F, a and b are two points in U and F ∈ R{t} such that
[ f ]a ≤ F . Let r denote the radius of convergence of F then, for any b ∈ U such
that ‖b − a‖ < r , we have ‖ f (b)‖ ≤ F(‖a − b‖).
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Proof. First observe that the radius of convergence of the power series expansion
of f at a is at least r . Bounding this series term by term leads to

‖ f (b)‖ ≤
∑
k≥0

‖Dk f (a)‖
k!

‖b − a‖k ≤ F(‖b − a‖).

A.4. Linear Maps

Now we examine the behavior of majorant series under linear maps.

Proposition A.4. Let E, F, E1,. . . , El , G1,. . . , Gl , be normed vector spaces, let
U be an open neighborhood of a in E, and let f be an analytic map from U to
L(E1, . . . ,El;F). For i = 1, . . . , l, let gi be analytic maps from U to L(Gi ;Ei ).
Let F , G1,. . . , Gl in R{t} be such that [ f ]a ≤ F , [g1]a ≤ G1,. . . , [gl]a ≤ Gl . Let
h be defined by

h: U → L(G1, . . . ,Gl;F),
x �→ f (x)(g1(x), . . . , gl(x)).

This map is analytic on U and

[h]a ≤ FG1 · · · Gl .

Proof. Let u ∈ Ek , then the kth derivative of h at u becomes

Dkh(a)(u) =
∑

N

D|N0| f (a)pN0(u)(D
|N1|g1(a)pN1(u), . . . , D|Nl |gl(a)pNl (u)),

where the sum is taken over all partitions N = {N0, . . . , Nl} of the set {1, . . . , k}
into possibly empty disjoint subsets. Here |Nr | denotes the cardinality of Nr for
r = 0, . . . , l, and pNr represents the canonical projection from Ek to E|Nr | defined
by pNr (u1, . . . , uk) := (um : m ∈ Nr ). It follows that

‖Dkh(a)‖ ≤
∑

N

‖D|N0| f (a)‖‖D|N1|g1(a)‖ · · · ‖D|Nl |gl(a)‖

and ∥∥∥∥ Dkh

k!
(a)

∥∥∥∥ ≤
∑

ν0+···+νl=k

∥∥∥∥ Dν0 f (a)

ν0!

∥∥∥∥
∥∥∥∥ Dν1 g1(a)

ν1!

∥∥∥∥ · · ·
∥∥∥∥ Dνl gl(a)

νl!

∥∥∥∥
≤

∑
ν0+···+νl=k

F (ν0)(0)

ν0!

G(ν1)
1 (0)

ν1!
· · · G(νl )

l (0)

νl!

= (FG1 · · · Gl)
(k)(0)

k!
.
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In particular, it follows that the product of majorant series of univariate analytic
functions is a majorant series for their product.

A.5. Composition

The next formula shows that majorant series behave well under composition.

Proposition A.5. Let U be an open neighborhood of a in E, let f be an analytic
map from U to F, and let g be another analytic map from a neighborhood of f (U )
to G. Let F and G in R{t} be such that [ f ]a ≤ F and [g] f (a) ≤ G. Then g ◦ f is
analytic on U and

[g ◦ f ]a ≤ G ◦ (F − F(0)).

Proof. The proof is based on writing an explicit expression for Dkh, where
h := g ◦ f , and on bounding the norms of each summand. The explicit expression
is provided by the multivariate version of Faà di Bruno’s formula (see, for instance,
[10], which also deals with the infinite-dimensional case). Let u ∈ Ek ,

Dkh(a)(u) =
k∑

i=1

∑
N

Di g( f (a))(D|N1| f (a)pN1(u), . . . , D|Ni | f (a)pNi (u)),

where the second sum is taken over all the partitions N = {N1, . . . , Ni } of the set
{1, . . . , k} and the pNj are the same as in the proof of the previous proposition. It
follows that

‖Dkh(a)‖ ≤
k∑

i=1

∑
N

‖Di g( f (a))‖‖D|N1| f (a)‖ · · · ‖D|Ni | f (a)‖

≤
k∑

i=1

∑
N

G(i)(0)F (|N1|)(0) · · · F (|Ni |)(0)

= (G ◦ (F − F(0)))(k)(0).

Corollary A.6 (For Geometric Majorant Series). If we have [ f − f (a)]a ≤λ f t/
(1 − ρ f t), [g − g( f (a))] f (a) ≤ λgt/(1 − ρgt), and h = g ◦ f , then

[h − h(a)]a ≤ λt

1 − ρt
, where λ := λ f λg, ρ := ρ f + λ f ρg,

and f (B(a, 1/ρ)) ⊆ B( f (a), 1/ρg).

Proof. The majorant series for h follows from the previous proposition via simple
calculations. The ball inclusion follows from evaluating the majorant series of f
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via Proposition A.3: for any z ∈ B(a, 1/ρ) we obtain

‖ f (z)− f (a)‖ < λ f /ρ

1 − ρ f /ρ
= 1/ρg.

A.6. Inversion

The next formula gives a majorant series for linear map inversion.

Lemma A.7. Let U be an open neighborhood of Id in L(F;F) containing only
invertible linear maps, and let f denote the analytic map from U to L(F;F)
mapping x to x−1. Then one has

[ f ]Id = 1

1 − t
.

Proof. A straightforward induction gives

Dk f (x)(u1, . . . , uk) = (−1)k
∑
σ

f (x)uσ(1) f (x)uσ(2) · · · f (x)uσ(k) f (x),

for all k ≥ 1 and all ui ∈ L(F;F), where the sum is taken over all the permutations
σ of the set {1, . . . , k}. We deduce ‖Dk f (Id)‖ = k!, which corresponds to the
claimed formula.

Combined with Proposition A.5 we deduce:

Proposition A.8. Let U be an open neighborhood of a inE, and let f be analytic
from U to L(F;F) such that f (a) = Id. Let F ∈ R{t} be such that [ f ]a ≤ F , then
one has

[ f −1]a ≤ 1

1 + F(0)− F
.

In addition, the radius of convergence of 1/(1 + F(0)− F(t)) is at least

ρ̄ := sup(s < ρ: 1 + F(0)− F(r) > 0, for all r ∈ [0, s]),

where ρ denotes the radius of convergence of F .

Proof. For any z ∈ B(0, ρ̄), the triangular inequality and F ≥ 0 imply

|1 + F(0)− F(z)| ≥ 1 − |F(z)− F(0)| ≥ 1 − F(|z|)+ F(0) > 0,

which means that z �→ 1 + F(0)− F(z) does not vanish in B(0, ρ̄), whence the
formula for the radius ρ̄.



Clusters of Zeros of Analytic Functions 307

A.7. Differentiation

If G is a subspace of E, we write D f|G for the restriction of D f to G.

Proposition A.9. Let G be a subspace of E, f an analytic map defined in a
neighborhood of a ∈ E, and let F ∈ R{t} be such that [ f ]a ≤ F , then

[D f|G]a ≤ F ′.

Proof. Since [D f|G]a ≤ [D f ]a , it is sufficient to consider the case whenG = E,

‖Dk(D f )(a)‖ = sup
‖u1‖=···=‖uk‖=1

‖Dk(D f )(a)u1 . . . uk‖

= sup
‖u1‖=···=‖uk‖=1

sup
‖v‖=1

‖(Dk(D f )(a)u1 . . . uk)v‖ = ‖Dk+1 f (a)‖.

Observe that the choice of the norm for multilinear maps is crucial here.

Corollary A.10 (For Geometric Majorant Series). Let m ≥ 1 and j ≥ 0 be two
integers. If [ f − f (a)]a ≤ λtm/(1 − ρt) with ρ > 0, then, for any integer k ≥ 1
and any R > ρ,

[Dk f ]a

k!
≤ λ

j∑
i=max(0,m−k)

(
i + k

k

)
ρi+k−mti + �t j+1

1 − Rt
,

where

� := λρk−m

(
s + k − 1

k

)( ρ
R

)s−1
R j+1 and s :=

⌈
kρ

R − ρ

⌉
.

Here �r denotes the smallest integer larger than or equal to the real number r .

Proof. Thanks to the previous proposition, it is sufficient to consider the case
f = λtm/(1 − ρt). Then, a straightforward computation yields

f (k)(t)

k!
= λ

(∑
i≥0

ρi tm+i

)(k)

= λ
∑

i≥max(0,k−m)

(
m + i

k

)
ρi t i+m−k

= λ
∑

i≥max(0,m−k)

(
k + i

k

)
ρi+k−mti .
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Fixing an index j , it becomes a matter of bounding the sum

λ
∑

i≥ j+1

(
k + i

k

)
ρi+k−mti

by a geometric series of type �t j+1/(1 − Rt). There is some amount of freedom
since we can choose both the initial value (the final �) and the ratio (the final
R). By taking logarithms, we see that our problem is equivalent to ensuring the
following inequality:

log

(
k + i

k

)
≤ i log

(
R

ρ

)
+ log

(
�

λρk−m R j+1

)
, i ≥ j + 1.

In view of the asymptotic behavior for large i , it is necessary that R > ρ.
Then we consider the function of i defined by its graph as the union of the

segments [(i, log

(
k + i

k

)
), (i + 1, log

(
k + i + 1

k

)
)] for i ≥ 0. This is a con-

cave piecewise linear function, the segment between abscissas i and i + 1 has
slope log(1 + k/(i + 1)). Because the graph of the function in the right-hand side
of the previous inequality is a straight line with positive slope, then, for a given R,
the smallest possible value for � is obtained by making this line tangent to the
concave piecewise linear function at i = s − 1 with s as given in the statement of
the corollary and this leads to the announced value for �.

A.8. Translation

The next formula shows that majorant series also behave well under translation.

Proposition A.11. Let U be an open connected neighborhood of a in E, let f
be an analytic map from U to F, and let F ∈ R{t} be such that [ f ]a ≤ F . Then,
for any b ∈ U such that ‖b − a‖ is less than the radius of convergence of F , we
have [ f ]b ≤ F(‖a − b‖ + t).

Proof. For any k ≥ 0, successively applying Propositions A.3 and A.9, we obtain
‖Dk f (b)‖/k! ≤ F (k)(‖a − b‖)/k! and therefore

[ f ]b ≤
∑
k≥0

F (k)(‖a − b‖)
k!

t k = F(‖a − b‖ + t).

Corollary A.12 (For Geometric Majorant Series). Let U be an open connected
neighborhood of a in E, let f be an analytic map from U to F, and let λa ≥ 0 and
ρa ≥ 0 be such that

[ f − f (a)]a ≤ λat

1 − ρat
.
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Then, for all b ∈ B(a, 1/ρa) ∩ U , we have

[ f − f (b)]b ≤ λbt

1 − ρbt
,

with λb := λa/(1 − ρa‖a − b‖)2 and ρb := ρa/(1 − ρa‖a − b‖).

Proof. We apply the previous proposition and check that λat/(1 − ρat) yields
λa‖a − b‖/(1 − ρa‖a − b‖)+ λbt/(1 − ρbt) when evaluated at ‖a − b‖ + t .
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