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Abstract. Isolated multiple zeros or clusters of zeros of analytic maps with several
variables are known to be difficult to locate and approximate. This paper is in the vein
of the α-theory, initiated by M. Shub and S. Smale in the beginning of the 1980s.
This theory restricts to simple zeros, i.e., where the map has corank zero. In this
paper we deal with situations where the analytic map has corank one at the multiple
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isolated zero, which has embedding dimension one in the frame of deformation
theory. These situations are the least degenerate ones and therefore most likely to be
of practical significance. More generally, we define clusters of embedding dimension
one. We provide a criterion for locating such clusters of zeros and a fast algorithm
for approximating them, with quadratic convergence. In the case of a cluster with
positive diameter our algorithm stops at a distance of the cluster which is about its
diameter.
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Introduction

Foreword. In both theory and practice, dealing with multiple zeros of multi-
variate analytic maps remains a challenging problem. The now classical α-theory
developed by M. Shub and S. Smale restricts to simple zeros. At such zeros the
Jacobian is invertible, so the map has corank zero in our context, and this property
remains of course valid in an open neighborhood. In this paper we treat the next
case, i.e., where the corank of the analytic map is 1 at the multiple zero. Note
that the corank can drop in a neighborhood, where, consequently, it is at most
one.

To avoid confusions, note that by corank of an analytic map at a multiple zero
we mean the corank of its Jacobian, while by corank of a function at a critical point
it is understood in singularity theory the corank of its Hessian (see [3]).

The corank 1 condition implies, through the implicit function theorem, that the
zero lies on a smooth curve, hence its embedding dimension is 1. In the context
of numerical analysis, the right issue is to isolate and approximate clusters of
zeros, simple or not. Therefore, the right hypothesis is not the corank at most 1
condition at each zero of the cluster, but the embedding dimension 1 condition, as
we exemplify in the next paragraphs. Our generalization of the α-theory is done
under the latter hypothesis, which actually covers a large class of singularities
encountered in practice.

∗ Published online at www.springerlink.com.
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Clusters of Embedding Dimension One. Formally speaking, by cluster we only
mean set. Its diameter is the maximum distance between any two of its points. In
the context of clusters of zeros, this word is convenient to refer to a set of zeros
whose diameter is small compared to the distance to other zeros.

Let f be a complex analytic map defined on a connected open subset U of Cn

to Cn , where Cn is endowed with the canonical Hermitian dot product. A set of
zeros of f is said to be a cluster of zeros of embedding dimension 1 if there exist
two vector subspaces S and T of Cn of codimension 1, a ball in U containing the
cluster, such that PrT ◦D f (x) is invertible on S, for all x in the ball, where PrT

denotes the orthogonal projection to T . Note that this definition readily extends
the notion of a multiple zero of corank 1 to the context of numerical analysis.

In this situation, we can choose orthonormal bases at the source and target of
f , (x, y) = (x1, . . . , xn−1, y) and ( f1, . . . , fn−1,g) = (f,g), such that the partial
derivative off = ( f1, . . . , fn−1)with respect to the variables x is invertible in a ball
centered at a zero ζ of f . Let ζx and ζy , respectively, denote the x and y coordinates
of ζ . The implicit function theorem implies that there exists an analytic function
ϕ(y) : W → C

n−1 defined on a neighborhood W of ζy such that ϕ(ζy) = ζx and
f(ϕ(y), y) = f(ζ ) = 0 holds in W . Up to restricting W , h(y) := g(ϕ(y), y) is
well defined on W . We call it the univariate reduction of f . Looking for zeros of f
is then reduced to looking for zeros on a smooth curve, and, after parametrization,
for zeros of a univariate analytic function: its reduction. This motivated us to use
this embedding dimension terminology. The reduction can also be viewed as an
eliminating object (of the variables x) between the components of f , in a local
analytic setting.

Note that multiple zeros of corank 1 are clusters of embedding dimension 1.
In addition, this embedding dimension 1 property is preserved under small defor-
mations (by deformation, we refer in this context to the classical theory given, for
example, in [3]). The methods presented here for cluster location and approxima-
tion are not designed to treat all clusters of embedding dimension 1 but only the
ones that are sufficiently small in some sense we will precisely quantify.

Example 1. The first example of a cluster of embedding dimension 1 is an or-
dinary quadratic point (zero of multiplicity 2) in any ambient space, which is also
known as “a simple double point” (see [9]). There exists local coordinates in which
it can be described by the map (x1, . . . , xn−1, y) �→ (x1, . . . , xn−1, y2), which is
obviously of corank 1 at the origin. In Arnold’s classification of singularities [3],
this is the singularity A1.

Example 2. More generally, the common archetype is the map

(x1, . . . , xn−1, y) �→ (x1, . . . , xn−1, ym),

which admits the origin as a zero of multiplicity m and corank 1. Actually all maps
with a multiple zero of corank 1 and multiplicity m are analytically equivalent to
this example (called Am−1 in Arnold’s classification of singularities [3]).
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As an illustration of the deformation remark above, note that all small de-
formations of this fat point, described by the semiuniversal deformation ym +∑m

i=2 am−i ym−i of ym , keep the corank at most one property at any zero and yield
a family of examples of clusters of embedding dimension 1, with m zeros, in an
appropriate ball.

Example 3. Our third example of a cluster of embedding dimension 1 is a fat
point of multiplicity 4 and corank 1. Let us consider an ellipse and one of its
superosculating circles. They intersect at such a point: coordinates can easily be
found when the situation is described by the equations x2

1 − 4x1 + 4y2 = 0 and
x2

1 − x1 + y2 = 0 (here n = 2).

Counterexample. Let f := (x1, y) �→ (x2
1 − e, y2 − e), for a positive real

parameter e. Consider the cluster composed of the four zeros of f . Since the
origin belongs to the convex hull of this cluster, any ball containing the cluster also
contains the origin. Although the corank of f is clearly at most one at each zero, it
follows that this cluster cannot have embedding dimension 1 since D f (0, 0) = 0.

Notations. We introduce the basic definitions and conventions used throughout
this paper. For any ζ ∈ Cn , and any real number r ≥ 0, we use the following
usual notation for balls: B(ζ, r) := {x ∈ Cn, ‖x − ζ‖ < r} and B̄(ζ, r) := {x ∈
C

n, ‖x − ζ‖ ≤ r}.

More on Embedding Dimension One. Throughout this paper, we assume that the
map f is already given with well-suited sets of coordinates (x, y) and (f,g) that
satisfy the above properties. If this were not the case it would suffice to change the
coordinates.

Something could be puzzling in the above definitions of embedding dimension
1 and reduction, in the context of clusters of zeros of positive diameter (i.e., not
reduced to a multiple zero). These definitions seem to depend on a particular zero:
actually this is not the case. Instead of considering only the implicit function defined
when f equals 0, we introduce the following map 
 that allows one to handle the
family of implicit functions defined when f equals a certain parameter that varies
in a neighborhood of 0. Namely, for any (x0, y0) ∈ U such that Dxf(x0, y0) is
invertible, we introduce


(f, x0, y0; x, y) : U → C
n,

(x, y) �→ (Dxf(x0, y0)
−1f(x, y), y).

Note that this map is classical for proving the equivalence between the local com-
positional inverse function and the implicit function theorems. The map 
 is in-
vertible in a neighborhood of (x0, y0); its inverse is denoted by �(f, x0, y0; z, y)
and is defined on a neighborhood of (z0, y0) where z0 := Dxf(x0, y0)

−1f(x0, y0).
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We also introduce

h( f, x0, y0; z, y) := g(�(f, x0, y0; z, y)).

For convenience, we also use the notation ϕ(f, x0, y0; y) for representing the n−1
first coordinates of �(f, x0, y0; 0, y), so

(ϕ(f, x0, y0; y), y) = �(f, x0, y0; 0, y)

holds. Then, in a certain neighborhood of (x0, y0) (that will be described precisely
when needed) looking at the zeros of f , in other words the solutions of f(x, y) =
g(x, y) = 0, is equivalent to

h( f, x0, y0; 0, y) = 0, x = ϕ(f, x0, y0; y),

hence reduces to considering a univariate equation.
By construction, we have f (ϕ(f, x0, y0; y), y) = 0, hence ϕ(f, x0, y0; y) and

h( f, x0, y0; 0, y) do not depend on (x0, y0) in a neighborhood of (x0, y0). In partic-
ular, ϕ actually represents the parametrization of the implicit function defined by
f = 0. Moreover, if (x0, y0) is an isolated solution of f = 0, then its multiplicity
equals the multiplicity of y0 as a solution of h( f, x0, y0; 0, y) = 0. In many places
we will write h( f, x0, y0; z, ·) for this single complex variable function of y, for
fixed z.

Deflated Maps. For any l ≥ 0, the lth deflated function of a univariate complex
function h is nothing other than its lth derivative h(l). For any l ≥ 0, throughout
this paper, we study the lth deflated map f [l] = (f,g[l]) obtained from f = (f,g)
according to the following recursive definition:

g[0] = g, g[l+1] = det(D(f,g[l]))

det(Dxf)
for l ≥ 0, (1)

where det denotes the determinant map, the implicit basis that we consider is the
canonical one given by (x, y).

Point Estimates. Let f denote again an analytic map from an open subset U ofCn

toCn and a ∈ U . Then its kth derivative Dk f (a) belongs to the space Lk(C
n;Cn)

of C-multilinear maps from k copies of Cn to Cn . For any such multilinear map L
we use the classical norm:

‖L‖ := sup
u1∈Cn ,...,uk∈Cn

‖u1‖=···=‖uk ‖=1

‖L(u1, . . . , uk)‖.

Concerning Newton’s operator, we will use the following notation:

N ( f ; x) := x − D f (x)−1 f (x),
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and for Schröder’s operator [41] (if h is a univariate map) we write

Nm(h; x) := x − m
h(x)

h′(x)
.

Of course, for analytic functions, N1 and N coincide.
So-called point estimates are quantities defined from norms of differential maps

at a given point. Three such important quantities are used for simple zeros: γ , β,
and α. The first one, namely, γ ( f ; a), helps control the function locally,

γ ( f ; a) := sup
k≥2

∥∥∥∥D f (a)−1 f (k)(a)

k!

∥∥∥∥
1/(k−1)

.

In particular, the radius of convergence of the power series expansion of f at a is at
least 1/γ . The second quantity is the length of the Newton iteration stepβ( f ; a) :=
‖D f (a)−1 f (a)‖; the third one is their product α( f ; a) := β( f ; a)γ ( f ; a).

For a univariate function h, in order to deal with clusters of m zeros, counting
multiplicities, and multiple zeros of multiplicity m, the previous quantities are
generalized as follows, for any l ∈ {0, . . . ,m − 1} (which will have to do with a
level l of deflation),

γm(h; a) := sup
k≥m+1

(
m!|h(k)(a)|
k!|h(m)(a)|

)1/(k−m)

,

βm,l(h; a) := sup
l≤k≤m−1

(
m!|h(k)(a)|
k!|h(m)(a)|

)1/(m−k)

,

αm,l(h; a) := γm(h; a)βm,l(h; a).

As expected, these quantities coincide with the previous ones when letting m = 1
and l = 0. In short, we let βm := βm,0 and αm := αm,0. If γm( f ; a) = 0, then
we consider 1/γm( f ; a) = +∞ as a natural convention. Together with these
quantities, the following auxiliary function comes naturally:

ψm(u) := 2(1− u)m+1 − 1.

In short, we shall also write ψ(u) for ψ1(u) = 1− 4u + 2u2.

Summary of Our Contributions. We now present a summary of our main
contributions section by section. We explain how the paper is organized, and how
the results are connected.

α-Theory for Simple Zeros. Our first section is devoted to prerequisites on ma-
jorant series, and to classical results on location and approximation of simple
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zeros, following the now classical α-theory. We provide a new synthetic shorter
presentation of this theory.

The first properties of majorant series are recalled in the first subsection. The
next two subsections are, respectively, devoted to Pellet’s location criterion of
simple zeros, and to the calculation of upper bounds on a point estimate from the
same estimate known at a close point.

The fourth subsection gives a short proof of the γ -theorem (namely, Theo-
rem 1.16), that quantifies the convergence of Newton’s operator in a neighborhood
of a simple zero, from point estimates at the zero. Then we explain how these
estimates can be approximated from the same estimates at any given point located
sufficiently close to the zero. The combination of the γ -theorem with the location
criterion thus leads us to a “weak” version of the α-theorem. By contrast with the
γ -theorem, the α-theorem quantifies the convergence of Newton’s operator from
estimates at the initial point of the Newton iteration. The α-theorem is often more
relevant to practical concerns.

A “strong” version of the α-theorem (Theorem 1.17) is then established in the
fifth subsection. In the vein of Kantorovich’s analysis, we generalize theα-theorem
given by Wang and Han in [53] (see Corollary 1.18), in order to show that, if Pellet’s
location criterion is satisfied at a given point, then the Newton iterates of this point
converge to a simple zero.

The first section ends with a quantitative version of the implicit function theo-
rem (Theorem 1.19), that is a crucial ingredient to handle the univariate reduction
h in practice. This result is not new: it is a consequence of the α-theorem (Corol-
lary 1.18), and of the results given by Dedieu et al. in [8, Sec. 3]. In Appendix A
(published online at http://www.springerlink.com), we generalize the latter results
to geometric majorant series. More precisely, we provide a sharper geometric se-
ries majoration of the compositional inverse map, in cases where the derivative at
the given point is different from identity. These sharper results are not used outside
this appendix, but they are useful to tune the algorithms in practice.

Reduction to One Variable. Section 2 gathers technical results needed by the
location and the approximation algorithms.

For the sake of completeness, in the first subsection, we recall the location
criterion given in [12] for univariate maps, and that generalizes Pellet’s criterion
to clusters of zeros. Briefly speaking, for a univariate function h, if αm,l(h; a) is
sufficiently small, then h(l) admits a cluster of m− l zeros in a ball centered at a of
radius of aboutβm,l(h; a). In addition, if a lies in the convex hull of this cluster, then
the diameter of the cluster is also about βm,l(h; a). This crucial observation allows
one to compute approximations of diameters of clusters. When we say that a point
lies far from or close to the cluster, we refer to its diameter as the implicit scale.

The second subsection contains an algorithm to compute approximations of the
function βm,l . This device will only be used by the approximation algorithm in
Section 4.
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In the third subsection we study the interplay between the deflated map and its
deflated univariate reduction. More precisely, we prove the following relation:

Dl
yh( f, x0, y0; z, y) = g[l] ◦�(f, x0, y0; z, y), (2)

which provides an efficient way of computing Taylor expansions of h.
In the last subsection, we study how βm,l(h(z, ·); y) and γm(h(z, ·); y) vary

in z when y is fixed. The common archetype the reader may keep in mind is
h(z, y) = zyl + ym : the diameter of the cluster of zeros of Dl

yh(z, ·) = 0 varies
like ‖z‖1/(m−l). Therefore, in order to approximate Dl

yh(0, y) at a usable scale,
‖z‖1/(m−l) will be required to be sufficiently small, which is a key observation for
our algorithms.

Cluster Location. Cluster location is addressed in Section 3, and means finding:
(a) a point; (b) an estimate for the radius of a ball centered at this point and
containing zeros of f , or a deflated map of f ; and (c) the radius of a zero-free
region beyond this ball. Our Theorem 3.1 generalizes the location criterion given
in [12, Sec. 1], that restricts to univariate functions. In addition, Theorem 3.1 is
more general than the location criterion of Dedieu and Shub presented in [9], that
deals with our present case of study but restricting to clusters containing two zeros
(that is, m = 2 in our context).

Let us summarize the main feature of Theorem 3.1 in an informal way. Let
(x0, y0) be a given point, and let m ≥ 1 and l ∈ {1, . . . ,m − 1} be given integers.
Let κ denote the first integer such that 2κ ≥ m − l, let x ′0 := N κ(f(·, y0); x0), and
let z′0 := Dxf(x0, y0)

−1f(x ′0, y0). Theorem 3.1 can be seen as a sufficient criterion
that decides the existence of a cluster of m−l zeros of the lth deflated map f [l], from
the sole knowledge of point estimates of g and
(f, x0, y0; ·, ·) at (x0, y0), and of
h( f, x0, y0; ·, ·) at (z′0, y0). This criterion is proved to be necessary for sufficiently
small clusters, when (x0, y0) is sufficiently close to the cluster. In addition, the
point estimates involved in Theorem 3.1 are computable for several classes of
maps f . Numerical experiments with Theorem 3.1 are provided in Section B.2 (of
Appendix B) for polynomial maps.

Cluster Approximation. For any given integers m, l, and l ′ such that m ≥ 1,
l ∈ {0, . . . ,m − 1}, and l ′ ∈ {0, . . . , l}, we wish to approximate a cluster with
m− l ′ zeros of the l ′th deflated map f [l ′] by means of the lth deflated map f [l]. The
initial point of this approximation process will always be written (x0, y0). This
problem is solved in Section 4.

Section 4 starts with the definition of the operator Nm,l,l ′ , that contains branching
depending on the real parameters ry and Gy . Roughly speaking, this operator does
the following computations when applied to (x0, y0): it first computes (x ′0, y0)

such that z′0 := Dxf(x0, y0)
−1f(x ′0, y0) is of order 2(m− l ′); then it computes the

Schröder iterate y′0 of y0 as y′0 := Nm−l(Dl
yh( f, x0, y0; z′0, ·); y0). Depending on

the location of y0 with respect to the cluster of zeros of Dl ′
y h( f, x0, y0; z′0, ·), the
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output (x1, y1) of the operator is computed from y0 or from y′0. The latter choice
involves the use of the parameters ry and Gy .

Then we exhibit a stopping criterion to ensure that the iterates of (x0, y0) by
Nm,l,l ′ stop close to the cluster of f [l ′]. This criterion involves a third parameter
Gz . The combination of the operator Nm,l,l ′ together with the stopping criterion is
called the approximation algorithm in the sequel.

When using our algorithm with l = l ′ = 0, the computation of y′0 only requires
the first derivative of h( f, x0, y0; z′0, ·). On the other hand, with l = m − 1 and
l ′ = 0, our algorithm is close to performing the Newton iteration on the full deflated
map. Our stopping criterion then allows one to stop this iteration close to the cluster
of the original system. These extreme cases motivate this unified presentation in
terms of l and l ′.

In Theorem 4.1, if (x0, y0) is sufficiently close to a cluster with m − l ′ zeros
of the l ′th deflated map, and if this cluster is sufficiently small, then we give
formulas to compute suitable values of the parameters ry , Gy , and Gz such that the
approximation algorithm is well defined and produces a sequence of iterates that
converges quadratically to the cluster, and that stops at a distance to the cluster
which is of the order of magnitude of its diameter. Furthermore, we precisely
quantify what is meant by “sufficiently close” and by “sufficiently small” in terms
of point estimates of f, g, 
(f, x0, y0; ·, ·), and h( f, x0, y0; ·, ·) at a point of the
cluster. We also give a precise statement for the “quadratic convergence” and for
the “order of magnitude” of the distance to the cluster. The proof of Theorem 4.1
is quite long (it occupies Subsections 4.2 to 4.8), and it relies strongly on the
univariate approximation algorithm presented in [12, Theorem 4.5].

Theorem 4.1 can be seen as a generalization of the γ -theorem to clusters of
embedding dimension 1, since it involves points estimates at the cluster. In prac-
tice, these estimates are of course unknown, and we wish to have a result similar
to the α-theorem, which only requires point estimates at the initial point (x0, y0).
In the last subsection of Section 4, with an algorithmic presentation, we explain
how one can achieve this goal, in a similar way as we did in Section 1.4 to ob-
tain our “weak” version of the α-theorem for simple zeros. More precisely, we
put together the location criterion of Theorem 3.1 with the algorithm stated in
Theorem 4.1.

The approximation algorithm of this paper generalizes the one variable approx-
imation algorithm presented in [12, Sec. 4]. It can be used for wide classes of
functions for which the necessary point estimates are computable. In Appendix B
(published online at http://www.springerlink.com), we report on our implemen-
tations of the location and the approximation algorithms with polynomial maps.
These experiments are in good agreement with our theoretical analysis.

Related Work. In the following paragraphs, we discuss other approaches to
cluster detection and to generalizations of the Newton iteration. Recall that the
univariate case that we generalize here is treated in [12], to which we refer for the
bibliography. Here we focus on several variables maps.
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α-Theory. In dimension larger than one and in the spirit of the α-theory devel-
oped by Shub and Smale in [44], [42], [43], [45], [4], the only quantitative result
generalizing simple zeros is due to Dedieu and Shub. In [9], they present a qual-
itative version of Rouché’s theorem that guarantees the existence of clusters of
two zeros. In this paper, we present a more general criterion that deals with higher
multiplicities. We also provide an approximation algorithm based on Schröder’s
operator [41], [51]. As for simple zeros, all our results are effective and certified,
as exemplified in Appendix B.

In the next paragraphs we present other works concerning approximation of
multiple zeros, that are outside the scope of the α-theory. This presentation is not
intended to be exhaustive but tends to reflect some mainstreams among a vast
amount of literature, to which our results are most related.

Deflation. In the multivariate case, multiple zeros can be approximated by de-
flation algorithms: they mainly consist in differentiating well-chosen equations,
according to the nature of the singularity. Ojika, Watanabe, and Mitsui [34] and
then Ojika [33] proposed a so-called modified deflation algorithm based on hybrid
symbolic and numerical computations. In [30] this technique is improved and the
number of deflation stages is proved to be bounded by the multiplicity. The ques-
tions of complexity and stability of these mixed approaches have not been studied
yet. On the other hand, in the computer algebra framework (that concerns non-
Archimedean valuated fields) a general deflation algorithm has been described by
Lecerf in [29]: this gives an algorithm for quadratic approximation of multiple
zeros in time which remains polynomial in the multiplicity. Yet this method has
not led to numerical experiments.

The present paper deals with a particular case of deflated systems of depth
one, according to the terminology of [29]. The main difference is that we deal
with clusters instead of multiple zeros, which turns out to be much more difficult.
Dealing with clusters of embedding dimension higher than 1 by means of deflated
systems of depth higher than one is a difficult challenge.

Corrected Newton Methods. Experimentally, if Newton’s method converges to
an isolated singularity, then the convergence is linear. A quantitative analysis of this
property is complicated. Several authors have contributed to this topic. Motivated
by Ostrowski [35], Rall studied some particular cases in [38]. Then, based on
Reddien’s advances [39], [40], Decker and Kelley [6], [7] precise the convergence
rate for singular problems of first and second orders for maps between Banach
spaces. Griewank and Osborne [14], [16], [15] propose generalizations and precise
convergence domains.

In the univariate case, corrected operators are well known from Schröder’s work
[41] and have been improved by Van de Vel [51], [52]. Recently, this approach has
been generalized to Pham systems [24].

In general, correcting Newton’s iteration to reestablish quadratic convergence
has been studied in numerous works. In this vein, an important class of approxi-
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mation methods is based on a so-called regularization of the Newton correction:
we refer to [2, Theorem 1] for recent advances and references on this subject. In
fact, the construction described therein is obtained from the one we mention in the
next paragraph.

Bordering Techniques. So-called bordering techniques form a large class of
methods to deal with singularities. As for the deflation techniques, the main idea
is the construction of a system that admits a simple solution in place of the sin-
gular solution of the original system, hence Newton’s operator can be used. For
double zeros, this technique is explored in [54], [55], [15], [20], [21], [31]. For
multiple zeros with corank 1, Tsuchiya proposes a method in [50] that is based
on [55].

Augmented Systems. The construction of augmented systems can also be used
to approximate isolated singular zeros. Roughly speaking, the basic idea consists
in introducing new variables corresponding to coordinates of vectors belonging to
some kernels of well-chosen linear maps constructed from derivatives of the given
map and depending on the type of the singularity.

The number of papers dealing with these techniques is too extensive to cite
them all, we refer to [17], [37], [18], [13] for historical details and references. The
most general method is exposed by Kunkel in [28] (as a generalization of [26],
[27]) and is extended to Banach spaces in [19].

Cluster Approximation. Among all these techniques, the cluster approximation
problem remains unexplored: relating the zeros of bordered, augmented, or deflated
systems to the ones of the original problem is still an open question in full generality.
For the first time, we solve this problem here for clusters of embedding dimension 1.
Our use of the implicit function theorem by means of truncated power series
computations is a major difference compared to the other aforementioned methods.
In particular, we do not introduce extra unknowns at the opposite of the construction
of augmented systems.

Algebraic Topology. Far from our present concerns, a vast amount of results
for locating zeros of analytic maps are designed from numerical integration and
residue formula. We refer to [25] for an exposition of some of these results and for
an historical presentation. Other original zero counting related methods are based
on topological degree theory [49], [23].

Global Techniques. Lastly, from a global point of view, it is worth mentioning
that several techniques for polynomial system solving are robust in presence of
multiplicities and clusters, but their complexities take into account all the zeros
of the systems. Originating from commutative algebra, let us mention recent ad-
vances in Gröbner basis computation [10], [11] and geometric solving [29]. From
a numerical point of view, formal computations can be used as a preprocess: for
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instance, geometric solving brings back to solving a univariate polynomial, or suit-
able constructions bring back to linear algebra, as in [5]. Pure numerical techniques
mostly rely on homotopy continuation, as in [32], [48], [46], [47], for example.

1. α-Theory for Simple Zeros

For the sake of completeness this first section gathers material of the α-theory
for simple zeros. We start with Pellet’s location criterion, that we directly prove
via Rouché’s theorem. Then we recall the γ -theorem, generalize [53] to majo-
rant series, prove the α-theorem, and recall the quantitative version of the local
compositional inverse theorem.

1.1. Majorant Series

We briefly recall the main basic properties of majorant series and geometric ma-
jorant series. We refer to [12, App. A] for proofs. We denote by R{t} the algebra
of real power series with positive radius of convergence. We say that a series
λt/(1 − ρt) is a geometric series, for the sequence of its coefficients is in ge-
ometric progression. We widely use the following notation for the exponential
generating series of the norms of the derivatives of f at a ∈ Cn:

[ f ]a :=
∑
k≥0

‖Dk f (a)‖ t k

k!
∈ R{t}.

We consider the following partial order ≤ over R{t}. Let F and G be in R{t}, we
write F ≤ G when F (k)(0) ≤ G(k)(0) for all k ≥ 0. Then we say that a power
series F ∈ R{t} is a majorant series for an analytic map f at a point a if [ f ]a ≤ F .

Proposition 1.1. The partial order on R{t} satisfies the following compatibility
rules:

(a) For all nonnegative x in R, x ≥ 0, seen as the constant function in R{t};
(b) for all F in R{t}, F ≥ 0 is equivalent to −F ≤ 0;
(c) for all F , G, and H in R{t}, if F ≤ G, then F + H ≤ G + H ;
(d) for all F , G, and H in R{t}, if F ≤ G and H ≥ 0, then F H ≤ G H .

Let f denote an analytic map from a connected open subset U ⊆ Cn to Cm .
The map [·] satisfies the following basic properties.

Proposition 1.2. According to the above notation, for any a ∈ U we have:

(a) [ f ]a ≥ 0;
(b) [ f ]a = 0 is equivalent to f = 0 in a neighborhood of a;
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(c) [c f ]a = |c| [ f ]a for all c ∈ C;
(d) [ f + g]a ≤ [ f ]a + [g]a .

Next follows a list of less basic properties. Let a ∈ U , F be such that [ f ]a ≤ F .

Proposition 1.3 (Differentiation). [D f ]a ≤ F ′.

Let b ∈ U be such that ‖b − a‖ is less than the radius of convergence of F .

Proposition 1.4 (Evaluation). ‖ f (b)‖ ≤ F(‖a − b‖).

Proposition 1.5 (Translation). [ f ]b ≤ F(t + ‖a − b‖).

Corollary 1.6 (Translation for Geometric Series). If F = F(0) + λt/(1− ρt),
then

[ f − f (b)]b ≤
λ′t

1− ρ ′t ,

with λ′ := λ/(1− ρ‖b − a‖)2 and ρ ′ := ρ/(1− ρ‖b − a‖).

Proposition 1.7 (Product). Let f be an analytic map from U to L(Cn;Cm) and
let g be an analytic map from U to L(Cp;Cn), then we have

[h]a ≤ [ f ]a [g]a ,

where h is defined by

h : U → L(Cp;Cm),

x �→ f (x) ◦ g(x).

In particular, it follows that the product of majorant series of univariate functions
is a majorant series for the product of these functions.

Proposition 1.8 (Composition). Let g be an analytic map fromCm toCp, defined
in the neighborhood of f (a) and let G be such that [g] f (a) ≤ G. Let h := g ◦ f ,
then we have

[h]a ≤ G ◦ (F − F(0)).

Corollary 1.9 (Composition for Geometric Series). According to the notation of
the previous proposition, if F = F(0)+λ f t/(1− ρ f t), G = G(0)+λgt/(1− ρgt),
then

[h − h(a)]a ≤
λt

1− ρt
, where λ := λ f λg, ρ := ρ f + λ f ρg.

In addition, f (B(a, 1/ρ)) ⊆ B( f (a), 1/ρg).
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Lastly, we recall a formula concerning inversion of linear maps.

Proposition 1.10 (Inversion). Let U be an open neighborhood of a inCn and let
f be analytic from U to L(Cm;Cm) such that f (a) = Id. Let F ∈ R{t} such that
[ f ]a ≤ F , then

[ f −1]a ≤ 1/(1+ F(0)− F).

In addition, the radius of convergence of 1/(1+ F(0)− F(t)) is at least

ρ̄ := sup(s < ρ | 1+ F(0)− F(r) > 0 for all r ∈ [0, s]),

where ρ denotes the radius of convergence of F .

1.2. Location of Simple Zeros

We show that the optimal location criterion (in terms of the quantity α) given by
Wang and Han in [53] can be deduced from Rouché’s theorem. We start with the
following proposition, that generalizes Pellet’s criterion [36] to simple zeros of
several variables maps. We follow the same presentation as in [12, Sec. 1].

For the rest of this section, f denotes an analytic map from a connected open
subset U ⊆ Cn to Cn , x0 belongs to U , and D f (x0) is assumed to be invertible. In
short, we let α := α( f ; x0), β := β( f ; x0), γ := γ ( f ; x0). For a majorant series
F , we will often use the notation

F̃ := F − (1+ F ′(0))t.

Proposition 1.11. Let F ∈ R{t} be such that [D f (x0)
−1 f ]x0 ≤ F . Let r > 0 be

a real number smaller than the radius of convergence of F such that B̄(x0, r) ⊆ U
and

F̃(r) < 0, (3)

then f has exactly one simple zero in B̄(x0, r).

Proof. First observe that it is not restrictive to assume D f (x0) = Id. We introduce
g: U → C

n , g(x) := f (x)− f (x0). Letw �= x0 be such that s := ‖w − x0‖ ≤ r .
By Taylor expansion, we have g(w) = w − x0 + Ox0(w − x0)

2, then by the
triangular inequality we get

‖g(w)‖
s
≥ 1−

∑
j≥2

F ( j)(0)

j!
s j−1 ≥ 1− F(r)− F(0)− r F ′(0)

r
>

F(0)

r
,

where the latter inequality follows from (3). Here Ox0 represents the classical
Landau “big O” notation in the neighborhood of x0. As a consequence, x0 is the
only simple zero of g in the ball B̄(x0, r). Moreover, when s = r , the inequality
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above yields ‖ f (w)− g(w)‖ < ‖g(w)‖. In particular, g(w) does not vanish
and therefore the multivariate generalization of Rouché’s theorem [1, Chap. 1,
Theorem 2.5] asserts that f and g have the same number of zeros in B̄(x0, r),
counting multiplicities.

We now examine the important special case of the majorant series F =
F( f, x0; t), defined by

F( f, x0; t) := β( f ; x0)+ t

1− γ ( f ; x0)t
,

since

[D f (x0)
−1 f ]x0 ≤ F( f, x0; t).

Inequality (3) rewrites

F̃( f, x0; r) := β − r + γ r2

1− γ r
< 0. (4)

Assuming γ r < 1 and B̄(x0, r) ⊆ U , the previous proposition specializes to: if
F̃( f, x0; r) < 0, then f has exactly one simple zero in B̄(x0, r).

F̃( f, x0; r) is convex on the range 0 ≤ r < 1/γ , and inequality (4) admits
solutions in this range if and only if α < 3 − 2

√
2. In addition, by convexity,

this set of solutions forms a range that we write (r−( f ; x0), r+( f ; x0)), where
r−( f ; x0) and r+( f ; x0) (that may be infinity) are the roots of F̃( f, x0; r) = 0. In
short, we let r− := r−( f ; x0) and r+ := r+( f ; x0) and a direct calculation yields

r− := β 2

1+ α +√1− 6α + α2
, r+ := 1+ α +√1− 6α + α2

4γ
. (5)

If α �= 0, then the following inequality chain follows from the facts that r− is
convex increasing while r+ is concave decreasing as functions of α:

β < (1+ α)β < r− <
(

1+
(

2+ 3
√

2/2
)
α
)
β <

(
1+
√

2

2

)
β (6)

<
1−√2/2

γ
<

1− (1+√2)α

2γ
< r+ <

1− α
2γ

<
1

2γ
. (7)

We summarize this discussion in the following theorem.

Theorem 1.12 [53, Prop. 2]. If α < 3 − 2
√

2, then for any r , such that r− ≤
r < r+ and B̄(x0, r) ⊆ U , f has exactly one simple zero in B̄(x0, r).

It is worth mentioning that this result is sharp, for it applies to F̃( f, x0; r), seen
as a univariate map of r : at r = 0, it is easy to see β(F̃( f, x0; ·); 0) = β and
γ (F̃( f, x0; ·); 0) = γ . In practice, the next corollary will reveal easier to use:



16 M. Giusti, G. Lecerf, B. Salvy, and J.-C. Yakoubsohn

Corollary 1.13. If α < 3 − 2
√

2 and B̄(x0, (1 +
√

2/2)β) ⊆ U , then f has
exactly one simple zero in both B̄(x0, (1+

√
2/2)β) and B(x0, (1−

√
2/2)/γ )∩U .

Proof. We apply the previous theorem with the analytic extension of f on
B(x0, 1/γ ), for r = (1 + √2/2)β (according to (6)) and then for any r in a
left neighborhood of (1−√2/2)/γ (according to (7)).

1.3. Translations of Point Estimates

From estimates at a given point, getting upper bounds on the same quantities at
another close point is a central operation. The following proposition will be used
in proofs of the γ - and α-theorems below.

Proposition 1.14. Let F be such that [D f (x0)
−1 f ]x0 ≤ F , then

[D f (x0)
−1 D f ]x0 ≤ F ′ and [D f −1 D f (x0)]x0 ≤ −

1

F̃ ′
.

Proof. Again we can assume D f (x0) = Id and start with differentiating [ f ]x0
≤

F : according to Proposition 1.3, we obtain [D f ]x0
≤ F ′. Then the second majo-

ration follows from Proposition 1.10.

Translations of α, β, and γ are useful for various tasks, we shall use them
several times.

Proposition 1.15 [4, Chap. 8, Prop. 3]. Let x1 ∈ U , r := ‖x1 − x0‖ such that
u := γ r < 1−√2/2, then

(a) α( f ; x1) ≤ α(1− u)+ u

ψ(u)2
;

(b) β( f ; x1) ≤ (1− u)

ψ(u)
(β(1− u)+ r);

(c) γ ( f ; x1) ≤ γ

(1− u)ψ(u)
;

(d) ‖D f (x1)
−1 D f (x0)‖ ≤ (1− u)2

ψ(u)
;

(e) ‖D f (x0)
−1 D f (x1)‖ ≤ 1

(1− u)2
.

Proof. Using the previous proposition with F = F( f, x0; t), we find

[D f (x0)
−1 D f ]x0 ≤

1

(1− γ t)2
and [D f −1 D f (x0)]x0 ≤

(1− γ t)2

ψ(γ t)
.

Parts (d) and (e) directly follow via Proposition 1.4.
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Then we use the translation property for majorant series: according to Propo-
sition 1.5, we have [D f (x0)

−1 f ]x1 ≤ F( f, x0; r + t), hence

[D f (x0)
−1 f ]x1 ≤ β + r + t

1− γ (r + t)

= β + r

1− u
+ 1

(1− u)2
t

1− [γ /(1− u)]t
.

From [D f (x1)
−1 f ]x1 ≤ ‖D f (x1)

−1 D f (x0)‖[D f (x0)
−1 f ]x1 , we deduce

[D f (x1)
−1 f ]x1 ≤

(1− u)2

ψ(u)

(
β + r

1− u
+ 1

(1− u)2
t

1− [γ /(1− u)]t

)
,

from which directly follow parts (b) and (c), and finally (a).

1.4. γ -Theorem

The γ -theorem quantifies the convergence of Newton’s operator from point esti-
mates at the zero. It is useful for homotopy continuation, when combined to the
previous upper bounds on translation.

Theorem 1.16 [4, Chap. 8, Prop. 1]. Let ζ ∈ U and let r > 0 be a real number
such that f (ζ ) = 0, D f (ζ ) is invertible, B̄(ζ, r) ⊆ U , u := γ ( f ; ζ )r < 1−√2/2,
and u/ψ(u) ≤ 1. Then, for any x0 ∈ B̄(ζ, r), the sequence (xk)k∈N recursively
defined by xk+1 := N ( f ; xk) is well defined, has all elements belonging to B̄(ζ, r),
and

‖xk − ζ‖ ≤
(

u

ψ(u)

)2k−1

‖x0 − ζ‖ for all k ≥ 0.

Proof. A direct calculation gives

[D f (ζ )−1(D f (x)x − f (x))]ζ ≤ t F ′( f, ζ ; t)− F( f, ζ ; t).
Using Propositions 1.14 and 1.7 then yields

[x − D f (x)−1 f (x)]ζ = [(D f (x)−1 D f (ζ ))(D f (ζ )−1(D f (x)x − f (x)))]ζ

≤ − t F ′( f, ζ ; t)− F( f, ζ ; t)
F̃( f, ζ ; t) = γ ( f ; ζ )t2

ψ(γ ( f ; ζ )t) .

By means of Proposition 1.4, evaluating this series majoration at x = x0 and t = r
gives

‖x1 − ζ‖ ≤ γ ( f ; ζ )
ψ(u)

‖x0 − ζ‖2 ≤ u

ψ(u)
‖x0 − ζ‖ ≤ ‖x0 − ζ‖.

A straightforward induction concludes the proof.
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Combining the previous results actually leads to a weak α-theorem (see next
subsection). More precisely, let x0 ∈ U be such that D f (x0) is invertible and
B̄(x0, (1 +

√
2/2)β) ⊆ U . Let v := (1 + √2/2)α and assume v < 1 − √2/2,

which is equivalent to α < 3 − 2
√

2. Then, from Corollary 1.13, there exists
a simple zero ζ in B̄(x0, (1 +

√
2/2)β). Let u := v/(1− v)ψ(v) and assume

u < 1−√2/2 and u/ψ(u) ≤ 1, Proposition 1.15 gives

γ ( f ; ζ ) ≤ γ

(1− v)ψ(v) ,

hence γ ( f ; ζ )(1+√2/2)β ≤ u and Theorem 1.16 asserts quadratic convergence
from x0. The supremum value α̂ of the α’s satisfying these conditions is

α̂ := sup

(
v

1+√2/2

∣∣ 0 ≤ v < 1−
√

2/2, u < 1−
√

2/2,
u

ψ(u)
≤ 1

)
.

An easy calculation produces 0.06571 < α̂ < 0.06572. This is not the best
possible value. Indeed, the optimal condition on α yielding quadratic convergence
of Newton’s iterator is given in [53, Theorem 1]: the critical value is 3− 2

√
2 ≈

0.17157. This is the next result we recall.

1.5. α-Theorem

Theα-theorem below presents a huge interest in practice since it combines location
and quantitative approximation from estimates at the initial point. As in [53], we
use the dominating sequence technique, that consists in exhibiting an increasing
sequence (tk)k∈N of nonnegative real numbers such that ‖xk+1 − xk‖ ≤ tk+1 − tk ,
where xk are the Newton iterates of x0. This idea goes back to Kantorovich [22].
The next theorem shows that once Pellet’s criterion is satisfied at x0, then the
Newton iterates of x0 converge quadratically to a simple zero. We thus generalize
the original idea of Wang and Han in [53] to majorant series. We do not use
Proposition 1.11, but provide another proof that does not rely on Rouché’s theorem.

Theorem 1.17. Let F ∈ R{t} be such that [D f (x0)
−1 f ]x0 ≤ F . Let r > 0 be a

real number smaller than the radius of convergence of F such that B̄(x0, r) ⊆ U
and F̃(r) < 0. Then f has exactly one simple zero ζ in B̄(x0, r). In addition, the
sequences (xk)k∈N recursively defined by xk+1 := N ( f ; xk) and (tk)k∈N recursively
defined by t0 = 0 and tk+1 := N (F̃; tk) are well defined: xk belongs to B̄(x0, r) for
all k ≥ 0, converges quadratically to ζ , tk is increasing and converges quadrat-
ically to the first nonnegative root r− of F̃ . The convergences of the sequences
(xk)k∈N and (tk)k∈N are related as follows:

(a) ‖xk − xk+1‖ ≤ tk+1 − tk ;
(b) ‖D f (x0)

−1 f (xk)‖ ≤ tk+1 − tk ;
(c) ‖xk − ζ‖ ≤ r− − tk .
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Proof. Let us first deal with the degenerate case when F ′′ = 0. In this situation
xk = ζ , tk = r− = β for all k ≥ 1, and the theorem trivially holds.

From now on we assume F ′′ �= 0. In particular, this implies that F̃ is strictly
convex on [0, r ]. Since F̃(0) ≥ 0 and F̃(r) < 0 we deduce that there exists a
unique zero r− of F̃ in [0, r ].

From convexity we also deduce that tk is increasing and converges to r−. The
dominating sequence technique consists in proving

‖xk+1 − xk‖ ≤ tk+1 − tk . (8)

For this purpose we proceed by induction on k: if k = 0, then ‖x1 − x0‖ = F(0) =
F̃(0) = t1, since F̃ ′(0) = −1. Now, we assume that inequality (8) holds up to a
certain index k − 1 ≥ 0. First, it is easy to check

‖xk − x0‖ ≤ ‖xk − xk−1‖ + · · · + ‖x1 − x0‖
≤ tk − tk−1 + · · · + t1 − t0 = tk − t0 ≤ r−. (9)

Since F̃ ′ does not vanish on [0, r−], Proposition 1.10 implies that the radius of
convergence of −1/F̃ ′(t) is larger than r−. Therefore, Propositions 1.14 and 1.4
yield

‖D f (xk)
−1 D f (x0)‖ ≤ − 1

F̃ ′(tk)
. (10)

On the other hand, by definition of xk , one can write

D f (x0)
−1 f (xk) = D f (x0)

−1( f (xk)− f (xk−1)− D f (xk−1)(xk − xk−1)),

so that a second-order Taylor formula with integral remainder gives

D f (x0)
−1 f (xk)

=
∫ 1

0
(1− τ)D f (x0)

−1 D2 f (xk−1 + τ(xk − xk−1))(xk − xk−1)
2 dτ.

By Proposition 1.3 one has [D f (x0)
−1 D2 f ]x0 ≤ F ′′ and then, using Proposi-

tion 1.4, we deduce∥∥D f (x0)
−1 f (xk)

∥∥
≤
∫ 1

0
(1− τ)F̃ ′′(τ tk + (1− τ)tk−1)(tk − tk−1)

2dτ = F̃(tk). (11)

Combining (10) and (11) leads to

‖xk+1 − xk‖ ≤ ‖D f (xk)
−1 f (xk)‖

≤ ‖D f (xk)
−1 D f (x0)‖‖D f (x0)

−1 f (xk)‖
≤ −F̃(tk)/F̃ ′(tk) = tk+1 − tk,
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which gives (8). We deduce that the sequence (xk)k∈N converges to a limit that we
write ζ . By construction, we have f (ζ ) = 0. From (9) we get ζ ∈ B̄(x0, r−), thus
ζ is a simple zero.

Next, part (b) follows from (11) this way:

‖D f (x0)
−1 f (xk)‖ ≤ F̃(tk) = −F̃ ′(tk)(tk+1 − tk)

≤ −F̃ ′(0)(tk+1 − tk) = tk+1 − tk .

Lastly, part (c) comes from

‖xk − ζ‖ ≤
∑
i≥k

‖xi − xi+1‖ ≤
∑
i≥k

(ti+1 − ti ) = r− − tk .

It remains to show that ζ is the only zero of f in B̄(x0, r). Let ζ ′ denote another
zero in this ball. Let R > r be smaller than the radius of convergence of F such
that F̃(R) ≤ 0. We introduce θ := ‖x0 − ζ ′‖/R < 1 and claim

‖xk − ζ ′‖ ≤ θ2k
(R − tk) for all k ≥ 0, (12)

from which immediately follows ζ = ζ ′. We prove this claim by induction on k.
The case k = 0 follows from the definition of θ . Assume that (12) holds at k ≥ 0,
by construction, one can write

xk+1 − ζ ′ = −D f (xk)
−1( f (xk)+ D f (xk)(ζ

′ − xk))

= D f (xk)
−1
∫ 1

0
(1− τ)D2 f (xk + τ(ζ ′ − xk))(ζ

′ − xk)
2 dτ,

using again the Taylor formula with integral remainder and f (ζ ′) = 0. Using the
induction hypothesis and Proposition 1.14, we deduce

‖xk+1 − ζ ′‖ ≤ − θ2k+1

F̃ ′(tk)

∫ 1

0
(1− τ)F̃ ′′(tk + τθ2k

(R − tk))(R − tk)
2 dτ.

Since F̃ ′′ is increasing, we can omit the factor θ2k−1 under the integral. Using
F̃(R) ≤ 0, we deduce

‖xk+1 − ζ ′‖ ≤ −θ2k+1 F̃(R)− F̃(tk)− F̃ ′(tk)(R − tk)

F̃ ′(tk)

≤ θ2k+1 F̃(tk)+ F̃ ′(tk)(R − tk)

F̃ ′(tk)
= θ2k+1

(R − tk+1).

Specializing F to F( f, x0; ·), we recover the following result by calculating an
explicit expression for tk .



Clusters of Embedding Dimension One 21

Corollary 1.18 (α-Theorem) [53]. If B̄ := B̄(x0, (1 +
√

2/2)β) ⊆ U and α <
3 − 2

√
2, then f has exactly one simple zero ζ in B̄ and the sequence (xk)k∈N

recursively defined by xk+1 := N ( f ; xk) is well defined. In addition, xk belongs
to B̄ and for all k ≥ 0:

(a) ‖xk − xk+1‖ ≤ q2k−1β;
(b) ‖D f (x0)

−1 f (xk)‖ ≤ q2k−1β;
(c) ‖xk − ζ‖ ≤ q2k−1r−;

where q := (2r− − β)/(2r+ − β) < 1 if α �= 0 and q = 0 otherwise (in all cases
we use the convention q0 = 1).

Using (5), note that q rewrites in terms of α only,

q(α) := 4α

(1− α +√1− 6α + α2)2
. (13)

It follows that q and q/α are continuous on [0, 3− 2
√

2).

Proof. The case α = 0 is straightforward with the convention. We now assume
α �= 0. It is classical to get an explicit formula of tk by means of introducing sk :=
(tk − r−)/(tk − r+). Then, writing F̃( f, x0; t) = 2γ [(t − r−)(t − r+)/(1− γ t)],
we deduce

F̃ ′( f, x0; t)
F̃( f, x0; t)

= 1

t − r−
+ 1

t − r+
+ γ

1− γ t

and

sk+1 =
tk − r− − F̃( f, x0; tk)

F̃ ′( f, x0; tk)
tk − r+ − F̃( f, x0; tk)

F̃ ′( f, x0; tk)

=
(tk − r−)

F̃ ′( f, x0; tk)
F̃( f, x0; tk)

− 1

(tk − r+)
F̃ ′( f, x0; tk)
F̃( f, x0; tk)

− 1

= s2
k

1+ γ tk − r+

1− γ tk

1+ γ tk − r−

1− γ tk

= s2
k qs,

where qs := (1− γ r+)/(1− γ r−). From s0 = r−/r+ and the definitions of r−

and r+, it is easy to see that α < 3 − 2
√

2 is equivalent to qss0 < 1. Then
one can check q = qss0 and an easy induction gives sk = q2k−1s0. It follows
that sk converges quadratically to 0 and tk converges quadratically to r−, since
tk = r−(1− sk/s0)/(1− sk). In order to prove part (a) we write

tk+1 − tk = r+ − r−

1− sk

sk − sk+1

1− sk+1
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and then deduce

tk+1 − tk
t1 − t0

= sk − sk+1

s0 − s1

1− s0

1− sk

1− s1

1− sk+1

= sk

s0

1− qssk

1− qss0

1− s0

1− sk

1− qss2
0

1− qss2
k

≤ sk

s0
,

the latter inequality follows from qs ≤ 1. Parts (a) and (b) follow from the previous
theorem. Lastly, we deduce from part (c) of the previous theorem:

‖xk − ζ‖ ≤ r− − tk = r−
sk

s0

1− s0

1− sk
≤ r−

sk

s0
.

1.6. Local Compositional Inverse

The first main ingredient of our location and approximation algorithms is the
following quantitative version of the local compositional inverse function theorem.

Theorem 1.19. Let U ⊆ Cn be an open subset, let f : U → C
n be an analytic

map, and let ζ ∈ U be such that D f (ζ ) is invertible. Let σ ≥ ‖D f (ζ )−1‖,
γ ≥ γ ( f ; ζ ), Bf := B(ζ, (1−√2/2)/γ ) and assume Bf ⊆ U . Then there exists
a unique map g with the following properties:

(a) g is defined and analytic in

Bg := B

(
f (ζ ),

1

(3+ 2
√

2)σγ

)
;

(b) g(Bg) ⊆ Bf ;
(c) f ◦ g(b) = b for all b ∈ Bg;
(d) for all b ∈ Bg there exists only one a ∈ Bf such that f (a) = b. In addition,

we have a = g(b) and ‖a − ζ‖ ≤ (1+√2/2)β( f − b; ζ );
(e) [g − ζ ] f (ζ ) ≤ σ t/(1− (3+ 2

√
2)σγ t).

Proof. Let b ∈ Bg , fb(x) = f (x)−b defined on Bf . Then γ ( fb; ζ ) = γ ( f ; ζ ) ≤
γ and

α( fb; ζ ) ≤ γ σ‖ f (ζ )− b‖ < 3− 2
√

2.

Hence Corollary 1.13 applies: fb(x) admits one simple zero a in Bf , we define
g(b) := a. By construction, g is defined and analytic on Bg , hence parts (b), (c),
and (d) hold. Lastly, part (e) follows from Corollary .16(b) of Appendix A applied
with λ = 1/‖D f (a)−1‖, ρ = γ ( f ; a), and ϑ = 3+ 2

√
2.

Remark that, according to the notation of this proof, Corollary 1.18 implies that
Newton’s operator on fb converges quadratically from ζ to a. Parts (a) to (d) of
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this theorem and their proof are taken from to [4, Chap. 8, Theorem 7]. Part (e) is
also a direct consequence of line−3 of the proof of [8, Cor. 3.4]. The above proof
of part (e) follows from stronger results on the behavior of majorant series under
local compositional inversion, that are given in Appendix A, and that generalize
those of Dedieu et al. given in [8, Sec. 3].

2. Reduction to One Variable

This section contains the last ingredients that are used in the next sections to reduce
the location and approximation problem from several variables to one variable, as
explained in the Introduction. We start by recalling the main result we shall use
on location of clusters of analytic functions from [12, Sec. 1]. Then, as required
by the univariate approximation algorithm of [12, Sec. 4], we provide a function
Bm,l that computes approximations of βm,l . Next we prove formula (2) from the
Introduction, that relates Dl

yh to g[l] and, lastly, we provide bounds on translation
with respect to z of point estimates of maps h(z, ·).

2.1. Clusters of Zeros of Univariate Functions

For the sake of completeness we recall the following result.

Theorem 2.1 [12, Cor. 1.8]. Let f denote an analytic function defined on a con-
nected open subset U ⊆ C, let m ≥ 1 be an integer, let l ∈ {0, . . . ,m − 1}, and
let z ∈ U be such that f (m)(z) �= 0,

m − l

m

m + 1

m + 1− l
αm,l( f ; z) ≤ 1

9

and B̄(z, 3[(m − l)/m]βm,l( f ; z)) ⊆ U . Then f (l) has m − l zeros, counting
multiplicities, in B̄(z, 3[(m − l)/m]βm,l( f ; z)) and B̄(z, (m + 1− l)/
3(m + 1)γm( f ; z))) ∩U .

Let us recall from [12, Sec. 2] that if αm,l( f ; z) is sufficiently small and if z is in
the convex hull of the cluster of zeros of f (l) located by the previous proposition,
then the diameter of this cluster is about βm,l( f ; z). Roughly speaking, this means
that one can confound the diameter of this cluster and βm,l( f ; z) for any point in
the convex hull of the cluster. This is why we focus on such quantities βm,l( f ; z)
to approximate clusters in Section 4.

From [12, Sec. 4.1], we recall bounds on translation of αm,l , βm,l , and γm

estimates that will be particularly useful in practice in our last section.

Proposition 2.2 [12, Prop. 4.3]. Assume that U is connected, let ζ ∈ U , let
m ≥ 1 be an integer such that f (m)(ζ ) �= 0, and let l ∈ {0, . . . ,m − 1}. Let
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γm := γm( f ; ζ ) and βm,l := βm,l( f ; ζ ), for short. Let z ∈ U , let r := |z − ζ | be
such that u := γm( f ; ζ )r < 1− ( 1

2 )
1/(m+1), then f (m)(z) �= 0 and

(a) αm,l( f ; z) ≤ 1

ψm(u)2
(αm,l(1− u)(l+1)/(m−l) + (2m − 1)u);

(b) βm,l( f ; z) ≤ 1− u

ψm(u)
(βm,l(1− u)(l+1)/(m−l) + (2m − 1)r);

(c) γm( f, z) ≤ γm

ψm(u)(1− u)
;

(d)

∣∣∣∣ f (m)(ζ )

f (m)(z)

∣∣∣∣ ≤ (1− u)m+1

ψm(u)
;

(e)

∣∣∣∣ f (m)(z)

f (m)(ζ )

∣∣∣∣ ≤ 1

(1− u)m+1
.

2.2. Approximation of βm,l

Let U be a connected open subset of C, in this subsection f denotes an analytic
function defined on U . Let x0 and x1 be two points in U , let m ≥ 1 be an integer
such that f m(x0) �= 0, and let l ∈ {0, . . . ,m−1}. We show that βm,l( f ; x1) can be
approximated from the sole knowledge of a truncated Taylor expansion of f at x0

and upper bounds on γm( f ; ·) at x0 and x1. We introduce the following functions,
that will be used in Section 4:

Bm,l( f, x0; x1) := βm,l(p; x1), vm,l := min

(
1− ( 1

2 )
1/(m+1),

1

2m − l

)
,

τm,l,0(v) := (2m − l)2(1− v)
ψm(v)

, τm,l,1(v) := 1+ (2m − l)v

ψm(v)
,

where p denotes the unique polynomial of degree at most 2m − l − 1 such that
f (x) − p(x) ∈ Ox0((x − x0)

2m−l). These objects satisfy the requirements stated
in [12, Sec. 4.2], namely,

Proposition 2.3. Let r := |x0 − x1|, γ̄m ≥ max(γm( f ; x0), γm( f ; x1)), v =
γ̄mr , if v < vm,l , then

Bm,l( f, x0; x1) ≤ τm,l,1(v)βm,l( f ; x1)+ τm,l,0(v)γ̄mr2,

βm,l( f ; x1) ≤ τm,l,1(v)Bm,l( f, x0; x1)+ τm,l,0(v)γ̄mr2.

Proof. It suffices to set i = 2m − l in the next lemma.

Lemma 2.4. Let i ≥ m + 1 be an integer and let p(y) denote the unique poly-
nomial of degree at most i − 1 such that f (x) − p(x) ∈ Ox0((x − x0)

i ). Let
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r := |x1 − x0|, v := γm( f ; x0)r , and assume v < 1− ( 1
2 )

1/(m+1)and iv < 1, then

|βm,l( f ; x1)− βm,l(p; x1)|

≤ (iv)
(i−m)/(m−l)

ψm(v)
(min(βm,l( f ; x1), βm,l(p; x1))+ (1− v)ir).

Proof. Let γm := γm( f ; x0) and let σm := m!/| f (m)(x0)| = m!/|p(m)(x0)|. We
introduce the majorant series

R := γ i−m
m ti

1− γmt
,

so that σm [ f − p]x0
≤ R. Let l ≤ k ≤ m. By [12, Lemma 4.1], one has

R(k)

k!
≤
γ i−m

m

(
i
k

)
t i−k

(1− γmt)k+1
≤ (iγmt)i−m(i t)m−k

(1− γmt)k+1
.

Observe that γm(p; x0) ≤ γm and therefore both f (m)(x1) and p(m)(x1) do not
vanish, according to Proposition 2.2, and∣∣∣∣ m!

σm p(m)(x1)

∣∣∣∣ ≤ (1− v)m+1

ψm(v)
,

∣∣∣∣ m!

σm f (m)(x1)

∣∣∣∣ ≤ (1− v)m+1

ψm(v)
.

Then we start with∣∣∣∣m! f (k)(x1)

k! f (m)(x1)
− m!p(k)(x1)

k!p(m)(x1)

∣∣∣∣ ≤
∣∣∣∣m! f (k)(x1)

k!p(m)(x1)
− m!p(k)(x1)

k!p(m)(x1)

∣∣∣∣
+
∣∣∣∣m! f (k)(x1)

k!p(m)(x1)
− m! f (k)(x1)

k! f (m)(x1)

∣∣∣∣ . (14)

Using majorant series evaluation via Proposition 1.4, we bound the first term of
the right-hand side of the latter inequality,∣∣∣∣m! f (k)(x1)

k!p(m)(x1)
− m!p(k)(x1)

k!p(m)(x1)

∣∣∣∣ ≤
∣∣∣∣ m!

p(m)(x1)

∣∣∣∣
∣∣∣∣ f (k)(x1)

k!
− p(k)(x1)

k!

∣∣∣∣
≤
∣∣∣∣ m!

σm p(m)(x1)

∣∣∣∣
∣∣∣∣ R(k)(r)

k!

∣∣∣∣
≤ (1− v)m+1

ψm(v)

(iv)i−m(ir)m−k

(1− v)k+1

≤ (1− v)m−k

ψm(v)
(iv)i−m(ir)m−k .
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As for the second term we get∣∣∣∣m! f (k)(x1)

k!p(m)(x1)
− m! f (k)(x1)

k! f (m)(x1)

∣∣∣∣ ≤
∣∣∣∣m! f (k)(x1)

k! f (m)(x1)

∣∣∣∣
∣∣∣∣ m!

p(m)(x1)

∣∣∣∣
∣∣∣∣ f (m)(x1)

m!
− p(m)(x1)

m!

∣∣∣∣
≤ βm,l( f ; x1)

m−k

∣∣∣∣ m!

σm p(m)(x1)

∣∣∣∣
∣∣∣∣ R(m)(r)

m!

∣∣∣∣
≤ βm,l( f ; x1)

m−k (1− v)m+1

ψm(v)

(iv)i−m

(1− v)m+1

≤ βm,l( f ; x1)
m−k (iv)

i−m

ψm(v)
.

Then using the assumption iv < 1, we conclude

|βm,l( f ; x1)− βm,l(p; x1)| ≤ (iv)(i−m)/(m−l)

ψm(v)
(βm,l( f ; x1)+ (1− v)ir),

which is the first half of the claimed inequality. The second half is obtained in a
similar way, starting from (14) and exchanging the roles of f and p.

2.3. Deflated Maps

For any integer l ≥ 0, in this text, we study the lth deflated map (f,g[l]) defined
in (1) from f = (f,g), according to the following recursive formal definition:

g[0] = g, g[l+1] = det(D(f,g[l]))

det(Dxf)
for l ≥ 0,

where det denotes the determinant map, the implicit basis being considered is
(x, y). For any (x0, y0) such that Dxf(x0, y0) is invertible, the relation with
h( f, x0, y0; z, y) is as follows.

Lemma 2.5. Let l ≥ 0, let (x0, y0) ∈ U be such that Dxf(x0, y0) is invertible,
and let z0 := Dxf(x0, y0)

−1f(x0, y0). The following relation holds in a neighbor-
hood of (z0, y0):

Dl
yh( f, x0, y0; z, y) = g[l] ◦�(f, x0, y0; z, y).

Proof. In short, we let

h(z, y) := h( f, x0, y0; z, y), �(z, y) := �(f, x0, y0; z, y).

Let X denote the first n − 1 coordinates of Dy�(z, y) and Y the last one. By
construction, we have Y = 1 and Dxf(x0, y0)

−1f◦�(z, y) = z. In a neighborhood
of (z0, y0), differentiating this equality with respect to y yields

Dxf(�(z, y))X + Dyf(�(z, y)) = 0.
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On the other hand, we have Dyh(z, y) = Dg(�(z, y))Dy�(z, y), hence,

Dyh(z, y) = Dxg(�(z, y))X + Dyg(�(z, y))

= −Dxg(�(z, y))Dxf(�(z, y))−1 Dyf(�(z, y))+ Dyg(�(z, y)).

For l = 1, the conclusion is a consequence of the classical Schur complement
formula, that comes from mapping a determinant on each factor of(

Id 0
Dxg(�(z, y)) −1

)(
Dxf(�(z, y))−1 0

0 1

)(
Dxf(�(z, y)) Dyf(�(z, y))
Dxg(�(z, y)) Dyg(�(z, y))

)

=
(

Id Dxf(�(z, y))−1 Dyf(�(z, y))
0 −Dyh(z, y)

)
.

An easy induction on l concludes the proof.

From a practical point of view, and by means of classical computations with
power series, starting from (x0, y0), one can obtain truncated Taylor series expan-
sions of � at (z0, y0) in order to deduce such expansions for h via this lemma.

2.4. z-Translation of Point Estimates

Here we focus on quantifying the variations of βm,l(h(z, ·); y) and γm(h(z, ·); y)
when z varies, for fixed y, where h denotes an analytic map from an open subset
U of Cn−1 × C and with values in C.

Proposition 2.6. Let h(z, y) be an analytic map defined on a connected open
neighborhood U of (z0, y0) to C. Let λ ≥ 0 and ρ ≥ 0 be two real numbers
satisfying [h − h(z0, y0)](z0,y0)

≤ λt/(1− ρt). Let m ≥ 1 and l ∈ {0, . . . ,m − 1}
be integers such that |Dm

y h(z0, y0)| �= 0, and let σm ≥ m!/|Dm
y h(z0, y0)|. Let z1

be such that (z1, y0) ∈ U and

µ := ρ

1− ρ‖z1 − z0‖ , e :=
(
(m + 1)σm

λ‖z1 − z0‖
1− ρ‖z1 − z0‖

)1/m

.

If ρ‖z1 − z0‖ < 1 and µe < 1, then |Dm
y h(z1, y0)| �= 0 and

(a) m!/|Dm
y h(z1, y0)| ≤

m!/|Dm
y h(z0, y0)|

1− (µe)m
and

m!/|Dm
y h(z0, y0)| ≤ (1+ (µe)m)m!/|Dm

y h(z1, y0)|;

(b) βm,l(h(z1, ·); y0) ≤ βm,l(h(z0, ·); y0)+ [m/(m + 1)]µl/(m−l)em/(m−l)

1− (µe)m
and

βm,l(h(z0, ·); y0) ≤ (1+(µe)m)βm,l(h(z1, ·); y0)+ m

m + 1
µl/(m−l)em/(m−l);
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(c) γm(h(z1, ·); y0) ≤ γm(h(z0, ·); y0)+ [(m + 2)/(m + 1)]µ

1− (µe)m
and

γm(h(z0, ·); y0) ≤ (1+ (µe)m)γm(h(z1, ·); y0)+ m + 2

m + 1
µ.

Proof. Let r := ‖z1 − z0‖. If ρ = 0, then m = 1 and the proposition holds triv-
ially. Now we assume ρ > 0. Inequalities ‖D j

z Dk
yh(z0, y0)‖ ≤ ‖D j+kh(z0, y0)‖

for all j ≥ 0 and k ≥ 0, rewrite into [Dk
yh(·, y0)]z0 ≤ [Dkh](z0,y0). Differentiating

majorant series, thanks to Proposition 1.3, we obtain, for any k ≥ 1,[
Dk

yh(·, y0)

k!
− Dk

yh(z0, y0)

k!

]
z0

≤
[

Dkh

k!
− Dkh(z0, y0)

k!

]
(z0,y0)

≤ λρk−1

(1− ρt)k+1
− λρk−1.

Evaluating at t = r , using Proposition 1.4, we deduce∣∣∣∣∣ |D
k
yh(z1, y0)|

k!
− |D

k
yh(z0, y0)|

k!

∣∣∣∣∣ ≤ λρk−1

(1− ρr)k+1
(1− (1− ρr)k+1)

≤ (k + 1)λρkr

(1− ρr)k+1
= (k + 1)µk λr

1− ρr
,

since 1 − (1 − ρr)k+1 is an increasing concave function of r . Observe that the
latter inequality also holds for k = 0. Rewriting the previous expressions in terms
of e and µ, we find∣∣∣∣∣m!|Dk

yh(z1, y0)|
k!|Dm

y h(z0, y0)| −
m!|Dk

yh(z0, y0)|
k!|Dm

y h(z0, y0)|

∣∣∣∣∣ ≤ k + 1

m + 1
µk−m(µe)m . (15)

Letting k := m in this inequality we obtain

1− (µe)m ≤ |Dm
y h(z1, y0)|/|Dm

y h(z0, y0)| ≤ 1+ (µe)m, (16)

which yields part (a). Combining (15) and (16), we deduce, for any k ≥ 0,

m!|Dk
yh(z1, y0)|

k!|Dm
y h(z1, y0)| ≤

m!|Dk
yh(z0, y0)|

k!|Dm
y h(z0, y0)| +

k + 1

m + 1
µk−m(µe)m

1− (µe)m
(17)

and

m!|Dk
yh(z0, y0)|

k!|Dm
y h(z0, y0)| ≤ (1+ (µe)m)

m!|Dk
yh(z1, y0)|

k!|Dm
y h(z1, y0)| +

k + 1

m + 1
µk−m(µe)m .
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In short, we let βm,l := βm,l(h(z0, ·); y0) and γm := γm(h(z0, ·); y0). For part (b),
let us consider l ≤ k ≤ m − 1, then (16) and (17), respectively, lead to

βm,l(h(z1, ·); y0) ≤
βm,l + µ−1 supl≤k≤m−1 bm,k(µe)m/(m−k)

1− (µe)m

and

βm,l ≤ (1+ (µe)m)βm,l(h(z1, ·); y0)+ µ−1 sup
l≤k≤m−1

bm,k(µe)m/(m−k),

where bm,k := ((k + 1)/(m + 1))1/(m−k). Part (b) follows from

sup
l≤k≤m−1

(µe)m/(m−k) = (µe)m/(m−l)

and

sup
l≤k≤m−1

bm,k = m

m + 1
.

This equality can be seen as a consequence of the concavity of the log function

log(bm,k) = log(k + 1)− log(m + 1)

(m + 1)− (k + 1)

≤ log(m)− log(m + 1)

(m + 1)− m
= log(bm,m−1),

which is an equality for k = m − 1. As for part (c), calculations are very similar.
Letting k ≥ m+1, and usingµe < 1, inequalities (16) and (17), respectively, lead
to

γm(h(z1, ·); y0) ≤
γm + µ supk≥m+1 cm,k

1− (µe)m

and

γm ≤ (1+ (µe)m)γm(h(z1, ·); y0)+ µ sup
k≥m+1

cm,k,

where cm,k := ((k + 1)/(m + 1))1/(k−m). Part (c) follows from

sup
k≥m+1

cm,k = m + 2

m + 1
.

Again, this equality can be seen as a consequence of the concavity of the log
function

log(cm,k) = log(k + 1)− log(m + 1)

(k + 1)− (m + 1)

≤ log(m + 2)− log(m + 1)

(m + 2)− (m + 1)
= log(cm,m+1).
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3. Cluster Location

In this section we carry on with the notation of the Introduction: f: Uf → C
n−1

and g: Ug → C are analytic maps defined on maximal analyticity domains. We
present a method for locating clusters of zeros of the lth deflated map (f,g[l]).

In order to perform this location around a given point (x0, y0), we focus on
locating zeros of Dl

yh(f,g, x0, y0; 0, ·) around y0, which reduces to a univariate
situation. Unfortunately, it is not possible to compute point estimates of h at (0, y0)

in general. We have to content ourselves with estimates at (z′0, y0), where z′0 :=
Dxf(x0, y0)

−1f(x ′0, y0) is small enough for x ′0 is obtained from x0 by means of
Newton’s iteration. Our algorithm together with its main properties are presented
in the following theorem.

Theorem 3.1. Let f: Uf → C
n−1 and g: Ug → C be maximal analytic maps

with Uf∩Ug �= ∅. Let (x0, y0) ∈ Uf∩Ug be such that Dxf(x0, y0) is invertible.
Let 
(x, y) := 
(f, x0, y0; x, y), h(z, y) := h(f,g, x0, y0; z, y). Let m ≥ 1, l ∈
{0, . . . ,m−1}, let κ be the first integer such that 2κ ≥ m−l, x ′0 := N κ(f(·, y0); x0)

and let z′0 := Dxf(x0, y0)
−1f(x ′0, y0).

Let λg, ρg, βx , γx , σx , βm,l , γm , σm be given nonnegative real numbers. Let
the auxiliary quantities be as defined in Table 1, and let us assume that all the
conditions in Table 2 hold.

Then, with r−x , r+x , and r−y as defined in Table 2, (f,g[l]) has m − l zeros,
counting multiplicities, in

B
 ∩ Bg ∩ (B̄(x0, r
−
x )× B̄(y0, r

−
y ))

but also in

B
 ∩ Bg ∩ (Cn−1 × B̄(y0, r
+
y )),

Table 1. Auxiliary quantities for Theorem 3.1.

λ� := σx ; ρ� := (3+ 2
√

2)σxγx ;

λ := λgλ�; ρ := ρ� + λ�ρg;

λ̄ := λ

(1− ρ(βx + ‖z′0‖))2
; ρ̄ := ρ

1− ρ(βx + ‖z′0‖)
;

µ̄ := ρ̄

1− ρ̄‖z′0‖
; ē :=

(
(m + 1)σm

λ̄‖z′0‖
1− ρ̄‖z′0‖

)1/m

;

β̄m,l := βm,l + [m/(m + 1)]µ̄l/(m−l)ēm/(m−l)

1− (µ̄ē)m
; γ̄m := γm + [(m + 2)/(m + 1)]µ̄

1− (µ̄ē)m
;

r−y := 3
m − l

m
β̄m,l ; r+y := m + 1− l

3(m + 1)γ̄m
;

r−x := λ�(βx + r−y )

1− ρ�(βx + r−y )
.
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Table 2. Assumptions for Theorem 3.1.

(L1) [g− g(x0, y0)](x0,y0)
≤ λgt

1− ρgt
;

(L2) σx ≥ ‖D
(x0, y0)
−1‖;

(L3) βx ≥ β(
 − (0, y0); x0, y0); γx ≥ γ (
; x0, y0);

(L4) ρ(βx + ‖z′0‖) < 1;

(L5) |Dm
y h(z′0, y0)| �= 0; σm ≥ m!/|Dm

y h(z′0, y0)|;
(L6) βm,l ≥ βm,l(h(z′0, ·); y0); γm ≥ γm(h(z′0, ·); y0);

(L7) ρ̄‖z′0‖ < 1; µ̄ē < 1;

(L8)
m − l

m

m + 1

m + 1− l
β̄m,l γ̄m ≤ 1

9 .

where

B
 := B

(
(x0, y0),

1−√2/2

γx

)
, Bg := B

(
(x0, y0),

1

ρg

)
.

Before entering the proof, let us explain the main idea and feature of the method.
First observe that if (x0, y0) = ζ is a multiple zero of multiplicity m, then the
theorem applies. By continuity, it follows that the process actually locates clusters
of embedding dimension 1. Informally speaking, by construction, we shall see
below in (20) that z′0 belongs to O(βm−l

x ), hence ēm/(m−l) ∈ O(βx ). Therefore we
have β̄m,l ∈ O(βm,l + βx ), which is the motivation for the definition of κ above.

Proof of Theorem 3.1. Recall that� denotes the local inverse of
 and, in short,
we let

z0 := Dxf(x0, y0)
−1f(x0, y0), �(z, y) := �(f, x0, y0; z, y),

ϕ(y) denotes the n − 1 first coordinates of �(0, y) and we introduce

B� := B

(
(z0, y0),

3− 2
√

2

σxγx

)
, Bh := B

(
(z0, y0),

1

ρ

)

and

Bϕ := B

(
y0,

1

ρ
− βx

)
.

From (L3) (resp., (L1)), 
 (resp., g) is well defined on B
 (resp., Bg). Us-
ing (L3) and (L2), Theorem 1.19 ensures that � is well defined on B�, �(B�) ⊆
B
 , and

[�− (x0, y0)](z0,y0)
≤ λ�t

1− ρ�t
. (18)

Composing this series majoration with that of (L1), Corollary 1.9 applied with
h = g◦� gives [h − h(z0, y0)](z0,y0)

≤ λt/(1−ρt) and�(Bh) ⊆ B
∩ Bg. From
their definitions, observe that Bh ⊆ B�. It follows that h is well defined on Bh .
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From the definition of z0, one has ‖z0‖ = β(
 − (0, y0); x0, y0) ≤ βx

(from (L3)), hence (L4) implies (0, y0) ∈ Bh . We deduce that ϕ(y) is well de-
fined on Bϕ and part (d) of Theorem 1.19 implies

{(x, y) ∈ B
 | y ∈ Bϕ, f(x, y) = 0} = {(ϕ(y), y) | y ∈ Bϕ},

which, combined to Lemma 2.5, leads to

{(x, y) ∈ B
 ∩ Bg | y ∈ Bϕ, f(x, y) = g[l](x, y) = 0}
= {(ϕ(y), y) | y ∈ Bϕ, Dl

yh(0, y) = 0}. (19)

From (L2) and the definition of 
, we have σx ≥ 1 and therefore

γx ≤ σxγx = (3− 2
√

2)ρ� ≤ (3− 2
√

2)ρ.

Successively using (L3) and (L4) we deduce

β(
 − (0, y0); x0, y0)γ (
; x0, y0) ≤ αx := βxγx ≤ (3− 2
√

2)ρβx < 3− 2
√

2,

hence Corollary 1.18 gives

‖z′0‖ < q(αx )
2κ−1βx ,

where the function q is defined in (13). Since q(αx ) < 1 and by the definition of
κ , we deduce

‖z′0‖ < q(αx )
m−l−1βx ≤ βx . (20)

Although we referred to this inequality just before the proof, as a motivation of
the definition of κ , we will not use it in the remainder of the proof.

Using the inequalities ‖z′0 − z0‖ ≤ βx + ‖z′0‖ and (L4), Corollary 1.6 on ma-
jorant series translation leads to

[h − h(z′0, y0)](z′0,y0) ≤
λ̄t

1− ρ̄t
. (21)

We are now ready to deduce point estimates of h(0, ·) from h(z′0, ·) at y0. Us-
ing (L5), (L6), and (L7), Proposition 2.6 yields Dm

y h(0, y0) �= 0 and

βm,l(h(0, ·); y0) ≤ β̄m,l , γm(h(0, ·); y0) ≤ γ̄m .

Using (L8), we now proceed to zero location, via Theorem 2.1, Dl
yh(0, y) admits

m − l zeros Zh in B̄(y0, r−y ) and in B̄(y0, r+y ). Remark that γ̄m ≥ µ̄ ≥ ρ̄ ≥
ρ/(1− βxρ), from which follows:

βx + r−y ≤ βx + r+y < βx + 1

γ̄m
≤ 1

ρ
. (22)
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We deduce Zh ⊆ B̄(y0, r−y ) ⊆ B̄(y0, r+y ) ⊆ Bϕ . From (19), we deduce, for any
ry ∈ {r−y , r+y },

{(x, y) ∈ B
 ∩ Bg | y ∈ B̄(y0, ry), f(x, y) = g[l](x, y) = 0}
= {(ϕ(y), y) | y ∈ B̄(y0, ry), Dl

yh(0, y) = 0}
= {(ϕ(y), y) | y ∈ Zh}.

For ry = r+y , this gives the second half of the conclusion. As for the first half,
from (22) and the evaluation of (18), via Proposition 1.4, for any ζy ∈ Zh , we have

‖�(0, ζy)−�(z0, y0)‖ ≤ r−x ,

which concludes the proof.

4. Cluster Approximation

In this section we present an approximation algorithm for clusters of embedding
dimension 1, with the same features as the one given in [12] for univariate functions:
either quadratic convergence holds or the current iterate lies at a distance of the
cluster which is about its diameter. More generally, our operator depends on two
parameters l ∈ {0, . . . ,m − 1} and l ′ ≤ l, in order to approximate clusters of
(f,g[l ′]) by using the univariate Schröder operator on Dl

yh( f, x0, y0; z, ·).
We carry on with the notation of the Introduction. We recall that f: Uf→ C

n−1

and g: Ug → C are analytic maps defined on maximal analyticity domains.
We assume that U := Uf ∩ Ug is not empty, and, in short, we let h(z, y) :=
h(f,g, x0, y0; x, y),
(x, y) := 
(f, x0, y0; x, y),�(z, y) := �(f, x0, y0; z, y),
and (ϕ(y), y) := �(0, y), where (x0, y0) ∈ U denotes the initial point of the iter-
ation. The functions Bm,l ′ , τm,l,0, and τm,l,1 are the ones introduced in Section 2.2.

We use the following quantities, that come from the univariate situation [12],

θm,l,δ := δ
1

m
+ m + 1

(m − l + 1)(m − l)
,

um,l,δ := max

(
u ≥ 0 | u < 1− ( 1

2 )
1/(l+2) and

θm,l,δu

ψl+1(u)
≤ 1

)
,

Cm,l,l ′,δ(u) := 1− u

ψm(u)

(1− u)(l
′+1)/(m−l ′) + θm,l,δ(2m − 1)

ψl+1(u)(
1− θm,l,δu

ψl+1(u)

)2 .
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4.1. Algorithm

The approximation algorithm depends on the initial point (x0, y0) and on three
positive real numbers ry , Gy , and Gz that will be assigned later.

An iteration of the algorithm computes (xk+1, yk+1) from (xk, yk). A rough
description is as follows: first, the Newton iteration on f(·, yk) is applied a certain
number of times with starting point xk to compute a new value x ′k ; then we compute
z′k as the n − 1 first coordinates of 
(x ′k, yk) and the Schröder operator is applied
on Dl

yh(zk, ·) with starting point yk , this gives a value y′k ; then a discussion takes
place to determine which of yk and y′k should be taken for yk+1; finally, yk+1 is
used in one Newton iteration on f(·, yk+1) with starting point xk to compute xk+1.

More formally, we introduce the operator Nm,l,l ′(x, y), defined by the following
algorithm, in which κ represents the smallest integer such that 2κ ≥ 2(m− l ′). We
also introduce the flagF y

m,l,l ′(xk, yk)with values in the set of symbols {∞,+,−, 1},
that keeps track of the branchings.

(xk+1, yk+1) := Nm,l,l ′(xk, yk) is defined by

(1) x ′k := N κ(f(·, yk); xk);
(2) z′k := Dxf(x0, y0)

−1f(x ′k, yk);
(3) if Dl+1

y h(z′k, yk) = 0
(4) then
(5) yk+1 := yk ; F y

m,l,l ′(xk, yk) := ∞;
(6) else
(7) y′k := Nm−l(Dl

yh(z′k, ·); yk);
(8) if y′k /∈ B̄(yk, 2ry)

(9) then
(10) yk+1 := yk ; F y

m,l,l ′(xk, yk) := ∞;
(11) else
(12) if Bm,l ′(h(z′k, ·), yk; y′k) > Gy |yk − y′k |2
(13) then
(14) if Bm,l ′(h(z′k, ·), yk; y′k) < βm,l ′(h(z′k, ·); yk)

(15) then
(16) yk+1 := y′k ; F y

m,l,l ′(xk, yk) := +;
(17) else
(18) yk+1 := yk ; F y

m,l,l ′(xk, yk) := −;
(19) else
(20) yk+1 := y′k ; F y

m,l,l ′(xk, yk) := 1;
(21) xk+1 := N (f(·, yk+1); xk);

In a similar way, we introduce F z
m,l,l ′(xk, yk) that takes the value 1 if

Bm,l ′(h(z
′
k, ·), yk; yk+1) ≤ Gz‖z′k‖1/(m−l ′)

and 0 otherwise. These flags are to be used for stopping the iteration.
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Informally speaking, x ′k is obtained from Newton’s iteration in order to get
‖z′k‖1/(m−l ′) of the second order, that is, in O(‖(xk, yk)− ζ‖2). Then we apply
Schröder’s operator to Dl

yh(z′k, ·) at yk . This is where we greatly use [12, Section 4]
and different cases happen. Step (10) corresponds to y′k getting far from yk , which
implies that yk is close to the cluster of Dl

yh(z′k, ·). On the other hand, step (20)
corresponds to the fact that y′k is closer to this cluster at the second order. In the
meanwhile, the test of step (14) determines the one among yk and y′k which is
closer to this cluster. At the end, the correction between yk+1 and yk is propagated
to the x coordinates at step (21).

The convergence analysis of the sequence (xk, yk)k∈N is presented in the fol-
lowing theorem. The way of turning it into a practical algorithm is the goal of the
last subsection.

Theorem 4.1. Let ζ := (ζx , ζy) ∈ U be such thatf(ζ ) = 0 and Dxf(ζ ) is invert-
ible. Let (x0, y0) ∈ B̄(ζ, r) for a given r ≥ 0. Let m be such that Dm

y h(0, ζy) �= 0,
l ∈ {0, . . . ,m − 1}, and l ′ ≤ l. Let ry , γx , σx , λg, ρg, γ̄x , δ̄x , β̄m,l ′ , γ̄m , σ̄m be
given real numbers. Let the auxiliary quantities be as defined in Table 3, and let
us assume that all the conditions in Table 4 hold.

Then there exists a cluster Z0,ζy of m − l ′ zeros of Dl ′
y h(0, ·) in B̄(ζy, ry),

counting multiplicities. We further assume that ζy belongs to the convex hull of
Z0,ζy . With Gy and Gz as defined in Table 3, the operator Nm,l,l ′ is well defined,
so that we can consider the sequence (xk, yk)k≥0 formally defined by induction
according to

(xk+1, yk+1) := Nm,l,l ′(xk, yk),

and we can define K as the first integer such that

F y
m,l,l ′(xK , yK ) �= 1 and F z

m,l,l ′(xK , yK ) = 0,

or +∞ if no such integer exists.
Then, for all k ≤ K , (xk, yk) is well defined, and with Lx , Ty , and Tβ , as defined

in Table 3, the sequence (xk, yk)k≥0 converges to the cluster Z0,ζy as follows:

(a) For all k < K we have

‖(xk+1, yk+1)− ζ‖ ≤ Lx‖(xk, yk)− ζ‖2 ≤ r.

(b) If K is finite, then yK+1 is well defined and satisfies

|yK+1 − ζy | ≤ TyBm,l ′(h(z
′
K , ·), yK ; yK+1) (23)

and

Bm,l ′(h(z
′
K , ·), yK ; yK+1) ≤ Tββm,l ′(h(0, ·); ζy). (24)

Subsections 4.2 to 4.8 are devoted to the proof of this theorem. The notation is
the same as in the theorem, and, in short, we write βm,l ′ := βm,l ′(h(0, ·); ζy). We
proceed by induction on k: we assume that the sequence ((xj , yj ))0≤ j≤k is well
defined up to a certain index k ≤ K and that all its elements belong to B̄(ζ, r).
The proof of part (b) is addressed at the end, namely, in subsection 4.8.
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Table 3. Auxiliary quantities for Theorem 4.1.

δ := 1; λ� := σx ; ρ� := (3+ 2
√

2)σxγx ;
λ := λgλ�; ρ := ρ� + λ�ρg;

lϕ := λ�

1− ρ�r
; Lϕ := 1+ lϕ ; rx := 2Lϕr ; ux := γ̄xrx ; r̄ := 4ry ;

Lz := L2
ϕ

(
γ̄x

ψ(ux )

)2−1/(m−l ′)(
δ̄x

1− ux

)1/(m−l ′)

; rz := (Lzr
2)m−l ′ ;

λ̄ := λ

(1− ρr̄)2
; ρ̄ := ρ

1− ρr̄
;

µ̄ := ρ̄

1− ρ̄rz
; Lē :=

(
(m + 1)

( m

m + 1

)m−l ′

µ̄l ′ σ̄m
λ̄

1− ρ̄rz

)1/m

;

ē :=
(
(m + 1)σ̄m

λ̄rz

1− ρ̄rz

)1/m

; u := γ̄mry ; v := 2u; ū := 3u;

C := τm,l ′,1(v)Cm,l,l ′,δ(u)+ τm,l ′,0(v); Gy := Cγ̄m ;
C̄ := τm,l ′,1(v)C + τm,l ′,0(v);

κ := τm,l ′,1(v)

1− τm,l ′,0/(v)C
; κ̄ := τm,l ′,1(v)+ τm,l ′,0(v)

C ;

χ := 1− ū

ψm(ū)

(
(1− ū)(l

′+1)/(m−l ′) + 2m − 1

um,l,δ

)
; � := κχ ;

T1 := 1

1− (µ̄ē)m
1− u

ψm(u)

(
(1− u)(l

′+1)/(m−l ′) + 3[(m − l ′)/m](2m − 1)

1− (µ̄ē)m

)
;

T2 := Lm/(m−l ′)
ē

1− (µ̄ē)m

(
1+ 1

1− (µ̄ē)m
3[(m − l ′)/m](2m − 1)(1− u)

ψm(u)

)
;

Tβ := 2�T1; Gz := 2�T2;

Ty := 3
m − l ′

m
((1+ (µ̄ē)m)κ̄ + Lm/(m−l ′)

ē /Gz);

L y,1 := 3
m − l ′

m

[
(1+ (µ̄ē)m)C̄γ̄m

(
1+ 3

m − l ′

m
Lm/(m−l ′)

ē Lzr

)2

(
1− 3

m − l ′

m
(1+ (µ̄ē)m)C̄v

)−2

+ Lm/(m−l ′)
ē Lz

]
;

L y,2 := 3
m − l ′

m
((1+ (µ̄ē)m)κ̄Gz + Lm/(m−l ′)

ē )Lz ;

L y := max(L y,1, L y,2); Lx := 4γ̄x

ψ(ux )
L2
ϕ + LϕL y .

4.2. Definition Domains

We first provide definition domains for all the maps involved in the algorithm. We
introduce

B
 := B

(
ζ,

1−√2/2

γx

)
, Bg := B

(
ζ,

1

ρg

)
,

B� := B

(
(0, ζy),

1

ρ�

)
, Bh := B

(
(0, ζy),

1

ρ

)
.
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Table 4. Assumptions for Theorem 4.1.

(A1) γx ≥ γ (
; ζ ); σx ≥ ‖D
(ζ)−1‖;
(A2) [g− g(ζ )]ζ ≤

λgt

1− ρgt
;

(A3) ρϕr < 1;
(A4) γ̄x ≥ max(γ (
;ϕ(y), y) | y ∈ B̄(ζy, r));
(A5) δ̄x ≥ max(‖D
(ϕ(y), y)‖ | y ∈ B̄(ζy, r));

(A6) ux <
5−√17

4
;

(A7) ry ≥ r ;

(A8) ry ≥ 3
m − l ′

m
max(βm,l ′(h(z, ·); y) | z ∈ B̄(0, rz), y ∈ B̄(ζy, r));

(A9) ρ(rz + r̄) < 1;
(A10) +∞ > σ̄m ≥ max(m!/|Dm

y h(0, y)| | y ∈ B̄(ζy, r̄));
(A11) β̄m,l ′ ≥ max(βm,l ′(h(z, ·); y) | z ∈ B̄(0, rz), y ∈ B̄(ζy, r̄));
(A12) γ̄m ≥ max(γm(h(z, ·); y) | z ∈ B̄(0, rz), y ∈ B̄(ζy, r̄));
(A13) ρ̄rz < 1; µ̄ē < 1;

(A14)
m − l ′

m

m + 1

m + 1− l ′
β̄m,l ′ γ̄m ≤ 1

9 ;

(A15) ry
m + 1

m + 1− l ′
γ̄m ≤ 1

12 ;

(A16) u < um,l,δ; ū < 1− ( 1
2 )

1/(m+1); v < vm,l ′ ;

(A17) 3
m − l ′

m
(1+ (µ̄ē)m)C̄v < 1;

(A18) L yr < 1;
(A19) Lxr < 1.

Lemma 4.2. 
 (resp., �) is well defined on B
 (resp., B�). h is well defined as
the composition g ◦� on Bh .

Proof. Using (A1) and (A2) we have B
 ⊆ Uf, Bg ⊆ Ug and Theorem 1.19
about local inversion ensures that � is well defined on B�, �(B�) ⊆ B
 , and

[�− ζ ](0,ζy)
≤ λ�t

1− ρ�t
. (25)

Then, according to Corollary 1.9 on majorant series composition applied to h =
g ◦�, we get [

h − h(0, ζy)
]
(0,ζy)
≤ λt

1− ρt
(26)

and �(Bh) ⊆ Bg, which means that h = g ◦� is well defined on Bh .

4.3. Uniform Convergence to the Curve

According to our hypotheses, f(x, y) = 0 defines a smooth curve in a neigh-
borhood of ζ . We perform a uniform convergence analysis to this curve for the
operator used in step (1) of the algorithm. We start with two lemmas.
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Lemma 4.3. For all (a, b) ∈ B̄(ζx , r)× B̄(ζy, r) we have

‖(ϕ(b), b)− ζ‖ ≤ lϕ|b − ζy |,
‖a − ϕ(b)‖ ≤ Lϕ‖(a, b)− ζ‖. (27)

Proof. Using (A3), the evaluation of (25) by means of Proposition 1.4 yields

‖(ϕ(b), b)− ζ‖ = ‖�(0, b)−�(0, ζy)‖ ≤ lϕ|b − ζy |,

which implies

‖a − ϕ(b)‖ ≤ ‖a − ζx‖ + ‖ϕ(b)− ζx‖ ≤ Lϕ‖(a, b)− ζ‖.

Lemma 4.4. For any (a, b) ∈ B̄(ζx , r)× B̄(ζy, r), and any integers j ≥ 0 and
p ≤ 2 j , a′ := N j (f(·, b), a) is well defined and

‖a′ − ϕ(b)‖ ≤
(
γ̄x‖a − ϕ(b)‖

ψ(ux )

)p−1

‖a − ϕ(b)‖ ≤ rx .

Proof. By the previous lemma, ‖a − ϕ(b)‖ ≤ 2Lϕr = rx holds. Then, us-
ing (A4), we deduce γ (
;ϕ(b), b)‖a − ϕ(b)‖ ≤ ux , which, via (A6), implies
ux/ψ(ux ) < 1. Thus Theorem 1.16 gives

‖a′ − ϕ(b)‖ ≤
(
γ̄x‖a − ϕ(b)‖

ψ(ux )

)2 j−1

‖a − ϕ(b)‖ ≤ rx .

Using ux/ψ(ux ) < 1 yields the claimed bound.

We are now able to deduce that z′k ∈ B̄(0, rz), which will be used several times in
the remainder of the proof, without explicit reference.

Corollary 4.5. ‖z′k‖ ≤ Lm−l ′
z ‖(xk, yk)− ζ‖2(m−l ′) ≤ rz .

Proof. We apply the previous lemma to (a, b) := (xk, yk), j := κ , and p :=
2(m − l ′),

‖x ′k − ϕ(yk)‖ ≤
(
γ̄x‖xk − ϕ(yk)‖

ψ(ux )

)2(m−l ′)−1

‖xk − ϕ(yk)‖.

By means of (27) (instantiated at (a, b) := (xk, yk)), we deduce

‖x ′k − ϕ(yk)‖ ≤
(

γ̄x

ψ(ux )

)2(m−l ′)−1

L2(m−l ′)
ϕ ‖(xk, yk)− ζ‖2(m−l ′).
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Using (A4) and (A5), we deduce the following series majoration:

[
 − (0, yk)]�(0,yk )
≤ δ̄x t

1− γ̄x t
,

which evaluates at (x ′k, yk) since γ̄x‖x ′k − ϕ(yk)‖ ≤ ux < 1 (from (A6)), by means
of Proposition 1.4,

‖z′k‖ = ‖
(x ′k, yk)− (0, yk)‖

≤ δ̄x‖x ′k − ϕ(yk)‖
1− ux

≤ Lm−l ′
z ‖(xk, yk)− ζ‖2(m−l ′) ≤ rz .

4.4. Uniform z-Translation

From the previous result, ‖z′k‖1/(m−l ′) belongs toO(‖(xk, yk)− ζ‖2). We are now
ready to apply our bound of Section 2.4 on z-translation in a uniform way with
respect to y. We start with a uniform series majoration of h. First of all, it is
important to notice that (A9) implies

Bh ⊇ B̄(0, rz)× B̄(ζy, r̄).

Lemma 4.6. For all b ∈ B̄(ζy, r̄), we have [h − h(0, b)](0,b) ≤ λ̄t/(1− ρ̄t).

Proof. This directly follows from Corollary 1.6, using (A9) and (26).

Lemma 4.7. For all (c, b) ∈ B̄(0, rz)× B̄(ζy, r̄), we have Dm
y h(c, b) �= 0 and

βm,l ′(h(0, ·); b) ≤ (1+ (µ̄ē)m)βm,l ′(h(c, ·); b)+ Lm/(m−l ′)
ē ‖c‖1/(m−l ′),

βm,l ′(h(c, ·); b) ≤ βm,l ′(h(0, ·); b)+ Lm/(m−l ′)
ē ‖c‖1/(m−l ′)

1− (µ̄ē)m
.

Proof. Using (A10), (A13), and Lemma 4.6, Proposition 2.6 (with (z0, y0) :=
(0, b) and z1 := c) implies these bounds.

4.5. Uniform Cluster Location

Now we show quantitative results about clusters of zeros of Dl ′
y h(c, ·) when c

varies.

Lemma 4.8. For any (c, b) ∈ B̄(0, rz)× B̄(ζy, r̄), there exists a cluster Zc,b of
m − l ′ zeros of the analytic extension of Dl ′

y h(c, ·) in

B̄

(
b, 3

m − l ′

m
βm,l ′(h(c, ·); b)

)
and B̄

(
b,

m + 1− l ′

3(m + 1)γm(h(c, ·); b)
)
.
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In addition, if b ∈ B̄(ζy, r), then

B̄

(
b, 3

m − l ′

m
βm,l ′(h(c, ·); b)

)
⊆ B̄(b, ry).

Proof. The location of Zc,b directly follows from (A11), (A12), and (A14) and
Theorem 2.1. The latter ball inclusion rephrases (A8).

Lemma 4.9. For any (c, b) ∈ B̄(0, rz) × B̄(ζy, r) and any b′ ∈ B̄(b, 3ry), we
have Zc,b = Zc,b′ . In particular, for any b′′ in the convex hull of Zc,b, we have

|b′′ − b′| ≤ 3
m − l ′

m
βm,l ′(h(c, ·); b′).

Proof. From (A7), observe that b′ ∈ B̄(ζy, r̄), thus applying the previous lem-
ma at (c, b′) gives the existence of a cluster Zc,b′ contained in the
ball B̄(b′, 3[(m − l ′)/m]βm,l ′(h(c, ·); b′)) and also in B̄(b′, (m + 1− l ′)/
(3(m + 1)γm(h(c, ·); b′))). Then, for any b′′ ∈ Zc,b, one has

|b′′ − b′| ≤ |b′′ − b| + |b − b′|
≤ ry + |b − b′| (using the previous lemma)

≤ 4ry

≤ m + 1− l ′

3(m + 1)γ̄m
(using (A15))

≤ m + 1− l ′

3(m + 1)γm(h(c, ·); b′) (using (A12)).

We deduce Zc,b = Zc,b′ .

We now specialize these lemmas to our situation. For this purpose, we first
notice

Lemma 4.10. |yk+1 − ζy | ≤ 3ry ≤ r̄ .

Proof. By construction, we have |yk − yk+1|≤2ry . Since (A7) implies |yk − ζy |≤
r ≤ ry , we deduce |yk+1 − ζy | ≤ |yk − yk+1| + |yk − ζy | ≤ 3ry ≤ r̄ .

This statement will be invoked several times in the remainder of the proof without
explicit reference. Lemma 4.9 is only used to prove the next two corollaries. The
first statement of Theorem 4.1 about the location of the cluster Z0,ζy around ζy is
a consequence of Lemma 4.8. From now, we assume that ζy belongs to the convex
hull of this cluster.
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Corollary 4.11. There exist m − l ′ zeros of Dl ′
y h(0, ·) in B̄(ζy, ry) and

|yk+1 − ζy | ≤ 3
m − l ′

m
βm,l ′(h(0, ·); yk+1).

Proof. The inequality directly follows from Lemma 4.9, applied with (c, b) :=
(0, ζy), b′ := yk+1, and b′′ := ζy (thanks to Lemma 4.10).

The last corollary concerns the location of the cluster around (z′k, yk).

Corollary 4.12. There exist m − l ′ zeros of Dl ′
y h(z′k, ·) in B̄(yk, ry). We denote

by ζk a point lying in the convex hull of this cluster. Then one has

|ζk − ζy | ≤ 3
m − l ′

m
βm,l ′(h(z

′
k, ·); ζy) ≤ ry . (28)

Proof. The first part directly follows from Lemma 4.8 applied with (c, b) :=
(z′k, yk). From (A7), one has |yk − ζy | ≤ r ≤ ry , hence the first inequality of (28)
follows from applying Lemma 4.9 with (c, b) := (z′k, yk), b′ := ζy , and b′′ := ζk .
The second inequality follows directly from (A8).

4.6. Uniform Cluster Approximation

Let ζk be the one defined in Corollary 4.12. Here we show that the approximation
algorithm of [12, Sec. 4.4] applies to Dl

yh(z′k, ·).

Lemma 4.13. The following alternative holds about yk+1:

(a) If F y
m,l,l ′(xk, yk) �= 1, then

βm,l ′(h(z
′
k, ·); yk+1) ≤ κ̄Bm,l ′(h(z

′
k, ·), yk; yk+1), (29)

Bm,l ′(h(z
′
k, ·), yk; yk+1) ≤ �βm,l ′(h(z

′
k, ·); ζk). (30)

(b) If F y
m,l,l ′(xk, yk) = 1, then

βm,l ′(h(z
′
k, ·); yk+1) ≤ C̄γ̄m |yk − yk+1|2.

Proof. It suffices to check that the conditions of [12, Theorem 4.5] are satis-
fied with the analytic extension of h(z′k, ·) at ζk with ry . Namely, making use of
|ζk − ζy | ≤ ry (Corollary 4.12), we check:

• The functionBm,l ′ satisfies the required properties, thanks to Proposition 2.3;
• Dm

y h(z′k, ζk) �= 0 by Lemma 4.7;
• γ̄m ≥ γm(h(z′k, ·); ζk), thanks to (A12);
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• γ̄m ≥ max(γm(h(z′k, ·); y) | y ∈ B̄(ζk, 3ry)), thanks to (A12) again;
• u < um,l,δ , ū < 1− ( 1

2 )
1/(m+1), v < vm,l ′ , from (A16).

Part (b) is directly extracted from [12, Theorem 4.5, part (c)]. As for part (a),
we distinguish two cases.

First, if Dl+1
y h(z′k, yk) = 0 or Dl+1

y h(z′k, yk) �= 0 and y′k /∈ B̄(yk, 2ry) then
from [12, Theorem 4.5(a)] one has

βm,l ′(h(z
′
k, ·); yk) ≤ χβm,l ′(h(z

′
k, ·); ζk).

In the second case, y′k ∈ B̄(yk, 2ry) but Bm,l ′(h(z′k, ·), yk; y′k) > Gy |yk − y′k |2,
from [12, Theorem 4.5(b)] one has

min(βm,l ′(h(z
′
k, ·); yk), βm,l ′(h(z

′
k, ·); y′k)) ≤ χβm,l ′(h(z

′
k, ·); ζk) (31)

and

βm,l ′(h(z
′
k, ·); y′k) ≤ κ̄Bm,l ′(h(z

′
k, ·), yk; y′k),

Bm,l ′(h(z
′
k, ·), yk; y′k) ≤ κβm,l ′(h(z

′
k, ·); y′k).

Since κ̄ ≥ 1 and βm,l ′(h(z′k, ·); yk) = Bm,l ′(h(z′k, ·), yk; yk), we deduce (29).
From (31) and κ ≥ 1, we also obtain

min(βm,l ′(h(z
′
k, ·); yk),Bm,l ′(h(z

′
k, ·), yk; y′k)) ≤ κχβm,l ′(h(z

′
k, ·); ζk),

which yields (30) by definition of yk+1.

4.7. Proof of Part (a) of Theorem 4.1

We distinguish two cases.

Case 1. In this case, we assume F y
m,l,l ′(xk, yk) = 1. Combining part (b) of

Lemma 4.13 and Lemma 4.7 (applied with (c, b) := (z′k, yk+1)), we deduce

βm,l ′(h(0, ·); yk+1) ≤ (1+ (µ̄ē)m)C̄γ̄m |yk+1 − yk |2 + Lm/(m−l ′)
ē ‖z′k‖1/(m−l ′),

hence Corollaries 4.5 and 4.11 imply

|yk+1 − ζy | ≤ 3
m − l ′

m
((1+ (µ̄ē)m)C̄γ̄m |yk+1 − yk |2

+ Lm/(m−l ′)
ē Lz‖(xk, yk)− ζ‖2). (32)

Then, from |yk − yk+1| ≤ |yk − ζy | + |yk+1 − ζy |, we deduce

|yk − yk+1| ≤ |yk − ζy | + 3
m − l ′

m
((1+ (µ̄ē)m)C̄v|yk+1 − yk |

+ Lm/(m−l ′)
ē Lz‖(xk, yk)− ζ‖2).
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Using (A17) yields

|yk − yk+1| ≤
|yk − ζy | + 3

m − l ′

m
Lm/(m−l ′)

ē Lz‖(xk, yk)− ζ‖2

1− 3
m − l ′

m
(1+ (µ̄ē)m)C̄v

≤
1+ 3

m − l ′

m
Lm/(m−l ′)

ē Lzr

1− 3
m − l ′

m
(1+ (µ̄ē)m)C̄v

‖(xk, yk)− ζ‖. (33)

Combining (32) and (33) leads to

|yk+1 − ζy | ≤ L y,1‖(xk, yk)− ζ‖2. (34)

Case 2. Now we examine the case when

F y
m,l,l ′(xk, yk) �= 1 but F z

m,l,l ′(xk, yk) = 1.

Successively using Lemma 4.7 (with (c, b) := (z′k, yk+1)) and part (a) of
Lemma 4.13, we deduce

βm,l ′(h(0, ·); yk+1) ≤ ((1+ (µ̄ē)m)κ̄Gz + Lm/(m−l ′)
ē )‖z′k‖1/(m−l ′),

which leads to, by means of Corollaries 4.11 and 4.5,

|yk+1 − ζy | ≤ L y,2‖(xk, yk)− ζ‖2. (35)

This concludes this second case.

We are now ready to conclude the proof of part (a) of Theorem 4.1. According
to the definition of L y and (A18), bounds (34) and (35) imply

|yk+1 − ζy | ≤ L y‖(xk, yk)− ζ‖2 ≤ ‖(xk, yk)− ζ‖ ≤ r. (36)

From Lemma 4.4 (applied with (a, b) := (xk, yk+1)), we have

‖xk+1 − ϕ(yk+1)‖ ≤ γ̄x

ψ(ux )
‖xk − ϕ(yk+1)‖2.

Using Lemma 4.3, we also have

‖xk − ϕ(yk+1)‖ ≤ Lϕ‖(xk, yk+1)− ζ‖
≤ Lϕ(‖xk − ζx‖ + |yk+1 − ζy |)
≤ 2Lϕ‖(xk, yk)− ζ‖,
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from which follows

‖xk+1 − ϕ(yk+1)‖ ≤ 4γ̄x

ψ(ux )
L2
ϕ‖(xk, yk)− ζ‖2.

Lemma 4.3 then gives ‖ϕ(yk+1)− ζx‖ ≤ lϕ|yk+1 − ζy |, from which we deduce

‖xk+1 − ζx‖ ≤ ‖xk+1 − ϕ(yk+1)‖ + ‖ϕ(yk+1)− ζx‖

≤
(

4γ̄x

ψ(ux )
L2
ϕ + lϕL y

)
‖(xk, yk)− ζ‖2. (37)

Combining (36) and (37) gives us

‖(xk+1, yk+1)− ζ‖ ≤ ‖xk+1 − ζx‖ + |yk+1 − ζy | ≤ Lx‖(xk, yk)− ζ‖2,

and using (A19) concludes the proof of this part.

4.8. Proof of Part (b) of Theorem 4.1

We let k := K , from Corollary 4.11 and Lemma 4.7 (applied with (c, b) =
(z′k, yk+1))

|yk+1 − ζy | ≤ 3
m − l ′

m
((1+ (µ̄ē)m)βm,l ′(h(z

′
k, ·); yk+1)

+ Lm/(m−l ′)
ē ‖z′k‖1/(m−l ′)).

Then, using part (a) of Lemma 4.13 and the fact that F z
m,l,l ′(xK , yK ) = 0, we

deduce inequality (23) of the theorem.
From Corollary 4.12 we know ζk ∈ B̄(ζy, ry) and, therefore, Lemma 4.7 (ap-

plied with (c, b) = (z′k, ζk)) gives

βm,l ′(h(z
′
k, ·); ζk) ≤ βm,l ′(h(0, ·); ζk)+ Lm/(m−l ′)

ē ‖z′k‖1/(m−l ′)

1− (µ̄ē)m
.

Using again F z
m,l,l ′(xK , yK ) = 0, we deduce

βm,l ′(h(z
′
k, ·); ζk) ≤ βm,l ′(h(0, ·); ζk)+ Lm/(m−l ′)

ē Bm,l ′(h(z′k, ·), yk; yk+1)/Gz

1− (µ̄ē)m
.

(38)
In a similar way, using Lemma 4.7 with (c, b) = (z′k, ζy), we obtain

βm,l ′(h(z
′
k, ·); ζy) ≤ βm,l ′ + Lm/(m−l ′)

ē ‖z′k‖1/(m−l ′)

1− (µ̄ē)m

≤ βm,l ′ + Lm/(m−l ′)
ē Bm,l ′(h(z′k, ·), yk; yk+1)/Gz

1− (µ̄ē)m
. (39)
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On the other hand, by Corollary 4.12 and (A12) one has

γm(h(0, ·); ζk)|ζk − ζy | ≤ u,

hence Proposition 2.2 yields, via (A16),

βm,l ′(h(0, ·); ζk) ≤ 1− u

ψm(u)
(βm,l ′(1− u)(l

′+1)/(m−l ′) + (2m − 1)|ζk − ζy |). (40)

From part (a) of Lemma 4.13, we have

Bm,l ′(h(z
′
k, ·), yk; yk+1) ≤ �βm,l ′(h(z′k, ·); ζk).

Then, from this inequality and successively using (38), (40), (28), and (39), we
deduce

Bm,l ′(h(z
′
k, ·), yk; yk+1) ≤ �(T1βm,l ′ + T2/GzBm,l ′(h(z

′
k, ·), yk; yk+1)),

whence (24). The proof of Theorem 4.1 is now completed.

4.9. Algorithm from Estimates at the Initial Point

In this last subsection we describe how valid input quantities for Theorem 4.1 can
be computed from estimates at the initial point only. The strategy is the same as
in Section 1.4: we perform cluster location first with Theorem 3.1, then deduce
upper bounds on point estimates in the cluster in order to enter the approximation
algorithm. For the sake of simplicity, the algorithm presented below assumes that
f and g are polynomial maps. Nevertheless, this algorithm could be extended to
broader classes of maps for which all the necessary point estimates are computable
(as we did in [12, Sec. 6] for the univariate case). In Appendix B we provide the
reader with all the remaining technical details concerning the computations in
practice, and we report on numerical experiments.

The initial point is still written (x0, y0). We assume that the location criterion
underlying Theorem 3.1 holds. Namely, we assume that there exists a cluster of
m − l ′ zeros of (f,g[l ′]) in B̄((x0, y0), r). From these data, we attempt to apply
Theorem 4.1, as explained in the following algorithm. Of course, the process
breaks as soon as a computation is not possible or a requirement fails. From now,
ζ represents a point of the cluster.

• At (x0, y0), compute upper bounds γx0 , δx0 , and σx0 on γ (
; x0, y0),
‖D
(x0, y0)‖, and ‖D
(x0, y0)

−1‖, respectively. Use Proposition 1.15 to
compute (if possible) upper bounds γx , δx , σx of γ (
; ζ ), ‖D
(ζ)‖, and
‖D
(ζ)−1‖, respectively (hence (A1) is satisfied).
• At (x0, y0) compute suitable values for λg,x0 and ρg,x0 in order to have

[g− g(x0, y0)](x0,y0)
≤ λg,x0 t/(1 − ρg,x0 t). Use Corollary 1.6 to compute

(if possible) λ and ρ satisfying (A2).
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• Compute λ�, ρ�, λ, ρ, require (A3), and compute lϕ , Lϕ , and rx .
• Use Proposition 1.15 to compute (if possible) upper bounds γ̄x and δ̄x of

max(γ (
; x, y) | (x, y) ∈ B̄(ζ, lϕr)) and max(‖D
(x, y)‖ | (x, y) ∈
B̄(ζ, lϕr)). According to Lemma 4.3, conditions (A4) and (A5) are satisfied. In-
voking this lemma is legitimate since it only makes use of (A1), (A2), and (A3).
This is the reason why we have introduced (A3) in the statement of Theorem 4.1
although it is a consequence of (A9).
• Compute ux , require (A6) and compute Lz , rz .
• Compute x ′0, z′0.
• Compute the series expansion of h(z′0, ·) at y0 at precision 2(m− l ′) and, then,

upper bounds on βm,l ′(h(z′0, ·); y0), m!/|Dm
y h(z′0, y0)|. From λ, ρ, and using

Corollary 1.6, compute (if possible) a geometric majorant series λ′t/(1− ρ ′t)
of h − h(z′0, y0) at (z′0, y0). Then use Proposition B.3 to compute an upper
bound on γm(h(z′0, ·); y0) (we set the parameter i to 2(m− l ′) in our program).
• Use λ′, ρ ′, and Proposition 2.6 to compute (if possible) upper bounds on

max(βm,l ′(h(z, ·); y0) | z ∈ B̄(z′0, ‖z′0‖ + rz)),

max(γm(h(z, ·); y0) | z ∈ B̄(z′0, ‖z′0‖ + rz)),

max(m!/|Dm
y h(z, y0)| | z ∈ B̄(z′0, ‖z′0‖ + rz)).

• Use Proposition 2.2 and the previous quantities to compute (if possible) an
upper bound on

3
m − l ′

m
max(βm,l ′(h(z, ·); y) | z ∈ B̄(z′0, ‖z′0‖ + rz), y ∈ B̄(y0, 2r)),

and take ry as the maximum of r and the latter upper bound, so that conditions
(A7) and (A8) are satisfied.
• Compute r̄ and require (A9).
• Use Proposition 2.2 to compute valid values for β̄m , γ̄m , and σ̄m , in order to

satisfy (A10), (A11), and (A12).
• Compute λ̄, ρ̄, µ̄, Lē, ē, and require (A13).
• Require (A14) and (A15).
• Compute u, v, ū, and require (A16).
• Compute C, Gy , C̄, κ , κ̄ , χ , �, T1, T2, Tβ , Gz , Ty , and require (A17).
• Compute L y,1, L y,2, L y , and require (A18).
• Compute Lx , and require (A19).

It is straightforward to check that, if ζ is an isolated zero of multiplicity m
then, for any l ∈ {0, . . . ,m − 1}, l ′ ≤ l, this algorithm works with (x0, y0) := ζ
and r = 0 (in particular, this implies r̄ = rx = ry = rz = 0). By continuity,
we deduce that if (x0, y0) is sufficiently close to ζ , and r sufficiently small, then
the algorithm also works. By deformation, it follows that the algorithm actually
locates and approximates clusters of embedding dimension 1.

For clusters with positive diameter, the iteration stops. Finally, Theorem 4.1
asserts that yK+1 is close to ζy at a distance bounded in terms of βm,l ′(h(0, ·); ζy).
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According to [12, Theorem 2.1], this quantity can be bounded in terms of the
diameter of the cluster of zeros of h(0, ·) (if the diameter of the cluster is sufficiently
small). As for the x coordinates, no such result actually holds. Nevertheless, one
can iterate Newton’s operator x �→ N (f(·, yK+1); x) from xK+1 to improve the
x coordinates. The convergence of this iteration can be quantified by means of
Lemma 4.4 and the iteration can be stopped as soon as it reaches a distance
to ϕ(yK+1) which is about Bm,l ′(h(z′K , ·), yK ; yK+1). We leave out the details
here.

In Appendix B we report on numerical experiments that all confirm the expected
theoretical behaviors. We also exhibit examples for which the eight possible cases
of the approximation algorithm actually occur in practice.
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of cost. I, Ann. Sci. École Norm. Sup. (4) 18, 1 (1985), 107–142.

[43] M. Shub and S. Smale, Computational complexity: On the geometry of polynomials and a theory
of cost. II, SIAM J. Comput. 15, 1 (1986), 145–161.

[44] S. Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc.
(N.S.) 4, 1 (1981), 1–36.

[45] S. Smale, Newton method estimates from data at one point, in In The Merging of Disciplines:
New Directions in Pure, Applied, and Computational Mathematics (R. E. Ewing, K. I. Gross, and
C. F. Martin, eds.). Springer-Verlag, New York, 1986, pp. 185–196.

[46] A. J. Sommese and J. Verschelde, Numerical homotopies to compute generic points on positive
dimensional algebraic sets, J. Complexity 16, 3 (2000), 572–602.

[47] A. J. Sommese, J. Verschelde, and C. W. Wampler, A method for tracking singular paths with
application to the numerical irreducible decomposition, in Algebraic Geometry, M. C. Bettrametti,
F. Catanese, C. Ciliberto, A. Lanteri, C. Pedrini, eds., de Gruyter, Berlin, 2002, pp. 329–345.

[48] A. J. Sommese and C. W. Wampler, Numerical algebraic geometry, in The Mathematics of Nu-
merical Analysis (Park City, UT, 1995), Lectures in Applied Mathematics, Vol. 32, Amer. Math.
Soc., Providence, RI, 1996, pp. 749–763.

[49] F. Stenger, Computing the topological degree in Rn , Numer. Math. 25 (1975), 23–38.
[50] T. Tsuchiya, Enlargement procedure for resolution of singularities at simple singular solutions of

nonlinear equations, Numer. Math. 52, 4 (1988), 401–411.
[51] H. Van de Vel, A method for computing a root of a single nonlinear equation, including its

multiplicity, Computing 14, 1–2 (1975), 167–171.
[52] M. Vander Straeten and H. Van de Vel, Multiple root-finding methods, J. Comput. Appl. Math.

40, 1 (1992), 105–114.
[53] X. H. Wang and D. F. Han, On dominating sequence method in the point estimate and Smale

theorem, Sci. China Ser. A 33, 2 (1990), 135–144.
[54] H. Weber and W. Werner, On the accurate determination of nonisolated solutions of nonlinear

equations, Computing 26, 4 (1981), 315–326.
[55] N. Yamamoto, Regularization of solutions of nonlinear equations with singular Jacobian matrices,

J. Inform. Process. 7, 1 (1984), 16–21.

Index of Main Symbols

[ f ]a , 12
α( f ; a), 6
αm(h; a), 6
β( f ; a), 6
βm(h; a), 6
γ ( f ; a), 6
γm(h; a), 6
θm,l,δ , 33

(f, x0, y0; x, y), 4
τm,l,0(v), 24
τm,l,1(v), 24
ϕ(f, x0, y0; y), 5

�(f, x0, y0; z, y), 4
ψ(u), 6
ψm(u), 6
B(ζ, r), 4
B̄(ζ, r), 4
Bm,l( f, x0; x1), 24
Cm,l,l ′,δ(u), 33
f, 3
f [l], 5
F y

m,l,l ′(xk, yk), 34
F( f, a; t), 15
F z

m,l,l ′(xk, yk), 34

g, 3
g[l], 5
Gy , 34
Gz , 34
h( f, x0, y0; z, y), 5
N ( f ; x), 5
Nm(h; x), 6
Nm,l,l ′(xk, yk), 34
ry , 34
um,l,δ , 33
vm,l , 24

Symbols defined in Tables 1 and 3 do not appear in this index.



50 M. Giusti, G. Lecerf, B. Salvy, and J.-C. Yakoubsohn

Appendix A. Local Compositional Inverse

In this appendix we study the behavior of majorant series under local compositional
inversion. The following results generalize and slightly improve those of Dedieu
et al. in [1, Sec. 3]. We also give different and simpler proofs. We start with the
same proposition.

Proposition .14 [1, Theorem 3.2]. Let f be an analytic map from an open neigh-
borhood U of a inCn toCn such that D f (a) = Id. Then f is invertible in a neigh-
borhood of f (a). Let H ∈ t2

R{t} be such that [ f − f (a)]a ≤ t+H . Let F := t−
H and let F−1 denote the compositional inverse of F , then [ f −1 − a] f (a) ≤ F−1.

Proof. We refer to the proof of [1, Theorem 3.2], based on Faà di Bruno’s
formula.

By considering inverses on the left and on the right, we now relax the condi-
tion D f (a) = Id.

Corollary .15. Let f be an analytic map from an open neighborhood U of a in
C

n to Cn . Assume that D f (a) is invertible, then f is invertible in a neighborhood
of f (a). Let g1 and g2 be defined by

g1(x) := f (a + D f (a)−1x)− f (a), g2(x) := D f (a)−1( f (a + x)− f (a)).

For i ∈ {1, 2}, let Hi ∈ t2
R{t} satisfy [gi ]0 ≤ t + Hi . Define Fi := t − Hi . Then

[D f (a)( f −1 − a)] f (a) ≤ F−1
1 (t),

[ f −1 ◦ D f (a)− a]D f (a)−1 f (a) ≤ F−1
2 (t).

Hence

[ f −1 − a] f (a) ≤ ‖D f (a)−1‖F−1
1 (t) and [ f −1 − a] f (a) ≤ F−1

2 (‖D f (a)−1‖t).

Proof. Since Dgi (0) = Id, i ∈ {1, 2}, we apply the previous proposition with gi

and Hi at 0. Then we use the fact that

f −1(y) = a + D f (a)−1g−1
1 (y − f (a)) = a + g−1

2 (D f (a)−1(y − f (a))).

Now we specialize this last corollary to the special case of geometric majorant
series and obtain
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Corollary .16 (For Geometric Majorant Series). Let f be an analytic map from
an open neighborhood U of a in Cn to Cn . Assume that D f (a) is invertible.

(a) If [ f − f (a)]a ≤ λt/(1− ρt), then

[D f (a)( f −1 − a)] f (a) ≤ t

1− ϑρ‖D f (a)−1‖t .

(b) If [D f (a)−1( f − f (a))]a ≤ λ‖D f (a)−1‖t/(1− ρt), then

[ f −1 ◦ D f (a)− a]D f (a)−1 f (a) ≤ t

1− ϑρt
.

In both cases,ϑ denotes the largest root of P(x) := 1−2(1+2‖D f (a)−1‖λ)x+x2.

Observe that the defining polynomial P for ϑ admits two nonnegative real roots
and that ϑ is larger than one.

Proof. For part (a) we apply the previous corollary with H1 = µρ̄t2/(1 − ρ̄t),
where µ = ‖D f (a)−1‖λ and ρ̄ = ρ‖D f (a)−1‖. We are then led to study the
inverse G of

F = t − µρ̄t2

1− ρ̄t
.

This inverse is given by the explicit formula

G = 1+ ρ̄t −
√

1− 2(1+ 2µ)ρ̄t + ρ̄2t2

2ρ̄(1+ µ) .

The rest of the proof is thus concentrated in the study of one specific map, which
is performed in Lemma .18 below.

For part (b) we apply the previous corollary with H2 = µρt2/(1− ρt) and the
rest is similar to part (a).

Before coming to technical lemmas, we give two examples illustrating the sharp-
ness of the previous corollary.

First, we consider f = t − t2/(1 − t). Then part (a) or (b) of the corollary
applies with λ = ρ = f ′(0) = 1 and gives the bound [ f −1]0 ≤ t/(1−ϑ t) =: B(t)
with ϑ = 3 + 2

√
2. The value of ϑ in the denominator is optimal. Indeed, from

the explicit formula for G above, we can use Darboux’s theorem [2] to deduce that
as n tends to infinity, the nth coefficient of the Taylor expansion of G at the origin
behaves like κϑnn−3/2 for some constant κ . A smaller constant ϑ ′ < ϑ in the
denominator of B would lead to an asymptotic bound of order ϑ ′n , incompatible
with the actual behavior. Concerning the numerator of B, it is also optimal since
the first coefficient of f −1 is 1.

Our second example is f = t − 2t2/(1 − t). As in the previous example,
ρ = f ′(0) = 1, but now,λ = 2. The value ofϑ given by part (a) is 5+2

√
6 ≈ 9.90,
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which again is optimal with respect to the asymptotic behavior of the Taylor
coefficients, while the numerator is again sharp for the first coefficient. Applying
part (b) yields γ ( f −1; 0) ≤ (3 + 2

√
2)2 ≈ 11.66, which illustrates the gain in

dealing with a majorant geometric series given by two real numbers instead of
only the gamma estimate.

Let us now complete the proof of Corollary .16. The following lemma is prob-
ably classical, although we could not find a reference to it.

Lemma .17. Let P(t) :=∑p
i=0 ai t i be a polynomial with real coefficients such

that a0 > 0 and the Taylor series of 1/P at the origin has nonnegative coefficients.
Let (un)n∈N be a sequence satisfying the inequality

R(u; n) :=
p∑

i=0

ap−i un+i ≤ 0, n ≥ 0. (41)

Let (vn)n∈N be a sequence defined by vi = ui for 0 ≤ i < p, andR(v; n) = 0 for
n ≥ 0. Then un ≤ vn for all n ≥ 0.

Proof. Let U (t) :=∑ untn (resp., V (t) :=∑ vntn) be the generating series of
the sequence (un)n∈N (resp., (vn)n∈N). By multiplying (41) by tn+p and summing
over n, we get an inequality

P(t)U (t) ≤ P(t)V (t).

Observe that P(t)V (t) is a polynomial of degree at most p − 1. Since 1/P has
nonnegative coefficients, part (d) of Proposition 1.1 allows us to multiply both
sides of the inequality by 1/P . Extracting coefficients of tn on both sides then
concludes the proof.

Lemma .18. Let P(t) = 1 − 2νt + t2 with ν > 1, and let G(t) =
(1+ t −√P(t))/(1+ ν). Then

[G]0 ≤
t

1− ϑ t
,

where ϑ is the largest root of P .

Proof. The function G satisfies the linear differential equation

P(t)G ′(t)+ (ν − t)G(t) = 1− t.

It follows that the sequence (un)n∈N of its Taylor coefficients at the origin satisfies
the linear recurrence equation

un =
(

2− 3

n

)
νun−1 −

(
1− 3

n

)
un−2, n ≥ 3, (42)
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with initial conditions u0 = 0, u1 = 1, u2 = (ν − 1)/2. We now prove that

0 < un < 2νun−1 − un−2, n ≥ 4. (43)

To this end, we first prove by induction that un > un−1 for n ≥ 3. For n = 3,
we have u3 = νu2 from (42) which gives the desired inequality since ν > 1
and u2 > 0. For n ≥ 3, let vn = un/un−1 and assume vn−1 > 1, then (42) implies

vn =
(

2− 3

n

)
ν − 1− 3/n

vn−1
≥ 1+ (2− 3/n)(ν − 1) > 1.

From un/un−1 > 1, the sign of un follows (u2 being positive) and since ν > 1,
we also get vn < 2ν − 1/vn−1 for n ≥ 4, whence the second part of the desired
inequality (43). The polynomial P can be written (1−ϑ t)(1−t/ϑ)withϑ its largest
positive root. It follows that the Taylor series of 1/P at the origin has nonnegative
coefficients. We can therefore apply the previous lemma to the sequence un+2,
which gives

G(t)− u0 − u1t

t2
≤ u2 + (u3 − 2νu2)t

P(t)
.

Isolating G(t)/t and computing a partial fraction expansion of the right-hand side
gives

G(t)

t
≤ 1+ ν(1− ν)

2
+ C(ϑ)

1− ϑ t
+ C(1/ϑ)

1− t/ϑ
,

with C(ϑ) = [(ν − 1)/2](ν − ϑ/2). Now, obviously (since ϑ > 1),

1

1− t/ϑ
− 1 ≤ ϑ−2

1− ϑ t
− ϑ−2,

which makes it possible to bound the latter summand in terms of the second one.
A straightforward computation gives C(ϑ) + C(1/ϑ)/ϑ2 = (ν − 1)/(2ϑ). The
proof is concluded by showing that this last quantity is smaller than 1. Indeed, by
writing ϑ = ν+√ν2 − 1 and dividing by ν−1, we see that ϑ/(ν−1) > 2, which
is sufficient. The numerator 1 is then dictated by the first coefficient u1 = 1.

Appendix B. Numerical Experiments

We relate numerical experiments with the location algorithm of Section 3, and with
the approximation algorithm of Section 4.9. First of all, we need to explain the basic
devices used in our program. We consider the following examples parametrized
by the real positive number N . For the sake of simplicity we restrict ourselves to
polynomial maps.

Example 1. f1(x1, y) := x1 + 5x2
1 , g(x1, y) := (ym − 10−m N )(1 − ym). Here

n = 2 and (f,g) admits a cluster of m zeros in a neighborhood of the origin, which
collapses to the origin when N tends to infinity.
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Example 2. f1(x1, x2, y) := 10−4N+3x1+5x2+ y+x2 y2+6x3
1 x2+5x1x2 y2−

5x1 y3− x1 y4, f2(x1, x2, y) := 10−4N − x1+2x2+ x1 y− x1x2 y− x1 y3−4x2 y3+
3x1x3

2 y, g(x1, x2, y) := 10−4N+x1+11/2x2
1−2x2+1419x3

2+y3. Here n = 3 and
(f,g) admits a cluster of four zeros around the origin, which tends to a multiple
zero when N goes to infinity.

Computations are performed with the Maple computer algebra system version 7.
The Digits environment variable controls the number of decimal digits that Maple
uses when calculating with software long floating-point numbers. Heuristically, in
order to avoid rounding-off problems, we set this variable to 2m N . We will not
enter a precise theoretical study of the needed floating-point precision here.

B.1. Approximation of Point Estimates

We describe the formulas we use in our implementation for computing upper
bounds on point estimates.

B.1.1. Computing δx and σx . At a given point (x0, y0), we first address the prob-
lems of computing ‖D
(x0, y0)‖ and ‖D
(x0, y0)

−1‖. Both problems correspond
to computing norms of matrices M of the form

M =
(

Id A
0 1

)
,

where A is a column vector of length n−1, we use the following classical formula.

Proposition B.1 [3, Exercise 6.10, p. 116].

‖M‖2 = 1+ 1
2‖A‖2 + ‖A‖

√
1+ 1

4‖A‖2.

B.1.2. Majorant Series. Computing majorant series of polynomials reduces to
upper bounding the norms of all its derivatives. For this purpose, we make use of
the norm ‖·‖∞, as defined below. More sophisticated devices could be used but
we retained this one for efficiency and simplicity reasons.

Let E := {e1, . . . , en} denote the canonical basis of Cn , A ∈ Ll(C
n;Cs), it is

fast to compute the norm ‖·‖∞, defined by

‖A‖∞ := max
u1∈E,...,ul∈E

‖Au1 . . . ul‖.

Then we content ourselves with the following upper bound on the norm of A.

Lemma B.2. ‖A‖ ≤ nl‖A‖∞.
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Proof. Let Ai1,...,il := Aei1 . . . eil . Let u1, . . . , ul be unit vectors of Cn , we com-
pute

‖Au1 . . . ul‖ =
∥∥∥∥∥

n∑
i1=1

. . .

n∑
il=1

Ai1,...,il u1,i1 · · · ul,il

∥∥∥∥∥
≤ nl‖A‖∞,

where ui, j denotes the j th coordinate of ui .

In particular, since the map 
 of Theorems 3.1 and 4.1 is polynomial, we use the
following upper bound:

γ (
; a, b) ≤ max
l≥2

(
nl

∥∥∥∥D
(a, b)−1 Dl
(a, b)

l!

∥∥∥∥
∞

)1/(l−1)

.

Concerning the computations of λg and ρg at a given point (a, b) such that
[g− g(a, b)](a,b) ≤ λgt/(1− ρgt), we arbitrarily take

λg := max
l≥1

nl

l!
‖Dlg(a, b)‖∞, ρg := 1.

B.1.3. Upper Bounds on γm . The last basic computation we deal with is the
computation of upper bounds on γm . The following proposition quantifies how
such a bound can be determined from a geometric series majoration, exploiting
the possible knowledge of a series expansion.

Proposition B.3. Let q denote a complex variable function, let m be an integer
such that q(m)(z) �= 0, let σm ≥ m!/|q(m)(z)|, and let λ, ρ be nonnegative real
numbers such that [q − q(z)]z ≤ λt/(1−ρt). Let i ≥ m+ 1, and let p denote the
unique polynomial of degree at most i − 1 such that q − p ∈ Oz((x − z)i ), then

γm(p; z) ≤ γm(q; z) ≤ max(γm(p; z), ρ(σmλρ
m−1)1/(i−m)).

Proof. By construction, we have σmλρ
m−1 ≥ 1, hence

sup
j≥i
(σmλρ

j−1)1/( j−m) = sup
j≥i
ρ(σmλρ

m−1)1/( j−m) = ρ(σmλρ
m−1)1/(i−m).

B.2. Cluster Location

In Tables 1 and 2 we relate numerical experiments with Theorem 3.1: The parameter
l is set to 0 and (x0, y0) is computed as (exp(ıπ/4), . . . , exp(ıπ/4)) times the
largest negative power of 2 that satisfies the conditions of the theorem. Here ı ∈ C
represents the square root of −1 with positive imaginary part. We indicate the
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Table 1. Cluster location with Example 1.

m 2 2 2 3 4
N 5 10 20 10 10

‖(x0, y0)‖ 1.34 10−6 1.34 10−6 1.34 10−6 2.69 10−6 3.37 10−7

r−x 6.09 10−5 3.63 10−5 3.63 10−5 2.08 10−5 1.45 10−5

r−y 5.95 10−5 3.52 10−5 3.52 10−5 1.88 10−5 1.43 10−5

values r−x and r−y (as defined in Theorem 3.1): Recall that B̄(x0, r−x )× B̄(y0, r−y )
contains a cluster of m zeros.

We observe that the location process does not depend much on the size of the
cluster. As expected, the location especially becomes the more difficult as the
cardinality of the cluster increases.

We compute the requested upper bound on γm by using Proposition B.3 at
(z′0, y0) with i := 2m, and by using the geometric series majoration given in (21).
Finally, the series expansion of h(z′0, ·) at y0 is directly computed from the one of
�(z′0, ·), which is obtained by means of the classical symbolic Newton iteration.

This location process gives us a ball B̄((x0, y0), r) that contains the cluster,

when taking r :=
√
(r−x )2 + (r−y )2. With this data in hand, we can now enter the

approximation algorithm described in Section 4.9, on which we report experiments
in the following subsection.

B.3. Cluster Approximation

In Tables 3, 4, and 5 we report on numerical experiments with the approximation
algorithm presented in Section 4.9. Here the notation is the one used in Section 4.9.
We take l ′ := l := 0 and, for different values of m and N , we compute (x0, y0) as
the vector (exp(ıπ/4), . . . , exp(ıπ/4)) times the largest negative power of 2 that
does not provoke an error in the whole algorithm. We indicate the values of the
main parameters, namely, ry , Gy , and Gz . Then we give the number K of iterations,
the sequences of flags (F y

m,l,l ′(xk, yk))k and (F z
m,l,l ′(xk, yk))k , the norms of the last

iterate, and the value of Bm,l ′(h(z′K , ·), yK ; yK+1), abbreviated Bm,l ′(yK+1).
In all our examples the diameter of the cluster is about 10−N , as confirmed by

the values of Bm,l ′(h(z′K , ·), yK ; yK+1). In all cases, the x coordinates are already
close to the cluster without performing the post-treatment mentioned at the end of
Section 4.9. Lastly, it is important to observe that all the eight possible cases of
the algorithm actually occur in practice.

Table 2. Cluster location with Example 2.

m 4 4 4
N 5 10 20

‖(x0, y0)‖ 1.32 10−5 1.32 10−5 1.32 10−5

r−x 1.15 10−4 1.15 10−4 1.15 10−4

r−y 9.15 10−5 9.15 10−5 9.15 10−5



Clusters of Embedding Dimension One 57

Table 3. Cluster approximation with Example 1 and m = 2.

N 10 20 40 80
‖(x0, y0)‖ 2.05 10−11 2.05 10−11 2.05 10−11 2.05 10−11

ry 1.96 10−8 1.39 10−8 1.39 10−8 1.39 10−8

Gy 1.05 105 1.05 105 1.05 105 1.05 105

Gz 6.80 103 6.79 103 6.79 103 6.79 103

K 0 1 2 3
F y

m,l,l ′ − 1,− 1,+,− 1, 1,−,−
F z

m,l,l ′ 0 1, 0 1, 1, 0 1, 1, 1, 0

‖xK+1‖ 1.05 10−21 5.60 10−42 1.57 10−82 1.23 10−163

|yK+1| 1.45 10−11 6.87 10−30 3.24 10−48 2.92 10−98

Bm,l ′ (yK+1) 1.00 10−10 1.00 10−20 1.00 10−40 1.00 10−80

Table 4. Cluster approximation with Example 1 and m = 4.

N 10 20 40 80
‖(x0, y0)‖ 1.02 10−11 1.02 10−11 1.02 10−11 1.02 10−11

ry 3.90 10−8 2.62 10−8 2.62 10−8 2.62 10−8

Gy 1.20 106 1.19 106 1.19 106 1.19 106

Gz 9.59 104 9.49 104 9.49 104 9.49 104

K 0 1 2 3
F y

m,l,l ′ ∞ 1,∞ 1,∞,∞ 1,+,∞,∞
F z

m,l,l ′ 0 1, 0 1, 1, 0 1, 1, 1, 0

‖xK+1‖ 2.64 10−22 3.50 10−43 6.13 10−85 1.88 10−168

|yK+1| 7.27 10−12 2.59 10−47 2.03 10−56 1.17 10−153

Bm,l ′ (yK+1) 1.00 10−10 9.99 10−21 1.00 10−40 1.00 10−80

Table 5. Cluster approximation with Example 2.

N 10 20 40 80
‖(x0, y0)‖ 2.52 10−11 2.52 10−11 2.52 10−11 2.52 10−11

ry 1.91 10−8 1.19 10−8 1.19 10−8 1.19 10−8

Gy 2.04 105 2.04 105 2.04 105 2.04 105

Gz 2.69 105 2.69 105 2.69 105 2.69 105

K 0 1 1 2
F y

m,l,l ′ − 1,− 1,+ 1, 1,+
F z

m,l,l ′ 0 0, 0 0, 0 0, 0, 0

‖xK+1‖ 2.95 10−12 7.46 10−25 4.76 10−50 1.93 10−100

|yK+1| 1.45 10−11 3.67 10−24 2.34 10−49 9.52 10−100

Bm,l ′ (yK+1) 9.59 10−11 9.59 10−21 9.59 10−41 9.59 10−81
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