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V 

FOREWORD 

In August 1990 a conference celebrating the 60th birthday of Steve Smale was 
held at the University of California at Berkeley. The goal of that conference, in 
the words of its organizers, was "to gather in a single meeting mathematicians 
working in the many fields to which Smale has made lasting contributions." 
Thus, the contributed and invited lectures covered a broad scope of subjects 
including Differential Topology, Dynamical Systems, and Mathematical Eco
nomics, among many others. A volume containing most of those lectures was 
subsequently published by Springer-Verlag (From Topology to Computation, 
Proceedings of the Smalefest, M. W. Hirsch, J. E. Marsden, M. Shub (Eds.), 
Springer-Verlag, 1993). 

Steve moved to City University of Hong Kong in 1995 and on July 15th 
2000 he turned 70. It was a pleasure for his friends and colleagues to orga
nize a conference to celebrate this event. On July 13-17, 2000, the second 
Smalefest was held in Hong Kong. Unlike the first one, however, the goal 
was to focus on the subject Steve had been working on since the early 80's: 
Theory of Computation. It was a simple matter to gather people who had 
been influenced by Steve's work on the Theory of Computation, and a glance 
at this volume shows that other subjects were quite well represented as well. 

In the the first Smalefest volume, articles were grouped according to sub
jects and each group of articles was preceded by an article commenting on 
Steve's work on that subject. In this volume we have included one such arti
cle — "The Work of Steve Smale on the Theory of Computation: 1990-1999" 
— doing so for the period between the two conferences. We thank Singapore 
University Press and World Scientific which granted us permission to reprint 
this article. For the remaining articles, we thank the contributors for their 
valuable work. 

Special thanks go to the referees, who helped us select and polish the 
papers in this volume; to the Liu Bie Ju Centre for Mathematical Sciences for 
its generous sponsorship; and to Ms. Robin Campbell for her lightning-fast 
LaTeX formatting. 

Steve Smale has positively influenced not only our mathematics but — 
through his friendship, sincerity, and generosity — our lives. It is with great 
pleasure that we (the editors and the contributors) dedicate this volume to 
Steve Smale as a belated gift on his 70th birthday. Happy 70 Steve! 

Felipe Cucker 
J. Maurice Rojas 
December 2001 
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1 I N T R O D U C T I O N 

In the past three decades, a strong relationship has been established between 
convex geometry, represented by convex polyhedra and polyhedral complexes, 
and algebraic geometry, represented by toric varieties and toroidal embed-
dings. In this note we exploit this relationship in the following manner . We ad
dress a basic problem in algebraic geometry: a certain version of s e m i s t a b l e 
r e d u c t i o n . 

Semistable reduction, for non-algebraic geometers, can be thought of as a 
far-reaching extension of Hironaka's famous r e so lu t ion of s ingular i t i e s 8 . a 

Technically, Hironaka's result is semistable reduction over a O-dimensional 
base (see problem 1.3 below). Semistable reduction over a 1-dimensional 
base was proved in 1 3 , and was later applied in the classification of algebraic 
threefolds 14 and the enumerative geometry of curves 4 '5 to name but a few 
examples. Semistable reduction for families of surfaces and threefolds (i.e., 
par t of the case of a 2-dimensional base), in characteristic 0, was proved in n 

but remains an open problem for a higher-dimensional base. This has moti
vated alternative constructions, e.g, weak semistable reduction (see theorem 

'PARTIALLY SUPPORTED BY NSF GRANT DMS-9503276 AND AN ALFRED P. 
SLOAN RESEARCH FELLOWSHIP. 

tPARTIALLY SUPPORTED BY AN NSF MATHEMATICAL SCIENCES POSTDOC
TORAL FELLOWSHIP AND HONG KONG UGC GRANT #9040402-730. 
"Roughly, his result is that any algebraic variety over an algebraically closed field of char
acteristic 0 is birationally equivalent to one without singularities. 

http://math.bu.edu/INDIVIDUAL/abrmovic
http://www.math.tamu.edu/~roj
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1.6 below and the paragraph after the theorem), which could be proved in full 
generality in characteristic 0 2, and has also yielded important applications 
10,17 

Here, we will translate the local case of semistable reduction, over a base 
variety of dimension > 1, into a basic problem about polyhedral complexes: 
extending triangulations. Once we solve the second problem, the first follows. 
We have taken the opportunity with this note to try to extend some bridges 
between the terminologies of these two theories. 

1.1 Semistable Reduction 

We work over the field of complex numbers C. Let / : X —> B be a proper 
morphism of algebraic varieties, whose generic fiber is reduced and absolutely 
irreducible. Thus there exists a Zariski dense open set U C B such that the 
fiber / _ 1 (6 ) over any point in b € U is a compact complex algebraic variety. 

Loosely speaking, semistable reduction for a morphism like / is a meta-
problem of "desingularization of morphisms," where the goal is to "change 
/ slightly" so that it becomes "as nice as possible". Of course, we need to 
specify more precisely what we mean by the clauses in quotation marks. 

1.1.1 What do we mean by a morphism being "as nice as possible?" 

First of all, X and B should be as nice as possible, namely nonsingular. 
Moreover, we want / to have a nice, explicit local description, so that the 
fibers of / have the simplest possible singularities. 

Such a morphism will be called semistable. Here is the definition: 

Definition 1.1 Let f : X —>• B be a flat projective morphism, with con
nected fibers, of nonsingular varieties. We say that f is semistable if for 
each point x G X with f(x) = b there is a choice of formal coordinates 
Bf, = Spec C[[t i , . . . ,tm}] and Xx = Spec <C[[a;i,... ,£„]], such that f is 
given by: 

h 

ti = Y\_ xj: 
j = J i _ i + i 

where 0 = IQ < h • • • < lm < n, n = dimX, and m = dimB. 

We must state right up front that in this note we will not end up with 
a semistable morphism, but we will get very close. In particular, our results 
form an additional step in work on semistable reduction x, continuing the 
work of 2 for the case of a higher-dimensional base. 
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1.1.2 What do we mean by "changing f slightly?" 

First we define two types of operations necessary for semistable reduction: 

Definition 1.2 An alteration B\ —> B is a proper, generically finite, sur-
jective morphism. A modification Y —> X is a birational proper morphism 
(equivalently, a birational alteration). 

Given a morphism X —> B as before, and an alteration B\ —> B, we call 
the component oiX XgB\ dominating Bi the main component and denote 
it by XxBBi. 

We are now ready to state the semistable reduction problem in its ultimate 
form: 

Problem 1.3 LetX —> B be a flat projective morphism, with connected fibers 
and B nonsingular. Find an alteration B\ —> B, and a modification Y —>• 
X x g B i , such that Y —> B\ is semistable. 

Note that thanks to resolution of singularities 8 , we may assume in the char
acteristic 0 case that X is nonsingular. 

1.1.3 Nearly Semistable Morphisms 

We will need some terminology in order to state the weaker version of 
semistable reduction we actually address here. We will follow 13 for the basic 
definitions.6 

Definition 1.4 

1. A toric variety is a norma? variety X with an open embedded copy T 
of (C*)n, such that the natural (C*)n-action on T extends to all of X. 
We sometimes call the pair (X, T) a torus embedding. 

2. More generally, suppose Y is a normal variety with a smooth open sub-
variety Uy satisfying the following condition: locally analytically at every 
point, (Y, Uy) is isomorphic to a local analytic neighborhood of some 
torus embedding (X, T). We then call Y a toroidal variety and (Y, UY) 
a toroidal embedding.d 

''Also, mimicking standard notation from algebraic topology, / : (X, A) — • (Y, B) will be 
understood to mean that A and B are subvarieties of X and Y respectively; and that / is 
a morphism from X to Y satisfying f(A) C B. 
cAlthough normality is not assumed in some contexts, all toric varieties will be normal in 
this paper. 
dWe will sometimes follow 1 3 and also refer to the inclusion Uy C Y as a toroidal embedding. 



4 

3. A dominant morphism f : (X,Ux) —> (B,UB) of toroidal embeddings is 
called a toroidal morphism, if locally analytically near every point on 
X it is isomorphic to a torus equivariant morphism of toric varieties. 

Roughly speaking, a toric variety is "monomial:" an affine toric variety 
is always defined by binomial equations, and any toric variety can always 
be covered by affine charts in such a way that every overlap isomorphism is 
a monomial map. Similarly, a toroidal variety is "locally monomial" and a 
toroidal morphism is a "locally monomial morphism." 

If UB C B i s a toroidal embedding, then we may write B \ UB as a union 
of divisors D\U- • -L)Dk- More precisely, recall that B \ UB can be decomposed 
into strata of varying dimensions (see 13 or 7 ) . In particular, let us define UB 

to be the union of UB and the codimension 0 strata of B \ UB- This notation 
makes sense since we've actually only removed pieces of codimension > 2 from 
B to construct UB . 

We now detail the type of morphisms we will treat: 
Definition 1.5 A proper toroidal morphism f : (X,Ux) —>• {B,UB) is said 
to be nearly semistable if the following conditions hold: 

1. There are no horizontal divisors in X, namely: Ux = /~1(UB)-

2. The base B is nonsingular. 

3. The morphism f is equidimensional. 

4. All the fibers of f are reduced. 

5. The restriction of f to UB is semistable, i.e., "f is semistable in codi
mension < 1." 

6. The singularities of variety X are at worst finite quotient singularities. 

One may ask how far a nearly semistable morphism is from a semistable 
one. The answer is simple: every toroidal semistable morphism is nearly 
semistable; and a nearly semistable morphism X —> B is semistable if and 
only if X is nonsingular (see 2 ) . 

1.1.4 The Result 

The problem addressed in this paper is a special (local) case of nearly 
semistable reduction: 
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Theorem 1.6 Set B = A£ and let UB be the natural open subscheme of B 
whose underlying complex variety is (C*)n. Note that the inclusion UB C B 
is a toroidal embedding, and let f : X —>• B be a proper morphism satisfying: 

1. Ux := J~1(UB) C X is a toroidal embedding, and f : (X,Ux) -> {B,UB) 

is a toroidal morphism; 

2. f is equidimensional, with smooth and absolutely irreducible generic fiber; 

3. every fiber of f is reduced. 

Then there exists a finite toric morphism (B\, UB^) —> {B, UB) and a toroidal 
modification Y —> X x B B± , such that Y —> Bi is nearly semistable. 

One may ask what right we have to make all these assumptions on the 
morphism / we start with. In 2 it is shown that given any morphism / , as in 
Problem 1.3, we can reduce it to a toroidal morphism / as in Theorem 1.6. 
Such morphisms are called weakly semistable in 2. 

The methods of 2 are quite different from what we do here. In short, they 
involve: 

1. Making X —> B toroidal. This follows easily from the methods of 1. 

2. Making a toroidal X —> B satisfy the conditions in the theorem. Lo
cally this can be done easily using toroidal modifications and finite base 
changes. To do it globally one uses a covering trick of Kawamata (see 12 

)• 

Moreover, once the local results here are established, we can go back to 2 

and, using Kawamata's covering trick, extend it to prove nearly semistable 
reduction in general. 

1.2 Extending Triangulations 

We now wear our polyhedral glasses. 
For the concepts of a compact polyhedral complex A and a conical 

polyhedral complex £ see 13 . An integral structure on a compact or 
conical polyhedral complex is denned in 13 . We will always assume that 
our complexes come equipped with an integral structure. From here on, we 
will simply say polyhedral complex, when we mean a compact polyhedral 
complex with integral structure. 
Remark 1.7 A useful example of a polyhedral complex to consider is a finite 
collection V of integral polyhedra in Mn. (Recall that a polyhedron in W1 is 
integral iff all its vertices lie in %n.) If V is closed under intersection and 
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taking faces, then V is a polyhedral complex. Note, however, that not all 
polyhedral complexes arise this way. This accounts for some of the geometric 
richness of toroidal varieties, o 

Again, in 13 , it is shown that for any compact polyhedral complex A, 
one can construct a conical polyhedral complex, which we denote E(A) — 
namely the cone over A. To reverse the process, define a slicing function 
h : S —> E to be a nonnegative continuous function, whose restriction to every 
cone a S £ is linear, which vanishes only at the origin O s E . Then the slice 
/ i _ 1( l ) of S defines a compact polyhedral complex A(£,/i) . 

We denote by Sk*(A) the fc-skeleton of A. We will also use # 5 for 
the cardinality of a set S, and Cone(V) for the set of all nonnegative linear 
combinations of a set of vectors V C E™. 

By a subdivision A' of A (resp. £ ' of S) we will mean a finite partial 
polyhedral decomposition of A (resp. £ ) , as in 13 , with the completeness 
property: |A'| = |A|. (Recall that the notation |A| simply means the topo
logical space consisting of the union of all the cells of A.) A subdivision A' 
is called a triangulation or a simplicial subdivision if every cell of A' is 
a simplex. 

A lifting function (or order function) / : A —» K on a polyhedral 
complex is a continuous function, convex and piecewise linear on each cell of 
A, respecting the integral structure. (Briefly, the last appelation means that 
every maximal connected subdomain S on which / is in fact a linear function 
must satisfy the following conditions: (a) S is contained in some cell a of A, 
(b) the underlying homeomorphism from a to a polytope RN with vertices in 
Z " restricts to a homemorphism of 5 to a polytope r C o defined by linear 
inequalities with rational coefficients.) In the conical case (/ : X —> E) we add 
the requirement that / be homogeneous: f(Xx) = Xf(x), for all A> 0 and all 
xe\A\ 13 . 

Remark 1.8 We follow the convention in 13, where one requires a lifting 
function to be "convex down" on each cell, namely f(Xx + fiy) > Xf(x) + 
Hf{y). Also, all our lifting functions take rational values on the lattices in 
the cells. This is in contrast with the polyhedral convention, as in 18, where 
lifting functions are "convex up" and real values are allowed, o 

Given a lifting function / : A -» E, (resp. / : £ -> E) we define the 
subdivision A/ (resp. £ / ) induced by / , to be the coarsest subdivision such 
that / is linear on each cell. 

Remark 1.9 The subdivision induced by f is clearly determined by the val
ues of f on its vertices Sk°(A/) (resp. its edges Sk1(E/)J. In fact, one can 
construct f from its values on Sk (A/) (resp. Sk1 (£/),) as the minimal func-
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tion which is convex on each cell, having the given values on Sk°(A/) (resp. 
Sk1(E/)J. However, note that A/ (resp. £ / j may have strictly more vertices 
(resp. edges) than A (resp. £J / Nevertheless, with some care, we can control 
this behavior, o 

We will prove the following result: 
T h e o r e m 1.10 Let A be a polyhedral complex andA0 C A a subcomplex. Let 
AQ be a triangulation of AQ induced by a lifting function. Then there exists 
a triangulation A' of A, also induced by a lifting function, which extends A'Q 

and introduces no new vertices. That is, Sk°(A') = Sk°(A) U Sk°(A{,). 
Applying this to a slice of a conical polyhedral complex we obtain: 

Corollary 1.11 Let E be a conical polyhedral complex admitting a slicing 
function h : £ -f R, and let E0 C E be a subcomplex. Let EQ fee a triangulation 
of En induced by a lifting function. Then there exists a triangulation £ ' of 
E, also induced by a lifting function, which extends Eg and introduces no new 
edges. That is, Sk^E') = Sk^E) U Sk1 (£{,). 

One may ask, "Do we really need to assume that A'0 is induced by a 
lifting function?" The simplest example showing that this is indeed the case 
was communicated to us independently by R. Adin and B. Sturmfels: 

(0 1,0) (1,1,0) 

(0,1,1 

(0,0,1) 

Figure 1. There is no subdivision of the solid prism which preserves the number of vertices 
and restricts to the subdivision depicted on the boundary. 
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Let A C I 3 be the triangular prism S = Conv{uo,o, • • • ^1,2}, where: 

v0,o = (0,0,0); v0,i = (1,0,0); v0,2 = (0,0,1) 
vh0 = (0,1,0); V l i l = (1,1,0); vlt2 = (0,1,1) 

Let Ao = dA be the boundary of our prism. 
Let A0 be the subdivision of Ao obtained by inserting the following new 

edges: 

WfivTJ, voJvTji, vofiVifi 

(So we've "cut" a new edge into each square 2-face of Ao-) It is an easy 
exercise to see that there is no extension of AQ (to a triangulation of A) 
without new vertices: in particular, any 3-cell of such an extension must have 
an edge intersecting the midpoint of some edge of A0 — a contradiction. It 
is also not hard to see that A0 can not be induced by any lifting function 6 . 

2 Reduction of Theorem 1.6 to 1.10 

Let / : X —> B be as in Theorem 1.6 and / s : Ex —• Ejg the associated mor-
phism of rational conical polyhedral complexes. (Recall that X is toroidal and 
/ is a toroidal morphism, so these associated combinatorial structures indeed 
exist and are well-defined.) Note that E# is a nonsingular cone (a simplicial 
cone of index 1): it is simply the nonnegative orthant in R™, generated by the 
standard basis vectors {£{}. Let T{ be the edges of E#, namely T* = Cone(ej). 
We identify the lattice of Ti with Ze^. 

Let Y}B = {Jn be the 1-skeleton of E B and E x = / ^ ( E ^ ) - Also let 
Sx,j = f^in)- For an integer fcj let Ni(ki) be the integral structure on Sx,i 
obtained by intersecting the lattices in Ex,; with /£"1(Zfcj • ii). 

By 13 , as interpreted in 13 , there exists an integer k, and a simplicial 
subdivision E x { of Sx,i> which is induced by a lifting function, having 
index 1 with respect to the integral structure Ni(ki). 

Let B\ — A^ be complex affine space with coordinates s\,... , sn. The 
substitution s^ = U gives a homomorphism C[ti,... ,tn] —> C[s j , . . . ,sn], 
giving rise to a finite morphism B\ -> B. Then Y.B1 is the same as E# but 
taken instead with the lattice NBX = WLkii-i. Let X\ = X x# B\. Since 
the fibers of X are reduced, it follows that Xi is normal and Xi —> B\ is 
again toroidal. Likewise, Ex : is just Ex with integral structure given by 
intersecting the lattices in Ex with /^ 1(NB1)-

Putting the triangulations E x t of Ex,i together, there exists a triangu
lation E x of E x (induced by a lifting function) of index 1 with respect to the 
integral structure on Exi! 
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Let us verify that Ex admits a slicing function: let hs '• E# —»• R be the 
function defined by h(,(^2cae-i) — Ylai- Then the pullback /if, o / s is a slicing 
function on Ex-

By Corollary 1.11 of Theorem 1.10, there is an extension of E x to a 
triangulation E x of E (induced by a lifting function) without added edges. 

Let Y —> Xi be the corresponding toroidal modification and let f\ : Y —> 
B\ the resulting morphism. 

Note that since all the edges in the triangulation E'x map to the edges n 
of E B 1 ( we have that f\ is equidimensional 2. Since the integral generator of 
every edge in E x maps to the generator of the image edge in EBJ , and since 
B is nonsingular, all the fibers of f\ are reduced 2 . By the construction of 
13, / i is semistable in codimension 1. Since A'x is simplicial, Y has at worst 
quotient singularities. Thus f\ is nearly semistable. • 
Remark 2.1 The variety Y may be singular, as the following example shows: 
let Ey C R4 be the nonnegative orthant, generated by the standard basis vec
tors e i , . . . £4. Let w = (1/2,1/2,1/2,1/2) 6 R4 and Ny the lattice generated 
by w,£i,.. .£4. Also let Y be the corresponding toric variety — the quotient 
of A4; by the diagonal Z/2 action given by p i-+ — p — which happens to be 
singular. Finally, let E^ C K2 be the first quadrant, generated by the standard 
basis vectors e.\,e*2, with the standard lattice NB = ({0}UN)2 . We have a 
canonical morphism Ey —>• E B via 

(a,b,c,d) i-> (a + b,c + d) 

which maps Ny into NB- The resulting morphism Y —> A2- is nearly 
semistable, but not semistable. o 

3 Proof of Theorem 1.10 

It is a simple fact, made precise in Lemma 3.1 below, that any generic lifting 
function on a polyhedral complex induces a simplicial subdivision. This fact 
is used frequently in applications of subdivisions to the computation of mixed 
volumes, polyhedral homotopies, and toric (or sparse) resultants 16>9.3>15. 
The last two constructions give effective recent techniques, sometimes more 
efficient than Grobner bases, for solving systems of polynomial equations. 

However, it should be emphasized that the lifting functions considered 
here and in 13 are more general than those in 16>9,3: the lifting functions in 
the latter references are completely determined by the values assigned to the 
vertices of A. We will call these more restricted lifting functions verticial. 
The verticial lifting functions are a bit more "economical" in the sense that 
their corresponding subdivisions never introduce any new vertices. 
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There is a simple way to resolve this difference by passing to the verticial 
case from the start. In fact, we will reduce the proof of Theorem 1.10 to finding 
any triangulation (given by a verticial lifting function) in a new, specially 
constructed, polyhedral complex. The latter problem is then almost trivial to 
solve. 

First recall (see 13, Corollary 1.12) that induced subdivisions are transi
tive: if A' is a subdivision of A induced by a lifting function / on A, and 
A" is a subdivision of A' induced by a lifting function / ' on A', then A" is 
a subdivision of A as well. In fact, A" is induced by / + ef for sufficiently 
small e > 0. 

Thus let /o : A0 -» R be a lifting function which induces the given 
subdivision A0 in our theorem. By adding a constant if necessary, we may 
assume /o is positive. Following Remark 1.9, we can take the values of /o on 
Sk°(A0), extend them by zero to the other vertices Sk°(A) \ Sk°(A0), and take 
the minimal lifting function / : A —»• E which has these values on the vertices 
Sk°(A) U Sk°(A0). Clearly / | A o = /o- Let Aj be the induced subdivision. 
Then clearly the restriction of Ai to Ao coincides with A0 . If A' is any 
subdivision of Aj without new vertices, then its restriction to Ao must be 
AQ, since A0 is already simplicial: any subdivision of a simplicial complex 
without new vertices is trivial. Thus all we need to do to prove Theorem 1.10 
is find a verticial lifting function on Ax giving a triangulation. In summary, 
by replacing A with Ai, we can assume that Ao = A0 and then conclude 
by finding any triangulation of Ai (given by a verticial lifting function) — a 
simpler problem than finding a triangulation of one complex extending some 
other triangulation. 

To complete the proof of Theorem 1.10, recall the following lemma: 
Lemma 3.1 Supppose A is a polyhedral complex. Then 

1. The set L A of all verticial lifting functions on A is a finite-dimensional 
rational vector space. 

2. The set of all lifting functions which do not induce simplicial subdivisions 
is a finite union of proper subspaces of LA • 

Proof: Note that any verticial lifting function on A is uniquely determined 
by its values on Sk (A), which are assumed to be rational, so part (1) follows 
immediately. 

To prove (2), let C := (c„ | v G Sk (A)) be a vector of rational constants. 
Let Ac denote the subdivision of A induced by the verticial lifting function 
sending v H-»- CV for all u£Sk°(A). 

Now suppose that there is a nonsimplicial cell C, with vertex set V(C), 
in Ac- Recall that the coordinates of d+ 2 points lying on a d-R&t in Rn must 
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make a certain n x n determinant vanish.e (In particular, this determinant 
is a nonconstant multilinear function in the coordinates of the points.) Then, 
by the definition of a cell in a subdivision induced by lifting, there must be 
a (nontrivial) linear relation satsified by (c„ | v € V(C)). Furthermore, this 
linear relation depends only on A and the set of vertices V(C). Since there are 
only finitely many possible nonsimplicial cells (since, by definition, our poly
hedral complexes have only finitely many vertices), (2) follows immediately. 
• 

The following is an immediate corollary of our lemma. 
Corollary 3.2 Recall the notation of the proof of Lemma 3.1, and endow 
Q#Sk°(A) with the standard Euclidean metric || • ||. Let C £ dJ#Sk°(A). Then 
for sufficiently small e > 0, 

1. Ac is a simplicial subdivision for some C € Q* s k (A) satisfying \\C — 
C\\<£. 

2. If Ac is already a simplicial subdivision, then so is Ac, for all C € 
Q#Sk°<A) satisfying \\C -C\\<e. • 

Remark 3.3 Put another way, simplicial subdivisions are a dense (via (1)) 
and open (via (2)) subset of the space of all subdivisions arising from verticial 
lifting functions. In fact, we really have the stronger statement that the set of 
all lifting values giving a particular simplicial subdivision forms an open cell 
within the space of all subdivisions. 

Note also two "nearby" subdivisions Si and S2 need not have the same 
extensions, even if Si = S2 '• for example, consider the unit square S with vec
tor of vertices (ordered clockwise) (a, b, c, d), and the subcomplex E consisting 
of the edges {a,b} and {c,d}. Then C = (0,0,0,0) and C = ( - 1 , 1 , - 1 , 1 ) 
both generate the same (trivial) subdivision of E. However, these two liftings 
generate different subdivisions of S, the first being trivial, o 

Returning to the proof of Theorem 1.10, it follows by Corollary 3.2 that 
there exists a simplicial subdivision of Ai without new vertices, which is what 
we needed to prove. • 
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12 - H I / 2 - 2/1 
13 - x\ 2/3 - j/i 

Note also that this determinant is linear in the "last" coordinates {yi, j/2,3/3}-

6For example, (x\,y\), (12,4/2), and (13,2/3) lie on a line iff Det 
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Steve Smale's work on the theory of computation during the 1980's has 
been carefully reviewed by Mike Shub in 21. At the end of this period, two 
key aspects of Smale's work stand out. Firstly, there is the understanding he 
achieved of certain fundamental numerical algorithms. Quoting Shub's paper, 

He has firmly grounded himself in the mathematics of practical al
gorithms, Newton's method, and the simplex method of linear pro
gramming, inventing the tools and methodology for their analysis. 

Secondly, there is the awareness of the need for a theory laying out the foun
dations for scientific computation. This need is a motivating goal behind 29 

where a comparison between theoretical computer science and scientific com
putation constitutes the opening theme of the article. The following is taken 
from his paper. 

Algorithms in numerical analysis are primarily a means to solve prac
tical problems, while in computer science, algorithms are studied 
systematically in their own right. [... ] note that algorithms are the 
main object of study in scientific computation, yet there is not a for
mal definition of algorithm. I am reminded of how the development 
of the definition of differentiable manifold was so important in the 
history of differential topology. 

Thus, Smale wants to construct foundations for scientific computation just as 
those for discrete computation are constructed in theoretical computer science. 
A good part of Smale's work during the 1980's points in this direction. For 
instance, in 28, complexity lower bounds are proved by what Smale called 

mailto:lblum@cs.cmu.edu
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"tame machines", and notably in 6 , a very general machine model is defined 
and a theory of computability and complexity is developed. 

Two main results of 6 are the existence of universal machines and the 
NP-completeness of several feasibility problems. The latter reaffirmed the 
importance of equation solving as a computational problem and suggested 
two lines of research. On the one hand, there is the P / NP conjecture 
which implies that, even deciding feasibility for systems of equations cannot be 
done efficiently. On the other hand, while accepting the difficulty of equation 
solving, one might try to find algorithms which behave well "in general" or 
with respect to some particular viewpoint. These two problems appear in a 
list of problems for the next century proposed in 32 in response to a request 
from V. I. Arnold (on behalf of the International Mathematical Union). Smale 
selected 18 problems from which the 3rd exactly asks whether P = NP and 
the 17th ("Solving polynomial equations") reads, 

Can a zero of n complex polynomial equations in n unknowns be 
found approximately, on the average, in polynomial time with a uni
form algorithm? 

In the next section we will review some of Smale's work in relation to the first 
problem. Then we will focus on the second. 

1 The P vs. NP problem 

1.1 By the end of the 1980's a complexity theory over the reals had been 
established 6. This theory of complexity, although primarily devised to de
scribe computations with real numbers, is actually much more general. It 
describes computations over arbitrary rings and can be "parameterized" by 
the following five features: 1) a base ring, 2) allowable operations, 3) allowable 
branching tests, 4) a cost measure, and 5) input size. 

For instance, for the ring of integers 2Z with operations {+, - , x } , branch
ing on <, logarithmic (or bit) cost and bit input size, we recover, up to polyno
mial equivalence, the usual Turing machine model and the classical complexity 
theory of computer science. The same is true for the ring ZZ2 = {0,1} with 
operations {+, —, x, / } , branching on =, unit cost and vector length as input 
size. If we replace 2Z2 by the complex numbers C, we get a corresponding 
theory of computation and complexity over C. For a theory over the reals R, 
we allow branching on <. 

For each combination of these parameters (let's call this a setting) one has 
a natural P=NP problem. Here P is the class of (Yes-No decision) problems 
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solvable in polynomial time in the setting; NP is the class of problems whose 
Yes instances are checkable in polynomial time in the setting. 

For some settings, one can prove that P ^ NP simply because NP contains 
undecidable problems. For a few, a proof that P 7̂  NP can be obtained 
together with the standard inclusion NP C EXP. But for the majority, the 
question remains wide open. 

An issue raised by the variety of settings just mentioned is how the P=NP 
question relates between one setting and another. Thus in the foreword of 4 

Richard Karp writes, 

It is interesting to speculate as to whether the questions of whether 
P R = NPIR and whether P<c = NP<n are related to each other and 
to the classical P versus NP question [...]. 

A good part of the research in complexity theory over arbitrary rings during 
the last ten years has been dominated by this issue. 

1.2 An example of a relation between different settings is found in 26. Here 
an NP-complete problem over C is considered and its intractability is deduced 
from a hardness assumption concerning computations over TL. This reduces a 
complexity question over TL to a complexity question over <D, thus considerably 
enhancing a classical tool in computer science (the idea of reduction between 
discrete problems) to apply now to a broader class of problems (reductions 
between problems in different settings). 

The Hilbert Nullstellensatz as a decision problem can be stated as follows. 
Given polynomials fx,..., fs with complex coefficients, in n variables, decide 
whether or not there exists z € <D™ such that fi(z) ~ 0 for i = l , . . . , s . 
Even restricted to the case when all the ft have degree 2, the problem is 
NP<c-complete (cf. 6 ) . 

Now consider the following computational problem over TL. For an integer 
m denote by -r(m) the smallest integer I such that there exists a sequence of 
integers xo,x\,... ,xe with x0 = 1, xi — m and 11 = D; o Xj for 0 < i, j < 
k < t. Here o denotes addition, subtraction or multiplication. We say that 
a sequence of integers o^ is easy to compute if there exists c € IN such that 
r(afc) < (logfc)c for all k > 2. We say that the sequence afc is ultimately easy 
to compute if there exists a sequence m^ such that the sequence of products 
rrikCik is easy to compute. A sequence is hard (ultimately hard) to compute if 
it is not easy (resp. ultimately easy) to compute. 

The main result in 26 is the following. 
Theo rem 1 / / the sequence k\ is ultimately hard to compute, then the Hilbert 
Nullstellensatz is intractable, and consequently P<c 7̂  NP(p. 
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We remark here that the assumption of hardness of the sequence k\ in 
the sense above is related to the hardness of integer factorization classically 
(cf. 4 ) . 

1.3 Although there is a general belief that P ^ NP for every "reasonable" 
setting, it would appear wishful thinking to believe the resolution of the P=NP 
question over C, say, would resolve the question over 7L2, i-e. classically. 
Indeed, continuing the remarks quoted above, Karp adds, 

I am inclined to think that the three questions [over H, C and TL2\ 
are very different and need to be attacked independently. 

However, inroads are being made. For example, we now know that if 
P = NP over <D then BPP 3 NP classically. Here BPP is the class of decision 
problems solvable in probabilistic polynomial time, the modern version of the 
concept of "feasible." 

It is not difficult to prove that the answer to the P=NP question is the 
same for all finite fields. This is the case since, for any two finite fields K\ 
and K2, one can simulate computations over K\ with a machine over K2 with 
only a constant slowdown. In the same vein, one may ask whether the P=NP 
question has the same answer for all algebraically closed fields of characteristic 
zero. The main result of 2, which we now state, gives a positive answer to 
this question. 

Theorem 2 Let Q be the algebraic closure of Q and K be any algebraically 
closed field of characteristic zero. Then P = NP over K if and only if P = NP 
over Q. 

The "if" part of Theorem 2 was first proved by Michaux 20 using model-
theoretic arguments. The "only if" part required the use of properties of 
heights of algebraic numbers and establishing an Elimination of Constants 
theorem. 

So far, there is no transfer result corresponding to Theorem 2 for real 
closed fields. Michaux 20 proves the "if" part, the "only if" part remains 
open. Partial results in this direction can be found in 7. 

1.4 Another form of comparison arises naturally when considering {0,1} 
(i.e. 7L2) as a subset of a larger ring, most importantly as a subset of ]R or 
C. One may wonder about the computational power of machines over H, for 
instance, when input instances are assumed to be strings of zeros and ones. 

Such questions are first considered by Koiran in 17. Here he introduced a 
measure of cost for computations over IR intended to be closer to the bit cost of 
the Turing model. More precisely, in Koiran's weak cost model, additions and 
comparisons are performed with unit cost but multiplications are penalized so 
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that iterated multiplications becomes expensive (just as in the Turing model 
where one can compute 2™ with log n multiplications but with bit cost at least 
n). 

Now, let C be a complexity class of subsets of M°°. Denote by 

BP(C) = { S n { 0 , l } ° ° | 5 e C } , 

i.e., BP(C) is the complexity class over K2 consisting of all those sets (of 
bit strings) decidable by a machine0 in class C. The main result of 17 is the 
following. 

Theorem 3 Let Pw and NPw be the classes of subsets of IR00 decidable in 
weak deterministic and nondeterministic polynomial time respectively. Then 

BP(PW) = P/poly and BP(NPW) 2 NP/po/y. 

The "/poly" in the statement above introduces non-uniform complexity 
classes. These classes contain some undecidable sets but also they are known 
not to contain some decidable sets with high complexity. Also, P/poly is 
generally assumed to be strictly included in NP/poly since, by 15, if this is 
not the case then the polynomial hierarchy collapses at its second level6. Thus, 
Koiran's theorem yields a twofold insight. Firstly, it exactly describes the gain 
of using real constants and weak polynomial time for binary inputs (this gain 
is given by the "/poly"). Secondly, it gives evidence that Pw ^ NPw since 
the contrary would imply the collapse of the polynomial hierarchy. 

In 10 it was shown that indeed Pw 7̂  NPw- Actually, a more detailed 
analysis of the relationships between several complexity classes was made in 
that paper. Denote by PARw and PAR the classes of subsets of M°° decidable 
in parallel polynomial time for the weak and standard unit cost measures over 
B, respectively. Also, let DNPw be the class of subsets of M°° decidable in 
nondeterministic polynomial time but restricting the guesses to belong to 
{0,1}. Most of the results of 10 are sumarized in the following theorem. 
Theorem 4 The relations in the following diagram hold 

NPW = NPm 

> \ 
P w -> DNPW % PAR -> EXPW 

PIR -* PARw 

"As common practice, we are identifying complexity classes with classes of machines. 
' T h e polynomial hierarchy is an increasing sequence of complexity classes between P and 
EXP widely believed to be strict, i.e., no two classes in the hierarchy coincide. 
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where an arrow -> means inclusion, an arrow —> means strict inclusion and 
a crossed arrow *» means that the inclusion does not hold. 

Other results in 10 include a proof of the equality BP(PARyv) = 
PSPACE/poly. Here PSPACE denotes the class of subsets of {0,1}°° de-
cidable in polynomial space. 

2 Solving equations 

2.1 Algorithms for deciding the feasibility (and finding solutions, if appro
priate) of complex systems of polynomial equations, or real systems of poly
nomial equations and inequalities, have a long history. For the most part, at 
least concerning feasibility, they rely on algebra or, more precisely, on elimi
nation theory. These algorithms have several virtues (for instance, they show 
that NP is included in EXP, the class of problems decidable in exponential 
time). But they are slow and they do not appear to be stable when imple
mented with floating point numbers. A possible reason for these drawbacks is 
that these algorithms solve in exponential time all input systems. Therefore, 
they have to deal, on equal footing, with a collection of ill-posed systems (e.g. 
feasible overdetermined systems, systems with multiple roots, etc.). 

The tradition in numerical analysis suggests a different strategy for the 
design and analysis of algorithms. A condition number is associated to an 
input. Several features of the algorithm and of the output corresponding to 
the input will depend on this number. In particular, ill-posed inputs, those 
having infinite condition number, may produce exceptional behavior of the 
algorithm. 

Condition numbers were originally introduced to measure the sensitivity 
of a given input (for a specific computational problem) to perturbations. If 
tp is the function we are computing, the condition number of x measures how 
large \\<p(x + Ax) — ip(x)\\ may be compared to ||Aa;|| for small perturbations 
Ax. 

x 

i • , <p{x) 

ip(x + Ax) 

Inputs with small condition number are well-conditioned and those with 
large condition number are ill-conditioned. This idea of conditioning is already 
present in a paper of Turing 33 from the early days of computers. 
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We should describe the equations (8.2) as an ill-conditioned set, or, 
at any rate, as ill-conditioned when compared with (8.1). It is char
acteristic of ill-conditioned sets of equations that small percentage 
errors in the coefficients given may lead to large percentage errors in 
the solution. 

In this paper Turing introduced the term condition number for linear equation 
solving. In this case, the condition number K(A) of a square matrix A is given 
by K(A) — | |A||| |A_1 | | where the norm denotes the operator norm with respect 
to the Euclidean norm in both domain and target spaces. 

Note that a matrix has infinite condition number if and only if it is not 
invertible. Thus, the set E of all ill-posed problems has measure zero in the 
space I t " oinxn matrices. The distance of a matrix A to E is closely related 
to K(A). 

Theorem 5 (Condition Number Theorem) For any nxn real matrix A 
one has 

A (A ^ - HA|I 
MA^-^Ay 

Here dp means distance in H™ with respect to the Frobenius norm, \\A\\p = 

4 E4-
This theorem was first proved in 13 under the equivalent form ||̂ L 1 j) = 

For non-linear systems, the consideration of a condition number poses 
some difficulties. Suppose we want to compute some solution to a system of 
non-linear equations / . Since the system may have several solutions and we 
do not require any one in particular, <p(/) is not well-defined. 

A possible resolution is to consider the condition number ^i(f, £) for a pair 
(/, £) with £ G R m a solution of / = 0. Then, one may define the condition 
number /i(/) in terms of the worst conditioned solution £, i.e., 

M/) ^i^fvLo^1 '^" 

This is the tack taken by Smale and Mike Shub in the Bezout series of pa
pers [Shub and Smale 22,23,24,27,25j j j e r e a n jmp ressive development of homo-
topy methods for systems of complex polynomial equations provides a non
uniform solution to Problem 17 in Smale's list. We shall now attempt to 
summarize some of the main results in the series. 

2.2 Let d = (d i , . . . ,d„ ) G IN" and H^) denote the set of polynomial 
systems / = ( /1 , . . . , /« ) where fi is a complex homogeneous polynomial of 
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degree dj in Xo, • • • ,xn. The problem at hand is: given / € 'H(d), find £ S 
C™+1, £ 7̂  0, such that /(£) = 0. Notice that replacing / by any nonzero 
multiple A/ will not affect the problem. Also, since the / , are homogeneous, 
if /(£) = 0 then /(A£) = 0 for all A € € , A ̂  0. It is thus natural to consider 
a "scale invariant" version of the above problem. This is done by replacing 
the spaces 'H(d) a n d C n + 1 by their induced projective spaces. Let TP(7i(d)) 
denote the complex projective space associated to 7i(d) • The problem now can 
be restated: given / € P (71(d)), find £ € P ( C n + 1 ) such that /(£) = 0. For 
each sytem / and each root £ 6 P ( C n + 1 ) Shub and Smale define a condition 
number fi(f, £) extending classical work in numerical analysis going back to 
Wilkinson 34 and Wozniakowski 35 . They then prove the following equality 

M/,0 = ll/IIIP/(Olr(!
1A(||^||*-1)||. 

Here, | | / | | denotes the norm induced by the Weyl Hermitian product 
on %(d)c- Also, A(| |£| |d i _ 1) denotes the diagonal matrix with diagonal 
(M\^-1,...M\\d"'1)^dTi = {v&€n+1\(v,O^0}. 

From this characterization, a closed form of the set X' of ill-posed pairs 
(/, £) follows. More precisely, 

£ ' = { ( / , 0 I f(0 = 0 and ker(Z?/(£)h) ^ 0}, 

i.e., £ ' is the set of pairs (/, £) such that £ is a degenerate zero of / . 
Shub and Smale then prove a result akin to a Condition Number Theorem. 

The standard Hermitian product in C n + 1 naturally induces a Riemannian 
metric on P ( C n + 1 ) . In a similar way, the Weyl Hermitian product naturally 
induces a Riemannian metric on P(71(d))- This allows us to consider distances 
in P(f t ( d )) x P ( C n + 1 ) . Let 

Vt = {/ € W(7i(d)) | /(£) = 0} 

and dz((f,£),£') denote the fiber distance, i.e. the distance in V^ x {£}, 
between (/, £) and £ ' . Define the normalized condition number by 

AWm(/,0 = \\f\\\\Df(0\T^(m\dl~1y/dl)l 
Then 

/ i n o r m ( / ^ ) = d£((/,£),S')' 
cAlthough this is not relevant for what follows, we mention here that the Weyl Hermitian 
product is, essentially, the only such product in H(d) invariant under unitary substitution 
of the variables. This means that if a : C n + 1 -> C n + 1 is unitary (i.e. ||<T(Z)|| = ||z|| for 
every z £ C n + 1 ) then, for f,g £ %(<*)> (af,ag} = (f,g)- Here af denotes the polynomial 
in ti^d) satisfying (<r/)(z) = f(tr(z)) for all z € <Cn+1 and ( , ) denotes the Weyl Hermitian 
product. 
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To obtain a condition number for / only, Shub and Smale define 

Mnorm(/) = max p n o r m ( / , 0 -
CI/(€)=0 

The condition number of a polynomial system is thus that of its worst condi
tioned zero. The set S of ill-posed systems is then the image of £ ' under the 
projection 

7 r : P ( K ( d ) ) x P ( ( C " + 1 ) ^ P ( K ( ( i ) ) , 

i.e., the set of all systems having a degenerate zero. Defining 

p ( / ) = ? m i n = o d s ( ( / , C ) , S ' ) 

one gets /inorm(/) = p{f)~l. This is not, strictly speaking, a Condition Num
ber Theorem for Mnorm(/) since p(f) is not the distance from / to E, but it 
is akin to one. A simplified account of this is presented in Chapter 12 of 4. 

2.3 Let us consider again the problem: given / € P(%(d)), find £ £ C"+ 1 , 
C ̂  0, such that /(£) = 0. 

Consider an initial pair (g,£) with g G P(%(d)) and £ G P ( C n + 1 ) satisfy
ing g(£) = 0. Define, for t £ [0,1], the function ft = tf + (1 — i)#. In general, 
as t varies from 0 to 1, a curve C of pairs (ft,^t) with /t(£t) = 0 is generated 
in the product space P(%(d)) x P((C"+1). Since / i = / , £i is the point C we 
are looking for. The homotopy algorithm in 22 produces a sequence 

0 = t0 < *i < • • • < ** = 1 

and a sequence of pairs (/t^,^*) which "closely follows" this curve provided k 
is large enough. By "closely follows" we mean that £* is a good approximation 
of the root £t; of ftt (in the sense that Newton's method for fti with initial 
point £* converges quadratically to &; from the first iteration). Notice that 
this property implies, in particular, that £jj! is a good approximation of the 
desired root C = £i • 

The expression "fc is large enough" in the paragraph above has a precise 
meaning, namely, 

k>cD2n(C)2Lf. (1) 

Here c is a universal constant and D = max{di,... ,dn}. In addition Lf is 
the length of the curve {ft | 0 < t < 1} in P('H(d)) and /j,(C) is a condition 
number for C (thus depending on / , g and £o) defined by 

fi(C) = max «(/(,(()• 
t€[0,l] 
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In some sense JJ,{C) measures (inversely) how close C is to the set £ ' (so again 
we have the scent of a Condition Number Theorem). 

pro jec t ive 
space 

£' = {(/, £) | £ is a multiple zero of /} 

polynomial 
systems 

2.4 The algorithmic idea described above is not fully satisfactory. Prom an 
algorithmic viewpoint, the lack of a well specified initial pair (g, £0) is certainly 
a drawback. And from a complexity viewpoint, one may want to eliminate 
fi(C) from the bound (1) on the number of iterations and replace it with some 
probabilistic argument. Note that n(C) also depends on the choice of (<7,£o). 

To date, these drawbacks have not been resolved. The contents of 25, 
which we now describe, provide the best results so far towards a solution. As 
we shall see, they trade-off between algorithmics and complexity. 

A key ingredient of the homotopy algorithm in the Bezout series is the use 
of a-theory. This theory, developed by Smale in the 1980's, provides a test to 
check whether a point z is an approximate zero of a function / . The test is 
one-sided in the sense that if the answer is Yes, then z is an approximate zero 
of / , but if the answer is No then it may or may not be so. An approximate 
zero for which the answer is Yes will be called certified. The desired output 
££ of the algorithm is, of course, a certified approximate zero. 

Let's now be more precise about the way one eliminates fi(C) via a prob
abilistic argument. 

The Hermitian structure on 11(d) a l s o induces a probability measure on 
P(%(d))- With this measure define a "probability of failure", for an initial 
pair (g, £) and a number of iterations k, by 

a = Prob {the point £j* is not a certified approximate zero of / } . 
/eP('H((J)) 

Intuitively, a is related to the probability of having /z(C) large. This relation 
leads to the elimination of /z(C) in the next statement. 
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Theorem 6 Fix d = (di,...,dn) and 0 < a < 1. Then, there exists ((?,£) 
with g(£) = 0 such that if the number k of iterates satisfies 

k > ^ where e = ' 
logP 

(or k > cN4/(a1 6) if some d, = 1 or n < A) then the probability of failure is 
at most a. 

Here JV is the number of coefficients of / in the dense encoding. Thus, 

N = N\ + • • • + Nn where each /$ has Ni = I , ' J coefficients. The 

number N is a reasonable measure of the size of / . Also, V = JJ"=1 di, the 
Bezout number of / . 

Each iteration performs at most O(N) arithmetic operations. Hence (for 
n > 4, di > 1), Theorem 6 implies that, for each a, there exists an algorithm 
which after -^i^r arithmetic operations either returns an approximate zero of 
its input / , or returns a failure message. The latter happens with probability 
at most a on / . Notice, however, that Theorem 6 is a purely existential result 
since it gives no indication of the pair (g, £). The qualification of non-uniform 
for this algorithm refers to this dependance of (g, £) on the dimensions n, d of 
the problem and on a. 

Since a is fixed, the bound on the number of arithmetic operations (i.e. 
the time complexity bound) is polynomial in N. Thus, the algorithm above 
is polynomial time in the worst-case setting. One can further eliminate the 
positive probability of failure by trading the worst-case setting for an average-
case setting and adding additional non-uniformity. 

For t > 1 consider a pair (<?<,&) as provided by Theorem 6 for a = 2~l. 
Now consider the following algorithm (we assume n > 4, di > 1). 

£ : = 1 
(1) a:=2-l 

h — cN* 
perform the homotopy algorithm with k iterations and 

initial pair (gi,£t) 
if ££ is an approximate zero of / then HALT and return ££ 
else I := I + 1 and go to (1) 

Theorem 7 The algorithm above performs, on the average (over f £ 
P(7^(d))/), cN* arithmetic operations (or cN5 if some di = 1 or n < A). 
It yields an approximate zero of its input f in finite time provided f £ E, i.e. 
for all its inputs except a set of measure zero. 
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The algorithm in Theorem 7 has no failure return. One may consider the 
infinite running time for inputs / € £ as a failure, but this event has measure 
zero in P("K(d)). On the other hand, the polynomial time bound is only on 
the average and the non-uniform character has increased since we now need 
an infinite sequence of pairs (ge,^e) at hand. 

The non-uniform character of these algorithms is certainly unsatisfactory. 
Shub and Smale conjecture, however, that making them uniform is easy. More 
concretely, let 

gi=ZQi~1zi for i = l , . . . , n 

andf = (1 ,0 , . . . , 0). 

Conjecture The pair (<?,£)> with g = (gi, • • • ,gn), satisfies the hypothesis 
of Theorem 6. Consequently, one may take the constant sequence (g,£) for 
the algorithm in Theorem 7. 

2.5 The main focus of 29 was on complexity theory. Smale explained the 
path that led him (together with L. Blum and M. Shub) to the machine model 
in 6 and the complexity theory built upon this model. In an appendix, called 
"Round-off error, approximate solutions, and complexity theory," he proposed 
to integrate conditioning and round-off with complexity theory. (Other dis
cussions along these lines appear in S'1'30*3.) 

In 31, by invitation of Acta Numerica, Smale wrote a paper with his views 
on complexity theory and numerical analysis. Here one can see advances 
towards the integration of complexity theory and conditioning, of which the 
Bezout series is a landmark. The consideration of round-off in a general 
complexity theory remained an open issue although Smale proposed some 
suggestions in the last part of the paper which he qualified as "tentative". 

By the end of 1996, when the Acta Numerica paper was already in the 
printing process, Smale proposed to Cucker to study the feasibility problem for 
semi-algebraic systems from a round-off perspective. The goal was to provide 
an algorithm whose analysis would involve both complexity and round-off and 
in which conditioning would play a central role. 

The turf for this goal was unclear. Traditional round-off analysis has dealt 
mainly with linear algebra problems. The field of semi-algebraic geometry had 
not been a major concern of numerical analysts. Thus, condition numbers for 
our problem had to be defined. But, since the feasibility problem is a decision 
problem, the definition of condition number using perturbations as in 2.1 is of 
no use. The condition number would be infinity for systems on the boundary 
between feasible and infeasible and zero otherwise. 

The definition of condition number Cucker and Smale proposed, /J*(<p), 
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has two different expressions according to whether ip is feasible or not (cf. n ) . 
In the feasible case, if x € R™ is a point satisfying ip, then the condition 
n((p,x) of the pair (<p,x) is defined in a way which extends the condition 
number of the Bezout series. But unlike the latter, the condition number of 
<p is now taken to be the condition of its best conditioned solution. That is, 

fi*(ip) = inf n(ip,x). 
z€Sol(v?) 

Here Sol(y) denotes the set of solutions of <p. Thus, for <p to be ill-posed, all 
its solutions need be. One can see fj.*(p) as a far-reaching generalization of 
the condition numbers used by Turing and Wilkinson. 

Having defined (i*{<p), there still remains the problem of what kind of 
result one may prove for a decision problem since the output of the problem 
does not allow for "perturbations", it is either Yes or No. The main result 
of n can be stated as follows. 

Theorem 8 Let ip denote a semi-algebraic system as follows 

( fi(x) = 0 i = l,...,m 
gj(x) > 0 j = l,...,r 
hk(x) >0k = l,...,q 

where fi,gj,hk are polynomials in x\,... ,xn with real coefficients. 
There is a machine M over M which decides, on input ip, whether there 

is a point x € H™ satisfying (p. The halting time of the machine is bounded 
by 

H*(<p)2nsize{<p)cn 

with c a universal constant (and thus, in particular, M may not halt on inputs 
ip such that H*(<p) = oo). 

Moreover, on each arithmetic operation, a round-off error is permitted 
with precision polynomialy bounded in log fi*(<p) and in size((p). 

Here size(<p) is the size of the dense encoding of ip and is independent of 
the coefficients of the f 's, g 's and h 's. 

The round-off model considered in Theorem 8 is the absolute error model. 
An absolute round-off unit S < 1 is considered such that, the result of each 
arithmetic operation performed with round-off unit 6 satisfies 

xoy = (x o y) + p 

with \p\ < 5. The precision of the computation is | log <5|. This roughly 
corresponds to the number of bits necessary to write down a number with 
round-off unit 6. It is also in agreement with the expression "infinite precision" 
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(for <5 = 0) and with the idea that the higher the precision, the more accurate 
the final result. A similar result (polynomial precision) can also be obtained 
for the (more usual nowadays) model of relative error. 

An additional feature, not present in the statement of Theorem 8, is that 
if no round-off is allowed and M halts on a feasible input then, in addition, 
M returns an approximate solution of (p. (By approximate solution we mean 
a point such that Newton's method, for a specific function associated to ip, 
will immediately converge quadratically to a solution of ip). The reason this 
additional bonus is not present in general here is made clear in Remark 24 of n . 
Rougly speaking, in the feasible case, fi*{<p) is given by the best conditioned 
solution of ip. But there may be points which are not approximate solutions 
of tp but which can be erroneously tested as such if the machine precision is 
low. To avoid the return of such a point as an approximate solution, a more 
restrictive condition number is required to control the machine precision, one 
depending on all points in E " and not just on the solutions of ip. In 8 another 
condition number, Q*(<p), is defined along these lines for which the following 
is true. 
Theo rem 9 If the precision of the machine M in Theorem 8 satisfies a cer
tain bound polynomial in log a* (<p) and size(ip) then the following holds: for 
feasible inputs ip, if M halts it also returns an approximate solution of ip. 

2.6 Two more papers dealing with algorithms for equation solving are 12 '9. 
In the first one, lower bounds for the kind of algorithms used in the Bezout 
series are given. Firstly, the class of algorithms is formally defined. A Newton 
Continuation Method sequence (NCM sequence) is a sequence 

(fu d) € F(riid)) x P ( C n + 1 ) 0 < i < k 

satisfying fi((i) = 0 and Q is a certified approximate zero of / i + 1 for 0 < i < k. 
The main result of 12 is the following. 

Theo rem 10 For any NCM sequence {fi,(i)> 0 < i < k, 

(i) k > ci max ( 1, —-— J dR((0, (k), and 

( i i ) k>C2 dR&M . 

Here C\ and C2 are universal constants, dn is the Riemannian distance in 
P ( C " + 1 ) and S/. = {z € P(<D"+1) | rankD/ < n} . 
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Actually, the version of Theorem 10 appearing in 12 is more general in the 
sense that it holds also for underdetermined systems. That is, the functions 
fi above may satisfy 

fi : C n + 1 -)• <Dro 

with m < n. To apply Newton's method in the underdetermined case, i.e., 
when m < n, one replaces the inverse Df(z)]^1 by the Moore-Penrose inverse 
Df(z)\^. 

In the second paper, 9, a totally diferent context is considered, that of 
diophantine equations. The general problem of deciding whether a polynomial 
equation has integer roots is known to be undecidable. For the special case of 
only one variable, algorithms exist which compute all the integer roots. If 

d 

f = Y^ ̂  

with o; £ ffi, ad / 0, these algorithms return the integer roots of / in time 
polynomial in d and L = max{height(oj)}. Here, for an integer a, height(a) = 
log(l + \a\). This is roughly the number of bits necessary to write down the 
binary expansion of a. We conclude that these algorithms are polynomial 
time in the dense encoding of / , i.e. in the encoding of / consisting of the list 
of all its coefficients, 

dense(/) = {a0,ai,... ,ad}. 

For polynomials with few non-zero coefficients this way of representing / can 
be artificially expensive. For such polynomials possibly a more sensible en
coding is the sparse encoding in which only non-zero coefficients are specified, 
together with their indices, 

sparse(/) = {(di,i) | 0 < i < d, en ^ 0}. 

This encoding uses at least L bits to write down the largest coefficient plus 
logd bits to write down the exponent d. But it may be exponentially more 
succint than the dense encoding since the latter specifies all d+ 1 coefficients. 
In particular, the algorithms mentioned above for computing the integer roots 
of / may take exponential time in the sparse encoding. The main result of 9 

is the following. 
Theorem 11 There is a polynomial time algorithm which, given input f G 
7L[t] in the sparse encoding, decides whether f has an integer root and, if this 
is the case, outputs the set of integer roots of f. 
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3 Additional remarks 

Many of the themes outlined in this article, and more, are developed in the 
book Complexity and Real Computation published toward the end of the 
1990's 4 . An approach that initially was met with a certain degree of skepti
cism ("machines are finite so how can you have a theory of computation over 
the reals?" and "what use is a foundational theory for numerical analysis, 
anyway?") has led to fertile areas of research producing new insights, new 
algorithms, new methodologies for their analysis, and certainly a deeper un
derstanding of computation. Connections are being made between the newer 
theories and the classical theory of computational complexity (e.g. tantaliz
ing transfer results for the fundamental P=NP problem), paving the way to 
employ techniques of mainstream (continuous) mathematics to grapple with 
hard (discrete) problems of computer science. 

Steve Smale, indeed, has been the driving force behind the creation of an 
overarching community of researchers interested in the foundations of com
putational mathematics. One need only look at the titles of the workshops'* 
offered at the Foundations of Computational Mathematics conference at Ox
ford University during the summer of 1999 to gleam an appreciation of the 
scope of this community. Smale's vision, drive, and personality —at once 
unassuming and compelling— has inspired many young (and some old) re
searchers to chart new territory. The wonderful work of Koiran 18>19, Kim 16, 
and Gradel and Meer 14, amongst others, testimony enough to Smale's influ
ence, promises even more to come. 
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We describe and study in this paper a two step estimation scheme for density esti
mation from i.i.d. observations. Each step is based on the Gibbs aggregation rule 
and computes an adaptive histogram for which a non asymptotic oracle inequality 
is satisfied. The estimator computed in the first step is used to code the data in 
the unit interval in a way that is inspired by arithmetic coding. The second es
timator analyzes the coded sample and refines the first one. Numerical evidences 
are provided of the efficiency of the method. 

1 Introduction 

We will present an approach to adaptive inference that mixes ideas coming 
from data compression, statistical mechanics and model selection (or rather 
model aggregation, as we will see). 

We will concentrate on the problem of density estimation by histograms. 
Numerical experiments will consist in estimating densities with respect to the 
Lebesgue measure on the unit interval. The observation will be an i.i.d. sam
ple {Xi)f=1 with joint distribution P®N, where P 6 M^([0,1],S) is a Borel 
probability measure on the unit interval (throughout this paper, M+(X, 3") 
will be the set of probability measures on the measurable space (X, 3"), more
over we will forget to mention the sigma algebra 2f when its choice is obvious 
from the context). 

This problem is interesting in itself, but also has some connection with 
the analysis of "symbolic sequences", such as DNA sequences or typed texts. 
Let us comment on this to start with, since it was the main motivation for 
writing this paper. More precisely, the observation (Xi)^L1 which we were 
talking about can be constructed from an experiment on words: Let A be a 
finite alphabet, and assume that we observe an i.i.d. sample (Si)^ of infinite 
(or if you prefer very long when compared with the number of samples N) 
sequences of letters : 

Si = (S!)?=1, SfeA. (1) 

These sequences may for example be built by choosing at random a starting 
point in a DNA sequence or a digitized ASCII text. 

mailto:catoni@ccr.jussieu.fr
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We may be interested in coding a new-coming sequence SN+I to achieve 
the best possible compression rate (i.e. the best possible average number of 
bits in the coded representation of SN+I, supposed to be of variable length). 
If we knew the distribution of SN+I , then we could code the prefix of length M 
of this sequence, namely (SN+1,..., S^+l), or with shorter notations S]j+1, 
using arithmetic coding (sometimes called the Shannon-Fano-Elias algorithm, 
see 16 ). Let us remind that an arithmetic code based on P(<iS^+1) (our 
notation for the distribution of the random variable SN+1 € AM) is a mapping 
from AM to the set of finite binary sequences {0,1}*, c : AM -> {0,1}*, which 
is built from F{dSN

I^l) in such a way that the length of the code for word 
s e AM is approximately equal to — log2[P(5Jy+1 = s)]. The average code 
length is the expectation E\l[c (S^^KL)] of the length I of coded words. When 
arithmetic coding is used, the average code length is upper bounded by 

n[v(dS1£1j\+2, 

where H is the Shannon entropy (expressed in bits : the Shannon en
tropy of a probability distribution P on a finite set E is equal to 
— YlseE P(s) 1°S2 [P(s)] > l°g2 being the logarithm with base two). 

If we do not know this distribution, then we can replace it with an estimate 
P, computed from the observation of (Si)^.1. An arithmetic code based on 
P will have an average length not greater than 

I f [ F ( d S ] & ) ] + j ^ 2 ) 3 c [ p ( d S ^ ) , p ] + 2, (2) 

where 3C is the Kullback Leibler divergence function : if /i and v are two 
probability distributions, then 

log I — 1 d\i when /i <C v, 

-oo otherwise. 

Thus it is advisable in this situation to minimize what is usually called 
the ideal redundancy 

^ [ F ^ S J . P ] (3) 

of the "ideal code" corresponding to the coding distribution P, with respect 
to F(dSN+1). Equation (3) defines a natural risk function to guide the choice 
of the estimator P. 



37 

We get back to the setting of density estimation on the unit interval by 
labeling the alphabet A with integers, taking A = {0,1,.. .,\A\ - 1}, and by 
defining Xt as 

oo 

^ = £#14--*. (4) 
fc=i 

When this identification is made, the Lebesgue measure appears as the iden
tity code in the binary case A = {0,1} and in the general case as a code of 
approximately constant length. If we replace the Lebesgue measure with an 
histogram, whose cells are defined from the first digits of X only (in the rep
resentation of X defined by (4)), then, apart from some rounding effects due 
to the discrete nature of coding, we essentially compress the representation 
of the first digits of X and let the remaining digits uncompressed. Thus, to 
an histogram model on [0,1], corresponds some kind of generalized n-gram 
model on the symbolic sequence S. 

Another, maybe more familiar, interpretation of all this, is that we are 
looking for an estimator of the distribution of SN+I which maximizes the 
mean log-likelihood of SN+I. In this interpretation, the Lebesgue measure 
gives the same likelihood to all sequences of length M, and histograms based 
on the first digits give uniform weights to the following digits, not implied in 
the cell definition. 

Note here that we neither assume that the distribution of the sequence 
SN+I is time-homogeneous, nor that it satisfies the Markov property. 

2 The model 

Let A be some finite alphabet. Let A* = U ^ i A% be the set of all finite 
sequences of letters (i.e. of finite words). Let 0 be the empty word (of null 
length). For any word s £ A*U{0}, let £(s) be the length of s, i.e. its number 
of letters. (We put l{0) = 0.) 

Let us say that T> C A* is a complete prefix dictionary if no word in D is 
the beginning (or as it is usual to say in these matters, the prefix) of another 
word in T>, and if the addition of any new word to D would break this rule. 
For any complete prefix dictionary, let n(T>) be the set {(s i , . . . , s*) : s € 
D, 1 < k < £(s)} U {0} of all the (possibly empty) prefixes of all the words of 
V. We will call 7r(D) the prefix set of D. 

Consider some i.i.d. random variables ( X ^ ) ^ with values in some mea
surable space (X,<B). Let n £ 3Vt+(DC,!B) be some reference probability mea
sure on DC. 
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Let S be a set of words that is either the set of all finite words A* U {0} or 
the prefix set 7r(Doo) of some large complete prefix dictionary "D^,. Assume 
that for each word s G § a measurable cell Is G 05 has been chosen, and that 
these cells satisfy the three following properties : 

• i0 — X, 

• {Is,a •" a G ̂ 4} is a partition of Is, for any s G 7r(Doo) \ T>oo, 

• fJ,(Is) > 0 for any s G S. 

This cell structure {Is : s € §} induces a mapping of complete prefix 
dictionaries to measurable partitions of X, as is stated in the following lemma 

Lemma 2 .1 . For any complete prefix dictionary ! D c § , {Is : s G D} is a 
measurable partition ofX. 

The proof is left to the reader. 
Let D c S b e some complete prefix dictionary. Let us consider the family 

2) of all complete prefix dictionaries D such that D C TT(I ' ) . Let us consider 
the family of histogram probability distributions qxi,e(x)p,(dx) G M:"j_(X, !B), 
where T> G £> and where 6 6 M+(D). We define the histogram density q^tg 
with respect to fi to be 

*D,*(*) = £ ^ r l ( s G / . ) • (5) 
S £ B W J s J 

Our aim will be to estimate the distribution P®N of (Xi)^ by an his
togram 9Dte (x)fi(dx), trying to minimize the Kullback divergence 

X(P,qvAx)Kdx)) 

with respect to T> and 6. Let us recall here that the Kullback divergence 
between two probability measures v and p is defined to be 

[+00 otherwise. 

To make sure that we approximately minimize this risk function, we will pro
duce an oracle inequality. This inequality provides an upper bound for the 
risk that implies no prior knowledge of the properties of the true marginal 
distribution P, and therefore shows that the estimator is in some sense adap
tive. 
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3 Estimation scheme 

Our strategy to compute an estimator will be the following : 
• First aggregate the histogram models qi>t0(x)ij,(dx) using the Gibbs 

estimator 15, to compute a first estimator Q(dx) = q(x)n(dx). Base this 
first estimator on some part (Xi,... ,XK) of the observations only (where 
0<K <N). 

• Using Q as a coding distribution, map X to the unit interval, in the 
spirit of arithmetic coding. More precisely, A* U {0} may be totally ordered 
by the lexicographic rule, which stipulates that sas' < sbs" and s < ss', 
whenever s, s', s" £ A* U {0} , and a < b £ A. We define a map F from X to 
[0,1] in two different ways, depending on whether 8 is finite or infinite. 

1. When 8 = ^(Doo) is finite, we define a map a : X —»• Doo by the non 
ambiguous rule x £ I(T(X)- Then we define F : X —• [0,1] by 

F(x) = Q[a{X) < a(x)] + \Q[O{X) = a{x)}. (7) 

Note that the arithmetic code for a(X) based on the estimation Q of P 
would be obtained by truncating F(x) to the (approximately) shortest 
binary representation which allows to recover a{x) from F(x) in a non 
ambiguous way (see 16 ). 

2. When § = A* U {0} is infinite, we define a : X ->• AN by the rule 
x £ Is for all the prefixes s of a(x) (i.e. all finite words s of the form 
(a(x)i,...,a(x)k), with k ranging in M). Then we define again F : X —> 
[0,1] by 

F(x) = Q [a(X) < e[x)] + \Q [a(X) = a(x)]. (8) 

Lemma 3.1. In both cases for any x £ X 

\ {Q[F(X) < F(x)} +Q[F(X) < F(x)]} = F(x). (9) 

Consequently, when 8 = A* U {0} , the following statements are equivalent : 

1. The image Q o F _ 1 of Q by F has no atom. 

2. The image measure Q o F _ 1 is the Lebesgue measure on [0,1]. 

3. For any x £ X 

Q[a(X) = a(x)} = 0 . 
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Remark 3.2. The proof can be found in the appendix. To summarize things, 
what we wanted to express by this lemma is that F(X) is almost uniformly 
distributed on [0,1] under P, up to the estimation error between P and Q, 
and discretization phenomena. 

• Code the remaining part of the observations {XK+\ , Xx+2, • • • j -Xjv)> to 
create 

Yi=F(Xi), K<i<N. 

The distribution of (Yi)^LK+1 is i.i.d., and its marginal distribution should 
be close to the Lebesgue measure. Therefore, it is natural to consider the 
Lebesgue measure A as the reference measure on [0,1]. A second estimator 
Q is built for the distribution of Y*. It is computed along the same principles 
as the first estimator. The unit interval is equipped with the cell structure of 
the dyadic intervals : for any s G {0,1}* U {0} we put 

+ [0,2"'W[. (10) 

The second estimator Q is built by aggregating histogram distributions based 
on the cell structure {J s : s £ {0,1}* U {0}} , using the Lebesgue measure as 
our reference measure on the unit interval. 

• Eventually we compute an estimator Q in the following way. We put 
for every Is, s £ B 

Q(IS) = Q(Q({J /. ') + [O,Q(I.)[)- (II) 
«'<s, 
s'es 

This characterizes a probability measure on the sigma algebra 3 generated by 
{Is : s e §}. Indeed, in the case when § = 7r(Doo) is finite, 3 is finite, and it 
is elementary to check that Q is additive on 3. Indeed, if we put 

JS = Q ( \ J is>) + [o,Q{i.)[, ses, (12) 
«'<s, 
s'es 

we see immediately that Js = \JaeA Jsa, and that this is a disjoint union. In 
the infinite case, when S = AM, 3 is isomorphic to the sigma algebra of A® 
generated by the coordinate maps. The same reasoning as in the finite case 
shows that Q is additive on any sigma algebra generated by a finite number 
of coordinates. Therefore, by a well known extension theorem (see e.g. 30 ), 
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it can be uniquely extended to a probability measure on 3. Then we complete 
the definition of Q by taking 

Q ( . | 3 ) = M ( - | 3 ) . (13) 

The reason for using this two step estimation scheme is that we can save 
some computing and memory resources by using in the first and second esti
mates two maximal dictionaries (i.e. two values for D) which are both smaller 
than what would have been required in a one step estimation algorithm to 
achieve the same accuracy. This allows to use a static implementation of the 
tree structure 7r(D), resulting in faster computations. We are planning to 
use this approach in application fields where it is crucial to optimize memory 
requirements, due to the necessity to use complex models. Performing succes
sive zooming on high probability regions by successive recoding of the data is 
a way to "factorize" the choice of a model adapted to the data. 

4 Details of estimator definition 

We build the first estimator in the following way. This variant of what we 
proposed in 15 was influenced by Alain Trouve, who suggested to estimate 
the conditional distributions 6(sk | s j _ 1 ) instead of estimating directly 6(s). 
We are glad to thank him for this contribution. We cut ( X i , . . . ,XK) into 
(X\,..., XM) and (XM+I > • • • > XK). We use (Xi,..., XM) first to estimate 
the parameter 6 e M\CD). We write 

l(s) 

9(s) = Y[e(sk\s
k
l-

1). (14) 
k=i 

Each conditional distribution d(sk \ s^1) takes its range in the set 0 of all 
possible distributions on the alphabet A, which is nothing but the \A\ — 1 
dimensional simplex. We estimate these conditional distributions using the 
Laplace estimator. An oracle inequality for this estimator applied to any 
exchangeable sample is derived in 14. The estimator itself was introduced by 
Laplace a long time ago (as mentioned in Rissanen's lecture notes 3 2 ) , and 
is for instance used by J. Rissanen in his papers about the context algorithm 
33>36. Let us introduce the counters 

M 

6(s) = 5 3 l ( X i e / a ) . s€7r(D). (15) 

Let Si S S be the random variable Si = cr(Xi) (this coincides with the defini
tion given in the introduction in the case of the unit interval). The Laplace 
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estimator is 

a (Ck _ Q | C j fc - i sdef &(gl) + l 
'M^JW+1 — sifc P t f + 1 — Sx J — fc_1 

Hi*-1) + w 

Theorem 4.1. Wi'£/j tte previous notations and hypotheses, 

(16) 

* ^(a,,E"(«-){-tog[^(^+i)]} + § ^ f d7) 

Proof. For any X € X, let D(x) € T> be defined by the relation x e /u( x) . Let 
d\V(x)l 

us notice that g© e (x) = —j y , and therefore that it is enough to prove 

the theorem with ? B , « ( J M + I ) replaced with # [ D ( X M + I ) ] -

Let us change within this proof the definition of the counters b(s) and put 

Af+l 

b(s)= £ 1 (*<€/.) • 

With this modified definition 

8M [SM+1 I SM+i ) = 

(18) 

HsT. 
Kst1) + \A\-i 

(19) 

Let us also introduce the notation 6M,I to indicate the estimator based on the 
modified sample (Xi,... ,Xi-\,Xi+i,... ,XM,XM+I)- We can use the fact 
that p®(M + 1) is exchangeable to write 

-E|log[0M[:D(*M+i)]j j = -E j ^- j- j 53 log[0M,;[W)] (20) 

= ̂ ^E^T l0S 
s € D 

M + l 
&(**) 

(21) 
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. . . To get this second expression, we have grouped the indices according to the 
values taken by T>(Xi) and used the definition of 9M- Moreover we have used the 
convention 6(si) = M + 1 . . . 

= * -£ Hs) , _ / Hs) log 

seB 
M + l °\M + 1 

(22) 

^m><-m 
(23) 

We ftove used the identity —L , ' = — tH ( 1 
y 6(af-1)+|>l|-i ( ^ T 1 ) \ 

I l>tj-i 

\jL M + 1 H M + I (24) 

^ b{s) , / | A | - 1 

se7r(D)\© 
M + l 

(25) 

We have exchanged the order of summations in the second term .. 

< E £-#^0/ 6(S) 

.sen 

+ 

M + l °VM + 1 

|7 r (P) \ I> l (M-l ) 
M + l 

(26) 

(27) 

and used the inequality log(l + r) < r 

= E { inf 
\eeM\_iV) 

b(s E^h^m 
S g D 

+ M + l 

(28) 

file:///eeM/_iV
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. . . We have rewritten both terms. The transformation of the first one is justified 
by the fact that the Kullback divergence function is non-negative and zero on the 
diagonal, the second term has been rewritten from the identity \TT(T)) \ T>\ = I4 _i 

: E I inf 
\eeM\CD) 

+ 

M+l 

M 

-. M+l 

i = l 

M + l 

... where we have just switched back to a summation with respect to time indices 

< inf(x)EJ-log[.[l)(XM+1)]]} + ^ 
(31) 

. . . where we have pulled back inf from the expectation and used the fact that the 
sample is exchangeable once more. • 

Once we have built the estimators q^ •§ , we can aggregate them, 
using the Gibbs aggregation rule based on the independent subsample 
(XM+\, • • • ,XK)- Let p 6 M+(£>) be the probability distribution 

PCD) = a(m-D/(\A\-i)(1 _ a)\v\v\_ ( 3 2 ) 

(We remind the reader tha t T) is the set of all prefix dictionaries D C 7r(CD)-) 
It is obtained by considering a branching process s tar t ing a t the empty word, 
where generation d is made of a set of words of length d. The transition 
between generation d and d + 1 is the following : each word s £ 7r(D) — D of 
the population independently gives bir th to {sa : a S ^4} with probability a, 
and dies without heirs with probability (1 - a), whereas the words of T> die 
with probability 1. 

We define the Gibbs estimator 

<7W = - 3 , (33) 

(Xi)) 

where /? is a parameter in the range 0 < /3 < 1/2. 
The following theorem holds : 

file:///eeM/CD
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Theorem 4.2. Let 

X = max max log — . , , (34) 
D.D-es.ex *\qv,jjx))' 

and let 

Wiift t/ie previous notations and hypotheses 

E { - l 0 g [ g ( X K + 1 ) ] } < m^ge m f ( 2 ) ) E { - l o g [ ^ , , ( X K + 1 ) ] } 

, P l - l log(p(P)) E f 9 - u rtfi, + M T T ~ ( i f - M + l ) E W }- (36) 

Remark 4-3. Note that x < log(M + 1), and that consequently in any case, 
taking a = logW we obtain that 

EOT 1 ) 
log(M + 1) - 1 

^ + ' t s y (2 - 1tff£t)1))) N M +1) - 0 -1 
log(M + 1) 

(37) 
M-><X> y21og(log(M+T)) 

Remark 4-4- Note also that the theorem implies that 

E[X{P,W)] < inf inf X{P,qv el*) + T^T ~ T F i ^ T E ( 0 - 1 ) • 

(38) 

Remark 4-5. For a large dictionary D, the maximum of p(T>) is reached when 
the branching process is critical, that is when a = o j . Therefore it is advis
able to set a to this particular value. 

For a proof of theorem 4.2, we refer the reader to 15. 
Hopefully, there are fast algorithms to compute q(x). We propose one 

which is inspired by the data compression algorithm described in 37, although 
we have slightly modified the induction step, because it is more efficient here 
to work with conditional probabilities. Define the counters 

K 

c(s)= ] T 1 ( ^ 6 / , ) , s G T r p ) . (39) 
i=M+l 
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Attach to each node of the tree ir(T>) a weight Ts(a;) defined in a recursive 
way by 

- | ^ c ( s a ) + l ( a ; 6 / , o ) ' 

T.(ar) = < 
when SGTT(V)\V, 

1 when s £ T>. 

6M{a\s) 

Viha I Is) 
(40) 

The Gibbs estimator q is given by the formula 

q(x) = 
Y0(x) 

fxT0(y)n(dy)' 
(41) 

It is constant on each cell 7S, s £ T> of the partition defined by the maximal 
dictionary T>. Therefore there are |D| numbers to compute. The computation 
of q{x) for a; 6 7S and s 6 B requires an update of T(s*) (x), for k = 1 , . . . ,i(s), 
starting from a tree of weights Y s (0) , where "l(a; € 7S) has been set to 0 
everywhere", namely T s (0 ) is defined by 

T.(0) = I 
( i - « ) + « n T » ( 0 ) 

ae.4 [ 
when s 6 7r(l>) \ T>, 

1 when s £ D. 

0Af(a|s) 
- i / 3 c ( s a ) ' 

A*(^Sa | /») 
(42) 

Therefore the number of operations involved to compute q is of order at most 
P l^ iD) , where l(TJ) = m a x s e ^ ( s ) . Note also that 

Jx 
r0(y)fi(dy) = r0(0). (43) 

The second estimator Q £ M+([0,1]) is built from (YK+I,---,YN) and 
the cell structure {J s : s £ {0,1}* U {0}} using the Lebesgue measure as 

the reference measure, in the same way as Q is built from (X\,... ,XK), 
{ls : s £ S} and /i. The last appendix contains the source code of the function 
WeightMix computing equation (40), with some comments about numerical 
stability issues. 

5 Simulat ions 

All the simulations presented here are made in the case when X = [0,1] and 
fj, — A (the Lebesgue measure). To perform them we wrote some piece of 
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software which can be downloaded and tested from the web address 

h t tp : / /www.proba. j ussieu.fr /users/catoni/homepage/homepage-en.html. 
We work with simulated data with a known distribution. This allows to 
compute the KuUback distances X(P,Q) and X(P,Q). Also, we always take 
M = K/2 in the computation of the Gibbs estimators. 

We will test first the one step estimation scheme (obtained by taking 
M = N). 

Let us start with an example where P — qvfi^-

First estimate • 
True distribution -

ftu 
0.4 0.6 

\ 5 Figure 1. N = 1000, D = {0 ,1} 5 , X(P, Q) =0 .021 , P = 0.159 

Here the true distribution P is an histogram based on T>. The example 
shown in figure 2 shows that we can take D to be much larger (namely D = 
{0, l}10) without falling into over-fitting problems. 

To get more accurate results, we can run a batch session with 1000 trials 
with both sets of parameters. We obtained the following outputs : 

N T> mean of X{P, Q) 

1000 1 {0,1}5 0.027 
1000 {0,1}1U 0.029 

std dev 

0.005 
0.005 

We can then increase the sample size to check that the risk is proportional 
to its inverse : 

http://www.proba.j


1 1 
First estimate 

True distribution 

Hi 

A 
0 0.2 0.4 0.6 0.8 1 

Figure 2. N = 1000, V = {0, l } 1 0 , %{P,Q) = 0.026, 0 = 0.155 

N 
100 
1000 
10 000 
100 000 

mean of X(P,Q) 

0.24 
0.029 
0.002 4 
0.000 23 

std dev 

0.02 
0.005 

0.000 46 
5 x 10~5 

Let us notice that the proportionality is remarkably well maintained 
through a large scale of sample sizes. Considering that the probability to 
be estimated depends on ten parameters (counting for one parameter the def
inition of the support, which is clearly an underestimation), we see that the 
risk observed in the simulations is less than 3d/N, where d is the dimension 
of the problem. This is better than what is proved by the theory, which gives 
an upper bound larger than 2d[l + 21og(2)E(/?-1)]/iV with /? < 1/2 (note 
that 2[l+41og(2)] > 7.5). 

Let us present now an example where the true distribution is not con
tained in the models used by the first estimator. In this second example, the 
true distribution is a mixture of four Gaussian distributions. Figures 3, 4, 5 
and 6 show the evolution of the quality of estimation with the sample size. 
As expected, the decrease is slower than what is observed when the true dis
tribution belongs to one of the models used by the estimator, because of the 
influence of the bias term. Of course, the speed of approximation of such a 
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6 

5 

4 

3 

2 
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smooth density function by histograms is not optimal. It would certainly be 
more appropriate to work with smooth density models in this case : anyhow, 
the design of a fast algorithm to aggregate more general density models is 
beyond the scope of this paper, and is, to our knowledge, an open question 
deserving further investigations. 

Figure 3. N = 100, V = {0, l } 9 , X(P, Q) = 0.321, /3 = 0.179 

To show the benefit of the two step estimation scheme, we end with ex
periments on binary sequences extracted from an ASCII text (namely a short 
story by Oscar Wilde). The statistical experiment is built in the following 
way. We cut the text into chunks of four bytes (32 bits), which we repre
sent as real numbers in the unit interval. Let (Z\,...,ZL) be these numbers. 
Then we draw ( m , . . . ,njv), an i.i.d. sample from the uniform distribution 
on the integers {1,2,...,L} and we let A* = Zni. To estimate adaptive his
tograms, we choose a maximum dictionary of the form T> = {0, l}d, and we 
let the true distribution be the empirical distribution of (D00(Zfc))Jfe_1, where 
T)^ = {0,1}£), w i t h D » d . 

We see, as expected, on figure 7 that the estimated densities are very 
irregular. We did not plot the "true distribution", because it would have 
been meaningless: indeed we can expect the true distribution to be virtually 
singular with respect to the Lebesgue measure. Anyhow it is still meaningful 
to approximate it by histograms, using our method, since theorem 4.2 does 
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Figure 4. N = 1000, T> = {0, l } 9 , %(P, Q) = 0.0533, 0 = 0.148 

Figure 5. N - 10000, D = {0, l } 9 , X(P, Q) = 0.0111, 0 = 0.136 
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L 
7072 

N 
1000 

K 
100 

T) 
{0,1}« 

Doc 

{0,!}1* 
mean X(P,Q)± std dev mean X(P,Q)± std dev 

5.12 ±0.08 1 3.70 ±0.07 

Table 1. 

Table 1 gathers the results of a batch session illustrating the use of a two 
step estimation scheme. It contains 50 trials: As can be seen, the parameters 
are the same as in figure 7. Profile data reproduced in appendix indicate 
the time spent in the different functions of the program (when it is run on 
a Pentium II processor at 266 MHz with 144 Mb of RAM). They show that 
(discarding ancillary functions added to compute the risk) most computing 
time is spent in the critical function WeightMix, where densities are aggregated 
according to equation (40), and that the time spent in this function jumps 
from 0.38 to 1.69 seconds when one goes from a two step scheme to a one step 
scheme of comparable accuracy. 

I jj 

:...: 1 

if 

1 
J.1— 

First estimate 
True distribution - -

-

Figure 6. N = 100000, D = {0, l } 9 , X(P, Q) = 0.00232, 0 = 0.121 
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Example from ascii text analysis 

First estimate 
Second estimate 

i_ i lil : 1 
Figure 7. N = 1000, K = 100, T> = {0 ,1} 8 , Hoc = {0 ,1} 1 8 , %(P,Q) - 5.0088, X(P,Q) 
3.6160, 0 = 0.162 (second estimate) 

Conclusion 

We have shown in this paper that the Gibbs estimator for adaptive histogram 
aggregation is not only a theoretical object with a nice oracle inequality, but 
also an efficient practical way of performing density estimation. Nice features 
are that no fine hand tuning of parameters is needed to make the algorithm 
work (considering that it is reasonable to take M = K/2, a = 1/\A\ and 
K = 0.17V), and that overfitting is avoided even when the finer cell size is very 
small with respect to the sample size. The results shown here are obtained 
with the algorithm corresponding to theorem 4.2. The implementation is 
strictly faithful to the theory. To make a better use of the sample, we could 
however think about using some cross validation scheme, instead of cutting 
the sample into two independent chunks, (X\,..., XM) and (XM+I, - • •, -X"K)-

The second point discussed in the paper is a two step estimation scheme, 
where a first coarse estimate is used to code the data into the unit interval, in 
a close to uniform way. We showed that it is a way to cut down computation 
and memory requirements when the distribution to be estimated is close to be 
singular with respect to the reference measure used to define the histograms. 
This idea could be generalized to multiple step schemes. 
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Appendix A: Proof of lemma 3.1 

In both cases 

Q[F{X) < F(x)] = Q[a(X) < a(x)] +Q[a{X) > a{x),F(X) = F(x)] 

= Q[a(X)<a(x)]+Q{a(X)>a(x),^Q[a-1{}a{X),a(X)])} 

+ \Q[cr-1([<T(x),a(X)[)]=0} 

= Q[<T(X) <<T(X)] 

+ Q{CJ(X) > a(x),Q[^1([<j(x),(r(X)])} = 0 } 

= Q[a(X)<a(x)]. 

In the same way 

Q[F(X) < F(xj\ =Q[*(X) < a(xj\ -Q[o{X) < a(x),F(X) = F(x)] 

= Q[a(X) <a(x)\ 

- Q{J{X) < a(x),Q[a~1([a(X),c7(x)])] = o} 

= Q[a(X) <a{x) . 

Thus 

1{Q[F(X) < F(x)] + Q[F(X) < F(x)}} 

= \{QW < *(*)] +G[°(X) < a(x)}} = F(x). 

Let us assume now that we are in the case when S = A* U {0} is an 
infinite set. 

Let us prove that 1. is equivalent to 3.. For any r € [0,1], QoF^dr}) = 
Q o <7-1({s £ Am : F o er -1(s) = r}), because F{x) is a function of a(x) 
only. Moreover, as F is non decreasing, {s S ^4^ : F o cr_1(s) = r} is 
an interval. If this interval contains two distinct points s < s', then, as 
F(o--1(s)) = Fia-1^')), Q o o--1 ([«,«']) = 0, from the definition of F. It 
follows in this case that Q o F~l(r) = 0, because any interval of AN which is 
not reduced to one point is a countable union of closed intervals of the form 
[s,s'], with s < s'. On the other hand, if {s £ Aw : F o a"1 = r] is a one 
point set, it is of the form {a(x)}, because a is surjective, thus in this case 
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Q o F _ 1 ( r ) = Q(a(X) = a(x)). Thus 3. implies 1.. In the other direction, 
Q(a(X) = cr(x)) < Q o F~x(F(x)), and therefore 1. is equivalent to 3.. 

The Lebesgue measure having no atom, 2. implies 1. and 3. Now assume 
1. (and consequently 3.). Remark that if r < r' G [0,1] are such that Q o 
F_ 1([0,r]) < QoF_ 1([0,r ' ]) , then there is x G X such that F(x) £]r,r']. Using 
1. and the first part of the lemma, we see that Q o F~1([0,F(x)]) — F(x), 
and therefore that 

QoF _ 1 ( [0 , r ] ) <F{x) <r', 

Q o F - 1 ( [ 0 , r ' ] ) >F(x) >r. 

Now assume that for some r G [0,1], Q o F~1([07r]) < r. Let 

r'=sup{p:QoF-1([0,p]) = QoF-l(lO,r})}. 

Then for any r" > r', we should have that 

Q o F - ^ l C r " ] ) > r ' > r > Q o ^ ( [ O . r ] ) = Q ° F-^fO.r ' ]) . 

This would imply that p i-> QoF~l(]f),p\) is not right continuous at r', which 
is a contradiction. 

In the same way, if for some r G [0,1], QoF_ 1([0,r]) > r, we can consider 

r'=mi{p:QoF-1({0,p]) = QoF-1([0,r})}. 

Then for any r" < r', we would have that 

Q o ̂ -^ [O.r"] ) < r' < r < Q o F ' ^ l C r ] ) = Q o ^-^[O. r ' ] ) , 

and Q ° F~l would have an atom at r'. This shows that necessarily Q o 
F _ 1 ([0, r)) = r for any r G [0,1], and therefore that Q o F~l is the Lebesgue 
measure as stated in statement number 2. 

Appendix B: Listings from experiments on t ex t 

This is a listing of profile data showing how much time is spent in the differ
ent functions of the program, while executing 50 trials of the two step text 
experiment described in table 1. Mon Oct 15 10:58:02 2001 
F la t p r o f i l e : 

Each sample counts as 0.01 seconds. 

7, cumulative self self total 

time seconds seconds calls us/call us/call name 

87.62 4.67 4.67 100 46700.00 46700.00 Kullback 
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7.13 
1.88 
1.50 
0.75 
0.38 
0.19 
0.19 
0.19 
0.19 

5.05 
5.15 
5.23 
5.27 
5.29 
5.30 
5.31 
5.32 
5.33 

0.38 
0.10 
0.08 
0.04 
0.02 
0.01 
0.01 
0.01 
0.01 

3800.00 
497.51 

80000.00 
200.00 
200.00 
0.78 

100.00 
100.00 
200.00 

3800.00 
497.51 

80000.00 
200.00 
200.00 
0.78 

100.00 
100.00 
200.00 

WeightMix 
CountFill 
Count2Dens 
Bootstrap 
SampleCode 
QuantileApply 
BetaOpt 
WeightFill 
Dist2Dens 

100 
201 

1 
200 
100 

12800 
100 
100 
50 

We cut the list when, up to the accuracy of the profile measurements, 
the cumulative time reaches its final value. The most interesting function 
is WeightMix, which computes the weights Ts(a;). It is where most time is 
spent. We reproduce its code here, to give a flavor of the way we implemented 
our method. Notice that we move through the tree 7r(D) by shifting array 
indices. 
#define L0GP(x,y) \ 
(((x)>(y))?(x)+loglp(exp((y)-(x))):(y)+loglp(exp((x-y)))) 
#define LASTB 1 
#define 0THERB (~1) 
#define BROTHER(i) (((i)feOTHERB)|((~(i))&LASTB)) 

Weight *WeightMix(Weight *w,Count *c,double alpha, double beta) { 
int depth, dd; 
int i,j,M.brother; 
Weight *mixW; 
double buff, *wp, *mixWp; 
int *cp; 
double sup; 
double ac, al, acl; 
double right; 
depth = w->depth; 
if (c->depth < depth) { 

depth = c->depth; 
} 
mixW = WeightNew(depth); 
M = 1 « depth; 
ac = 1 - alpha; 
al = log(alpha); 
acl = log(l-alpha); 
cp=c->first; 
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wp=w->first; 
mixWp=mixW->first; 
for (i=(M»l);i<M;i++) { 

right = al+(beta*cp[i«l])*wp[i«l] 
+ ( b e t a * c p [ ( i « l ) + l ] ) * w p [ ( i « l ) + l ] ; 

mixWpEi] = LOGP(acl ,r ight) ; 
> 
f o r ( i = ( M » l ) - l ; i ; i — ) { 

r i g h t = a l+mixWp[i«l]+mixWp[( i«l )+l] 
+ ( b e t a * c p [ i « l ] ) * w p [ i « l ] 
+ ( b e t a * c p [ ( i « l ) + l ] ) * w p [ ( i « l ) + l ] ; 

mixWp[i] = LOGP(acl ,r ight) ; 
} 
M = 1 « (depth+1); 
sup = 0; 
for(i=(l«depth);i<M;i++) { 

brother = BROTHER(i); 
right = al+((beta*cp[i])+l)*wp[i] 

+ (beta*cp[brother])*wp[brother]; 
buff = LOGP(acl,right); 
for(j = (i»l),dd=depth-l;j>l;j»=l,dd—) { 

brother = BROTHER(j); 
right = al+buff+mixWp[brother] 

+ ((beta*cp[j])+l)*wp[j] 
+ (beta* cp[brother]) *wp[brother]; 

buff = LOGP(acl,right); 
} 
mixWp[i] = buff; 
if (buff > sup) { 

sup = buff; 
> 

/* normalizing the weights in two steps to 
make things numerically more stable */ 

for (i=(l«depth);i<M;i++) { 
mixWp[i] -= sup; 

> 
for (i=(l«depth)-l;i;i~) { 

mixWp[i] = LOGP(mixW->f irst [i«l] ,mixW->f irst [(i«l) + l]) ; 
} 
for (i=M-l;i;i—) { /* back from the log 
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r e p r e s e n t a t i o n of weights */ 
mixWp[i] = exp(mixWp[i]-mixWp[l]); 

} 
r e t u r n mixW; 

} 
Note that we preferred not to use equation (43) to compute the nor

malizing factor of the estimated distribution, in order to increase numerical 
stabibility and be sure that round off errors do not prevent the estimated 
distribution from summing up to one within a good accuracy. Numerical sta
bility was checked for samples up to size N = 107 (which is the maximum size 
we tried). 

The following reports of batch sessions show that it is necessary to increase 
the depth d of the maximal dictionary by two units, going from 8 to 10, to 
reach the same accuracy with a one step estimation scheme : 

L 
7072 

7072 
7072 
7072 

N 
1000 
1000 
1000 
1000 

K 
100 

1000 
1000 
1000 

D 

{0,1}» 
{0,1}« 

{o,i}9 

{o,i}10 

©oo 
{ 0 , l } l g 

{o,ir 
{ 0 , 1 } 1 8 

{ 0 , 1 } 1 S 

E|0C(P,Q)1 
5.12 ± 0 . 0 8 
4.56 ± 0 . 0 1 

4.017 ± 0 . 0 0 9 
3.788 ± 0 . 0 1 4 

E\X(P,Q)] 
3.70 ± 0.07 

4.561 ± 0 . 0 1 
4.017 ± 0.009 
3.788 ± 0.014 

Table 2. 

These are the profile data for the last batch session : 
F l a t p r o f i l e : 

Each sample counts as 0.01 seconds. 
'/. c u m u l a t i v e 

t i m e 
6 9 . 7 2 
2 4 . 9 6 

1.62 
1.18 
1.03 
0 . 5 9 
0 .30 
0 .30 
0 . 1 5 
0 . 1 5 

s econds 
4 . 7 2 
6 . 4 1 
6 .52 
6 . 6 0 
6 .67 
6 . 7 1 
6 . 7 3 
6 . 7 5 
6 .76 
6 .77 

s e l f 
s econds 

4 . 7 2 
1.69 
0 . 1 1 
0 . 0 8 
0 .07 
0 .04 
0 .02 
0 .02 
0 . 0 1 
0 . 0 1 

c a l l s 
100 
100 
201 

1 
100 

51200 
200 
100 
100 

50 

s e l f t o t a l 
u s / c a l l u s / c a l l 

47200 .00 47200 .00 
16900.00 16900.00 

547 .26 547 .26 
80000 .00 80000 .00 

700 .00 700 .00 
0 .78 0 .78 

100.00 100.00 
200 .00 200 .00 
100.00 100.00 
200 .00 1000.00 

name 
K u l l b a c k 
WeightMix 
C o u n t F i l l 
Count2Dens 
WeightLog 
Q u a n t i l e A p p l y 
B o o t s t r a p 
Weigh t2Dis t 
B e t a S e t 
Est2Dens 

The Ku l lback function is used only to compute the Kullback divergence 
between estimated and t rue distributions therefore it is not pa rt of the esti-



mation algorithm itself, but is just a tool used to test its performance. 
The important thing is the time spent in WeightMix, which jumps to 1.69 

seconds, whereas it was only 0.38 seconds for the two step scheme. 

N.B.: We included in the following bibliography some references about adaptive 
regression estimation, because of its numerous links with density estimation. 
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BIFURCATIONS OF LIMIT CYCLES IN Z Q - E Q U I V A R I A N T 
P L A N A R VECTOR FIELDS OF DEGREE 5 
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Consider the weakened Hilbert's 16th problem for symmetric planar perturbed 
polynomial Hamiltonian systems. In particular, for perturbed Hamiltonian poly
nomial vector fields of degree 5, numerical examples of Z9-equivariant planar per
turbed Hamiltonian systems are constructed, having maximal number of centers. 
They give rise to different configurations of limit cycles forming compound eyes. 
These are studied by the bifurcation theory of planar dynamical systems and the 
method of detection functions. With the help of numerical analysis, it is shown that 
there exist parameter groups such that a polynomial vector field of degree 5 has at 
least 20 limit cycles with Zs symmetry and at least 24 limit cycles with Z$ symme
try. There is reason to conjecture that the Hilbert number H(2fc + l ) > (2fc + l ) 2 —1 
for the perturbed Hamiltonian systems. 

1 Introduction 

One of the problem posed by Smale[26] in his "Mathematical Problems for the 
Next Century" is Hilbert's 16th problem. It is well known that Hilbert's 
16th problem consists of two parts. The first part studies the mutual disposi
tion of maximal number ( in the sense of Harnack) of separate branches of an 
algebraic curve, and also the "corresponding investigation" for non-singular 
real algebraic varieties; and the second part poses the questions of the maxi
mal number and relative dispositions of limit cycles of the planar polynomial 
vector field: 

^ = Pn(x,y), ft=Qn(x,y), (En) 

where Pn and Qn are polynomials of degree n(See Hilbert[ll], Farkas[8], 
Ye[29], Zhang et al [31]). As professor Smale said: "Except for the Riemann 
hypothesis, it seems to be the most elusive of Hilbert's problems." In fact, 
for the first part, the specialists of the real algebraic geometry usually study 
the topology of non-singular real planar projective algebraic curves of degree 
m. Up to now, we know the schemes of mutual arrangement of ovals realized 
by M-curves only for m < 7(see Gudkov[10], Viro[27] and Wilson[28] etc). 
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For the second part, the answer still seems to be far away. Let H(n) be the 
maximal number of limit cycles of (En). Up to now, we only know that the 
system (En) always has a finite number of limit cycles(see Ilyashenko[12]) and 
that H(2) > 4,H(3) > 11 (see recent discussions in Chan et al[4], Li[14,15], 
,Lloyd[20], Luo[21], Perko[23], Ye[29] and etc). Also by considering a small 
neighbourhood of a singular point, H(ri) > (n2 + 5n - 20 — 6(-l)™)/2 for 
n > 6(see Otrokov[22]). Recently, Christopher and Lloyd[6] showed that 
H{2k - 1) > 4k-1(2k - ^ ) + 3.2fc - § (for example H(7) > 25) by perturbing 
some families of closed orbits of a Hamiltonian system. However, in global 
phase plane, when n > 3, how many cycles can be created by (En), and 
what global limit cycle configurations can appear? These are still interesting 
open problems. In order to obtain more limit cycles and various configu
ration patterns of their relative dispositions, one of us indicated in [13]-[17] 
that an efficient method is to perturb the symmetric Hamiltonian systems 
having maximal number of centers, i.e., to study the weakened Hilbert's 16th 
problem posed by V.I.Arnold[2] in 1977 for the symmetric planar polynomial 
Hamiltonian systems, since bifurcation and symmetry are closely connected 
and symmetric systems play pivotal roles as a bifurcation point in all planar 
Hamiltonian system class. To investigate perturbed Hamiltonian systems, we 
should first know the global behaviour of unperturbed polynomial systems, 
namely, determine the global property for the families of real planar algebraic 
curves defined by the Hamiltonian functions. Then by using proper pertur
bation techniques, we shall obtain the global information of bifurcations for 
the perturbed non-integrable systems. In this sense, we say that our study 
method will utilize both parts of Hilbert's 16th problem. 

On the basis of the method of detection functions posed by Li[13], we give 
in this paper a method of control parameters in order to obtain more limit 
cycles for some Zg-equivariant perturbed polynomial Hamiltonian system of 
degree n = 5 (q = 2 — 6). With the help of numerical analysis ( using Maple[l] 
or Mathematica) we show that there exist parameter groups such that there 
exists at least 15 to 24 limit cycles having the configurations of compound eyes 
in these systems. The cases for q = 2,3 and 4 are being reported separately 
in [5] and [19] where at least 15 and 23 limit cycles are respectively obtained. 
The case for q = 6 is discussed in [18]. Here we will give an overall view of 
the process and fill in more details using q = 5 and 6 as examples. 

The paper is divided into five sections. Section 2 gives a general Zg-
equivariant fifth degree planar polynomial vector fields and their Hamiltonian 
forms. As examples, for q = 5,6 we discuss the behaviour of sextic algebraic 
curves defined by the Hamiltonian vector fields. In Section 3 we introduce the 
detection function and its properties for the perturbed planar Hamiltonian 



63 

systems. In Section 4 we add ^-invariant perturbations to the Hamiltonian 
system and consider five detection functions which correspond to different 
period annuluses. We determine the perturbed parameter values from given 
bifurcation conditions and by using the method of control parameters. These 
bifurcation parameters ensure that the perturbed systems have at least 15 
and 20 limit cycles. In Section 5, for q — 6, we introduce some new results of 
bifurcations of phase portraits and give a conjucture: H(2k+1) > (2fc+l) 2 - l . 
In other words, we believe that H(n) is increasing at least as order n2 for the 
perturbed symmetric Hamiltonian systems. 

2 .Zg-equivariant planar vector fields 

Definition 2.1 Let G be a compact Lie group of transformations acting on 
Rn. A mapping $ : Rn -¥ Rn is called G-equivariant if for all g £ G and 
x 6 Rn,$(gx) = g$(x). A function H : Rn -¥ R, is called G-invariant 
function if for all x € Rn,H(gx) = H(x). If $ is a G-equivariant mapping, 
the vector field dx/dt = $(x) is called a G-equivariant vector field. 

Let q be an integer. A group Zq is called a cyclic group if it is generated 
by a planar counterclockwise rotation through 27r/g about the origin. Making 
the transformation z = x + iy, z = x — iy, the system (En) becomes 

%=F(z,z), ft=F(z,z), (2.1) 

where F(z,z) = P(u,v) + iQ(u,v),u = (z + z)/2,v = (z — z)/2i. 
Theorem 2.1 (Li and Zhao[16]) A vector field defined by (2.1) is Zq-

equivariant, if and only if the function F(z, z) has the following form: 

F(Z,J) = £ J 1 ( | Z | V ' - 1 + E A I ( N V ' + 1 > (2-2) 
(=1 1=0 

where gi{w) and hi(w) are polynomials with complex coefficients in w. In 
addition, (2.1) is a Hamiltonian system having Zg-equivariance, if and only if 
(2.2) holds and 

9F OF n 

fl- + 7 F = °- 2 - 3 

az oz 
T h e o r e m 2.2 (Z9-invariant function) A .^-invariant function I(z,z) has 

the following form: 

/(z,!) = £ f f ;(|2|V? + EMM2)^- (2-4) 
;=o i= i 
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Corollary 2.3 For the planar polynomial systems of degree 5, all non-
trivial Zg-equivariant vector fields have the following forms: 

(1) q = 6,F{z,z) = (A0 + Ax\z\2 + A2\z\4)z + A3z
5; 

(2) q = 5,F(z,z) = (A0 + Ax\z\2 + A2\z\4)z + A3z
4; 

(3) q = 4,F(z,z) = {AQ + Ax\z\2 + A2\z\4)z + (A3 + A» |* | 2 )* 3 + A5z
5; 

(4) q = 3,F(z,z) = (A0+Al\z\2+A2\z\4)z+(A3+Ai\z\2)z2+A5z
i+A6z

5; 
(5) q = 2,F(z,z) = (A0 + A!\z\2 + A2\z\i)z + (A3 + A^\z\2 + A5\z\4)z 
+(A(s+A7\z\2)z3+(A8+A9\z\2)z3+Aioz5+Anz5, where Aj = aj+ibj(j -

0 — 11) are complex. The above F{z,z) define -Z^-equivariant Hamiltonian 
vector fields if and only if a0 = ai = a2 = 0 and for q = 4, Ai = — 5J4S; for 
q = 3, Ai = -4A5; for q = 2, A4 = -3A6, A5 = -2AT, A9 = -5A~10. 

The orbits of these Hamiltonian polynomial systems define different fam
ilies of sextic (m = 6) algebraic curves having Z,-equivariance. One of the 
main questions in real algebraic geometry is to describe what schemes of the 
mutual arrangement (schemes or configurations) of ovals can be realized by 
curves of given degree. By using some Z,-equivariant Hamiltonian systems, 
we can realize a lot of configurations of ovals for planar algebraic curves of 
degree m. Rokhlin[25] listed all real schemes of ovals with m < 5. Leaving 
aside the simple case m = 1,2,3, we know that for m — 4, there are six real 
schemes: a nest of depth 2 and five unnested schemes with I = 0,1,2,3,4; for 
m = 5, there are eight real schemes: a scheme with a nest of depth 2, and 
seven unnested schemes with Z = 0,1,2,3,4,5,6. 

Theorem 2.4 For m = 4 and 5, all real schemes of projective algebraic 
curves in RP2 can be realized by the orbits of Z,-equivariant Hamiltonian 
vector fields. 

For m = 6, the system (E$) is Zg-equivariant Hamiltonian system if and 
only if it can be reduced to the following 3-parameter family: 

dv 
— =£r5sin60, 

— = l - 2 J r 2 + (a + /3cos6(9)r4, (2.5) 

which has the Hamiltonian 

H(r,0) = -\r2 + hr4 - ha + /?cos60)r6 (2.6) 

2 2 6 
Suppose that a > /3 > 0,6 = (a + ft + l ) /2 . Then, there exist 25 finite 

singular points of (2.5) at (0,0),(zi,0), (z2,0), (z3,ir/6), (z4,7r/6) and their 
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equivariant symmetric points, where 

Z\ = , -=,Z2 = l,ZZ,Z4= >> 

Proposition 2.5(see [18]) If the system (2.5) has 25 non-degenerate sin
gular points and a > /3 > 0, then there exist 3 topologically different phase 
portraits . In the afnne real plane, the orbits of (2.5) can realize the following 
oval schemes:l,6,7, | , j 6 , (1,1,1). 

We next consider Zs-equivariant Hamiltonian systems for m = 6. A 
system (E5) is Zs-equivariant Hamiltonian system if and only if it can be 
reduced to the following form in the polar coordinates: 

J=£r4sin50, 

dQ 

^=a-Sr2 + (/?cos50)r3 - r4 = Q(r,6), (2.7) 

which has the Hamiltonian 

H(r,0) = -lar2 + hr4-hpcos59)r5 + lr6. (2.8) 
2 4 5 6 

It is easy to show that System (2.7) has at most 21 non-degenerate singular 
points in the phase plane. Without loss of generality, suppose that (r, 6) = 
(1,0) is a singular point of (2.7). Then from 0(r,O) = 0 and 9(r,7r/5) = 0 
we have S = a + /? — 1 and 
f(r) = Q-Jr 2 +^r 3 - r 4 = {l-r)(r3-(fi-l)r2+ar+a) = ( l - r ) / 3 ( r ) = 0, / ( - r ) = 0. 
We may assume that (2.7) has 21 singular points. This implies that the 
function f(r) has four real zeros, i.e., the following parameter condition holds: 

A = 4a3 + a2(8 + 20/? - /32) + ^a(p - l ) 4 - ^(fi - if < 0. 

Notice that f'3{r) = 3r2 - 2(/3 — \)r + a has two real zeros at 

1 ry-r — —N 1 
fi = -W-\)-y/{p-\)*-$a), r2 = - ( ( / 3 - l ) + v ' ^ - l ) 2 - 3 a ) , 

if Ai = (f3 — l ) 2 — 3a > 0. Thus, we have the following conclusions. 
(i) When a > 0,Ai > 0, if/? > 1, then there exist three singular points 

of (2.7) at (r,8) = (zi,0), (z2,0) a n d (^3,0) with zt > 0. And there exists 
one singular point of (2.7) at (r, 9) = (z4,ir/5) with 2:4 > 0. If /? < 1, then 
there exists one singular point of (2.7) at the axis 6 = 0, and there exist three 
singular points of (2.7) at the line 6 = TT/5. 
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(ii) When a < 0, there exist two singular points (zi,0) and (zj,rr/5),i — 
1,2, j — i + 2 of (2.7) at the axes 0 = 0 and 9 = JT/5, respectively. 

To determine the type (center or saddle point) of singular poinits (z»,0) 
and (zj,n/5) of (2.7). We only need to use the signs of the Jacobians of the 
linearized system of (2.7): 

J(zt,0) = -50z?f'(zi), J(zj,Tf/5) = 5/?zf/'(-*;)• 

a) Hi*, »/** < w*& w ax**.*/*) "••• &*>a). ® mutt-j® > ^u»m 
Figure 1: Zs-equivariant polynomial Hamiltonian vector fields of degree 5 

Obviously, for a > 0, the singular points [zi, 0), (ZA, T / 5 ) are saddle points and 
(zi,0), (z3,0) are centers; for a < 0, the singular points (zi,0),(.Z4,7r/5) are 
saddle points and (^2,0), (zs,ir/5) are centers. Since the Hamiltonian defined 
by (2.8) is of definite sign near the origin (0,0) and at infinity, hence the origin 
ia a center and there exists a global periodic family of (2.7) surrounding all 
21 singular points. By the above qualitative analysis and Z5-equivariance of 
(2.7), we have the following result. 

Propos i t ion 2.6 For the i^-equivariant polynomial Hamiltonian system 
(2.7) having 21 non-degenerate singular points, there exist 6 topologically 
different phase portraits as shown in Figure 1. 
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As h varies, the level curves H(r, 9) = h of the Hamiltonian defined by 
(2.8) give rise to a family of sextic algebraic curves in the affine real plane. 
As an example, we 

*~'r~-w¥j~v~T*"^s "<# 

>4 -? 
K* - 1 

i Si 

C?) h\ < h < k§. <$j fe&*j & < %- P)A^.V 

M| h. < A < 0- {&} & < /> < &*- Wl?* ** >V 

Figure 2:Different schemes of ovals defined by (2.3) under the parameter condition Gi. 

consider Figure 1 (3). Let Gt = (o,/J) = (0.1551515151,2.7575757575) and 
* = 1.91272727. We have zx = 0.4, z2 =• 1, z3 = l.Q, z4 = 0.2424242424 and 

tn = H(z3,0) = -0.05163442391, /i2 = ff(*i,0) - -0.005135515151, 

h3 = H{zt,w/5) = -.002411905557, h4 = H(z2,0) = 0.0157575757. 

As h increases from hi to oo, the schemes of ovals of the sextic algebraic 
curves will be varied. This change process is shown in Figure 2. Similarly, 
we can discuss other portraits in Figure 1. Therefore, by using Gudkov's oval 
notation (see [10]), we have the conclusion as follows. 

Propos i t ion 2.7 In the affine real plane, the integral curves 
of the Hamiltonian system (2.7) can realize the following oval 
schemes:!, 5,6,10, f, \5, (1,1,1). 
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3 The method of detection functions 

Consider the following perturbed planar Hamiltonian system 

ex(p(x,y) - A ) , 
dx 
~di ~ 
dy_ _ 
dt ~ 

dH 

dy 
dH 
dx 

-ey(p(x,y)-X), (3.1) 

where H(x, y) is the Hamiltonian, p(0,0) = 0,0 < e <C 1, A € -R. 
Suppose that the origin in the phase plane is a singular point of (3.1) and 

the following conditions hold: 
(Al) The unperturbed system (3.1)e=0 is a Zg-equivariant Hamiltonian 

vector field. For h € (/ii,/j2) one branch family of the curves {Th} defined 
by the Hamiltonian function H(x,y) = h lies in a period annulus enclosing 
at least one singular point. As h increases, Th expands outwards. When 
h —¥ / i i ,^approaches a singular point or an inner boundary of the period 
annulus consisting of a heteroclinic (or homoclinic) loop. 

(A2) Surrounding the period annulus, there exists a heteroclinic (or ho
moclinic) loop T7*2 at h = h2 connecting some hyperbolic saddle points 
(ai,/?j),l <i <q. 

(A3) The divergence 2(A - F(x,y)) = 2 ( A - f § 2 - f g - p(x,y)) of the 
perturbed vector field is a Zq -invariant function. 

We define the function 

A = X(h) = (J J h F(x, y)dxdy)/(J J ^ dxdy) = iP(h)/<t>(h), (3.2) 

which is called a detection function corresponding to the periodic family {Th}. 
The graph of A = A(/i) in the plane (h, A) is called a detection curve, where 
Dh is the area inside Th. 

Clearly, if H(x,y) — h is a polynomial, then X(h) is a ratio between 
two Abelian integrals (see Carr, Chow and Hale[3]). In this case, X(h) is 
a differentiate function with respect to h. Of course, when the degree of 
H(x,y) is more than 4, classical mathematical analysis cannot provide the 
calculating method for X(h) in general. We must use a numerical technique 
to compute these Abelian integrals. 

On the basis of the Poincare-Pontrjagin-Andronov theorem on the global 
center bifurcation and Melnikov method (see Perko[23], Guckenheimer and 
Holmes [9]), we have the following two conclusions (as in Li Jibin etc.[13][15]): 

Theorem 3.1 (Bifurcation of limit cycles) Suppose that the conditions 
(Al) and (A3) hold. For a given A = AQ, considering the set S of the in-
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tersection points of the straight line A = A0 and the curve A = X(h) in the 
(h, A)-plane, we have 

(i) if S consists of exactly one point (/io,Ao) and \'(h) > 0(< 0), then 
there exists a stable(unstable) limit cycle of (3.1) near Tho; 

(ii) if S consists of two points (h0, A0) and (h0,X0) having ho > h0 and 
X'(h0) > 0,X'(h0) < 0, then there exist two limit cycles near T^0 and Th° 
respectively, the former is stable and the latter is unstable; 

(hi) if S contains a point (h0,Xo) and X'(h0) = X"(h0) = ••• = 
A(*-1)(/io) = 0, but A(fc)(/i0) ^ 0, then (3.1) has at most k limit cycles near 
Th0. 

(iv) if S is empty, then (3.1) has no limit cycle. 
Theorem 3.2 (Bifurcation parameter created by a heterochnic or ho-

moclinic loop) Suppose that the conditions (A1),(A2) and (A3) hold. Then 
for 0 < e <C 1, when A = A(/i2) + O(e), System (3.1) has a heterochnic (or 
homoclinic) loop having Z^-equivariance. 

The following two propositions describe the properties of the detection 
function at the boundary values of h. 

Proposition 3.3 (The parameter value of Hopf bifurcation) Suppose that 
as h -> hi, the periodic orbit Fh of (3.1) approaches a singular point (£,77), 
then at this point the Hopf bifurcation parameter value is given by 

bH = A(/n) + O(e) = lim X(h) + O(e) = F(£,»i) + O(e). (3.3) 

Proposition 3.4 (Bifurcation direction of heterochnic or homoclinic 
loop) Suppose that as h —> /12, the periodic orbit Th of (3.1) approaches a 
heterochnic (or homoclinic) loop connecting a hyperbolic saddle point (a, /?), 
where the saddle point value satisfies 

SQ(a, p) = 2ea(a, /3) = 2e(X(h2) - F(a, /?)) > 0(< 0), 

then we have 

A'(/i2) = lim X'(h) = -oo(+oo). (3.4) 

Remark 3.5 
(1) If r f t contracts inwards as h increases, then the stability of limit cycles 

mentioned in Theorem 3.1 and the sign of A'(/i2) in (3.4) have the opposite 
conclusion. 

(2) If the curve Th defined by H{x,y) — h (h £ (hi,h2)) consists of m 
components of oval families having ^9-equivariance, then Theorem 3.1 gives 
rise to simultaneous global bifurcations of limit cycles from all these m oval 
families. 
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(3) If (3.1) has several different period annuluses filled by periodic orbit 
families {T^1}, then by calculating detection functions for every oval families, 
the global information of bifurcations of System (3.1) can be obtained. 

4 Bifurcations of limit cycles of Z5-equivariant perturbed 
Hamiltonian systems 

In this section we consider the perturbed Zs-equi variant vector field: 

— = fir4 sin 58 — er(pri + qr1 — A), 
at 

^-=a-Sr2 + (l3 cos 50)r3 - r4 = 0(r , 6). (4.1) 

Corresponding to (4.1), the function F(x,y) in the divergence of vector 
field of hypothesis (A3) in Section 3 has the form: 

F(r,0) = 3pr4 + 2qr2. (4.2) 

We first consider the case G2 — (a,/3) = (—7,0.95) i.e., the unperturbed 
system (2.3) has the phase portrait of Figure 1 (6). Under this parameter 
condition group G2, we have 

Zl = 1, z2 = 3.026773093, z3 = 1.306138497, z4 = 1.770634596 

and 

H(z2,0) < 0 < H(Zl,0) < H(zi,ir/5) < H(z3,ir/5), (4.3) 

where 

hi = H(z2,0) = -35.97718144, h2 = H(zu0) = 1.714166667, 

h3 = H(z4,ir/5) = 2.09184063, h4 = H{z3,n/5) = 2.391163167. 

From (4.3), we see that as h increases from hi to 00, the schemes of ovals of 
the sextic algebraic curves defined by H(r, 9) = h will be varied as follows: 

(1) h € {h\, h2) : there exist five period annuluses { r ^ } , i = 1 — 5, enclos
ing the center (22,0) and its Z5-equivariant symmetry points. 

(2) h 6 (0, h2) : there is a period annulus {TQ} enclosing the origin (0,0). 
Together with { r ^ } , there exist 6 period annuluses. 

(3) h = h2: there exist 5 homoclinic orbits {ri8?} and a heteroclinic 5-
cycle enclosing the origin. 

(4) h 6 (h2,h3) : there is a period annulus {r^} enclosing 11 singular 
points. 



71 

(5) h = /13: there exist 5 homoclinic orbits {Tj?} enclosing the singu
lar point (z3,7r/5) and its Zs-equivariant symmetry points, and there is a 
heteroclinic 5-cycles enclosing 11 singular points. 

(6) h G (/i3,/i4): there exist 5 period annuluses { r ^ i = 1 - 5 , enclosing 
the singular point (2:3,7r/5) and its Z5-equivariant symmetry points, and there 
is a global period annulus {r j} enclosing all 21 singular points. 

(7) h € (/i4,oo) : there is a global period annulus {r j} enclosing all 21 
singular points. 

Notice that as h increases, the periodic orbits T^ constract inwards while 
all other periodic orbits expand outwards. 

We compute five detection functions defined by (3.2) which correspond 
to the above five types of period annuluses {TJ} — { r j} . 

/ JV,/, F(r, 9)rdrd9 ^.(u\ 1 

«*> - //„.-*•"* = s w = sW 3" '"""+^'^ 
= 3pJil(h) + 2qJi2(h), t = 0 , - - - ,4 , (4.4) 

where Jij(h) = Iij(h)/(j)i(h), j = 1,2, and 

<t>i(h) = rdrdO, D^ is the area inside T1}, 
J JD? 

Inih) = [ f r5drd6, Ii2(h) = f f r3drd6. 

For the given parameter group G2 the functions Jij(h) can be numerically 
calculated to a given degree of accuracy. We will give these results in the 
Appendix. 

By using the theory given in Section 3, we immediately obtain the follow
ing values of bifurcation parameters and bifurcation direction detections. 

(i) Hopf bifurcation parameters: 
(1) Bifurcation from the origin (0,0): 

b» = A0(0) + 0(e) =0 + 0(e); 

(2) Simultaneous bifurcations from the center (z2,0) and its Z5- equivari-
ant symmetry points: 

6f = Ai(fti) + 0(e) = F(z2,0) + 0(e) = 3pz\ + 2qz2
2 + 0(e) 

= 251.7912959p+18.32271071g + O(e); 
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(3) Simultaneous bifurcations from the center (z3,ir/5) and its Z5- equiv-
ariant symmetry points: 

6f = A3(/i4) + 0(e) = F(z3, TT/5) + 0(e) = 2,pz\ + 2qz% + O(e) 

= 8.731285209p+ 3.411995546? + 0(e); 

(ii) Bifurcations from heteroclinic or homoclinic loops: 

(1) The heteroclinic bifurcation value from TQ2: 

\0(h2) = SpJ01(h2) + 2qJQ2(h2) = 0.6447758181p+ 0.7977862274?; 

(2) The homoclinic bifurcation value from I \ ? : 

Ai(/i2) = 3pJ u( / i 2) + 2qJ12(h2) = 132.5289769p+ 11.90914478?; 

(3) The homoclinic and heteroclinic loop bifurcation value from T2
2: 

\2(h2) = 3pJ2i(h2) + 2qJ22(h2) = 117.8557157p+ 10.67290976?; 

(4) The heteroclinic 5-cycle bifurcation value from r 2
3 : 

\2(h3) = 3pJ2i(h3)+2qJ22(h3) = 107.7755921p+9.989393194?; 

(5) The homoclinic bifurcation value from Tg?: 

A3(/i3) = A3(/i3) = 3pJ3i(/i3) + 2?J32(/i3) = 9.777634251p+ 3.48267226?; 

(6) The heteroclinic 5-cycle bifurcation value from T4
3: 

A4(/i3) = 3pJa(h3) + 2?J42(/i3) = 102.7553682p+ 9.656067918?. 

(iii) The values of bifurcation direction detections of heteroclinic 
and homoclinic loops: 

(1) (70(^,0) = A0(/i2) -F{Zl,Q) = -2.355224182p- 1.202213773?; 
(2) CTI (zi, 0) = Ai (h2) - F(zi, 0) = 129.5289769p + 9.90914478?; 
(3) a2(zi,0) = A2(/i2) -F{zi,0) = I14.8557157p +8.67290976?; 
(4) CT2(z4,7r/5) = A2(/i3) - F(z4,7r/5) = 78.28815436p+ 3.719099448?; 
(5) a3(zi7Tr/5) = X3(h3)I- F ( Z 4 , T T / 5 ) = -19.70980349p-2.787621486?; 
(6) CT4(z4,7r/5) = A4(/i3) - F ( Z 4 , T T / 5 ) = 73.26793046p+ 3.385774172?; 
To control the perturbed parameters (p, q) such that System (4.1) has 

more limit cycles, we suppose that the following two conditions hold: 
(CI) Ai(/i2) = A3(/i3)-0.00M.e.,122.7513426p+8.42647252?+0.001 = 0; 
(C2) <7i(.zi,0) > 0,i.e., 129.5289769p+ 9.90914478? > 0; 
These conditions imply that 

? = - 14.56734622p - 0.0001186736203, p < -0.00007934395757. 
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As an example, taking PG2 = {p,q) = (—1,14.56722755), then we have 

Ao(0) = 0, X0(h2) = 10.97675769; 

Ai(/n) = 15.1198005, Ai(/i2) = 40.95424505, maz(Ai(/i)) « 41.0007; 

\2{h2) = 37.6189894, A2(/i3) = 37.7421716; 

A3(/i3) = 40.95524505, A3(/i4) = 40.97203031, mm(A3(/i)) « 40.94019; 

A4(/i3) = 37.9067704, max(X4(h) « 38.449682, lim A4(/i) - - co ; 

and 

(T0 = -15.15769741 < 0, ax = 14.8197899 > 0, cr2(zi,0) = 11.4845343 > 0, 

a2(z4,n/5) = -24.11118646 < 0, CT3 = -20.898113 < 0, a4 = -23.94658766 < 0. 

It follows that under the parameter conditions of G2 and PG2, the system 
(4.1) has the graphs of detection curves as shown in Figure 3. We see from 
Figure 3 that when 

A e (A1(/z2),A3(/i3)) = (40.95424505,40.95524505), (4.5) 

in the (h, A)-plane the straight line A = A intersects the curves A = Ai (h), A = 
A3(/i) at two points respectively. By using the Z5-equivariance of (4.1), we 
obtain from Theorem 3.1 the following result. 
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Figure 3: Graphs of detection curves of (4.1) with parameters G2 and GP2. 

T h e o r e m 4.1 For the parameter group G2 and PG2 and small e > 0, 
the system (4.1) has atjeast 20 limit cycles having the configuration shown 
in Figure 4 (1) for A = A satisfies (4.5). 

We now consider the system (4.1) having unperturbed parameter group 
G3 = (a,/3) = (0.2992021277,2.680851063), i.e., the case of unperturbed 
system (2.3) has the phase portait shown as Figure 1(1). Under the parameter 
group G-i, we have 

zx = 0.75, z2 = 1, z3 = 1.25, z4 = 0.3191489362 

and 

H(z3,0) < H(zi,0) < H(z2,0) < H{zA,Tx/b) < 0, (4.6) 

where 

fti = H(z3,0) = -0.02570186111, h2 = H(zu0) = -0.02509791599, 

ha = H(z2,0) = -0.0240913121, h4 = H(Z4,TT/5) - -0.008150769223. 

From (4.6), we see that as h increases from hi to +oo, the schemes of ovals 
of the sextic algebraic curves defined by H(r, 8) = h will be varied as follows: 
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(1) h 6 (hi,h3) : there exist five period annuluses { I ^ } , * = 1 — 5, enclos
ing the center (23,0) and its Z5-equivariant symmetry points. 

(2) h € (h2, ^3) : there is a period annulus { r^} , i = 1 — 5 enclosing the 
center (zi,0) and its Zs-equivariant symmetry points. Together with { r ^ } , 
there exist 10 period annuluses. 

(3) h = h3: there exist 5 homoclinic loops {I^3} in 'figure of eight' fashion 
connecting the saddle (z2,0) and its Zs-equivariant symmetry points. 

(4) h € (/i3,/i4) : there exist 5 period annuluses { r ^ } ^ = 1 — 5 enclos
ing 3 singular points (zi, 0), (z2,0), (z3,0) and their Z5-equivariant symmetry 
points. 

(5) h — hiiiheve exist 10 heteroclinic orbits { r ^ } and {TQ?} connecting 
the singular point (23,IT/5) and its Z5-equivariant symmetry points. 

(6) h € (/t4,0): there exist two period annuluses {FQ} enclosing the origin 
and { r j} enclosing all 21 finite singular points of (2.7). 

(7) h £ (0,oo) : there is a global period annulus {T%} enclosing all 21 
singular points. 

Notice that as h increases, the periodic orbits TQ constract inwards, all 
other periodic orbits expand outwards. Corresponding to the above 5 different 
classes {TQ} — {Tj} of the period annuluses, we also calculate 5 detection 
functions defined by (4.4) and obtain the bifurcation parameter values. To 
control the perturbed parameters (p, q) such that the system (4.1) has also 
more limit cycles, we suppose that 

(C3) \x\h3) - \2(h3) = 0, (C4) £Ti(zi,0) > 0. This condition group 
implies that p > 0, q = —3.092791861p. As an example, taking PG3 = 
{p,q) = (1, -3.092791861), then we have 

Ao(0) = 0, A0(/i4) = -0.2325782105; 

\1(h2) = -2.530172094, Ax(/i3) = -2.578978734; 

A2(/n) = -2.340755816, X2(h3) = -2.578978734; 

A3(/j3) = -2.578978734, \3(h4) = -1.725044127; 

A4(/i4) = -1.427510837, lim \4{h) = +00; 
h—>+oo 

and 

aa = 0.3663369133 > 0, ax = 0.606604988 > 0, a2 = 0.606604989 > 0, 

CT3(*4,ff/5) = -1-126129003 < 0, CT4 = -0.8285957134 < 0. 
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It follows that under the parameter conditions of G3 and PG3 with 

A € (Xi(h3), Ai(/»2)) = (-2.578978734, -2.530172094), (4.7) 

in the (h, A)-plane the straight line A = A intersects the curves A = Ai(ft), A = 
X2(h) and A = X3(h) at one point respectively. By using the Z5-equivariance 
of (4.1), we obtain from Theorem 3.1 the following result. 

T h e o r e m 4.2 For the parameter group G3 and PG3 and small e > 0, 
the system (4.1) has at least 15 limit cycles having the configuration shown 
in Figure 4(2) when A = A satisfies (4.7). 

Figure 4: The configurations of 20 and 15 limit cycles of System (4.1) 

5 Bifurcations in Z6-equivariant vector fields and conjucture 

Consider the perturbed Z6-equivariant vector field: 

dr 

n 
d0 
dt 

= /3r5 sin 68 - er(pr4 + qr2 - A), 

= 1 - 28r2 + (a + @cos6d)r4. (5.1) 
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Corresponding to (5.1), the function F(x,y) in the divergence of vector 
field of the hypothesis (A3) in Section 3 has the same form as (4.2). We 
discuss the case d = {a, ft) = (1.4,0.25). Under this parameter condition 
group, we have 

H{zi,0) < H(z2,0) < H{z3,n/6) < 0 < H{z4,n/6), i.e, h1<h2<h3<0< h4, 
(5-2) 

where H(x,y) is defined by (2.6). Prom (5.2) we see that as h increases 
from —oo to h4 the schemes of ovals of the sextic algebraic curves defined 
by H(r,9) = h will be varied and there exist five types of period annuluses 
{TQ} - { r j } of (2.5). We define 5 detection functions A,(/i),i = 0 - 4 similar 
to (4.4). By taking PG4 = (p,q) = (1, -3.376113233), we have the following 
values of bifurcation parameters and bifurcation direction detections (in detail, 
see[18]): 

Ao(0) = 0, Ao(/i3) = -1.207972277; 

Ai(hi) = -2.990330089, Ax(/i2) = -2.96704993, maa;(Ai(/i)) « -2.97; 

\2(h2) = -2.51962967, X2(h3) = -2.4842287; 

\3(h3) = -2.96604993, A3(/i4) = -2.31457964, min{\3{h)) « -2.967; 

\Ah2) = -2.564531384, max(Xi(h) « -2.5779, lim A4(/i) = +00; 
h—> — 00 

And 

cr0 > 0 , o-i > 0 , a2(z2,0) > 0 , 

0-2(2:3,77/6) > 0, 0-3 < 0, cr4 > 0. 



78 

Figure 5: Graphs of detection curves of (5.1) with parameters G4 and GP4 

The above information follows that under the parameter conditions of G4 

and PG4, the system (5.1) has the graphs of detection curves shown as Figure 
5. We see from Figure 5 that when 

A € (Ai(ft2), A3(ft3)) = (-2.96704993, -2.96604993), (5.3) 

in the (ft, A)-plane the straight line A = A intersects the curves A = Ai(ft), A = 
A3(ft) at two points respectively. By using the Z6-equivariance of (5.1), we 
obtain from Theorem 3.1 the following result. 

Theorem 5.1 For the parameter group G4 and PG4 and small e > 0, 
when A = A satisfies (5.3), the system (5.1) has at least 24 limit cycles having 
the configuration shown in Figure 6. Thus, we have H(5) > 24 = 52 - 1. 
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Figure 6: The configurations of 24 limit cycles of System (5.1). 

In general, let k be an integer. A Z2fc+2-equivariant Hamiltonian system 
of degree 2k + 1 has the form: 

— = r2k+1(ak+1 cos(2k + 2)0 + bk+1 sin(2fc + 2)6>), 
dt 

m 
di 

: 6() + 5 i r2 + 52r4 + . . . + bkr
2k + (o*+i cos(2fc + 2)6 - ak+1 sin(2& + 2)0)r2*. 

(5.4) 
By changing the polar axis and time scale, we can reduce (5.4) by two param
eters to the following (k + l)-parameter system: 

* = @r
2k+lsm(2k + 2)0, 

dt 

— = l + 61r2+62r4 + ---+6^.ir2 f c"2 + (a+/3co8(2fc+2)^)r2* = 0(r ,0) , (5.5) 
dt 

which has the Hamiltonian 
1 

ffM) = ^ i r 2- i 6 l r
4 _ 6 f c _ i r « _ _ _ ^ (a + /3cos(2fc + 2)0)r2*+2. 

(5.6) 
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Suppose that a > ft > 0 and the algebraic equation 

(a + p)r2k + bk^r2k-2 + ••• + b2r
A + bxr

2 + 1 = 0 (5.7) 

and 

(a - p)r2k + bk-.ir
2k-2 + ••• + b2r

i + hr2 + 1 = 0 (5.8) 

have respectively k different positive roots, i.e., in the polar axis 6 = 0 and 
6 = ir/(2k + 2), the system (5.5) has repectively k singular points at 

(Z!,0), ( z 2 ) 0 ) , • • • , (zk,0), (zk+1,7r/(2k+2)), (zk+2,7r/(2k+2)), ••• , (z2k,7v/(2k+2)). 

By the Z2fc+2-equivariance, there exist (2fc + l ) 2 singular points of (5.5). Thus, 
we can choose a parameter group, such that the system (5.5) has k different 
period annuluses with Z2Jt+2-equivariant symmetry. In other words, there are 
k(2k + 2) + 1 centers of (5.5). We next consider the perturbed system 

%- = pr2k+1 sin(2fc + 2)9 - r(Plr
2k + p2r

2k~2 + ••• +pkr
2 - A), 

at 

^ = 1 + bxr
2 + 62r4 + • • • + bk-ir

2k-2 + (a + /3cos(2k + 2)6)r2k. (5.9) 
at 

It is similar to the discussion for the system (5.1). By controlling the perturbed 
parameters pi,i = 1 — k, such that enclosing every centers (except the origin), 
there exist two limit cycles created by homoclinic or heteroclinic bifurcations. 
Therefore, we may obtain 2A;(2fc + 2) = (2k +1)2 — 1 limit cycles of the system 
(5.9). It means that the conjecture: H(2k + 1) > (2k + l ) 2 - 1 holds. 

Acknowledgement The research work is supported by the strategic re
search grant No. 7000934 from the City University of Hong Kong. 

Appendix: Ratio Between Double Integrals and Areas: the val
ues of Jij(hs). 

For the fixed unperturbed parameter group G2 = (a, /?) = (—7,-0.95), 
we obtain the values of Jij (hs) by numerical integration to four digits accuracy 
after the decimal point as follows: 

J01(h2) = 0.2149252727, J02(h2) = 0.3988931137; 

Jn(/ i2) = 44.17632564, Jl2(h2) = 5.954572388; 

J21(h2) = 39.28523855, J22(h2) = 5.33645488; 

J21(h3) = 35.92519738, J22(h3) = 4.994696597; 

Jsiih) = 3.259211417, J32(h3) = 1.74133613; 
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Ju(h3) = 34.2517894, Ji2(h3) = 4.828033959. 

For the fixed unperturbed parameter group G3 = (a,/?) = 
(0.2992021277,2.680851063), we have the values of Jij(hs) by numerical inte
gration to four digits accuracy after the decimal point as follows: 

Joi{hi) = 0.002025353778, J02(/i4) = 0.03858233638; 

Jn(h3) = 0.3790647646, Ju(h3) = 0.6007796831; 

J2i(h3) = 2.109516141, J22(h3) = 1.440046333; 

J31{h4) = 0.5477732675, J32(/i4) = 0.5445506974; 

J 4 i ( M = 0.4389746838, Ji2{K) = 0.4436824416. 
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1 Introduction 

In their 1989 paper, Lenore Blum, Mike Shub and Steve Smale introduced a 
model of computation over the real numbers in order to "[give] a foundation 
to the theory of modern scientific computation, where most of the algorithms 
... are real number algorithms." Real number computations are described 
by machines over the real numbers. A finite dimensional machine over the 
real numbers consists of a finite directed connected graph with four types of 
nodes: an input node, the input is a vector x £ R™, computation nodes where 
real polynomials or rational fractions f(x) are computed, branching nodes 
defined by polynomial inequalities f{x) > 0, and an output node. This model 
of computation is called the BSS model. It is described in 5 or in 4 . 

In real life computations we do not use real numbers but floating point 
numbers and a finite precision arithmetic. For this reason we do not com
pute exactly the quantities appearing in our theoretical machine but only 
approximations. In other words we have two machines: a theoretical ma
chine designed over the real numbers and an approximate machine, designed 
similarly, which uses floating point numbers and a finite precision arithmetic. 

On a certain input x € R™, due to the presence of branching nodes, these 
two machines may have a different behaviour: to the question "is f(x) > 0" 
the answer may be "yes" in the exact machine and "no" in the approximate 
machine. In such a case the computation paths and the outputs may be 
completely different. This is a typical example of instability introduced by 
floating point numbers and a finite precision arithmetic. 

In this paper we consider decision machines i.e. machines where the 
output is yes or no. To analyse the stability of such machines we adopt a 
backward analysis viewpoint. We show that, under a certain hypothesis, the 
decision taken on a; £ Rra by the approximate machine is identical to the 
decision taken by the exact machine on a nearby input y € R n . 

Since the computation path on input x is described by the answers at the 

mailto:dedieu6@mip.ups-tlse.fr
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branching nodes, our starting point is a system of inequalities 

fi(x) > 0, 1 < i < m, 

where fi : R™ -» R is a polynomial or, more generally, an analytic function. 
To a vector a £ R m we associate its positive part a+ and its negative part 

a~. The i-th coordinate of a+ (resp. a~) is â  (resp. 0) when a; is nonnegative 
and 0 (resp. — a*) otherwise so that, as for real numbers, a = a+ — a". In 
our context we use | | / (z)~ | | to measure the deviation of the vector f{x) from 
positivity. 

To begin we show that when ||/(a:)~|| is small enough, there exists a 
certain y £ R™ close to x such that the system of inequalities is satisfied 
exactly at y: 

fi(y) > 0, 1 < i < m 

and we give an estimate for the distance of y from x in terms of | |/(x) 
us denote by a the sum of the following series: 

I. Let 

k=0 v ' 

1 

= 1.63284 

To an analytic map / : R" —> RTO and to a; 6 
following numbers: 

T(/, x) = sup 
k>2 

Dkf(x) 
k\ 

1 

and 

6(f, x) = (Df(x)Df(x)* + 4 Diag (/(*)+)) - l 

We also let 6(f,x) = oo when the matrix Df(x)Df(x)* + 4Diag(/(a;)+) is 
singular. Here A* denotes the adjoint of the matrix A, \\ \\ is the operator 
norm associated with the usual Euclidean norms in Rn and Rm and Diag (d) 
is the diagonal matrix with diagonal entries di,d2,... Notice that T(f,x) is 
always finite because / is analytic. 
Theorem 1. Let x G R™ be such that 

\\f(x)~\\ < -
" n ' " - 8(1+ T(/, *))*(/, a;) max(l, <*(/,*))' 

Then the set f-° = {x € R n : f(x) > 0} is nonempty and 

DiSt(xJ^°)<a6(f,x)\\f(x)-\\. 
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When f is a polynomial system with Degree ft < 2 this result holds when 

U{X) ll-4(2 + \\D*f(x)\\)5(f,x)i-

In the following we consider the case of inequalities and strict inequalities. 
Like in Theorem 1 we assume | | / ( x ) - | | small enough so that f(y) > 0 for a 
certain y close to x. Let us assume that fi(x) > 0 for each i in a certain set 
J C { 1 , . . - , m}. If the quantities fi(x), i € J , are far enough from 0 we show 
that these strict inequalities are also valid at y. 
Theorem 2. Let x G R n be such that 

l l / ( a ° " - 8 (1+ r(/,a:))<J(/,x)maX(l ) « ( / , ! ) ) • 

Let us also suppose that 

fi(x)>(aS(f,x)\\f(x)-\\)2 

for each i in a certain set J C { 1 , - . . ,m}. Then there exists y G / - ° such 
that 

fi(y) > 0 for each i G J 

and 

\\x-y\\<ad(f,x)\\f(x)-\\. 

The following corollary is another formulation of these theorems. We 
introduce here a computation error e. In an exact machine we branch on the 
inequality fi(x) > 0 while in the approximate machine we have to take into 
account computation errors: we branch on fi(x) + e» > 0. 
Corollary 3. Let x G R" and e G R m be given. Let us denote e< 0 the vector 
in R m with i—th component equal to €i when fi(x) < 0 and 0 otherwise. When 
the three following conditions are satisfied 

• fi(x) + ei > 0 for each i = 1 . . .p, 

• fi(x) > (<r5(f,2:)||e<0||)2 for each i=p+l...m, 

. ||e<°|| < 1/(8(1 + r(f,x))6(f,x)max(l,8(f,x))), 

then, there exists y G R" such that 

• fi(y) ^ 0 for each i = 1 . . .p, 

• fi(y) > 0 for each i = p + 1 . . . m, 

• lk-y||<aJ(/>a:)||C<0 | | . 
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2 A word about the proofs 

To prove these theorems we use a powerful argument based on Smale's alpha-
theory. We associate to the system of inequalities f(y) > 0 the underdeter-
mined system 

Fi{y,t) = fi{y)-t1, \<%<m, 

which is a system of m equations i n r a + n unknowns: (y,t) € R™ x RTO. 
We see easily that F(y,t) = 0 implies f(y) > 0. To prove the existence 
of a zero (y,t) for F with y close to x we show that Newton's sequence 
(xk+i,tk+i) = NF(xk,tk) starting at (xQ,t0) - (x,^/f{x)+) is converging. 
Its limit is a zero for F. This process is interesting because it provides a very 
efficient way to compute y. 

Such a method has already been used by F. Cucker and S. Smale in 
9 where the authors study the complexity of the feasibility of a system of 
polynomial equalities and inequalities in n variables. 

Newton's method for underdetermined systems of equations was intro
duced for the first time in 1966 by Ben-Israel 3 . This iteration is defined 
by 

NF(z) = z - DF{zj*F{z), zk+1 = NF(zk), 

where ZQ is given. We denote here by DF(z)^ the Moore-Penrose inverse of 
the derivative DF(z). When DF{z) is onto and more generally for a surjective 
linear operator L between two Euclidean spaces, its Moore-Penrose inverse ie 
given by Lt = L*{LL*)~l with L* the adjoint of L. 

To prove the convergence of the sequence (xk+i,tk+i) = NF(xk,tk) we 
use a theorem due to M. Shub and S. Smale 1996 19 . 

Let F : E —>• F be an analytic function between two Euclidean spaces. 
We suppose here that dim E > dim F . To F and a given z £ E we associate 
the three following numbers: 

a(F,z) = /3(F,z)7(F,z), 

P(F,z) = \\DF(z)^F(z)l 

7(F, z) = sup 
fc>2 

Theorem 4. There is a universal constant ao, approximately 1/7, with the 
following property. For any z0 e ~E with a(F, z0) < a0, all the Newton iterates 

Zk+l — Zk - DF(zk?F(zk), k > 0, 

Dm<?$* 
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are defined, converge to £ £ E with F(Q = 0 and for all k > 0 

lkfc+i -.Zfcll < ( 2 ) ^Zl ~ • 2 ° " ' 

/n particular 

\\<-zo\\<<rP(F,zo). 

3 Comments and similar results 

The material contained in this paper is taken from Cucker-Dedieu 1998 8 and 
from Dedieu 2000 10. In the first paper the authors study the behaviour of 
round-off decision machines. This talk is inspirated by these ideas. Decision 
problems and round-off computations are also considered by Cucker and Smale 
1999 9 where the authors design robust algorithms to solve decision problems. 

The main ingredient to study such problems is given by the relation be
tween the number | | /(a;)_ | | and the distance to the feasible set f-°. Classical 
results relate these two quantities. 

First of all, Hoffman's Theorem, published in 1952 13, and reconsidered 
by Giiler, Hoffman and Rothblum in 1995 n . Hoffman considers linear in
equalities: 
Theorem 5. (Hoffman) Let A £ R r n X n . Then there exists a scalar K{A), 
such that for each b £ R m for which the set A-b = {x' £ R™ : Ax' < b} is 
not empty and for each x € R" 

Dist (x, A^b) < K(A)\\(Ax - 6)+||. 

There have been a number of generalizations of Hoffman's Theorem to 
nonlinear cases. A first class of results uses a convexity assumption and is 
proved via convex analysis: Robinson 1975 18, Mangasarian 1985 17, Auslender 
and Crouzeix 1988 1 . A recent paper in these directions is "Error Bounds for 
Convex Inequality Systems" by Lewis and Pang 1998 15. 

Let / : R n —> R U {oo} be an extended-valued closed proper convex 
function and S the closed convex set defined by f(x) < 0. We denote by 
f'(x, d) the directional derivative of / at x along a direction d and by N{x, S) 
the normal cone of S at a vector x £ >S. With these notations Lewis and Pang 
prove the following: 
Theorem 6. (Lewis-Pang) The following statements are equivalent: 

• Dist (x,S) < jf(x)+ for any x € R n , 
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• For any x 6 / 1(0) and d £ Af(x,S) 

/ ' ( x , d ) > 7 - 1 | | d | | . 

Another generalization of Hoffman's Theorem to a nonlinear and noncon-
vex case may be obtained via Lojasiewiecz's Inequality. This result was proved 
for the first time by Lojasiewiecz 1964 16 for semianalytic or semialgebraic sets 
and functions and then extended to the subanalytic case by Hironaka 1973 12. 
A good expose of such questions is contained in Bierstone-Milman 1988 6. 
Theo rem 7. (Lojasiewiecz) Let K be a compact and subanalytic set contained 
in R n . Let f : K -> R™ be a continuous subanalytic function. There exist 
a > 0 and an integer N > 0 such that for all x € K, 

a D i s t O c / ^ T ^ I I / ^ r i l -

Hoffman's Theorem has also been extended by Ioffe (1979) 14 to locally 
Lipschitz functions using Clarke's subgradient, and more recently by Aze, 
Corvellec and Lucchetti (1999) 2 who consider the case of lower semicontin-
uous functions defined over Banach spaces. Let us recall the definition of 
Clarke's subgradient 7 . Prom Rademacher's Theorem, a function which is 
Lipschitz on an open subset of R™ is differentiable almost everywhere on that 
subset. Based on this result, the generalized gradient at x, denoted dg(x) has 
the following characterization: for any set S of measure zero 

dg(x) = co{ lim \7g(xi) | g is differentiable at X%, X} ^t <^, Xi 7 Xj 
i—>oo 

where co denotes the convex hull. 
Theo rem 8. (Ioffe) Let given f : R™ —> R m locally Lipschitz, x e R n with 
f(x) > 0 and e > 0. Let us define c = min \\y*\\ where the minimum is taken 
for \\y - x\\ < e with y £ f^° and y* € <9||/"||(y). Then 

c D i 8 t ( y , / ^ ° ) < | | / ( y ) - | | 

for any y with Dist (y, f-°) < e/2. 

References 

1. AUSLENDER A. AND J . -P. CROUZEIX, Global Regularity Theorems, 
Math. Oper. Res., 13 (1988) 243-253. 

2. AZE D., J.-N. CORVELLEC AND R. F. LUCCHETTI, Variational Pairs 
and Applications to Stability in Nonsmooth Analysis, (1999) Preprint. 



91 

3. BEN-ISRAEL A., A Newton-Raphson Method for the Solution of Systems 
of Equations, J. Math. Anal. Appl. 15 (1966) 243-252. 

4. BLUM, L., F . CUCKER, M. SHUB, S. SMALE , Complexity and Real 
Computation, (1998) Springer Verlag. 

5. BLUM, L., M. SHUB, S. SMALE , On a Theory of Computation and 
Complexity over the Real Numbers; NP Completeness, Recursive Func
tions and Universal Machines, Bull. Amer. Math. Soc. (New Series) 
Vol. 21 (1989) 1-46. 

6. BiERSTONE E. AND P . MILMAN, Semianalytic and Subanalytic sets, 
IHES Pub. Math. 67 (1988) 5-42. 

7. CLARKE F . Optimization and nonsmooth analysis, J. Wiley and Sons. 
New York. 1983. 

8. CUCKER, F . AND J . -P. DEDIEU, Decision Problems and Round-Off Ma
chines, to appear in: Theory of Computing Systems, 2001. 

9. CUCKER, F . AND S. SMALE, Complexity Estimates Depending on Con
dition and Round-off Error, Journal of the ACM, 46 (1999) 113-184. 

10. DEDIEU, J . -P. , Approximate Solutions of Analytic Inequality Systems, 
SIAM Opt., to appear. 

11. GULER, O., A. HOFFMAN, U. ROTHBLUM, On Approximations to So
lutions to Systems of Linear Inequalities, SIAM J. Matrix Anal. Appl., 
16 (1995) 688-696. 

12. HiRONAKA H., Introduction to Real-Analytic Sets and Real-Analytic 
Maps, Preprint, Pisa (1973). 

13. HOFFMAN, A., On Approximate Solutions of Systems of Linear Inequal
ities, J. Res. Nat. Bur. Stand., 49 (1952) 263-265. 

14. IOFFE A., Regular points of Lipschitz functions, Trans, of the Amer. 
Math. Soc. 251 (1979) 61-69. 

15. LEWIS, A. AND J.-S. PANG, Error Bounds for Convex Inequality Sys
tems, in: J.-P. Crouzeix, J.-E. Martinez-Legaz and M. Voile (eds), Gen
eralized Convexity, Generalized Monotonicity, Kluwer (1998) 75-110. 

16. LOJASIEWICZ S., Ensembles Semi-Analytiques., IHES Mimeographed 
Notes (1964). 

17. MANGASARIAN O., A Condition Number for Differentiable Convex In
equalities, Math. Oper. Res., 10 (1985) 175-179. 

18. ROBINSON S., An Application of Error Bounds for Convex Programming 
in Linear Spaces, SIAM Journal of Control and Opt. 13 (1975) 271-273. 

19. SHUB, M. AND S. SMALE, Complexity of Bezout's Theorem IV: Proba
bility of Success, Extensions, SIAM J. Numer. Anal., 33 (1996) 128-148. 



93 

RECONCILIATION OF VARIOUS COMPLEXITY A N D 
CONDITION MEASURES FOR LINEAR PROGRAMMING 

PROBLEMS A N D A GENERALIZATION OF TARDOS' 
THEOREM 

JACKIE C. K. HO 
Ph.D. student, Department of Combinatorics and Optimization, Faculty of 

Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. 

L E V E N T T U N Q E L 

Department of Combinatorics and Optimization, Faculty of Mathematics, 
University of Waterloo, Waterloo, Ontario N2L 3G1, Canada 

First, we review and clarify the relationships amongst various complexity and con
dition measures for linear programming problems. Then, we generalize Tardos' 
Theorem for linear programming problems with integer data to linear program
ming problems with real number data. Our generalization, in contrast to the only 
previous such generalization due to Vavasis and Ye, shows that many conventional, 
polynomial-time (in the sense of the Turing Machine Model, with integer data) 
primal-dual interior-point algorithms can be adapted in a Tardos' like scheme, to 
solve linear programming problems with real number data in time polynomial in 
the dimensions of the coefficient matrix and the logarithms of certain measures of 
the coefficient matrix (independent of the objective function and the right-hand-
side vectors). 

Keywords: linear programming, computational complexity, complexity mea
sures, interior-point methods 
AMS Subject Classification: 90C05, 90C60, 49K40, 90C31, 90C51 

1 Introduction 

Let A e Emx™, b e E m , and c e W1. In this paper, one of our main concerns 
is the computational complexity of solving linear programming (LP) prob
lems with data (A, b, c) in a way that the number of arithmetic operations is 
bounded by polynomial functions determined only by A. 

For t £ M_|_, poly(i) denotes a polynomial function of t. For a £ Z, we 
define 

size(a) := [log (|a| + 1)] + 1; 
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for A G Z m x n , 

size(A) := yjsize(af/). 

When A G Z m x n , b G Z m , c £ Z", Tardos 22 proved that the existence 
of an algorithm for LP which performs only polynomially many elementary 
arithmetic operations in size(A, b, c) implies the existence of an algorithm for 
LP which performs only poly(size(A)) elementary arithmetic operations. (Her 
results also apply in the more general case A £ Qmx™; b G Q™, c G <QP, also 
see 23 for network flow problems.) 

Tardos' proof is constructive in the sense that it shows how to use any 
polynomial time algorithm for LP as a subroutine to achieve the goal of solving 
LP problems in poly(size(A)) time complexity. However, the proof requires 
calling the subroutine (the LP solver with 
poly(size(A,b,c)) time complexity), polynomially many times using modi
fied data so that the sizes of the modified LP instances can be bounded by 
poly(size(A)). 

Later Vavasis and Ye 29, in another seminal paper (with many new in
sights), proposed a new kind of interior-point algorithm and proved that their 
algorithm can solve LP problems with data A € E m x n , b € E m , c € E n , 
in O (n 3 5 (logx(A) + log(n)) loglogx(^l)) interior-point iterations. Also, see 
Adler and Beling's 1 paper which is more specialized than the Vavasis-Ye pa
per since it is concerned with the polynomial-time LP algorithms over the 
algebraic numbers. When specialized to integer (or rational) data, Vavasis-Ye 
result gives another proof of Tardos' theorem (using xG4) = 20(-slze(-A^—see 
Section 2). So, in this sense, Vavasis-Ye result generalizes Tardos' theorem 
to LP problems with data A £ E m x n , b G l m , c G Kn. Vavasis-Ye proof 
is even "more constructive" in the sense that their algorithm is a specialized 
algorithm designed for such a purpose, and need not be called many times 
(except to guess an upper bound for x(^)—accounted for in the above quoted 
iteration bound by the loglogx(^4) term; also see 1 5 ) . 

One advantage of Vavasis-Ye algorithm is that it has the potential of 
becoming a practical algorithm. However, theoretically speaking, Vavasis and 
Ye left open the question of whether conventional polynomial time interior-
point algorithms (or perhaps some others) can be adapted in a scheme more 
directly related to Tardos' to solve the LP problems with data A G E m x " , 
b G E m , c £ 1 " in polynomially many elementary arithmetic operations 
where the polynomial bound depends only on the (properly defined) "size" of 
A e l m x " . In fact, Vavasis and Ye 29 state that 
"Tardos uses the assumption of integer data in a fairly central way: an 
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important tool in 22 is the operation of rounding down to the nearest integer. 
It is not clear how to generalize the rounding operation to noninteger data." 

For example, let A £ Z m x n , c € Z". Then if d is an extreme ray of { i e 
Rn : Ax — 0,a; > 0} such that cTd < 0, then we know that there exists an 
integral extreme ray d in the above cone such that cTd < (—1). Of course, 
such arguments do not directly apply in general when the entries of A and c 
are real numbers. When A and c have only rational entries, the data can be 
multiplied by a large enough (but not too large) integer such that the new 
scaled data contain only integers. This again ensures a notion of a "unit" to 
round to, even after a normalization of the integral d such that J]?=i dj = 
1, so that the arguments similar to the above still work (e.g., after such a 
normalization, cTd < — 1/A(A), where A(A) denotes the largest absolute 
value of a subdeterminant of A). In addition to this, a few other obstacles 
arise in an attempt to obtain such a generalization of Tardos' theorem and 
proof to the real number model. 

In this paper, we overcome these obstacles, and generalize Tardos' theo
rem and a significant part of her proof to the case when A e E m x " , b € Rm, 
c £ W1. Our results also generalize Vavasis and Ye's result in the sense that 
in our scheme almost any polynomial time LP algorithm can be adapted, 
whereas their result uses a new, specialized algorithm. 

Before we describe the generalization of Tardos' theorem, we review and 
clarify (with many new results) relationships amongst various complexity and 
condition measures such as x(^)> x(-^)i the condition number of (AAT) de
noted by K(AAT), Hoffman's bound (or the Lipschitz bound) for systems of 
linear inequalities, Ye's complexity measure for LP (also known as the small
est large variable bound), A (A) and the smallest nonzero absolute value of 
a subdeterminant of A, denoted 6(A). Special emphasis is put on establish
ing various fundamental properties of x> which becomes one of the central 
tools in the last section when we deal with generalization of Tardos' result. 
While our proof of the generalization of her theorem is very similar to hers, 
a key part of the proof which makes it work in the real number case, is the 
generalization of the rounding operation to noninteger data (in the sense of 
choosing an appropriate "unit" for the data at hand). For this, we rely heav
ily on those fundamental properties of \ mentioned above. We first perform 
our analysis on deciding the feasibility of a system of inequalities, and then 
use the resulting algorithm as a subroutine to solve the whole primal-dual LP 
problem. In both cases, we solve the original problem by solving a sequence 
of polynomially many "nicer" or smaller LP problems, each of which has in
tegral right hand side vector (and cost vector, in the latter case) whose size is 
bounded by a polynomial function of our complexity measures. This is one of 
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the fundamental tools for eliminating the dependence on b and c in the overall 
complexity bound of the algorithms. Solving these "nicer" LP problems gives 
us important information about the structure of the optimal solutions of the 
main LP problem in terms of the linear algebraic structures of the input data. 
For example, "there exists an optimal solution at which the jth inequality 
is tight" or "at all optimal solutions, the jth inequality is strictly satisfied." 
Such information helps us reduce the dimensions of the problem at hand; but, 
it also requires us to analyze the complexity measures for the subproblems. 

The sizes of all the integers making up the right hand side and objective 
vectors of these "nicer" LP problems are bounded above by a polynomial 
function of n and the logarithm of ( S>A1 1. Many are also bounded by a 

polynomial function of n and logx(A). 
As mentioned, we need to use an LP solver as a subroutine in our proof 

of Tardos' theorem. While any polynomial time LP solver can be used, we 
describe a very useful formulation - the homogeneous self-dual form - in 
Section 5. The complexity of running an interior-point algorithm (with a 
certain termination rule) on such a form can be expressed in terms of Ye's 
complexity measure, which becomes convenient in our complexity analysis. 

This paper is organized as follows. In Section 2, we review definitions 
and characterizations of some complexity measures which are relevant to our 
stated interest in this paper. We also present some new results in this sec
tion. Section 3 includes the Cauchy-Binet formula and an application of it to 
obtain a bound on the condition number of (AAT). In Section 4, we discuss 
Hoffman's Theorem and relate the Hoffman constant to x(^4)- In Section 5, 
we discuss Ye's complexity measure for LP problems and relate it to the Hoff
man constant. Also in Section 5, we show that the number of iterations of 
many primal-dual interior-point algorithms to solve LP problems with data 
(A, b, c), with arbitrary A and special b and c, can be bounded by a polyno
mial function of n and logarithms of certain complexity measures. We review 
a sensitivity bound result of Cook, Gerards, Schrijver, Tardos 3 in Section 6 
and establish various variants of it based on the complexity measures x(A) 
and x(^4). Section 7 contains our main result - a generalization of Tardos' 
Theorem - based on the results obtained in the preceding sections. We con
clude with a very brief discussion of the special cases when A is integral and 
totally unimodular. 
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2 Complexity and Condition Measures: x a n d X 

We denote by Af(A), the null-space of A; K(A) denotes the range (or column-
space) of A. We assume A ^ 0, n > m > 3. Recall the definitions: 

\\A\\P := max ||-Aar||p, for 1 < p < oo, 
llz||»=i 

F •= 
\ 4=1 j=l 

It is not hard to show that 
m 

11̂ 11!= max £>«l> (1) 
i<i<n" 

2 = 1 

ll^lloo = max £ 1 ^ 1 . (2) 

We have the following well-known matrix norm inequalities: 

I H h < \\A\\F < Vn||A||2, (3) 

4 = P l l o o < P | | 2 < V ^ M H o o , (4) 

4=Pl l i < Plb < v^Plli, (5) 

We also have the submultiplicative property for p-norms, 1 < p < 00. For all 
A e E m x " , C G M"x?, we have 

| |^C| | P < ||A||P||C7||P. (6) 

For the rest of the paper, the 2-norm is assumed when norms are mentioned, 
unless stated otherwise. 

We assume throughout this section that A has full row rank. Define 

X(A) := sap{\\AT(ADAT)-1AD\\ -.DeV}, 

where V is the set of all positive definite n x n diagonal matrices. Note that 
X.(RA) = x(A) for all nonsingular R € E m x m . In fact, x(A) depends only on 
the pair of orthogonal subspaces, M(A) and 1Z(AT). So, it can be defined on 
subspaces instead. Note that for all D € T>, 

\\AT\\ = \\AT(ADAT)-1ADAT\\ < \\AT(ADATylAD\\ • \\AT\\. 
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Hence \\AT{ADAT)-lAD\\ > 1, and thus \{A) > 1. 
Similarly we define 

X(A) := sup{||(AD.4T)-1.4D|| : D g D}. 

Note that both x(A) and x (^ ) a r e finite. Also, 

mT(A JDAT)-1A£)| | < \\AT\\ • \\{ADAT)-1AD\\, 

\\{ADAT)-XAD\\ < \\{AAT)'lA\\ • \\AT(ADAT)-lAD\\. 

Therefore, we have 

P j j X ^ ) < X(A) < \\(AAT)-iA\\x(A) = A / , 8 ( ^ |
) ^ ( A ) , (7) 

where K(R) := \\R\\ • | | i?_ 1 | | , the condition number of R, for any nonsingular 
matrix R. Note that if m = n, then K{AAT) = \\A\\2 • WA^W2 = (\\A\\x(A))2. 

An equivalent way to define these parameters is in terms of weighted least 
squares: 

f II ATy || 
x(A) = sup < —r—r— : y minimizes || D1'2(ATy — c) || 

I l | c | | 

for some c € Rn,D €T>\, 

x(A) = sup -J |LO- : y minimizes || D1^2(ATy - c) \\ 
U l c l l 

for some cG W,D &v\. 

Let us define, for 1 < a,/? < oo, 

pa,p(A) : = i n f { | | z - y\\$ : x G X,y eYa}, 

where X := {D£ : £ e Af(A),D G c\(V)},Ya := {7 : 7 G ft(,4T), | |7 | |« = 1}, 
and cl(D) denotes the closure of the set £>, that is, the set of nonnegative 
diagonal matrices. Note that pa,p(-) > 0. If we have || • \\p < c\\ • \\a, then 
Pa,s{') < c, as 0 G X. In particular, pa,a{-) < 1- Also note that the definition 
of pa<p(A) depends only on K{AT) and its orthogonal complement Af(A). 
Gonzaga and Lara 8 prove that when a = /? = 2, the subspaces M{A) and 
1l(AT) can be interchanged in the definition of pa^(A). In the following, we 
denote /9QjQ simply by pa. We are mostly interested in p2, which we denote 
simply by p. 

All vector p-norms are equivalent, that is, given a,ji such that 1 < a,/3 < 
oo, there exist positive ci,C2 such that ci|| • ||Q < || • \\p < C2II • | |a . This 
property also applies to pas'-
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Proposition 2.1 Suppose 1 < a,/3,7,<5 < oo, and ci,c2 ,di,(i2 > 0 such that 
di\\ • \\a < II • ||<5 < d2\\ • ||a and ci| | • ||7 < || • ||/3 < c2|| • ||7. Then 

Clrfl/9<5,7(-) < Pa,/3(-) < C 2 d 2 ^ , 7 ( - ) -

Proof 
Note that pgtp(A) = inf {||a; — y\\p : x € X, y € Y^} is attained, by say, a; and 
y. Let y* := j / / | | j / | | Q . Then y* £ Ya, and we have 

Ps,p(A) = llx-2/11/3 V > ^-pa,M) = ±PaAA). 
a2 d2 

By considering the infimum in pa^(A), similarly we have pa^(A) > dip$tp{A). 
Combining the above, we have dips,/3(A) < pa^{A) < d2Ps,p(A). By using 
cl|l • Ik < II " 11/3 < c2|| • H7. w e h a v e Cldi/9,5)7(-) < Pa,p(-) < C2d2p6n{-)- D 

In particular, we have 

~P(-) < Poc(-) < v M O - (8) 
y n 

The following is a well-known fact. 

Proposition 2.2 (Stewart 21) 

X(A) = l/p(A). 

A basis of A is a set of indices B C { 1 , . . . , n} such that \B\= m and the 
columns of As are linearly independent. We denote the set of all bases of A 
by B(A). 
Proposition 2.3 (Vavasis and Ye 29, Todd, Tuncel and Ye 2i) 

x{A)=max{\\A-B
lA\\:BeB{A)}. 

Here, ">" is proven in 29 and "<" is proven in 24. It is known and not 
hard to show that an analogous characterization for x(A) also exists: 

X(A)=max{\\Ag1\\:B€B(A)}. (9) 

Using the above proposition, we prove that x cannot increase if any column 
is removed. 
Proposition 2.4 Suppose A is obtained by removing a column a 6 Em from 
Aemmxn. We have the following: 

• //rank(A) = m, then x{A) < x(A). 



100 

• If iank(A) < m — 1, then let A be obtained by removing any dependent 
row from A. We have rank(^4) = m — 1 and x(A) = x(A). 

Proof 
If rank(^4) = m, we have 

x{A) = WAg1 A\\, for some basis B of A 

< H^Ali^aHI = \\A^A\\ < X(A). 

We used the fact that B is also a basis of A. Now, consider the case where 
rank(Ji) < m — 1. Without loss of generality, assume a is the last column of 
A. Then by row reduction, there exists a nonsingular G € R m x m such that 

/ A' (1 
GA = G[A\a]=\Jr\ 

for some A' £ K^"1-1'**"-1) having full row rank (hence, rank(A) = m — 1). 
Then 

n{AT) = Tl(AT) = K((GA)T) = TZ{A,T), 

and hence N(A) = M{A'). So, x(A) = x(A'). Now, since every basis of GA 
must include the last column, 

'(A'z)-1 0\ ( A'0' 

(A'zV'A'O' 
QT 1 

X(GA) = , for some basis B of A' 

= m a x { | | ( ^ ) - 1 ^ | | , l } < x ( ^ ) -

The proof of x{A') < x(GA) is similar. Therefore, we have 

X(A) = x(A') = X(GA) = X(A). 

• 

Consider A € Q m x r a . Let L denote the total number of bits required to 
store A. We have the following. 
Proposition 2.5 (Vavasis and Ye 29) 
If Ae <QPxn, X{A) and x(A) are both bounded by 2°(L\ 

Khachiyan 14 proved that approximating x(A) within a factor of 2P0ly(™' 
is NP-hard. Similarly, approximating x(A) within a factor of 2 ? ° ^ ' " ' is also 
NP-hard2 5 . 

The following observation is due to O'Leary 17. Naturally, for a £ E, 
sign(a) is either +,0, or — depending on the sign of a. 



101 

Proposition 2.6 (O'Leary 17) 
Considering J, 7, £ as the variables, we have 

pa,0(A) = min \\-yj\\0 

subject to sign(7j) = sign(^), j & J 

IMU = 1, 
7 € n(AT), 

Consider the matrix: 

Ac:= 

i € M(A), 
J C { l , 2 , . . . , n } , J # 0 . 

A 0 

where C is an n x n invertible matrix. Obviously Ac also has full row rank. 
We have the following result. 

Proposition 2.7 (Ho n) 

X(AC) = y/2x(A). 

Proof 
It is easy to see that 

JV(^c) = { ( _ y : £ e J V ( A ) } and 

We will prove that p(A) = y/2p(Ac) using the characterization of p in Propo
sition 2.6 with 7£(AT) and M(A) interchanged (which we can do since we are 
working with the 2-norms). Let us denote this minimization problem as Q{A). 

1. p(A) > V2p(Ac) 
Let (£*,7*, J*) be an optimal solution of Q(A). We now define a y* that 
satisfies certain sign conditions. If j £ J*, let yj be such that sign(—£j) = 
sign(j/|). Therefore sign(^) ^ sign(7J' + y])- Now if j # J*, we can let 
y* be such that sign(-£*) = sign(j/}), and sign(£*) = sign(7* +y*), by 
ensuring |2/*| is small enough. Thus, the 3-tuple 

is feasible for Q(i4c). Therefore, V2p(Ac) < ||f}*ll = P(A)-



102 

2. p(A) < V2p(Ac) 
Let 

•VJ'K y* ' ' 

be an optimal solution of Q(Ac)- Let 

J := {j G { 1 , . . . ,n} : sign(£) 7̂  sign(7 ;)}. 

Since £* is orthogonal to 7*, and £* ^ 0, there must exist j such that 
sign(^) ^ sign(7;). Hence J jt 0. The 3-tuple ( 7 2 ^ , 7 * , ^ ) is fea
sible for Q(A), and therefore p(A) < \/2||£}||- Now take any j € J . 
Since s ignup 7̂  s i g n ^ ) , there does not exist a yj which satisfies both 
sign(£?) = sign(7J' + yj) and s ign(-£p = sign(j/.,) at the same time. 
Hence, at least one of j or n 4- j is in J*. Therefore we have 

-J=P(A) < \\Cj\\ < -c = P(AC). 

D 

Using a proof similar to the above or using Proposition 2.3, we easily 
prove the following fact. 
Proposition 2.8 (Ho n ) 

x([A\-A)) = V2x(A). 

Recall that the singular values of A are the square roots of the eigen
values of the matrix ATA. The largest singular value of A is simply ||^4||2-
Let Cmin(^l) denote the smallest nonzero singular value of A. We have the 
following connection to p(A). 
Proposition 2.9 (Stewart 21 and O'Leary 17) 
Let the columns ofUG R n x m form an orthonormal basis for 1Z(AT). Then 

p(A) = min trmin (£//), 
0#/C{l,...,n} 

where Uj denotes the submatrix formed from a set I of rows of U. 

First, Stewart proved "<", next O'Leary proved ">". A nonzero x € 
M(A) (with nonzero entries in positions {i\,... ,ip} C { 1 , . . . , n}) is said to 
define a minimal linear dependence amongst the columns of A if for every 
subset / of size at most (p - 1) of {i%,..., ip}, the columns of A indexed by J 
are linearly independent. We have the following proposition due to Vavasis. 
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Proposition 2.10 (Vavasis 2S) 
Let x G A/"(A) be a nonzero vector defining a minimal linear dependence 
amongst the columns of A. We have 

Jrdn{\Xj\:Xj^0} > 

m&x{\xj\ : Xj 7̂  0} — 

We now give a new proof that is different from Vavasis'. 
Proof 
Let k and I be such that min{|:rj| : Xj ^ 0} = \xk\ = I. Let us denote the j th 
column of A as Aj, for all j e { 1 , . . . ,n}. Then there exists J C { 1 , . . . ,n}\{fc} 
such that AJXJ = ±lAk, where xj contains precisely the nonzero entries of x 
other than Xk- Since x defines a minimal linear dependence, the columns of 
Aj must be linearly independent. So we can extend J to a basis B of A to 
get ABXB = ±/Afc. Now, 

IWloo = I M U < HZBII = i P i 1 Afc|| < IWA^AW < lx(A). 

In other words, 

or equivalently, 

P(A)< 

X(A) > ^ 

I mm{\xj\ : Xj ^ 0} 

max{|a;j| : Xj ^ 0} 

D 

Using these arguments, it is not hard to show that the same result holds 
for any extreme ray x of the cone {x : Ax = 0, x > 0}. 

Corollary 2.11 Suppose { d e l " : Ad = 0,eTd = \,d > 0} is not empty. 
Then, it is compact and every extreme point d of it has the property 

wm{dj : dj ^ 0} > — • J n 

Proof 
Compactness of the set is clear. Every extreme point corresponds to an ex
treme ray (and hence a basic feasible direction) of {x : Ax = 0,x > 0}. For 
every basic feasible direction x, we identify the smallest nonzero component 
Xk first, and then B € B{A) such that all other nonzero components of x are 
determined by the system of equations 

ABxB = -xkAk. 
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Then, as in the proof of Proposition 2.10, we get ||x||oo < XkX(A)- Letting 
d :— x/(eTx), we see that 

mm{dj : dj ? 0} > . ** , . > —±— = ^ - . w J r - xk [mX(A) + 1] - nX(A) n 

We used the facts that n> (m + 1) and x(A) > 1. • 

Recall that A(A) and 6(A) denote the maximum and minimum (re
spectively) of the absolute values of the determinants of all the nonsingular 
square submatrices of A. We have the following relationship among p00,A(A) 
and S(A), proven via exploitation of the sign pattern characterization and 
Cramer's Rule. 
Proposition 2.12 (Tungel 27) 

6(A) 
Poo(A)> y ' 

mA(A)' 

Proof 
Recall the definition 

Poa(A) := va£{\\Dx - </||oo : D € c\(V), x € Af(A),y € K(AT), ||2/||oo = 1}-

Clearly here we can restrict x to be in {x G N(A) : ||x|| < 1}. Let 
{(Dk,xk,yk)} be a sequence of feasible solutions such that \\Dkxk — yk\\oo 
converges to poo(A). Since {xk} and {yk} are in compact feasible sets, we 
may assume {(xk,yk)} converges to, say, (x*,y*). Let J* be the set of indices 
such that the signs of x* and y* disagree. Note that J* ^ 0 because otherwise 
we can choose D € cl(Z>) such that Dx* —y* = 0, contradicting the fact that 
Poo(A) > 0. Note that for the pair (x*,y*), a best D* is such that 

Dl = < 
0, i E J*, 
1, i$J*,xl=0, 

So Poo(A) = ||j/}.||oo) a n d therefore 

Poo(A) = min{||yj. ||TO : y £ TZ(AT), WyW^ = 1, sign(«/) = sign(y*)}. 

Then it is easy to see that 

j-r = maxflMloo : y € TZ(AT),sign(y) = sign(y*), \\yj.\U < 1} 
Poo(-tt-) 

= max{||A rw||00 : sign(Arw) = sign(i/*), ||(ATt«)j.||oo < ! } • 

file:////yj./U
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Let w* be a maximizer of this expression, 

e:=mm{\(ATwnJ\:(A
Tw*)j^0}, 

(ATw)j>e, ifsign(j/p = l, ^ 
. (Arw)j=0, if s ignup = 0 

(ATw)j < - e , if s ignup 
F(sign(2/*),J*):= 

Then 

w 

(ATw)j < 1, if je J* 

> . 

P°o{A) 
= max{||ATw||00 : w 6 F(sign(y*), J*)} 

= max{a ru) : w G F(sign(j/*), J*)}, 

where a is a column of A (or its negation) such that aTw* = \\ATw\\00. 
Equivalently this is the optimal value of the LP: 

(P) max Tj subject to 
weF(sign(y*),J*), 

aTw — T) > 0. 

Suppose the feasible region of (P) contains a line. So there exist (w,r)) and 
(d, t) ^ 0 such that w + kd € F(sign(y*), J*) and aT(w + kd) >rj + kt, for all 
fc6t So ATd = 0. If d ^ 0, then it contradicts that fact that A has full row 
rank. So d = 0 and t / 0. But then aTiu = a r (w + fcd) >rj + ht for all A; 6 E 
also gives a contradiction. So the feasible region of (F) is pointed, and hence 
contains an optimal basic feasible solution. Let /(e) be the vector representing 
the right-hand-side values in the definition of F(sign(y*), J*) (entries of /(e) 
are 0,1,e, —e). Then using Cramer's Rule, we have 

M) 

subdet 
T 

a1 

/(e) 

0 

subdet 
AT 

ATJ. 
0 

< 
mA{A) 

6(A) • 

Here, we used that fact that e < 1; because 0 ^ \\(ATw*)j» 
otherwise, it would contradict Poo(A) > 0). 

< 1 (as 
• 

In fact, the above was originally stated for A € 
we have Poo(A) > l /(mA(A)). 

j m X " in 27, in which case 
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Proposition 2.5 is a consequence of Proposition 2.12 and (8). Indeed, 

P(A) PooiA) 5(A) 

Therefore, for A £ Q"1 *", 

log(x(^)) < log (jtff) + loS(m) + \ log(n) = O(L). 

Directly utilizing equation (9) and Proposition 2.3, we also bound x a n d 
X in terms of A/5 in the following two propositions. 
Proposition 2.13 

Proof 
Suppose B £ B(A) maximizes (9). Let y be such that ||y|| = 1 and H-A^H = 
H-A^yU. Let x £ Rm such that ABX — y. Then by Cramer's rule, for each 
i 6 { l , . . . , m } , 

So, 

Therefore, 

|det(AB) | -W,,1S(A) ~ v 5(A) 

x(,4) = |lVll<™-5(A) 
D 

Proposition 2.14 

X(A) < y/m(n-m) + l ^ . 

Proof 
Suppose B £ B(A) maximizes the expression in Proposition 2.3. Let 
{y1,.. .,yn~m} be the columns of A that are not in AB- Let xl £ Rm such 
that ABX1 = yl, for all / £ { 1 , . . . , n — m}. Then by Cramer's rule, for each 
i £ { l , . . . , m } , 

, jdet(C)| A(A) 
1 il \det(AB)\ ~ 5(A)' 
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for some mxm submatrix C of A. So, denoting the maximum eigenvalue of 
a matrix by Amax(-), we have 

HAWAII2 = \\[I\x\ • • \xn~m]\\2 = Amax[7 + z V ) T + •" • + xn~m(xn-m)T] 

< 1 + {x1)Tx1 + ••• + {xn-mfxn-m 

A(A)2 A(A)2 

<l + m(n~m)^T<[m(n~m) + l } ^ T . 

Therefore, 

X(A) = \\A-B
lA\\ < V

/ m ( n - m ) + l ^ . 
n 

Facts similar to those given in last three propositions can also be obtained 
by employing the Cauchy-Binet Formula. This goes back at least to Dikin 4. 
(For a historical account and related results, see Forsgren 7 and the references 
therein.) 

3 Cauchy-Binet Formula and the Condition Number of AAT 

Recall that B(A) denotes the set of all bases of A. We represent each basis B 
of A as a m-subset of the set of numbers from the natural numbering of the 
columns of A. 
Proposition 3.1 (Cauchy-Binet Formula) 
Let A,Ae R m x n with full row rank. Then 

d e t ( A i T ) = J2 d e t ( ^ B ) d e t ( i B ) . 
BeB(A)nB{A) 

Using this, we can prove the following relationship among K, A and <5. 
Proposition 3.2 Suppose A G ]Rmxn ^ a s jun row ran]t Then 

K{AAT)<m3/2nm+1^l. 

Proof 

We have \Aij\ < A (A) for all i,j, and hence by (3), 

\\AAT\\ = \\A\\2 < \\A\\2
F < mnA(A)2. 

On the other hand, 

• r w , , ^ / - n ^ ^ - i , , ^m^2A(AAT) 
| | ( A A T ) - 1 | | < % M | | ( A ^ ) - 1 | | o o < 

det{AAT) 



108 

Now, by Proposition 3.1, 

A(AAT) = d e t ( ^ / , t J 4 j j (for some sets I,J C{1,... ,m} , |J| = |J|) 

Y^ det(AIt,B)det(Aj,tB) 

nmA(A)2 

< ( A ( ^ < 

and det(;L4T) = EB&B(A) det(AB)2 > 5{A)2. Therefore, 

r r M / . . T W | I m3/2nm+1A(A)4 

K(AA1) = \\AA1\\-\\(AA1)-1\\< 
5{AY 

D 

4 Hoffman's Bound and x 

For a vector u 6 Mn, let pos(u) € K™ be such that (pos(u))j := max{ttj,0} 
for each j £ { l , . . . , n } . The following result gives an upper bound on the 
distance of a point to a polyhedron, in terms of its violation of the constraints 
defining the polyhedron. 
Theo rem 4.1 (Hoffman 12) 
Let A E ]Rmxn (not necessarily full row rank) and let \\ • \\a and \\ • \\p be 
norms on Rm and on K.", respectively. Then there exists a scalar Ka^(A), 
such that for every c € i " for which the set {y € W1 : ATy < c} ^ 0, and for 
every j / ' e l ™ , 

min \\y-y' \\a< KaS{A) || pos(ATy' - c) \\0 . 
y.ATy<c 

The coefficient Ka^(A) is sometimes called a Lipschitz bound of A. For 
a norm || • || on K™, let || • ||* be the dual norm defined by 

|| v ||*:= max{uTx : x G Rn , || x ||< 1}, 

for each v £ Kn. Note that for p-norms (1 < p < oo), we have || • ||* = || • ||9, 
where q is such that p~1 + q~x = 1. In particular, || • ||£ = || • Ife- Let ext(5) 
denote the set of extreme points of a set S. We have the following geometric 
representation of the Lipschitz bound. 

Propos i t ion 4.2 (Giiler, Hoffman and Rothblum 9) 
Theorem 4-1 holds with Ka^{A) := max{|| v ||£: v € ext(Va(A))}, where 
Va(A) : = K 1 " : » > 0 , || Av \\*a< 1}. 

file:////y-y'
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We write K2(A) := K2t2(A) for all A. There is also a representation of 
the Lipschitz bound via singular values. For any E £ Rnxm. Let U(E) be the 
set of subsets of { 1 , . . . , n} for which the corresponding rows of E are linearly 
independent. Let U*(E) be the maximal elements in U(E). 
Proposition 4.3 (Giiler, Hoffman and Rothblum 9) 

K2{A) < max TTrT-
Jzu*(An am-m(Aj) 

Note that minJ€U.(AT) amin(A^) = min0^jc{i,...,„} o-min(Aj). To prove 
this, first note that ">" is clear. Take A € R m x n with rank, say, r. Take any 
nonempty J C { 1 , . . . , n } . Let ai(E) denote the ith largest singular value of 
any matrix E, and k := rank(Aj). Then C7min(^j) = Vk(A'j). Let / C J be 
such that rank(Af) = k = \I\. Then by the interlacing property of singular 
values, (Tk(Aj) < ak(A^). Let M € U*(AT) be such that I CM. Then 

CTmin(AM) = Pr(Alf) < Ok{A]) < ami„(A^), 

where we used the interlacing property again in the first inequality above. 
Therefore, 

1 1 
max „ —, = max 

The next proposition gives a connection between K2 and x V i a singular 
values. 
Proposition 4.4 Suppose A € ]Rmxn has full row rank. Then 

\\A\\K2(A) < X(A). 

Proof 
Consider the singular value decomposition of A. Let A = UDVT, where U € 
E m X m is orthogonal, D € ffimxn is diagonal (with singular values ai,...,am 

of A on the diagonal, in that order), and V £ R n x n is orthogonal as well. 
Suppose V = [v\ | • • • |i>„], i.e., {i>i,..., vn} are the columns of V. Let V := 
[vi\ • • • \vm] and S := Diag(cri,..., am). Then A = UT,VT. Since A has full 
row rank, <j\,..., <xm > 0, and hence S is invertible. We have AT = VHUT, 
and V = ATUH~1. So K{AT) = Tl{V), and V has orthonormal columns. By 
Propositions 2.9 and 4.3, 

K2(V
T) < max - = - = max - = - = x(A). 

ICU'{V) (Tmin(Vf) 0^IC{l,...,n} CTmin(V/) 

Now it remains to show ||A||K2(A) < K2{VT). Note that 

\\ATv\\2 = yTUXVTV2UTy = \\ZUTy\\*. 
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Therefore, 

P | | = \\AT\\ = max \\ATy\\ = | |S[ /T | | = ||[/E||. 
Ily||=i 

Now we consider the relationship between K2(A) and K2(V
T). Suppose 

K2(A) = \\v\\, where v is an extreme point of V2(A). Let v := \\A\\v. We 
will prove that v is an extreme point of V2(V

T). Suppose v — Xw + (1 — X)z, 
where A G (0,1), and w,z € V2(V

T). Then 

w = APiT(1~A)PT 
Since io G V2(V

T), w > 0 and therefore t«/||i4|| > 0. Also, 

w = ^ H ^ E E - ^ ^ t u l l < ^ | | L / £ | | | | V T U ; | | < 1-

So w / m i | € V2(A), and similarly so does .z/||A||. Therefore, w = z, implying 
that v is an extreme point of V2(V

T). Now, 

\\A\\K2(A) = \\A\\\\v\\ = \\v\\ < K2(V
T) < x(A). 

a 

As a corollary, since x(A) < \\A\\x(A), we have K2(A) < x(A). During 
the review of our paper, we became aware of 33. Note that the relation 
K2(A) < x(A) implies Theorem 3.6 from 33 which states that Theorem 4.1 
holds with Katp{A) replaced by x(A), when a = ft = 2 and A has full row 
rank. Also Lemmas 3.3, 3.4 and 3.5 of 33 follow from equation (9) and the fact 
that whenever {x : Ax = b, x > 0} is nonempty, it contains a basic feasible 
solution. 

We also note that, by Proposition 2.12, we have 

K (A\ < m A ( ^ 
K^A) * umAY 

Let Q be the set of diagonal matrices in E " x n with diagonal entries from 
{ 1 , - 1 } . Take G G Q. Then \\AG\\ = \\A\\. Also for any diagonal matrix 
D G Rnxn, IKAG^iAGDiAGf^AGDW = {^(ADA^^ADW, and hence 
X(AG) = x(A). (Similarly, x(AG) = x(A).) Therefore, we have 

maKK2(AG)<^<X(A). (11) 

Also, A(AG) = A(A) and 5{AG) = 6(A). So we also have 

T̂  . . _,, mA(A) 
max K2(AG) < „ . , , . . ' • 
Gee v 7 _ L4 J(A) 
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We now characterize the extreme points of Vi(A). Recall that 

V1(A) = {v€Rn 
v < 

which is a polyhedron, and the constraint matrix in the above description 
has full column rank. Let J C { 1 , . . . ,n} such that \J\ < m. Then we pick 
h,h Q {1, • • - , ' "} such that Ix n h = % and \IX\ + \I2\ = \J\. Assume that 
the matrix 

Ah,J 

is nonsingular. Here Ajltj denotes the submatrix of A with rows indexed by 
h and columns indexed by J . Let x 6 E™ be such that Xj = 0 if j 0 J and 

Ah,J 
-AI2,J 

xj 

If x £ Vi(A), then x is an extreme point of Vi(A). Vice versa, any given 
x € ext(Vi (A)) must satisfy the above for some J, I\ and I%. So using Cramer's 
rule, for each j £ J, 

subdet 
Ah,J e 

-AI2,J e 

det Ailtj 
-AI2,J 

< lJlA(^) < ™A(^) 
8(A) 6(A) 

So, 

KX(A) = Halloo < 

Therefore, we have 

maxKi(AG) < 
GeS -

mA(A) 

&(A) ' 

mA(A) 
6(A) ' 

and Kit00(A) = | | i | | i < 
m2A(A) 

6(A) • 

and m&xKxj00(AG) < 
GtQ 

m2A(A) 

8(A) • 

In fact, the extreme points of V\(AG) can be characterized in a similar 
way. The only difference is that we require x to satisfy the sign pattern 
given by G, instead of x > 0. Now, we give another proof of the implication 
K2(AG) < x(A), VG € Q of (11). We use the following characterization of 
K-z(A) for this purpose. 
L e m m a 4.5 

K2(A) = maxiWA^AyW : 7 € K(AT),B e B(A), ||A7|| = 1,7B < - A ^ A ^ i v } 
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Proof 

Note that 

K2(A) = max {|M| : v € ext(V2(A)) 

n{£ - 7 : £ > 7,£ e W(^ ) ,T e ̂ (^T),ll^-yll = i }}-
Let 7 G 7£(,4T) such that \\Aj\\ - 1; also let B € S(.4) such that -yB < 
—A^Awypt and ||A^1A7|| is equal to the maximum value in the statement 
of the lemma. Define f € K™ as follows. £/v := "/N, £B '•— —A^ApfyN. Thus, 
we have £ £ JVC-A), £ > 7- Next, we claim v := (£ - 7) € ext(V204))- Suppose 
not. Then, there exist v(1\v^ € V2(A) such that | (u*1' + t/2>) = £ - 7, 

uf1) ^ i;(2). We immediately have i/jy = wĵ  = 0. Thus, 

1 - \\ABVB\\ < \\\ABv$\\ + \\\ABv^\\ < 1 

which implies 

\\ABvB\\ = \\ABv%)\\ = \\ABv{g\\ = \. 

Therefore (since vB = \vB + \vB ), by the characterization of the equality 

case in the Cauchy-Schwarz inequality, we must have ABvB = ABvB = 

ABvB'. Since vB ^ vB', AB must be singular, we arrived at a contradiction. 

In addition to (£ — 7) being an extreme point of V2(A), we have 

U - 7II = WAjAfryn + 7B|| = l l ^ ^ l l -

Therefore, 

K2(A) > m a x { | | A ^ ^ 7 | | : 1&TI(AT),B € B(A), \\Aj\\ = 1, 

7s < -AB
lAN~/N}, 

as desired. 
To prove the reversed inequality, we let £ € JV(A), 7 G 7£(AT) such that 
P7II = 1. £ > 7, a - 7) € ext(V2(,4)) and U - l\\ = K2{A). Let J C 
{1,2, . . . , n } be such that £7 = 7 J and £j > 7 j . Then since (f - 7) is 
in ext (14(A)), we must have rank(Aj) = \J\ < m (otherwise, we can find 
£ G Af(Aj)\{0} such that 

~ _ J 0 iijeJ 

now £ G A/"(̂ 4) and for small enough e > 0, (£ + e£ - 7) and (f - e£ - 7) 
G V2{A), a contradiction). Complete J to a basis B of A Then £N = 7^ and 
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AB£B = -AJV7AT- The latter implies £B = -A^ANIN- Thus, 

K2{A) = U ~ 7ll = MB - 7 B | | = l l ^ 1 ^ * + 7fl|| = P i ^ l l -

Hence yielding the desired inequality 

K2{A) < max{11^^711 : 7 e K(AT),B € B(A),\\A7\\ = 1, 

7 B < -^s1AAr7Ar}. 

D 

Theorem 4.6 

maxK2(AG)<X(A). 
Get* 

Proof 
By Lemma 4.5, 

K2(A) = m a x d l A ^ ^ I I : 7 G ^ ( A T ) , B e B(A),| |A7 | | = 1 , 7 B < ~A^ANlN}. 

So, 

max JT(AG) < maxiWAg1 AGi\\ : 7 6 K{GAT),B e B(AG), \\AG-y\\ = l,GeG} 
GEQ 

= max{||A51 AGj\\ : G7 G K{AT), B e B{A), \\AG-y\\ = 1, G £ Q} 

= m a x { | | V ^ 7 l l : 7 G 1l(AT),B £ S(A), | |A7 | | = 1} 

= maxf l l i^Acl l : x G Rn,B € 5 (4 ) , ||Ar|| = 1} 

= maxdlA^i/H : B G B(>1), ||i/|| = 1} 

= max{\\A-B
1\\:B£B(A)} = X(A). 

n 
We note that the inequality above may be strict. Otherwise, using (11) we 
would have had x(A) = ||i4||x(-4) which is clearly false in general —take for 

A ^ 1 0 1 \ 
instance A := I 1. 

5 Ye's Complexi ty Measure for L P and Hoffman's Bound 

We are going to look at two more complexity measures, 77 and symm. These 
complexity measures relate closely to the symmetry of certain geometric ob
jects of the LP problem. Let us consider the LP problem in the following 
primal form: 

(P) min cTx 
subject to Ax — b 

x e Rl, 
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and the corresponding dual form: 

(D) max bTy 
subject to ATy + s = c 

y G f 
s G «l 

where c € Rn, b e E m , A € 

Under the assumption that both (P) and (D) have feasible solutions, Ye 31 

first defines a complexity measure for each of the problems (P) and (D): 

•qp := min max Xj, 
j£B xeopt(P) 

T]D := min max Sj. 
jeN s£opt(£>) 

Then, Ye 31 defines the complexity measure of the primal dual pair as the 
minimum of the two: 

r)(P,D) :=mm{riP,r)D}, 

where opt(P) and opt(£>) denote the sets of optimal solutions of (P) and (D) 
respectively, and (B,N) denotes the strict complementarity partition. 

Let us study these measures for feasibility problems over polyhedra ex
pressed in Karmarkar's (13) standard form: 

V := {x : Ax = 0,eTx = l,x > 0}. 

(This form is relevant in Subsection 5.1 as well.) We assume A to have full 
row rank and no zero columns because, without loss of generality, we can 
always eliminate the variables that correspond to zero columns in A. Let 
S := M{A) and (hence) S1- = 1Z(AT). (P) and its dual can now be written 
as a primal-dual pair of feasibility problems. See Vavasis and Ye 30 and 26. 

{FP) x € S, (FD) se S x , 

IMIi = i> INIi = i) 
x > 0. s > 0. 

(FD) is the dual of (FP) in the sense that every feasible solution to the dual 
problem of maximizing 0 over the constraints denned by (FP), corresponds 
to a feasible solution of (FD), except for s = 0 which does not correspond 
to a feasible solution in (FD). In this setting, even though (FP) is always 
bounded, (FD) can still be infeasible (for example, A := [1, -1]) . 

When (FP) is feasible, there exists a pair (x, s) such that x £ S, XN = 
0,XB > 0, S G S-1-^^ > 0,SB = 0, where [B,N] is the corresponding strict 
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complementarity partition with B nonempty. Furthermore, all feasible solu
tions of (FP) and (FD) must satisfy XN = 0 and SB = 0. We allow B or 
N to be empty. The condition B ^ 0 is equivalent to (FP) being feasible. 
Similarly, N ^ 0 is equivalent to (FD) being feasible. 

Since the problems (FP) and (FD) are written in terms of the subspaces 
5 and S^, let us redefine Ye's measures accordingly. For any subspace C, 
define C(l) := {x G C : ||x||i = 1}. Let 

T)(S) := min max a;,-, 
j £ B i e S ( l ) , ! > 0 

77(5 ) := min max s,-, 
jeArses-L(i),s>o 

i,(A) := m i n ^ S ) ^ ^ ) } . 

We define »7(5) to be 1, when (FP) is infeasible (similarly, ^(S-1) is 1 if 
(F£>) is infeasible). Notice that all of T](S),r](S±) and r](A) are positive for 
all A. r)(S) measures some kind of symmetry of the columns vectors of AB 
about the origin. The set {ABXB • | |ZB| | I = 1,XB > 0} is the set of all convex 
combinations of the columns of AB- Therefore {x G 5(1) : x > 0} corresponds 
to the coefficients when 0 is written as convex combinations of the columns 
of AB, and hence r) measures their sizes. If the columns of AB are perfectly 
symmetric about the origin, TJ(S) would be 1/2. And if the columns are highly 
asymmetric, T](S) would be much smaller than 1/2. 

The following results give dual descriptions for r/(5) and ^(S-1). For 
v G E", J G { l , 2 , . . . , n } , let 

vj:= 
—00 if vj < 0, 
maxv-j otherwise, 

{ +00 if vj > 0, 
minu, otherwise. 

Proposition 5.1 (Tuncel 26) 
Suppose {ej : j G {1 ,2 , . . . , n}} n 5 = 0 and B 7̂  0. Then 

n(S) = min{7+ : 7 G 5 ± , 0 < 7 + < 1,7+ - ^ = 1}-

Proposition 5.2 (Tuned 26 j 
Suppose {e, : j G {1, 2 , . . . , n}} n S1- - 0 and iV ^ 0. Then 

77(5X) = min{£+ : £ G 5,0 < £+ < 1,£+ - ^ = 1}. 
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Note that under our assumptions, we always have {ej : j € {1 ,2 , . . . , n}}n 
5 = 0 because A has no zero columns. Also, the condition B ^ 0 is equivalent 
to (FP) being feasible. Similarly, N ^ 0 is equivalent to (FD) being feasible. 

Recently, Epelman 5 , Epelman and Freund 6 presented another complex
ity measure based on A. Let V.(AB) '•= {ABXB • XB > 0, | |XB| |I = 1}. That 
is, V.{AB) is the convex hull of the column vectors of AB- Let 

symm(A) := max{t: -tv 6 H{AB) for all v 6 U(AB)}-

Note that a generalized version of this measure has been used before by Rene-
gar 18 to estimate complexity for convex optimization problems. 

It is clear that symm(J4) measures precisely the degree of symmetry of 
H(AB) about the origin in Mm ( i £ r x n ) . When H(AB) is centrally sym
metric (about the origin), symm(A) = 1. 
Proposition 5.3 (Epelman 5 , Epelman and Freund 6) 

symm(A) ^ 
l + symm(A) m >' 

The above proposition gives an explicit relation between the two com
plexity measures, T](S) and symm(A). Since the function x/(l + x) is strictly 
increasing on (0,1], rj(S) also measures the degree of symmetry of H(AB) 
about the origin. In fact, by combining Proposition 5.1 and Proposition 5.3, 
we get the following. 

Corollary 5.4 (Ho11) 

symm(A) = min B
z. 

7 6 S - L , | W B | | = 1 7 B 

We can state similar results for ^(S1-). Let us define H G 8 '""™'x" to 
be a full row rank matrix obtained by deleting linearly dependent rows from 
PA-=I- AT{AAT)-1A. 

Corollary 5.5 (Ho n) Suppose (FD) is feasible and {ej : j £ {1 ,2 , . . . , n}}fl 
5-1 = 0. Then 

symm(ff) u 
l + symm(#) A >' 

Similarly, we can combine Proposition 5.2 and Corollary 5.5. 
Corollary 5.6 (Ho n ) Suppose (FD) is feasible and {ej : j £ {1 ,2 , . . . , n}}n 
S-1 = 0. Then 

symm(.ff') = min ——. 
C€S,||«W|| = 1 £N 



117 

We now look at a relationship between the complexity measures n(A) 
and p(A). We call AG a signing of A, where G € G and Q is the set of 
diagonal matrices in E n x " with diagonal entries from { 1 , - 1 } . Note that 
X(AG) = x(A). 

Define rj(A) := min i](AG). We have the following fact. 

Proposition 5.7 (Todd, Tungel and Ye 2i) 

~v(A)<p(A)<r1(A). 
\/n- -

The second inequality above can be obtained easily from the results of 
Vavasis and Ye 30 and Gonzaga and Lara 8 . The first inequality can be proved 
using Propositions 2.6 and 5.1. The second author 26 showed that in general, 
r] may carry no information about p. Indeed, suppose the columns of A define 
an almost centrally symmetric polytope. Then there is a signing of A such that 
the new polytope is highly asymmetric and therefore has a very small r\ value, 
which in turn implies a very small p value. This suggests that x may not be 
a good complexity measure as it tends to grossly overestimate the complexity 
of interior-point algorithms. Even though x(A) grossly overestimates the 
amount of computational work to solve LP problems with data (̂ 4, b, c), it has 
been useful in estimating the work for LP problems having A as the coefficient 
matrix, with arbitrary b and c and arbitrary orientation of inequalities. Also, 
A(A)/S(A) has a similar role. 

Proposition 5.7 shows that -^r behaves like rj[A) or like r)(AG), where 
G is "the worst signing of A" in this context. Notice that Theorem 4.6 relates 
Hoffman's bound to x(A) m a similar way. It shows that x(A) is at least 
K2(AG), where G is "the worst signing of A" in this latter context. Since 
n(S) is essentially symm(A) and we have noticed the above parallel, we give 
below a brief geometric interpretation of Kij00, in a special but illustrative 
case. Note that the essential difference between n and K is that of formulation. 
They both measure similar quantities; considering the problem (D), K works 
in the y-space and n in the s-space. See the next section for similar situations 
between x and X-

Let us now look at Ka^(A) more closely. For this brief discussion, we 
assume that Va(A) is bounded. This is true if and only if {v : Av = 0,v > 
0, v ^ 0} = 0, if and only if there exists y € E™ such that ATy > 0, by LP 
duality theory. Under this assumption, 

Ka,0(A) = max{||t;||£ : v > 0, \\Av\\*a < 1} 

= maxflMfc : t; > 0, \\Av\\*a = 1} 
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= max 
r His 1 

Also v = 0 if and only if Av = 0. Hence, 

--•--•- =mmi$£§s-:v>0,v *0 
Ka,M) \ M\% ) 

= min{j|A«||* : « > 0, ||w||J = 1}. 

For the case a = l,/3 = oo, we have 

— -—r = mindlAulloo : v > 0,eTv = 1}. 
-"•l,ool.A) 

This is precisely the oo-norm distance of the origin of Rm to the convex 
hull of the column vectors of A. Since we assume that Vj is bounded, 0 is not 
in this convex hull. On the other hand, 

TJT = min{t: \\AvWn < t,v > 0,eTv = 1} 

It: ( _ A j v + te > 0, eTv = 1, v > 0 1 . 

This is an LP problem. So by LP duality theory, 

— T^T = maxJT? : [AT\ - AT]y + 7?e < 0, eTy = 1, y > 0} 

= max{smallest entry of [—^4T|ylT]2/ : eTy = l,y > 0}. 

In other words, it is the maximum of the smallest entry of any vector in the 
convex hull of the rows of A and their negations. 

5.1 Linear Programming Solver Subroutine 

In Section 7, we generalize Tardos' scheme. To do so, we need to solve LP 
problems with the following data. Define 

= min 

q := max { ' [ * (»"}• ' - ' • 
p : = 2n°g(2(2m+n) 3 ' ' 2 (2mn+l) ) l2? a n d p . _ 2 r i°g(2(2m+n) 3 / 2 (2mn+l)) l 2«_ Q 2 ) 

Let p be a positive integer power of two and p < p. We will not have any 
restriction on the entries of A, except that we want A to have full row rank 
(easily ensured). The rest of the data, b and c, for the LP solver subroutine 
will be restricted to the following two cases. 

file:////AvWn
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(i) We set I := [{p+ 1), (p + l ) 2 , . . . , (p + l)n]T, and b := Al. We have 
c e Z " such that ||c||oo < p-

<P-(ii) We have b G Z m , c G Z " such that H&Hoo < p and ||c|| 

In this subsection, we assume that b and c satisfy at least one of (i) and (ii). 
We also need the following function of A in our estimations. 
Definition 5.8 Let A := [A\I]. For every B G B(A) (N is the complement 
of B) consider the smallest absolute value of nonzero entries of 

Al^u, Vu G Z m such that llulloo <P, 

A^Aw, Vw G Z", with entries from (p + 1), (p + l ) 2 , . . . , (p + 1)", 

where p is a positive integer power of two and p < p, 

[-AJ!AsT\l] v, Vv e Zn+m, such that I H U < p. 

Also consider the entries of the vectors for the same construction in which A 
is replaced by 

A := [AT\ - AT\ - 1} . 

These generate a finite collection of positive real numbers depending only on 
A. We call the minimum of all these numbers Ss(A). 

Note that 0 < SS(A) < 1 for all A G Rmxn. If A £ Z m x " then ^(,4) > 
1/A(A). 

The LP problems with b and c described as above (in (i) and (ii)) depend 
only on A. As we show in this subsection, many algorithms can be adapted 

to solve such LP problems in poly (n, | log(<5<j(J4))|, log ( 7 /4 ) ) ) elementary 
arithmetic operations. In particular, we show that such polynomial bounds 
can be satisfied by employing almost any primal-dual interior-point algorithm 
with (mild centrality properties and) polynomial-time complexity in the Tur
ing Machine Model. Consider the homogeneous self-dual linear programming 
problem (HSDLP): 

min (n + 1)0 
/ 0 A -b b-Ae\ /y\ = ( 

—AT 0 c e — c la ; 
bT -cT 0 eTc+l T 

\(Ae - b)T (c - e)T - ( e T c + l ) 0 ) \9 J 

subject to > 
> 

\ 

= \-(n+l)J 
y free, 
x > 0, 
T > 0, 
9 free. 
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Note that (HSDLP) is self-dual, and that 6 = 0 at every optimal solution 
of (HSDLP). Let us define the surplus variables for the inequalities above: 

s :- -ATy + TC + 0(e - c), 

ij} := bTy - cTx + 6(eTc + 1). 

Then y := 0, x := e, s := e, f := 1,ijj := 1,6 := 1 is feasible in (HSDLP). For 
various facts on such formulations, see the book by Roos, Terlaky and Vial 19. 
Theorem 5.9 (Ye, Todd and Mizuno32) 
Let (y*,x*,T*,6* — 0,s*,ijj*) be a strictly self-complementary solution for 
(HSDLP). Then, 

1. (P) has a solution if and only T* > 0. In this case, x*/r* is an optimal 
solution for (P) and (y*/r*, s*/r*) is an optimal solution for (D), 

2. if T* = 0, then i\>* > 0, which implies that cTx* — bTy* < 0, that is, at 
least one of cTx* and —bTy* is strictly less than zero. If cTx* < 0, then 
(D) is infeasible; if —bTy* < 0, then (P) is infeasible; if both cTx* < 0 
and —bTy* < 0, then both (P) and (D) are infeasible. 

Consider the setting at the very beginning of Section 5. Assume both (P) 
and (D) have feasible solutions. Let {(x^k\ s^)}, k G Z + denote the iterates 
of a primal-dual interior-point algorithm (with feasible iterates). Giiler and Ye 
10 proved that the mild, wide neighborhood condition (or centrality condition) 

mmj{xf)sf] ^ / ! 

(xWf s(V ~ U 

guarantees that every limit point of {(x^k\s^)} is a strictly complementary 
pair. Mehrotra and Ye 16 and Ye 31 showed how to make such polynomial-
time primal-dual interior-point algorithms terminate in O(y/n\\og(n(P,D)\) 
iterations. 

Results of Ye-Todd-Mizuno 32 and Ye 31 also show how to terminate 
primal-dual interior-point algorithms (those converging to a strictly com
plementary pair) after 0(yfn\ log(n(HSDLP))\) iterations. We denoted by 
n(HSDLP), Ye's complexity measure applied to the problem (HSDLP). 
Since the problem is self-dual, the notation is consistent. 

Next, we will estimate n(HSDLP). The optimal value of (HSDLP) is 
0. Therefore, we can represent the set of optimal solutions of (HSDLP) as 
(FHSDLP): 

(13) 

Ax = rb, 
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ATy + s = TC, 

bTy — cTx = ij), 

eTx + eTs + T + if> = n + l, 

x,s,r,ip > 0. 

By the last equation and the nonnegativity constraints, we have 

Q<r]{HSDLP) <n+l. 

It remains to bound rj(HSDLP) from below and away from zero. We want to 
maximize each restricted variable (say Xj for some j) subject to (FHSDLP). 
We will split the analysis into three exhaustive cases: 

1. (P) and (D) both have feasible solutions, 
2.(a) (D) is infeasible, 
2.(b) (P) is infeasible. 

As mentioned before, we will assume that b and c satisfy (i) or (ii), and we 
will differentiate the analysis of these two cases, whenever necessary. 

Case 1.: (P) and (D) both have feasible solutions 
Every solution of (FHSDLP) satisfies ip = bTy — cTx = 0, by LP weak 

duality and the constraint tp > 0. Also, there exists a solution of (FHSDLP) 
with T > 0. Let (x,y, s) be a basic primal-dual pair of optimal solutions for 
(P) and (D). So for some B G B(A), we have 

XB = A^b, §N = cN - Aj,Ag CB-, 

where N := { 1 , . . . , n} \ B. For case (i), we have 

eTx = \\xB\\i < V^\\xB\\ = V^WA^AIW < v ^ P i ^ l l • ll'll 

<y/nmx(A)(p+l)n. 

For case (ii), we have 

eTx < V^WA^bW < yMU^W • ||b|| < mX(A)p 

- m 2 p ^ ~p3~ ^ / ?S"X(^)(P + 1)", 

where the fourth inequality uses Proposition 2.13. Similarly, 

eTs < Itcyvlli + \\AJ,A-TCB\\I < v^x(^)Hc||i < n*'2x(A)p. 

Let 
TI+ 1 

T := . 
eTx + eTs + 1 
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Then (ry, fx, TS, T, xp ~ 0) is a solution of (FHSDLP). Hence, 

n + 1 
max r > f > 

> 

(y,x,s,T,i/>)e(FfiSDLP) ~ ~ y/nmx(A)(p + 1)™ + n3/2\(A)p + 1 
n + 1 

3n3/2x(A)(p+l)n' 

Let [B1, TV'] be the (unique) strict complementarity partition (restricted to 
just the indices x, or s) for (HSDLP). Let j E B'. Then there exists a basic 
primal-dual pair of optimal solutions for (P) and (D), (x,y, s), corresponding 
to some new basis B, such that xj > 0. Then all the above arguments apply 
with this new B. Since Xj — (Ag b)j > 5s(A), we have 

m a x Xj > TXJ > • „ , - -, t.._———. 

(y,x,s,T,ii>)e(FHSDLP) J ~ J ~ 3n3/2x(A)(p + 1)" 

Similarly, for each j € N', there exists s corresponding to some basis B 
such that Sj > 0. Then j & N and 

sj=([-A]fABT\I][l»]y>68(A). 

Hence, we have 

^ - ^ (n + l)Ss(A) 
JJJ.PLX S ' s* TS ' --> 1 . — 

(y,x,s,r,4,)&(FHSDLP) 3 ~ 3 ~ 3n3/2x(A)(p + l)n ' 

Therefore, since 5s{A) < 1, 

(n + l)Ss(A) r}(HSDLP) > 
3n3/2x(A)(p + l)n 

in this case. 
Case 2.(a): (D) is infeasible 
Every solution of (FHSDLP) satisfies r = 0, because if (y, x, s, r, ip) is a 

solution such that r > 0, then (y/r, S/T) is a feasible solution of (D). On the 
other hand, by Farkas' lemma, 

min{cTa; : Ax — 0, eTx = 1, x > 0} < 0. 

Let i b e a basic optimal solution of this problem. So for some B e 13(A) and 
k € {l,...,n}\B such that Xk ̂  0, we have AB&B = -AkXk and Xj = 0 for 
all j £ B U {k}. It is easy to see that 
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Note that 1 = eTx = Xk — xke
TAB

1Ak, which implies 

%k = ™ 5 — > 0. 
1 - eTA^A, 

Now, 1 - eTAg1Ak < 1 + HAB^fcHi < 1 + V M I ^ B 1 ^ * ! ! < 1 + y/mx(A). So, 

0 < -cTx = \cTx\ = \ckxk + c^i-A^AkX^l 

= \ck-c
T

BA-B
xAk\ 56{A) 

l - e % ' 4 - l + y/^x(AY [ ' 

Also, —cTx < p (since x > 0 and eTx = 1). So, 

( n + l ) c 7 \ = (n+l ) fc (X) 
max tp > —̂  ^n— > (y,x,s,T,^)€(FHSDLP) 1 - CTX ~ (1 + y/mx(A))(j> + 1) ' 

Let j 6 5 ' where [B',N'] is, as before, the (unique) strict complementar
ity partition (restricted to just the subvectors x and s) for (HSDLP). Let x 
be a maximizer of 

maxjxj : Ac = 0,eTx = l,x > 0}. 

Note that £j > T;(JV(A)) > r](A). Also |cTz| < p. Let 

x := (1 + v ^ x ( ^ ) ) 5 + ^ 4 ^ z . 

Now, by (14), cTx < 0. So, 

0 , - f e ^ r , 0 t 0 , - ( " + 1 ) ^ > l € (FF5Z5LP). 

Note that - c T £ < (1 + v ^ x ( ^ ) ) P + ^ ( ^ ) < (1 + %A"X(^))P + 1 and eTx < 
2 + v^nx(^)- Therefore, 

(n + 1)% (n + l)5g(A)r)(A) 
max a;,- > -=r =4r > (y,x,s,T,ip)e(FHSDLP) 3 ~ eTx — cTx ~ p [(1 + y/mx{A))(p + 1) + 2]' 

Now let j & N'. Consider the problem 

maxjsj : s 6 7^(AT) ,e rs = l , s > 0}. 

First note that if this problem is infeasible, then every solution of (FHSDLP) 
satisfies s = 0 and hence N' is empty; and we are done. So we assume 
the problem has a feasible solution and because the feasible set is compact, 
the maximum is attained by some basic solution, say s, corresponding to 
some basis B € B(A). Note that Sj > 7](Jl(AT)) > r](A). We (again) let 
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N := { 1 , . . . , n} \ B. Let y be the unique vector in Rm such that ATy — —s. 
For case (i), we let I € Rn be as in the assumption given before. For case (ii), 
we let I £ 1 " be such that IB := AB

xb and IN := 0. In both cases, we have 
Al = b and 

bTy = lTATy = -lTs. 

For case (i), it is clear that \lTs\ < (p + 1)". This is also true for case (ii) 
because 

|FS-| = \ll~SB\ = \{AB'b)T~sB\ < WAjbW • \\SB\\ < X(A)V^-\\b\U\sB\\i 

< V^PX(A) < m*l*p ( ^ ) < f < (p + 1)", 

where we use Proposition 2.13 and the fact that n > 3. If lTs < 0, then 

We then have 

Sj > (" + ̂  > £±JMd). 
(y,x,s,r,it>)e(FHSDLP) 1 - I1 S ~ (p + l ) n + 1 

If ZTs > 0, then we can easily show that 

' - ( n + l ) ( ^ ) y (n + l ) ( ^ - ) x "<» + l ) ( ^ 0 > 0 W f f S D L P ) . 
ZTs — cTx 

Now, using the fact that —cTx < p, we have 

^ - ( n + i)(cTx)Sj ^ (n + \)6s{A)ri{A) 
max So > " _ ' > (y,x,s,r^)e{FHSDLP) 3 ~ lT§-CTX ~ (1 + y/mx(A)) [{p + l)n + p] ' 

Case 2.(b): (P) is infeasible 
Note that this case does not apply to case (i), since by construction, 

Al — b, I > 0, and therefore (P) must have a feasible solution. So we only 
need to consider case (ii). 

Every solution of (FHSDLP) satisfies r = 0, because if (y, x, s, r, ip) is a 
solution such that r > 0, then X/T is a feasible solution of (P). On the other 
hand, by Farkas' lemma, 

max{bTy : ATy < 0, eTATy = 1} > 0. 

Let s = — ATy. Then as before, we have bTy = —lTs. So the above problem 
can be rewritten as 

max{- / T s : s G Tl(AT),eTs = l,s> 0}. 
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Now let D € ]R("-m)xn be such that the rows are precisely a basis of M{A). 
We know K{DT) = M(A) and M{D) = Tl(AT). In particular, x{D) = x{A), 
which we will use later on. Therefore, the above problem can be further 
rewritten as 

max{-! T s : Ds - 0, eTs = 1, s > 0}. 

Let s be a basic optimal solution of this problem. So for some N e B(D) 
and k € { 1 , . . . , n} \ N such that sk ^ 0, we have DJ^SN = —Dksk and Sj = 0 
for all j £ N U {k}. Let y be the unique vector in Km such that ATy = -s. 
It is easy to see that 

(» + l ) | i 0 > (n + l g ^ (n + l)bT_y\ e {FHSDLn 

1 + bTy ' ' 1 + bTy ' ' 1 + bTy 

Note that 1 = eTs = s^ — ske
TD^lDk, which implies 

Si. = ; > 0. 
\-eTD-N

lDk 

Now, 

1 - eTD^Dk < 1 + | | £ # D * | | i < 1 + y/K=^\\D-£Dk\\ 

< 1 + \/n - mx(D) = 1 + y/n^mx(A). 

Since the choice of B in the definition of I (for case (ii) in case 2(a)) does not 
affect the previous arguments, we can redefine / using B := { 1 , . . . , n} \ N. It 
is not hard to see that B £ B(A). So we have 

0 < bTy = \lTs\ = \lT
BsB\ = \{A-BH)TsB\ = \{A-BH)k\sk > 1 + J^-^y 

^ ( 1 5 ) 
Also, bTy = — lTs < (p+ 1)", as we have shown before. So, 

*>(" + 1>f*> {n + 1)6s{A) 
{y,x,s,T,i,)£(FHSDLP) ~ 1 + bTy ~ (1 + \ /n - mx(A)) [(p + 1)™ + 1]' 

Recall that [B',N'] denotes, as in the previous cases, the (unique) 
strict complementarity partition (restricted to the subvectors x and s) for 
(HSDLP). Now let j € N'. Let s be a maximizer of 

max{sj : s £ Tl{AT),eTs = l,s > 0}. 

Note that Sj > f](A), and \lTs\ < (p+ 1)™. Let 

s := (p + 1)"(1 + \ /n - mx(A))s + <^«(^)s-
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Let y be the unique vector in Km such that ATy = —s. Now, by (15), lTs < 0. 
So we have bTy = — lTs > 0. Therefore, 

\ e J s + oJy e's + b11!) eJ s + b1 y J 

Now, 

- Z r s <(p + l ) 2 n ( l + v / ^ 3 ^ x ( ^ ) ) + (P + 1)". 

Therefore, 

(n + l)gj 
(y,x,s,r,ip)e(FHSDLP) e1 S + O1 y 

> (n + 1 ) ^ ( ^ ) 1 ? ^ ) 
- [(p + l ) 2 " + (p+ l)n] (1 + y/n - mx{A)) + (p + 1)" + 1' 

If B' is empty, then we are done. Otherwise, let j S B'. Consider the 
problem 

max{xj : Ax = 0,eTx = l,x > 0}. 

Let x be a basic optimal solution of this problem such that AB&B = —XjAj, 
where we called the corresponding basis B. First, we have Xj > rf(S) > rj(A) 
by definitions. Also, | c T i | < p. If cTx < 0, then 

1 — c1 x 1 — c1 x 
0 , ^ 1 3 ^ , 0 , 0 , - ^ ^ ^ . - ) e (FHSDLP). 

If cTx > 0, then 

'(n + l)(cTx)j/ (n + l)(6Ty)i (n + l)(cTx)s 
,0,0 € (FHSDLP). 

bTy + cTx ' bTy + cTx ' bTy + cTx 

Using i+y/n-m-(A) — bTy — (P + 1)" an(^ cT% < Pi w e conclude 

max (E^M 
(y,x,s,T,ip)€(FHSDLP) b1 y + C1 X 

> (n + l)55(A)V(A) 

[(p + 1)" +p](l + \/n - mx(A))' 

The above lower bound on Xj also applies in the case that cTx < 0. We proved 
the following fact. 
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Theorem 5.10 Consider feasible-start primal-dual interior-point algorithms 
satisfying condition (13) above and have been proven to run in polynomial 
time, with 0(y/n\log(ri(P,D)\) iteration complexity. Every such algorithm 
when applied to (HSDLP) with the staring point y := 0,x := e,s := e,f := 
l,i/> := 1,6 := 1, terminates correctly in 

o(yz(\ log(65(A))\ + nlog ( - L j M +nlog(n) 

iterations. 

Here we used Propositions 5.7 and 2.14 to see that 

n{A) > p(A) = —— > ^ ' 
X(A) ~ ^m(n - m) + 1 A(A)' 

and so conclude that 

I log(^(A))| < O (log(n) + log ( f ^ y ) ) • 

The last inequality above can also be obtained directly from the definition 
of 77(̂ 4) by utilizing the techniques in Section 2. Note that the above theorem 
stays valid if we replace A by any submatrix of it. This is one of the reasons 
why in Definition 5.8, we chose A as [A\I], rather than just A. Each iteration 
can be performed in 0(n3) elementary arithmetic operations. 

6 Sensitivity Analysis, Hoffman's Bound, x>X>A; and 6 

Given an LP max{bTy : ATy < c}, we are interested in the change in the set 
of optimal solutions as the vector c is varied. Let A(^4) denote the maximum 
of the absolute values of the entries of C _ 1 over all nonsingular submatrices 
Cof A. 
Proposition 6.1 (Cook, Gerards, Schrijver, Tardos 3 , 20) 
Suppose A £ Wnxn (not necessarily full row rank), c,c' £ W1, and b £ Rm, 
such that both LP problems max{6Tt/ : ATy < c} and max{6Ty : ATy < c'} 
have optimal solutions. Then for every optimal solution y ofmax{bTy : Ay < 
c}, there exists an optimal solution y' ofmax{bTy : ATy < c'} with 

| | y - y ' | | 0 0 < m A ( A ) | | c - C ' | | 0 0 . 

Note that A(A) < A(A)/6(A) for all A, by Cramer's Rule. In particular, 
if A e Zmxn, then A(A) < A(A). In fact, Cook et al. state the above 
proposition in 3 for integral A, and A(A) above is replaced by A(A). 
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We define, for A with full row rank, 

Xi(A):=max{\\AB%:BeB(A)}, 

and 

Xi(A):=max{\\AB1A\\1:BeB(A)}. 

Using almost exactly the same arguments as in the above proof, together 
with Proposition 2.3, we can give an alternative sensitivity bound in terms of 
X(A). 
Corollary 6.2 / / the A in Proposition 6.1 has full row rank, then 

\\y-y'\\°°<xi(A)\\c-c'\U 

Following the proof of Cook et al. we also have the following useful 
theorem in terms of x(A). 
T h e o r e m 6.3 Let A € l m x n , iank(A) = m, c,c' € Rn, and b € Rm, such 
that both LP problems max{bTy : ATy + s = c, s > 0} and ma,x{bTy : ATy + 
s = c',s > 0} have optimal solutions. Then for every optimal solution (y,s) 
of the former problem, there exists an optimal solution (y',s') of the latter 
problem with 

lis - s ' lU < (xi(A) + l)||c - c'lU. 

Proof 
We first show the inequality for the special case 6 = 0. Then we use the 
special case to establish the theorem. Assume for now that 6 = 0. Suppose 
for a contradiction that there exists (y, s) feasible for the first problem such 
that no feasible solution (y1, s') of the latter problem satisfies 

ll« - ^lloo < ( X i ( A ) + l ) | | c - c ' | | 0 0 . 

Then the system 

ATy + s = c', s < s + pe, -s < -s + pe,s > 0, 

where p := (xi(A) + l)||c — c'||oo, has no solution. By Farkas' lemma, there 
exist x eRn,u,v eWl such that 

Ax = 0, x + u - v > 0, (c')Tx + sT{u-v)+ p(eTu + eTv) < 0. 

Note that if u = v = 0, then the above x proves that the system {ATy + s = 
c', s > 0} is infeasible, a contradiction. Therefore, u + v^0. Let 

u _ v 
u : = 71 ^~>v '•= T, T7-) 

U + W 1 U + U 1 
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so that ||u + z)||i = 1. Let x be a basic optimal solution of 

min{(c')Ta; : Ax = 0,x > —(u - v)}. 

Note that this problem has a feasible solution (for example, a;/||u + u||i). 
Also it is bounded, because otherwise there exists d £ R£ such that d ^ 
0, Ad = 0, {c')Td < 0 which implies that {ATy + s = c', s > 0} is infeasible, a 
contradiction. Note that x = x — (u — v), where, for some B € B(A), 

±B = A~^A{u — v) > 0, XN = 0. 

Thus, 

Pl l i < | |i | | i + | |u-«| | i < II^M^-fJjIlx+Hii+Clli < H ^ ^ l l i + l < Xi(^)+1-

This gives a contradiction since 

0 > ( C ' ) T ( F T ^ T ) + S " T ( " " ' ) + P 

> (c')Tx + sT(u-v) + p 

> (c')T2 - (c - ATy)Tx + p 

— (c' — c)Tx + p 

> - | | c - c ' | | 0 0 | | « | | 1 + p 

> - ( X i ( A ) + l ) | | c - c ' | | o o + p = 0. 

So there exists (y1', s') feasible in the second system of the theorem such that 

i|s - s ' lU < (xi(-4) + l)lk - c'Hoo-

This completes the proof for the special case 6 = 0. 

Now, consider the general case. Let (y, s, x) be an optimal solution of 

max{bTy : ATy + s = c, s > 0} 

and its dual. Let J := {j : Sj = 0}. Let (y*,s*) be an optimal solution of 

max{bTy : ATy + s = c',s> 0}. 

We have, by complementary slackness, Xj = 0 for all j $ J, and so 

Ajxj = b,xj > 0. 

Also, 

A'jy = cj > c'j - \\cj - c'jW^e > ATjy* - \\c - c'H^e. 

We proved that 

ATy < c, -ATjy < \\c - c'W^e - AT
jV*. 
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Also the system 

ATy<c',-AT
Jy<-AT

Jy* 

has a feasible solution (for example, y*). Therefore, by applying the first part 
of the proof (with b = 0) to these two systems of inequalities, we conclude 
that there exists (y',s') such that 

ATy' + s' = c', -ATjy' < -AT
jV*,s' > 0, 

and 

lis - s-'||oc < {Xi{[A\ - Aj]) + l)| |c - c ' lU. 

Note that 

bTy' = xTjATjy' > xTjAT
jy* = bTy*. 

Therefore, {y',s') is an optimal solution of max.{bTy : ATy + s — c',s > 0}. 
We have (trivially, from (1)) 

Xi([A\-Aj])=xi(A). 

We conclude 

l|5 - S'lloo < ( X l ( ^ ) + 1)I|C - c'Hoo 

and this completes the proof. • 

Using (5), we easily have the following facts. 

Corollary 6.4 Under the same assumptions as in Theorem 6.3, we have 

IIS-y'lloo<v^xMltc-c'lU 

and 

||s - s'Hoo < (Vm~X~(A) + l)||c - c'lU-

Note that converting norms inside the proof of Theorem 6.3 would also 
give the same constant for the bound in terms of x; however, for x, we would 
have to resort to Proposition 2.8, leading to an unnecessary factor of \/2 in 
the upper bound. 

For the LP problems in the primal form, we define 

Xoo04) := rnaxiH^1 AIU : B e B(A)} 

and prove by the above techniques the following fact. 
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Theorem 6.5 Suppose A € E m x n has full row rank, e e l " and 1,1' 6 Rn 

such that both LP problems min{cra; : Ax = 0,x > - / } and min{cTx : Ax — 
0,x > —I'} have optimal solution(s). Then for every optimal solution x of the 
former problem, there exists an optimal solution x' of the latter problem with 

P - Z ' I | O O < ( X O O 0 4 ) + 2 ) - | | / - Z ' | | O O . 

7 Tardos' Theorem 

Tardos 22 shows that any LP problem max{6Tj/ : ATy < c} (with integer or 
rational data) can be solved in at most poly(size(A)) elementary arithmetic 
operations on numbers of size polynomially bounded by size(^4, b, c). Here we 
extend her ideas to the case of real number data. The following proofs are 
very similar to Tardos', and Schrijver's presentation in 20. 

7.1 Assumptions 

Tardos 22 works with integer (can also easily handle rational numbers) data 
and the Turing Machine Model. So, not only the number of arithmetic opera
tions but also the sizes of the numbers in intermediate steps are to be bounded 
by polynomial functions of the input size. In this section, we work with real 
numbers and utilize Blum-Shub-Smale (BSS) Model (see the book by Blum, 
Cucker, Shub and Smale 2) . Our final complexity bounds involve complexity 
measures of the input other than the dimension n. Therefore, to unify the 
approaches of Vavasis-Ye and Tardos, we introduce below some integers to 
the complexity model. The sizes of the integers are polynomially bounded 
in terms of the sizes of the integers closest to our complexity measures. We 
allow comparison of real numbers to such integers in 0(1) time. As a result, 
determining the "ceiling" of a real number arising from the input data in 
polynomially many steps of BSS model becomes a polynomial operation for 
our purposes in this paper. For simplicity, we assume that we can compute 
the ceiling of such real numbers in 0(1) time and consider this operation an 
elementary operation. 

Here are some other assumptions that we will make: 

1. A € Kmx™ has full row rank. 

2. We can solve the LP problems of the form (D) : max{&Ty : ATy < c}, 
where c € {-1,0,1}", b € {-1,0, l } m , in at most poly(n,log(x(A))) 
elementary arithmetic operations. 
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As we noted before in various settings, Assumption 1 can be made without 
loss of generality, and is assumed throughout Section 7. Also note that As
sumption 2 holds for the Vavasis-Ye algorithm. It is possible that there exists 
simpler algorithms than Vavasis-Ye's (and with better complexity bounds) for 
LP problems with the above-mentioned special data. 

In this section, we first do our analysis under Assumption 2. This will lay 
down most of the main ideas and main technical tools needed. Using these, 
we then show that removing Assumption 2 is possible by utilizing the results 
of Subsection 5.1. 
Proposition 7.1 Suppose Assumption 2 holds. Then we can solve (D), 
where c e E" \ {0},b € Rm \ {0}, in at most 

Hell 
poly (n,log(x(A)),log ' ,minc.^o|Cj| 

elementary arithmetic operations. 

Proof 
The feasible set {ATy < c} can be rewritten as {CATy < Cc}, where C € 
Enx™, diagonal, such that for all j € { 1 , . . . ,n}, 

. _ / l / M , 
• " l l / I H l o o , 

C33 — 1 1 l\\A\ if Cj = 0. 

Now the problem max{bTy : CATy < Cc} is equivalent to max{{Bb)Tw : 
CATBw < Cc}, where w := B~ly and B € Mm X m , diagonal, such that for 
all i € { 1 , . . . ,m} , 

f i / M , lih^Q, 
U • " I l/IHloo, if bi = 0. 

Now Cc € {-1 ,0 ,1}" and Bb e {—1,0, l } m . So by Assumption 2, we can 
solve m&x{bTy : ATy < c} in at most poly(n,log(x(-B^4C))) elementary arith
metic operations. Now x(BAC) = x (^C) since B is nonsingular. Also, 

\\{AC)T{ACD{AC)T)-lACD\\ = \\CAT{A(CDC)AT)~1A(CDC)C-1\\ 

< \\C\\ • WC^W • \\AT(A{CDC)AT)-1A(CDC)\\, 

for all positive definite diagonal n x n matrices D. Therefore, 

X(AC) < \\C\\ • \\C-i\\.x(A) = ̂ 1^X(A) = J | c | l o o , „ tx(A). 

So we get the bound 

poly ln,log(x(A)),log 

m i n i Cjj 

minCi^0 |Cj|yy n 
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7.2 Deciding the Feasibility of ATy < c 

In this subsection, we describe an iterative algorithm to determine whether 
ATy < c has a solution and if not, find a certificate of its infeasibility. 

We first use Gaussian elimination to remove any redundant rows of A, 
to get A. (Clearly, the given data A has no redundant rows since it has full 
row rank; but, this procedure is necessary beyond the first iteration as our A 
changes.) As before, we can replace A by A without changing our problem. 
Now A has full row rank. 

Let c' := (I - AT(AAT)-1A)c. Then for all d G M(A), 

c'Td = cTd - dTAT(AAT)-1Ac = cTd. 

Since c' is the orthogonal projection of c onto M{A), 

{y : ATy < c] = 0 <S> {y : ATy < c'} = 0. 

Therefore, we can replace c by c' without changing our problem. Now we have 
c e AT (A). 

If c = 0, then y = 0 is a feasible solution, and we are done. So, we replace 
c by c/||c||oo. This does not change our problem since the feasibility of the 
system is invariant under positive scalar multiplication of c (or independently 
A). Now we have \\c\loo = 1. 

Suppose we are given an integer p such that p > 2n3/2(x(A))2. We first 
solve ATy < \pc]. If it has no solution, then we have a d > 0 such that Ad = 0 
and [pc]T<i < 0. This d is also a certificate of the infeasibility of ATy < c, 
since (pc)Td < \pc]Td < 0, which implies cTd < 0. So we stop. 

Therefore, we assume we get (y, s) such that 

ATy + s= \pc],s > 0 . (16) 

Lemma 7.2 Let c € ^(^4), c / 0. Suppose (y, s) is given such that ATy+s — 
c. Then \\s\\ > ||c||/x(A). 
Proof 
We use Proposition 2.6. Note that since the 2-norms are used here, we can 
interchange TZ(AT) and Af(A) in Proposition 2.6, as we noted earlier. Let 
7 —c/ | | c | | ,£ := ATy, and 

J := {j € { 1 , . . . ,n} : sign(7j) ^ sign(^)}. 

Note that J ^ 0 because otherwise sign(c) = sign(ATy) together with c € 
N(A) would imply c = 0, a contradiction. So (7, £, J ) is a feasible solution 

file:////c/loo
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to the minimization problem in Proposition 2.6, and hence \\cj\\ > \\c\\/x{A). 
Now, for each j € J , 

\SJ\ = \cj + (-(ATy)j)\ = \Cj\ + \(ATy)j\ > \Cj\, 

where the second equality above uses the fact that c,- and —(Ay)j either have 
the same sign or at least one of them is 0. So, ||s|| > \\sj\\ > \\cj\\ > ||c||/x(-4)-
D 

From (16), we have 

ATy + s + pc — \pc\ = pc, 

and hence by Lemma 7.2, 

I- , r in ^ lbcll ^ P\\c\\oo P 
\s+pc- \pc\\\ > _ > — 

So, 

and hence, 

X(A) - x(A) x(A) 

M I ^ H I P C - M I I ^ - ^ , 

Tn>vm)-li2nm-^nXlA)- <I7) 

Let J := {j £ {1,... ,n} : Sj < ||s||oo}- (We could have defined J := {j 6 
{ l , . . . , n } : Sj < nx(A)} and the following arguments would work as well. 
But the difficulty is we cannot compute n\{A) efficiently.) 
Lemma 7.3 The system ATy < c has a feasible solution if and only if AT

3y < 
cj has a feasible solution. 
Proof 
Clearly, if ATy < c has a feasible solution, so does AT

3y < cj since the latter 
has possibly fewer constraints. If ATy < c has no solution, then by Farkas' 
lemma, there exists d > 0 such that Ad = 0,cTd < 0, and (without loss of 
generality) eTd = 1. We can assume that d is an extreme point of the compact 
set 

{d : Ad = 0, eTd = l,d>0}. 

So, by Corollary 2.11, we have 

1 
min{|dj| : dj ^ 0} > 

nX{A)' 
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Now, 

dTs = dT{\pc\ - pc) + pcTd - dTATy < 1. 

For each j £ J, Sj > nx(A), and so if dj > 0, then djSj > 1, which contradicts 
dTs < 1. Therefore, dj = 0 for all j g J. So dj satisfies dj > 0,Ajdj = 0 
and Cjdj < 0. Hence by Farkas' lemma, AT

3y < cj has no solution. • 

If A J y < cj has no solution, then we have a dj > 0 such that Ajdj = 0 
and Cjdj < 0. By inserting zero(es) to dj, we have a d > 0 such that Ad = 0 
and cTd < 0. This is a certificate of the infeasibility of ATy < c. 

Therefore, we can repeat this algorithm with the data (AJ,CJ). Since we 
remove at least one column from A to get Aj in each iteration, the algorithm 
will terminate in at most n iterations. 

We now look at the complexity of running the above algorithm. In each 
iteration, we solve ATy < \pc\. Note that 

HMHoo = nwiooi =p, 
and 

min ITDC,-!! > 1. 

Therefore, by using the proof of Proposition 7.1 for the case b = 0, we 
have proven that if Assumption 2 holds, we can solve ATy < \pc] in at 
most poly(n,log(x(^4)),log(p)) elementary arithmetic operations. Here we 
use Proposition 2.4 repeatedly to conclude that x(Aj) < x(A) in every itera
tion. 

Proposition 7.4 Suppose Assumption 2 holds and that we are given an inte
ger p > 2nz/2{x{A))2. Then in at most poly(n,log(x(A)),log(p)) elementary 
arithmetic operations, we can determine whether ATy < c has a solution, and 
if not, find a certificate of its infeasibility. 

Similarly we have the following result, in which we use the algorithm and 
the analysis in Subsection 5.1 and the relation (10). 
Proposition 7.5 Suppose we are given p, an integer power of 2, 
that is at least as large as 2n3^2(x(A))2. Then in at most 
poly(n, \log(8s(A))\,\og(/\(A)/6(A))Aog(p)) elementary arithmetic opera
tions, we can determine whether ATy < c has a solution, and if not, find 
a certificate of its infeasibility. 

7.3 Main Results 

From now on, we assume that c € 1™ \ {0}, and b € l m \ {0}. 
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Propos i t ion 7.6 Suppose Assumption 2 holds, (D) is feasible and we are 
given an integer p > 2n3/2(x(-4))2. Then in at most poly(n,\og(x(A)), \og(p)) 
elementary arithmetic operations, we can either: 

(i) find z such that ATz = c, or 
(ii) detect that (D) is unbounded, or 
(Hi) find an inequality ay < 7 in Ay < c such that ay* < 7 for some 
optimal solution y* of {D). 

Proof 
Let z be the (unique) minimizer of \\ATz — c\\. z can be computed by solving 
AATz = Ac using a good implementation of Gaussian elimination, in poly(n) 
elementary arithmetic operations. Let c' := c — ATz. Ii c' = 0, then we have 
found z that satisfies condition (i) above. So we assume c' 7̂  0. Let 

," p -' c : = II / I I c • 
IFIIOO 

Note that ATy < c" arises from ATy < c by a translation and a scaling. Hence 
maximizing bTy over ATy < c is equivalent to maximizing bTy over ATy < c" 
in the sense that y* is an optimal solution of max{bTy : ATy < c} if and only 
if (p/||c'||oo)(2/* — z) is an optimal solution of ma,x{bTy : ATy < c"}. Also 
note that c" € N{A), since c' is. 
Now we solve the problem (£>') : max{6Ty : ATy < \c"~\}. Note that (£>') 
is feasible since (D) is and {y : ATy < c"} C {y : ATy < [c"]}. Also, 
(D1) is unbounded if and only if (D) is unbounded because each of these 
is true if and only if there exists d ^ 0 such that ATd < 0 and bTd > 0. 
Hence condition (ii) is satisfied. We can now assume both (D) and (D1) are 
bounded. Let (y,s) be an optimal solution of (D1). We have by (17) that 
PHoo > n\{A). Corollary 6.4 implies that there exists an optimal solution 
(y', s') of max{bTy : ATy < c"} such that 

II* - s-'IU < [V^X(A) + 1] ||c" - IV'llloo < ^x(A) + 1. 

Therefore, we pick the inequality with the largest Sj among the inequalities 
ATy < \c"~\, and condition (hi) is satisfied. 
We now look at the complexity of solving (£>') using Proposition 7.1. We have 

iirc"ni0O = nic"iu=p. 
Also, \c"] ^ 0 and min fc»i^0 | T<="11 > 1- So, 

l°gf • " ^ " " ^ n i l ^ l o g ^ + l ) ; 
ymm [ cy 1 #oirc" | |y 
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therefore, the required time bound is satisfied. • 

Proposition 7.7 Suppose Assumption 2 holds and that we are given an inte

ger p > 2n5/2m ( S?AJ J . Then we can find a solution of the system ATy < c 

or a certificate of its infeasibility in at most 

poly ( n,log (jr^r) , log(p) 

elementary arithmetic operations. 

Proof 
Let b := A (p + 1, (p + l ) 2 , • • •, (p + l ) n ) T . We apply Proposition 7.4 to test 
whether (D) : max{bTy : ATy < c} has a feasible solution, and if not, we 
obtain a certificate of its infeasibility. Therefore, we assume that (D) is fea
sible. Since (D) is not unbounded (by construction of b), (D) has optimal 
solution(s). 
Suppose b is a linear combination of fewer than m columns of A. Then there 
exists an m x (m — 1) submatrix C of A of rank m — 1, so that the matrix 
[C\b] is singular. Hence, 

0 = det[C|S] 

= (p + 1) det[C|4i] + (P+ l ) 2 det[C|A2] + • • • + (p + l ) n det[C|j4„], 

where Aj denotes the j th column of A. Suppose det[C|A,] ^ 0 for some j . 
Let k be the largest j such that det[C|Aj] ^ 0. Then 

k-l 

0 = E [(P+ l ) ' ' (±det [C|^]) ] + (p + l)k\det[C\Ak]\ 
i= i 

fc-i 

> - A ( A ) E ( P + l)J + ( P + l ) f c ^ ) 

= -A(A)(p + i ) ^ ± i ^ l l + (p + l)k5(A) 

= {p+1r(s{A)-^-) + ^^±^>o, 
V P ) P 

. A(A) 
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This gives a contradiction. So det[C|Aj] = 0 for all j 6 { l , . . . , n } , contra
dicting the fact that A has rank m. So b is not a linear combination of fewer 
than m columns of A. Therefore, (D) is attained at a unique minimal face. 
We now apply Proposition 7.6 to (£>). If it returns a z such that ATz = c, 
we stop. Otherwise, we have an inequality aTy < 7 in ATy < c such that 
aTy* < 7 for some optimal solution y* of (D). Let A € Km x(""1) be A 
with the column a removed, and c € E'™-1' be c with the corresponding 
entry 7 removed. We then solve the more relaxed problem max{(iTy : ATy < 
c} and repeat the above. Note that A must have full row rank in order 
to apply Proposition 7.6 to the new relaxed problem. So we perform the 
following procedures to reformulate this problem. We do Gaussian elimination 
to eliminate any redundant row of [̂ 4|&] to get [A\b]. Now, 

max{6 y : Ay < c] = min{c x : Ax = b, x > 0} 

= min{c x : Ax = b, x > 0} 

= max{6Tj7 : ATy < c}. 

It is not hard to see that the first problem (and hence all of them) has an 
optimal solution (so the equations above are justified). Since the system 
Ax — b is consistent, A must have full row rank. So we apply Proposition 7.6 
to the last problem above. If it returns a z such that ATz = c, then ATz — c, 
where z is obtained from z by adding a zero entry in the place that corresponds 
to the redundant row of A being eliminated earlier. Otherwise, it returns an 
inequality aTy < 7 in ATy < c such that aTy* < 7 for some optimal solution 
y*. Let y* be obtained from y* by adding a zero entry as before. Then y* is 
an optimal solution of max{bTy : ATy < c} because ATy* — ATy* < c and 
bTy* = bTy*. Also, aTy* = aTy* < 7. 
Note that for each submatrix C of A, we have (using Proposition 2.14), 

Hence p satisfies the supposition of Proposition 7.6 every time it is being 
called. 
By repeatedly applying Proposition 7.6, we obtain an ordering of the inequal
ities in ATy < c, say, a[y < 71, a^y < 72, • • •, a^y < 7„, such that for some 
r,l <r < n - 1, and some z G Mm: 

• ajz = 7j , for all r + 1 < j < n, 

• for each 1 < j < r, ajyi < 7^ for some optimal solution yi of max.{bTy : 
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That is, we run Proposition 7.6 r times, by removing one inequality each 
time from ATy < c until we find a z that satisfies the remaining inequalities 
as equalities. Since the maximum is attained at a unique minimal face, the 
optimal solution set can be written as 

{y : ALy = c=} = {y : Aly = c=,AT
<y < c<}, 

where ([J4^|c<],[A^|c=]) is a row-partition of [AT|c]. It is easy to see that 
the rows of A^ are precisely {aj : 1 < j < r}, whereas the rows of AE are 
precisely {aj : r + 1 < j < n}. So ALz = c = , which implies A^z < c<. 
Therefore, z is a feasible solution of (D). 
We now look at the complexity of the above algorithm. We apply Proposi
tion 7.4 once to (£>), which takes time 

poly(n,log(x(A)),log(p)) < poly (n,log I jr^r) ,log(p) 

by (10). 
Afterwards, we apply Proposition 7.6 at most n times. At the fcth time 
(1 < k < r + 1), Proposition 7.6 takes at most poly(n,log(x(^4^')),log(p)) 
elementary arithmetic operations, where A^ := A and for k > 2, A^ is 
obtained by first removing some column of A^k~y\ and then removing any 
redundant row. By Proposition 2.4, we have x(Ak)) < x(^ ( f c _ 1 )) < x(A), 
for all fc > 2, and we can again use (10). • 

Theorem 7.8 / / Assumption 2 holds, then we can solve the primal-dual LP 
problems 

(P) : min{cTa; : Ax = b, x > 0} and (D) : max{bTy : ATy < c} 

in at most poly In,log ( S>J J j elementary arithmetic operations. 

Proof 
Suppose we are given an integer p > p, where p is defined in (12). We 
first describe an algorithm for solving the given LPs, and later explain how 
to obtain such a p. We apply Proposition 7.7 to test if {ATy < c] and 
{Ax = b, x > 0} are feasible, where the latter is the same as 

x < 

(To use Proposition 7.7 for the above displayed data, we apply Proposi
tions 2.14 and 2.4 to the matrix [^4T| — AT\ — I] and note that p is large 
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enough for the application of Proposition 7.7—and the results it uses—to this 
matrix too.) If one of them is infeasible, then we stop (having determined the 
status of each problem). Therefore, we may assume that both (P) and (D) 
are feasible. 
By repeated application of Proposition 7.6 (as in the proof of Proposition 7.7, 
and we again have 2n3/2 (x(C)) < p, for all submatrices C of ^4), we can 
split {ATy < c} into {Aj^y < c^,AT2-,y < C(2)} and find a vector z, such 
that Aj2yZ = C(2) and Aj^y* < C(i) for some optimal solution y* oimax{bTy : 
ATy < c}. Let (xT1\,xJ2^)T be a partition of any primal solution x such that 
xT^ corresponds to AT^ and xT2^ corresponds to Aj2y Hence every primal 
optimal solution x satisfies x^ = 0. So, 

min{c x : Ax = b,x > 0} = mm{c72\X(2) : ^4(2)̂ (2) = b,X(2) > 0} 

= max{bTy : Aj2)y < c(2)}. 

Using Proposition 7.7, we can find a feasible solution x?2) of 

x < 

Then cT2*.x?2s = zT A^x*,2^ = bTz, and by LP duality, x%-, is an optimal 
solution of min{cj^a:(2) : ^4(2)a;(2) = b,X(2) > 0}. Let xJ^ := 0. Then x* is an 
optimal solution of min{cTa; : Ax — b, x > 0}. 
Let Aj^y < C(3) be the subsystem of AT2-,y < C(2) corresponding to the positive 

components of x*,2y By complementary slackness, it follows that {y : ATy < 
c,AT3yy = C(3)} is the set of optimal solutions of max{bTy : ATy < c}. We 
can use Proposition 7.7 to find such a solution. 
As in the proof of Proposition 7.7, identifying the partition [J4(1j|^4(2)] of A 

takes at most poly in,log (-ghr) ,log(p)) elementary arithmetic operations. 

Also, note that A/6 values for [AT|-AT|-I], [Aj2)\-Aj2)\-1], [^4j^4(3)| — ̂ 4(3)] 

are all bounded by 5>J. Therefore, the algorithm terminates in at most 

poly in, log ( -ghtJ ,log(p) J elementary arithmetic operations. 

The correctness of the above algorithm is guaranteed by the assumption that 

p > p. Without a prior knowledge of ( j^J- J, we will use the following "log-

squaring trick". (Similar tricks have been used before for similar purposes; 

see 29.) Initially, we can guess n for the value of log I S>J I and run the 
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above algorithm so that our initial p is roughly 2(2m + n)3/2(2mn + l )2 2 n . If 
the algorithm fails, we replace the current guess by its square, update p, and 
repeat the algorithm. We also check the output of the above algorithm. If it 
concludes that (P) (or (D)) is infeasible, we use the corresponding infeasibil-
ity certificate to ensure that (P) (or (D)) is indeed infeasible. Similarly, if the 
algorithm returns a primal-dual "optimal" solution pair, we use complemen
tary slackness conditions to ensure it is indeed optimal. All of these can be 
done efficiently. If any of the output is false, we again square the most recent 

guess for log ( j^J- J, update p, and repeat the algorithm. It is easy to show 

that after 

H log(n) 

guesses, we have the current guess for p between p and p. (Here we assume 

that log log I - jW J > 21og(n); otherwise, our first or second guess works 

and no additional iterations are necessary.) Also, clearly all the guesses for 

p is at most p; moreover, log(p) = O (poly f n,log ( - jW-) ) ) • Therefore, the 

claimed overall complexity bound is established. • 

Note that in the proof of the above theorem, one cannot increase the size 
of the guess significantly faster than we did, since the sizes of all the integers 
used by our algorithm must be bounded by a polynomial function of the sizes 
of the complexity measures we are using. 
Theorem 7.9 We can solve the primal-dual LP problems 

(P) : min{cTa; : Ax — b, x > 0} and (D) : m&x{bTy : ATy < c} 

by utilizing the LP solver subroutine of Subsection 5.1 0(n2) times and there

fore in at most poly In, | log(<5a(^4))|, log ( s(A) )) elementary arithmetic op

erations. 

Proof 
We assume that we are given an integer p>p. (We can remove this assump
tion as in the proof of Theorem 7.8, by applying a log-squaring trick.) First we 
check the feasibility of (P) and (D) using Proposition 7.5 and the underlying 
algorithm. If any of (P), (D) is infeasible, we have the certificates of such 
fact and we are done. So, we assume that both (P) and (D) have feasible 
solutions. Then we apply the proof of Proposition 7.6 to (D) and have the 
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problem 

(D'):max{bTy:ATy< \c"]}. 

Our theorem in Subsection 5.1 cannot deal with this LP problem (since 
the objective function of (£>') is arbitrary). We form the dual (call it 
(P')) of (D1) and apply the proof of Proposition 7.6 to (P1). Now, the 
LP problems arising from the applications of Proposition 7.6 to (P') all 
satisfy the conditions needed in Subsection 5.1 (namely, condition (ii) of 
the subsection for b and c). So, calling this subroutine 0(n) times, as in 
the proof of Theorem 7.8, we can compute optimal solutions of (P1) and 
(£>'). (At some point, during this process, inside the proof of Theorem 7.8, 
the method in the proof of Proposition 7.7 is used. This requires the LP 
solver subroutine to be called with data satisfying condition (i)—potentially 
not satisfying condition (ii)—of Subsection 5.1.) Now, we have an optimal 
solution of (D1) and we can keep applying this technique in using the proof 
of Theorem 7.8 to solve (P) and (£>). This clearly requires no more than 
0(n) problems of the type (£>') to be solved. Since each such problem can be 
solved with 0(n) calls to the LP solver subroutine, the 0(n2) bound follows. • 

7-4 Overall Complexity Bounds 

Suppose we have an interior-point algorithm satisfying Assumption 2, with 

an O (na (logixiA)))13) iteration bound, for some a > 0, /? > 0. Then 

Theorem 7.8 implies an iteration bound of 

o(.~K^)+H'(*(**^))). 

On the other hand, using the methods of Subsection 5.1 and Theorem 7.9, 
we obtain the iteration bound 

O ( V 5 (\log(Ss(A))\ + nlog (j^j + nlog(n)) 

The above bound is not better than Vavasis-Ye's and can be much worse in 
general. However, in the case that A is totally unimodular, it becomes the 
same. In this very special case, we can omit the factor of (\oglog(x(A))) 
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(caused by a log-squaring type trick) in the iteration bound of Vavasis-Ye 
algorithm. See, for instance, Proposition 7.10 and the discussion following it. 
In the case that 4̂ is integral, the bounds can be considered close. See below. 

7.5 Integer Data and Network Flow Problems 

• Integer Data: 

When the data is integer, 8(A) = 1, 8S(A) > ^fjy and log(A(A)) < 

nlog(n) + size(A). Therefore, we have Tardos' theorem as a special case. 

Also, in this case it is very easy to get upper bounds (whose sizes are 

bounded by polynomial functions of the input size) for p so that the 

multiplicative factor (log 

be removed. 

'°g'°8($ff) 
log(n) 

in the complexity bound can 

Totally Unimodular Matrix A: 

Recall that a matrix is totally unimodular if all of its square submatrices 
have determinants - 1 , 0 or 1. That is, S5(A) = 5(A) = A(A) = 1. The 
following is special case of Proposition 2.14. 

Proposition 7.10 (Ho n ) Let A € SRmxn be a full row rank totally 
unimodular matrix. Then x(A) < y/mn. 

Proof 
Take any basis B of A. It is elementary to show that A^1 A is also totally 
unimodular. Then for all x such that ||i||2 = 1, 

\\A~B
lAx\h = 

\ 

m, I n 

»=1 \ j = l \ 

m I n 

£ E N 
»=i y = i 

because max ||a;||i = y/n when x — —y=e. Therefore x(A) < Jmn by 
IWI2=I Vn 

Proposition 2.3. • 

In fact we can exhibit a totally unimodular matrix A with x(A) = 
Q(y/mn). Consider the complete graph on vertices { l , . . . , m + 1}, with 
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arcs ij Hi < j . Let A be its node-arc incidence matrix, with any one 
row deleted. Then A is a totally unimodular mxn full row rank matrix, 
where n = m(m + l ) /2 . It can be easily shown that if we choose x = e 
and B such that the columns of AB correspond to a spanning tree that 
is also a path, i.e., a Hamiltonian path with the correspoding incidence 
matrix: 

/ l - l \ 
1 - 1 

AB = 

1 - 1 

V 1 / 

then (AB
1Ax)j = j(m - j + 1). Therefore 

X(A)> 

N 
j = i 

m(m+l) 
2 

= 0 ( m 1 5 ) = e(y/mri). 

Therefore, the upper bound proven in Proposition 7.10 is tight up to the 
order. 

Note that we used above, the fact that Ag1 is the all ones upper-triangular 
matrix. As it is well-known, for every B £ B(A), there exist permutations 
of the rows and the columns of AB such that the resulting matrix is upper-
triangular. Since A^1 is also totally unimodular, it can only have — 1,0,1 
entries. Therefore, in this special setting, B e B(A), corresponding to 
Hamiltonian paths, maximize H^s1!!-

Minimum Cost Flow Problems: 

Consider the minimum cost flow problem with the constraints Ax = b 
and 0 < x < u, where A is the node-arc incidence matrix of a given 
directed graph with any one row deleted (so that it has full row rank). By 
introducing the slack variables v, we convert the constraints into standard 
equality form: 

b' 
> 0 , 

where 

A:= 
A0 
I I 
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This structure arises whenever we convert an upper bounded LP problem 
to the standard equality form. Vavasis and Ye 29 prove that x{A) = 

0(mn). Using Propositions 2.7 and 7.10 (and the arguments following 
that), we have x(A) = Q{y/mri) when A is totally unimodular. 
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ON THE EXPECTED N U M B E R OF REAL ROOTS OF A 
SYSTEM OF R A N D O M POLYNOMIAL EQUATIONS 

ERIC KOSTLAN 

eric ©developments erver. com 

We unify and generalize several known results about systems of random polyno
mials. We first classify all orthogonally invariant normal measures for spaces of 
polynomial mappings. For each such measure we calculate the expected number of 
real zeros. The results for invariant measures extend to underdetermined systems, 
giving the expected volume for orthogonally invariant random real projective va
rieties. We then consider noninvariant measures, and show how the real zeros of 
random polynomials behave under direct sum, tensor product and composition. 

Part I - Introduction 

1 Overview 

To motivate our investigation, we begin this chapter with some known results 
about systems of random polynomials. In particular, we discuss results of 
Mark Kac 12, Edelman and Kostlan 7, Shub and Smale 23, and Rojas 21. We 
conclude Part I with a detailed discussion of the level of generality adopted 
in this chapter. The titles for Part II and Part III were chosen to indicate 
something about the level of generality of the results in each respective section. 

Part II is devoted to random polynomials whose coefficient vectors form 
orthogonally invariant normal measures. We classify all such measures. We 
then consider a systems of such polynomials. The system may be mixed - that 
is, the polynomials making up the system do not have to be identical - and 
the system may be underdetermined. In all cases we calculate the expected 
volume of the corresponding random real projective variety. For a completely 
determined system, this is simply the expected number of real zeros. 

In Part III of this chapter we consider the direct sum, tensor product and 
composition of random polynomials. This is a familiar theme in mathematics. 
We have systems of random polynomials, and we wish to use them to construct 
new systems of random polynomials. Our focus will be on how the expected 
number of real zeros behaves under sum, product and composition. 

This chapter is not self-contained. It is written with 7, Sections 1-4 and 
Section 7, as a necessary prerequisite. Although this chapter does discuss 
volumes of random varieties, the focus is on the expected number of real 
zeros of systems. A more detailed discussion of random real varieties is in 
preparation 15. An open-ended web-based project, 15 completes a series of 
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five papers: 13, 14, 7, this paper, and 15. All these papers are available at 
http://www.developmentserver.com/randompolynomials. One result appear
ing in 13 and 14 that might be of particular interest to readers of this chapter 
is the calculation (over the complexes) of the joint distribution of zeros for 
pairs of plane conies. For most readers interested in random polynomials, 7 

is sufficient. 

2 Summary of previous results 

2.1 Polynomials with independent standard normal coefficients 

Consider a system of m polynomials in m variables with independent standard 
normal coefficients. Assume that each variable has degree at most d. There
fore, the Newton polytope, that is, the convex hull of the support of each 
polynomial, is an m-dimensional hypercube. If E^ represents the expected 
number of zeros for the system, 

As d —> oo, 

i ^ ~ ^ r ( ^ ) ( 2 i o g d r . 

The univariate case was established by Kac 12, and generalized to systems of 
equations in 7. In Section 10.1 we show that this result may be viewed as a 
special case of the tensor product of random polynomials. 

We conjecture that the same asymptotic formula holds for a large class 
of monomial term structures, as long as all the coefficients are i.i.d. central 
normal random variables. This is because for any fixed C, as d -> oo, 

We may choose C « 1 and C » 1, to inscribe and circumscribe any given 
polytope with cubes. 
Conjecture Let K be any bounded set in {x £ R|a; > 0 } m with nonzero 
interior. Assume that either K or {x € R|ar > 0}m — K is the finite union 
of convex sets. Consider a sequence {Pd} of completely determined systems 
of polynomials with independent standard normal coefficients. Assume that 
the support of Pd is the set of integer lattice points contained in dK. If Ed 

http://www.developmentserver.com/randompolynomials
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represents the expected number of zeros for the system, then as d —>• oo, 

i W - ^ r ( ^ ) ( 2 i Q g 4 T . 

The assumption about K is to avoid pathologies and make a precise conjec
ture. I doubt the correct hypothesis would have anything to do with convexity. 
I suspect the same asymptotic formula holds for mixed systems as well. 

The study of random polynomials began with the assumption that the 
coefficients were identically distributed. These early works include the 1932 
paper by Block and Polya 2 , and the seminal work of Mark Kac 12, published 
in 1943. The extensive literature that has grown out of this work (and this 
assumption) has been documented by Bharucha-Reid and Sambandham l . 

I feel that the subject of random polynomials is blessed by the fact that 
these obvious random polynomials (polynomials with independent standard 
normal coefficients) are not the natural random polynomials. The attempt 
to replace these measures with more natural measures was, in part, the mo
tivation for 7, 13, 14, 21, and Part II of this chapter. Furthermore, when we 
study random polynomials, we can use this case as a convenient non-invariant 
random polynomial. For example, comparing Section 7.1 of 7 and 21, we see 
that orthogonal invariance is not required to make the tensor product theorem 
work. 

2.2 The most natural random polynomial 

Consider a random polynomials 

/ , ai\--im"-k=lxk > 

where YA!=I h < d and where the a^...^ are independent normals with mean 
zero and variances equal to multinomial coefficients: 

d\ 

~ (d-E)T=i'*)!n*Li*fc! ' 
Consider m independent equations of degrees di,...,dm, each defined this 
way. Then the expected number of real zeros of the system is 

m 

x IK 
The general case was established by Shub and Smale 23. For the case where 
all the degrees are equal, the result was established in 14. Furthermore, 14 

H, 
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stated the result for underdetermined systems as well, thus giving the expected 
volume of a real projective variety of dimension k and degree d: 

d{m-k)/2^(k+l)/2 

r p + i)/2] • 

In Part II of this chapter we will unify these results. Following 14, we will 
consider arbitrary codimension, but like 23, we will avoid the assumption that 
the polynomials are of equal degree. In this chapter we will refer to any of 
these results as the square root result. 

We can characterize these random polynomials using a combination of 
invariance and independence. See 7, 13 and 14 for detailed discussions. We 
define the action of the orthogonal group on random polynomials in Section 
3.1. The following result, that appears in 14, is true for both real and complex 
random polynomials. 
A central probability measure on a vector space of real polynomial mappings 
has the following two properties, (1) orthogonal invariance of the measure 
and (2) statistical independence of the coefficients, iff it is, up to a scalar 
multiple, the polynomial discussed above. That is, the coefficients must be 
independent, and the variances of the coefficients are some constant multiplied 
by the multinomial coefficients. 
Notice we are not assuming normality of the coefficients. This is one of many 
theorems in statistics of the form 

independence + invariance -» normallydistributed 

In 7 we referred to these polynomials as "a random polynomial with a nice 
answer" and discussed the geometry of these polynomials in detail. A homo
geneous real quadratic system may be written as a real symmetric matrix. 
For this case, the above result reduces to the characterization of Gaussian 
orthogonal ensemble given by 19. 

Over the complex numbers, we may replace the assumption of indepen
dence with the assumption of normality of coefficients. This is equivalent to 
saying that there is (up to a constant) a unique unitarily invariant multivari
ate normal. In Section 5.1 of this chapter, we give a simple proof of this 
classical result. The significance of these complex random polynomials has 
also been noted by physicists 3. Therefore, it should come as no surprise that 
the real versions of these random polynomials have nice properties as well. 

However, there are other orthogonally invariant normal random polyno
mials. One goal of this chapter is to give a unified treatment of them. We 
will produce a complete list of all random polynomials with orthogonally in
variant normal coefficients - we say exactly what we mean by orthogonally 
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invariant in Section 3.1. For each we will calculate the expected volume of 
the real hypersurface determined by the polynomials. We will also establish 
a product formula that will give us the expected volume of a variety of any 
codimension generated by a set of (possibly distinct) random polynomials of 
this type. 

2.3 Random harmonic polynomials 

Consider the vector space of homogeneous polynomials of degree d in m + 
1 variables that are harmonic, that is, the Laplacians of the polynomials 
are equal to zero. There is, up to a constant, a unique normal measure on 
harmonic polynomials that is invariant under the orthogonal action defined 
in Section 3.1. The expected number of real zeros for a system of m such 
random harmonic polynomial is 

(d(d + m-l)\m/2 

This result appears in 7. Here are random polynomials with natural measures. 
It seems that the random polynomials described in Section 2.2 have rivals for 
the status of most natural random polynomial. We shall address this issue 
by considering, in Part II of this chapter, all orthogonally invariant normal 
random polynomials. 

2.4 Rojas polynomials 

Assume that the support for a random polynomial is a product of simplices 

p 

{lizik;0<\Ik\<6k,l<k<p} , 
k=i 

where h are multi-indices, \h\ is the sum of the indices of IK, and zk S 
Rmfc. Assume that the coefficients of the polynomials are independent central 
normals with variances 

<n(£)>-
The expected number of real zeros of a system of such polynomials is equal 
to 
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where m is the sum of the m^. These polynomials were introduced by Rojas 
in 1996 21. In Section 10.1 we see that the product formula used by Rojas can 
be applied to the tensor product of any central multivariate normal random 
polynomials. 

3 Level of generali ty 

The emphasis of 7 is on generality. For the most part, however, we proved re
sults for polynomial systems with any central multivariate normal coefficients. 
However, we did call attention to the existence of preferred orthogonally in
variant random polynomials with particularly nice properties. This paper 
expands on both of these subjects. Part II is dedicated to orthogonally in
variant random polynomials, with coefficients that are multivariate normal 
random variables, not necessarily central. Both underdetermined and mixed 
systems are considered. In Part III we drop invariance and add centrality. 
In fact, like 7 many of of the results of Part III may be generalized to finite-
dimensional space of rectifiable functions. However, in Part III we add the 
assumption that the system is central. Furthermore, we will not allow mixed 
or underdetermined systems in Part III. 

Throughout this chapter we will allow measures to be restricted to proper 
subsets of our function space. The domain of our functions may be any 
measurable subset U of R m + 1 . Therefore, is some sense, all of our results 
are local in nature. For simplicity, we will not specify the domain U in each 
theorem and corollary, as we did in 7. However, when explicit formulas are 
given for the expected number of real zeros, we are assuming that the domain 
i s a l l o f R m + 1 . 

Let P be a finite dimensional function space, and consider a (random) 
p e P, p : R m + 1 -» R. The evaluation mapping to the dual of P: 

ev : Rm+1 -> P\ 

is denned by ev(x)(f) = f(x). The function p thus corresponds to a hyper-
plane in P*. The intersection of this (random) hyperplane with ev pulls back 
to the zero set for p. In P* integral geometry provides a simple intersection 
theory to handle (unmixed) systems of equations. This simple theory pulls 
back to a simple intersection theory in R m + 1 . 

Ideally, we would like to prove every result for systems that are possibly 
mixed and possibly underdetermined. If the system in underdetermined, we 
have the problem that the random variety is distorted by the pullback. Thus 
our intersection theory gives us answers about expected projective volumes in 
(ev) ( R m + 1 ) instead of in R m + 1 . For varieties of dimension zero this distortion 
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is not an issue. For mixed systems the picture is complicated by the presence 
of several different evaluation mapping, and therefore no intersections can be 
pulled back. We must work with intersections of different random hypersur
faces in R m + 1 . For mixed invariant systems, these random hypersurfaces 
are orthogonally invariant and therefore classical integral geometry provides 
simple answers. 

3.1 Homogeneous and inhomogeneous systems 

Given an inhomogeneous polynomial with m variables z\,...,zm, we can al
ways consider, instead, the corresponding homogeneous polynomial i n m + 1 
homogeneous variables zo,. -. ,zm. For completely determined systems, this 
should cause no confusion, because all of our results about expected number 
of real zeros apply to both homogeneous and inhomogeneous systems. When 
considering underdetermined systems, we must make sure that the domain is 
projective space. 

When we speak of unitary or orthogonal invariance, we will always be 
considering the homogeneous version of the random polynomial. We assume 
the unitary and orthogonal groups act on the right, 

U{p)(z)=p{U(z)). 

Actions of products of orthogonal groups have also been considered 17'?>?, but 
we will not consider them here. We will be studying both inner products and 
multivariate normal measures on vector spaces of polynomials. Our focus will 
be on the real case, so we will usually just consider orthogonal invariance. For 
the complex case we replace orthogonal invariance with unitary invariance. 

By convention, we will make no effort to distinguish between an inhomoge
neous system and its homogeneous counterpart. For example, by a univariate 
polynomial we will mean a random polynomial that may be written as 

d d 

pi*) = 5Z "-Ji <* P(X' y)^^2 aixiyd~i • 
i=0 i=0 

Elements of the orthogonal group reflect or rotate p to give 
d 

rd Y^ «i cos*(0 + Sy and-i(e + S) , 
i=0 

where x — rcos(6), y — rsin(0). The random polynomial will be said to 
be orthogonally invariant if the probability measure is invariant under this 
action. Using this convention, the random polynomial 

p(t) = a{t2 + 1) , 
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where a is a standard normal random variable, is considered to be orthogonally 
invariant. 

3.2 Under determined and overdetermined systems 

For invariant random polynomials we will prove results for underdetermined 
systems thus giving results about the expected volume of random projective 
varieties. Several interesting problems suggest themselves when considering 
random real varieties, and little is known. In this chapter, underdetermined 
and overdetermined systems, and the corresponding random varieties, are 
strictly tools to study the expected number of zeros of (possible mixed) sys
tems. We consider only the expected volumes of such varieties, ignoring their 
more interesting invariants. The key motivation for 15 is to focus on the ge
ometric properties of random real varieties that are ignored in this chapter. 
For this chapter, we will only need one result about overdetermined systems. 
Lemma 3.1 Let U be a measurable subset o / R m , and consider a real-valued 
random function 

a0fo(t) + o i / i ( t ) + . . . + anfn{t), t e U, 

where the ai are independent standard normals, n > m. Generate a random 
variety of dimension m in R fc+1, k > m, by choosing an independent sample 
of k + 1 such functions. The expected volume of the projection of this variety 
onto the unit sphere in R*+ 1 is equal to the expected number of zeros in U 
of a system of m independent random functions of this form, multiplied the 
volume of m-dimensional real projective space 

m + l 

r(2*±i) ' 

Proof Let N be the random variety generated in the lemma, and let M to 
be the subspace of R f t + 1 , defined by XQ = ... = xm-\ = 0. The proof is then 
a straightforward generalization of the proof of Lemma 6.1 in 7. • 

3.3 Mixed systems 

I recall having two contrary emotions when Steve Smale told me that he and 
Mike Shub 23 had generalized the square root result of14 to mixed completely 
determined systems. The first was a pleasant lack of surprise. The answer 
derived by Shub and Smale was the only reasonable result. Furthermore, my 
research had received an unusually strong endorsement. On the other hand, 
I was discouraged. I felt that 14 had presented the correct picture of random 
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systems. But in 14, a system of equation was a plane in the space of real-valued 
polynomial mapping, or a point in the Grassmann manifold. Unfortunately, 
this viewpoint precludes the consideration of mixed systems. Nonetheless, the 
generalization to mixed systems is clearly desirable. In Part II of this chapter, 
we will consider invariant mixed systems. We will use the viewpoint of 14 to 
get results about random hypersurfaces, and then develop an intersection 
theory similar to 23 to deal with mixed systems. The Grassmann manifold 
will never be used. We will also allow mixed systems in Section 11, where we 
discuss the composition of random polynomials. 

The generalization of the square root result to mixed systems by Shub and 
Smale has motivated at least three resent papers. The first of these papers 
was by Rojas 21. Rojas attempts to define, for any given support structure, 
distinguished measures for the corresponding random polynomials. I do not 
believe this issue has been completely resolved. Rojas also considers mixed 
systems, and conjectures a relationship between the square root of the mixed 
volume and the expected number of real zeros. McLennan 18 considers (the 
multihomogeneous version of) the Rojas polynomials, and shows that the 
square root of the (normalized) mixed volume provides a lower bound for the 
expected number of real zeros. In the words of McLennan, "The mean exceeds 
the square root of the maximum." The third paper, by Malajovich and Rojas 
1T, produce an explicit, albeit coarse, upper bound for the expected number 
of real zeros in terms of the square root of the mixed volume for arbitrary 
central normal random polynomial systems. Reading these three papers, one 
sees a wealth of new ideas emerging. 

Part II — Orthogonally Invariant Normal Coefficients 

4 Classification of invariant inner products 

We will now classify invariant inner products on vector spaces of homogeneous 
polynomials. These are the classical results we will need for the rest of the 
chapter. We include proofs because they are surprisingly easy. Before we try 
to understand the real case, we discuss the complex case, which is considerably 
easier. 

4-1 The complex analogue 

Over the complexes, there is, up to a constant, a unique unitarily invariant 
Hermitian inner product. This is a well known classical result. The general
ization to multihomogenous polynomials may be found in 18. 
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Theorem 4.1 Assume a Hermitian inner product is defined on a vector space 
of complex homogeneous polynomials of degree d, and assume it is invariant 
under the right action of the unitary group. Then monomials are perpendicular 
to each other, and the lengths of the monomials {x1} are, up to a constant, 
square roots of multinomial coefficients 

/ 
where I is a multi-index. 
Proof This is the corollary following Theorem 3.2 of 13, and is Theorem 
4.1 in 14. We now outline a simplified version of the proof given in 13. Fix 
y and think of v(x)TCv(y) as a function of x on y±. Assume that for any 
unitary matrix U, v(Ux)TCv(Uy) — v(x)TCv(y). Then for any U that fixes 
y, we must have v(Ux)TCv(y) = v(x)TCv(y). Thus v(Ux)TCv(y) must be 
constant for x on the unit sphere in y±, and therefore it's gradient has rank 
one. But for an analytic function this implies that v(x)TCv(y) is constant on 
y±, and therefore, by symmetry, zero. Thus 

x ±y ^ v(x)TCv{y) = 0 . 

Therefore xTy divides v(x)TCv(y). We then apply the same argument to the 
v(x)TCv(y) I xTy, and so on. We ultimately deduce that v(x)T Cv(y) — 
a(xTy)d, which completes the proof. • 
We have just established that the space of homogeneous complex valued poly
nomials of a fixed degree i n m + 1 complex variables is an irreducible repre
sentation of the unitary group U(m + 1). As stated in 14, this may also be 
shown using classical invariant theory. 

4-2 Classification of indefinite inner products 

Assume that for any orthogonal matrix Q, v(Qx)TCv(Qy) = v(x)TCv(y). 
This implies that v{x)TCv{y) must be a polynomial in x • x, x • y, and y • y. 
This is classical invariant theory. For proofs and discussion of such results, 
see 24 . We thus deduce that there must exist /3, such that 

[d/2] 

v(x)TCv(y) = J2^(x-x)k(yy)k(x-y)d-2k. (1) 

Thus we have a [d/2] parameter family of orthogonally invariant inner prod
ucts. For example, if we set /?0 = 1 and /?* = 0 for k > 1, we produce a inner 
product for which the monomials are orthogonal. 
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This completely classified all orthogonally invariant inner products on 
spaces of homogeneous polynomials of degree d. But this classification is 
unsatisfactory. We wish to use these inner products as covariance matrices, 
so we must identify the positive definite inner products - actually positive 
semidefinite, since we allow normal measures restricted to proper subspaces 
of polynomials. Unfortunately, if we use the parameters (5k it is difficult to 
see which inner products are positive definite. We therefore will construct a 
different parameterization of these inner products. First we review some basic 
facts about Gegenbauer polynomials. 

4-3 Gegenbauer polynomials 

The reference for all the results in this section is 10 and 25. This section 
includes formulas we use in this chapter, along with other well-known and 
useful formulas. The Gegenbauer polynomials may be defined in terms of 
their generating function 

( l -2 te + z2)-" = ^ Q ( t ) z n . 
ra=0 

25 In 25 these functions are called "ultraspherical functions" and are denoted as 
Pn (t). The Gegenbauer polynomials are Gaussian hypergeometric functions, 

T(2v + n) „ / 1 1 — t 

T{n + l)T(2u) V ' 2 ' 2 

If n is a non-negative integer, 

nW(v) V 2 ' 2 ' '*2 

The polynomials 

2T(i/) 
(n 4- v)n\ 1 ' 

2-KT(2V + n) cm, 
n = 0 , . . . , d, form an orthonormal bases for polynomials of degree d, with do
main t e [—1,1] and weight (1— t2)""^. The first few Gegenbauer polynomials 
are 

C%{t) = 1 , Cr(t) = 2ut , C%(t) = 2v{v + \)t2 - v , 

C£(t) = \v{v + l)(i/ + 2)t3 - 2v(y + l)t . 
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Subsequent Gegenbauer polynomials may be calculated using either of the 
following formulas. 

{n + 2)Cv
n+2{t) = 2{v+n+l)tCv

n+l{t)-(2v+n)Cv
n{t) ; ±Cv

n(t) = 2vC»n
+_\{t) . 

We also have 

T(2u + n) 
C»(l) = r(n + i)r(2i/) ' 

Associated Legendre functions may be written in terms of Gegenbauer 
polynomials: 

{-l)m{2m)\{l-t2)m'2rim+l 
m!2m 

If m and / are non-negative integers, 

(_-\\l+m rfl+m 
P™(t) = I l> (l-f)™/2^— (1-t2)1 . 

i v ' 2ll\ K ' dtl+m K ' 
The spherical harmonics that arise in the solution of the Schrodinger equation 
for the hydrogen atom are 

*T(M) = 
/(2f + l ) ( i - m ) ! im, 

y 47r(/ + m)! ' v ; 

where I is the azimuthal quantum number, and m = —/,..., / is the magnetic 
quantum number. Here I — 0 ,1 ,2 ,3 ,4 ,5 , . . . for the s,p, d, f,g,h,... orbitals. 
Unfortunately, the definitions of associated Legendre functions and spherical 
harmonics are not entirely uniform through the literature. Compare 8 , 10, 20 

and 25. 
The Gegenbauer polynomials are Jacobi polynomials, but with different 

normalization constants, 

C n W _r(2i0r(n+ «, + §)** 
Special cases of the Gegenbauer polynomials include the Legendre polynomi
als, 

Pn(t)=ClJ2(t), 

and the Chebyshev polynomials of the second kind, 

= = sintnarccosffl] _ 
sin[arccos(t)] 
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We will need to define Gegenbauer polynomials for which v — 0. Unfor
tunately, C°(£) = 0, unless n = 0. However, we can renormalize, because 

Um &1 = 2cos["arccosW] = 2 
v^o v n n 

where Tn are the Chebyshev polynomials of the first kind. We choose a 
normalization that is suited to our needs, and that is continuous as v -» 0. 
We use that fact that 

lim ™ _ 2 
i/-»0 V 

Notation. We define 

when v ^ 0, and we define 

n{) ~ Q(l) ' 

C°n(t) = Tn(t) . 

The first few renormalized Gegenbauer polynomials are 

3 w 2v + 1 2i/ + 1 

If we rewrite the results in this chapter in terms of Jacobi polynomials, the 
problem at v — 0 does not arise. Nonetheless, we will use Gegenbauer poly
nomials, because the Jacobi polynomials are too general for the problems we 
will consider. 

We will make use of the following explicit formula: 

- 2 " - 1 n! r (2 i /+ l ) ' ^ ] (-iyr(v + n-j) 2 , 
n W r (2^ + n ) I > + 1) ^ 22jjl{n-2j)l ' W 

where n is a non-negative integer. Here we define 

Tjv + n- j) 
——— — = z , not 1 , 

Y(2v + n) 
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when n = j = v = 0. This is because we set n = j = 0 before we set v — 0. 
This formula may be inverted, to give 

_ n ! i y + 1) [ ^ ] (,/ + n - 2j)T{2u + n - 2j) ^ 

" 2»-ir(2i/ + 1) ^ j ! (n - 2j)!r(i/ + n - j + 1) " ~ 2 ^ ' ' [ ' 

where we define 

(v + n- 2j)T(2i> + n - 2j) = - , not 1 , 

when n = 2j and v = 0. Using functional properties of the Gamma function, 
these formulas may be rewritten in many ways. 

4-4 The eigenspaces ofr2V2 

A straightforward calculation using multivariate calculus yields the following 
Lemma 4.1 / / / is a homogeneous polynomial of degree d — 2i in m + 1 
variables, then 

V 2 / = 0 -* r2V2(r2if) = 2i(m + 2d-2i-l)(r2if) . 

Let Pd be the space of homogeneous real-valued polynomials of degree d 
in m + 1 real variables. The operator r 2 V 2 maps this space to itself. Let Ha 
be the subspace of this space for which V2 is equal to zero. By the lemma, 
{r2lHd-2i}, i = 0 , . . . , [d/2], are eigenspaces of r2 V2 with distinct eigenvalues 
{2i(m + 2d— 2i — 1)}. Furthermore, since H^ is the kernel of V2 : Pd -> Pd-2, 

dim Hd > dim Pd — dimPd_2 . 

Therefore the sum of the dimensions of these eigenspaces is at least the di
mension of Pd- We conclude that 

[d/2] 

Pd = 2~] r2lHd-2i (direct sum). 
i=0 

As a consequence of this argument, we see that this sum is exactly the de
composition of Pd into the eigenspaces of r 2 V 2 . Furthermore, 

dim Hd = dim Pd - dim P^-2 , 

and V2 : Pd —> Pd-2 is onto. This result may be stated as 

Pd=Hd® r2Pd-2 • 

We will now show that for each eigenspace, there is a unique orthogonally 
invariant inner product, up to a constant. Thus each of these subspaces form 
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irreducible representations of the orthogonal group 0{m + 1). We fix y, and 
consider v(x)TCv(y) to be a function of x — r alone. We then consider the 
following equation: 

r2V2v(x)TCv(y) = \v(x)TCv{y) . 

By substituting (1) into this equation, and applying elementary calculus, we 
obtain a first order difference equation, [2k{m + 2d — 2k — 1) — \]0k + (d — 
2k + 2){d-2k + l)/3k-i = 0. But A = 2i(m + 2d-2i-l), where 0 < i < [d/2]. 
Therefore, {3k = 0, for 0 < k < i. We therefore replace k with k — i, and 
conclude that for 0 < i < [d/2] and 1 < k < [d - 2i], 

2k[m+2(d-2i)-2k-l]/3k+i+[(d-2i)-2k+2][(d-2i)-2k+l]l3k+i-1 = 0 . (4) 

We see that v(x)TCv(y) is uniquely determined, up to a constant. We may 
now use (2) to see that the coefficients of certain Gegenbauer polynomials 
satisfy (4). Therefore, we can write 

v(x)TCv(y) = P{x-x)d'2(yy)dl2C^i{c0&B), 

where 8 is the angle between the vectors x and y in the Euclidean norm. 
Notice that these inner products are positive definite iff /3 > 0. We set /? = 1 
to make the definition of inner product unambiguous. 

4-5 Classification of positive definite inner products 

Any invariant inner product on Pj can be written as a weighted sum of the 
invariant inner products on the eigenspaces of r 2 V 2 derived above. The inner 
product on F j is positive definite iff all these weights are positive. We therefore 
use Gegenbauer polynomials to write any inner product as 

[d/2] 

v(x)TCv(y) = (x • x)d'2{y • y)d'2 £ O ^ J M (COS 6) . (5) 
i=0 

If all the (Xi are greater than zero, then the inner product is positive definite. 
To indicate this, we write 

fd/2] 

v(x)TCv(y) = (x • x)dl2(y • y)d'2 £ r2C^ (cos 0) . (6) 
i=0 

The {Vj} have a clear geometric interpretation. They are the lengths of the 
projections of v(x) onto the subspaces {r2tHd-2i}, where x is any unit vector 
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in R m + 1 . We have normalized the Gegenbauer polynomials in such a way 
that 

[d/2] [d/2] 

S > = £»-? 
k=0 i=0 

Setting n = d — 2i, j = k — i, and v = (m — l ) /2 in (2), gives 

_ 2rf-2fc-1(m-l)! * ( - l )* -<(d-2») ! r (V+d- i -A: ) 2 

Pfc r ( m ± i ) ( d _ 2 f c ) ! Z . r ( m + d - 2 t - l ) ( A - i ) ! ^ ' U 

where we define 

r ( g f ^ + d - i - f c ) 
r (r(m + d - 2» -1)) 

when m = 1, d = 2A; and k = i. Equivalently, we could set n = d — 2A;, 
j = i — k, and v — (m — l ) /2 in (3) to produce the inverse 

? _ r (a**) ( ^ + d - 2i) r(m - 1 + d - 2t) 
r i ~ ( m - l ) ! ( d - 2 t ) ! 

V ( r f~2 f c ) ! a ,«* 
Z . 2 d - 2 * - i ( i _ f c ) ! r ( 2 2 ± i + d - f c - i ) P / : ' W 

where we define 

m ~ + d - 2 z ) r ( m - l + d - 2 i ) = - , 

when d = 2i and m = 1. 
If we think of (2) and (3) as linear systems, (2) and (3) are the duals (or 

transposes) of (7) and (8), respectively. 

5 Invariant normal random polynomials 

We will classify all orthogonally invariant normal random homogeneous poly
nomials. We first observe that a positive definite inner product on a vector 
space corresponds to a central normal measure, 

pip) = K e x p ( - - <p,p>) . 

If we use the monomials {x1} as an basis, the matrix for < .,. > is the 
inverse of the covariance matrix of the coefficients. We will discuss these 
covariance matrices in detail in Section 8. Therefore, at least for central 
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random polynomials, we reduce the problem of invariant normal measures to 
the problem that we considered in the previous section. 

We first resolve the easier problem of unitarily invariant random polyno
mials. We then turn our attention to real invariant random polynomials. We 
produce a product formula that reduces our problem to the study of random 
hypersurfaces, and allows use to treat mixed invariant systems. We then re
duce the problem to the study of a single central invariant polynomial. For 
each such random polynomial, we calculate the expected volume of the cor
responding random projective hypersurface. This completes the calculation 
of the expected volume for all invariant normal random polynomials, and 
concludes this section. We conclude Part II with detailed discussions of two 
special cases: random symmetric matrices, and univariate polynomials. 

5.1 The complex analogue 

Over the complexes, there is, up to a constant, a unique unitarily invariant 
normal measure. 

Theorem 5.1 Assume a measure on a vector space of complex polynomial 
mappings has the following two properties: (1) the measure is unitarily in
variant and (2) the coefficients of the polynomial are a multivariate normal 
random variable. Then the coefficients must be independent, the real and 
imaginary part of each coefficient must be independent, and the variances of 
the coefficients are some constant times the binomial coefficients. 

Proof This follows from the classification of unitarily invariant inner prod
ucts. See Section 7.1. • 

This theorem resembles the characterization of these random polynomials 
given in Section 2.2, but it is quite different. In Section 2.2, independence was 
part of the assumption, and normality was part of the conclusion. But in 5.1, 
normality is assumed, and independence is deduced. For unitarily invariant 
complex random polynomials, independence of the coefficients is equivalent 
to normality of the coefficients. 

This characterization has an obvious, but interesting, consequence ob
served in 13. It is a central limit theorem for unitarily invariant random 
polynomials. 

Theorem 5.2 13 Assume we are given any unitarily invariant probability 
measure on the space of complex-valued polynomials of a fixed degree. Let 
{pi} be an independent sample from this space. Then the measures of the 
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random polynomial 

1 " 

converge weakly to a measure that is, up to a constant, the independent in
variant measure we are considering in this section. 

In 13 this result is stated for systems, using the two sided action of the unitary 
group, but the proof is similar. 

This is the central limit theorem for unitarily invariant random polyno
mials. It is precisely the central limit theorem that is the explanation of why 
normal distributions are observed in practice. Therefore, this theorem would 
suggest that the polynomials we discuss in this section would be observed, in 
nature, if some complicated unitarily invariant process was generating com
plex valued polynomials. Indeed, some physicists have began to show interest 
in these random polynomials 3. 

5.2 The expected volume of a real projective variety 

Definition 5.1 Consider any orthogonally invariant normal measure on a 
vector space of real valued, real polynomials of degree d, in the variables 
to,...,tm. Let /J, and a be the mean and standard deviation of the t$ coef
ficient, and let a' be the standard deviation of the t0~ t\ coefficient. Then we 
define 

as the expected geometric degree for that random polynomial. 

For the random polynomials in Section 2.2, , a = 1 and a' — \[d. For the 
random harmonic polynomials of Section 2.3, 

&__ ld(d + m - \) 

er V m 

Theorem 5.3 For any orthogonally invariant normal homogeneous random 
polynomial of degree d in m + 1 homogeneous variable, 

l - ( - l ) d &_ ld(d + m-lj 
2 - a ~ V m 

The right hand inequality becomes equality for harmonic polynomials. The left 
hand inequality is attained by concentrating the measure on {ard} if d is even, 
and on {linear polynomials x r^1^2} when d is odd. 
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By using Section 9, we can make D equal to any value in this range as a 
weighted average of the extreme cases. What is less obvious is that the har
monic polynomials are extremal. For us, this will be an immediate conse
quence of the calculation of D for all invariant measures. 
Theorem 5.4 Assume for a system of k (possibly different) independent or
thogonally invariant random polynomials in m variables (or m + 1 homoge
neous variables), we have defined D\,...,Dk as above. Then, the expected 
volume of the real projective variety (of codimension k) corresponding to this 
system will be product of these D{ multiplied by the volume of the real projec
tive space of codimension k: 

Proof 16 First consider a completely determined (possibly mixed) system. By 
invariance we need only understand what is happening in some e neighborhood 
Be of any zero of the random system, say ( 0 , . . . , 0) - where here we are using 
inhomogeneous coordinates. The system may be written 

m 

&i(bi + Hi) + ] P o-i'aijtj + 0(t2) , i = 1 , . . . , m , 
i= i 

and where the bj and Oy are independent standard normal random variables. 
For this linearized system, we must determine which values of the random 
vector (bi) and the random matrix (a^) yield systems with zeros in Be, as 
e -^ 0. Fix the matrix (aij) and consider and inverse (aij). We solve the 
linearized system to give 

m 

U = y " a i j ^ 7 ( - 6 j - fij) . 

We must compute 

Prob[(U) e Bt] = Prob[(bi) £ (m) - (^(a^B^j] . 

But clearly the measure of this (infinitesimal) ellipsoid is proportional to 

Having established the theorem for completely determined systems, orthog
onal invariance allows us to extended the result to underdetermined systems 
using classical integral geometry 22 . • 
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5.3 Non-central invariant normal random polynomials 

Fortunately, we will dispense with the non-central case quickly, and then focus 
on the central case. 
Theorem 5.5 The mean of any invariant random polynomial must be of the 
form [i(Y,x2)d/2 where fi is the mean of the t$ coefficient (as defined in the 
previous section). If d is odd, any invariant measure is central. 
Proof This is classical invariant theory. For proofs and discussion of such 
results, see 24 . • 
Thus any non central invariant random polynomial can be studied in terms 
of the central case. We need only adjust D by the factor 

e*p(-£j) 
in the calculations of expected volume and expected number of real zeros. 

5-4 Central invariant normal random polynomials 

We now calculate D for every central invariant normal random polynomial 
system. 
Theorem 5.6 For any invariant normal random polynomial, we may write 

[d/2] 

v(x)TCv(y) = J2Mx-x)k(yy)k(x-y)
d'2k . (9) 

k=0 

Then a2 = E L = O ' Pk and a'2 = Y}k=o(d ~ 2k)0k, and therefore 

D 
Z[dll](d-2k)Pk 

\ Eifflfc 
Proof By orthogonal invariance of the random polynomial, we know that 
any orthogonal matrix Q, v(Qx)TCv(Qy) = v(x)TCv(y). Then v(x)TCv(y) 
must be a polynomial in x • x, x • y, and y • y. This is classical invariant 
theory. For proofs and discussion of such results, see 24 . But v(x)TCv(y) is 
homogeneous in x and y separately, so it must be of the form (1). Since the 
matrix C is the covariance matrix of the coefficients of the polynomial, the 
value of a and a' may be deduced from (1). The value of D then follows from 
Definition 5.1 and Theorem 5.3. • 

Thus we have a [d/2] parameter family of central invariant normal mea
sures. For example, if we set /3Q = 1 and /?* = 0 for k > 1, we recover the 
random polynomials in Section 2.2. Another example was given in Section 
7.3 of7. 
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5.5 Classification of invariant normal measures 

It would seem that we are done. We have a list of all central invariant normal 
measures and have calculated D for each of them. But we are really miss
ing something. We do not know which values of /?j are admissible. If we let 
them be arbitrary, we can generate non positive definite metrics, which do not 
correspond to any measures at all. In some sense, the Pi are the wrong param
eters to use. That is why we will express vT(x)Cv(y) in terms of Gegenbauer 
polynomials. In Section 7.3 of T, we saw that for invariant normal random 
harmonic polynomials 

_ /d{d + m-l) 

m 

Theorem 5.7 For any central invariant measure, we may write 

[d/2] 

v(x)TCv(y) = ( z - z ) d / V 2 / ) d / 2 £ ^ ( & ( « > s 0 ) . 
i=0 

Then 

D = 
Y}^\d-2i){d-2i + m-l)rf 

Proof For Hd_2i we have, by Section 7.3 of 7, 

_ ' ( d - 2 i ) ( d - 2 t + m - l ) 
m 

We may now calculate the fik using (7), and then apply Theorem 5.6 to 
complete the proof. • 
We will give an alternate proof of this theorem in Section 9. 

From this theorem we can calculate the expected number of real zeros of 
any set of m independent orthogonally invariant normal random polynomials. 

6 Quadratic forms 

It will be instructive to reproduce all of the work in this section for the special 
case d = 2. Our problem reduces to a discussion of random real symmetric 
(m + 1) x (m + 1) matrices. The orthogonal group acts by conjugation 

Q{M) = Q-XMQ . 
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There is a three parameter family of orthogonally invariant random symmetric 
(m + 1) x (m + 1) matrices. The joint probability density for the elements of 
the matrix may be written in the form by 

p(M) = Cexp j - i [b0tr((M - ^I)2) + fc^M - /.J))2] 1 , 

where bo > 0 and bi > —bo/(m + l). Harmonic quadratic forms correspond to 
traceless matrices {bo/b\ —y 0). The other extremal case is when the measure 
is concentrated on scalar multiples of the identity matrix (&0/&1 - • —(m+1)). 
The case 61 = 0 has been studied extensively (see 4 5 and 1 9 ) . This is the only 
case for which the elements of the random matrix are independent. 

Formula (1) reduces to 

v{x)TCv{y) = /?„(*• 2/)2 + Pi{x-x){yy) . (10) 

Since C is the (m + l)(m + 2)/2 x (m + l)(m + 2)/2 covariance matrix of the 
coefficients of the quadratic form, it must be inverted, to express {&o,&i} in 
terms of {/?0, Pi}- If we define e = ( 1 , . . . , 1) € R m + 1 , 

(fhl + faTe)-1 = 1 / + - — - I ^ _ — e T e . 
A> m(m + i)A + A)] 

We deduce that 

h 1 - h ~h 

For d = 2 and v = (m — l) /2 , the renormalized Gegenbauer polynomials are 
For d = 2 and v = (m - l ) /2 , 

m m 

and the triangular systems (7) and (8) reduce to 

Therefore, we conclude that 

, m rn - mr? 
"0 = 7 , -.x 9 ; ° i = (m + l)r2 ' l ( m + l ) 2 r 2 r 2 ' 

where r2 —» 0 for traceless random matrices, where r2, -> 0 for measures 
concentrated on scalar multiples of the identity. A straightforward calculation 
shows that 

Var{Mii) = fa + ft = r2 + r? , 
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and 

t / I-Kir \ ^0 m + 1 2 

when i ^ j . 
An easy way to generate these random matrices is to start with a random 

nonsymmetric (m + 1) x (m + 1) matrix with independent standard normal 
coefficients, and then compute 

w m 
rT 2*r(M) M + M1 y—<-I 

m + 1 
+ (nz + fx)! , (11) 

m + 1 

where z is a standard normal random variable independent of M. 

6.1 The expected volume of random conies 

For random conies 

a2 = Var(Mu) = 0O + ft = r2 + r\ , 

and 

a'2 = Var(2A^-) = 2ft = ^ l) r2 , 

when i ^ j . Furthermore, we know that the mean of Mu = fi. We combine 
Theorem 3.6 with Theorem 3.7 to get 

2/?o 
D = \ n s - exP 

V A> + A 
V 2(00+0!)) 

Vm{r^+r2) F \ 2(r2 + r 2 ) , / ~ V m 

If the coefficients are independent this reduces to D = y/2 and for the traceless 
case this reduces to D = y/2(m + l ) /m . We then can apply Theorem 2.2 to 
calculate expected volumes of projective varieties. 
Example 6.1 If the coefficients are independent D = v 2 . For a random 
harmonic conic D = ^ /2 (m+ l ) /m. We then can apply Theorem 2.2 to 
calculate expected volumes of projective varieties. We thus recover the results 
of Section 2.2 and Section 2.3, for the case d — 2. 

Example 6.2 Consider an invariant normal random plane projective conic 
(m=2). The expected length of such a curve is TTD which is always less than 
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or equal to \ / 3 T - The random projective curve of expected length ^/3TT is given 
by 

where M is a 3 x 3 invariant normal traceless matrix. 

6.2 Wigner's semicircular law 

Although this is a digression from the subject of this chapter, we can hardly 
mention random matrices without mentioning their eigenvalues. Invariant 
random matrices with independent coefficients have been studied intensely. 
In particular, it is known that the marginal density of the eigenvalues, when 
divided by the square root of the size of the matrix, converges to a semi
circle as the size of the matrix tends to infinity. This is known as Wigner's 
semicircular law. We now compute the limit density for any central invari
ant random matrix. If /j ^ 0, the following picture is simply shifted the 
appropriate amount. Note that fi, r0 or n may vary with m. 
Theorem 6.1 Assume we have a central invariant normal random matrix. 
Assume limm-i<X1rl^/2rn/ro = C. If C = 0 the density of the eigenvalues 
divided by V2m converges to the unit semi-circle {(x,y)\x £ [—1,1], y = 
y/1 — x2}. If C = +oo the density of the eigenvalues divided by r\ converges 
to a standard normal distribution. Otherwise, the density of the eigenvalues 
divided by y2rn converges to a Fourier convolution of a unit semicircle and a 
normal density with variance C2: 

Proof We first observe that Wigner's law holds for traceless invariant matri
ces. We generate an invariant random matrix M with independent coefficients, 
and consider it's projection ir(M) onto the traceless matrices. Now consider 
the equation 

. 1 M = . 1 TT(M) + \ tr(M)I , 
y/2(m +1) V 2 ( m +1 ) (m+l)y/2(m + l) 

and let m -> oo. By the classical version of Wigner's law 19 we know that the 
eigenvalue density of the left hand side converge to unit semicircle. On the 
other hand, tr(M) is normally distributed with mean zero and variance m + 1 . 
Therefore the eigenvalue distribution for the last term of the sum converges 
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to a measure concentrated at zero. Therefore the first term of the sum must 
converge to a semicircle. 

We then decompose any invariant random matrix using (11). The eigen
values of the first term of (11), when divided by ro\/2(m + 1), converge to a 
unit semicircle. The eigenvalues of the second term of (11) when divided by 
r i , are (dependent) standard normals. The eigenvalues of the sum are con
volutions of the eigenvalues of each summand. Therefore, as m -4 oo, we are 
convolving a semicircle with a normal density. We need only pay attention to 
the ratio of ro ^/2{m + 1) to r i . 

Finally we observe that to make the statement of the proof shorter, we 
have replaced m + 1 with m. For large m this difference can be ignored. • 

Although there is no difference in the asymptotic density for the inde
pendent and traceless cases, for finite size the distributions are qualitatively 
different. See15 for examples. All of these eigenvalue densities can be obtained 
by convolving a normal density with the eigenvalue density for the traceless 
matrices. This convolution blurres the eigenvalue distribution. Therefore the 
traceless matrices yield the sharpest pictures. 

7 Univariate polynomials 

As a final special case, we reproduce the work in this section for univariate 
polynomials, that is we will assume m = 1. 

Using the substitution t = tan(0), we see that these random polynomials 
are actually special case of the random trigonometric sums studied in Section 
3.2.4., and Section 5.3 Case I Example 2, of 7 . However, for the random 
trigonometric sums we are concerned with, that is, we can say more. 

The renormalized Gegenbauer polynomials have reduced to the Cheby-
shev polynomials of the first kind, 

C°d_2i{t) = Td-2i(t) = cos[(d - 2i) arccos(t)] , 

and the eigenspaces of r2 V2 are given by 

r2iHd_2i = {rd sin(d - 2i)0, rd cos{d - 2i)d) , 

i = 0 , . . . , [d/2\. These are all two dimensional eigenspaces, unless d is even 
and i — d/2. Note that the number of real zeros is exactly d — 2i for any 
polynomial in Ha-2i-

Formula (7) reduces to 

0fc=2d-2fe-l£ 
i=0 

d — i — k 
k — i 
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where we define 

d-2i 
= 2 

d — i — k 

when d—2i and k = i. Similarly, (8) reduces to 

U - 2k 
rf=2 -5 

k=0 

2k 

i — k 
Pk , 

where we define 5 = d if d = 2i, and <5 = d — 1 otherwise. 
We see that Theorem 5.6 remains unchanged, 

D = 

and Theorem 5.7 reduces to 

N 
Eil/o1(^-2fc)^ 

exp 
/* 

2 E ! ^ ] A 

£> = 
\ 

,[d/2] 2-2 TZoiid-2i^r exp -
o V ^ / 2 ! r-2 

Note that £ i ^ ] A = E&aI»?-
The simplest non-trivial example is d = 2. This is just the case m = 1 of 

the previous subsection, but we will instead approach it as a generalization of 
Section 5.3 Case I Example 2 of 7 . 
Example 7.1 Let ao, a\, and 02 be independent standard normal random 
variables. Any orthogonally invariant normal random quadratic polynomial 
may be written 

a0rQ(t2 - 1) + ai2r0t + (a2rx + fi)(t2 + 1) . 

The conversion formulas (7) and (8) reduce to 

Po = 2r2
0 ; /J1 = -r2+r2 

and 

I00 
'0 - 0^0 , rt = -fa + /?! . 

We see that the expected number of real zeros is 

' ,2 2/?o 
exp(-

/* 2r0 exp(- A* 

P0+P1 ^ 2(p0 + Pi)' y/if+rl V 2(r2+r2) 
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Example 7.2 Any orthogonally invariant normal random cubic polynomial 
may be written 

a0r0{t3 - 3t) + airo{3t2 - 1) + a2r1t{t2 + 1) + a3n{t2 + 1) . 

The conversion formulas are 

Po = 4r2 ; fa = -3r0
2 + r\ 

and 

and the expected number of real zeros is 

/3fl) + ft kr2
Q + r\ 

V ft + ft V r o + ^ ' 

Part III — Central normal coefficients 

8 The Metric Potential 

Here we introduce definitions and notations that we will use throughout Part 
III. A more detailed discussion of these ideas may be found in 7. Consider a 
finite dimensional real vector space of differentiable functions, / : R m —• R, 
and give this vector space a central multivariate normal measure \i. We have 
an inner product on the dual space defined by 

/ • g = f f(t)g(t) . 
Jfi 

This induces an inner product on the primal space. If we use monomials 
as a basis, the matrix of this inner product is the covariance matrix of the 
coefficients of the random polynomial. Let v to be the dual of the evaluation 
mapping: v(t) • f = f(t). 
Definition 8.1 We define the metric potential of the random function to 
be 

$(x,y) - v(x)-v(y) =v(x)TCv(y) 

where C is the covariance matrix of the coefficients of the random polynomial. 
Example 8.1 Consider the random quadratic polynomials of Example 7.1. 

/ r g + r ? 0 -r*+rl\ (y*\ 
${x,y) = (x2 x 1) 0 Ar2 0 \ \ y . 

\r2+r2 0 -r2+rlj \ l j 
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This 3 x 3 matrix is the covariance matrix for the coefficients of the random 
,2 quadratic. From, this we see immediately that a = r% + r\ and a' = 4r$, and 

therefore the expected number of real zeros is 

2r0 
D = 

Example 8.2 Consider the random cubic polynomials of Example 7.2. 

( r2+r 0 -H+rl 
$(x,y) = (x3 x2 x 1) 

V 

0 9rg + r\ 0 
3rg + r\ 0 9r% + r\ 

0 -3rg + r\ 0 

0 \ 
-3r2 + r\ 

0 
r2

0+rj J 

h3\ 
y 

v iy 
This 4 x 4 matrix is the covariance matrix for the coefficients of the random 
cubic. From this we see immediately that a2 = rg + r2 and a' — 9rg + r\, 
and therefore the expected number of real zeros is 

D = 
!9r2 + r\ 

rZ+r2 
'o ^ ' i 

Example 8.3 . Consider a random polynomial with normal independent co
efficients. Assume the variance of the I — th coefficient is a2. Then 

®(x,y) = ^ajx'y1 . 

Definition 8.2 We define the metric of the random polynomial G(P) to be 
the pullback of the projective metric to the space of zeros, using v: 

^ ^ ( x , y ) \ y = x = t ] G(P) = 

Definition 8.3 For any random polynomial P, we define p{P) to be the den
sity of real zeros for a completely determined system of such random polyno
mials, and we define E{P) to be the expected number of real zeros of such a 
system. 
Therefore 

'm + V 
p(P) = 7T- y/det(G(P)) 

Definition 8.4 For any system of random homogeneous polynomials P, we 
define Vol(P) to be the expected volume of the real projective variety deter
mined by P. 
For a completely determined system, Vol(P) = E{P). 
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9 Direct Sums 

Let P be the direct sum of central normal random polynomials Pi : R m -¥ R. 
Let Ti be the lengths of the evaluation mappings Vi, and r be the length of 
the evaluation mapping v. 

n(t) = ^Vi(t)TCiVi(t) , r(t) = ^Jv(t)TCv(t) , 

for all t G R m . Our results regarding direct sums follow from simple geomet
ric considerations. In particular, we compare the projections of the tangent 
spaces of Vi onto the unit sphere in Pi and the unit sphere in P. For brevity 
we will omit proofs. 

Theorem 9.1 For any such random polynomials, 

Theorem 9.2 Let Pi{t) be m independent central normal random polynomi
als in m variables with proportional metrics ctiG(t). We may therefore write 
the zero densities as a™ p(t), and expected number of real roots as a™1' E. 
Then the direct sum has metric 

curl 
G(t) 

Example 9.1 Consider the eigenspaces r2lHd-2i ofr2V2 introduced in Sec
tion 4-4- As pointed out in Section 4-5, we defined ri so that \\v(t)\\ = ri\\t\\. 
Also, by Section 7.3 of7, the expected number of real zeros for a system of m 
such random polynomials is 

{d-2i)(d-2i + m-l)^m/2 

m 
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Therefore we may apply Theorem 9.2 with 

(d~2i)(d-2i + m- 1) 
cti = , 

m 
and E = 1, to see that Theorem 5.7 may be considered as a special case of 
direct sums of random polynomials. 

If we restrict our attention to univariate polynomials, we can get sharper 
estimates. 
Theorem 9.3 Let P be the direct sum of univariate central normal random 
polynomials Pi. Then 

V i i 

Since £ ^ r2 = r2, Yl>i{r'i)2 ̂  ( r ' )2- IfVi ^ie r* are constant, then 

p(p) = w t ^ w ) and £(p) ^ E jEi(Pi)-
V i i 

10 Tensor products 

We now consider the tensor product of random polynomials. Much of this 
section is motivate by the proof of Main Theorem 2 in 21. Be aware that we 
must distinguish beween the tensor product of a space with itself, and the 
tensor product of copies of the same space. For example, the tensor product 
of a random univariate polynomial of degree d with itself is a univariate poly
nomial of degree 2d. But the tensor product of two univariate polynomials 
denned on different domains (this is, with distinct variables) is a bivariate 
polynomials. We will consider both constructions in this section. Our def
inition of tensor product of random polynomials is essentially the standard 
definition of the tensor product of Hilbert spaces. 

Definition 10.1 Let us consider central normal random polynomials Pi de
fined on (possibly distinct) sets of mi variables. We define the tensor product 
P of the Pi to be a central normal random polynomial defined on the tensor 
product of the domains for the Pi, We define the covariance of the coefficients 
of the tensor product to be equal to the tensor product of the corresponding 
covariance matrices. If there are overlaps in the variables of any of the Pi, 
these tensor products must by symmetrized over the common variables. 
Actually, there is no need to symmetrize. We can as easily work with non-
commutative polynomials, defining zeros in the usual way. This is, however, a 
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bit unorthodox, so we have chosen to symmetrize, so that the tensor product 
of spaces of (commutative) polynomials are (commutative) polynomials. If 
the variables of Pi and Pj are distinct for all i ^ j , this issue does not arise, 
and the support of P is simply the Cartesian product of the support of Pj. 
Theorem 10.1 For each i let pi be the density of the real zeros of a system 
ofrrii independent central normal random polynomials Pi, with corresponding 
metrics Gi- Consider the tensor product P of the random polynomials Pi, 
with corresponding metric potential $(x,y) and metric G. Then 

$(x,y) = J J $«(£«, 2/j) and G = ^ G j . 
i i 

Proof Consider the matrix defined in Theorem 7.1 of 7: 

d2 

G(t) = to^0°s*(*.»)>U=« (12) 

where $(x,y) = v(x)TCv(y). Here G{t) is the pullback of the metric from 
the space of polynomials to the space of zeros, and ${x,y) could be called 
the metric potential. Let Pi be random polynomials, and for each we have 
potentials $i(xi,yi) and corresponding metrics Gi. Then the potential of the 
tensor product is given by 

i 

and therefore 

G(t) = £ G i ( t i ) . D 
i 

We would like to replace this theorem with one about the density of real 
zeros. Unfortunately, the determinant of a sum of matrices is not, in general, 
well behaved. In the following two subsections, we consider two special cases. 
First we assume the factors are defined on different domains, that is, we 
assume each random polynomial has distinct variables. Later we assume the 
factors are defined on the same domain, that is, we assume the variables are 
identical. 

10.1 Distinct variables 

Theorem 10.2 For each i let Ei be the expected number of real zeros of a 
system of mi independent identically distributed central normal random poly
nomials Pi. Assume that that sets of variables for Pi and Pj are disjoint for 
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i ^ j . Then the density of the real zeros of the tensor product is 

and the expected number of the real zeros is given by 

where m is the sum of the rrii 

Proof Because the variables are distinct, the sum G — Yli Gi is direct, that 
is, the Gi form a block decomposition of G. So det(G) = J^de^Gi ) , and 
therefore p(t) = YliPi(t)- Since each Pi has distinct variable, the integral of 
p(t), decomposes into a product of separate integrals. Each integral repre
sents the expected number of zeros of Pi, at least up to some constant. The 
correct normalization constant is calculated by comparing the normalization 
constants found in Theorem 7.1 of 7 when the number of variables is nii and 
m. • 
Example 10.1 Let each Pi be univariate random polynomials with indepen
dent standard normal coefficients. The above theorem then gives the results 
stated in Section 2.1. 
Example 10.2 Let Pi be the random polynomials defined in Section 2.2. 
Then the above theorem yields the Rojas polynomials discussed in Section 2-4-

10.2 Identical variables 

Theorem 10.3 For each i let pi and Ei be the density and expected number 
of real zeros of a system of m independent identically distributed central nor
mal random polynomials from Pi, with metrics Gi, densities pi, and expected 
number of real zeros Ei. Assume that for all i the sets of m variables of Pi 
are the same. Then the density p of a system of m independent polynomials 
from the tensor product of the Pi satisfies 

Pit) > /x>?w. 

Proof The proof follows from the fact that, for any symmetric positive 
definite matrices Gi, 

det(J]Gi)>5]det(Gi) . D 
i i 
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Notice that we cannot deduce from this theorem that E > y/^~Ef , even if 
we assume that the pi(t) are all proportional. However, if we make a much 
stronger assumption, that the G, are proportional, everything becomes trivial. 

Theorem 10.4 Let Pi(t) be m independent central normal random polyno
mials in m variables with metrics cti(t)G(t) and densities a™ {t)p(t). Then 
the density of the real zeros of a system of m independent polynomials from 
the tensor product of the Pi is 

( \ m/2 

If furthermore the ai do not depend on t, then if we write expected number of 
real zeros for Pi as a™ E, and the expected number of real zeros is equal to 

( s m/2 

?"') E 

Corollary 10.1 Consider the (symmetric) tensor product of n independent 
identically distributed central normal random polynomials Pi, each in m + 1 
homogeneous variables. Assume that the density and expected number of real 
zeros for a system of m such Pi is given by p and E respectively. Then the 
density and expected number of zeros for a system of m independent elements 
of the tensor product is equal to nm'2p(t) and nm>2E respectively. 
Example 10.3 Consider the symmetric product of n linear polynomials in 
m + 1 homogeneous variables. Assume the coefficients of the linear polynomial 
are independent standard normal coefficients. According to the theorem, the 
expected number of zeros for a system ofn such polynomials is n m / 2 . But these 
tensor products are exactly the random polynomials considered in Section 2.2. 
We therefore recover the square root result of14. 

For random polynomials with independent coefficients, we have the fol
lowing immediate consequence of Theorem 10.1, and Example 8.3. 
Theorem 10.5 Let Pi be random polynomial with normal independent coef
ficients, and assume the variance of the I — th coefficient of Pi is c*jj. Let 
P be the symmetric tensor product of the Pi, and assume the variance of the 
I — th coefficient of P is aj. Then 

z^7 = nz^7-
/ i I 

Example 10.4 Consider a univariate random polynomials of even degree d 
with independent coefficients. Assume that the variance of the i-th coefficient 
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is either i or d — i, whichever is less. Let Ed be the expected number of real 
zeros. This random polynomial is the two-fold tensor product of the random 
polynomial of degree d/2 with independent standard normal coefficients. By 
the asymptotic result in Section 2.1, we see that as d —> oo, 

Ed ~ log d . 

Example 10.5 Consider univariate random polynomials of even degrees d = 
0,2 ,4 ,6 ,8 , . . . , with independent coefficients. Assume that the variances of the 
coefficients of these random polynomials form the trinomial triangle 25 : 

1 
1 1 1 

1 2 3 2 1 
1 3 6 7 6 3 1 

1 4 10 16 19 16 10 4 1 

Each number in this triangle is the sum of the three closest numbers in the 
previous row. Let Ed be the expected number of real zeros. Than 

Ed = yJlE2. 
Note that 

n Jo 
- Vt^TW+l. 

E* = - ' * + e + i dt 

or approximately 1.297023574-
Corollary 10.2 Consider the (symmetric) tensor product of m independent 
orthogonally central invariant normal random polynomials Pi, each in m + 1 
homogeneous variables. Assume that the density and expected number of real 
zeros for a system of m such Pi is given by p and Ei respectively. Then the 
density and expected number of zeros for a system of m independent elements 
of the tensor product is equal to 

and 

respectively. 
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Notice that the symmetric tensor product of orthogonally central invariant 
random polynomials is orthogonally invariant. This is not true if the variables 
are distinct. For example, the Rojas polynomials discussed in Section 2.4, and 
in the previous subsection, are not orthogonally invariant. However, Rojas 
polynomials are indeed invariant with respect to a similarly defined action of 
a product of orthogonal groups. 
Example 10.6 Consider a simple nontrivial case of Corollary 10.2, the prod
uct of a linear and a (central) quadratic. Following Example 7.1, we may write 
this tensor product as 

a0r0t{t2 - 1) + ai2r0 i2 + a^ntif + \) + a3r0(t
2 - 1) + a42r0t + ahn(t2 + 1) , 

where the di are independent standard normal random variables. This may be 
rewritten as 

(aoro+a2r1)t
3+(ai2r0+a3ro+a5ri)t2+(-aoro+a2ri+ai2r0)t+(-a3r0+a5ri) . 

Let 

F = 
d(a0r0 + o 2 r i ,a i2r 0 + a3r0 + a 5r i , - a 0 r 0 + a2n + a42r0, -a3r0 + 05^1) 

Since 

F = 

d(a0,ai,a2,a3,a4,a5) 

/ rQ 0 ^ 0 0 0 \ 
0 2r0 0 r0 0 n 

-7-0 0 n 0 2r0 0 
\ 0 0 0 -r0 0 nj 

we see that 

FF1 = 

( rl+r\ 0 
0 5rl + r\ 

-r\ + r\ 

-rl + r? 0 5rR + r? 
-rl + r? 

V 0 -rl + r\ rl+r2 

and therefore 

$(x,i/) = (x3 x2 x 1) 

( r2+r2 0 - r § + r\ 
0 hr% +r\ 0 

-rl + r\ 0 hr\ + r\ 
\ 0 -rfi + ri 

0 
~r2o + r\ 

0 
rl+r2 J 

fy3\ 
y2 

y 
\ 1 y 

From this we see immediately that 0 — rl + r\ and a' = 5r0 + rf, and 
therefore the expected number of real zeros is 

D = 
!5r2+r2 

rl+r2 
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Combining this with Example 7.1, we confirm Corollary 10.2 for this particular 
case: 

!5r%+r2 

rl 
1 2 + / *« 

If we replace {r^,r2) with (2rg, — r$ + r2), we recover Example 8.2, with the 
added restriction that r\ > r2,. 
Theorem 10.6 Let pi and Ei be densities of zeros for central univariate nor
mal random polynomials, and let p be the density of zeros of their tensor 
product. Then 

pit) = Jj2pm • 

If the pi are proportional, we may integrate to give 

s-fi*. 
Proof This is just the univariate version of Theorem 10.4, along with the 
observation that all 1 x 1 matrices are proportional. • 
Example 10.7 Let Pd be the random polynomial a + bxd, where a and b are 
independent standard normal random variables. It may be seen in a number 
of ways that the density of real zeros is 

Pd{t) = *(1 + t " ) " 

Note that the expected number of real zeros is one for all d. Since 

k - l 2 f c - l 

na+z2i) = E * \ 
i=0 i=0 

we see that the univariate random polynomial discussed in Section 2.1 is, 
when the degree n = 2* — 1, a tensor product of k — 1 random polynomials 
with different zero densities. Applying Theorem 10.6, we recover the density 
of zeros originally derived by Kac 1 2 : 

(fn+2 _ 1 ) 2 _ ( n + 1)2 i2n ( i2 _ 1 ) 2 

p\t) = 
1T2(t2 - l)(t2n+2 - 1) 

= 2^.7 r2n . *2*+iy2 = 2^P2'(*) -
fc-1 2 2 i i 2 i + 1 - 2 — l 

^ TT2(I + t2i+y 
t=0 V ; i=0 
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11 Compositions 

Given random univariate polynomials f(t) and g{t), we could try to determine 
the expected number of real zeros of f°g{t). Unfortunately, we cannot express 
this in terms of the expected number of real zeros of f(t) and g(t). Consider, 
for example, g(t) = a(t2 + c2), where a is a standard normal random variable, 
and c is a constant. Instead, we will consider polynomial compositions that are 
homogeneous in nature. In Example 11.1 we replace f(t) with a multivariate 
homogeneous function, and in Theorem 11.2 we replace g(t) with a rational 
function. 

Theorem 11.1 Let Pij : R m -»• R, i = 0 , . . . , A:, j = 1 , . . . , m, be(k + l)xm 
i.i.d. central normal random polynomials, and let Q : Rk+1 —> R m be any 
homogeneous random system, k > m. Let E(P) be the expected number of 
real roots of any one of the k + 1 systems Pn = ... = Pim = 0. Let E(Q o P) 
be the expected number of real roots of the system Q(Poi,... ,Pki) = 0. Let 
Vol(Q) be the expected volume of {t : Q(t) = 0} D {t : | | i | | = 1}. Then 

E{QoP) = ^ - ^ r ( * ^ ± ± ) E(P)Vol(Q). 

Proof Fix j and consider the random variety p : R™ -> Rfc+1, defined to be 
the image of any one of the random vectors (Pij), i = 0 , . . . , k. Note that this 
random variety is invariant under the left action of the orthogonal group on 
Rfc+1. By Lemma 3.1, the expected volume of the projection of this variety 
onto the unit sphere in Rfc+1 is 

i + i r(^)E(P,. 

We then apply formula (11) from Section 4.5 of 7, with M = {t : Q(t) = 
0} PI {t : \\t\\ = 1}, and where ./V is the projection of p onto the unit sphere 
inR*+1. • 
Note that Q need not be normal. In fact Q can be a measure concentrated on 
a single polynomial. In otherwords, we may assume, as a special case, that Q 
is a fixed (non-random) polynomial. 

Example 11.1 (Theorem 6.1 of7) Let A be a p x p random matrix polyno
mial. Assume the p2 elements of A are i.i.d. central normal random polyno
mials. Let ap denote the expected number of real solutions, in some interval 
[a,b] o /R , of the equation det(^4) = 0. Then 

Q p / Q l = ^ r(p/2) • 
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To prove this let Q : R p —> R be the determinant. The volume of {t : Q{i) = 
0} n {t : \\t\\ = 1} is known 6 to be 

27rP2/2r((p + l) /2) 
r(p/2)r((p2 - 1 ) / 2 ) • 

We then apply Theorem 11.1 with k — p2 — 1, and observe that a\ = .E(P) 
a n d a p = E(Q o P). D 

We now apply Theorem 11.1 to calculate the expected number of real 
zeros of a composition of univariate random rational functions. 
Theorem 11.2 Let R(t) = P\{t)/P2{t) be a random rational function, where 
Pi(t) and P2(i) are i.i.d. central normal random polynomials of the same 
degree. Let S(t) be any random rational function, independent of R(t). Let 
ER, ES and EsoR be the expected number of real zeros for R(t), S(t) and 
S(R(t)), respectively. Then 

EsoR = ESER . 

Proof Define Q(x,y) = S(x/y). Clearly Q(P1(t),P2{t)) = 
Q(-Pi(t), -P 2 ( t ) ) = S(R(t)). We then apply Theorem 11.1 with m = k = 1, 
and P = Pi . Note that Vol(Q) = 2E{S). D 
Note that since Q{i) may be any random rational function. For example, we 
could take Q(t) to be fixed (concentrated at a point), or we could assume Q(t) 
is a univariate random polynomial. 
Example 11.2 Let Pi(t), i = 0, . . .2k + 1 be independent univariate central 
normal random polynomials from Section 2.2, and assume that the degree of 
P2i andP<zi+\ isdi. Define random rational functions Ri(t) = P2i(t)/P2i+i(t), 
i — 0,...,k. Then the expected number of real zeros of RQ ° . . . o R). is equal to 

= 0 d{. In Section 3.1.2 of7 we used the equation p2i(i) — *P2i+i(i) — 0 to 
show that the expected number of fixed points of the rational mapping Ri (t) : 
R n oo -» R f~l oo is exactly \/di + 1. 
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In this paper, we discuss for some compact systems the existence of distributionally 
scrambled set. It is proved that (1) There exists a distributionally chaotic subshift 
of the one-sided full two shift which is strictly ergodic; (2) If a continuous self-
map of a compact metric space has a regular shift invariant set, then it has an 
uncountable distributionally scrambled set in which each point is almost periodic; 
(3) If a continuous self-map of an interval has positive topological entropy, then 
it has an uncountable distributionally scrambled set in which each point is almost 
periodic. 

1 Introduction 

Throughout this paper, X will denote a compact metric space with metric d; 
I is the closed interval [0, 1]. 

Let / : X —> X be a continuous map. For any integer n > 0, we use / " 
to denote the nth iterate. 

The notion of distributional chaos first occurred in ref. [9] (where, how
ever, "distributional chaos" is called "strong chaos"), which is characterized 
by distribution function of distances between trajectories of two points, The 
concrete version is as follows. 

For any x,y 6 X, any real t and any positive integer n, let 

Mf,x,y,t) = #{i ; d(f(x)Ji(y)) <t,0<i<n}, 

where #{•} denotes the cardinality. Let 

F(f,x,V,t) = liminf - £ „ ( / , x, y,t) 
n—»cx> n 

and let 

F*(f,x,y,t) = l im s u p - £ „ ( / , £ , y, t). 

http://UaogfQpublic.cc.jl.cn
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Call D C X a distributionally scrambled set of / or, simply, a DS 
scrambled set, if for any distinct points x,y £ D, 

(i) F(f,x,y,t) = 0 for some t > 0, and 
(ii) F*(/,aM/,t) = l f o r a l l f > 0 . 

/ is said to be distributionally chaotic or, simply, DS chaotic, if it 
has a DS scrambled set which is uncountable. 

For a continuous map / : / — > / , Schweizer and Smitalt9' have proven: 
(CI) If / has zero topological entropy, then any pair of points can not 

form a DS scrambled set and therefore / is not DS chaotic; 
(C2) If / has positive topological entropy, then there exists an uncountable 

DS scrambled set contained in an w-limit set of some point and therefore / is 
DS chaotic. 

One may pose the following questions: 
(Ql) Is (CI) still true for a continuous map of any compact metric space 

XI 
(Q2) Is there an uncountable DS scrambled set in which each member is 

an almost periodic point of / under the hypothesis of (C2) ? 

A negative answer for (Ql) has been given in [5], where a minimal DS 
chaotic subshift having zero topological entropy was formed. 

In the present paper, we first derive in Theorem A a stronger formulation 
of a result in [5]. And then we discuss in Theorem B the existence of DS 
scrambled set and prove in Theorem C that / is DS chaotic iff so is / " . 
Finally, a positive answer to (Q2) is given in Theorem D. 

The main results are stated as follows. 

Theorem A. There exists a DS chaotic subshift of the one-sided full two shift 
which is strictly ergodic and has zero topological entropy. 

Theorem B. Let / : X —• X be continuous. If / has a regular shift invariant 
set (see §4 for the definition), then it has an uncountable DS scrambled set in 
which each point is almost periodic and therefore / is DS chaotic. 

Theorem C. Let / : X -4 X be a continuous map and n > 0 an integer. 
Then / is DS chaotic iff so is / " . 
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Theorem D. Let / : I —> I be continuous. If / has positive topological 
entropy, then it has an uncountable DS scrambled set in which each point is 
almost periodic. 

The proof of Theorem A will be given in §3, the proof of Theorem B in 
§4, and the proofs of Theorem C and D in §5. Here we use an immediate 
consequence of Theorem D and some results in [9] to end this section. 

Corollary E. Let / : J —> I be continuous. Then the following are equivalent. 
(1) / has positive topological entropy. 
(2) / has an uncountable DS scrambled set in which each point is almost 

periodic. 
(3) / has an uncountable DS scrambled set in which each member is an 

w-limit point of / . 
(4) / has a DS scrambled set containing two points. 

Remark. In Corollary E, (1)=>(3) and (4)=*(1) are the results in [9]; (2)=>(3) 
holds because each almost periodic point is an w-limit one (see (2.1)); (3)=>(4) 
is obvious; However, (1)=>(2) is new. Many authors are interested in the 
scrambled set in the sense of Li and Yorke (see [7] or [2] for the definition). 
Since any DS scrambled set must be scrambled, some results in [2], [6], [8] 
and [11] may be also deduced directly from our Theorem D. 

2 Basic definitions and preparations 

Let / : X —¥ X be a continuous map. 
Let x £ X. y £ X is said to be an w-limit point of x, if the sequence 

f(x),f2(x),---, has a subsequence converging to y. The set of w-limit points 
of x is denoted by u(x,f). Each point in the set lixexoj(x,f) is called an 
w-limit point of / . 

x £ X is called almost periodic for / , if for any e > 0, one can find 
K > 0 such that for any integer q > 0, there is an integer r with q <r < q + K 
satisfying d(fr(x),x) < e. Denote by A(f) the set of all almost periodic points 
of / . Obviously, 

A(f)C (J <"(*>/)• (2-1) 
x£X 

Y C X is said to be a minimal set of / , if for any x eY, w(x, / ) = Y. 

Lemma 2.1. For any x £ X and any N > 0, the following are equivalent. 
(l)xeA(f). 



192 

(2) x € A(fN). 
(3) x € ui(x, / ) and w(a;, / ) is a minimal set of / . 

For a proof see [3] and [4]. 

Let B denote the cr-algebra of Borel sets of X. Call a probability measure 
H on (X, B) invariant under / , if p.(f~1(B)) = n(B) for any B £ B. The set 
of all the invariant measure of / will be denoted by M(X,f). fi G M(X,f) 
is said to be ergodic if for B £ B, f_1(B) = B implies n{B) = 0 or 1. If ^ 
is the only member of M(X,f), then it must be ergodic([10]). In this case, 
we call / uniquely ergodic. A minimal and uniquely ergodic map is simply 
said to be strictly ergodic. 

Lemma 2.2. Let X,B, M(X,f) be defined as above. The following are 
equivalent. 

n - l 
(1) There exists \i € M(X,f) such that for all x € X, ^ £) ^f'(x) ~~> Mi 

where Sy(B) is 1 if y £ B and 0 otherwise for any B £ B. 
(2) There exists p, € M(X, f) such that for all complex-valued continuous 

function g on X and all x € X, 

nH J 

(3) / is uniquely ergodic. 

For a proof see [10]. 

Let S = {0,1}, S = {x — X\X2---\ Xi € S, i = 1,2, • • • } . Define p 
S x S -> i? as follows: for any x, y £ E, if a; = a;ia;2 ••• ,y = 2/12/2 • • •, then 

/ x f 0, if x = y 
"(*>*) = { l / 2 * , i f a r ^ j y and k = min {n > 1; x n ^ j/n} — 1-

It is not difficult to check that p is a metric on £.(£, p) is compact and called 
the one-sided symbolic space(with two symbols). 

Define a : S -> E by 

£T(:E) = ^2^3 • • • for any x — X\X2 • • • € E. 

a is continuous and called the one-sided full two shift or, simply, the shift 
on E. If Y C E is closed and a(Y) C Y, then a\y : Y -> Y is called a 
subshift of cr. 
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Call A a tuple, if it is a finite arrangement of the elements in S. If 
A — a\ • • • am, where a; G S, 1 < i < m, then the length of A is said to be m, 
denoted by \A\ = m. Let B = b\ • • • bn be another tuple. Denote 

AB = ai • • -ambi • • -bn. 

Then AB is also a tuple. We say B occurs in A, denoted by B -< A, if there 
is an i > 0 such that 

bj = a,i+j for each j = 1,2, • • •, n. (2.2) 

The number of i satisfying (2.2) is called the occurrence number of B in 
A, denoted by LB {A). 

For any tuple B = b\ • • • bn, denote 

[B] — {x = Xix2 • - • £ E; Xi = bi,l <i < n}, (2.3) 

which will be called a cylinder generated by B. 
The following Lemmas 2.3 and 2.4 may be simply deduced from the defi

nition. 

Lemma 2.3. For any two tuples A and B,LB(A) < \A\. 

Lemma 2.4. If B, P\ • • • Pn are all tuples, then 
n n 

J2LB(Pi) < LB(Pi ...Pn)< ^2LB(Pi) + (n- 1)\B\. 

3 Proof of theorem A 

In this section we shall use the subshift formed in [5] to prove Theorem A. 
For this we first restate, for completeness, the construction of the subshift as 
follows: 

For any tuple A = a\ •• • an , we denote A = 5i • • • a„, and call it the 
inverse of A, where 

0, aj = 1, , . .. 
' _ ' for 1 = 1,2,...,n. 

J-, tij — u, 

Take a tuple, denoted by Ai. Let A2 be an arrangement of Ai and A\, 
say Ai — A\A\ (or A\A{). Define inductively the tuples Ai,Az,---, such 
that for any n > 2, An is exactly a finite arrangement of all the tuples of the 
set 

a-i = < 

Vn-i = {J1J2 • • • Jn-i\ J i e { ^ , A i } , l < t < n - l } . (3.1) 
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Denote a = A\Ai • • • and let Y — w(a, a). Then a\y : Y —> Y is the subshift. 

Theorem A will be completed by proving the following three propositions: 

Proposition 3.1. a\y is minimal and DS chaotic. 

Proposition 3.2. a\y has zero topological entropy. 

Proposition 3.3. a\y is uniquely ergodic. 
A proof of the first proposition will be given in the Appendix. For a 

proof of the second proposition see [5]. And here we only prove the third 
proposition. To do this we first give several lemmas. 

Lemma 3 .1 . For any n > 2,\An\ = \~An\ = 2n-1\A1A2 • • • A„_i|. 

L e m m a 3.2. For any n > 1, a = A\Ai • • • is an infinite arrangement of tuples 
in Vn, where Vn is defined as in (3.1). 

These two lemmas may be simply deduced from the definitions, here the 
proofs are omitted. 

Lemma 3.3. If B is any given tuple, then when n —> oo, the sequence 
LB(Jn)/\Jn\ converges to a real number uniformly for J„ € {An,An}. 

Proof: For a given tuple B, we put 

In = Yl LB(P), rn = -J-r. 
P € P „ _ , ' n | 

It is easy to check from the definition that 0 < rn < 1 for any n > 1. Note 
that Q G Vn iff there exists P € Vn-i such that Q — PAn or PAn. By using 
Lemma 2.4 repeatedly, we get 

qn+i = Yl LB{Q) 
Qevn 

= Y LB(PAn)+ J2 LB{PAU) 

>2 J2 (LB(P)+q„) 
PEVn-l 

= 2(2n~1 qn + qn) 

= (2n + 2)qn. 
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On the other hand, by Lemma 3.1, 

\An+1\ = 2n\AxA2...An\ 

= 2" |A 1--- .4 n_ 1 | + 2"|A„| 

= 2 - 2 " - V 1 - - - A „ _ 1 | + 2 " K | 

= 2\An\ + 2n\An\ 

= {2n + 2)\An\. 

Thus for each n > 1, 

qn+i (2" + 2)g„ gn 
Tn+l | A „ + 1 | - ( 2 " + 2 ) K | \An\

 Tn-

So when n —>• oo, the sequence {rn} admits a limit, denoted by ds- We will 
prove 

lim ^ - = dB 

uniformly for Jn € {An, An}. For given e > 0, there is an N > 0 such that for 
any n > N, 

e ( 2 " - x - l ) l i ? | e 
| r " _ d B | < 2 ' | X | K2-

The later can hold because \Jn\ = 2n~1\Ai - - - ^4„_i | and |-B|/|Ai • • -.A„_i| -4 
0 as n —>• oo. By Lemma 2.4, 

< i s ( 4 ) 
< £ L B (P ) + ( 2 " - 1 - l ) | S | 

-Pe-p„-i 

So 

Moreover, 

= g„ + ( 2 " - 1 - l ) | 5 | . 

0 < L B ( J „ ) - g „ < ( 2 " - 1 - l ) | 5 | . 

LB(JTI) 

\Jn\ 
< 

(2"~i - l ) !^ ! 
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It follows tha t for n > N, 

LB{JTI) 

\Jn\ 
d,B < 

< 

LB(Jn) 
-rr, 

| " 7 1 

( 2 " - 1 - 1)[5] e 

\Jn\ 2 

+ \rn -dB\ 

+ 

e e 
< 2 + 2 

= e. 

The lemma is shown. 

L e m m a 3 .4 . When n -> o o , L s ( J i J2 • • • J n ) / " i n ->• d,B uniformly for Jj € 
{Aj ,Aj}, i = 1,2, •••, where ds = lim„^.oo LB(Jn)/\Jn\ as shown in Lemma 
3.3, and mn =• \A\ A2 ... An\. 

Proof: Since, by Lemma 2.4, 

LB{J\ • • • Jn-l) + LB{JTI) 

< Ls{Jl • • • Jn) 

< LB(Jl • • • Jn-l) + LB(Jn) + \B\, 

we have 

Ls(Jl • • • Jn-l) + LB(JTI) < LB(JI •• • Jn) 

rrir. mr, 

< 
LB(Jl • • • Jn-l) + LB(Jn) + \B\ 

mn 

By Lemma 2.3, 

(3.2) 

LB(JI • • -Jn-i) < mn-i _ 

~ mn-i ~ m n _ i 

and for n —> 00, mn —> 00 and mn-i/mn —> 0, we have 

LB(JI • • • Jn-i) + LB(JU) 

mn 

LB{JI • • • J n - i } LB{JU) 

mr, TTlr, 
(3.3) 
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LB(Ji • • • Jn-i) mn-i LB{Jn) , 
= 1——— > aB 

m „ _ i m „ m „ 

uniformly for J; £ {Ai, Ai},i = 1,2, • • •. Moreover, 

LB{J\ • • • Jn-l) + LB(JTI) + \B\ 

mri 

= LB(Jx---Jn-i) + LB(Jn) + \3.^dB (3.4) 
mn mn 

uniformly for J, € {Ai, Ai}, i = 1,2, • • •. 
From (3.2)-(3.4), we see immediately that the conclusion follows. 

Proof of proposition 3.3. For any tuple B = bi • • • bn, denote [B] = [J5]nY, 
where [B] is as in (2.3). Then all such [B] form a subalgebra of subsets of Y, 
which generates the cr-algebra B(Y). Write a — A\A2 • • - as a = a\a2 • • -, ai € 
{0,1}. Define p : B(Y) -¥ R by 

fj,([B])= lim #{i < m„; a* •••a i + iB i_i = B}, 
n->oo m n 

where m„ = |^4iA2 • • • An\ is as in Lemma 3.4. By Lemma 3.4, /t([B]) — dB. 
In other words, 

.. mn—l 

lim V 8irHa)=neM(Y,<r\Y) «->oo rnn *—' 
i=0 

(see [10]). To show the proposition, by Lemma 2.2, we have to prove that for 
any tuple B, 

lim X g ( Q ; V ? I + J v ) = „([*]) (3-5) 
N->oo JV + 1 

uniformly in i. 
Let N 3> n. By Lemma 3.2, we may decompose 

di---ai+N - KPniPn2---PniQ, (3.6) 

where K, Q are tuples with length < mn and Pnj £ Vn for each j" = 1,2, • • •, /. 
It follows that iV + 1 = |if | + \Q\ + I • mn. By Lemma 2.4, we get 

i 

^ L B ( P „ J . ) <LB(ai---ai+N) (3.7) 
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El <£ 
rnn 6 

LB{Pn) *[*]) < 3 -

< LB{K) + LB{Q) + ̂ 2LB(Pn.) + (l + 1)\B\. 

For any given e > 0, we first take an n large enough, such that 

and for all Pn £ Vn, 

We then take N0 » n, such that for N > N0, 

2(p([B]) + 1) e l(N) + 1 
Z(JV) 3 ' I(JV) ' 

where l(N) = Hs as in (3.6) (Note that for given n, Z(iV) -> oo as N -> oo). 
Since, by Lemma 2.3, LB(K) < \K\ < mn,LB(Q) < \Q\ < mn, it follows 

from (3.7) that for any N > N0 and all i > 1, 

(l/(iV + l))LB(ai • • • ai+N) - //([#]) 

+ (l/(iV + l))(2m„ + (Z + l ) |5 | < {mN + l))ZLB{Pnj)-n([B]) 

ZLB(Pnj)-(N + lM[B}) = (1/(JV + 1)) 

+(l/(iV + l))(2mn + (l + l)|JB|) 

= (1/(N+1)) ZLB(Pni)-(lmn + \P\ + \Q\M[B]) 

+ (l/(JV + l))(2ron + (/ + l)|B|) 

E i i j (P n j ) -Zm n M[B]) <(1/(JV + 1)) 

+ (1/(JV + l))(|tf| + \Q\M[B}) + (1/(JV + l))(2mn + (i + 1)|B|) 
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< ( l / /m„) £ LB(Pnj) -lmnn([B]) 

+ (2mn/lmn)(n([B}) + 1) + {l/lmn){l + 1)\B\ 

< ( 1 / / ) E (l/mn)LB(Pnj) - »({B}) 

+ (2/l)(^[B}) + l) + ((l + l)/l)(\B\/mn) 

< (l/l) • I • (e/3) + e/3 + 2 • (e/6) = e. 

Thus (3.5) is true and so the result follows. 

Proof of theorem A. This follows clearly from Propositions 3.1, 3.2 and 
3.3. 

4. Proof of theorem B 

For any tuple B — b\ • • • bn, let [B] = [bi • • • bn] be a cylinder generated by B 
as defined in (2.3). For any n > 1, let 

Bn = {[h • • • bn}; bi = 0 or 1,1 < i < n}. 

Then the collection U™=lBn is a subalgebra which generates the cr-algebra of 
Borel sets of S. 

Definition 4.1. Let / : X -» X be continuous. A compact set A C X is said 
to be regular shift invariant, if: 

( 1 ) / ( A ) C A ; 
(2) there exists a continuous surjection h : A —> E satisfying 
(a) ho / | A = a o h, 
(b) there exists M > 0 such that for any n > 1, 

Y^ diamh^dB]) < M, 
[B}eBn 

where diam denotes the diameter. 

Example 4.2. Let / : X —> X be continuous. If there exists an isometric 
homeomorphism h : X -> S such that ho f = a oh, then X is regular shift 
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invariant under / . This is because, in this case, 

Y^ diamh-1{[B])= ^ diam[B}<\ 
[B}eBn [B]£Bn 

and therefore (2) — (6) in Definition 4.1 is satisfied. As a special case, E is 
regular shift invariant under a, since the identity mapping of E into itself is 
an isometric homeomorphism satisfying the requirement. 

Example 4.3. Let / : I - » I be continuous. Call / strictly turbulent, if there 
exist disjoint compact subintervals J,K C I such that J U K C / ( J ) n f(K). 
One can see from the proof of Prop. 15 of Chap. II in [1] that if / is strictly 
turbulent, then it has a regular shift invariant set. 

Lemma 4.4. Let X be infinite and let / : X —> X be minimal. If fi is the 
only invariant probability measure of / , then it has no atoms (i.e., each point 
of X has zero /i-measure). 

Proof: Let x € X. We first claim that {x},f~1(x),f~2(x), • • • are pairwise 
disjoint. Assume the claim to be false, then f~m(x)f)f~n(x) ^ 0 for some m, n 
with m > n > 0. Take any y € f~m(x) nf~n(x), we have fm(y) = fn(y) = x. 
Furthermore, 

fm-n{x) = fm-n{r{y)) = fm{y) = ^ 

which contradicts the minimality of / , and so the claim follows. Thus by the 
property of n, we get ^{{x}) = 0. 

Lemma 4.5. Let Y C E be an infinite minimal set of a and let /i be the only 
invariant probability measure of a\y. Then when n —> oo, the sequence of real 
numbers /J([&I&2 • • • bn]) converges to zero uniformly for 6, € {0,1}, 1 < i < n. 

Proof: Fix e > 0. For any x £ Y, by Lemma 4.4, there exists an open 
neighborhood Vx of x such that fi{Vx) < e. Since Y is compact, the open cover 
{Vx ; x € Y} of Y has a Lebesgue number, say S > 0. There is an N > 0 such 
that for all n > N, diam[bi • • • bn] < S uniformly for bi G {0,1}, 1 < i < n. 
Thus if n > N, then any member of the form [&i • • • bn] D Y is contained in 
some Vx and so ju([6i • • • bn]) — /J,([bi • • • bn] C\Y) < e, which proves the lemma. 

Lemma 4.6. Let f : X -t X, g : Y -> Y be continuous, where X, Y are 
compact metric space. If there exists a continuous surjection h : X —> Y such 
that goh = hof, then h(A(f)) = A(g). 
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Proof: By the definition of almost periodic points, we have obviously 

h(A(f)) C A(g). 

To prove the lemma, it suffices to show h(A(f)) D A(g). For any y G 
A(g), h~1(ui(y,g)) is an invariant subset, so it contains a minimal set M 
of / . Clearly, h(M) C u(y,g) is invariant under g. By minimality of 
Lo(y,g),h(M) = uj(y,g). Thus there exists an almost periodic point x £ M 
such that h(x) — y, which proves 

h(A(f))DA(g). 

Proof of theorem B. By the hypothesis, / has a regular shift invariant set 
A, thus there is a continuous surjection h : A -» S such that for any i £ A , 

h o f(x) — a o h(x). 

By Theorem A, there is a minimal set 7 ' c S such that a\y has a uniquely 
ergodic measure fi and Y' contains an uncountable DS scrambled set D1 of 
a. Again by Lemma 2.1, each point of Y' is almost periodic. Denote, for 
simplicity, g = / | A . By Lemma 4.6, for each y G D', we can take an a; € A(g) 
such that h(x) = y. All of these points form an uncountable set of A, which 
we will denote by D. To complete the theorem, it suffices to show that D is 
an DS scrambled set of g. 

For any distinct xi,X2 G D, there exist distinct 2/1,1/2 € D' such that 
h(Xi) = yi,i = 1,2. Since 2/1,2/2 are in an DS scrambled set of a, there exist 
s > 0 and a sequence {n^} of positive integers such that for n^ ->• 00, 

—&u(ff,Wi,l/2,«)->0. (4.1) 

Choose an iV > 0 such that diam[B] < s for all [B] G Bjv- Denote, for 
simplicity, 

J t B ] = / . - 1 ( [ 5 ] ) 

for any [2?] G BAT, and let 

t = mm{d(I[B],I[c]); [B], [C] G BN with [B] ^ [C]}, 

where d(I[B],I[c]) — inf{d(p,g);p G I[B]>Q G ^[C]}- Since all members in BJV 

are pairwise disjoint and closed, it follows that if [B], [C] G BN with [B] / [C], 
then I[B] and J[cj are disjoint compact subsets in A and so d(I[B]>I[c\) > 0-
Therefore, by the definition, t > 0. It is easily seen that for any i > 0, 
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P ( < T % l ) , < 7 % 2 ) ) > S 

=> ol(yi) £ [B],at(y2) £ [C] for some distinct [B], [C] £ BN 

=> 9%{xi) £ I[B},9 fa) € I[C] and d(7[B], J[C]) > t 
=>• d(3*(a;i),9*(a;2)) > t, therefore, we have for each k 

Znk(9,Xl,X2,t) <tnk{(7,yi,y2,s). 

It follows from (4.1) that for n^ -» oo, 

£nk{9,Xl,X2,t) ->0, 

and hence 

F( f l,a;i,i2,«) = 0. (4.2) 

We now prove F*(g, xi,x2,t) = 1 for all t > 0. 
Choose M > 0 such that for any fixed n > 0 

[J3]6Bn 

Such an N exists by the hypothesis of the theorem. Fix t > 0, e > 0. Choose 
an integer A; > 0, such that tk > M. And by Lemma 4.5, we may also choose 
an Ni large enough, such that for any [B] € 2?JVJ,//([.£?]) < ^ , i.e., for any 
yeY, 

lim - #{i ; flr'(y) € [B],0 < i<n}<^-. (4.3) 
n->oo n Ik 

Put 

1 

Since F*{cr,yi,y2,s) = 1, there exists a sequence {n,} of positive integers 
such that for n,j —> oo, 

— ^ ( C T , 2 / I , 2 / 2 , S ) -> 1. (4.4) 

Denote, for simplicity, 

9ni = Yl —*{^ 9i{xi),gi{x2) £ I[B],0 < i < rij}. 
[B]eBNl

 3 

Noting that 
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p(<Ti(y1),a
i(y2))<s 

o'faWiv*) € [B] for some [B] € BNl 

fl^xi),^^) e /[B] for some [J3] £ B ^ , 

by (4.4), we have for n, -> oo 

<?„,. -> 1. (4.5) 

Thus we can from (4.3) and (4.5) choose N large enough, such that for any 
rij > N and any [B] € BNX , 

^7#{»; 9i(xi),gi(x2) € 7[B],0 < i < nj} < ~ (4.6) 

and 

! - * » , < § • (4.7) 

On one hand, by the definition of 6n., 

[B]^BNx,diamJ[B]>t J 

E ^-#{«;ff i(^i) , ff i(^)e/ tB],o<i<n j} (4.8) 

On the other hand, because of the choice of k, there exist in BN1 at most 
k different [B]'s with diamI[B] > <, it follows from (4.6) and (4.8) that 

6nj - ^ = #«i - k • 2h - - T ^ - C S ' 1 ! ' ^ , * ) -

Combining this with (4.7), we see that for rij > N, 

0 < 1 £nj(9,xi,X2,i) < £ 
nj 

which gives 

F*(g,Xl,x2,t) = l. (4.9) 

By (4.2), (4.9) and the arbitrariness of xx and x2, we know that D is a 
DS scrambled set of g. 
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5. Proofs of theorems C and D 

Lemma 5.1. Let / : X ->• X be continuous, x,y £ X, N > 0 and t > 0. 
Then the following follow. 

(i) If F(f, x, y, t) = 0, then F(fN, x, y, t) = 0; 
(ii) IiF*(f,x,y,t) = 1, then F*(fN,x,y,t) = 1. 

Proof: (i) If F(f,x,y,t) = 0, then there is an increasing sequence {n&} of 
positive integers such that for k —• oo, 

— W / , a M / , * ) - » 0 . (5.1) 

Put 

where [^-] denotes the integral part of ~^-. Then for each k, 

( / ,x,y,t) <£nk(f,x,y,t). 

It follows from (5.1) that for k -> 00, 

and further, 

This gives for A; —>• 00, 

Hence F(.fN, x, y, t) = 0. 

—Uk(f
N,x,y,t)^0 

—tmk(f
N,x,y,t)^o. 

nk 

—Uk(f
N,x,y,t)^o. 

mk 

(ii) If F*(f,x,y,t) = 1, then there exists an increasing sequence {nk} of 
positive integers such that for k —> 00, 

—W/.s .y . *)->!• (5-2) 
nk 

Set 
Snk(f,x,y,t) = #{i ; d{f{x),f{y)) >t,0<i< nk}. (5.3) 
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Then by (5.2), for k ->• oo, 

1 
$nk{f,x,y,t) -> 0, 

which is because for each nk, 

— in k (/, x, y, t) + —Snk (/, x,y,t) = l. (5.4) 
nu nk 

Put 

By a similar argument given above, we get that for A; ->• oo, 

— S m k ( f N , x , y , t ) ->0 

and further 

— U k ( f N , x , y , t ) = 1 6mk{fN,x,y,t) -> 1. 

This proves 

F*(/A r ,a ; ,2 / , i) = l. 

Lemma 5.2 Let / : X -> X be continuous, x,y € X and TV > 0. Then the 
following follow. 

(i) If for s > 0,F(fN,x,y,s) = 0, then there exists t > 0 such that 
F ( / , i , y , t ) = 0. 

(ii) HF*(fN,x,y,s) = 1 for all s > 0, then F*(f,x,y,t) = 1 for all t > 0. 

Proof: (i) If F(fN,x,y,s) = 0 for s > 0, then there exists an increasing 
sequence {n*} of positive integers such that for k —> oo 

—UVN,z,y,s)^o. (5.5) 

Since X is compact, / ' is uniformly continuous for each i = 1,2,. . . , TV. Con
sequently, for fixed s > 0, there exists t > 0 such that for all p,q S X and 
each i = 1,2, • • •, AT, <*(/*(?), / % ) ) > t provided d(fN(p), fN(q)) > s. So we 
have 

N(5nk(f
N,x,y,s) - I) < 6nkN(f,x,y,t), (5.6) 

where Snk(-) and <5nfcN(-) are as in (5.3). Put 

mk = nkN. 
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By a simple calculation, we may derive from (5.4) and (5.6) that 

—Zm k ( / ,x ,y , t) < —fnt {fN,x,y,s) + —. (5.7) 
mk nk nk 

Noting that ^—> 0 for k —> oo, by (5.7) and (5.5) we have for A; —>• oo, 

—£m k( f ,x ,y , t ) -> 0. 
mk 

This shows 

F(f,x,y,t)=0. 

(ii) Suppose F*(fN,x,y,s) = 1 for all s > 0. Fix t > 0- Since for each 
i = 0,1, • • •, N — 1, / ' is uniformly continuous as indicated above, there exists 
s > 0 such that for allp,q E X and each i = 0,1, • • •, jV-1 ,d ( /* (p ) , /%) ) < i 
provided d(p,q) < s. For such an s,F*(fN,x,y,s) = 1 by the hypothesis. So 
there exists an increasing sequence {nk} of positive integers, such that for 
k —> oo 

—U(fN,x,V,s)-*l- (5-8) 
nk 

Put 

mk = nkN. 

We easily see that 

NU* (fN,x, V, s) < Zmk (/, x, y, t). 

Dividing both sides by mk gives for each k, 

—£nk(f
N,x,y,s) < —£m k ( f N , x , y , t ) . 

nk mk 

Therefore by (5.8),for k -» oo 

— U k ( f N , x , y , t ) ^ l , 
mk 

and further 

— tm k { f ,x ,y , t ) - • 1, 
mk 

which shows 

F*(f,x,y,t) = l. 
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Proof of theorem C. The necessity holds by Lemma 5.1 and the sufficiency 
by Lemma 5.2. 

Proof of theorem D. If / has positive topological entropy, then by [1] fN is 
strictly turbulent for some N > 0 (cf. Prop. 34 of Chapt.VIII in [1]). Hence 
fN has a regular shift invariant set as indicated in Example 4.3. It follows 
from Theorem B that fN has an uncountable DS scrambled set, say D, in 
which each point is almost periodic under fN. By Lemma 5.2, D is also an 
DS scrambled set for / . And by Lemma 2.1, D C A(f). Hence the result 
follows. 

Appendix 

The aim of this appendix is to prove Proposition 3.1. The argument is pat
terned on that given in [5]. 

We will continue to use the notations Vn and m„, whose definitions are 
as in (3.1) and Lemma 3.4 respectively. And we will use the following lemmas 
in which Lemmas A.l and A.2 may be simply deduced from the definitions. 

Lemma A . l . For any n > l,mn — mn-\ = 2n~1mn-x-

Lemma A.2. Let x = xix2 • • • £ £ . If for any n > 1 there is a K > 0 such 
that for each i > 1, 

then x e A(a). 

Lemma A.3. a = A\A2 • • • € A(a). 

Proof of lemma A.3. Write a as a = aia2 • • •, a, € {0,1}, i — 1,2, • • •. 
Fixing an n > 1, we have obviously 

aia2 ---an -< A%A2 •• • An. (A-l) 

By the definition of An+i, 

AiA2---An<An+1, (A.2) 

A~1A~2---A~n~(An+1. (A3) 

Taking inverses on both sides of (A.3), we also have 

AiA2---An*A~n+i. (A A) 
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Combining (A.4) with (A.2), we know that 

AiA2 ---An^ Jn+i -< J1J2 • • • Jn+i, (A.5) 

provided J\ J2 • • • Jn+i € Vn+i- Thus for given n, we may take K = 3mn+i. 
For any i > 1, by Lemma 3.2, there is a tuple J\ J2 • • • Jn+i € Vn+i occurring 
in didi+i • • -ai+K, i .e . 

J \ J i - - - J n + i -< a-io-i+i • • • o-i+K • 04-6) 

This is because the length of any J i J2 • • • Jn+i € Vn+i is m n + 1 . Summing up 
(A.l), (A.5) and (A.6) gives 0,10,2 •••an -< atOi+i • • -ai+K- Thus by Lemma 
A.2, a e A{a). 

L e m m a A.4. There is an uncountable subset E in E such that for any 
different points x = X\X2 • • •, y = 2/1J/2 • • 6 S, xn = yn for infinitely many n 
and xm ^ ym for infinitely many m. 

Proof: For any x = X1X2 • • •, y = J/1J/2 • • • G S, denote x ~ y, if xn = j/„ 
holds only for finitely many n or i r a / ym holds only for finitely many m. 
We easily check that ~ is an equivalence relation on E. Let x 6 E. It is easy 
to see that the set {y € E; y ~ a;} is countable and so the quotient set E/ ~ 
is uncountable. Taking a representative in each equivalent class of E / ~ , we 
get an uncountable set E which satisfies the requirement. 

Proof of proposition 3.1. By Lemmas 2.1 and A.3, we easily see that <T\Y 
is minimal. So to complete the proof of the proposition, it suffices to show 
that G\Y is DS chaotic. 

Take an uncountable subset E in E such that for any different points 
x = x\X2---,y = t/ij/2 - • • S E,xn = yn holds for infinitely many n and 
Xm 7̂  2/m holds for infinitely many m. By Lemma A.4, such a subset is existent. 
Define <p : E —> E by <p(x) = J\ J2 • • •, where 

T I Ai, 11 Xi = 1, . . 

Set Z) = <p(E). Since for fixed i, J\ • • • Ji -< ̂ 4i+i -< a, no matter what J , ( l < 
j < i) is taken, there is a k > 0 such that the first m, symbols of ak(a) is 
exactly the tuple Ji • • • Ji{ note that | Ji • • • Ji\ = rrii). This shows ip(x) € 
w(a,cr) = Y" for all x £ E. And therefore D C Y. Since JB is uncountable and 
ip is injective, D is uncountable. 

Let b — B\B2 • • •, c = C1C2 • • • be different points in D, where Bi, C» G 
{Aj, i4j}, z = 1,2, • • •. By the definition we know that there exist sequences of 
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positive integers Pi -> oo and qi -» oo such t ha t BPi = CPi and Bqi = Cqi for 
all i. Pu t , for simplicity, 

5bc(j) = p(<Tj(b),<Tj(c)), j = l , 2 , - . - . 

First, it is easily seen tha t for given pi > 1, if m P i _ ! < j < mpv — m P j _ 1 ; 

then the first m P i _ i symbols of aj(b) and ^ ( c ) coincide correspondingly. So 
for such j Sbc(j) < l / 2 m ' , i - 1 . Thus for given t > 0,Sbc(j) < t provided pi is 
large enough. Furthermore, 

£mp. - rap;-! (^, &, C, t) 

= # 0 ' ; $bc{j) < t,0 < j < mPi - m P i _ i } 
Tll/p- Tl^n;—1 

> #{«; Sbc(j) < t, m P i _ ! < j < mPi - m P i _ i } 
mPi — mPi-i 

_ mPi - mPi-i - m P i _ i _ mPi-i 

mPi — mPi-\ mPi — m P i _ i 

= 1 - 2 ^ P m P i _ 1 ' ' 1 ( P i " > 0 0 ) ' 

where the last equality is by Lemma A. l . This proves 

F*((T,b,c,t) = l. {A.7) 

Secondly, it is easy to see tha t for given qi > 1, if m g ; _ i < j < mQi — m 9 i _ i , 
then the first m 9 i _ i symbols of a* {b) and aj (c) are all distinct correspondingly. 
So for such j,Sbc(j) — 1. Then for any t 6 (0,1] , we have 

W , : —m,a:~\ \Pl ®1 C1 t) 

mqi -mqi-i
 9' 

1 mqi - mqi-i 

1 

mqi - m 3 i _ i 

# 0 ' ; focti) < *> ° < i < m9.- _ m ? , - i } 

# { i ; M i ) <t, 0 < j < m 9 i _ i } 

< — = ^ — r — > 0 (% -» oo). 
mqi-mqi-i 2«>-1m,._i 
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This shows 

F(a,b,c,t) = 0. (A8) 

(A.7) and (A.8) prove that b and c are a pair of DS scrambled points. By the 
arbitrariness of b and c, a\y is DS chaotic. 
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We introduce a new sparsity conditions, the tree-width, on multivariate polynomi
als in n variables (over some ring ft) and show that under this condition many 
otherwise intractable computational problems involving these polynomials become 
solvable in polynomial (in some cases even linear) time in n in the Blum-Shub-
Smale-model over ft. To define our sparsity condition we associate with these 
polynomials a hypergraph and study classes of polynomials where this hypergraph 
has tree-width at most k for some fixed fcgR 
We are interested in three cases: 
(1) The evaluation of multivariate polynomials where the number of monomials is 
0 ( 2 n ) . Examples are the permanent or the hamiltonian polynomials. 
(2) For finite fields F the question whether a system of n polynomials p,(x) £ F[x] 
of fixed degree d in n variables has a root in F " . 
(3) For infinite ordered rings (or fields) Rord, a polynomial of fixed degree d in n 
variables p(x) € Rord[x] and a finite subset A C Rord w e want to know whether 
p(a) > 0 for all a G R%rd. 
Our method uses graph theoretic and model theoretic tools developed in the last 
15 years and applies them to the algebraic setting. This work is an extension of 
work by B. Courcelle, J.A. Makowsky, and U. Rotics and by Arneborg, Lagergren, 
and Seese. 

Key words: Blum-Shub-Smale model, meta-finite structures, bounded 
tree-width, monadic second order logic 

1 Introduction and results 

It is well known that deciding the solvability of polynomial systems and ap
proximating solutions, if they exist, are in general difficult computational 
tasks. In a complexity theoretic framework for real or algebraically closed 
fields Blum, Shub, and Smale 10 substantiated this experience by introducing 
a computational model over R, C and more general ring structures and show
ing NP-completeness results for the above mentioned decision problem. The 
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same is true over finite fields. For an introduction into the Blum-Shub-Smale 
(shortly BSS) model of computation see 5 . 

Another interesting problem is the computation of families of polynomials 
having exponentially many monomials. Prominent examples are the perma
nent and the hamiltonian polynomials. Their computational complexity has 
been studied by Valiant 42. 

A lot of work has been done in analyzing subclasses of such hard problems 
hoping for better algorithms when problem instances are restricted to these 
classes. For example, in relation with polynomial systems sparsity conditions 
were previously used in order to analyze location of zeros of multivariate 
polynomials. One of the most spectacular stems from the Newton polytope 
associated with a system of multivariate polynomials over the complex num
bers. Bernstein's theorem then relates the number of isolated zeros of this 
system to the mixed volume of the Newton polytope; for more on this subject 
see 12>26'30. 

In our approach we are more interested in deciding the existence of zeros 
than in counting. For this purpose we introduce a new sparsity condition, 
the tree-width, on systems of multivariate polynomials in n variables (over 
some ring R) and show that under this condition many otherwise intractable 
computational problems involving these polynomials become solvable in poly
nomial or even linear time in n (in the BSS-model over R). 

We associate with these polynomials a hypergraph and study classes of 
polynomials where this hypergraph has tree-width at most k for some fixed 
k £ N. Tree-width of graphs is a useful concept with a long history and a 
plethora of results, cf. 20. A definition for hypergraphs is given in section 2 
below. 

We are interested in three cases: 

(i) The evaluation of multivariate polynomials where the number of mono
mials is 0(2") , such as the permanent of a matrix, the permanent of the 
Hadamard powers of a matrix, the hamiltonian or many other generating 
functions of graph properties, see n . In general most of these polynomials 
are not known to allow evaluation in polynomial time. Here, the sparsity 
condition we impose is the bound k on the tree-width of the underlying 
graph. We show that all these generating functions can be evaluated in 
time 0(n) where the constant depends (super-exponentially) on k. 

(ii) The feasibility problem over a finite field F. Here, the question is whether 
a system of n polynomials Pi{x) € ¥[x] of fixed degree d in n variables 
has a root in F™. 
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This problem is NP$ hard for large enough degree d. The sparsity con
dition we impose is the bound k on the tree-width of the d-hypergraph 
of non-vanishing monomials. We show that for finite fields the problem 
is solvable in time 0(n) where the constant depends super-exponentially 
on k and the size of the field F. The same is true for finite rings. 

(iii) We analyze an extension of (ii) to infinite fields or rings. It turns out 
that we have to impose further conditions on the decision problem being 
considered. For infinite ordered rings Rord, a polynomial of fixed degree 
d in n variables p(x) 6 i?ord[x] and a finite subset A C Rord we want to 
know both whether there exists an a £ An such that p(a) = 0 or whether 
p(a) > 0 for all a € An. Though not known to be NPR complete any 
more, these problems are important members of the subclass DNPR of 
NPR where the search space for verification is restricted to be finite. 
Feasibility and positivity turn out to be decidable in polynomial time 
in n for polynomials of tree-width at most k if we impose some further 
restriction on the coefficients of p and A. 

For positivity we finally show how this additional coefficient condition 
can be avoided. 

Our approach applies to a general setting where properties being express
ible in a specific logical manner are considered. It uses methods from graph 
theory and model theoretic tools developed in the last 15 years and applies 
them to the algebraic setting. This work is an extension of work by B. Cour-
celle, J.A. Makowsky and U. Rotics 15, which extends 13 and 1 . The main new 
aspect with respect to those works is the ability to deal with a much larger 
class of algebraic properties captured by the logical framework we are going 
to define. This allows treatment of problems like the existence of zeros for 
polynomials, linear programming and many more. 

The paper is organized as follows. In section 2 we introduce tree-width 
of matrices, polynomials and systems of polynomials. In section 3 we state 
a result from 15 to illustrate the definition. Section 4 collects problems in 
relation with polynomial systems our approach applies to. The main results 
are then stated. The mathematical development begins in section 5. We define 
the logical framework in which we express our problems. This mainly refers 
to developing so-called existential monadic second-order logic for meta-finite 
structures. The latter is crucial in order to combine algebraic issues with the 
concept of bounded tree-width. Proofs of the theorems are given in section 6 
and further discussions follow in section 7. Since the arguments in sections 5 
and 6 use a lot of previous work which we could not find presented in a compact 
fashion in literature, a detailed appendix is added. With the appendix the 
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paper is self-contained. It explains the construction of parse-trees starting 
from tree-decompositions of hypergraphs; full proofs of the crucial theorems by 
Fraisse-Hintikka and Feferman-Vaught are given together with its algorithmic 
use. 

2 Tree-width of polynomials and matrices 

Let V = {0 ,1 ,2 , . . . , n} be the index set of the variables of 

p{X) = P(XQ, X\, . . . , Xn) = } d Cjj ^...jjXij • Xi2 • . . . • Xid 

(iu...id)€B 

with E C Vd and XQ = \. E is the set of d-tuples of indices (i\,.. .id) 
such that the coefficient c$j ,...,*,, 7̂  0. 
Definition 1. With p(x) we associate the (/-hypergraph G — (V,E) and de
fine the tree-width of p(x) as the tree-width of G. 

For systems of polynomials pj of degree d we look at the hypergraph of 
the non-vanishing coefficients c J i a , i.e. the induced d + 1-hypergraph. 
Definition 2 (Tree-width of a d-hypergraph). A &-tree decomposition 
of G is defined as follows: 

(i) T = (T, <T) is a tree with t <T s expressing that t is a child of s. 

(ii) For each t € T we have a subset Vt C V of size at most k + 1. 

(iii) For each hyperedge (i\,..., id) € E there is a t € T such that {ii,.. .id} C 
Vt. 

(iv) For each i € V the set V(i) — {t e T \ i € Vt} forms a (connected) 
subtree of T. 

G has tree-width at most k if there exists a fc-tree decomposition of G. The 
tree width of G is the smallest such k. 
Examples 3. (i) The polynomial p\{x) = £]™=i x i n a s tree-width 0. 

Note that the Newton polytope of pi is maximal with respect to polyno
mials of degree 4 in n variables. 

(ii) Consider the polynomial p(xi,..., x7) := Xi • x2 • x3 + x\\ • x\ + x\ +x\-
XQ + X2 • X3 • X5 + X\ • x\ • Xi + Xi • Xz • X7 + if + £3 • X7 - X\ • X3 - x \ . It 

has tree-width 2 according to the following tree decomposition: 
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1 2 3 

2 3 5 1 2 4 1 3 7 

2 6 

Note that there is no tree decomposition of width 1 because there are 
monomials involving 3 factors. 

(iii) The polynomials 
n 

P2^) - ^ c M + 3 l , i + 3 2 3 ^ i + 3 l x » + 3 2 
i = l 

and 

n 

i=l 

(where +3 is addition (mod 3)) have tree-width 2. 
(iv) For pi(x) from above, the polynomial p\{x) has tree-width n — 1. This is 

so because all monomials appear and hence the 4-hypergraph associated 
with the polynomial is a hyperclique. 
Boundedness of the tree-width is a sparsity condition. If p(x) in n vari

ables of degree d has tree-width k, the number of monomials is 0(n) with a 
constant depending on k, d only. 
Remark 1. The tree-width of a polynomial depends on its particular repre
sentation. We can easily see that p\ and p\ have different tree-width but they 
represent the same variety. The tree-width of a system of polynomials which 
consists of a single polynomial does differ at most by 1 from the tree-width of 
the polynomial as such. 

Similarly, we can define the tree-width of an (n x n) matrix M = (rriij). 
Definition 4. The tree-width of an (n x n) matrix M = {rriij) is the tree-
width of the graph GM = (^M, EM) with VM = {1 ,2 , . . . , n} and (i,j) £ EM 
iff TTlij / 0. 
Examples 5. 
(1) The (n x n) matrix Mi = (rriij) with rriij = 1 for all i,j has tree-width 
n — 1. Note that M\ has linear rank 1. 
(2) The (n x n) matrix 1 = (rriij) with m ^ = 1 and rriij = 0 for i ^ j has 
tree-width 0. Note that 1 has linear rank n. 
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Theorem 6 (Bodlaender) . a) There is a linear time algorithm (with bad 
constants) which decides, given a hypergraph G whether it has a k-tree 
decomposition, and if yes, constructs one. 

b) If a hypergraph G over n vertices has a k-tree decomposition, then one 
can construct in linear time a balanced 0{k)-tree decomposition of depth 
0(logn). 
Though originally formulated for graphs, the extension of the above re

sults to hypergraphs is straightforward. 
A survey of such results may be found in 8 '7. 

3 Generating functions of graph properties 

The first use of tree-width of a matrix was presented in 15. There the com
putational complexity of computing the permanent and hamiltonian of a 
matrix was studied. 

Let M = {rriij} be an (n x n) matrix over a field K. The permanent 
per(M) of M is defined as 

ir£Sn i 

The hamiltonian ham(M) of M is defined as 

TrGKn i 

where Hn is the set of hamiltonian permutations of { 1 , . . . ,n}. Recall that 
a permutation •K G Sn is hamiltonian if the relation {(i,ir(i)) : i < n} is 
connected and forms a cycle. 

In general, both the permanent and the hamiltonian are hard to compute 
and the best algorithms known so far are exponential in n, 4 ' n . This applies 
also for the computational model due to Blum, Shub and Smale (BSS model), 
cf. 5 . Barvinok in 2 has shown that if the (linear) rank of the matrix is 
bounded by r both the permanent and the hamiltonian can be computed 
in polynomial (not linear) time. Hence these problems are parametrically 
tractable in the sense of 19. Linear rank and tree-width are independent 
notions: The (n x n) matrix consisting of l's only has rank 1 but tree-width 
n — 1 (it is a clique). The corresponding unit matrix has rank n but tree-width 
1, as the graph consists of isolated points. Tree-width of a matrix also makes 
the permanent and the hamiltonian parametrically tractable. 
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Theorem 7 (Courcelle, Makowsky, Rotics, 1998). Let M be a real(nx 
n) matrix of tree-width k. Then per(M) and ham(M) can be computed in time 
0(n). 

The same technique can also be applied to other families of multivariate 
polynomials such as cycle format polynomials, and, more generally, generating 
functions of graph properties, cf. 2 9>n . 

Let G = (V, E, w) be an edge weighted graph with weights in a field K and 
£ be a class of (unweighted) graphs closed under isomorphisms. We extend 
w to subsets of E by defining w(E') = Y[e<EE' w(e)- The generating function 
corresponding to G and £ is defined by 

GF{G,£) =def ]T{w(£ ' ) : (V,E') e £ and E' C E) 

Strictly speaking GF(G,£) is a function with argument w and value in K. 
Furthermore, t o i s a function 

w : { l , . . . , n } 2 -> K 

which can be interpreted as an (n x n) matrix over K. If we view w(i, j) = Uij 
as indeterminates, GF(G,£) is a multivariate polynomial in K[u^j : i,j < n]. 

The permanent is the generating function for G = Kn, the clique on n 
vertices, and £per the perfect matchings. The hamiltonian, similarly, is the 
generating function for Sham, the class of n-cycles. 

Similarly, Km>n is the complete bipartite graph on m and n vertices, 
Rn is the two-dimensional (n x n) grid and Cn is the corresponding three-
dimensional grid. 

In n the complexity of many generating functions is discussed. Among 
his examples we have also: 

Cliques: Let £cuque be the class of cliques, which is an MS\ property. By 
11, GF{Kn,£Cuque) is ttP hard (or VNP^-complete). 

Maximal Clique: Let £MaxCUque be the class of maximal cliques, which is 
an MSX property. By 42, GF(Kn,£MaxCuque) is fP hard (or V N P X -
complete). 

Perfect Matchings: Let £perjM be the class of perfect matchings, which 
is an MS2 property. By 42, GF{Cn,£PerfM) is W hard (or V N P K -
complete). 

Partial permanent: Let £partM be the class of partial matchings, which is 
an MS2 property. By 29, both GF(Kn,£pm) and GF(Rn,£pm) are ()P 
hard (or VNP/f-complete). 
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The proof of theorem 7 relies on the observation that in these two (and many 
more) cases £ is definable in Monadic Second Order Logic. This allows us to 
apply techniques first used in a more restrictive framework in * and extended 
in 15. For more details, cf. section 5. 

In 25 (n x n)-matrices M over {0,1} are considered where one knows in 
advance that the permanent is bounded by a polynomial, i.e. per(M) < k-nq 

for some constants k, q £ N. Grigoriev and Karpinski prove that under this 
assumption per{M) can be computed in N C 3 , and hence in P . To the best 
of our knowledge no similar result is known for ham(M). 

More about the complexity of generating functions of graph properties in 
the BSS framework can be found in 35-34. 

4 Feasibility and positivity of polynomial systems 

We now want to explore how far these techniques can be pushed further. We 
will state our main results; proofs then follow in the next sections. 

Is the tree-width of a system of polynomials an appropriate tool to decide 
the existence of zeros? 

We look at the following problems: 
Definition 8. Let F be a field (finite or infinite). Let i C F b e finite of car
dinality a. Let p(x) be a polynomial in F[ar] in the variables x = (xi,..., xn) 
of degree d and tree-width k, and E be a system of such polynomials, whose 
d + 1-hypergraph is of tree-width at most k. 

(d, k) - FEAS¥: Does p have a zero in F"? 

(d, k) - FEAS(A)F: Does p have a zero in An? 

(d, k) — HNw'- Does E have a common zero in F1? 

(d, k) — HN(A)F: Does E have a common zero in Anl 

For F an ordered field we can also ask 

(d, k) - POS¥: Is p(r) > 0 for all r € F"? 

(d, k) - POS(A)¥: Is p(r) > 0 for all r e An? 

If the tree-width is not bounded we write (d, oo) - FEAS(A)¥, etc. If R is 
an (finite, infinite, ordered) ring rather than a field, we use the analogous 
notation (d,k) - FEAS(A)R, etc. 



219 

Remark 2. The finite set A C F can be viewed as condition of zero-
dimensionality. A can be encoded by an additional polynomial which has 
exactly the elements of A as its zeros. Such problems are considered in 39. 
Remark 3. The way we have set up the definitions there is a minor discrep
ancy between (d, k) - FEASF and (d, k) — HNF for systems consisting of one 
polynomial. We have (d, k) - FEASF C (d, k + 1) - HNF, but not necessarily 
(d, k) - FEASp C (d, A;) - HNF. This does not affect the results. 

[d, oo) - FEASw, (d, oo) - HNF and, for ordered fields (d, oo) - POSF 

are discussed in 5 '37. In general they are NPp resp. CO-NPF hard, and no 
subexponential algorithms are known for their solution. If we relativize the 
problems to (d, oo) - FEAS(A)¥ and (d, oo) - POS(A)F they are in D N P F 

resp. co-DNPjr, the classes digital N P resp. digital co-NP over F. 
It is known that Pp C DNPp C NPp for any field F but it is not known 

whether the inclusions are proper, cf. 38 '37. 
P r o b l e m 1. Are the problems (d, oo) - FEAS(A)u and (d, oo) - POS(A)R 
D N P R resp. C O - D N P F complete over the reals? Is (d, oo) - HNc{A) is 
D N P c complete over the complex numbers? 

The problem with proving one of these questions is the following: If we 
mimic the original proof of N P R completeness of (4, oo) — FEASR in 10 it does 
not apply to (4,oo) - FEASu({0,1}) if we restrict to problems in D N P R . 
The reason is that intermediate results of a computation are also used as 
guesses. They might be reals even though the initial guesses are zeros and 
ones. However, some seemingly hard problems can be reduced to (4, oo) — 
FEASR(A) for \A\ > 2. This includes for example the real Knapsack problem 
and, of course, also the classical SAT problem. It is therefore reasonable 
considering (4, oo) — FEASR(A) to be a difficult problem in the BSS setting. 
Complete problems for DNPfc do exist (18). 

Our first main theorem is 
Theo rem 9. For finite fields F of size f the problems (d,k) — FEASw and 
(d, k) — HNF can be solved in time 0(n) where the constant depends on k, d, / . 
The same holds for finite rings. 

The proof exploits the finiteness of the field (ring) by making all elements 
of it part of the underlying logic. In this way the problem becomes a prob
lem of the weighted hypergraph of the non-vanishing monomials (with the 
coefficients as weights). The proof has no particular algebraic content, but 
shows that the notion of tree-width of systems of polynomials has surprising 
algebraic applications. Vardi pointed out that, using the methods of 22, the 
result can be sharpened a little by making it independent of the size of the 
finite field. Unfortunately, this does not help in the case of infinite structures, 
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cf. the conclusion section. 
The same technique as for the proof of Theorem 9 can also be used for infi

nite fields like E when dealing with so called 3 - M S O R decision and evaluation 
problems (to be defined later on). This includes the evaluation of polyno
mials with exponentially many monomials like the permanent of a matrix of 
bounded tree-width and many other. We obtain 
Theorem 10. For R-structures of tree-width at most k, 3-MSOR-decision 
and evaluation problems can be solved in linear time (in the size of the struc
ture). 

We next generalize the discussion of the feasibility and positivity prob
lems to infinite fields. Here it turns out that the tree-width condition alone 
seems not to be strong enough to allow similar results. We can afford infinite 
fields (or rings), but restrict the set of tuples for which we want to evalu
ate the polynomial. This results in decision problems belonging to the class 
D N P R . Without bounded tree-width no polynomial algorithm is know for 
these problems. 

We then prove 
Theorem 11. a) For arbitrary fields F the problem (d, k) — FEAS(A)$ can 

be solved in polynomial time in n where the constants of the polynomial 
bound depend on k, d and a condition concerning the number of different 
values the monomials take over A. 

b) For ordered fields F the problem (d,k) — POS(A)p can be solved in poly
nomial time in n where the constants of the polynomial bound depend on 
k,d and a condition concerning the number of different values the mono
mials take over A. 
The same holds for any ordered ring R. 

The condition concerning the coefficients and A basically requests that 
the set of partial sums of the monomials evaluated in A be bounded by a 
polynomial function in n. 

A similar theorem can be proved also for (d, k) — PIS(A)R, systems of 
polynomial inequalities of polynomials of bounded degree d > 2 over an or
dered ring R. 

The most general result on infinite fields in this paper is on 3 - M S O R 

extended decision problems (to be defined): 
Theorem 12. For structures of tree-width at most k 3-MSOu-extended deci
sion problems can be solved in time 0(n-t(n)) provided the number of possible 
values of the subterms appearing in the formalization of the problem is bounded 
by 0(t(n)) where n is the size of the structure. 

Finally, we discuss how the coefficient condition mentioned in Theorems 
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11 and 12 in some cases can be avoided. A kind of linearization of the positivity 
problem in fact allows us to strengthen Theorem 11, b). Here, by linearization 
we mean that the weight terms are linear in the variables. We obtain 
Theorem 13. For ordered fields F the problem (d, k)—POS(A)Y can be solved 
in linear time in n where the constants of the linear bound depend on k,d. 
The same holds for any ordered ring R. 

5 Meta-finite Monadic Second Order Logic 

In this and the next section the main mathematical ideas behind the results 
stated above are developed. Complete proofs are given. 

Before going into details let us first outline the overall foregoing: the 
major point of our approach is to extend the (previously known) handling 
of MS2 properties over finite structures to algebraic issues, i.e. decision and 
evaluation problems as they naturally appear in the Blum-Shub-Smale frame
work. To this aim we consider problem instances as specific finite, relational 
structures together with real-valued weight functions. The latter are called 
R-structures in 24>27. Problems are then given as conjunction of two formulas; 
one is expressed in monadic second order logic MS2 over the underlying finite 
structure and the other is given in existential monadic second order logic over 
the corresponding K-structure (a logic to be defined). This generalizes the 
framework of Extended Monadic Second order Logic EM SOL proposed in x 

and unifies it with the framework of Meta-finite Model Theory of 24. 
On the underlying finite structure we evaluate MS2 properties using the 

Feferman-Vaught theorem. The latter is rigorously proved in the Appendix 
together with its use for algorithmic purposes. Those readers being not famil
iar with it are strongly encouraged to study the Appendix before continuing. 

The results of this paper rely on a careful definition of the meta-finite 
monadic second order logic for expressing algebraic issues. It has to be strong 
enough to capture interesting problems; on the other hand, it must be defined 
in such a way that we can perform a decomposition on the meta-finite struc
ture in parallel to the one given by the bounded tree-width decomposition 
and the Feferman-Vaught theorem on the underlying finite structure. This 
will be done now. 

5.1 Hypergraphs and parse trees 

Let us formalize the kind of meta-finite structures and decompositions of them 
we are interested in. Some missing proofs are in the Appendix. 

We consider problem instances as logical structures representing particu-
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lar hypergraphs. To capture the combinatorial aspects of a problem we start 
with a finite relational structure (V, E, Ri,..., Re) of signature r . Here, (V, E) 
is a hypergraph, i.e. V := { 1 , . . . , n} for some n G N and any element of E is 
a (non-void) subset of V (of arbitrary but fixed arity). Every relation Ri is a 
subset of Vni, where rn £ N denotes its corresponding arity. 

We consider (V,E,Ri,... ,Ri) as a two-sorted structure with universe 
V U E; by convention, there is a relation Rinc CVxE among the symbols 
in r which gives the incidence relation between vertices and edges. If more 
comfortable, we can also choose VU V2 as the two-sorted universe and include 
a relation RE C V2 representing the edge set, see below. 

The monadic second order logic MS2(T) over hypergraphs is defined as 
sublogic of second order logic, where we allow quantified and free second order 
variables of arity 1 only. In addition, set variables range over subsets of V or 
E. 
Example 1. (cf. 1 5) . In order to give an idea about the expressiveness of the 
logics we are using two examples related to graph properties are studied. As 
we will see both can be captured by MS2 logic. 

We will be very precise here concerning the logical representation of 
graphs as structures. Later on, we will just keep in mind how to represent 
(weighted) hypergraphs as logical structures without going through all the 
details every time. Firstly, a graph G — (V, E) is represented as a two-sorted 
finite structure. The universe U of this structure consists of the union of two 
sorts, namely the vertex set V and the set V2 of possible edges (sometimes, 
we also directly take E as second sort). Several relations are included in the 
structure whose interpretation will give the graph G. More precisely, a unary 
relation Ry C U is interpreted as Ry(x) •& x e V, a unary relation RE C U 
is interpreted as i?fi(e) O e £ £ , and a binary incidence relation Rinc is inter
preted as Rinc(v, e) -» Rv{v) A i?#(e) A v is incident with e. Thus, the graph 
G is represented as the finite structure (VUV2, Ry, RE,Rinc)- We can as well 
add unary predicates either on V or on V2 (the two sorts); for example, such 
unary relations might indicate labels of either the vertices or the edges. 

Note that for a subset X C U we can easily express in MS2 logic that 
XCV (resp. X C E) by 

Vx € U X(x) => Rv(x) resp. Vx e U X{x) =• RE(x) . 

This will be used implicitly throughout the paper. 

a) 3-Colorability: given a graph G as (V U V2, Ry, RE, Rinc) we define a 
MS2 formula $ as follows: 



223 

$ = 3 Xi C V,X2 C V,X3 C V such that 
P A R r ( X ! , X2 , X3) A NO-EDGEiXi) A NO-EDGE{X2) 

ANO-EDGE(X3). 

Here, -PART(Xi,X2,X3) is true if and only if the sets X1,X2,XZ build 
a partition of V, i.e. 

PA JRT(X1 ,X2 ,X3) E V ^ e V (Xxiv) V X2(«) V X3(«)) A 

- 3 u e V ({*i(«) A X2(u)} V {Xi(u) A X3(u)} V 

{X2(u)AX3(«)}) 

and NO-EDGE(X) is true if and only if no two vertices in X are incident 
with the same edge of G : 

NO-EDGE{X) = Vu,v £ V (X(u) A X(v) =» -.£;(«,w)) 

Clearly, G is 3-colorable iff G )= $ . In the above example we do not really 
need the full power of MS2(T) logic; the quantification is just extending 
to subsets of the first sort V of the universe. Therefore we could represent 
G as well as a one-sorted structure only and still express colorability. This 
will be different with the next example. 

b) Another M52-definable property is that of being a perfect matching. This 
time we need set quantifiers over both sorts of the universe. Again, let a 
graph G being given as (V U V2, RE, Rv,Rinc)- For a subset X C V2 we 
want to find a MS2 formula $(X) such that {G,X) |= $(X) iff X is a 
perfect matching of G. Using Rinc we can either deal with an edge e G E 
or with the two incident vertices; just consider the MS2 formula 

<p(u, v, e) = Rindu, e) A Rinc(y, e) A u ^ v 

which gives the incident vertices of an edge. Having this in mind we 
define the formula 

$(X) = Vu,v,€V{(u,v) £X=>E(u,v)} 
A Vw e v 3u e v {(«, v) e X v (v, u) e V] 
A Wu,v,w eV {((u,v) E X A (u,w) € X) => v = w} 

A v«,t),tiiey{((i),u)ei A (W,U) e X)=>V = W} 

which satisfies the properties we are looking for. 
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Besides the combinatorial part of our structures the use of weights in some 
algebraic structure (ring, field, ordered ring, etc.) has to be incorporated. To 
simplify our notation we assume here that weights are in the ordered field 
of real numbers EL Structures of this kind are particular M-structures in the 
sense of24'27. 

Towards this aim a weight function C : E H-> R is added to the structure, 
thereby turning it into a meta-finite one. The ordered structure 

(K, +, *, < , 1,0, — 1, r\,..., rs) is included as well. Here, the rj are fixed 
real constants. 

We could also think about more than one weight function or weights on 
the vertices, but the above is sufficient for our purposes. 

The properties which will be checked on such M-structures are twofold. 
One is combinatorial and expressed by a MS2(T) formula. The other involves 
the weight functions and the real number part. It is given as well as a specific 
monadic second order property, this time defined for the real number part of 
the structure. 

For structures of bounded tree-width one major ingredient of our algo
rithm is a decomposition. This is first done on the underlying finite structure 
(the hypergraph without weights). 
Definition 14 (cf. 1 9 ) . A hypergraph G is fc-boundaried if exactly fc of its 
vertices are labelled by { 1 , . . . ,fc} (i.e. every label appears with one vertex). 
The labelled vertices are called the boundary 6(G) of G. 

We next define the gluing operations we are interested in: 

a) create : this operation creates a fc + 1 boundaried hypergraph with no 
edges (i.e. fc + 1 vertices all of which are labelled); 

b) join : the join © operates on two fc + 1 boundaried hypergraphs G\ = 
(Vi,Ei) with boundary 6(Gi) and G<i = ( T ^ , ^ ) with boundary S(G2)-
The graph G\ ® G2 is obtained by joining V\ and V2 in such a way that 
those vertices in 6(d) and <S(C?2) having the same label are identified. 
The vertices in V\ :— V\ \ S(G\) and those in V2 := V2 \ ^(G^) obtain an 
own copy. After this identification the hyperedges E\ and E2 are unified; 

c) c h a n g e ^ (G) : in the fc + 1 boundaried hypergraph G labels i and j are 
interchanged; 

d) addilij2i...ija(G') : adds an hyperedge between vertices with labels 
z i , i 2 , . . . , i s ; 

e) ne\Vj(G) : adds a new vertex, labels it i and removes label i from the 
previously labelled vertex. 
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Remark 4- Later on we decompose a given structure into substructures using 
the above operations in an inverse manner. Note that in that situation a 
decomposition is not always unique. Most important for our purposes is the 
case where a structure G is divided into substructures A and B such that 
G = A® B. We fix by convention that hyperedges being made of vertices in 
the common boundary 6(A) = 6(B) then are only transferred to substructure 
A, not to B. 
Definition 15. Let G be a, k+1 boundaried hypergraph. A parse-tree for G 
is a tree whose vertices are labelled by one of the above operators such that 
the following holds: 

- the leafs are labelled by create; 

- the branch nodes are labelled by ffi; 

- the other nodes are labelled by one of the other operations; 

- G is the hypergraph obtained at the root after performing all the opera
tions along the tree bottom-up. 

The main relation between parse-trees and hypergraphs of bounded tree-
width is the following: 
Theorem 16 (cf. 1 9 ) . Let G be a hypergraph of tree-width at most k. Start
ing from a tree-decomposition of G we can compute in linear time w.r.t. \G\ 
a parse-tree of G. 

A tree-decomposition itself can also be obtained in linear time according 
to theorem 6. 

The Feferman-Vaught theorem gives information about the way MS2(T) 

properties on a finite structure can be evaluated on substructures if the rela
tion between these structures are given by one of the above operations. We 
state it here for the join operation ffi. The proof can be found in the Appendix. 

Let 21 and 03 be k +1 boundaried hypergraphs over r with universes A and 
B resp., and boundaries 6(A) C A, 6(B) C B,A := A \ 6(A), B := B \ 6(B). 
Let € := 21 © 03 be the join of 21 and 03. 

Let z be an assignment of the variables in a MS2(T) formula $(x,y_,w_,X_) 
into the universe C of £ such that the following is true: 

- z maps the variables Xi of block x_ to the set A 

- z maps the variables y, of block y to the set B 

- z maps the variables Wi of block w_ to the boundary 6(A) — 6(B) (recall 
that the two boundaries were identified). In particular, z(wi) is member 
of both the universes A and B. 
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Denote by ZA, ZB the assignments with ZA(X) = X D A, ZA{S) = z(s) for 
s e A and zB(X) - X nB,zB(s) = z{s) for s € B. 
Theorem 17 (Feferman-Vaught). For every MS2{T) formula 
V'fejM'Zi^O there are finitely many so called Hintikka formulas fci n{x,w,X) 
and /i2,a(y,M>,2Q such that for every T-structure £ given as join 21 © 23 and 
every assignment z as above we have 

(£,z)\=ip(x,y_,w,X_) & 3a(%zA)\=hlta(x,w,2QA{%,zB)\=h2,a{y,w,2L)-

If if) itself is a Hintikka formula then there exist uniquely determined Hin
tikka formulas h\ and h-2 such that 

(C,z)\=rP(x,y,w,X) «• (%zA) |= hi(x,w,X) A (<B,zB) \= h2{y,w,X). 

5.2 MSO logic over R-structures 

In order to extend the Feferman-Vaught approach to meta-finite structures 
we have to look for an appropriate definition of monadic second order logic 
M S O R for these structures. The major task is to define it in such a way that 
the decomposition operations of section 5.1 extend in a natural manner also 
to weighted structures and the M S O R formulas. 

Let us inductively define terms and formulas for obtaining this monadic 
second order logic over weighted hypergraphs (V,E,C). In each step we first 
define the class of terms or formulas which will be used. Then, it is shown how 
the corresponding terms and formulas can be decomposed to the substructures 
involved. We restrict the presentation again to the © operation. For the other 
parse operations similar statements hold true. 

Simple terms are of the following form: 

- for any edge e 6 E the expression C(e) is a simple term; 

- the constants r i , . . . , r s 6 l are simple terms; 

- if t\ and £2 are simple terms so are t\ + £2 and t\ -ti-

Thus, simple terms are of the form pol(C(e\),... ,C(em)) for a polyno
mial pol and edges e\,..., em . 

Decomposition: For a decomposition £ = 21 © 03 a term C(e) is taken 
over to that substructure e belongs to. Note that for e £ ?P(5(A)) 
by convention e appears in the second sort of the substructure 21 
only. The constants can be used in both substructures. A polynomial 
pol(C(ei),..., C(eTO)) is evaluated on £ by first evaluating C(e;), 1 < i < 
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m (and further parts as far as possible) on the corresponding substructure 
and then putting together the results on C. Note that the complexity of 
the latter step only depends on the size of the polynomial pol, not on €. 

Summation and product terms are expressions of the following form: 

- for a subset U C E a summation term has the form T(U) := 
J3 C(e) and a product term has the form T(U) := n C( e); for 

eeU e€U 
the empty set we can define T(0) to be any fixed real value. 

- if T\(Ui) and T2(U2) are summation and product terms so are 
Tx(U{) + T2(U2) and Ti(tfi) • T2(U2). 

Decomposition: For £ = 21 © 03 and T(U) = £ C(e) denote UA := 
e€U 

UHEA and UB := U n EB. Then TX{UA) :== ^ C(e) and T2{UB) := 

53 C(e) can be evaluated on 21 and 03 resp. Their sum gives the result 
e£UB 

of T on €. The same holds true for T(U) := n C(e)- Polynomials in 
summation or product terms are evaluated as it was explained for simple 
terms. 

Remark 5. Note that according to our convention EA n EB = 0. Thus, 
there will be no hyperedge taken into account twice. We could have 
modeled the decomposition by including all hyperedges relating vertices 
from the boundary in both substructures and giving them the weight 0 
in one of it. But this would raise some technical problems; for example, 
in a product term we would obtain the value 0 above. 

M i n / m a x terms are defined as summation and product terms but using 

T(U) := maxC(e) and T(U) := minC(e) 

instead of Yl a n d II-

Monadic second order M S O R terms are all terms above together with 
terms of the following form: 

- for a summation or product term of the form T(U) (not a polyno
mial in such terms!) and a MS2 formula g on the underlying finite 
structure the term £3 ^ (^0 is a

 M S O R term; 
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- for a summation or product term of the form T(U) and a univariate 
polynomial pol the term £ pol(T(U)) is a M S O R term; 

U,Q(U) 

- for 1 < i < m let Ti(Ui) := FJ C(e) be product terms and 
eeUi 

g(Xi,..., Xm) be a MS2 formula on the underlying finite structure. 
Then £ T^Ui) • ... • Tm(Um) is a MSOR term; 

(uu...,Um),e(U) 

- sums and products of M S O R terms are M S O R terms. 

Decomposition: Let € = 21 © 05 and consider as example a M S O R term 
of the form £ T i ( t / i ) - . . . - T m ( [ / m ) , where all Tj are product 

(U1,...,Um),e(U) 

terms. The evaluation on £ uses the Feferman-Vaught theorem for g as 
well as evaluations on 21 and 05 as follows. W.l.o.g. suppose g to be 
a Hintikka formula and hi as well as /12 to be the corresponding unique 
formulas for 21 and 55 given by theorem 17. Let {/• := (Uij,..., Umj),j € 
J be those assignments with (<£,IZj) \= Q{JLJ)- Furthermore, let U_j and 
U_f be its corresponding decompositions for the substructures 21 and 05, 
see the definition of © and remark 4. 

Now 

£ T^C/x) • . . . • Tm(Um) = £ Tx(£/!,-) • . . . • Tm(£7mj-) 

= E T x ( ^ . ) • ^(17*) • . . . • Tm(U^) • Tm(U%) 
jeJ 

= E TW*) •... • rm(^,) • Tdu%) •... • rm(t/£.) 

= ( E ^ ( [ / ^ . . . . - T ^ l M ) ) . 

( E r1(£/1
B)-...-rm(Oj 

\C/B>2(C/B) / 

where the latter equality holds because of the Feferman-Vaught theorem. 

For the other types of M S O R terms the decomposition can be done in the 
same manner. 

Remark 6. The above definition of M S O R terms probably is not the most 
general one. However, the reader might check the difficulties arising when 
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performing a decomposition for a term like f] ^2 C(e) or one like 
ILeGZ) e€u 

J2 Ti(Ui)+T2{U2) where Xi and T2 are product terms. The above 
(UUU2),Q(UI,U2) 

setting nevertheless is strong enough to capture important problems. 
For the other operations op £ {add^ ...j3,changeij, neun] the evaluation 

of a M S O R term on a structure op(€) can be done similarly by first evaluating 
a corresponding term on £ and then extending the result to op(<£). 

After having introduced monadic second order terms we turn to monadic 
second order formulas built from these terms. 

Basic M S O R formulas are expressions of the form 
T(vi...,Vk,Ui,...,Ut)AO with A e { = , > , > } ; here, T is a monadic 
second order term, the Vi are elements of the universe and the Ui are 
subsets of E. 

M S O R formulas are all basic M S O R formulas together with 

- if ip(vi,..., Vk, W i , . . . , Wt) is a M S O R formula and U\,...,Uk are 
subsets of E, then g(Wl7... ,Wt) = A ^fa,.. .,Vk,Wi,... ,Wt) 

Vi£Ui 

is a M S O R formula; 

- i f ip(vi,...,Vk,Ui,...,Us,Wi,...,Wt) is a M S O R formula 
and g(yi,...,Vk,Ui,...,Us) is a MSOL(T) formula then 
<KW!,...,Wt) = A ^(v,U,Wu...,Wt) is a M S O R for-

V,U_,Q(V,U) 

mula (for Wi C E); 

- the closure of the above construction scheme under logical conjunc
tion, disjunction and negation gives the set of M S O R formulas. 

3 - M S O R (Existential monadic second order logic) over E-structures is ob
tained from M S O R logic by defining 

- all formulas in M S O R to belong to 3 - M S O R 

- if 4>{Wu...,Wt) € 3 - M S O R then 3Wu...,Wt il>(W!,...,Wt) € 
3-MSOR. 

The problems considered in this paper are of the following type: 

Decision problems: For a fixed MS2 formula ifj, decide whether Q (= ip. 

Evaluation problem: For a fixed M S O R term T, compute its value over Q. 
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Extended decision problem: Given a MS<2(T) formula if) as well as a 
3 - M S O R formula $ we want to decide whether Q |= ip A $. 

Optimization problems: These are like the extended decision problems, 
but with $ quantifier free, but possibly involving the functions max and 
min. 

For other fields F the definition of 3-MSOp is done on a similar way. 

6 Proofs 

After clarifying the above way to define 3 - M S O R logic by dealing with some 
examples we will turn to rigorous proofs of the theorems stated in section 4. 

6.1 Guiding examples 

Let us consider some examples and the way they fit into the formal setting of 
the previous section. 
Example 2. The generating functions of section 3 

GF{G,S) =def ^{w(E') : (V,E') € £ and E' C E} 

with £ MSOL-definable by ip{E') can be written as a Monadic Second Order 
Term 

E n ̂  
i>{E')/\E'CEeeE' 

Hence they are 3-MSOR-evaluation problems. 
Example 3 (#4-FEAS(A)). In order to formalize the #4rFEAS(A) problem 
as an 3 - M S O R extended decision problem we use the representation of degree 
4 polynomials as given in 27: let V = { 0 , 1 , . . . , n}, E := V4 and C : E -> E 
be a weight function giving the coefficients of / in the following sense: for 
(i,j,k,l) € E the value C(i,j,k,l) is the coefficient of the monomial Xi • Xj • 
Xk • xi in / . Note that here we assume / to be homogeneous of degree 4. Later 
on / is dehomogenized by adding the condition xo '•= 1. 

Let A~ {si,..., sTO}; for every 1 < i < m define a function Wi : V —> A 
such that V x g V Wi(x) := s,. We are looking for disjunct subsets Ui,..., Um 

m 
of V such that the following holds: \J Ui =V and if we assign to every x £Ui 

i=l 
the value Wi(x) = s* then this assignment of variables gives a zero of / . 



231 

For any quadruple A = ( E I , £ 2 , £ 3 , £ 4 ) where e, 6 { 1 , . . . , m} define the set 
Ex := En (UEl x US2 x US3 x UeJ (i.e. a point a = (ai,a2,a3,ai) e V4 

belongs to i?,\ iff every component <*» lies in USi). 
For a € £ A the corresponding monomial C(a) • xa gives the value C(a) • 

sEl • s£2 • s<r3 • sE4 under the above assignment. The MS2{T) formula for #4-
FEAS{A) simply is 

if) = 3Ui, ...,UmCV such that Vi,j £ { 1 , . . . , m ^ n t / , = 0A[/1U.. .UUm = V 

(note that m is independent of the structure). 
The real number part of the logical description is $ = J2 T(E\) — 

A€{l,...,m}4 

0 , where T(E\) := ^ C(a) -se i -s£2 -s£3 -s£4 is a summation/product term. 

Again note that m is independent of the structure; hence, the same is true 
for the size of the first sum above. For dehomogenization one can introduce a 
further subset Uo CV which only consists of the element 0 and put SQ :— 1. 
It follows that / has a zero in A if and only if (V, E,C) (= ip A $. 

Note that over a finite field F this logical description works as well taking 
A :— F, but could of course be simplified. We used the above description in 
order to cover already the infinite field case we are interested in later on. 

In a completely similar fashion the feasibility of polynomial inequality 
systems 2-PIS(A)u fits into the framework of 3 - M S O R extended decision 
problems and (d, oo) — POS(A)f can be coded as an optimization problem. 
If the ring (field) is finite the coding yields an 3 - M S O R decision problem. 
Example 4- Another example fitting into the framework is the computation 
of the determinant of a square matrix A € Rnxn (whose computation is not 
that interesting in its own but in relation with more complicated problems 
like, for example, the linear programming problem). It can be expressed as a 
M S O R term as follows. 

Since A is not necessarily symmetric we represent it as a directed weighted 
graph (G,c) with vertices V := { l , . . . , n } . The weight function c : V2 -» M. 
for (i,j) € V2 gives the value c(i, j) := aij. This implies that in the model 
theoretic representation of A we use a vocabulary r with two incidence rela
tions i?i,i?2 instead of Rinc (and the obvious meaning: R\{i,e) & i is the 
start node for edge e). Moreover, we include a linear order < o n V (with the 
same interpretation as the natural order 1 < 2 < . . . < n). The interested 
reader might try to define such an order in MS2 logic. 

In the first step we now define a formula PERM(U) such that (G,II) (= 
PERM(U) iff IT C V2 is a permutation of V (where (i,j) € II stands for 
U(i) = j). This formula can easily be written down in MS2 logic. 
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Secondly, for a permutation II we define the set INV(IV) C V of its 
inversions by 

i e INV(IL) <s> 3j e y : (i,j) e n A i > j . 

Here, we use the linear order on V. Thirdly, we need two product terms T\ 
and T2; the first is defined on subsets U of V : 

Ti(U) := H(-l) (andT1(0):=l); 
i€U 

the second is defined on subsets II of V2 (the second sort of the universe) 

r 2 ( n ) : = J ] C(*.J')-
(»,j)en 

If now £>([/, II) is the MS 2 formula expressing 

g(U,U) = U CV A UCV2 A U = INV(U.) A PERM(U) 

we obtain the determinant of A as 

DET(A) = J2 ri(^)-r2(n) 
c/,n,e(t/,n) 

which is a MS OR term according to the definition of section 5.2. 
Although the determinant of a matrix can be computed quickly, the ex

ample can be modified, such as to include the permament and other matrix 
functions, which are # P hard to compute, cf. 15. 

We will now turn to the proof of Theorem 9. 

Proof of Theorem 9: 
We restrict ourselves to the case (4, A:) - FEASr. The other cases can 

be treated in the same way. Let the input polynomial be represented as in 
example 3 by a structure 2) = (V, E, C) of tree-width at most k and size n; 
let V and $ be the corresponding MS2 and 3 - M S 0 F formulas. 

Perform the Feferman-Vaught decomposition of 2) and i/> according to 
theorem 17. Suppose ip to be a disjunction V /i7 of Hintikka formulas h7. We 

7 
check for each of it whether 2) |= /i7 A $ holds. With respect to the MS2 
formulas /i7 we do this as shown in the Appendix: We precompute all triples 
of Hintikka formulas of a given quantifier rank and number of variables which 
are linked by the Feferman-Vaught theorem according to the gluing operation 
©. The corresponding tables are precomputed as well for the other operations. 
Climbing up the parse tree for D by looking into these precomputed tables 
we check in linear time whether D |= /i7 . 
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For the 3-MSOp formula $ we proceed as follows: first, we decompose 
the MS2 formulas involved in $ in the same way using Theorem 17. Next, we 
begin the evaluation at the leave structures of the parse tree for 2). Since all 
of them have a universe of size at most k we can use a brute algorithm which 
evaluates the corresponding M S O R terms for the leave structures by consider
ing all possible choices for second order variables. This takes exponential time 
only in the fixed parameter k. We store the computed results in order to use 
them again on the further structures appearing when we glue substructures 
and climb up the parse tree. 

Note that there are at most |F| many different subresults, i.e. a constant 
number. 

We continue along the parse tree until the root, representing 2), is reached. 
We check the possible results of the evaluation (which are at most |F| many) 
and decide whether 2) f= /i7 A $ for all 7. Climbing up the tree according to 
the decomposition has running time 0(n). 

A technical problem appears during the evaluation of MSOp terms. Here, 
joining two substructures 21 and 03 and identifying their boundaries makes 
it necessary to consider only assignments treating the boundary elements the 
same in 21 and 53. If we decompose a structure top down that's of course no 
problem. But in the above algorithm we compute bottom up. Suppose we 
want to evaluate a term ^Z ^(10 o v e r 2t © 05 using the Feferman-Vaught 

theorem. Suppose furthermore w.l.o.g. Q to be a Hintikka formula and 

(2l©03,t/) |= Q{X) & (%UA) \= h(X) A (05,UB) \= h2(X) . 

If we evaluate bottom up then only assignments ^ , t / B can be combined 
which give the same pattern for elements in the boundary of the two struc
tures. That is, only if Vx e 5{A) = 8{B) and Vi e { 1 , . . . , m} x £ Uf- <=> x € 
Uf. This control can be organized either by enlarging the vocabulary or by 
keeping track of the possible patterns arising when checking which boundary 
elements belong to which of the {/*. Because at every step there are only k +1 
boundary values this bookkeeping does not effect the overall linear running 
time. • 

For decision and evaluation problems even over infinite fields the above 
proof can be adapted as well: 

Proof of Theorem 10: 
Let £> = (V, E, C) be a E-structure of bounded tree-width. If we are 

dealing with decision problems we just have to check the validity of 2) |= tp 
for a M52-formula ip. We do that in the same manner as explained in the 
proof of Theorem 9. If a M S O R term T has to be computed over 2), on every 
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substructure of the tree decomposition we evaluate that term corresponding 
to the decomposition of T; climbing up the tree we combine the two values 
computed at the two substructures to obtain the value on the joined structure. 
This needs constant time for every substructure in the decomposition. • 

6.2 Extended decision problems over infinite fields 

If we consider extended decision problems like the feasibility problem over 
infinite fields there arise some problems with the tree decomposition approach. 

The first observation is that in 3 - M S O R logic we cannot quantify over the 
real numbers. Thus, at first sight it is not clear whether the existence of a 
real zero of a polynomial can be expressed in this logic. We therefore restrict 
ourselves to ask for zeros the components of which belong to a fixed finite 
subset A C K (cf. Remark 2). Nevertheless, there are still many interesting 
and potentially hard problems captured in this situation, recall the discussion 
in section 4. Furthermore it turns out that for some problems we have to 
require an additional condition on the values of the weight function. The 
necessity of such a condition will become evident in the proof of Theorem 11. 
A precise definition is then provided after it. 

Proof of Theorem 11: 
We again restrict to the case (4, k) — FEAS(A) and the representation of 

an input polynomial by 2) = (V, E, C) as in Example 3. Let rp and $ be the 
corresponding formulas in MS2 and 3 - M S O R . The decomposition of 33, ip and 
$ is done as in the proof of Theorem 10. The same is true for checking 2) |= hy 

for at least one of the Hintikka formulas ip decomposes into. The validity of 
an additional condition has to be required when climbing up the parse tree 
in order to evaluate M S O R terms in $. The number of different intermediate 
values which are taken by the MSOp terms during the evaluation process has 
to be bounded by a polynomial in the size of the input-structure. 

Note that in the current situation this condition is satisfied if the set of 
partial sums of the monomials evaluated on the finite set A is bounded by a 
function in 0(p(n)) for p a polynomial. This is true because the decomposition 
of $ according to the definition of M S O R logic in the previous section implies 
that the M S O R terms evaluated on substructures of the input polynomial 
precisely are such partial sums. 

At the root of the parse tree we check all possible results of the evaluation, 
which are now polynomially many. The rest of the proof again works as the 
one of Theorem 9. 

The proof of part b) works precisely the same. Instead of checking whether 
at least one result is zero we only have to check the positivity of all results 
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(which are at most polynomially many). 
D 

The above proof substantiates the interest in the following condition on 
a meta-finite structure 2) together with a MS2 formula ip and a 3 - M S O R 

formula $ : 
Definition 18. Let p be a polynomial and ID,I / '>$ as above. The triple 
(?D,ip, $) satisfies the "coefficient condition" w.r.t. polynomial p if the num
ber of intermediate results of M S O R terms which have to be evaluated when 
applying the above algorithm is bounded by p(size('D)). 

In some situations we will restrict ourselves to structures 2) of bounded 
tree-width which in addition satisfy the coefficient condition with respect to 
a given polynomial and the decision problem D (= ip A $ we are interested in. 

Let us comment on the coefficient condition. Since it depends on V and 
$ as well as on the used algorithmic implementation of the Feferman-Vaught 
theorem it might be possible to strengthen the results by carefully considering 
the formulation of a problem and the evaluation process. However, this might 
result in quite complicated conditions. For example, consider the proof of 
theorem 11. Instead of dealing with all partial sums of monomials it would 
actually be sufficient to take into account only those appearing along the de
composition. Nevertheless, it seems to be more practical to look for sufficient 
conditions like the one mentioned in the proof. 

It is not always obvious whether the additional coefficient condition on 
the partial sums of a polynomial implies a real restriction. For an example 
like the real Knapsack problem (given n real numbers xi,...,xn, is there a 
subset S C { 1 , . . . ,71} s.t. ^2 Xi = 1) it implies a serious restriction because 

i€S 
under the additional hypothesis that all sums ^ Xi only take polynomially 

ies 
many different values the problem lies in PR. On the other hand, if we re
duce a problem like 3-SAT to an instance of 4 - FEAS({0,1}) the coefficient 
condition is automatically fulfilled because of the lemma below. Thus, in re
lated situations our approach gives linear algorithms on structures of bounded 
tree-width without any additional assumption on the weights. 
Lemma 1. Let q be a polynomial, i c l " finite and d 6 N. Then for all poly
nomial functions / : I " -> I 0/ degree d which only have integer coefficients 
in {—q(n), —q(n) + 1 , . . . , q(n)} the number of different values for the partial 
sums of the monomials of f if evaluated on A is bounded by 0(N • q(n)). Here, 
N is the number of non-zero monomials in f. 

Proof. For fixed degree d the normalized monomials £;, • . . . • Xid, i\,..., id € 
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{ 1 , . . . , n} of / only take polynomially in \A\ many different values if evaluated 
in elements of A. Let S be the set of these results. Each value in S is multiplied 
by the sum of the coefficients of those monomials actually giving the value 
(or by 0). Since the number of monomials is bounded by a N (which itself is 
bounded by 0(nd)) every such sum gives an integer in {—q(n)-N,..., q(n)-N}. 
Thus, there are only polynomially many different possibilities to multiply one 
of the finitely many elements in 5 by a particular sums of the coefficients. 
The assertion follows. • 

Recall that in particular for polynomials of bounded tree-width the num
ber of non-zero monomials is linear in the variable number. 

From the previous proofs it should be clear that Theorem 12 summarizes 
the general way for obtaining polynomial time algorithms by exploiting the 
above methods. We therefore omit its proof. 

6.3 Getting around the coefficient condition 

For some of the problems studied above it is possible to avoid the coefficient 
condition over infinite fields. The ideas are already present in 1 (in an au
tomata theoretic framework) and 14 (in a logical framework). Therefore we 
just outline how some of these problems can be putted into their framework. 

The problems we can handle that way have to be optimization problems 
where the objective function has a linear structure. In the framework of 
weighted hypergraphs 2) = (V, E, C) linear structure means that we want to 
compute 

s 

min y~]at • \Xt\ , where X_ = (Xi,X2,. • •,Xs). 

Here, <j> is a MS2 formula and |Xt| is an abbreviation for Yl C(e).Insuch 
e€Xi 

a situation analyzing the Feferman-Vaught theorem for all of the parse opera
tions shows that the special linear structure of the evaluation term (which is a 
MS OR term according to our definition) allows to compute the minimum (or 
maximum) of a E-structure obtained after applying a parse operation in con
stant time from the corresponding extremal values on the substructure (see 
1 , x 4 ) . In particular, we do not have to store too many intermediate results. 
This ideas can be applied to the POS(A) problem: 
Theorem 10. For ordered fields ¥ the problem (d, k)—POS(A)-p can be solved 
in linear time in n where the constants of the linear bound depend on k, d. 
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Proof. We restrict ourselves to proving how (d, k) — POS(A) can be expressed 
as a linear optimization problem in the above sense. The linear algorithm can 
then be obtained by the algorithm given in the proofs of Theorems 9 and 11 
and the above remarks. 

Let A := {s%,..., sm} C K and 2) = (V, E, C) be a M-structure represent
ing a polynomial f in n variables of degree d. Obviously, f(x) > 0 Va; £ A" iff 
min{/(a;)|x £ A71} > 0. We enlarge 2) by d incidence relations Ri,... ,Rd C 
V x E having the interpretation Ri(j,e) •& the i-th factor in monomial 
e £ E is Xj. Note that for this enlarged structure the tree-width concept and 
the Feferman-Vaught approach work similarly as before. 

In order to make the problem linear we consider all (at most md many) 
values a i , . . -amd which can be obtained from A by multiplying d elements. 
The at thus give possible values of a monomial (with coefficient 1) if an as
signment from An is chosen. 

For any at there is a set tyt of finitely many patterns in { 1 , . . . , m}d such 
that for every (ki,..., kd) £ tyt we have s^ • • • • • Sfcd —at- Now consider md 

subsets Xf C E. The intended meaning of the MS2 formula <f>(Xi,..., Xmd) 
we want to be fulfilled on 2? is a decomposition of all monomials in E into 
sets Xt such that there is a minimizing assignment which for every monomial 
e £ Xt gives the value at, 1 < t < md. Thus 

</>(*!,..., Xma) = 3U1,...,UmCV,\)Ui = V, all disjoint 

A VI < t <md V i i , . . . , i d € V : 

if e £ Xt and Ri(ii,e) A . . - A Rd(ia,e) 
then (ii,...,id) £ Vt 

If (2), X) |= 0(20 then there is an assignment ( f / i , . . . , Um) for a^, . . . , a;n 

from A™ which is compatible with 2£ in the sense that for every monomial 
e € Xt the assignment given by the U, yields the corresponding value at. 

Finally, the linear objective function to be minimized is Yl at • 2 C(e)- n 

t = l eeXt 

7 Conclusions and further research 

We have shown how the concept of tree-width of multivariate polynomial 
systems can be used in finding polynomial time algorithms for some other
wise difficult computational problems provided the tree-width is bounded by 
a constant. The method has further extensions to linear and quadratic pro
gramming, previously analyzed in 36. This will be worked out in a future 
paper. 
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Our proofs use a detour through logic. An alternative route would be 
through automata theory, as in 1. But automata theory and Monadic Sec
ond Order Logic are just two faces of the same definability phenomenon, cf. 
17,16,41 

Using the methods developed in 21-22-31 theorem 9 can be improved to 
Theorem 19. For finite rings R of size r, (d, k) — FEASR and (d, k) — HNR 

can be solved in time 0(n • r) where the constant depends on k,d. 
The point is to view feasibility of systems of polynomials over finite struc

tures as constraint satisfaction problems. However, this method does not give 
improvements for infinite structures. 

Another direction of further research is the restriction of our feasibility 
problems to finite subsets A for the components of possible zeros. 

Using very effective versions of quantifier elimination over the reals R one 
might ask: 
Problem 2. Can K (d,k) - POSR and (d,k) - FEASR be solved in time 
0(n) over the reals, where the constant in 0(n) depends on k,d only? 

For the best known algorithms to solve (d, oo) — FEASR and for quantifier 
elimination the reader should consult the surveys 9>40'3. 

It remains a challenging problem to find direct algebraic proofs and to 
overcome the limitations imposed by our coding technique. 

8 Appendix 

In this Appendix we want to give a rigorous presentation of the results used in 
the previous sections. This will make the paper self-contained; though well-
known to logicians people in complexity theory of algebraic problems might 
not be that familiar with the Feferman-Vaught theorem. However, a lot of 
different results and concepts have to be put together which to our knowledge 
are hard to find at a single place in literature. So even for readers familiar 
with the background we believe it might be useful having all this available in 
an Appendix. 

Moreover, we adapted the proofs to the framework in which we need the 
corresponding statements. 

8.1 MSO logic over finite structures 

We suppose the reader to be familiar with the notions of a finite structure and 
second order logic SOL over a given signature (see 2 3) . the finite structures 
we are interested in are hypergraphs. These are two-sorted structures the 
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universe of which consists V and E, the vertices and hyperedges respectively. 
In addition, there is one binary relation symbol Rinc for the incidence relation 
between edges and vertices. (This relation is not always needed, for example 
when dealing with the zero-existence problem for a polynomial). In case E 
is the set of edges of a directed graph we might also include 'another binary 
relation in order to distinguish the direction of an edge. Furthermore, we 
allow an arbitrary but finite number of constant symbols and unary predicate 
symbols. In MSO logic the set variables range over subsets of V or E only. 
We denote the vocabulary by r and the MSO logic over r by M52(r) (the 
index "2" indicates the two sorts), see also 15. 

8.2 Hintikka formulas; the Fraisse-Hintikka theorem 

Fix a relational, finite vocabulary r as above and consider the monadic sec
ond order logic M52(r) over r . In MS2(T) we are interested in formulas 
with first-order variables among x\,..., xni and second-order variables among 
X\,..., Xn2. Later on it will be convenient to split the block x\,..., xni into 
further blocks. 

Proviso: In order to avoid confusion by mixing too many things we 
reduce our description of theorem 20 and 17 to MS2(T) formulas with free 
first order variables for vertices only and free second order variables for subsets 
of vertices. 

However, it should be clear from the presentation that a generalization 
including the edges as second sort of our structures is straightforward from 
that. 

Let n := ni + ni- We denote by F£r the set of MS^ir) formula with n 
variables and quantifier rank at r (the quantifier rank is the maximal number 
of nested quantifiers in a formula). 
Theorem 20. Let r be a signature. For each r, n € N we can effectively find 
a finite set Hn,r °f unnested formulas in F^r such that the following is true: 

a) for every r-structure 21 and for every tuple {a,M_) := 
( a i , . . . , a n i , M i , . . . , M„2) ; where the a,i are elements of the finite 
universe A of 21 and the Mj are subsets of A there exists exactly one 
formula 6 € Hn<r such that (21,a, M) \= 8(a,M). 

b) For every r £ N and every un-nested formula <j> € F„ r there is a disjunc
tion hi V . . . V hm of formulas hi £ Hn<r which is equivalent to 4> for any 
T-structure. The hi can be computed effectively. 
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Proof. We follow closely 2 8 , where this theorem is established for first-order 
logic. 

Ad a) We define the sets Hn,r recursively with respect to the parameter 
r. First, consider all unnested atomic formula in n variables. There are only 
finitely many such atomic formulas, say tpi,..., ips. Define Hn£ to be the set 
of all formulas 

v r A ... A i>f-, 
where a* £ {0,1} and ip° := _ |V'>^1 : = ip- Obviously, 21 together with a tuple 
(o, M ) satisfies either ipi or ->ipi (of course, we regard only those formulas with 
the same shape of variables as (a,M_)). Thus, (21, a, M ) satisfies exactly one 
of the formulas in Hnfl-

Now let the set H^r be defined for a l H e N according to the assertion of 
par t a) . In particular, suppose the set Hn+i,r to consist of formulas # i , . . . , 8m. 
Define the set Hn<T+i as follows: 

First, divide Hn+i>r into a par t H^+1 r where the n + 1-st free variable 
is first-order and a pa r t H^+lr where the n + 1-st free variable is second-
order. T h a t way one obtains two disjunct index sets Ii,l2 such tha t I\ U 
h = {1, • • •, m } . We consider two ways to define formulas in MS2(T) with n 
variables and quantifier rank r + 1 from those in H^+1 r and in H^+1 r : 

for any nonempty subset X C Ii build the formula 

/ \ 3 a n + 1 e A 9i(a,M_,an+i) A \Jan+1 € A 3i € X 9i(a,M_,an+i) . (1) 
iex 

Accordingly, for any nonempty subset X C I2 build the formula 

f\ 3Mn+1 C A 0 i ( o , M , M „ + i ) A y M „ + 1 C A 3i e X 9i(a,M,Mn+1) . 

iex 
(2) 

Now, combine any formula of type (1) with a formula of type (2) by 
conjunction. This gives for any pair (X, X) the formula 

f\ 3a„+i G A 0i(a,M_,an+1) A \/an+1 € A 3i e X 9i(a,M_,an+1) f\ 
iex 

< 

f\ 3Mn+1 C A 0i(a,M.,Mn+i) A y Mn+1 CA3ieX ^ ( o , M , M „ + 1 ) 

' iex 

(3) 
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where X CIX and X C J2 and not both of them are empty. 

Consider a structure 21 over r and assignments ai,...,ani € 
A , M i , . . . , M n 2 a . 

For every o n + i € A the induction hypothesis yields the existence of a 
formula 9io € H\+lr such that (2 l , a ,M,a n + i ) (= 0 j o (a ,M,a n + i ) . Define 
X C 7X as the set of all indices i £ 7i such that there is a a„+ i € A with 
(21, a, M j^n+i) f= Si{a,M_,an+i). Similarly, for every Mn+i C A the in
duction hypothesis yields the existence of a formula 9j0 E H%+1 r such that 
(21,a, M_,Mn+i) (= ^ 0 ( a , M , M „ + i ) . Define l c / 2 a s the set of all indices 
i 6 h such that there is a M n + i C A with (21, o, M, M„+i) |= 9i(a,M_, Mn+i). 
Now it is easy to see that (21, a, M) satisfies exactly that formula built accord
ing to rule (3) in which the sets X and X are chosen as explained above. This 
gives claim a). 

Ad b) Again via induction over r : For r = 0 let tp be a quantifier free 
formula in MS2{T) with n variables; tp is a disjunction of conjunctions of 
atomic formulas. Let Qi A . . . A Qt be such a conjunction; consider all elements 
6 £ Hnfi containing the Qi in exactly the same form. Now, Qi A . . . A gt is 
equivalent to the disjunction of all the 0's chosen above. The formula ip itself 
then is equivalent to all the corresponding disjunctions. 

For the induction step from r to r + 1 we assume the set H„+lr to be 
{#! , . . . , 8m}. Without loss of generality let (j> = 8\ V . . . V 6S (i.e. we assume 
the n + 1-st variable to be a set-variable). Consider the formula 

<P(x,Y) :=3Yn+1 cf>(x,Y,Yn+1) . 

In order to express tp as a disjunction of formulas in Hn^r+1, among the for
mulas in (3) take all those where X is the empty set and X C I2 contains at 
least one index in { 1 , . . . , s}. This gives a new set of formulas 

9i,...,9g € Hn,r+i. (4) 

Claim: V = ^ " i V . . . v 4 

To prove the claim suppose (21,x,Y_) (= 9i(x_,Y_) V . . . V 9s(x_,Y_) holds. 
Then there exists a formula, say 8\, such that (21, x, Y_) (= 9\ (x, Y_). According 
to rule (3) we find a set X containing an element IQ £ { 1 , . . . , s} and 

( a , T , y ) N A 3 Y"+! Si(x,y,yn+i)-
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In particular, we obtain (%i,x_,Y_) \= 3 Yn+i Oi0(x_,Y_,Yn+i) which implies 
(*,£,£) N V'feZ)-

To show the opposite, assume (2l,z,H) |= V'felQj s a y 

(a, &10 N 3 M „ + 1 ^ ( X , F , M „ + 1 ) . 

We define X as set of all those indices i £ { 1 , . . . , m} for which #j 6 H^+1 r 

as well as (%L,x,Y_) (= 3 M n + i #i(£,H, Mn+i). According to the definition we 
get ii 6 X; thus, the formula obtained by choosing our particular X together 
with X = 0 in (3) belongs to the formulas under (4), which immediately gives 
the reverse direction. 

If ip has the shape VMn+i <f>(x,Y_, Mn+i), for building the corresponding 
set of formulas in (4) consider all choices X C { 1 , . . . , s}. 

If ip is obtained by quantification of a first-order variable xn+\ the proof 
works similarly after replacing X by X and the formulas in H%+1 r by those 
in Hi+l iP . ' n 

Remark 7. In the above proof there are several ways to obtain a conjunction 
of atomic formulas which is false over any structure with an equality relation, 
for example by including x ^ x for one or several variables. By convention, we 
include only one such formula into each of the sets Hnfi. This will be needed 
later on in order to avoid ambiguities. 

8.3 Parse-trees for hypergraphs of bounded tree-width 

Let G be a hypergraph of bounded tree-width k. Our goal is to create G 
from some elementary hypergraphs by applying finitely many operations to 
the latter. The initial hypergraphs will be structures of size at most k. The 
operations have to be chosen carefully in order to guarantee validity of the 
theorem by Feferman-Vaught. 

The hypergraphs in-between the building procedure of G all are (k + 1)-
boundaried hypergraphs in the in the sense defined in section 5. The following 
example shows how the decomposition of a hypergraph of tree-width k into 
(k — 1) boundaried hypergraphs works. 
Example 5. We consider once again the polynomial p from Example 3, ii). 
Starting with a tree decomposition of p the latter is first turned into a binary 
tree. To this aim branch nodes are simply duplicated sufficiently many times. 
By adding further nodes to those subsets Vt with cardinality less than k + 1 
(without destroying the tree decomposition requirements) we can assume all 
sets Vt to be of cardinality k + 1. Furthermore, by duplication once again 
branch nodes every branch has identical children. Finally, including additional 
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nodes we can guarantee that two neighbored sets Vt differ by at most one 
element. 

For the polynomial p from Example 3,ii) this results in the following 
normalized tree decomposition: 

The parse tree is now constructed bottom up. At the leaves we apply 
the create operations for the k + 1 vertices included in the corresponding sets 
Vt. To include new hyperedges the add operation is applied. To change an 
already treated vertex with a new one we use the operation new ; change is 
used to fit labels. Finally, due to the normalization of the tree decomposition 
join is only applied to substructures with the same labels on the same vertices 
(the boundary). 

Full details can be found in 19. 
A tree-decomposition itself can also be obtained in linear time according 

to theorem 6. 

8.4 Feferman- Vaught theorem for finite structures of bounded tree-width 

We combine the previous subsections in order to obtain the main result for 
the structures we are interested in. 

The overall idea is to decide a MS 2 (T) formula for a given structure by 
reducing it to substructures and deciding corresponding formulas there. The 
substructures are obtained by analyzing the parse-tree of the given structure. 
The formulas to be decided on the substructures are determined through the 
given one according to theorem 20. 

We will explicitly proof the according statement for a decomposition re
lated to a join operation ©. The according statements for the other parse 
operations can be established similarly. 

For the following recall our general proviso! 
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Let 21 and 03 be k + l boundaried hypergraphs over r with universes A and 
B resp., and boundaries 6(A) C A, 6(B) C B,A : +A \ 6(A), B := B \ 6(B). 
Let <t = 21 © 03 be the join of 21 and 03 as explained in subsection 8.4. 

Let z be an assignment of the variables in a MS2 (T) formula $(«, y_, ui, X_) 
into the universe C of £ such that the following holds: 

- z maps the variables xi of block x to the set A 

- z maps the variables yi of block y to the set B 

- z maps the variables Wi of block w; to the boundary 6(A) = 6(B) (recall 
that the two boundaries were identified). In particular, z(wi) is member 
of both the universes A and B. 

Denote by ZA, ZB the assignments with ZA(X) = X f) A, ZA(S) = z(s) for 
s £ A and zB(X) = I f l B,zB(s) = z(s) for s £ B. 

Then the following is true 
Theorem 21. Let € be the join of 21 and 03 : € = 21 ©05 and let h(x,i,w_,X_) 
be a MS2(T) formula which is a Hintikka formula in some HHtr(x^,y,ui,2C). 
Then there are unique Hintikka formulas hi(x_,w_,X) G Hn,r(x.,Ul,]Q and 
h2(y,Ul,X_) £ Hn,T(y,ui,X) such that for every assignment z as above we have 
(€,z)\=h(x,y,w,T) ^ (%zA) \= hx(x,w,X_) A (03,zB) \= h2(y,w,X_). 

Proof. Induction on the quantifier rank r of h: 

r = 0 : 
According to the proof of theorem 20 the quantifier free Hintikka formula h 

is a conjunction of all atomic formulas (where the latter appear either negated 
or not). We indicate with some examples how hi and h2 are being built given 
these parts in h: 

i) suppose an atomic formula xi = yj appears unnegated in h. Then 
(£, z) \£ h because z assigns different values to Xi and yj. This holds 
independently of € . We are therefore done by including in hi (or in h2) 
an atomic formula x ^ x which is always false as well (according to the 
uniqueness condition mentioned in remark 7). 

ii) Suppose an atomic formula Wi ^ Wj appears in h. Then we include it 
both in h\ and in h2. A formula like Xi ^ Xj is only included in hi, 
similarly for variables from the block y and h2. 

iii) For a unary relation flinra formula R(xi) is maintained in hi, whereas 
R(yj) is transferred to h2- An atomic formula R(u)i) will again be both 
present in hi and in h2. 
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Thus, given as unary relations which only hold true on exactly one ele
ment of the boundary, the labels are transformed to both substructures. 

Note that by convention in the general case where we deal with two-
sorted structures we decompose the set E in such a way that multi-edges 
from ty(5(A)) are only maintained in 21, not in 05. 

r - 1 -> r : Let 

f\ 3an+i G A 6i{x,y_,w_,M.,an+1) A \/an+1 G A 3i € X 0i(z,|/, w, M,a n + i ) f\ 
tex 

f\ 3Mn + i C A 6i{x,yJ,w_,M_,Mn+1) A \J Mn+1 CABieX 9i(x,y,w,M.,Mn+1) 
tex 

where 9t £ H^+lr_1(gc_,y^,w_,A£,an+i) for i € X and 0» € 
Hl+i,r-i(x,y,w,M,Mn+1) for i e X. 

Suppose (21 © 03, z) |= V- Then 

• for every i £ X there exists a cf®® £ A® B such that (21 © 03, z) |= 

and 

• for every i € X there exists a Mf®* C A@B such that (21 © 03,z) j= 
ei{x,y_,w,M,Mf®*). 

The induction hypothesis yields the existence of four Hintikka formulas 
C i ' ^ 2 e ffm.r-i and 0£,0j?2 G ffna,r-i such that 

|- (21, ̂ ) \= 6?tl (x, w, M, cf) A 6*2(x, w, M, M?) 

(*) < 
I (58,zB) |= e^(x,w,M,cf) A 6\» (£,«;, M , M f ) 

(where either cf or c® might be a "dummy" constant according to the 
membership of cf®® to A,B or 6(A) = 5{B).) 

We define /ii : let XA be the set of all indices of Hintikka formulas in 
i f n i j r - i such that this index appears among the formulas 6fx in (*). Let XA 
denote the corresponding set of indices appearing among one of the formulas 
6f2 in (*). Then hi is defined to be built according to the general scheme (cf. 
equation 3 in the first subsection of this paragraph) and with XA and XA 
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as the chosen index sets. Formula /12 is given in the same manner. It's now 
straightforward to check that hi and /J2 satisfy the requirements. D 

The theorem together with finiteness of Hn,r implies that there are only 
finitely many triples € = 21 © 05 with respect to the uniquely determined 
Hintikka formulas. The same is true if we allow parameters. 

The Feferman-Vaught theorem generalizes the previous theorem by get
ting independent of the particular structures involved. It can be proved now 
as follows: 

Proof of theorem 17: 
According to theorem 20 I/J is equivalent to a disjunction #1 V . . . V 9S 

of finitely many Hintikka formulas. For each 0j there exist finitely many 
triples (6i,h{,hJ

2),j £ Ji,\Ji\ finite such that for given structures € = 21 © 53 
theorem 21 is true for exactly one .;' G Jj . If C, 21,23 are varied then (£ |= 6i iff 
V 21 |= hi A 53 (= h2- The formula ijj itself is equivalent to the disjunction 

j€Ji 
s 
V V 21 |= hi A 53 |= h2. This gives the formulas h\,a and h2,a-

 n 

i=ijeJi 

8.5 The algorithm 

The Feferman-Vaught theorem holds also true in a corresponding way for the 
other parsing operations introduced above. It is true as well for other classes 
of parameters like the clique-width of a graph and its corresponding graph 
operations, see 15. 

It is then used for computational purposes as follows. Given a MS2(T) 

formula xp € F„i7. we precompute a table of all Hintikka formulas in i7„?r and 
how three of them fit together with respect to the Feferman-Vaught theorem 
for all the parsing operations. The formula ip is written in its equivalent form 
as disjunction of Hintikka formulas, say ip = 6\ V . . . V 6S. 

Now, given a structure of bounded tree-width we first construct its tree 
decomposition and the corresponding parse tree according to theorems 6 and 
16. From the precomputed table of Hintikka formulas we obtain a correspond
ing decomposition of the 6i 's. Then we evaluate bottom-up from the leaves 
of the parse tree to its root the Hintikka formulas in the decomposition (using 
again the precomputed table) and check whether if) is true on the input. Since 
the parse tree has linear size in the size of the structure the running time is 
linear (though with large constants). 

Some technicalities have to be taken care of. We demonstrate them again 
for the join operator ©. 
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Theorem 17 depends on the shape (x_,y) an assignment z induces on 
the free first-order variables. Therefore, if the above algorithm is performed 
bottom up, we have to take into account all possible assignments for z, that 
is all possible patterns z induces on the free first-order variables. Suppose 
there are s many of them (where s only depends on the given formula). If we 
consider all decomposition patterns of these s many variables along the parse 
tree of a given structure of bounded tree-width we see that their number only 
depends on a function f(s) in s. For every fixed pattern we perform the above 
algorithm in linear time, giving an 0(n) algorithm in total. 

The interested reader might try to perform a proof of Feferman-Vaught 
theorem and the subsequent algorithm for the operator newj. 

The main contribution of the present paper is to combine the theory over 
finite structures presented in the Appendix with algebraic issues. To this aim 
a meta-finite monadic second order logic is defined carefully. It is constructed 
in such a way that on the one hand side a lot of important problems can be 
expressed by it. On the other hand side it is not too general in the sense 
that we can decompose a given meta-finite structure together with a 3 - M S O R 

property in parallel to the decomposition of the underlying finite structure 
described in this Appendix. 
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Figure 1. Root distribution when coefficient vector has a unitarily invariant Gaussian dis
tribution 

However, let us first give a simple preliminary illustration of some of the ideas 
we will develop. 

Figures 1(a) through 2(c) feature one random root of each of 1000 ran
dom degree 20 univariate polynomials. The j-th coefficient of each polynomial 

is a pseudo-random Gaussian variable of variance ( . J in Figure l(a-c), and 

of variance 1 in Figure 2(a-c). The first distribution is invariant under a 
naturally defined action of the 2 x 2 unitary matrix group on the complex 

projective line F1: the matrix , sends the point with projective coordi

nates [xo : x{\ to [axo + bx\ : CXQ + dx\]. The second distribution lacks this 

"unitary" invariance. 
The roots are plotted in three different "phase spaces". In Figures 1(a) 

and 2(a), the roots are plotted in the complex plane. We notice that in figure 
2(a), the roots seem to accumulate on the unit circle. This is a well-known 
phenomenon which can be made more rigorous. 
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Figure 2. Root distribution when the coefficients are identically and independently dis
tributed Gaussians 

In Figures 1(b) and 2(b), we show the same roots as points in the Rie
mann Sphere. We can see that the selected roots of the unitarily invariant 
distributed polynomials are uniformly distributed on the Riemann Sphere, 
while those of the variance-one polynomials are not (this shows graphically 
that the distribution of the roots is not unitarily invariant). 

There is strong evidence in 9 and 3 suggesting that unitarily invariant dis
tribution would be the natural distribution for Gaussian random polynomials. 
While the unitarily invariant paradigm was fundamental to the development 
m 17,18,19,20,21 ^ w e W JU s e e n e r e f.nat a m o r e general approach is viable and 
fruitful. 

In figures 1(c) and 2(c), the same roots are plotted in a different "phase 
space", that we will construct below. The distribution seems uniform, it is 
indeed uniform. This suggests that there is another approach to random poly
nomials, that allows arbitrary variances through different coordinate systems. 

This approach extends to systems of polynomial equations. While the 
unitary-invariant paradigma precluded the treatment of sparse polynomial 
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systems, the approach we suggest extends naturally to systems of equations. 
For instance, it is possible to bound the probability that the condition 

number of a random sparse polynomial system (arbitrary variances) is large. 
The roots of a sparse polynomial system are known to belong to a certain 

toric variety. However, in order to obtain the theorems below, we needed 
to endow the toric variety with a certain geometrical structure, as explained 
below. The main insight comes from mechanics, and from symplectic and 
Kahler geometry. The main tool is the Momentum map. 

The proofs of the results mentioned herein may be found in 10 and its 
references. 

2 General setting 

Let A be an M x n matrix, with non-negative integer entries. To the matrix 
A we associate the convex polytope Conv(il) given by the convex hull of all 
the rows, {^4a}ae{i,...,M}> of A: 

{ M M \ 

J2 t<*Aa : 0<ta<l, 5 3 ta = 1 l C (K")V . 
a=l a=l J 

Here, we use the notation Xy to denote the dual of a vector space X. 
Assume that dim(Conv(>l)) = n. Then we can associate to the matrix A 

the space TA OI polynomials with support contained in {Aa : 1 < a < M}. 
This is a linear space, and there are many reasonable choices of an inner 
product in TA-

Let C be a diagonal positive definite M x M matrix. Its inverse C _ 1 is 
also a diagonal positive definite M x M matrix. This inverse matrix defines 
the inner product: 

(z ,Z ) c - i = {C~l)afi . 

The matrix C will be called the variance matrix. This terminology arises 
when we consider random normal polynomials in !FA with variance Caa for 
the a-th coefficient. We will refer to these randomly generated functions as 
random normal polynomials, for short. 

We may also produce several objects associated to the matrix A (and 
to the variance matrix C). The most important one for this paper will be a 
Kahler manifold (Tn,0JA, J)- This manifold is a natural "phase space" for the 
roots of polynomial systems with support in A. It is the natural phase space 
for the roots of systems of random normal polynomials in (J7A, (•, - ) C - I ) . 



255 

A3 = (2,6) 

Figure 3. Geometric interpretation of the Momentum map V34. The momentum is related 
to the derivative of the Veronese embedding v_& by the formula: Dv\ = v\{Ax — Vg^) 
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More explicitly, let Tn = C" (mod 27r\/—TZn) (which, as a real mani
fold, happens to be an n-fold product of cylinders). Let exp : Tn -> (C*)n 

denote coordinatewise exponentiation. Then we will look at the preimages of 
the roots of a polynomial system by exp. We leave out roots that have one 
coordinate equal to zero and roots at infinity. 

The Kahler manifold may be constructed as follows. The Complex Struc
ture J is defined locally by 

J(P,q)(p,<i)'= (-q,p) 

The form OJA is the pull-back of the Fubini-Study 2-form in C M by the em
bedding 

vA:Tn -»• C M 

(p,q)^C1/2-eMMP + qVl:l)) 
If VA '• Tn —> P M _ 1 is the composition of VA with the canonical map C ^ —> 
P M _ 1 , then UJA is also the pull-back by VA of the canonical symplectic form 
of P M _ 1 . 

Another important invariant is the real function: 

gA : Tn ->• R 
p,q^ log | |^ (p) | | 

This function is independent of p and we may treat gA as a function of p 
alone. In that setting, the gradient V ^ : W1 —> (E n ) v maps Rn diffeomor-
phically onto the interior of the convex hull of the rows of A (See Figure 3 
and 10 ). The mapping 

V<M : T " -> (E") v 

is called the Momentum map. It was introduced in its modern formulation by 
Smale 22 and Souriau 23. The reader may consult one of the many textbooks 
in the subject (such as Abraham and Marsden 1 or McDuff and Salamon 13) 
for a general exposition. 

We can say now what the "phase space" of Figures 1(c) and 2(c) was. It 
was the image of the toric manifold (TH,COA,J) by the "volume-preserving" 
(up to a constant) map: 

(p,q) •-> ((VgA)\P,q) 

The potential gA and the Kahler form LUA are related as follows: 

u>A = -^dJ*dgA 
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where d stands for exterior differentiation. The Hermitian metric associated 
to A has also the expressions: 

(a, b) d= uA(a, Jb) = aHDvA
IDvAb = ±D2gA(a,b) 

3 Mixed and Unmixed systems 

Systems where all the polynomials have the same support are called unmixed. 
The general situation (mixed polynomial systems), where the polynomials may 
have different supports, is of greater practical interest. It is also a much more 
challenging situation. We shall consider systems of n polynomials in n vari
ables, each polynomial in some inner product space of the form (JFA; , (•, - ) c r i ) 
(where i — 1, • • • , n and each Ai and each d are as above). 

In this realm, a mathematical object (that we may call a mixed man
ifold) seems to arise naturally. A mixed manifold is an (n + 2)-tuple 
(Tn,u>Ai,' " ,uAn,J) where for each i, (Tn,LJAi,J) is a Kahler manifold. 
Mixed manifolds do not have a natural canonical Hermitian structure. They 
have n equally important Hermitian structures. However, they have one nat
ural volume element, the mixed volume form, given by 

(_l)n(n-l)/2 
dTn = V 1 A . . . A _ 

n! 

As explained in 7, the volume of Tn relative to the mixed volume 
form is (up to a constant) the mixed volume of the n-tuple of polytopes 
(Conv(Ai),--- ,Conv(A„)). 

We extend the famous result by Bernshtein 4 on the number of roots of 
mixed systems of polynomials as follows: 
Theorem 1. Let A\,--- ,An and C\,--- ,Cn be as above. For each i = 
l,--- ,n, let fi be an (independently distributed) normal random polynomial 
in (TAH (•, ^cr1)- Let U be a measurable region of Tn• Then, the expected 
number of roots of the polynomial system f(z) = 0 in expC/ C (C*)n is 

^ [ dTn 

7T" Ju IV 

Example 1. When each /j is dense with a variance matrix Ci of the form: 

d — Diag 
/ 1 ! / 2 ! . - - , / „ ! ( d e g / i - E " = 1 / i ) ! 



258 

the volume element dTn becomes the Bezout number \[ deg / ; times the pull-
back to Tn of the Fubini-Study metric. We thus recover Shub and Smale's 
stochastic real version of Bezout's Theorem 18. • 

The general unmixed case (Ai = • • • = An, C\ = • • • = Cn) is a particular 
case of Theorem 8.1 in 6. This is the only overlap, since neither theorem 
generalizes the other. 

On the other hand, when one sets U = T", one recovers Bernshtein's 
first theorem. The quantity -n~n L-n dTn is precisely the mixed volume of 
polytopes A\,- • • ,An (see 16 for the classical definition of Mixed Volume and 
main properties). 

A version of Theorem 1 was known to Kazarnovskii 8 and Khovanskii. 
In 8, the supports Ai are allowed to have complex exponents. However, uni
form variance (Ci = I) is assumed. His method may imply this special case of 
Theorem 1, but the indications given in 8 were insufficient for us to reconstruct 
a proof. 

The idea of working with roots of polynomial systems in logarithmic co
ordinates seems to be extremely classical, yet it gives rise to interesting and 
surprising connections (see the discussions in 1:L>12>24). 

4 The Condition Number 

Let T — TAX x • • • x TA„ , and let / € T. A root of / will be represented by 
some p + qy/^1 G T n . (Properly speaking, the root of / is exp(p + qy/^1)). 

In this discussion, we assume that the "root" p+qy/^1 is non-degenerate. 
This means that the derivative of the evaluation map 

ev : fxT"->e 
(f,P + Qy/1^) •-> ( / ° exp)(p + qyf^) 

with respect to the variable in Tn at the pomt p + q^/^T has rank 2n. We are 
then in the situation of the implicit function theorem, and there is (locally) 
a smooth function G : T -> T " such that for / in a neighborhood of / , we 
have ev(f,G(/)) = 0 and G(f) =p + qy/^l. 

The condition number of / at (p + qyf-l) is usually defined as 

ti(f;p + qV=l) = \\DGf\\ . 

This definition is sensitive to the norm used in the space of linear maps 
between tangent spaces L(TfT, T(Pig)Tra). In general, one would like to use an 
operator norm, related to some natural Hermitian or Riemannian structure 
on T and 7~n. 
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In the previous section, we already defined an inner product in each co
ordinate subspace J-A{, given by the variance matrix d. Since the evalua
tion function is homogeneous in each coordinate, it makes sense to projec-
tivize each of the coordinate spaces TAI (with respect to the inner product 
(-,-)c-i). Alternatively, we can use the Fubini-Study metric in each of the 
pAi's- By doing so, we are endowing T with a Fubini-like metric that is 
scaling-invariant. We will treat J7 as a multiprojective space, and write P(.F) 
f o r P p ^ J x - . - x P O F ^ J . 

Another useful metric in f(!F) is given by 

, . . ,2def A / . | | r - A f f ' | | V 

Mf,g) = E (jg§?-ji?ii~J ' 

Each of the terms in the sum above corresponds to the square of the sine 
of the Fubini (or angular) distance between p and g%. Therefore, dp is never 
larger than the Hermitian distance between points in !F, but is a correct first-
order aproximation of the distance when g —> f in P(J r). (Compare with 3 ). 

While T admits a natural Hermitian structure, the solution-space Tn 

admits n possibly different Hermitian structures, corresponding to each of 
the Kahler forms UJA{ • 

In order to elucidate what the natural definition of a condition number 
for mixed systems of polynomials is, we will interpret the condition number as 
the inverse of the distance to the discriminant locus. Given p + q\f—\ £ T™, 
we set: 

Jr
{p,q) = {f£3r:ev(f;(p,q)) = 0} 

and we set S(Pj9) as the space of degenerate polynomial systems in ^(p^)-
Since the fiber J-(Ptq) inherits the metric structure of T, we can speak of the 
distance to the discriminant locus along a fiber. In this setting, Theorem 3 
in 3 becomes: 
Theorem 2 (Condition number theorem). Under the notations above, 
if (p, q) is a non-degenerate root of f, 

max mm\\DGff\\Ai < 7 7 7 ^ r < max m a x | | D G / / m ; . 
||/||<i i dp( / ,L ( P i g ) ) ||/||<i i 

There are two interesting particular cases. First of all, if A\ = • • • = An 

and C\ = • • • = Cn, we obtain an equality: 
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Corollary 2.1 (Condition number theorem for unmixed systems). 
Let A\ = • • • = An and C\ = • • • = Cn, then under the hypotheses of Theo
rem 2, 

def ' - 1 
fJ-if; (P,q)) = max min \\DGff\\Ai = max max \\DGff\\Ai = . r . 

We can also obtain a version of Shub and Smale's condition number the
orem (Theorem 3 in 3 ) for dense systems as a particular case, once we choose 
the correct variance matrices: 
Corollary 2.2 (Condition number theorem for dense systems). 
Let di, • • • ,dn be positive integers, and let Ai be the n-columns matrix having 
all possible rows with non-negative entries adding up to at most di. Let 

Then, 

def • - 1 
M(/; (P><?)) = max min \\DGff\\Ai = max max \\DGff\\Ai = , , , v r -

The factor j : in the definition of the variance matrix d corresponds to 
the factor y/d~i in the definition of the normalized condition number in 3 . 

In the general mixed case, we would like to interpret the two "minmax" 
bounds as condition numbers related to some natural Hermitian or Finslerian 
structures on T". See 10 for a discussion 

Theorem 2 is very similar to Theorem D in 5, but the philosophy here 
is radically different. Instead of changing the metric in the fiber ^F(p^), we 
consider the inner product in T as the starting point of our investigation. 
Theorem 2 gives us some insight about reasonable metric structures in T n . 

As in Theorem 1, let U be a measurable set of T™. In view of Theorem 2, 
we define a restricted condition number (with respect to U) by: 

M(/;t/)=f l 
m m (p ,9 )6C/ dp(f, S( P ) g)) 

where the distance dp is taken along the fiber J-(p,q) = {/ : ( / ° exp)(p + 
qy/^l) = 0}. 

Although we do not know in general how to bound the expected value of 
M / ; Tn), we can give a convenient bound for n(f; U) whenever U is compact 
and in some cases where U is not compact. 
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The group GL{n) acts on T(p^Tn by sending (p, q) into (Lp, Lq), for any 
L € GL(n). In more intrinsic terms, J and the GL(n)-action commute. With 
this convention, we can define an intrinsic invariant of the mixed structure 
(Tn,uAl,--- ,uAn,J): 
Definition 1. The mixed dilation of the tuple (CJAI >''" > UA„) is : 

, , „ def . ^^\\u\\ = l{^Ai)(p,q)(Lu,JLu) 
K(UAI,--- ,UAn;(p,q)) = nun max . " " ^ — ' — — — . 

LEGL(n) t m m | | u | | = 1 (LOAi)(pq){Lu,JLu) 

Given a set U, we define: 

def , 
KV = SUP K[(JJAI , • 

{p,q)eu 
,uAn;{p,q)) 

provided the supremum exists, and KJJ = oo otherwise. 
We will bound the expected number of roots with condition number fj. > 

e _ 1 on U in terms of the mixed volume form, the mixed dilation KU and the 
expected number of ill-conditioned roots in the linear case. The linear case 
corresponds to polytopes and variances below: 

A Lin = c L , n = 

1 

Theorem 3 (Expected value of the condition number). Let i/Lin(n,e) 
be the probability that a random n-variate linear complex polynomial has con
dition number larger than e _ 1 . Let vA{U,e) be the probability that fJ.{f, U) > 
e _ 1 for a normal random polynomial system f with supports A\, • • • ,An and 
variance C\, • • • ,Cn-

Then, 

vA(U,e)< 
lu A ^AV'" 

z / L i n ( n , ^ e ) 

There are a few situations where we can assert that KU = 1- For instance, 
Corollary 3.1. Under the hypotheses of Theorem 3, if A = Ai = • • • = An 

and C = Ci = • • • = Cn, then 

vA{U,e)<Vo\{U) vLin{n,e 

The dense case (Theorem 1 p. 237 in 3) is also a consequence of Theorem 3. 
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Remark 1. We interpret uhin(n,e) as the probability that a random linear 
polynomial / is at multiprojective distance less than e from the discriminant 
variety S(P)9)- Let g £ £(P,g) be such that the following minimum is attained: 

n Up — Ao*ll2 

*( / .S ( , . „ ) a = - 6 j n f f ) E y / i | |2 • 
A€(C*)" ' - 1 

Without loss of generality, we may scale g such that Ai = • • • = An = 0. In 
that case, 

*(/ . so.,,)) - i . n^ip > E » = l u / T • 
The right hand term is the projective distance to the discriminant variety 
along the fiber, in the sense of 3. Since we are in the linear case, this may be 
interpreted as the inverse of the condition number of / in the sense of 3 . 

Recall that each / ' is an independent random normal linear polynomial of 
degree 1, and that Ci is the identity. Therefore, each f%

a is an i.i.d. Gaussian 
variable. If we look at the system / as a random variable in p«(«+1)-1

) then 
we obtain the same probability distribution as in 3. Then, using Theorem 6 
p. 254 ibid, we deduce that 

Li n*(n + l)T(n*+n) 
v (n,e)S r ( n 2 + n _ 2 )

 £ • • 

5 Real Polynomials 

Shub and Smale showed in 18 that the expected number of real roots, in the 
dense case (with unitarily invariant probability measure) is exactly the square 
root of the expected number of roots. 

Unfortunately, this result seems to be very hard to generalize to the un
mixed case. Under certain conditions, explicit formula? for the unmixed case 
are available 15. Also, less explicit bounds for the multi-homogeneous case 
were given by 14. 

Here, we will give a very coarse estimate in terms of the square root of 
the mixed volume: 
Theorem 4. Let U be a measurable set in Rn, with total Lebesgue volume 
\(U). Let Ai, • • • ,An and Ci, • • • , Cn be as above. Let f be a normal random 
real polynomial system. Then the average number of real roots of f in exp[7 C 
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(Rt)n is bounded above by 

V peu 

This is of interest when n and U are fixed. In that case, the expected 
number of positive real roots (hence of real roots) grows as the square root of 
the mixed volume. 

It is somewhat easier to investigate real random polynomials in the un
mixed case. 

Let VR(n,e) be the probability that a linear random real polynomial has 
condition number larger than e _ 1 . 
Theorem 5. Let A = A\ = • • • - An and C = Cx = • • • = Cn. Let U C E" 
be measurable. Let f be a normal random real polynomial system. Then, 

Prob \p(f,U) > e'1] < E{U) i*(n,e) 

where E(U) is the expected number of real roots on U. 
Notice that E(U) depends on C. Even if we make [/ = E", we may still 

obtain a bound depending on C. 

6 Mechanical Interpretation 

The momentum map defined above is also the the momentum map (in the 
sense of 22) associated to a certain Lie group action, namely the natural action 
of the n-torus on the toric manifold T n : 

The n-torus T" = Rn (mod 2TT Zn) acts on T " by 

p • [p, q) *+(p,q + p) , 

where p € Tn . 
This action preserves the symplectic structure, since it fixes the p-variables 

and translates the q-variables. Also, the Lie algebra of T™ is Rn. An element 
£ of E™ induces an infinitesimal action (i.e. a vector field) X^ in T" . 

This vector field is the derivation that to any smooth function / associates: 

(xi)(P,q)(f) = Ld2WA)(P,q)(df) d= {-^jA)(p,q){i,d}) . 

If we write df = dpfdp + dqfdq, then this formula translates to: 

{Xi)(p,q)U) = -(r{D2gA)PdP! 
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This vector field is Hamiltonian: if (p(t),q(t)) is a solution of the equation 

(?(*),?(*)) = (xt)P(t)Mt) 

then we can write 

where H^ = § V S A ( P ) • £• 
This construction associates to every $ £ l n , the Hamiltonian function 

H± = VgA(p) £• The term V ^ ( p ) is a function of p, with values in (M")v (the 
dual of K"). In more general Lie group actions, the momentum map takes 
values in the dual of the Lie algebra, so that the pairing WgA (p) • £ always 
makes sense. A Lie group action with such an expression for the Hamiltonian 
is called Hamiltonian or Strongly Hamiltonian. 
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We propose new Las Vegas randomized algorithms for the solution of a square 
non-degenerate system of equations. The algorithms use 0(<53™£>2 log(D) log(6)) 
arithmetic operations to approximate all real roots of the system as well as all 
roots lying in a fixed n-dimensional box or disc. Here D is an upper bound on 
the number of all complex roots of the system, 8 is the number of real roots or 
the roots lying in the box or disc, e ~ 2~b is the required upper bound on the 
output errors. We also yield the bound 0(3™ D 2 log(D)) on the complexity of 
counting the numbers of all roots in a fixed box (disc) and all real roots. For a 
large class of inputs and typically in practical computations, the factor 8 is much 
smaller than D, 8 = o(D). This improves by order of magnitude the known 
complexity estimates of order at least 3™£)3log(6) or 3"£>3, which so far are the 
record ones even for the approximation of a single root of a system and for each of 
the cited counting problems, respectively. Our progress relies on proposing several 
novel techniques. In particular, we exploit the structure of matrices associated to 
a given polynomial system and relate it to the associated linear operators, dual 
space of linear forms, and normal forms of polynomials in the quotient algebra; 
furthermore, our techniques support the new nontrivial extension of the matrix 
sign and quadratic inverse power iterations to the case of multivariate polynomial 
systems, where we emulate the recursive splitting of a univariate polynomial into 
factors of smaller degree. 

1 Introduction. 

The classical problem of solving a multivariate polynomial system of equations 
is presently the subject of intensive research and one of the central practical 
and theoretical problems in the area of algebraic computation (see some bib
liography in 18, 4 , 28, 13.) It has major applications, for instance, to robotics, 
computer modelling and graphics, molecular biology, and computational al-

mailto:mourrain@sophia.inria.fr
mailto:vpan@lehman.cuny.edu
mailto:oruatta@sophia.inria.fr
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gebraic geometry. 
The oldest approach to the solution is the elimination method, reduc

ing the problem to the computation of the associated resultant or its multi
ples. This classical method evolved in the old works by Bezout, Dixon, and 
Macaulay (see e.g. 18, 4 1 ) , then remained largely ignored by the researchers 
and algorithm designers but it was resurrected by Canny in the 80s to become 
a very popular approach since then. One of the major further steps was the 
reduction of the solution of a multivariate polynomial system to matrix oper
ations, in particular, by rational transformation of the original problem into 
a matrix eigenproblem (cf. 1, 14, 23, 21, 8 ) . 

The approach has been explored and extended by many researchers, has 
been exploited in practice of algebraic computing, and also supported the 
record asymptotic upper bound O* (D3) on the arithmetic computational com
plexity of the solution of a polynomial system having a finite number of roots. 
Here and hereafter, 0*(s) stands for C(slog cs) , c denoting a constant in
dependent of s, and D is an upper bound on the number of roots of the 
given polynomial system. (For D, one may choose either the Bezout bound, 
Y\t di, di denoting the maximum degree in the i-th variable in all monomials 
of the system, or the Bernstein bound, which is much smaller for sparse sys
tems and equals the mixed volume of the associated Newton polytope, defined 
by the exponents of the monomials.) The cited record bound 0*(D3) is due 
to 35 but also has several other derivations and has been staying as a stable 
landmark for the multivariate polynomial system solving, much like the com
plexity bound 0{N3) for solving nonsingular linear system of N equations, 
which was supported by Gaussian elimination and stayed as a landmark and 
a record until Strassen's celebrated result of 1969. In fact, even in the case of 
solving non-degenerate polynomial system as well as for many subproblems 
and related problems, no known algorithms support any better bound than 
0(D3). This includes approximation of all real roots of a polynomial sys
tem (which is highly important due to applications to robotic and computer 
graphics), all its roots lying in a fixed n-dimensional box or disc, counting all 
roots in such a box or disc or all real roots, and even approximation of a single 
root. Some progress was achieved in 26, where a single root was approximated 
in 0*(3nD2) time, but under a strong restriction on the input polynomials. 

Our new algorithms support the computational cost estimate of 
0*(3nD2), for all the listed above subproblems, that is, for both of the count
ing problems, the computation of a single root, all real roots, and all roots 
in a fixed box or disc. More precisely, our bound is 0*(S3nD2) in the latter 
two cases, where S is the number of real roots or roots in the selected box or 
disc, respectively. In practical applications, such a number is typically much 
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less than D. The number of real roots grows as \D for a large class of input 
systems 37. See also for the sparse case 36. Thus, for all listed problems, we 
improve the known complexity estimates by an order of magnitude. 

We have a reservation from a theoretical point of view, that is, our main 
algorithm relies on the known effective algorithms for the computation of the 
normal form of monomials on the boundary of the monomial basis (see section 
4). These algorithms exploit structured matrices and in practice, apper to 
run faster than our subsequent computations (see 15, 2 9 ) , but their known 
theoretical cost bound are greater than the order of D3 (see 1 9) . 

Our paper addresses the problem of the asymptotic acceleration of the res
olution stage where the structure of the quotient algebra A (associated with 
the polynomial system) is already described by using the minimal number of 
parameters, that is, via the normal form of the monomials on the boundary 
of the basis. From a purely theoretical point of view, we have an alternative 
approach that avoids the normal form algorithms at the price of using the 
order of 0(12" D2) additional arithmetic operations 27 . This should be tech
nically interesting because no other known approach yields such a bound, but 
in this paper, we prefer to stay with our present, practically superior version, 
referring the reader to 27 on the cited theoretical approach. 

Our algorithms approximate the roots numerically, and in terms of the 
required upper bound 2~b (b is the bit precsion) on the output errors of the 
computed solution, we obtain the estimate C(log b). Within a constant factor, 
such an estimate matches the lower bound of 34 and enables us to yield a high 
output precision at relatively low cost; this gives us a substantial practical 
advantage versus the algorithms that only reach 0(b), because the solution 
of a polynomial system is usually needed with a high precision. We achieve 
this by using the matrix sign and inverse quadratic iterations, which converge 
with quadratic rate right from the start. All techniques and results can be 
extended to the case of sparse input polynomials (see remark 3.16, section 
3). In this case, the computation cost bounds become 0(DCp0iMuit) where 
CpoiMuit is the cost of polynomial multiplication, which is small when the 
polynomials are sparse (this cost depends on the degree of the polynomials, 
not only on an upper bound D on the number of roots). 

The factor 3" is a substantial deficiency, of course, but it is still much 
less than D for the large and important class of input polynomials of degree 
higher than 3. 

Our results require some other restrictions. First, we consider systems 
with simple roots or well separated roots. In the presence of a cluster, a 
specific analysis is needed 39 and deserves additional work, which is not in 
the scope of this paper. Secondly, we need the existence of a non-degenerate 
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linear form, which implies that the quotient algebra A is a Gorenstein algebra 
10,12. This is the case where the solution set is 0-dimensional and is denned 
by n equations. If we have more than n equations denning a 0-dimensional 
variety, we may take their n-random linear combination (see, e.g. n ) , which 
yields the required Gorenstein property, but this may introduce extra solutions 
that we will have to remove at the end. Finally, for approximation, our 
algorithms converge quadratically (using £>(log(b)) steps) but require certain 
nondegeneracy assumptions (such as uniqueness of the minimum of the value 
of |ft(C)|, where £ is a root and ft(x) a polynomial). The latter assumptions 
can be ensured with a high probability by a random linear transformation of 
the variables. Even if these assumptions are barely satisfied, the slowdown of 
the converge is not dramatic, because the convergence is quadratic right from 
the start. 

Similarly, we apply randomization to regularize the computations at the 
counting stages, and for the auxiliary computation of the non-degenerate lin
ear form in the dual space A. Then again, non-degeneracy is ensured proba
bilistically, and verified in the subsequent computation (that is, we stay under 
the Las Vegas probabilistic model where failure may occur, with a small prob
ability, but otherwise correctness of the output is ensured). 

Some of our techniques should be of independent interest. In particular, 
we extend the theory of structured matrices to the ones associated to mul
tivariate polynomials and show correlation among computations with such 
matrices and dual spaces of linear forms. We show some new non-trivial 
applications of the normal forms of polynomials of the quotient algebra. Fur
thermore, we establish new reduction from multivariate polynomial compu
tations to some fundamental operations of linear algebra (such as the matrix 
sign iteration, the quadratic inverse power iteration, and the computation of 
Schur's complements). 

Our progress has some technical similarity to the acceleration of the solu
tion of linear systems of equations via fast matrix multiplication (in particular, 
we also rely on faster multiplication in the quotient algebra defined by the in
put polynomials), but even more so, with the recent progress in the univariate 
polynomial rootfinding via recursive splitting of the input polynomial into fac
tors (cf. 5 , 30, 31, 3 2 ) . Although recursive splitting into factors may be hard 
even to comprehend in the case of multivariate polynomial systems, this is 
exactly the basic step of our novel recursive process, which finally reduces 
our original problem to ones of small sizes. Of course, we could not achieve 
splitting in the original space of the variables, but we yield it in terms of idem-
potent elements of the associated quotient algebra (such elements represent 
the roots), and for this purpose we had to apply all our advanced techniques. 
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This approach generalizes the methods of 5 and 31 to the multivariate case. 
The only missing technical point of our extension of the univariate splitting 
construction of 31 is the balancing of the splitting, which was the most recent 
and elusive step in the univariate case (cf. 31, 3 2 ) . It is a major challenge to ad
vance our approach to achieve balancing in our recursive splitting process even 
in the worst case (possibly by using the geometry of discriminant varieties) 
and, consequently, to approximate all the roots of any specific polynomial 
system in 0*(3"D2log6) arithmetic time. Another goal is the computations 
in the dual space, as well as with structured matrices. The latter subject is 
of independent interest too 40>28. 

Let us conclude this section with a high level description of our approach. 
Our solution of polynomial systems consists of the following stages: 

1. Compute a basic non-degenerate linear form on the quotient algebra 
A associated to a given system of polynomial equations. 

2. Compute non-trivial idempotent elements of A. 
3. Recover the roots of the given polynomial system from the associated 

idempotents. 
The quotient algebra A and the dual space of linear forms on it are defined 

and initially studied in section 2. Stage 1 is elaborated in section 4. Idempo
tents are computed by iterative algorithms of section 6. Section 7 shows how 
to recover or to count the roots efficiently when the idempotents are avail
able. The computations are performed in the quotient algebra, and they are 
reduced to operations in the dual space by using the associated structured 
(quasi-Toeplitz and quasi-Hankel) matrices. In section 3 we define the classes 
of such matrices, show their correlation to polynomial computations, and ex
ploit it to operate with such matrices faster. In section 5 we show how the 
combined power of the latter techniques and the ones developed for working 
in the dual space enables us to perform rapidly the basic operations in the 
quotient algebra and, consequently, the computations of sections 6 and 7. 

Stage 1 contributes 0 (3 n D 2 logD) ops to the overall complexity bound, 
assuming that the normal form of the monomials on the boundary of a basis 
is known. The computation of a nontrivial idempotent at stage 2 has cost 
0(3"-D2 log D log b), which dominates the cost of the subsequent root counting 
or their recovery from the idempotents. The overall complexity depends on 
the number of idempotents that one has to compute, which in turn depends 
on the number S of roots of interest. So far, we cannot utilize here the effective 
tools of balanced splitting, available in the similar situation for the univariate 
polynomial rootfinding. Thus, in the worst case, in each step we split out only 
a single root from the set of all roots, and then we need 5 idempotents. 
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2 Definitions and preliminaries 

Hereafter, R — C[a;i,. . . , xn] is the ring of multivariate polynomials in the 
variables x i , . . . ,xn, with coefficients in the complex field C. Z is the set 
of integers, N is its subset of nonnegative integers, L = C[xf,... ,x„] is 
the set of Laurent polynomials with monomial exponents in Z". For any 
a = ( a i , . . . , a„) £ Z n , x a is the monomial x a = a;"1 •••x%n. [E~\ is the 
cardinality (that is, the number of elements) of a finite subset E of Z™. "ops" 
will stand for "arithmetic operations" in the underlying coefficient ring or 
field. 

2.1 Quotient algebra 

To motivate and to demonstrate our study, we will next consider the univariate 
case, where we have a fixed polynomial / £ C[x] of degree d with d simple 
roots: f(x) = fa Yli=i(x ~ d)- The quotient algebra of residue polynomials 
modulo / , denoted by A = C[x]/(f), is a vector space of dimension d. Its 
basis is (1, x,... , a;d_1). Consider the Lagrange polynomials 

One immediately sees that Yli e« = 1 and e^e^ = ej(ej — 1) = 0 (for these 
two polynomials vanish at the roots of / ) . In other words, the Lagrange 
polynomials e* are orthogonal idempotents in A, and we have A = S i^ - e «-
Moreover, for any polynomial a £ A, we also have (a — a{Q))ei = 0, so 
that e* is an eigenvector for the operator of multiplication by a in A, for the 
eigenvalue a(Q). These multiplication operators have a diagonal form in the 
basis (ej) of A. According to a basic property of Lagrange polynomials, we 
have a = J2ia(d)^i(^), for any a £ A. Therefore, the dual basis of (e*) 
(formed by the coefficients of the e; in this decomposition) consists of the 
linear forms associating to a its values at the points Q. We will extend this 
approach to the case of multivariate polynomial systems, which, of course, 
will require substantial further elaboration and algebraic formalism. We refer 
the reader to 22, 23, 28, 38 for further details. 

Let / i , . . . , fm be m polynomials of R, defining the polynomial system 
/ i (x) = 0 , . . . , fm(x) = 0. Let / be the ideal generated by these polynomials, 
that is, the set of polynomial combinations ^2, hit of these elements. A = R/I 
denotes the quotient ring (algebra) defined in R by 7, and = denotes the 
equality in A. We consider the case, where the quotient algebra A — R/I is 
of finite dimension D over C. This implies that the set of roots or solutions 
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Z(I) = { ( e C ; / i ( C ) = . . . = fm(0 = 0} is finite: Z(I) = {&,... ,(d} with 
d < D. Then we have a decomposition of the form 

A = Ai®---®Ad, (1) 

where Ai is a local algebra, for the maximal ideal m ^ defining the root Q. 
From decomposition (1), we deduce that there exist orthogonal idempotents 
e i , . . . , ed satisfying 

ei + • • • + e,j = 1, and ê  e,- = 
f 0 if i? j , 
\ et if i = j . 

It I = Qi fl • • • (~l Qd is the minimal primary decomposition of / , we have 
e-iA ~ R/Qi, where Ai — ei A is a, local algebra, for the maximal ideal m ^ 
defining the root Q. Thus, to any root £ € Z, we associate an idempotent 
e c . 

2.2 Dual space 

Let R denote the dual of the C-vector space R, that is, the space of linear 
forms 

A: # - ) • C 

P >-»• A(p). 

(R will be the primal space for R.) Let us recall two celebrated examples, 
that is, the evaluation at a fixed point £, 

l c : R -*• C 

p^p(0, 

and the map 

(d» = ( d 1 r - - - ( d n ) ° - ) : i ? - * C 

P^fJ—T(dx1)
Ol"-(d«»)a"(p)(0), (2) 

where a = ( a i , . . . , an) is any vector from M1, and dXi is the partial derivative 
with respect to the variable Xj. For any b = {b\,... , bn) 6 N", we have 

(ja/xb^ _ f 1 if Vi',aj = 6j, 
10 otherwise. 
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Therefore, (da)a eNn is the dual basis of the primal monomial basis. Thus, we 
decompose any linear form A € R as 

A = ^ A ( x a ) d a . (3) 
aGN" 

Hereafter, we will identify R with C[[di , . . . ,d„]]. The map A - • 
SaeNn A( x a ) d a defines a one-to-one correspondence between the set of lin
ear forms A and the set C[[di , . . . d„]] = C[[d]] = { £ a g N „ Aad?] • • • d£" } of 
polynomials in the variables d i , . . . , d„. 

The evaluation at 0 corresponds to the constant 1, under this definition. 
It will be also denoted by So = d°. 

We will denote by A and also by I1- the subspace of R made of those 
linear forms that vanish on the ideal / . 

We now define multiplication of a linear form by a polynomial (R is an 
.R-module) as follows. For any p € R and A 6 R, we write 

p*A: R^C 

q H-> A(pq). 

For any pair of elements p £ R and a € N, a > 1, we have 

(dXi)
a(xip){0) = a(dXi)

a-1p(0). 

Consequently, for any pair (p,a), p 6 R, a = ( a i , . . . ,on) € N™ (where 
ai 7̂  0 for a fixed i), we obtain 

Xi*d*{p) =da{xip) 

i • • • d i _ 1 d ; d i + + • • • d „ " ( p ) , 

that is, Xi acts as the inverse of di in C[[d]]. For this reason such a represen
tation is referred to as the inverse systems (see, for instance, 2 0 ) . If a; = 0, 
then Xi *d a (p) = 0 , which allows us to redefine the product p * A as follows: 
Proposition 2.1 For any pair p,q 6 R and any A(d) € C[[d]], we have 

p*A(q)=A(pq)=ir+(p(d-1)A(d))(q), 

where ix+ is the projection mapping Laurent series onto the space generated 
by the monomials in d with positive exponents. 
This yields the following algorithm: 
Algorithm 2.2 F O R ANY POLYNOMIAL p € (•xa)aeE AND A VECTOR 

[ A ( x / 3 ) ] / 3 6 £ ; + i r , COMPUTE THE VECTOR [ p * A ( x / 3 ) ] / 3 e F as follows: 

. Write A(d) = £ / 3 e £ ; + FA(xV / 3-
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• Compute the product p(d) = p(d 1)A(d) in C[d, d 1], and 

• keep the coefficients pa of da for a £ F. 

3 Quasi-Toeplitz and quasi-Hankel matrices 

In this section we describe the structure of the matrices and some tools that 
we will use for our algorithm design. 

Let us recall first the known arithmetic complexity bounds for polynomial 
multiplication (see 2, pp. 56-64), which is the basic step of our subsequent 
algorithms. Let Cp0iMuit{E,F) denote the number of ops (that is, of arith
metic operations) required for the multiplication of a polynomial with support 
in £ by a polynomial with support in F. 

Theorem 3.1 LetE+F = {a1 = (a^\... ,0$), i = l,... ,N} with\a^\ = 
^ • or*' = di for i = 1 , . . . ,N and d = maXi(di). Let CfC;Evai(G) ops suffice 
to evaluate a polynomial with a support G on a set of K points. Then we have 

CPolMut(E,F) = O {CN.iEvai(E) + CN,Eval{F) + N(\og2(N) + log(d))) . 

Proof. Apply the evaluation-interpolation techniques to multiply the two 
polynomials (cf. 2 ) . That is, first evaluate the input polynomials on a fixed 
set of N points, then multiply pairwise the computed values to obtain the val
ues of the product on the same set, and finally interpolate from these values 
and compute the coefficients of the product by applying the (sparse) polyno
mial interpolation algorithm (cf. 2 ) . By summarizing the computational cost 
estimates, we obtain the theorem. • 
For special sets E and F, we have better bounds. 
Theorem 3.2 Let Ed = [0, . . . , d - 1] C N. Then 

CPoiMuit(Ed,Ed) = 0(dlog(d)). 

Theorem 3.3 Let Ec = { ( a i , . . . ,an) ; 0 < at < Ci - 1}, Ed = 
{(/3i,... ,/?„) ; 0 < Pi < di - 1}, c = max{ci,... ,cn}, and d = 
max{di,... ,dn}. Then we have 

Cp0iMuit(Ec,Ed) = 0(Mlog(M)), 

where M — fn, and f - c + d + 1. 
Theorem 3.4 Let EfiTl be the set of exponents having total degree at most f 
in n variables. Then 

Cp0lMult(Ec ) = 0{T log2(T)), 

where T = ( n + c + ) is the number of monomials of degree at most c + d in n 
variables. 
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Remark 3.5 Theorems 3.1 and 3.3 correspondly respectively to lattice points 
in a product of intervals or in the scaled standard simplex, can be extended 
to the computations over any ring of constants (rather than over the complex 
field) at the expense of increasing their complexity bounds by at most the fac
tors of loglog(./V) or log log(M), respectively2. Theorem 3.4 can be extended 
similarly to any field of constants having characteristic 0. 

Next, by following 28-27, we will extend the definitions of Toeplitz and 
Hankel matrices to the multivariate case. As we will see, these structures are 
omnipresent, when we solve polynomial systems. 
Definition 3.6 Let E and F be two finite subsets of N" and let M = 
(ma^aeE^eF be a matrix whose rows are indexed by the elements of E and 
columns by the elements of F. Let i denote the Ith basis coordinate vector of 
W. 

• M = [ma!J3]asE,/3eF is an (E, F) quasi-Toeplitz matrix if and only if, for 
all a E E,(3 £ F, the entries ma^ = ta-p depend only on a — /3, that 
is, if and only if, for i — 1 , . . . , n, we have ma+ifi+i = ma^, provided 
that a, a + i E E;(3,/3 + i 6 F; such a matrix M is associated with the 
polynomial TM(x) = E u e E + F ^ " -

• M is an (E, F) quasi-Hankel matrix if and only if, for all a £ E,/3 £ F, 
the entries ma^ = ha+p depend only on a + 0, that is, if and only 
if, for i = 1 , . . . ,n, we have ma-i^+i = ma^ provided that a,a — 
i € E; /?, (3 + i £ F; such a matrix M is associated with the Laurent 
polynomial HM(d) = E U S B - F M U -

For E = [0, . . . , m -1] and F = [0 , . . . , n - 1] (resp. F = [-n +1,... , 0]), 
definition 3.6 turns into the usual definition of Toeplitz (resp. Hankel) matri
ces (see 2 ) . Quasi-Toeplitz matrices have also been studied under the name 
of Multilevel Toeplitz matrices (see, e.g., 4 0 ) , in the restricted special case 
where the sets E and F are rectangular (ie. a product of intervals). For our 
study of polynomial systems of equations, using the latter restricted case is 
not sufficient, and our more general definitions are required. 

The definitions can be immediately extended to all subsets E, F of Z n , if 
we work with the Laurent polynomials. 

The classes of quasi-Toeplitz and quasi-Hankel matrices can be trans
formed into each other by means of multiplication by the reflection matrix, 
having ones on its antidiagonal and zeros elsewhere. 

Definition 3.7 Let TTE '• L —> L be the projection map such that 7T£:(xQ) = 
x a if a £ E and nE(*a) = 0 otherwise. Also let TTE : C[[d]] -> C[[d]] 
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denote the projection map such that 7r£(da) = d a if a G E and 7T£(cP) = 0 
otherwise. 

We can describe the quasi-Toeplitz and quasi-Hankel operators in terms 
of polynomial multiplication (see 26, 2 5 ) , and the next proposition reduces 
multiplication of an (E, F) quasi-Toeplitz (resp. quasi-Hankel) matrix by a 
vector v = [vp] E CF to (Laurent) polynomial multiplication. 
Proposition 3.8 The matrix M is an (E,F) quasi-Toeplitz (resp. an {E,F) 
quasi-Hankel) matrix, if and only if it is the matrix of the operator TTE o HTM O 
•Kp (resp. •KE ° MHM ° nF), where for any p € L, /zp : q i-> pq is the operator 
of multiplication by p in L. 

Proof. (See 25.) We will give a proof only for an (E, F) quasi-Toeplitz matrix 
M — {Ma^)aeE,peF- (The proof is similar for a quasi-Hankel matrix.) The 
associated polynomial is TM{X) = Eues+F*"-*" - ^or a n ^ v e c t ° r v = [v&\ ^ 
C F , let v(x) denote the polynomial E s e F VPK^- Then 

TM(x)V(x)= Y, X U + / 3 * U ^ 
ueE+F,0€F 

a=u+/3€F+2F \0£F J 

where we assume that tu — 0 if u £ E + F. Therefore, for a e E, the 
coefficient of xQ equals 

5 3 ta-0 V0 = 5 3 M<*,P V0> 
/3€F /3€F 

which is precisely the coefficient a of Mv. D 

A l g o r i t h m 3.9 MULTIPLICATION OF THE (E,F) QUASI-TOEPLITZ (RESP. 

QUASI-HANKEL) MATRIX M = (Ma,p)aeE,/3eF BY A VECTOR V = [vp] e CF: 

• multiply the polynomials TM = E u e £ + f *u x " (resp. HM{&) = 
E u e . E - F ^ud" ; by v(x) = T^peF v ^ 0 (resP- v ( d _ 1 ) = E/3eF vpd~0) 

• and output the projection of the product on xB (resp. dE). 

Definition 3.10 Cp0iMuit{E,F) denotes the number of ops required to mul
tiply a polynomial with a support in E by a polynomial with a support in F. 
Clearly, algorithm 3.9 uses CPoiMuu{E + F,F), resp. CPoiMuit(E - F, -F), 
ops. 
Propos i t ion 3.11 
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a) An (E,F) quasi-Hankel (resp. an (E,F) quasi-Toeplitz) matrix M can 
be multiplied by a vector by using 0(N log2(iV) + Nlog(d) + CM,N) ops, 
where d = degHM (resp. degTM) , N = [E-2F] (resp. [E '+ 2F]), 
and CM,N denotes the cost of the evaluation of all monomials of the 
polynomial HM (resp. TM) on a fixed set of N points. 

b) In particular, the ops bound becomes 0{M log(M)) where E + F = 
EC,F = Ed and Ec,Ed and M = (c + d + 1)" are defined as in theo
rem 3.3, whereas 

c) the bound turns into 0(Tlog2:(T)) where E + F — Ec>n,F = E^n and 
Ec<n,Edtn, and T = (n+c+ ) are defined as in theorem 3-4-

Proof. Reduce the problem to computing the product of the two polynomials 
HM(X) (resp. TM(X)) and V(x) and then apply theorems 3.1-3.4. • 
Applying these results, we can bound the number of ops in algorithm 2.2 as 
follows 
Propos i t ion 3.12 For any polynomial p £ R with support in E, for any 
vector [A(x.a)]aeE+F (with A € R), the vector \p*A(x.P)]peF can be computed 
in 0([E + F | log 2 ( |£ + F])) ops. 

Once we have a fast matrix-by-vector multiplication, a nonsingular linear 
system of equations can be also solved fast by means of the conjugate gradient 
algorithm, which is based on the following theorem (16, sect. 10.2). 

Theo rem 3.13 Let W v = w be a nonsingular linear system of N equations. 
Then N multiplications of each of the matrices W and WT by vectors and 
0(N2) additional ops suffice to compute the solution v to this linear system. 

Note that WT is a quasi-Toeplitz (resp. quasi-Hankel) matrix if so is W, 
and then both matrices can be multiplied by a vector quickly (see proposition 
3.11). Therefore, in the cases of quasi-Toeplitz and quasi-Hankel matrices W, 
theorem 3.13, yields a fast algorithm for solving the linear system Wv = w. 
We will also need the following related result. 
Theo rem 3.14 28 . Let W be an N-by-N real symmetric or Hermitian ma
trix. Let S be a fixed finite set of complex numbers. Then there is a randomized 
algorithm that selects N random parameters from the set S independently of 
each other (under uniform probability distribution on S) and either fails with 
a probability at most 2TSI— or Performs 0(N) multiplications of the ma
trix W by vectors and 0{N2 log(iV)) other ops to compute the rank and the 
signature of W. 

Hereafter, random selection of elements of a set S as in theorem 3.14, will be 
called sampling. 
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Proof. To support the claimed estimate, we first tridiagonalize the 
matrix W by the Lanczos randomized algorithm (2, pp.118-119), which 
involves an initial vector of dimension N and fails with a probability at 
' 2,gj if the N coordinates of the vector have been sampled at random from 
the set S. The above bound on the failure probability and the cost bound of 
O(N) multiplications of the matrix W by vectors and 0(N2 log(JV)) other 
ops of this stage have been proved in 33. Then, in 0{N) ops, we compute 
the Sturm sequence of the JV values of the determinants of all the k x k 
northwestern (leading principal) submatrices of W for k = 1,...,N and 
obtain the numbers N+ and iV_ of positive and negative eigenvalues of W 
from the Sturm sequence (cf., e.g., 3 ) . These two numbers immediately define 
the rank and the signature of W. • 

Combining proposition 3.11 with theorems 3.13 and 3.14 gives us the next 
corollary. 

Corollary 3.15 For an N x N quasi-Toeplitz or quasi-Hankel matrix W, the 
estimates of Theorems 3.13 and 3.14 turn into 0{N2 log(iV)) ops if the matrix 
has a maximal (c, d) support where c + d — N. They turn into 0(N2 log2(N)) 
ops if the matrix has a total degree (c, d) support where c + d = 0(N) and into 
0((log2(N) + \og(d))N2 + CW,N) otherwise where d and CW,N are defined as 
in proposition 3.11 (a) for M = W. 

Remark 3.16 Hereafter, we will refer to the matrices of case (b) in proposi
tion 3.11 as the matrices with support of the maximal degree (c,d) and to the 
matrices of case (c) as the ones with support of the total degree (c, d). Fur
thermore, stating our estimates for the arithmetic complexity of computations, 
we will assume that the input polynomials have the maximal degree (c, d) sup
port. That is, we will rely on theorem 3.3 and proposition 3.11 (b) and we will 
express the estimates in terms of the cardinality of the supports E and/or F 
or in terms of an upper bound D of the number of common roots of the input 
polynomials. The estimates can be easily extended to the other cases based 
on theorems 3.1 or 3.4 and proposition 3.11 (a) or (c) instead of theorem 3.3 
and proposition 3.11 (b). In the latter case (theorem 3.4 and proposition 3.11 
(c)), the cost estimates increase by the factors log(D), log(|_-E"|) or log(L-F~|), 
respectively. In case of using theorems 3.1 and proposition 3.11 (a), the es
timates are expressed in terms of the bounds Cp0iMuit(G,H) or CM,N for 
appropriate sets G and H, matrix M and integer N. The latter case covers 
sparse input polynomials for which the respective bounds Cp0iMuit{G,H) and 
CM,N are smaller than for the general (or dense) input, though they are not 
expressed solely in terms of the cardinality D (they also depend on the degree 
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of the monomials or the cardinality of the supports of the input polynomial 
system). 

4 Computation of a non-degenerate linear form 

In this section, we will compute a non-degenerate linear form on A provided 
that we are given a basis (xa)aeE of A and the normal form of the elements 
on the boundary of this basis. This is the case, for instance, when we have 
computed a Grobner basis of our ideal I for any monomial ordering 7 or when 
we apply any other normal form algorithm 24>29. 
Definition 4.1 

• Let Vi = (<$i,i,... ,Si<n) € N™, where 6ij is the Kronecker symbol. 

• For all A C N1, SI (A) = {a € N1 : a € A or 3i € {1,... ,n} ,a - vt E A}. 

• Na, for a E il(E) is the normal form of the monomial xamodI, i.e. the 
canonical representative of its class modulo the ideal I. Na = x a if a E E 
and 

peE 

ifaen(E)-E. 

Our goal is to obtain the coefficients r ( x a ) for a € E+E+E where r € A = I1-
is a generic linear form. We will compute them, by induction, under the 
following hypotheses: 

Hypothesis 4.2 

aeE is stable under derivation, that is, a = a' + V{ £ E implies that 
a' eE. 

• Na, the normal form of x a is available for every a £ Q, (E). 

• The values ra = r (xa) are available for all a S E, where r is not degen
erate € A = 7X . 

For the third part, we can remark that a random choice of r (x a ) will imply 
with a high probability that r does not degenerate. Our procedure is based 
on the following property: 
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Propos i t ion 4.3 For each a E ft (E), we have Ta— r (Na) = Y^B^E na,&T&-
This value can be computed by applying O (D) ops, where D = [ £ ] . More 
generally, V7 6 E we have the following inductive relation : 

0€E 

Now assume that we have computed all the values T$ , for j3 E ft (E), and 
let a = a0 + vt G ft (ft (£)) with a0 € ft (£) . Then 

r (x a) = T (xiNao) = ^2 naOi0T (xiX0) . 
0eE 

We know all the na0tp and all the r (ZJX^) , because /?+f» € ft (-E). Therefore, 
we obtain rQ = X /̂3e£ nao,/3T/3+«; by computing a scalar product. Recursively, 
this leads us to the following inductive definition of the "levels" ft,. 
Definition 4.4 Write ft0 = E, ftx = ft (E) and ft* = ft ( f t ^ ) n (E + E + 
.E), i — 2 , 3 , . . . , and wn'fe /i = max{|a | : a E E} so that E + E + E = ft2/j. 

P ropos i t ion 4.5 For every a 6 ftj, there is a' EN1 and a.\ E fti — fto such 
that a = a.\ + a' with \a'\ < i — 1 and for all 0 E E we have /3 + a' E fti_i. 

Proof. Assume that i > 0. Let aE^liCE + E + E. Then a can be 
decomposed as follows: a = 70+71+72 with 70,71,72 E E and I71 +72I = i-
As i > 1 there exists a ' = 71 + 72 — Vj E N", and because ( x a ) a e £ is stable 
by hypothesis 4.2, we have a' E E + E. It follows that a = a\ + a1 where 
Q l = 70 + Vj E fti and \a'\ <i-l. Therefore, V/3 E E, /3 + a' E fti_i, which 
completes the proof. D 

Assume now that we have already computed all the values Tp for /? E ftj-i. 
Then, according to proposition 4.5, for any a € fti, we have a = a.\ +a', with 
ai E fti and \a'\ <i — l. Thus, if a-i E fti — fto, we have 

r ( x a ) = r ( x a i x a ' ) = Y, n°iM*f,+a') 
P&E 

with 0 + a' E fti-i; otherwise if Qi E fto, we have a = a i + a' € ftj_i. In 
other words, we can compute by induction the values of r on fti from its values 
on ftj_i. This yields the following recursive algorithm for the computation of 
T ( X " ) with aE E + E + E. 
Algor i thm 4.6 COMPUTE THE FIRST COEFFICIENTS OF THE SERIES ASSO

CIATED WITH A LINEAR FORM T OF Ix as follows: 

1. For i from 1 to 2/i do 
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for each a = ao + a.\ £ fli with ao and ax as in proposition 4-5 compute 

End for 

2. Compute and output the polynomial S = YlaeE+E+E Ta<^a • 

Propos i t ion 4.7 The arithmetic complexity of algorithm 4-6 is O (3nD2). 
Proof. For each element a£E + E + E,we compute ra in O (D) arithmetic 
operations, and there are at most O {3nD) elements in E + E + E, which 
gives us the claimed arithmetic complexity estimate. • 

5 Arithmetic in the algebra A 

Our algorithms of the next sections perform computations in A efficiently 
based on the knowledge of a certain linear form on A (such as the one com
puted in the previous section), which induces a non-degenerate inner product. 
More precisely, we assume the following items available: 

Basic Set of Items. 

• a linear form r 6 A = I1-, such that the bilinear form r(a b) from Ax A 
to C is non-degenerate, 

• a monomial basis {x.a)a^E of A, 

• the coefficients (r(xQ))QgF where F = E + E + E. 

The number of elements in E is the dimension D of A over C We describe 
basic operations in the quotient ring A, in terms of the following quasi-Hankel 
matrix: 
Definition 5.1 For any A in A and for any subset F of W1, let H^ denote 
the quasi-Hankel matrix, Hj[ = (A(x a + / 3)) a i06f. 

By default we will assume dealing with the maximal degree support when
ever we state our arithmetic complexity estimates (see remark 3.16). 
Propos i t ion 5.2 The matrix H^ can be multiplied by a vector by using 
0(3"L.Fllog(3n |Fl)) ops. 
Proof. Apply proposition 3.11 (b) to the (F,F) quasi-Hankel matrix H^ and 
observe that [F + F + F] = 3" [F]. D 
Combining corollary 3.15 and proposition 5.2 implies the following result: 
Propos i t ion 5.3 Checking if the linear system H^u = v has a unique so
lution and if so computing the solution requires 0(3n|_.F'|2log(3n[.Fl)) ops. 
The same cost estimate applies to the computation of the rank of the matrix 
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H^, which involves randomization with \F~\ random parameters and has fail
ure probability of at most ([F] + 1) [F\/ (2[S]) provided that the parameters 
have been sampled from a fixed finite set S. 

5.1 Dual basis 

As r defines a non-degenerate bilinear form, there exists a family of polyno
mials ( w 0 ) o 6 # such that r (x aw /3) = datg, 5a>f} being Kronecker's symbol, 
<>a,a — 1, &a,@ — 0 if ct 7̂  /? . The family (wa)aeB is called the dual basis of 
(x a )ae£ for T. 
Proposition 5.4 (Projection formula). For any p € R, we have 

p=Y, r(P™a)x
a = J2 r(Pxa)wa. (4) 

Proof. See 6 , 9 . • 

Definition 5.5 For any p S A, denote by \p]x and [p]w the coordinate vectors 
of p in the bases ( x a ) Q e # and {vfa)a^B, respectively. 

Let wQ = ]C,3e£:u;/3,ax'3) ^et WT = (wa,0)a,peE be the coefficient matrix. 
By the definition of the dual basis, 

r ( w a x ^ ) = ^ ^ Q , ^ T ( x ' 3 ^ ) (5) 
0eE 

is 1 if a = 7 and 0 elsewhere. In terms of matrices, equation (5) implies that 

HT WT = lD (6) 

where Hr = H^ = (r(x /?+7)) /g)Te£;. From the definition of WT and equation 
(6), we deduce that 

[p]x=Wr[p]w, b ] w = H r [ p ] x . (7) 

The next result follows from proposition 5.3. 
Proposition 5.6 For any p £ A, the coordinates [p]x of p in the monomial 
basis can be computed from its coordinates [p]w in the dual basis by using 
0(3nD2 log(3n£>)) ops. 

5-2 Product in A 

We apply projection formula (4) and for any / e R deduce that / = 
52a£ET(fxC")w<x - £ Q £ E / * T ( x Q ) w a in A Furthermore, by expressing the 
linear form / * r as a formal power series, we obtain f*r = J2aeNn Z*1"^") d a , 
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so that the coefficients of (da)a£E in the expansion of / * r are the coefficients 
[/]w of / in the dual basis (w Q ) a e g . 

Similarly, for any f,g € A, the coefficients of (da)a^E in fg*r are the 
coefficients [fg]w of / g in the dual basis (w Q ) a € £ ; . This leads to the following 
algorithm for computing the product in A as follow: 

Algor i thm 5.7 F O R ANY PAIR f,g € (x.a)aeE, COMPUTE THE PRODUCT fg 
IN THE BASIS (xa)a€E OF A as follows: 

1. Compute the coefficients of (da)aeE in the product f g*T. 

2. Obtain the coefficients [f g]w from the first coefficients of fg-kr. 

3. Solve in u the linear system [f g]w = ET u. 

Output the vector u, which is the coordinate vector [f g]x of f g in the mono
mial basis of A. 

Proposition 5.8 The product f g can be computed in 0(3nD2 log(3nD)) ops. 
Proof. / g -k T is the product of polynomials with supports in — E or 
E + E + E. Such a product can be computed in 0(3"Dlog2(3".D)) ops (see 
proposition 3.11 and remark 3.16 and observe that [E + E + E] = O (3 n [# l ) ) . 
The complexity of the third step is bounded according to proposition 5.3 
(with F = E). a 

5.3 Inversion in A 

The projection formula of proposition 5.4 implies that fxa = J2BSE f * 
r (xQ +^)w /3, which means that [ / x a ] w is the coordinate vector [/ * 
T(xa+P)]peE: that is, the column of the matrix H/*T indexed by a. In other 
words, [ /x Q ] w = H/*r [x a ] x . By linearity, for any g 6 A, we have 

[/3]w = H/*r[5]x = HT [fg]x, 

according to (7). Thus, if fg = 1, that is, if g — / _ 1 , we have H/*r[g]x = 
Hr [l]x . This leads to the following algorithm for computing the inverses (re
ciprocals) in A: 
A l g o r i t h m 5 . 9 F O R ANY / £ (xa)aeE, VERIFY WHETHER THERE EXISTS 

THE INVERSE (RECIPROCAL) OF / G A AND IF SO COMPUTE IT. 

1. Compute v = Hr [ l]x . 

2. Solve in u the linear system H/*ru = v or output FAILURE if the matrix 
HT is not invertible. 
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Output the vector u, which is the coordinate vector [ / - 1 ] x of f~l in the mono
mial basis of A. 
By combining propositions 5.2, 5.3, and remark 3.16, we obtain 
Proposition 5.10 The inverse (reciprocal) f~l of an element f of A can be 
computed by using 0(ZnD2 log(3"D)) ops. 

6 Iterative methods 

Our algorithms for the root approximation will essentially amount to comput
ing non-trivial idempotents in the quotient algebra A by iterative processes 
with the subsequent simple recovery of the roots from the idempotents. The 
algorithms work in CD, and we write will i = y/^-T. More rudimentary uni
variate versions of such algorithms were studied in 5. We will use the basic 
operations in the quotient algebra A in order to devise two iterative methods, 
which will converge to non-trivial idempotents. We will first consider iteration 
associated to a slight modification of the so-called Joukovski map (see 1 7 , 5 ) : 
z >->• \(z + 1) and its variant z !-• \{Z~\)- The two attractive fixed points 
of this map are 1 and —1; for its variant, they turn into i and —i. 
Algorithm 6.1 SIGN ITERATION. Choose UQ = h e ( x a ) a £ £ and recursively 
compute uk+i = \{uk - ±) e A, k - 0 , 1 , . . . . 
By applying proposition 5.10 and remark 3.16, we obtain the following result. 
Proposition 6.2 Each iteration of algorithm 6.1 requires 0(3nD2log(3nD)) 
ops. 
Proof. Apply proposition 5.3 and remark 3.16 to estimate the arithmetic cost 
of the computation of the inverse (reciprocal) of an element of A. To yield the 
claimed cost bound of proposition 6.2, it remains to compute a linear combi
nation of un and u~l in O(D) ops, by direct operations on vectors of size D. • 

Hereafter, 5R(/i) and ^t(h) denote the real and the imaginary parts of a 
complex number h, respectively. Recall that we write ( to denote the common 
roots ( £ Z (I) of given polynomials / i , . . . ,fm. 

Remark 6.3 In proposition 6.4 we will assume that J(h(Q) ^ 0 for all 
£ € Z (I) and in proposition 6.6 that \h(Q \ is minimized for a unique root 
C £ Z (J). These assumptions are satisfied for a generic system of polynomials 
or a generic polynomial h. 

Proposition 6.4 The sequence (uo,Ui,...) of algorithm 6.1 converges 
quadratically to a = 5^3(h(<-))>o eC ~ Es(),(())<oeC' and we have 

| K - a\\ < K x p2" 
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(for some constant K), where 

p — maa;cJ(/j(C))>0)CeZ(/) 

p = maa;cj(h(£))<o)c6.z(/) 

i = y/—\, and p — max{p+ ,p }. 
Proof. Apply the classical convergence analysis of the Joukovski map (see 17) 
to the matrices of multiplication by un in A, whose eigenvalues are {un((),( 6 
2(1)}. • 
Let 

E eC 
HHC))>o 

= | (1 + *), = E 
3(MO)<o 

eC = | ( l - ^ ) 

denote the two sums of the idempotents associated to the roots ( £ Z such 
that 3(/i(C)) > ° a n d S(/i(0) < 0, respectively. 

If h(x) is a linear function in x, then each of the idempotents e + and 
e~ is associated with all the roots lying in a fixed half-space of C" defined 
by the inequalities 3(/i(C)) > 0 or S(ft(£)) < 0. Conversely, an appropri
ate linear function h(x) defines the idempotents e + and e~ associated with 
any fixed half-space of C". Furthermore, for any fixed polytope in C™ de
fined as the intersection of half-spaces, we may compute the family of the 
associated idempotents whose product will be associated with the polytope. 
In particular, any bounded box is the intersection of 4n half-spaces, and the 
associated idempotent can be computed in 4n applications of algorithm 6.1. 
Let us specify the case where the polytope is the almost flat unbounded box 
approximating the real manifold Rn = {x : 5$(xi) = 0, i = 1 , . . . , n} . In this 
case, the choices of h = x% — e and h = Xi + e allow us to approximate the two 
idempotents, 

e.-« = E 
S(Ci)<e 

eC> e r = E ec . 

Their product can be computed in 0(3nD2 log(3n£>)) ops to yield rjiC = 
5Z|9(C0I<«e^' anc* *^e P r 0 ( m c t r« — ri,f'" rn,<f c a n De computed in 
0(3nD2 log(3n.D)) ops, to yield the sum of the fundamental idempotents 
whose associated roots of the polynomial system are nearly real. 
Algorithm 6.5 COMPUTING THE SUM OF THE FUNDAMENTAL (NEARLY 
REAL) IDEMPOTENTS. 
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• for i from 1 to n do 

UQ - Xi± e; ui := | ( u 0 - ^ ) in A; k := 1; 

while \\uk - itfc—1|| < 2~b do { uk+1 := \{uk - ±); k := k + 1 } 

Compute efe and r ^ . 

• Compute and output the product re = ri iC • • -Tn>e in A. 

According to propositions 6.2 and 6.4 and remark 3.16, we have 

Proposition 6.6 An approximation of re (within the error bound e - 2~b) 
can be computed in 0(p3nD2 log(3n.D)) ops, where 

U = fi(b:P) =log\b/log (p)\ (8) 

and 

p = maxi{ maa;cj(C.)>ojC62(/)|^pf |, 

maxcj (C j )<o,ceZ(/) |^rrl } 
(9) 

The second iterative method is the quadratic power method: 
Algor i thm 6.7 QUADRATIC POWER ITERATION. Choose u0 — h e (xa)aeE 
and recursively compute u„_|_i = u\ 6 A, n = 0 , 1 , . . . . 
Each step of this iteration requires at most O (3nZ?2 log (3n-D)) ops, and we 
have the following property: 
Proposition 6.8 An approximation (within the error bound e = 2~b) of the 
idempotent e^ such that a unique simple root £ minimizes \h\ on Z(I) can be 
computed in O (i/3"D2 log (3nD)) ops, where 

!/ = !/(&, 7) = log (&/| log (7) | ) , (10) 

7 = 1 ^ 1 (11) 

and |/i(C')l is the second smallest value of \h\ over Z(I). 
Proof. We rely on the convergence analysis of the quadratic power method 
applied to the matrices of multiplication by un in A, whose eigenvalues are 
{u„(0,Ce.Z(/)}. n 
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7 Counting and approximating the roots and the real roots 

In this section we will apply the techniques and algorithms of the previous 
sections to the problems of counting and approximation of the roots of the 
system p = 0. 

In the algorithms for counting roots, we will use the randomization re
quired to apply theorem 3.13. The resulting randomized algorithms and 
the computational complexity estimates for counting (excluding preprocessing 
stage of subsection 7.5) will apply to any zero-dimensional polynomial system. 

In the approximation algorithms we do not need randomization except 
for the ensurance of the assumption of propositions 6.4 (cf. remark 6.3), but 
the estimates for the computational cost depend on the parameters p and 7 
of the two latter propositions (cf. equations 8, 11) and remain meaningful 
unless these parameters are extremely close to 1. 

7.1 Counting the roots and the real roots 

Theorem 7.1 25. The number of the roots (resp. real roots) of the system 
p = 0 is given by the rank (resp. the signature) of the quasi-Hankel matrix 
H*. 

Theorem 7.1, corollary 3.15, and remark 3.16 together imply the following 
result. 
Corollary 7.2 The numbers of the roots and of the real roots of the polyno
mial system p = 0 can be computed by a randomized algorithm that generates 
D random parameters and in addition performs 0(3nD2 log(3".D)) ops. If the 
random parameters are sampled from a fixed finite set S, then the algorithm 
may fail with a probability at most (3"Z> + 1) 3"£>/ (2[S]). 

7.2 Approximation of a root 

Application of algorithm 6.7 in A yields the following theorem. 
Theorem 7.3 The idempotent corresponding to a root £ that maximizes the 
absolute values |/i(C)| of a fixed polynomial h(x) can be approximated (within 
an error bound e = 2~b) by using 0(3nD2v\og(3nD)) ops where 1/ is defined 
in equations (10) and (11) of Proposition 6.8. 

The latter cost bound dominates the cost of the subsequent transition 
from the idempotent to a root. 

Theorem 7.4 The n coordinates of a simple root £ can be determined from 
the idempotent e^ in (D(3nD2 log(3"Z?)) ops. This bound increases by the 
factor of n if the root is multiple. 
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Proof. We compute Je^ in A (where J is the Jacobian of the n equations) 
by algorithm 5.7. According to 25, 28, in the case of a simple root, we have 

H f [ J e c ] x = A [ C ° W , A € G 

This vector is computed at the arithmetic cost within the complexity bound 
of the proposition 5.2 (cf. 2 8 ) , and this immediately gives us the coordinates 
of the root ( if xE contains 1, x\,... ,xn, which is generically the case. If the 
root is not simple, then, according to the relation 

Xi J eQ = Q J e<j 

(see 25, 28, 9 ) , we recover the coordinates of (, by computing n + 1 products 
in A (by algorithm 5.7). • 

7.3 Approximation of a selected root 

In view of theorem 7.4, it is sufficient to approximate the idempotents asso
ciated to the roots. 

Suppose that we seek a root of the system p = 0 whose coordinate Xi is 
the closest to a given value u € C Let us assume that u is not a projection 
of any root of the system p = 0, so that xi — u has the inverse (reciprocal) in 
A. Let /i(x) denote such an inverse (reciprocal). We have h(x)(xi - u) = 1 
and h{C,) = , 1 . Therefore, a root whose coordinate X\ is the closest to u\ 
is a root for which |/i(C)l 1S t n e largest. Consequently, iterative squaring of 
h = /i(x) shall converge to this root. 

The polynomial h can be computed by using 0(3nD2i>\og(3nD)) ops for 
v of equations (10) and (11) (see 28, section 3.3.4). 

One may compute several roots of the polynomial system by applying the 
latter computation (successively or concurrently) to several initial values u. 

7-4 Counting nearly real roots and the roots in a polytope 

As long as we have (a close approximation to) the idempotent r associated 
with a fixed polytope, we may restrict our counting and approximation al
gorithms to such a polytope simply by moving from the basic nondegenerate 
linear form r to the form r * r (by using 0(3nD2 log(3"D)) ops). Let us spec
ify this in the case where the polytope is the nearly flat box approximating 
the real space Rn (cf. algorithm 6.5 and proposition 6.6). 

Let Af — rtA denote the subalgebra of A corresponding to the (nearly) 
real idempotents for a fixed e = 2~~b. 
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We may restrict our computation on Af by computing the linear form 
r ' = r£ * T (in 0(3nD2 log(D)) ops, according to proposition 3.12), and we 
have the following properties: 
Proposition 7.5 

• The linear form T' = re * r defines a non-degenerate inner product on 

• The number of nearly real roots (counted with their multiplicities) is the 
rank of the matrix H^^ = (r£ • r (x ' 3 + 7 ) ) / 3 i 7 £ F. 

• Let E' be a subset of E such that the submatrix Hf, is of the maximal 
rank. Then E' is a basis of At. 

Proof. See 28. D 
This leads to an algorithm for computing the rank of H^,. Assuming (8) and 
(9), we deduce the following result from theorem 3.14. 
Proposition 7.6 The number of all nearly real roots can be computed by 
using (9(/i3nI>2log(3"L>)) ops (for n of (8) and (9)). 

7.5 Approximation of nearly real roots and the roots in a box. 

To compute a nearly real root as well as a root lying in a fixed box in C™ 
maximizing a given function \h\, we may apply algorithm 6.7 in A (or Af) 
and proposition 6.8 and obtain the following theorem: 

Theorem 7.7 A nearly real root (as well as a root lying in a fixed box) that 
maximizes a function \h\ can be computed (up to an error e = 2~b) by using 
0((n + v) 3"£>2 log(3n£>)) ops for n and v of equations (8)-(ll). 

This process can be extended to compute the other roots via deflation. That 
is, we replace re by r'e — r£ — e^, compute r " = r'e * r and apply the same 
iteration to compute the next (real) root, where \h\ takes on its second smallest 
value over Z(I). We can also restrict our computation to a fixed box by 
using the algorithm of subsection 7.4 to compute the sum of the idempotents 
corresponding to the roots lying inside the box. The complexity of each step 
being bounded in theorem 7.7, this leads to the following result for S (real) 
roots in a given box: 

Theorem 7.8 The S (real) roots £ lying in a given box can be computed (up 
to an error e = 2~b) by using 0((/u + v) n3n5 D2 \og(D) log(6)) ops for \i and 
v of equations (8)-(ll). 
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The first problem deals with topological complexity; that is, with the minimal num
ber of comparisons which have to be performed to solve certain numerical prob
lems. We present recent results on solving scalar nonlinear equations to within e 
for different classes F of continuous functions. Depending on F and the set of per
missible arithmetic operations, the topological complexity may be zero or roughly 
log l o g e - 1 or even l o g s - 1 . 
The second problem concerns uniform versus nonuniform algorithms. In particular, 
we discuss the role of the error threshold e. If e is regarded as a fixed parameter 
we permit built-in constants of algorithms depending on e, and this is the case of 
nonuniform algorithms. On the other hand, if e is treated as a varying parameter 
and as one of the inputs, the built-in constants of algorithms are independent of 
e, and this is the case of uniform algorithms. For some problems, the minimal 
costs of nonuniform and uniform algorithms may be quite different. We present 
conditions under which they are roughly the same. 
We started these two projects during the Park City conference organized by Steve 
Smale and the discussions with Steve in Park City and later in Hong Kong, 
Dagstuhl and by e-mail were very helpful for us. 
We end this paper by discussing tractability which is a central theme of discrete 
and continuous computational complexity. This problem has been also studied by 
Steve Smale. We want to know for which problems there exists an algorithm which 
computes an ^approximation with cost bounded by a polynomial in e - 1 and in 
the input size. In contrast to many areas of complexity, we prove intractability 
or tractability of some problems using information-based arguments. We illustrate 
this in the worst case setting for numerical integration and discrepancy. We re
port on recent results that numerical integration is intractable in the L2 norm 
and tractable in the h\ norm. The latter is done jointly with S. Heinrich and G. 
W. Wasilkowski and follows from the fact that the inverse of the star-discrepancy 
depends linearly on the dimension. 
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1 Introduction 

Information-based complexity, IBC, is part of continuous computational com
plexity. IBC is usually developed over abstract infinite-dimensional linear 
spaces such as Hilbert or Banach spaces. The applications are typically mul
tivariate problems sometimes in hundreds or thousands of variables. Examples 
of such problems include multivariate integration or approximation, ordinary 
or partial differential equations, integral equations, optimization, and non
linear equations. For instance, consider a partial differential equation whose 
boundary conditions and coefficients are specified by multivariate functions. 
Since functions cannot be entered into a digital computer, we may only com
pute a finite number of functionals, such as function values. These functionals 
are sometimes called oracles or subroutines. Thus only partial information 
about the problem is available in the computer and the original problem can 
be only approximately solved. Furthermore, this partial information is often 
contaminated with noise. Contaminated information is studied by Plaskota 
(1996); for simplicity we assume here that the partial information is not con
taminated. 

The goal of IBC is to compute an approximation of the original problem 
at minimal cost. The error and the cost of approximation can be denned in 
different settings. In this paper we concentrate on the worst case setting. The 
e-complexity is defined as the minimal cost of computing an approximation 
with error at most e. 

We use the real number model with an oracle. Roughly speaking, we 
add an oracle (or subroutine) for the computation of function values to the 
BSS-model over the reals, see Blum, Shub, Smale (1989), Blum, Cucker, 
Shub, Smale (1998), Meer, Michaux (1997), Novak (1995), as well as Traub, 
Wozniakowski (1980), and Traub, Wasilkowski, Wozniakowski (1988). In this 
model we assume that we can exactly compute arithmetic operations over 
reals, comparisons of real numbers and function values by an oracle. This 
model is typically used for numerical and scientific computations since it is 
an abstraction of floating point arithmetic in fixed precision. More about this 
model of computation can be found in Novak, Wozniakowski (1996, 1999a, 
2000a), and in Wozniakowski (1998). 

Usually we are interested in the total cost of an algorithm which is given by 
a weighted sum of all operations and often it turns out that sharp complexity 
bounds are obtained by studying only the information cost. But sometimes it 
is interesting to count only one kind of admissible operations. Section 2 deals 
with topological complexity or the question of how many comparisons have to 
be performed to solve certain numerical problems. We present recent results 
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on solving scalar nonlinear equations to within e for different classes F of 
continuous functions. Depending on F and the set of permissible arithmetic 
operations, the topological complexity may be zero or roughly log loge ' 1 or 
even loge - 1 . 

In Section 3 we discuss the problem of uniform versus nonuniform algo
rithms. In particular, we discuss the role of the error threshold e. If e is 
regarded as a fixed parameter we may have built-in constants of algorithms 
depending on e, and this is the case of nonuniform algorithms. On the other 
hand, if e is treated as a varying parameter and as one of the inputs, the 
built-in constants of algorithms are independent of e, and this is the case 
of uniform algorithms. For some problems, the minimal costs of nonuniform 
and uniform algorithms may be quite different. We present conditions under 
which they are roughly the same. 

We started our research concerning topological complexity and uniform 
algorithms during the Park City conference organized by Steve Smale. The 
discussions with Steve in Park City and later in Hong Kong, Dagstuhl and by 
e-mail were very helpful for us. 

We end this paper by discussing tractability which is a central theme of 
discrete and continuous computational complexity. This problem has been 
also studied by Steve Smale. We want to know for which problems there 
exists an algorithm which computes an e-approximation with cost bounded 
by a polynomial in e~x and in the input size. In contrast to many areas 
of complexity, we prove intractability or tractability of some problems using 
information-based arguments. We illustrate this in the worst case setting 
for numerical integration and discrepancy. We report on recent results that 
numerical integration is intractable in the L? norm and tractable in the Li 
norm. The latter is done jointly with S. Heinrich and G. W. Wasilkowski and 
follows from the fact that the inverse of the star-discrepancy depends linearly 
on the dimension. 

2 Topological Complexity 

Our interest in the topological complexity is motivated by the work of Smale 
(1987) and Vassiliev (1992, 1996). In particular, they consider zero-finding 
for monic univariate polynomials of degree d with complex coefficients whose 
absolute values are at most one. They prove that the minimal total number 
of comparison nodes in the computational graph is roughly d for small e. 

We deal with zero-finding for univariate functions defined on the inter
val [0,1], and by the topological complexity we mean the minimal depth of 
the computational graph. We present some results from our paper Novak, 
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Wozniakowski (1996) where the proofs and more details can be found. We 
analyze different classes F of functions that are subsets of the class 

F* = {/ € C[0,1] | /(0) < 0 and / ( l ) > 0}. (1) 

We consider the root error criterion", which was used in Smale and Vas-
siliev's papers. For this criterion, x is an e-approximation of a zero of the 
function / if 

\x — x*\ < e for some x* such that f(x*) — 0. 

We now comment on arithmetic operations. Usually the standard opera
tions of addition, subtraction, multiplication and division are called arithmetic 
operations. As in many papers in this area, we understand arithmetic oper
ations in a more general sense. Namely, by an arithmetic operation we mean 
an operation from a given set ARI. We consider various sets ARI. We always 
assume that 

ARImin = { + , - , * } , 

i.e., addition, subtraction and multiplication, is a subset of the set ARI. As 
we shall see, division plays a special role and the results depend on whether 
division belongs to the set ARI. 

Since we are primarily interested in the topological complexity, we assume 
that the cost of each comparison is taken as unity, whereas information and 
arithmetic operations are free of charge. By 

compT O P(F,ARI,e) 

we denote the topological complexity, which is defined as the minimal num
ber of comparisons necessary to compute an e-approximation for any function 
from the class F by using finitely many information operations (function val
ues), and finitely many arithmetic operations from the set ARI. 

Observe that we define the topological complexity here as the depth of the 
computation graph which corresponds to the maximal number of comparisons 
used in one particular computation. The total number of comparison nodes 
in the computation graph can be much bigger. This latter quantity is also 
called topological complexity, see Smale (1987). 

We will see that the topological complexity depends crucially on the class 
F of functions and on the choice of arithmetic operations ARI. Sometimes ap
parently innocent changes of F or ARI lead to completely different topological 
complexities. 
a I n our paper Novak, Wozniakowski (1996) we also consider the residual error criterion, 
where x is an ^-approximation of a zero of the function / if | / ( i ) | < e. The results for 
these two error criteria can be very different. 
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For all F and AM studied in this paper we have 

0 < compT O P(F,ARI,e) < [-log2 e - 1~|. (2) 

The lower bound is trivial, and the upper bound follows from the bisection 
algorithm which is well defined for any / £ F* and only uses operations 
from ARImjn. For e > 1/2, bisection gives x — 1/2 with 0 = r_ l°g2 £ ~ 1] 
comparisons. For a positive e < 1/2, bisection uses k — [-log2 e - 1] 
function values and comparisons. The number of additions and multiplications 
is 2k. 

It is known, see Kung (1976), that at least k function values must be used 
by any algorithm which computes an e-approximation for all functions from 
F*. Hence, bisection is optimal with respect to the number of function val
ues. Optimality of bisection is preserved also for subsets of F* which consist of 
smooth functions, see Sikorski (1985). On the other hand, bisection is not op
timal in an average case setting (with a Brownian bridge on smooth functions 
as the probability measure), see Novak, Ritter, Wozniakowski (1995). 

We stress that for most classes F of functions and sets ARI studied in 
this paper, the total complexity, i.e., when all information, arithmetic and 
comparison operations cost unity, is insensitive to these changes and is always 
of order — log2 e. Hence, the sensitivity of the topological complexity usually 
does not correspond to the sensitivity of the total complexity. 

We ask whether the upper bound of (2) is sharp, or equivalently, is bi
section also optimal with respect to the number of comparisons? The answer 
depends on F and ARI. The bound is sharp even for small subsets F of F* 
if we only allow arithmetic operations that are Holder on bounded domains. 
More precisely, let 

F l i n = {/ € F* : f(x) = ax + b, Vx € [0,1], for some a,b }. 

That is, Fiin is a subclass of the class of linear functions. Observe that / e F* 
implies that /(0) = b < 0 and / ( l ) = a + b > 0. This implies a > 0, however, 
\a\ can be arbitrarily small. The only zero of / is 

If the set ARI contains division then the exact solution may be computed 
without comparisons, and therefore the topological complexity for Fun is zero. 

On the other hand, if division is not in ARI then, as we shall see, com
parisons are needed and the upper bound (2) is sharp. This holds for the set 
ARIhoi which is defined as the set of all operations that are Holder on bounded 
domains. That is, the operation op belongs to ARInoi iff op : Dop -4 E, where 
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the domain Dop C W for some j , and for any bounded set M C Dop there 
are constants ft, 7 > 0 such that 

\op(x) - ov(y)\ < 1 • \\x - y\f Var.i/G Af. (3) 

The set ARIhoi is very large. It obviously contains ARImjn as well as many 
of the standard functions. Note that the operation op(x, y) — x/y with the 
domain Dop C M2 belongs to ARIhoi if there exists a positive S such that the 
domain Dop satisfies the condition 

(x,y) e Dop implies \y\ > 5. 

Of course, the division op(x,y) = x/y with the domain Dop = {(x,y) : 
y ^ 0} does not belong to ARIhoi- Similarly, the natural logarithm op(2:) = 
log(a;) with the domain Dop = {x : x > 6} belongs to ARIhoi if $ > 0, but 
not for 6 = 0. 

Theorem 1. 

compTOP(Fi i n ,ARIho l ,e) = |"-log2 e - 11-

Observe that, contrary to the case of Smale and Vassiliev, the topological 
complexity depends on e and goes to infinity as e approaches zero. 

Assume that we want to approximate — b/a for pairs a, b G K such that 
b < 0 and a + b > 0. If we allow Holder operations, i.e., no division, then 
comparisons are necessary and bisection is optimal. Hence, one division can 
be avoided at the expense of [— log2 e — 1] comparisons to compute an e-
approximation of — b/a. This result can be compared with other results in 
complexity theory, see e.g., Strassen (1973). 

We now show that the assumptions of Theorem 1 are essential. First we 
replace the set ARIhoi by ARIsgn = ARImin U {sgn}, where sgn(t/) = 1 for 
y > 0, sgn(0) = 0, and sgn(y) = — 1 for y < 0. That is, we can now compute 
signs of the function values, sgn(/(:r)) for x 6 [0,1]. How many comparisons 
do we now need? It turns out that no comparisons are needed. Indeed, this 
follows from a modification of the bisection algorithm presented in Novak and 
Wozniakowski (1996). 

Hence, the signum function makes the topological complexity zero. Ob
viously, the signum function is discontinuous. The use of this particular dis
continuous operation allows us to eliminate comparisons. 

How about continuous operations which are not Holder? Once more, 
Theorem 1 is not true for the class Fan and the set ARI of continuous oper
ations since division is continuous. But what will happen if we enlarge the 
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class Fiin? Again, Theorem 1 does not hold for the class of polynomials of 
bounded degree. This follows from the result of Renegar (1987) who proved 
that bisection is far from being optimal for polynomials of bounded degree 
assuming that the four standard arithmetic operations are used, i.e., ARIm;n 

and division. 
We now show that Theorem 1 does not hold and, in fact, the topological 

complexity is zero for the class of strictly increasing functions, 

Fine = {/ € F*| / is strictly increasing } 

and for the set ARIext of the four standard arithmetic operations, the expo
nential function exp(rr), V i £ t , and the natural logarithm log(a;), Va; > 0, 

ARIext = ARImin U { / , exp, log }. 

Observe that all operations in ARIext are continuous. 

T h e o r e m 2. For every e > 0, 

compT O P (F i nc , ARIext, e) = 0. 

We present an algorithm (machine) Pe which computes an e-approximation 
and which does not use comparisons. At the computation nodes, the algorithm 
Pe uses function values and operations from ARIext- Let 

n = | l + 9/(4e)"|. 

The idea of the algorithm is to compute a suitable weighted mean of the 
equally spaced Xi = (i — l ) / (n — 1), i = l , 2 , . . . , n . The weights depend 
on the function values /(xi) and are chosen such that the weighted mean 
approximates the zero of the function / . Hence, the weights are now used 
instead of comparisons to localize the position of the zero. It is convenient to 
assume that 

/ (0) 2 + / ( l ) 2 = 1. (4) 

This can be done without loss of generality since, in what follows, we can 
replace the f(xi) by Vi = f(xi)/{f{xi)2 + f(xn)

2). The algorithm Ps(f) is 
defined as follows: 

Step 1: Compute f(xi),..., f{xn) 

Step 2: Compute the numbers 

djk •= (f{xj) - f{xk))
2 > 0 

for all j , k = 1 , . . . , n with j ^ k. 
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It is important that each djk is strictly positive. This holds since / £ F;nc. 
We will see later that Theorem 2 does not hold for the slightly larger class of 
nondecreasing functions. 

Step 3: Compute 

for j ^ k, and 

and finally, 

1 
Wijk ' •= 

2n4/d,- fc 

f(Xi)2+ djk 

m := ^ Wjjk, 

Pe(/) := 2?=i "«** 
E n 

i=iwi 

All quantities are well defined since djk > 0 and division by 0 does not 
occur in the definition of tOyi. Since we use ARIext, the computation of 
powers is possible using log and exp, i.e., by using xv = exp(y \og(x)). We 
stress that no comparison is used during the computation of Ps{f). One can 
show that Ps(f) is an e-approximation of the zero x* = x*(f) for / from Fjn c , 
see Novak, Wozniakowski (1996) for details. 

Comparing Theorem 1 and 2 we see that Theorem 1 holds for all subsets 
of F* that contain the class Fhn of linear functions, while Theorem 2 is only 
proved for the class F;nc of strictly increasing functions. Actually, Theorem 2 
is not true for the slightly larger class Fnd of nondecreasing functions, 

F n d = {/ e F* | / i s nondecreasing, /(0) = - 1 , / ( l ) = 1} . 

We close this section with some results of Peter Hertling. In his paper 
Hertling (1996) proved results about the power of the set of arithmetic oper
ations 

ARIabs = { + , - , * , / , | - | } -

That is, he permits the four standard arithmetic operations and the absolute 
value. First of all, Hertling (1996) modified Theorem 2 and proved that 

compT O P(F i n c ,ARI a b s ,e) = 0. 

Hertling also proved that the arithmetic operations ARIabs are exponentially 
better than ARIhoi for all classes F between F n d and F*. 
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Theorem 3 (Hertling 1996). Assume that F n d C F C F*. Then 

compT O P(F,ARI a b s ,e) = [log2 ([ log^e"1 + 2)] - 1)] . 

Hence, the topological complexity is roughly log2 log2 e
_ 1 which is expo

nentially smaller than log2 e
_ 1 . This also shows that bisection is not optimal 

for the set ARIabs. Hertling (1996) also proved that adding more continuous 
operations to the set ARIabs does not help. Namely, if ARIcon denotes the set 
of all continuous operations then 

compT O P (F n d , ARIcon, e) = compT O P (Fn d , ARIabs, e). 

One may argue that the most interesting set of arithmetic operations is 
the standard set 

ARIs td = { + , - , * , / } . 

Until recently, not much was known about this set. The following results are 
from Hertling (2000). 

Theorem 4 (Hertling 2000). 

• Bisection is optimal for F* and ARIstd-

• For the class F n d , the topological complexity for the sets ARIabS and 
ARIstd differs at most by 1. 

• For the class Finc and ARIstd, the topological complexity is 1 for all 0 < 
e < l / 2 . 

It is interesting to note that the addition of the operation x \-t \x\ to the 
set ARIstd does not change much the topological complexity for the class F n d 

but gives an exponential improvement for the class F*. 

3 Uniform versus Nonuniform Algorithms 

Different notions of computation over the reals were considered before 1989 
in algebraic complexity theory and in IBC. These approaches were nonuni
form, however, and only problems with a fixed input dimension or a fixed 
error threshold could be studied. The BSS-model, introduced in Blum, Shub, 
Smale (1989), is a uniform model which permits varying input dimension or 
error threshold and generalizes many ideas of discrete complexity theory to 
computation over more general rings. 
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Similar as in algebraic complexity theory, most work in IBC assumes the 
nonuniform model. A typical question is the following: given a class Fd 
of functions / : [0, l]d -» E and given a positive e, what is the complexity 
(minimal cost) of computing values Sd(f) of a given functional Sd : Fd —> K 
up to some error e? We will illustrate such a problem by the integration 
problem for which Sd(f) = J,0 ^d f(x)dx, see also Section 4. Observe that 
usually the dimension d, the class Fd, as well as Sd and e are given and fixed. 
Any algorithm to solve this problem may use this a priori information and 
the only input of such an algorithm is / from Fd-

In this section we study the "uniform versus nonuniform" alternatives for 
the BSS-model with an oracle, i.e., for the IBC-model of computation. An 
example of an uniform algorithm for the integration problem is an algorithm 
that works for different classes Fd and for different positive e. Input for such 
an algorithm might consist of (d,e,f), where / € Fd- As in Section 2 we 
assume that / € Fd is given by an oracle (black box, subroutine) for function 
values. 

In particular, we discuss the role of the error threshold e. If e is regarded 
as a fixed parameter we may have built-in constants of algorithms depending 
on £, and this is the case of nonuniform algorithms. On the other hand, if e is 
treated as a varying parameter and as one of the inputs, the built-in constants 
of algorithms are independent of e, and this is the case of uniform algorithms. 
We compare the costs of uniform and nonuniform algorithms for approximate 
solutions of continuous problems assuming the real number model. By the 
complexity we mean the minimal cost of nonuniform algorithms for computing 
an e-approximation. In our paper Novak, Wozniakowski (1999a) we show that, 
in general, anything can happen: 

1. For some problems, the class of uniform algorithms that compute an e-
approximation is empty even though the class of nonuniform algorithms 
is non-empty and the complexity is relatively small. 

2. For some problems, the cost of any uniform algorithm is arbitrarily larger 
than the complexity. 

3. For some problems, there exist uniform algorithms with essentially the 
same cost as the complexity. 

Our examples for problems for which the negative results (1) and (2) hold 
are rather artificial. Therefore we concentrate here on problems for which the 
positive result (3) hold. Our first result guarantees the existence of uniform 
algorithms if we assume the existence of continuous or weakly continuous 
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nonuniform algorithms. To define the concept of continuity we proceed as 
follows. 

Let S : F -»• G be a operator, possibly nonlinear. Here F is a given set 
and G is assumed to be a metric space with the metric g. We assume that G 
is a subset of 

oo 

1* = (J W 

consisting of finite sequences of real numbers. We want to approximate S(f) 
for all / from F by means of oracles L(f) for some functionals L, i.e., L : 
F —>• R. Assume that for all positive e, there exists a nonuniform algorithm 
Pe which computes an ^-approximation. That is, 

supe (S ( / ) ,P e ( / ) ) < e . 
f€F 

We assume that the built-in constants of the nonuniform algorithm Pe 

9l,e,- •• ,9k(s),e 

are real numbers. 
By continuity, we mean that a small change of the numbers gitE does not 

cause much change in the computed result P6{f)- More precisely, for S > 0 
we define a nonuniform algorithm Pej in the following way. The algorithms 
PE and Pe,8 are identical except that the built-in real numbers c ^ of Pe are 
replaced by built-in rational numbers gfE for Pej such that 

\9i,e ~ 9te\ < 5, Vi = l,2,. . . ,fc(£). (5) 

We say that the nonuniform algorithm P£ is continuous if for any positive e 
there exists a positive S such that for all rationals gfe satisfying (5) we have 

s u P e ( S ( / ) , P e , * ( / ) ) < 2 e . (6) 
f£F 

We say that the nonuniform algorithm Pe is weakly continuous if for any pos
itive £ there exists a positive <5 such that for some rationals gf e satisfying (5) 
we have (6). We now illustrate continuous and weakly continuous algorithms 
by an example. 
Example 1. We discuss these concepts for integration and quadrature for
mulas. We show that continuity and weak continuity depend on how the 
quadrature formulas are implemented. Consider the class 

F = {/eC1([o,i]) | ||/'lloo < i> 
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with S(f) = J0 f(t) dt, g(a, b) = \a — b\, and the quadrature formulas 

It is well known that for n = |"l/(4e)], the error of Pe is at most e. 
Observe that any linear algorithm Ae with a finite worst case error must 

exactly integrate the constant functions /c(-) = c. This means, A£(fc) = 
S(fc) = c , V c £ l . This condition, obviously, holds for Qn. 

Assume for a moment that e = 1/8 so that n = 2. An obvious way to 
compute Q2(f) is by the formula 

Q2(f)=gif(92)+93f(9i) 

with the four constants gi = 33 = \ and g2 — \ and 34 = | . If programmed 
this way then Q2 is not continuous. Indeed, if we use gf such that g( + g% ^ 1 
then we do not integrate fc exactly and the error is infinity. Hence (6) does 
not hold. 

Let us now return to an arbitrary e. We have to guarantee that the sum 
of the weights is 1. Clearly, for some rational approximations gf we have 
9i + 9z + " ' + 92n-i = 1- I n fact w e c a n n o w e v e n take 3*1-1 = V n - So -^ 
is weakly continuous. 

To obtain continuity we can eliminate one of the constants gt. For in
stance, we take 921-1 = V n for i = 2,3, ...,n and g2% = (2i — l)/(2n) for 
i = 1,2,. . . , n. Then we compute 31 = 1 — 33 — 35 32«-i • A small error 
in the constants 32,33, . . . , 92n now leads to a small error in the result, which 
yields continuity of PE. 

To illustrate further this point, let us consider integration for the class 

F = Fk = {/GC f c[0,l] I | | /<*>||oo<l}. 

Then 
n 

Qn(f) = $ > / & ) 
i= l 

has finite worst case error iff Qn is exact for all polynomials of degree less 
than k. Furthermore, for n = Q(e~1^k) there exist g^ = 3 ^ and ti = ti<£ for 
which Pe — Qn has error at most e. 

Hence, for distinct sample points ti, the constants gi must satisfy the 
linear equations 

Qn(tj) = f > 4 = S(f') = -J-r, i = 0,l, . . . ,*-l. 
i= l 1 
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To obtain continuity of Pe, we have to guarantee that the perturbed knots 
ts

ie and weights gf£ satisfy the same system of linear equations, i.e., 

E <4 (C)j = ~~r 3 = 0,1, • • •, k - 1. (7) 

Hence, if all gi<e and ti<e are regarded as built-in constants of Pe then PE is 
not continuous since not all small rational perturbations g\ £ and t\ e satisfy 
(7). On the other hand, P£ is weakly continuous since some small rational 
perturbations gf and t\ satisfy (7). As before, we can obtain continuity of 
Pe by eliminating, say, the first k constants gi, g2, - . . , gu and compute them 
as the solution of the linear equations 

EaMJ = -^- - E 4etf,ey, j = o,i,...,k-i. 
i= l 3 i=k+l 

We stress that such elimination of built-in constants is not always needed. For 
instance, if Fk is replaced by the smaller class 

Fk = {f E Ck[0,l] | ||/<r>||oo < l f o r r = 0 fc} 

then we can implement quadrature formulas in the obvious way and still get 
continuous algorithms. 

We are ready to prove that weak continuity implies the existence of uni
form algorithms. This will be shown by coding and a magic constant. 

Theorem 5. Assume that for each positive e we can approximate S to within 
e by weakly continuous nonuniform algorithms Pe. Then there exists a uni
form algorithm which computes an £-approximation of S. 

To obtain a uniform algorithm, we consider the sequence of weakly con
tinuous nonuniform algorithms Pi-* with error 2-2~*\ Since each P2-

k needs 
only finitely many rational built-in numbers, we can code these numbers as 
well as the whole program P2-*

; i n t ° a single (natural or rational) number 
Gk- As in the classical theory of computable functions, this number Gk can 
be called a Godel number. All these Godel numbers can be coded into one 
(magic) real number G and a universal BSS-machine can run (simulate) a 
computation P2-k(f) o n a n input G, f and e with k = [log2 2/e] . See Blum, 
Shub, Smale (1989) for the construction of a universal machine over the reals. 

Theorem 5 does not address the cost of uniform algorithms. We now ana
lyze the cost of uniform algorithms in terms of the minimal cost of nonuniform 
algorithms. This will be done for linear functionals. That is, S : F\ -> E is a 
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linear functional and F\ is a linear normed space of real functions. We want 
to approximate S(f) for all / from a given subset F of F\. We assume that 
F is convex and balanced. By oracles, we now mean function values. 

Let the (nonuniform) complexity be 

comp(e) = O (e-1,q • ( - loge) a) , 0 < e < 1/2 (8) 

for some positive q and nonnegative a. 
It is known that the complexity in the nonuniform case is obtained by 

linear algorithms using nonadaptive function values, see Traub, Wasilkowski, 
Wozniakowski (1988). That is, there exists an integer n = n(e) = 
0 ( £ - 1 / 9 ( - l o g e ) Q ) and a linear PE such that 

n 

P e ( / ) = X > * - i , e / ( 0 K , e ) (9) 

has worst case error s u p j e F |<S(/) — Pe(f)\ < £• 
We assume that the built-in constants gi>e of PE are uniformly bounded, 

\9iA<M, Vi = l ,2 , . . . ,2n(e ) , Ve > 0, (10) 

for some M > 2. 
We assume that Pe is weakly continuous. That is, for a positive e there 

exists a positive 5 such that the linear algorithm 

n 

PeAf) = T,92i-l,ef(9ke) 
i=l 

with some rational gfe satisfying \gi<e — gfE\ < 6 has error at most 2e, 

s u p | 5 ( / ) - P e , 4 ( / ) | < 2 e . (11) 
feF 

Without loss of generality we may assume that the perturbed constants gfe 

are bounded by M, i.e., \gfe\ < M. We additionally assume that 

0( logM + logn) (12) 

bits are sufficient to represent each gf e exactly. 
We add in passing that for the classes F^ discussed above it is relatively 

easy to check that (12) holds. 
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Theorem 6. Under the above assumptions (8-12) there exists a uniform al
gorithm P which computes an e-approximation to S with cost 

cost(e) = O (e-1/q • ( - l o g e ) a + 1 ) . 

That is, the cost of P is at most logl /e larger than the (nonuniform) com
plexity. 

We do not claim that the positive results of Theorem 5 and Theorem 6 
(both are from Novak, Wozniakowski (1999a)) are always practical. All these 
results are based on some kind of coding and to use such uniform algorithms 
one has, in general, to find out and store at least one magic real number. 
This magic number is needed with arbitrary precision, i.e., exactly. Such an 
assumption is not realistic in practical computation where usually floating 
point arithmetic is used, and all numbers are rounded and only their ap
proximations are used. This suggests that one should also study algorithms 
where only integer or rational numbers are allowed as built-in constants, see 
Hemmerling (1998). 

To address the practical side, we note that the difference between uniform 
and nonuniform algorithms basically disappears if we do not let e go to zero, 
and instead consider e in the interval [eiowĵ upp] with, say, £iow = 10~8 and 
£upp = 10~2. Then no magic numbers are needed to construct a uniform 
algorithm which works well for all e G [eiow>£upp], see Novak, Wozniakowski 
(1999a) for more details. 

4 When are Integration and Discrepancy Tractable? 

One of the most important problems in computer science and mathematics 
concerns the tractability of problems. Usually this problem, and the famous 
P = NP problem, is posed for discrete decision problems and the Turing 
machine. The same problem was generalized to the real number model in 
Blum, Shub, Smale (1989). 

One can also study the class of tractable problems in the case of partial 
information, i.e., in the IBC model, see Wozniakowski (1994a, 1994b). The 
basic question is the following: 

For which problems does there exist an algorithm which computes an 
E-approximation with cost bounded by a polynomial in e~l and the input 

size? 

By "input size" we mean here the number d of variables of a function. 
Tractability means that there is an algorithm that approximates the solution 
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with error e using n = n(e,d) samples of the function, where n(e,d) is poly
nomially bounded in e _ 1 and d. The number n(e,d) of samples is usually 
directly related to the cost of an algorithm, and therefore tractability means 
that we can solve the problem to within e in cost polynomially dependent on 
e _ 1 and d. 

In this section we present some recent results for numerical integration 
in the worst case setting, see Novak, Wozniakowski (2000b) for more details 
and a survey of recent results. For some classes of functions integration is 
related to various notions of discrepancy, such as the Z/2-discrepancy and 
the ^-discrepancy. Discrepancy is widely used and studied in many areas of 
mathematics. 

Let Fd be a normed space of integrable functions / : Dd -> K where 
Dd = [0, l]d. For / G Fd we want to approximate the multivariate integral 

W) = f f(t)dt. (13) 
JDd 

We approximate Id{f) by algorithms that use finitely many function values. 
We consider a number of classes of algorithms: 

• The class QMC of quasi-Monte Carlo algorithms, which is widely used 
for financial problems for which d is often very large, say in the hundreds 
or thousands. QMC algorithms are of the form 

QnAf) = - £ / ( * < ) • (14) 

The sample points ti are deterministic, belong to Dd, and may depend on 
n and d as well as on the space Fd- The sample points ti are nonadaptive. 
That is, they are given a priori and do not depend on the integrand / . 

• The class POS of algorithms for which the weights \/n of QMC algo
rithms are replaced by positive or non-negative weights a .̂ The POS 
algorithms are of the form 

n 

QnAf) = E ° ' ^ ) > ai^0- (15) 

The coefficients a,j and the sample points ti are deterministic and may 
depend on n, d and Fd. 

• The class LIN is the class of linear algorithms of the form (15) with 
arbitrary real weights a;. In this case, some a^'s may be negative. The 
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sample points U for this class satisfy the same conditions as for the classes 
QMC and LIN, i.e., they are nonadaptive. 

As long as the class Fd is convex and symmetric, it is not necessary 
to study more general algorithms, see Traub, Wasilkowski, Wozniakowski 
(1988). That is, the worst case error is minimized by linear algorithms using 
non-adaptive sample points. This important result is due to Bakhvalov and 
Smolyak. 

We are ready to define the error of an algorithm Qn,d for any of these 
classes. In this paper we restrict ourselves to the worst case error, which is 
defined by the worst case performance of Qn,d over the unit ball of Fd, 

e(Qn,d) = sup \ld(f) - Qn,d(f)\- (16) 
/ e ^ , | | / | | < i < i 

For n — 0 we do not sample the function and we6 set Qo,d = 0. Then 

e{Qo,d) = sup | / „ ( / ) | = ||/d | | 
f£Fd,\\f\U<l 

is the initial error. This is the a priori error in multivariate integration with
out sampling the function. We call e{Qn4) the (absolute) error of Qn,d and 
e(Qn,d)/e(Qo,d) its normalized error. 

For each class of algorithms we want to find Qn,d having minimal error. 
Let A be one of the class QMC, POS or LIN, and let 

e{n,Fd,A) = inf {e{Qn4) : Qn,d € A } (17) 

be the minimal error of algorithms from the class A when we use n function 
values. Clearly, 

e(Q,Fd,A) = e(Q0>d) = \\Id\\, A e {QMC, POS, LIN}. 

Since QMC C POS C LIN we also have 

e(n,Fd ) LIN) < e(n,Fd ,POS) < e{n,Fd, QMC). 

We now formally define tractability for the class Ae {QMC, POS, LIN}. We 
would like to reduce the initial error by a factor e, where e € (0,1). We are 
looking for the smallest n = n{e,Fd,A) for which there exists an algorithm 
from the class A such that e{Qn4) < ee(Q0,d). That is, 

n(e,Fd,A) = min { n : e(n,Fd,A) < ee(Q0,d) } . (18) 

'For n = 0 we could take Qo,d = c for some number c. It is easy to see that c = 0 minimizes 
the error of Qo,d-
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We say that integration for a sequence {Fd} of spaces is tractable (with 
respect to the normalized error) in the class A iff there exist nonnegative C, q 
and p such that 

n(e,Fd,A) < Cdqe~p V d = 1,2,... , Ve € (0,1). (19) 

Tractability means that we can reduce the initial error by a factor e by 
using a number of function values which is polynomial in d and e _ 1 . If q — 0 
in the bound above we say that the problem is strongly tractable, and the 
infimum of p satisfying the bound above is called the strong exponent. 

We stress that the minimal number n(e,Fd,LIN) of function samples is 
directly related to the complexity, which is the minimal cost of computing an 
approximation with error e. 

Discrepancy is a quantitative measure of the lack of uniformity of the 
points in the <i-dimensional unit cube. Today we have various notions of 
discrepancy, and there are literally thousands of papers studying different 
aspects of discrepancy. Research on discrepancy is very intensive, and the 
reader is referred to the recent books Drmota, Tichy (1997), Matousek (1999), 
Niederreiter (1992), and Tezuka (1995). 

We study the classical L2-discrepancy, which is sometimes also called £2-
star discrepancy or L2-star discrepancy with boundary condition. We first 
recall the definition of the ^-discrepancy and then present some bounds. 
Then we discuss the _Lp-star discrepancy for finite p and the *-discrepancy, 
where p = 00. 

Let x = [xi,... ,Xd] G [0, l]d. By the box [0,a;) we mean the set [0, xi) x 
• • • x [0, Xd) whose (Lebesgue) volume is clearly x\ • • • Xd- For given points 
*! , . . . ,£„ 6 [0, l ] d , we approximate the volume of [0, x) by the fraction of the 
points ti which are in the box [0,a;). The error of such an approximation is 

1 ™ 
xi---xd y^ho,x){U), 

where l[0iX)(£i) is the indicator (characteristic) function, which is equal to 1 
if U 6 [0, x), and to 0 otherwise. 

Observe that we use equal coefficients n~l in the previous approximation 
scheme. As we shall see, this corresponds to QMC algorithms for integration. 
We generalize this approach by allowing arbitrary coefficients a, instead of 
n - 1 . That is, we approximate the volume of [0,2;) by the weighted sum 

n 

disc(x) := xi---xd - ^ Oil [0iX)(^). (20) 
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The /^-discrepancy of points t\,..., tn and coefficients a\,..., an is just the 
Z/2-norm of the error function (20), 

disc2({ti},{ai}) = / [xi---xd - y2ad[o,x)(ti)\ dx . (21) 
\Jl^]d V i=i / / 

By direct integration, we have the explicit formula 

disc!({fc},{ai})= (22) 
- - n d n d 

^d~ ^lY^aiIl^1~tlk')+ 5Z aiaj]l(1-laax(ti,k,ti,k)), 
i = l k=l i,j=l k—1 

for the L2-discrepancy, where ti — [ t ^ , . . . , tij]-
The major problem of /^-discrepancy is to find points t\,..., tn and co

efficients a i , . . . , an for which disc2({£i}, {at}) is minimized. Let 

and 

disc2(n,d) = inf disc2({*i},{n x}) 
t\ ,...,tn 

disc2(n,d)= inf disc2({£i},{a;}) 
t\ ,...,tn, ax , . . . ,a„ 

denote the minimal /^-discrepancy when we use n points in dimension d. For 
the minimal L2-discrepancy disc2(n,d) we choose optimal i, for coefficients 
a; = n~l whereas for disc2(n,d) we also choose optimal en. 

Observe that for n = 0 we do not use the points tt or the coefficients ai, 
and obtain the initial L2-discrepancy 

dlic"2(0,d) = disc2(0,d) = ( / x\---x2
ddx\ = 3~d/2. (23) 

\J[o,i]* J 

Hence, the initial I/2-discrepancy is exponentially small in d. 
We now discuss bounds on the normalized Z/2-discrepancy. By the nor

malized 1,2-discrepancy we mean disc2({<i}, {o2})/disc2(0,d). That is, we 
normalize by the initial value of the /^-discrepancy, which is 3 _ d / / 2 . As we 
shall see, this case is directly related to tractability of integration for some 
spaces Fa when we reduce the initial error by a factor of e. Similarly to (18), 
we define 

n(e,d) = min{n : disc2(n,d) < e disc2(0, d) }, (24) 

n(e,d) = min{n : disc2(n,d) < edisc2(0,d)} (25) 
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and ask whether n(e,d) and n(e,d) are polynomial in e 1 and d. Recent 
results show that the normalized /^-discrepancy is intractable. 

Theo rem 7. 

n(e,d) > ( 9 / 8 ) d ( l - £ 2 ) . (26) 

The bound (26) is also valid if a,i > 0, which corresponds to the assumption 
defining the class POS. For arbitrary a,i, 

n(e,d) > 1.0628d (l + o(l)) as d -> oo, (27) 

the lower bound holding for any fixed e < 1. 

The bound (26) was proven in Wozniakowski (1999), see also Sloan, 
Wozniakowski (1998). The bound (27) is from Novak, Wozniakowski (1999b). 

The Z/2-discrepancy is related to uniform integration for Sobolev spaces 
and the Wiener sheet measure. Consider the classical Sobolev space W^CIPJ 1]) 
of absolutely continuous univariate functions / : [0,1] -> K for which / ' e 
1*2([0,1]) and /(0) = 0. The space T-^QO, 1]) is equipped with the inner 
product 

</,<?) = / f'(x)g'(x)dx. 
Jo 

The Sobolev space ^^([0,1]) is a reproducing kernel Hilbert space with the 
reproducing kernel 

K\(x,t) = min(x,t). 

Take now Fd as the tensor product of W^dP,1]), 

Fd = W j 1 ' - ' 1 ^ , l]d) := W}([0,1]) ® • • • ® ^ ( [ 0 , 1 ] ) , (dtimes), 

i.e., the completion of the algebraic tensor product. Then Fd is the Sobolev 
space of multivariate functions / : [0, l]d —» K that are differentiable once with 
respect to each variable, and for which f{x) = 0 if at least one component of 
x is zero. It is a reproducing kernel Hilbert space with the reproducing kernel 

d 

Kd{x,t) = Y[mm(x j,tj). (28) 

Let Qn,d(f) — S r = i aif(ti) be an algorithm for approximating Id(f)-
Consider now the worst case error e(Qn^) of Qn,d- It is known that 

-j n d n d 

e2{Qn,d) = —[ ~ 2 ^ a i Y[{ti>k - t\k/2) + ] P a^ - J J mm(U,k,tj,k). 
i = l fc=l i,j=l k=l 
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Since for any numbers a, b we have 

min(a, 6) = 1 - max(l - a, 1 - b) and a - a2/2 = (l - (1 - a)2) /2, 

comparing the last formula with the Z/2-discrepancy formula (20), we imme
diately obtain 

e{Qn,d,Fd) = d isc 2 ({l - t i} ,{aj}) , 

where 1 - U = [1 - titi,..., 1 - tiid]. 
From the normalized bounds on the I/2-discrepancy we conclude that 

integration for Fd = W2'"' ([0, l]d) is intractable for the normalized error, 
i.e., for reduction of the initial error. 

Recall that the Lp-star discrepancy of points t\,...,tn S [0, l]d is defined 
by 

disc*(i i , . . . , t n) = I / xi---xd y ^ l r o . i ) ^ ) dx)\ , (29) 
V7[o,i]d n ^ f / 

for 1 < p < oo, and 

d i s c ^ o ( * l , - - - , * n ) sup 
xg[0,l]' i 

1 " 
a^i • • • X d y]1[o,x)(^) 

»=i 

(30) 

for p — oo. It is customary to denote the Loo-star discrepancy as the *-
discrepancy. Let 

disc*(n, d) = inf disc*(ti,. ..,tn) 
£l , . . . , t n 

denote the minimal Lp-discrepancy for n points. Note that for n = 0 we 
get the initial discrepancy disc*(0,<i) = ( l / ( p + l ) ) d / p . This shows that for 
p < oo, the initial discrepancy in the Lp-norm goes exponentially fast to zero 
as d approaches infinity. For p = oo, we have discoo(0,d) = 1 and the initial 
discrepancy is properly normalized. Finally, let 

rip(e,d) = min{n : disc*(n,d) < e } . 

The usual bounds on the Lp-star discrepancy are for fixed dimension d and 
large n. The asymptotic behavior of disc* (n, d) with respect to n is known, see 
once more Drmota, Tichy (1997), Matousek (1999), and Niederreiter (1992). 
This yields to 

n*p(e,d) = 0 (e - 1 ( log l / e ) ( ' ' - 1 ) / 2 ) f o r p € ( l , o o ) , 

n;(e,d) = o ( e - 1 ( l o g l / e ) ( d - 1 ^ ) f o r p e { l , o o } , 



316 

where a\ = 1/2 and a^ = 1, as e tends to zero. Here 0- and ©-factors depend 
on d. 

The question of dependence on d for p = oo was raised by Larcher who 
asked whether there exists an a > 1 such that disc^, (fad], d) tends to 1 as d 
goes to infinity, and also asked whether, in particular, disc^,(2d, d) goes to 1 as 
d goes to infinity. Based on the results for p = 2 one might have been inclined 
to believe that the answer to at least one of these questions is affirmative. 

It was surprising for us that this is not the case and that a positive result 
holds. In Heinrich, Novak, Wasilkowski, Wozniakowski (1999), it is shown 
that n^0(e, d) depends only polynomially on d and n _ 1 . 

Theorem 8. There exists a positive number C such that 

< , ( e , d ) <Cde~2 V n , d = 1,2,... . (31) 

Hence, the inverse of the ^-discrepancy depends at most linearly on d. 
This dependence on d cannot be improved. The proof of (31) follows from deep 
results from the theory of empirical processes. The proof is non-constructive, 
and we do not know for which points the bound (31) holds. 
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ON SAMPLING INTEGER POINTS IN POLYHEDRA 
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We investigate the problem of sampling integer points in rational polyhedra pro
vided an oracle for counting these integer points. When dimension is bounded, 
this assumption is justified in view of a recent algorithm due to Barvinok 1<2'3. 
We show that the exactly uniform sampling is possible in full generality, when the 
oracle is called polynomial number of times. Further, when Barvinok's algorithm 
is used, poly-log number of calls suffices. 

Introduction 

Let P C Ed be a rational polyhedron of dimension d, where d is a fixed 
constant. Let B — P D Z d be the set of integer points in P. In a pioneering 
paper 2, Barvinok presented an algorithm for computing |B | in time polyno
mial in the size of the input. In sharp contrast with various approximation 
algorithms (see 7 ' 1 0 ) , Barvinok's algorithm is algebraic, and by itself insuffi
cient for sampling from B, i.e. picking a uniformly random integer point in 
P. In this paper we show how one can efficiently utilize advantages of this 
algorithm for uniform sampling from B. 

The problem of uniform sampling of integer points in polyhedra is of 
interest in computational geometry as well as in enumerative combinatorics, 
algebraic geometry, and Applied Statistics (see 4>6.9.13.14). There are numerous 
algorithms for uniform sampling of combinatorial objects (see e.g. 1 1 , 1 5 ) , 
which often can be viewed as integer points in very special rational polyhedra. 
In statistics, one often need to obtain many independent uniform samples of 
the integer points in certain polyhedra (e. g. the set of contingency tables) to 
approximate a certain distribution on them (e. g. x2 distribution). We refer 
to 5 '6 for references and details. 

Let us note that Monte Carlo algorithms for nearly uniform sampling, 
based on a Markov chain approach, have been of interest for some time. Re
markable polynomial time algorithms (polynomial in even the dimension!) 
have been discovered (see 7 ' 1 0 ) . These algorithms, however, work under cer
tain "roundness" assumptions on polytopes and miss some "hard to reach" 
points. Theoretical results (see 9) show hardness of uniform sampling in 
time polynomial in dimension. While the dimension of polytopes often grows 
quickly in cases of practical interest, it still remains to be seen what can be 

mailto:paki@math.yale.edu
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done when the dimension is bounded. 

By L everywhere below we denote the bit size of the input, and d will 
denote the dimension (cf. 1 2) . 

Theorem 1. Let P C Md be a rational poly tope, and let B = P n Z d . 
Assume an oracle can compute \B\ for any P as above. Then there exists 
a polynomial time algorithm for sampling uniformly from B which calls this 
oracle 0{d2 L2) times. 

Theorem 2. In conditions of Theorem 1, there exists a polynomial time 
algorithm for sampling uniformly from B which calls Barvinok's algorithm 
0(d2 log L) times. 

1 Uniform sampling 

First we shall prove Theorem 1. Here is a general strategy. We will find a 
hyperplane H such that a = \B D H+\/\B\ and 0 = \B D H-\/\B\ < | , 
where i7_, H+ are the two halfspaces of Rd \ H. Note that we can have 
7 = \B n H\/\B\ > \, a + /9 + 7 = 1. Then sample a random variable 
with three outcomes,with respective probabilities a, /3,7. Depending on the 
outcome, reduce the overall problem to the smaller subproblem. Observe that 
either dimension drops, or the the number of integer points is reduced by a 
factor > 2. On the other hand, the dimension can be decreased at most d 
times. Since the number of integer points is exp(0(dL)), we need O(dL) 
times to halve it. 

To find the hyperplane as above, consider all level hyperplanes x\ — C, 
where coordinates in V = M.d. Clearly, for some integer C this defines 
H as above. Now determine the constant C by binary search. Recall that C 
is bounded by Ci < C < C2, where c\, c-i are polynomial in exp(dL). Checking 
whether conditions a, 0 < | are satisfied requires two calls of an oracle for 
each constant to be tested, the total number of calls to half the polytope is 
0(dL). Combining with the previous observation, this completes the proof 
of Theorem 1. D 

2 Using Barvinok's algorithm 

The strategy is similar, but we will choose a desired constant C in a "smarter 
way", by utilizing the full power of Barvinok's algorithm. 

Recall the idea of the algorithm in 2 (see also 1>3). Given a presentation of 
P by equations and inequalities, Barvinok computed F(x) = F{x\,.. .,£</; P) 
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defined as 

F(Xl,...,xd)= Yl xm' 
m=(miy...,md)(zB 

where xm — x™1 x™d. The solution is given in the form 

w F{x) = E e* (i-^,)X.a.3..(i-x^)' 

where tj G {±1}, J = { 1 , . . . , r } , and aj,bitj 6 Zd , are of size L°(d\ polyno
mial in the size of the input. Now |B| = F ( l , . . . , 1), where the substitution 
is taken with care (cf. 8 ) . 

The real meaning of (*) is that F is presented as a short alternating 
sum of the integer points of unimodular cones (with det = ±1). These cones 
originate in the vertices a,j of the polytope P. It is crucial that the number of 
cones r = \ J\ = L°^d\ and was shown in 2 that this bound can be achieved. 

Now we can present our algorithm which proves Theorem 2. For simplicity 
assume that P € R+, and has no facets parallel to H = {xi = 0} (otherwise, 
one can always find a unimodular transformation of V which places P in 
general position). 

Let us orient all unimodular cones "upward", i.e. to not intersect H. 
Simply, for each bij 6 H- make a substitution b'tj = —b\p e'j = —tj, a'j = 
ai ~ bi,j • Geometrically, this corresponds to flipping a cone in an appropriate 
cone with the same defining hyperplanes but different orientation. This is 
possible since the function F(x) = 0 for sets containing lines (see part 4) of 
Theorem 3.1 in 3 ) . Algebraically, this corresponds to substitution 

1 _ -z 
1-z-1 ~ 1 - z 

for every z = xbi'j, b{j € H~. 
Now observe that the volume vol(P n {xi < C}) is piecewise polynomial 

in C, with the polynomial changing at first coordinate of vertices. Use binary 
search as in the previous section to determine between which of these the 
desired C lies (such that a,/3 < | as in section 1.) The number of vertices 
is at most Ld, so O(logL) calls of an oracle suffices. One can simply pick 
random vertices, use oracle to determine the probabilities of restricting the 
polytope to either half, etc. With probability > 1/2 at most 3/4 fraction of 
the points will remain in the half, so it will take O(dlogL) iterations. At the 
end we obtain that the desired "random" point has been sampled uniformly 
from a polytope Q = P n {ci < x± < C2}. 
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Consider the structure of the polytope Q. Let Qc = Q D {xi < C}. 
From above, the volume vol(Qc) is polynomial in C degree C. Recall that 
we have presented all integer points in Q as an alternating sum of the integer 
points in the unimodular cones Rj, j E J, since each cone Rj is chosen to 
have a compact intersection with a plane {xi = C}. 

Fix one cone R = {a + nibi + ••• + Hdbd I A*t £ J&+-}, where a, bi E Zd . 
For simplicity, assume a = 0. Denote by M the sum of the first coordinates 
of bi (all positive, from above). Observe that every integer point in Rc-M 
corresponds to a block of volume 1 in Qc, which implies that 

| R C - M n Z d | <vol (R c ) < | R c + M n Z d | . 

By linearity, the above inequality holds for Qc as well. 
Now, the volume vol(Rc) as a polynomial of degree d in C can be ex

plicitly computed from a, bi and c\. Thus we obtain an explicit polynomial 
f(C) for the volume of Qc- Let N — |Q D TL\ and pick a random number 
n E { 1 , . . . , N}. Estimate the unique solution Co of the equation / (C) = n 
(up to the nearest integer). Then use binary search to determine the desired 
C E {Co - M, . . . , C 0 + M] (i.e. such that a,/3 < | ) . This will require 
0(log.L) oracle calls. Then proceed as in section 1. 

Adding up the number of calls for Barvinok's algorithm, we conclude that 
for each of the d directions we need to call it 0(dlog L) times. This completes 
the proof of Theorem 2. • 

3 Concluding remarks 

It remains to be seen if Barvinok's algorithm is efficient in practice. In theory, 
it has L°(d) cost, which is perhaps excessive unless general assumptions are 
made. In particular, recall that one needs to calculate all vertices of the 
polyhedron when running Barvinok's algorithm. The main point of this note is 
to show that at a small additional cost one can use the algorithm for sampling 
of integer points in the convex hull as well. 

Let us give a few simple observations to show that the performance of our 
algorithm is somewhat better than we showed. First, recall that in section 2 
all polytopes Qc have the same combinatorial structure and thus covered by 
the second part of Theorem 4.4 in 3. Also, the estimate 0(d2 logL) is too 
conservative. One can make an argument that 0(dlog L) is enough when the 
hyperplane H is chosen appropriately. Roughly, one can choose hyperplanes in 
general position and avoid paying the "dimension price". Additional analysis 
of our simple algorithm is unnecessary since the dominating term - cost of 
Barvinok's algorithm - grows exponentially with the dimension. 
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Note that when faster approximation algorithms are available, one can 
use them in place of a counting oracle everywhere when determining which 
hyperplane to use. But the probabilities must be determined by the precise 
counting oracle since the errors will blow up otherwise. 

Finally, when the function to be approximated on integer points is poly
nomial or exponential, one can use Barvinok's algorithm to obtain the exact 
result. In general, however, our approach can be effective. 
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S u m m a r y 

We improve substantially our lifting/descending algorithms that enable nu
merical splitting of a univariate polynomial of degree n into the product of 
two nonlinear factors over a fixed thin zero-free annulus on the complex plane. 
In combination with our improved computation of some basic annuli for split
ting, this improves the known algorithms for complete numerical factorizaton 
of a polynomial into the product of linear factors, so the estimated compu
tational precision and the Boolean (bit-operation) cost bound decrease by 
roughly the factor of n. The computational complexity estimates supported 
by the resulting algorithms are optimal (up to polylogarithmic factors) under 
both arithmetic and Boolean models of computing. The algorithms are imme
diately extended to yield nearly optimal polynomial rootfinders for the input 
polynomial with both well conditioned (pairwise isolated) and ill conditioned 
(clustered or multiple) zeros. The resulting upper estimates for the compu
tational precision and the Boolean (bit-operation) complexity are also nearly 
optimal and also improve by roughly the factor of n the known estimates for 
polynomial rootfinding in the case where all the zeros are well conditioned 
(well isolated). The same algorithm remains nearly optimal (under both 
Boolean and arithmetic models of computing) where the roots are allowed 
to be ill conditioned, that is, for the worst case input. All our algorithms 
can be implemented in polylogarithmic parallel time still using arithmetic 
and Boolean work which is optimal up to polylog factors. For some classes 
of input polynomials the presented algorithms are practically promising. The 
auxiliary analysis of the perturbation of Pade approximation and the converse 
of the Graeffe lifting may be of independent interest. 

Keywords: univariate polynomials, rootfinding, numerical factorization, 
Pade approximation, Graeffe's lifting, computational complexity 
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1 Introduction 

1.1 The subject, some background, and new progress 

Univariate polynomial rootnnding is a classical subject, both four millennia 
old (see 2, 3 on its study since the time of Babylonia and ancient Egypt) and 
still fundamental for algebraic and numerical computing. The study of this 
subject is related to various areas of pure and applied mathematics as well as 
the theory and practice of computing and has huge bibliography 18, 19, 29, 7. 
We focus on one important aspect of this study, that is, the computational 
complexity of the solution under the arithmetic and Boolean bit-operation) 
models. The modern interest to this aspect of the study is due to 39, 40, and 
37, and major progress was obtained quite recently. Nearly optimal solution 
algorithms were devised in 26, 28. They rely on the recursive balanced splitting 
of an input polynomial p = p(x) into the product of two factors of balanced 
degrees (that is, neither the ratio of the degrees nor its resiprocal can exeed 
a fixed constant). 

More precisely, the recursive balanced splitting finally ends with complete 
numerical factorization of an input polynomial p = p(x) of degree n into the 
product of n linear factors, each of which defines a root (zero) of the polyno
mial. For both complete factorization and rootnnding, the cited algorithms of 
26, 28 support the optimal arithmetic time bound 0(n) (up to a polylogarith-
mic factor). Estimating the Boolean time-cost and computational precision, 
we assume that p = SiLoP*^8 ' Pi a r e r e a l j with the order of bn bits querried 
for each coefficient pi, b being the required output precision. 

In the case of complex coefficients pi, one may routinely shift to the real 
coefficient polynomial 

PP = [y^Pi^j [y^PiX] ' 

pi denoting the complex conjugates of pi. Arithmetic time and precision 
bounds combined immediately imply Boolean cost bounds under the custom
ary model of Boolean circuits n . 

We recall that the [n/2] leading coefficients of p must be represented with 
the precision of the order of bn to ensure the output precision of b bits (see 
Fact 1.1 in both 26 and 2 8 ) . This implies the Boolean time bound of the order 
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of at least bn2. That is, the entire input representation of n + 1 coefficients 
requires at least the order of nb2 bits to ensure the output precision of b bits. 
The algorithms in 26, 28 yield (up to polylog factors) these nearly optimal 
precision and Boolean cost bounds for the worst case polynomial rootfinding. 

The argument of Fact 1.1 in 26, 28 leading to the cited lower bounds on 
the precision and Boolean cost, however, extends neither to the polynomial 
factorization problem nor to the special but important case of the problem of 
rootfinding where all the zeros of a polynomial are well conditioned, that is, 
simple and well isolated from each other. The lower bounds on the computa
tional complexity of these problems are smaller by the factor of n. That is, 
the factor of n gap between the lower and upper bounds was left here by the 
algorithms in 26 and 28 . 

In the present paper and in 32, we fill this gap. We revisit the construction 
in 26, 28, modify and rearrange its techniques, and improve the algorithms to 
yield near optimality for both complete factorization and well conditioned 
rootfinding. 

In the present paper, we revisit the splitting stage provided that the zero 
sets of the two factors are isolated from each other by a fixed and not extremely 
thin zero-free annulus on the complex plane 26, 28, 29. This enables a decisive 
improvement. In 31, we describe an algorithm that computes the desired basic 
annuli for splitting by extending the earlier techniques of 23, 26, and 28. Thus, 
our work is naturally partitioned into two parts. 

Presently we cover splitting stage. We focus on the computation of a suf
ficiently close initial approximation to the splitting, which is rapidly improved 
by Newton's iteration elaborated upon in 3T and 16. Note, however, that the 
perfection at the improvement stage alone is not sufficient for our final goal. 
Indeed, the overall arithmetic and Boolean cost bound of the algorithms in 
37 and 16 for rootfinding are inferior by roughly factor n to the ones in 26, 28 

except that 16 reaches the same Boolean cost bounds as 26, 28 in the patho
logical case where the output precision has the order of (1 + 1(* )n2 bits, 7 
being the minimum distance between the distinct roots. We refer the reader 
to 31, 7, and our Appendix D on some further comparison with related works, 
to 17, 4, 29, 21, 30, 34, 22, 7, and 32 on the applications to solving polynomial 
systems of equations, the algebraic eigenproblem, and the computation of ap
proximate polynomial gcd, and to 29, 31 and 7 on further study of polynomial 
rootfinding and some related subjects. It is important that our algorithm 
handles the splitting of a polynomial over narrow (zero free basic) annuli. If 
the annuli are wide, various known techniques can handle splitting as well 37, 
31 16 

More rudimentary version of splitting (based on 37 and not including 



328 

our lifting/descending process) was implemented by X. Gourdon in 1993 and 
1996. This implementation is now a part of the PARI and MAGMA packages. 
Splitting itself is a major part of Gourdon's implementation, whose power 
should be substantially extended when our block of lifting/descending process 
is added because with this block we may utilize more narrow basic annuli 
for splitting. The implementation of our more advanced algorithms requires 
further effort, and our ability to utilize narrow basic annuli as well as our 
improvement of the estimated computational cost should motivate this effort. 

Our analysis of the auxiliary stages of reversing Graeffe's lifting and com
puting Pade approximation may be of independent technical interest—we 
bound the perturbation of Pade approximants caused by the input pertur
bation where the zeros of the approximants are weakly isolated from its poles 
and apply these results to support our descending process, which reverses 
Graeffe's lifting process. 

1.2 The problem and some known results 

Let us write 
n n 

p = p(x) = Y^PiX% =pn Y[(x-Zj), Pny^O, (1.1) 

A = A{X,r-,r+) = {x : r_ < \x - X\ < r+ } , (1.2) 

|u| = ||u(a;)|| = \ J \ui\ for u = u(x) = 2~)uixt, (1-3) 
i i 

^b) = 0((blogb)\oglogb), (1.4) 

p,(b) denoting the number of bit-operations required to multiply two integers 
modulo 2b + 1. The norm in (1.3) is the 1-norm of the coefficient vector of 
the polynomial u = u(x). We use both definitions |u| and ||u(x)||. Assume 
by default that a polynomial is given with its coefficients and assume w.l.o.g. 
(cf. 26, 28, 29, 16) that all its (unknown) zeros satisfy the bounds 

1̂ 1 < 1 , j = l,...,n. (1.5) 

We call by "op" each arithmetic operation as well as a comparison of two 
real numbers and the computation of the values \z\ and |^r|a/fc for a complex 
number z and a positive integer k. We say that the ratio tp = r+ / r_ is the 



329 

relative width of the annulus A of (1.2). We also call ip the isolation ratio of 
the internal disc 

D = D(-X>_) = { x : | i | < r_ } , (1.6) 

of the annulus A, and we call this disc rp -isolated 25, 29. 
Technically, the nearly optimal rootfinders of 26, 28 rely on some prepro

cessing algorithms, which compute the basic annulus A for balanced splitting 
with relative width 

r c 
i> = — > 1 + —d (1-7) 

r_ nd 

for two real constants c > 0 and d independent of n and have their latest 
version in 31, and splitting algorithms, which consist of two stages: computing 
a crude initial splitting and its refinementhy nearly optimal Newton's iterative 
process. The latter process has been elaborated upon in several papers (see 
18, 19, 9, 13, 37, 1 6) . Hereafter, log stands for log2. 
Theorem 1.1. 3T, 16. Given a polynomialp of (1.1), (1.5), a positive integer 
k, k <n, real c > 0, d, 

\n for d < 0, .„ „. 
N = N(n,d) = { J - ' (1.8) 

I n logn for a > 0, 

and b> N, an annulus A — A(X,r^,r+) of (1.2), (1-7) such that 

\ZJ\ < r- for j < k, \ZJ\ > r+ for j > k, (1.9) 

and two polynomials F (monic, of degree k, with all zeros lying in the disc 
D = D(X,r^)) and G (of degree n — k, with all zeros lying outside the disc 
D(X,r+)), satisfying 

\p-FG\<2-SN\p\ (1.10) 

for a fixed and sufficiently large constant c independent of n, it is sufficient 
to perform O((nlogn) logb) ops with 0(b)-bit precision, that is, 0(p(b)n) bit-
operations for p(b) of (1.4)7 to compute the coefficients of two polynomials 
F* = F*(x) (monic, of degree k, and having all its zeros lying in the disc 
D — D(X, r_)J and G* — G*(x) (of degree n — k and having all its zeros lying 
outside the disc D) such that 

\p-F*G*\<2-b\p\. (1.11) 
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Theorems 1.1 above and 1.2 below are implicit in 3 7 , 1 6 although the stated 
assumptions are slightly different and ops count is not stated in these two 
papers (see 7 on details). We use an equivalent version of the theorem where 
we relax assumption (1.5) and make linear transformation of the variable x 
(shifting X into the origin) to ensure that 

X = 0, q r _ = l , q = r+, $ = q2 (1.12) 

for some q > 1. In this case, we say that all concentric annuli A{0,r\,r2) for 
r_ < r± < r2 < r + as well as the unit circle (7(0,1) = { x, \x\ = 1 } are basic 
for splitting the polynomial p into factors, and we call the computation of the 
factors F* and G* of Theorem 1.1 satisfying (1.11) splitting the polynomial p 
over the unit circle. Under these assumptions, an algorithm in 37 (which uti
lizes the construction in 9) supports the following result on the initial splitting 
computation (cf. our Appendix C): 
Theorem 1.2. 37 (cf. 9 , 18, 19, and27 ) . Given a polynomialp of (1.1), a real 
N and an annulus A = A(0,r-,r+) such that (1.2), (1.7)-(1.9), (1.12) hold, 
it is sufficient to perform 0{MlogM) ops with 0{N)-bit precision, that is, 
0((M log M)fj,(N)) bit-operations, to compute the initial splitting polynomials 
F (monic, of degree k, and with all zeros lying in the disc D = D(0,1)) and 
G (of degree n — k and with all zeros lying outside the disc D(0, \)) satisfying 
(1.10). Here, we have (cf. (1.7)): 

*TH , ^ \0{n) ford<0, 
M = n + N (ib - 1) = I K {, J

 J - ' 
' \0(n1+d log n) ford>0. 

Based on this theorem the initial splitting can be computed in nearly 
optimal time (up to a polylog factor) if d < 0 but not so if d > 0. 

The bit-operation cost bounds of Theorems 1.1, 1.2, and apparently also 
1.3 (below) can be improved by roughly logarithmic factor if one applies fast 
integer arithmetic based on the binary segmentation techniques (cf. 36, 37, 
16, and 6 ). Indeed, these techniques are slightly superior to the FFT-based 
arithmetic, on which we rely to extend the ops and precision bounds of these 
theorems to the bounds on the bit-operation cost. 

1.3 Our results 

As in 26, 28, we rely on a lifting/descending process to reduce the case of bound 
(1.7) for a positive d to the case of d = 0 but now yield a substantially stronger 
result, that is, we obtain the factor of n improvement of the resulting bounds 
on the computational precision and the Boolean cost versus the bounds in 
26, 28. The next theorem states the complexity estimates, under the same 
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assumption that b > N required in the splitting algorithms of 37 and 16, 
which we use as the basis. 
Theorem 1.3. Under the assumptions of Theorem 1.2, it is sufficient to per
form 0((nlogn)(log n + log6)) ops with 0(b) precision, that is, to perform 
0((jx(6)nlogn)(log n + log&)) bit-operations, to compute the coefficients of 
the two polynomials F* and G* of Theorem 1.1 satisfying (1-11). 

Combined with the algorithms in 32 for the computation of the zero-
free annuli of relative width xp (for xp of (1.7)) that support the balanced 
splitting of a polynomial p, we yield a similar improvement of the known 
estimates for the computational precision and the Boolean cost of complete 
numerical factorization of a polynomial into the product of its linear factors 
and, consequently, of rootfinding for polynomials with well conditioned zeros. 
As well as the algorithms of [P95a], [P96a], our algorithm supports the nearly 
optimal arithmetic and Boolean complexity estimates for the rootfinding for 
the worst case input and allows processor efficient parallel implementation 
that uses polylogarithmic arithmetic and Boolean parallel time. Note that the 
upper bound 8 on ||p* — p\\ implies an upper bound 6/J.J on the perturbation 
of the zero Zj of p in the transition to p* where [ij is the condition number of 
the zero z-j under the same norm 11 • 111. 

Technically, we focus on the refined analysis of the lifting/descending 
process, which, in spite of its crucial role in the design of nearly optimal 
polynomial rootfinders, remains essentially unknown to the computer algebra 
community. For instance, even the most serious and comprehensive treatise 
of the splitting of a polynomial in 16 apparently overlooks the glaring flaw 
in the variation of this process presented in 24, even though this process is 
a centerpiece of the paper 24 , whose main result was invalidated by the flaw 
(see Appendix D). 

Our analysis of this process is technically involved but finally reveals 
surprising numerical stability (in terms of the asymptotic relative errors of 
the order 2~c") of Pade approximation (provided that the zeros of the input 
analytic function are isolated from its poles) and of Graeffe's lifting process, 
and this is a springboard for our current progress in polynomial factorization 
and rootfinding. 

1.4 Organization of the paper 

In the next section we define our lifting/descending process, which splits a 
polynomial into two factors over a fixed zero-free annulus. We also estimate 
the arithmetic cost of the performance of this process and state the bound 
on the precision of its computation. The correctness of the algorithm under 
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this precision bound is shown in Sections 3 — 5. The analysis includes the 
error estimates for the perturbation of the Pade approximation involved. In 
the appendix, we cover the extensions of our splitting over the unit circle 
to any basic circle (in part A) and to complete numerical factorization of a 
polynomial (in part B) as well as the computation of an initial splitting (in 
part C) and comparison with some related works (in part D). The computation 
of the basic annuli for splitting is covered in 31. 

2 Initial Splitting via a Lifting / Descending Process 

Here is our algorithm supporting Theorem 1.3: 
Algorithm 2.1. Recursive lifting, splitting, and descending. 

INPUT: positive c,r-,r+, realc andd, and the coefficients of a polynomial 
p satisfying (1.1), (1.7), (1.9), and (1.12). 

OUTPUT: polynomials F* (monic and of degree k) and G* (of degree 
n — k), split by the unit circle C(0,1) and satisfying bound (1.10) for e = 2~cN 

andN of (1.8). 
COMPUTATION: 

Stage 1 ('recursive lifting,). Write qo = p/pn, compute the integer 

u = r d l o g n + log(2/c)l, (2.1) 

and apply root-squaring Graeffe's steps: 

ql+1(x) = (-l)n
qi(-^)qi(V^), Z = 0 , l , . . . , u - 1 . (2.2) 

n 

(Note that qi = Y\(x — zf ),l = 0,1,... ,u, so D(0,1) is a tj)2 -isolated disc 
i=l 

for qi, for all I.) 
Stage 2 (splitting qu). Deduce from (2.1) that ip2" > 4 and apply the 

algorithms supporting Theorem 1.2 to split numerically the polynomial pu_ — 
Qu/\Qu\ over the unit circle. Denote the two computed factors by F* andGu. 
Obtain numerical factorization of the polynomial qu into the product F*G^, 
where G*u = \qu\Gu, 

\qu - F:G*U\ = eu\qu\, eu<2~CN (2.3) 

for a sufficiently large constant C — C(c,d). 
Stage 3 (recursive descending^. Based on the latter splitting of qu, proceed 

recursively to recover some approximations to the factors Fu-j and Gu~j that 
split the polynomials qu~j of (2.2) over the unit circle, for j — 1 , . . . ,u. 
Output the computed approximations F* = F£ and G* = PUGQ to the two 
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factors of the polynomial p = pn% = FG. (The approximation error bounds 
are specified later on.) 
Remark 2.1. The presented algorithm applies Theorem 1.2 only at Stage 2, 
where its supporting computations are not costly because we have sufficient 
isolation of the zeros of the input polynomial pu from the unit circle, that is, 
we satisfy relations (1.7), (1.9), and (1.12) with l/(ip — 1) = 0(1), for p 
replaced by pu. 

Let us specify Stage 3 of the recursive descending. 
Stage 3 {recursive descending). Step j , j = 1,2,... , u. Stop where j = u; 

for j < u, go to the (j + l)-st step. 
INPUT: the polynomial qu-j (computed at Stage 1) and the computed 

approximations F*_j+l and G* -+1 to the factors -Fu_j+i and Gu-j+i of the 
polynomial <7„_j+i, which is split over the unit circle. (The approximations 
are computed at Stage 2 for j — 1 and at the preceding, (j — l)-st, descending 
step of Stage 3 for j > 1.) 

COMPUTATION: approximate the pair of polynomials Fu-j(x) and 
Gu-j{—x) as the pair filling the (k,n — fc)-entry of the Pade approximation 
table for the meromorphic function 

Mu-j(x) = qn-j(x)/Gu-j+i(x2) 

= (~ir-kFu^(x)/Gu-j(-x). 

That is, given polynomials qu-j and G*_,-+1 (the latter one approximating 
the factor Gu_j+ i of qu-j+i), first approximate the polynomial Mu-j{x) mod 
xn+1. Then solve the Pade approximation problem (cf. Problem 5.2b (PADE) 
in Chapter 1, or Problem 2.9.2 in 33) where the computed approximation to 
the polynomial Mu~j(x) mod xn+1 is used as the input and approximations 
F*_j(x) and G*u_j{-x) to the polynomials Fu-j(x) and G„_,-(—i) are output. 

O U T P U T OF STEP j : polynomials F*_j = F*_j(x) (approximating Fu-j) 
and G* • = G*u_j{x) (approximating Gu-j) such that 

K % G ; _ , . - Qu-j\ = eu-fa-jl £„_,- < 2~'cN, (2.5) 

for c of (1.10), where qu-j = Fu-jGu-j, degF*_j = k, the polynomial F*_j 
is monic, and degG*_^ <n — k. 

Bound (2.5) enables us to improve the approximations of Fu-j by F*_j 
and of Gu-j by Gu_j, by applying the algorithm supporting Theorem 1.1 
where p is replaced by qu-j, F* by F*_j, and G* by G*_^. In the refinement, 
eu-j remains the value of the order of i/2°(" l o s"> for j < u, whereas the 
bound eo < 2~b is ensured at the last (u-th) step. 
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Of the two computed factors, F*_- and G*_ -, only the latter one is used 
at the subsequent descending step, although at the last step, both F* and G* 
are output. 

The polynomial equations gcd(Fu_j(x),Gu-j(—x)) = 1 and 
Gu-j+i(x2) — (-l)n~kGu-j(x)Gu-j(-x) together with the ones of (2.4) im
mediately imply the correctness of Algorithm 2.1 under the assumptions that 
it is performed with infinite precision and with no rounding errors and that 
bound (2.5) holds true for eu_j = 0 (that is, that F*_j = Fu_j,G*u_j = Gu-j) 
for all j . 

Let us next estimate the arithmetic complexity of Algorithm 2.1. 
Stage 1. 0(un log n) — 0 (n log 2 n) ops are used at the u = O(logn) 

lifting steps, each amounts to a polynomial multiplication (we use the FFT 
based algorithms). 

Stage 2 (for eu = i /2°(n l°g")). a total of 0(n log 2 n) ops are sufficient, 
by Theorems 1.1 and 1.2. 

Stage 3 0(n log2 n) ops are used for the computation of the polynomi
als M U _ J + I ( I ) mod xn+1 for all j,j — 1 , . . . ,u (this is polynomial division 
modulo xn+1 for each j) and 0(n log n) ops for the computation of the 
(k, n — fc)-th entries of the Pade approximation tables for the polynomials 
Mu-j+i (x) mod xn+1 for j — 1 , . . . , u. 

Let us specify the latter computation. For every j , this computation is 
reduced to solving the associated nonsingular Toeplitz or Hankel linear sys
tem of n — k equations (see, e.g., 6 , equation (5.6) for z0 = 1 or Proposition 
9.4 where s(x) = 1); this entry is filled with the nondegenerating pair of poly
nomials (Fu-j(x),Gu-j(—x)). (Nonsingularity and nondegeneration follow 
because the polynomials Fu-j(x) and Gu-j{—x) have no common zeros and, 
therefore, have only constant common divisors; we extend this property to 
their approximations in the next section.) Moreover, the input coefficients of 
the auxiliary nonsingular Toeplitz linear systems (each of n — k equations) 
are exactly the coefficients of the input polynomial Mu_j (x) mod xn+1 of the 
Pade approximation problem. 

To solve the u nonsingular Toeplitz linear systems (where u = O(logn)), 
we first symmetrize these systems and then apply the fast MBA algorithm, 
by Morf and by Bitmead and Anderson (cf. 6 or 33 ). The symmetrization 
ensures positive definiteness of the resulting linear system of equations, and 
this implies numerical stability of the algorithm (cf. 8 ) . This approach to 
the solution of Pade problems enables us to perform the u steps of Stage 3 
in (9(nlog3n) ops. Summarizing, we arrive at the aritmetic cost estimates of 
Theorem 1.3. 

We perform all computations by Algorithm 2.1 with the precision of 
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0(n log n) bits, except for the refinement of the approximate initial split
ting of the polynomial qo(x). At the latter stage, we require (1.11) for a fixed 
e = 2~b, b> N, and use computations with the 6-bit precision. Now to prove 
Theorem 1.3, it remains to show that under the cited precision bounds, Algo
rithm 2.1 remains correct, that is, bound (2.5) holds for a fixed and sufficiently 
large c. We show this in the next section. 

3 Pade Approximation and Polynomial Splitting: Precision 
and Complexity Estimates 

Our goal to prove that the computational precision of O(N) bits and the 
bounds of order 2~cN on the values e„_j of (2.5) for j = 0 , 1 , . . . ,u are 
sufficient to support Algorithm 2.1. We first recall 
Theorem 3 .1 . 38 . Let 

n n 

P = Pn^\{x-Zj), P* =P*n Y[{X-Z*), 
j = l j=l 

| p * - p | < " | p | . ^ < 2 - 7 n , 
\ZJ\ < 1, j = 1 , . . . ,fc; \ZJ\ > 1, j = fc+1,... ,n. 

Then after appropriate reordering of z*-, we have 

\zj-Zj\<9tfu, j = l,...,k; 

\l/zj-l/zj\<9tf/, j =fc + l , . . . ,n. 

We easily deduce from the latter theorem that even where €u_ 
j is as large 

as 2~cN, we have the desired equation 
gcd(Fu*_ j(x),G;_ J(-a;)) = 1 for all j : 
Corollary 3 .1 . Let relations (1.1), (1.9), (1.12), (2.1), and (2.5) hold and 
let eu_j < min{2-7",((^ - 1)0/9)"} for all j and a fixed 9, 0 < 6 < 1. 
Then for all j , j — 0 , 1 , . . . ,u, all zeros of the polynomials F*_j(x) and the 
reciprocals of all zeros of the polynomials G*_, (x) lie inside the disc D(0,0 + 
(1 - Q)/ip). For tp - 1 > c/nd, c > 0, the latter properties of the zeros are 
ensured already where eu_j < l / n 0 ^ ' for all j . 

We next estimate the error of splitting the polynomial qu-j(x) in terms 
of the approximation error bound for splitting the polynomial qu-j+i(x). 
Propos i t ion 3 .1 . Suppose that a polynomial G^-j+i approximates the factor 
Gu-j+i ofqu_j+i such that 

\F*_j+1G1-j+i - Qu-j+i\ < eu-j+iWj-j+i\ 
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for some real eu_j+i and a monic polynomial F^_,+1 of degree k. Let 
Fu-j' ^u-j denote the solution to the Pade approximation problem solved ex
actly (with infinite precision) for the input polynomial 

M:-j(x) = (qu-j(x)/Gl_j+1{x2)) mod xn+\ 

and let eu-j be defined by the equation of (2.5). Then 

f • — e . L 1 2 ° ( r a l o g T l ' 

Due to this proposition applied for the value eu-j of (2.5) of the order 
of eu-j+i2~cN for a large positive c, we ensure the splitting of the polyno
mial qu_j within an error bound (1.10), that is, small enough to allow the 
subsequent refinement of the splitting based on Theorem 1.1. 

The next theorem of independent interest is used in the proof of Propo
sition 3.1; it shows upper estimates for the perturbation error of the Pade 
approximation problem. Generally, the input perturbation for this problem 
causes unbounded output errors but not so in our special case where the zeros 
of the output pair of polynomials are separated by a fixed annulus containing 
the unit circle. 
T h e o r e m 3.2. Let us be given two integers, k and n, n > k > 0, three 
positive constants Co (to be specified by relations (5.6) and (5.7) of Section 
5), 7, and tp, 

i> > 1, (3.1) 

and six polynomials F, f, G,g, M and m. Let the following relations hold: 

k 

F = Y[(x-Zi), | i i |<lM i = l,...,k, (3.2) 

n 

G= I J (l-x/zi), \zi\>r/>, i = k + l,...,n (3.3) 

(compare (1.9), (1.12)), 

F = MG mod xn+\ (3.4) 

F + f = (M + m) (G + g) mod xn+1, (3.5) 

deg/<A; , (3.6) 

degg <n- k, (3.7) 

M < 7 n ( 2 + l / ( t f - l ) ) " C o n , (3.8) 

7 < min{l/128, (1 - 1/V0/9}-
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Then there exist two positive constants C and C* independent of n and such 
that if \m\ < (2 + l/(ip - l))~Cn, then 

| / | + | 3 | < | m | ( 2 + 1 / ( ^ - 1 ) ) ° * " . (3.9) 

The proof of Theorem 3.2 is elementary but quite long and is covered in 
the next two sections. 

P R O O F OF PROPOSITION 3.1. The relative error norms eu-j and e„_j+i 
are invariant in the scaling of the considered polynomials. For convenience, we 
will use the scaling that makes the polynomials F, F*, Grev = xn~kG(l/x), 

k k 

and G*ev = xn~kG*(l/x) monic, that is, F = Y[(x - Zj), F* = J ] > - z*), 

n n 

G = Y[ (! - X/ZJ)> G* = I I ^ - x / 4 ) ' 9 = FG> q* = F*G*' where 

j=k+l j=k+l 

for simplicity we drop all the subscripts of F, F*,G,q and q*. (Note that the 
polynomials q and q* are not assumed monic anymore and compare Remark 
3.1 at the end of this section.) Furthermore, by (3.1)-(3.3) and Corollary 
3.1, we may assume that \ZJ\ < 1, \ZJ\ < 1, for j < k, whereas \zj\ > 1, 
\ZJ\ > 1, for j > k. Therefore, 1 < |F | < 2k, 1 < \F*\ < 2k, 1 < |G| < 2n~fc, 
1 < \G*\ < 2"- fc, 1 < | 9 | < 2", 1 < |<f| < 2". 

Let us deduce that 

-p—* , , mod xr+1 

8=0 

< | | ( l - x ) f c - " m o d a ; r + 1 | 

(n — k 

r =E(B:_ t::7 iWB-;+o <*--*•'. ^ 
for any positive r. Indeed, write (—x)n k/Gn-k{x) = / J p i / z i - Observe 

i=0 

for each i that |<7J| reaches its maximum where Zi = 1, that is, where 
{-x)n-k/G„-k{x) = x n ~*/( l - x)n~k, and (3.10) follows. 

Likewise, we have 

| | ( l /G;_ j + 1 ( a ; ) )modx ' - | |<2" - f c + r . 

We also apply a bound of Section 10 of 37 to obtain that 

|G*_j-+1 -Gu-j+i\ < eu-j+i2 

Now, we write 

A _ ( 1 1 \ _ G n - j + l - G u - j + l 

l±u-j+l - \Gl_j + 1 Gu_j + J ~ G„_j+1G*_. + 1 > 
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summarize the above estimates, and obtain that 

\\Au.j+1(x) mod xr\\ < eu_,+ 12°(" l 08") 

for r = 0(n). 
Next, let us write mu_j = mu-j(x) = {M*_j(x) - Mu-j(x)) mod xn+1 

and combine our latter bound with (2.4) and with the bound \qu-j\ < 2n to 
obtain that |m u _ j | < eu-j+i2°^. By combining this estimate with the ones 
of Theorem 3.2, we obtain that 

AF,G = |Ftt*_j - Fu.j\ + \Gl_j - Gu-j\ < eu.j+l2°(Nl 

Now, we deduce that 

f-u-j = \Fu-jG*u. - Fu-jGu-j\ 

< IF^jiG^j - Gu-j) + (F*_j - Fu-j)Gu-j\ 

< \K-j\ • \G*u-j - Gu-j\ + \F*-j ~ Fu-j\ • \Gu-j\ 

< max {IF^- I , \Gu-j\} AF ,G < cu_i+12°<JV>. 

D 
Similarly to Proposition 3.1, we may prove that any perturbation of the 

coefficients of the polynomial qu-j within the relative norm bound of the order 
1 /2°W causes a perturbation of the factors of qu-j within the relative error 
norm of the order of 1 / 2 ° ^ as well. 

Proposition 3.1 and Theorem 3.2 together show that the relative errors of 
the order of O(N) bits do not propagate in the descending process of Stage 3 
of Algorithm 2.1. To complete the proof of Theorem 1.3, it remains to prove 
Theorem 3.2 (see the next sections) and to show that the relative precision of 
O(N) bits for the output of the descending process of Algorithm 2.1 can be 
supported by the computations with rounding to the precision of O(N) bits. 
To yield this goal one may apply the elaborate but tedious techniques of 36 (cf. 
also 37 and 1 6) . Alternatively, one may apply the backward error analysis to all 
the polynomial multiplications and divisions involved, to simulate the effect of 
rounding errors of such operations by the input perturbation errors. This will 
lead us to the desired estimates simply via the invocation of Theorem 3.2 and 
Proposition 3.1, except that we need some distinct techniques at the stages of 
the solution of Toeplitz or Hankel linear systems of equations associated with 
the Pade problem. 

To extend our analysis to these linear systems, we recall that they are non-
singular because the Pade problem does not degenerate in our case. Moreover, 
Theorem 3.2 bounds the condition number of the problem. Furthermore, we 

file:///Gl_j
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solve the Pede problem by applying the cited MBA algorithm to the sym
metrized linear systems. (The symmetrization squares the condition number, 
which may require doubling the precision of the computation, but this is not 
substantial for proving our estimate of O(N) bits.) We then recall that the 
algorithm only operates with some displacement generators denned by the en
tries of the Pade input, M* -(a;) mod xn+1, and is proved to be numerically 
stable 8. It follows that 0(iV)-bit precision of the computation is sufficient 
at the stages of solving Pade problems too, and we finally arrive at Theorem 
1.3. D 

Remark 3.1. One could have expected even a greater increase of the preci
sion required at the lifting steps of (2.2). Indeed, such steps generally cause 
rapid growth of the ratio of the absolutely largest and the absolutely smallest 
coefficients of the input polynomial. Such a growth, however, does not affect 
the precision of computing because all our error norm bounds are relative to 
the norms of the polynomials. Technically, to control the output errors, we 
apply scaling, to make the polynomials F, F*, Grev and G*ev monic, and then 
proceed as in the proof of Proposition 3.1, where the properties (1.9) of the 
zeros of the input polynomials are extended to the approximations to the zeros, 
due to Corollary 3.1. 

4 Perturbation Error Bounds for Pade Approximation 

Corollary 4.1, which we will prove in this section, implies Theorem 3.2 in the 
case where assumption (3.6) is replaced by the following inequality: 

d e g / < f c . (4.1) 

We need some auxiliary estimates. 

Proposition 4.1. 20 . If p = p(x) — TT/i, degp < n, and all /, _ , are 

i=l 
I 

polynomials, then TT | / j | < 2" max \p(x)\ < 2n\p\2-

The next two results extend ones of 37. 
Proposition 4.2. For a fixed pair of scalars, ip > 1 and /3, let 

k n 

p=0Y[(x-zi) n (l-x/zi), 
j= l i=k+l 

where \zi\ < l/ip for i < k; \z{\ >ip for i > k (cf. (1.9), (1.12)). Then 

| 0 | > | p | / ( l + l /V) n . 



340 

Proof. The assumed factorization of the polynomial p yields the inequality 

k n 

\P\m<([[\x-Zi\) n wi-x/zii 
i=l i=k+l 

where neither of the n factors on the right-hand side exceeds 1 + 1/^- • 

Proposition 4.3. Let (1.9) hold for some ip > 1. Then 

\p\($=±)n<rnm\p(X)\<\p\. 

Proof. The upper bound on min \p(x)\ is obvious. To prove the lower bound, 
|x | = l 

recall the equation of Proposition 4.2 and deduce that 
k n 

\p{x)\ > \P\J]_\x-Zi\ Y[ |1 - x/zi | for all x. 
i= l i=k+l 

Substitute the bounds |x| = 1, (1.9) and (1.12) and obtain that 

\P(x)\ > (i - i/i>rm. 
Now substitute the bound on |/3| of Proposition 4.2 and arrive at Proposition 
4.3. D 

Proposition 4.4. Let f(x) and F(x) be two polynomials having degrees at 
most k — 1 and k, respectively. Let R(x) be a rational function having no 
poles in the disc D(0,1) = {a;, \x\ < 1}. Then, for any complex x, we have 

J\x\ / | x | = l 

and if F(x) ^ 0 for \x\ = 1, then 

R(t)F^-F^dt = 0, 

1-K\fI\ J\x\=i 

/ W F{x) - F(t) 

|a|=i F(t) x - t 
f{x) = _ L = / ^ l . l _ ^ _ L w d 4 . 

Proof, (compare 35, III, Ch.4, No. 163; 15, proof of Lemma 4.6). The first 
equation of Proposition 4.4 immediately follows from the Cauchy theorem on 
complex contour integrals of analytic functions 1. Cauchy's integral formula 
1 implies the second equation of Proposition 4.4 for every x equal to a zero 
of F(x). If F(x) has k distinct zeros, then the second equation is extended 
identically in x, since f(x) has a degree less than k. The confluence argu
ment enables us to extend the result to the case of a polynomial F(x) having 
multiple zeros. • 
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\f\<kr\F\, r = max 
1x1=1 

Now we are prepared to start estimating from above the norms | / | and 

l9l-
Proposition 4.5. Let a constant i/j and six polynomials F, f, G, g, M and m 
satisfy relations (3.1)-(3.7),(4-l)- Let 

v(x) = (G(x) + g(x))G(x)m(x) mod xn+1, deg v < n. (4.2) 

Then we have 
v(x) 

F{x)G{x) 

Proof. Subtract (3.4) from (3.5) and obtain that 

f(x) = (M(x) + m(x))g(x) + m(x)G{x) mod xn+1. 

Multiply this equation by the polynomial G and substitute 

F(x) = G{x)M(x) mod xn+1 

into the resulting equation to arrive at the equation 

G(x)f(x) = F(x)g{x) + (G(x) + g{x))G(x)m(x) mod xn+1. 

Observe that deg(G/ - Fg) < n, due to (3.2), (3.3), (3.6) and (3.7), and 
deduce that 

Gf = Fg + v, (4.3) 

for the polynomial v of (4.2). It follows that 

gF v 
f = 1 • 
1 G G 

Combine the latter equation with Proposition 4.4 for R(t) = g(t)F(t)/G(t)_ 
and deduce that 

f = 1 f v{t) F{x)~F{t)dt 1 27rv/^T i r F(t)G{t) x-t 

Proposition 4.5 follows from this equation applied to the polynomial / 
coefficient-wise. • 

Let us further refine our bound on | / | . Combine (3.2) and (3.3) with 
Proposition 4.3 and obtain that min \F(x)G(x)\ > [^^L \p\- Now, because 

max \v(x)\ < \v\, obtain from Proposition 4.5 that 

\f\<k\F\-\v\/r-\Pi 
<t>- = (il>-l)/W + l) = l-2/W>+l). 

Let us bound the norm |^| from above. 
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Proposition 4.6. Assume relations (3.1)-(3.7) and (4-l)-(4-3). Then 

\g\ < 2nr+-k(\f\ + #r*M)/( i - 2nr+-k\™\), 

where 4>+ = 1 + 1/tp < 2. 

Proof. Combine the relations degg < n — k and degF = k (cf. (3.2) and 
(3.7)) with Proposition 4.1 for / = 2 and obtain the bound \F\ • \g\ < 2n\Fg\. 
Therefore, \g\ < 2n\Fg\ because | F | > 1 (see (3.2)). On the other hand, (4.3) 
implies that \Fg\ < \G\ • \f\ + \v\. Combine the two latter bounds to obtain 
that \g\ < 2n(\G\ • \f\ + \v\). Deduce from (4.2) that \v\ < \G + g\ • \G\ • \m\. 
Substitute the bound |G| < <£"~fc, </>+ = 1 + 1/tp, implied by (3.3), and deduce 
that 

M < i<n~k + \g\m~kH, (4-5) 

\g\ < 2n^-k(\f\ + (<f>l~k + \g\)\m\). 

Therefore, we have 

(1 - 2n4>n
+-h\m\)\g\ < 2nd>n

+-h(\f\ + # T * M ) , 

and Proposition 4.6 follows. • 

Corollary 4.1. Assume relations (3.1)-(3.7), (4-1) and let 

2"<^-*|m| < 1/2, (4.6) 

k2n{4>+l<t>-r<f>n
+-k\m\ < |p|/4. (4.7) 

Then we have 

| / | < 4 f c ( 0 + / 0 _ ) " # f r f c M M (4.8) 

\g\ < 2"+ 1( l + 4A;(0+ /^_)"/W)^"-2 f c |m| , (4.9) 

1 < |p| < K (4.10) 

for <j>- = l - 2/{ip + 1) of (44) and for 

</>+= 1 + l/</>< 2, 0 + / 0 _ = (^ + l ) 2 / ( ( ^ - l ) ^ ) - (4-11) 

Proof. Combine Proposition 4.6 with inequality and obtain that 

M < 2 n + 1 ( l / l + # T * M ) # T * - (4.12) 

Combine (4.4), (4.5), and the bound |F | < </>*., implied by (3.2), and obtain 
that 

|/| < fc(0+/<A_)"(^-A + M)M/|p|. 
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Combining the latter inequality with (4.12) implies that 

N • i/i < *(0+/0-ni+2"+ io/i+0r f chi))^r f cH-
Therefore, 

| / | - ( | p | - f c 2 " + 1 ^ + / 0 _ ) " | m | ^ - f c ) 

< A(0+/0_)n(i+2n+vrfci"»i)0r*imi-
Substitute (4.6) on the right-hand side and (4.7) on the left-hand side and 
obtain (4.8). Combine (4.8) and (4.12) and obtain (4.10). Combine (3.2) and 
(3.3) and obtain (4.9). • 

5 Local Nonsingularity of Pade Approximations 

In this section, we prove Theorem 3.2 by using the following immediate con
sequence of Corollary 4.1: 
Corollary 5.1. Let all the assumptions of Theorem 3.2 hold, except possibly 
for (3.6), and let relations (4-1), (4-6) and (4-7) hold. Then bound (3.9) holds 
for a sufficiently large constant C*. 

Due to Corollary 5.1, it remains to prove (4.1) under (3.8) in order to 
complete the proof of Theorem 3.2. 

By the Frobenius theorem 14 , there exists a unique rational function F/G 
satisfying (3.4) for any given polynomial M and any pair of integers k and 
n such that 0 < k < n,degF < k,degG < n - k. Assuming further that 
the polynomials F and G have no common nonconstant factors and that the 
polynomial F is monic, we uniquely define the pair of the polynomials F and 
G (unless M is identically 0), which we call the normalized pair filling the 
(k,n — k)-th entry of the Pade table for a polynomial M. 

Now, suppose that equations (3.1)-(3.7) hold and let (F,G) and (F + 
f, G+g) be two normalized pairs filling the (k, n — k)-ih entry of the Pade table 
for the meromorphic functions M and M + m, respectively, where degF = k. 
Then, clearly, we have (4.1) if and only if 

deg(F + f) = k. (5.1) 

Let (Fs,Gs) denote the normalized pair filling the (k,n — fc)-th entry of the 
Pade table for M + m + S, where S is a perturbation polynomial. Even if (5.1) 
does not hold, there always exists a sequence of polynomials {5h},h = 1,2,..., 
such that \Sh\ —• 0 as h —> oo and 

deg Fsh = k for h = 1,2,... . (5.2) 
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(Indeed, the coefficient vectors of polynomials 6 for which deg F$ < k form 
an algebraic variety of dimension k in the space of the (k + l)-st dimensional 
coefficient vectors of all polynomials of degree at most k.) 

Due to (5.2), we have degfsh < k, and therefore, we may apply Corollary 
5.1 to the polynomials M + m + 5h and obtain that the coefficient vectors of 
all polynomials F$n and Gsh are uniformly bounded as follows: 

\FSh -F\ + \GSh -G\<(2+ ^ f n m + 5h\ (5.3) 

provided that \m + Sh\ < (2 + l/(ip - l ) )~ c °" . Because of this bound, there 
exists a subsequence {h(i), i = 1,2,.. .} of the sequence h = 1,2,. . . , for 
which the coefficient vectors (FT , Gj h ) T of the polynomials Fsh(i), G,5Mi) 

converge to some (n + 2)-nd dimensional vector (F* T ,G* T ) T . Let F*, G* 
denote the associated polynomials and let us write 

F + f = F*, G + g = G*. (5.4) 

Because 6^ —t 0, we immediately extend (5.3) and obtain that 

F*(x) = (M(x) + m{x))G*{x) mod xn+1 

and 

| / | + \g\ - |F* -F\ + |G* - G\ < (2 + ^ f ^ H (5.5) 

provided that 

H<(2+^rrCon-
To complete the proofs of Theorems 3.2 and 1.3, it remains to show that 
d e g / < k, that is, that degF* = k and that the polynomials F* and G* of 
(5.4) have only constant common factors. We do this by applying Theorem 
3.1. First combine the bounds (4.8) and (3.8) (where Co satisfies the bound 

(2 + ^)Con > 4fc(<A+)""fc ( | i ) n | p | / |F | (5.6) 

for <f>- and cf>+ of (4.4) and (4.11)) with Theorem 3.1, for p and p* replaced 
by F and F*, respectively, and deduce that the zeros of the polynomial F + f 
deviate from the respective zeros of the polynomial F by less than 1 — l/tp, 
so the polynomial F + f has exactly k zeros all lying strictly inside the unit 
disc -D(0,1). Similarly, obtain that deg(G + g) — n — k and all the zeros of 
the polynomial G + g lie outside this disc (provided that the constant Co of 
(3.8) satisfies the inequality 

(2 + jsfo* > 2"+Vr-" (l + § (£)" /) gf (5.7) 
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(cf. (4.9))), so the polynomial G + g has only constant common factors with 
F + f. This completes the proof of (4.1) and, therefore, also the proofs of 
Theorems 3.2 and 1.3. • 

Acknowledgment 

Thanks go to a referee for helpful comments. Supported by NSF Grant CCR 
9732206 and PSC-CUNY Awards 669363 and 62435-0031 

References 

1. L. Ahlfors, Complex analysis, McGraw-Hill, New York, 1979. 
2. E. T. Bell, The Development of Mathematics, McGraw-Hill, New York, 

1940. 
3. C. A. Boyer, A History of Mathematics, Wiley, New York, 1968. 
4. L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computa

tions, Springer, New York, 1997. 
5. R. P. Brent, F. G. Gustavson, D. Y. Y. Yun, Fast solution of Toeplitz 

systems of equations and computation of Pade approximations, J. Algo-
rithms, 1, 259-295, 1980. 

6. D. Bini and V. Y. Pan, Polynomial and Matrix Computations, Vol.1: 
Fundamental Algorithms, Birkhauser, Boston, 1994. 

7. D. Bini and V. Y. Pan, Polynomial and Matrix Computations, Vol.2: 
Fundamental and Practical Algorithms, Birkhauser, Boston, to appear. 

8. J. R. Bunch, Stability of Methods for Solving Toeplitz Systems of Equa
tions, SIAM J. Sci. Stat. Comput, 6, 2, 349-364, 1985. 

9. L. M. Delves, J. N. Lyness, A numerical method for locating zeros of an 
analytic functions, Math. Comp., 21, 543-560, 1967. 

10. I. Z. Emiris, A. Galligo, H. Lombardi, Numerical Univeriate Polynomial 
GCD, Proc. of AMS-SIAM Summer Seminar: Mathematics of Numerical 
Analysis: Real Number Algorithms, (Park City, Utah, 1995), Lectures in 
Applied Math., 32, 323-343, Amer. Math. Society, Providence, Rhode 
Island, 1996. 

11. J. von zur Gathen, Parallel Arithmetic Computations: A Survey, Proc. 
Math. Foundation of Computer Science, Lecture Notes in Computer Sci
ence, 233, 93-112, Springer, Berlin, 1986. 

12. I. Z. Emiris, A. Galligo, H. Lombardi, Certified approximate polynomial 
gcds, J. Pure and Applied Algebra, 117/118, 229-251, 1997. 

13. A. A. Grau, The simultaneous improvement of a complete set of approx
imate factors of a polynomial, SIAM J. of Numer. Analysis, 8, 425-438, 



346 

1971. 
14. W. B. Gragg, The Pade table and its relation to certain algorithms of 

numerical analysis, SIAM Review, 14, 1, 1-62, 1972. 
15. P. Kirrinnis, Fast computation of numerical partial fraction decompo

sitions and contour integrals of rational functions, Proc. Inter. Symp. 
on Symb. and Algebraic Comput. (ISSAC 92), (Paul S. Wang editor), 
16-26, ACM Press, New York, 1992. 

16. P. Kirrinnis, Polynomial factorization and partial fraction decomposition 
by simultaneous Newton's iteration, J. of Complexity, 14, 3, 378-444, 
1998. 

17. D. Kapur and Y. N. Lakshman, Elimination methods: An introduction, 
in Symbolic and Numerical Computation for Artificial Intelligence (B. 
Donald, D. Kapur, and J. Mundy, editors), pp. 45-89, Academic Press, 
New York, 1992. 

18. J. M. McNamee, bibliography on roots of polynomials, J. Comp. Appl. 
Math., 47, 391-394, 1993. 

19. J. M. McNamee, A supplementary bibliography on roots of poly
nomials, J. Computational Applied Mathematics, 78, 1, 1997, also 
http://www.elsevier. nl/homepage/sac/cam/mcnamee/index.html. 

20. M. Mignotte, An inequality about factors of polynomials, Math. Comp., 
28, 1153-1157, 1974. 

21. B. Mourrain, V. Y. Pan, Asymptotic acceleration of solving polynomial 
systems, Proc. 27th Ann. ACM Symp. on Theory of Computing, 488-
496, ACM Press, New York, May 1998. 

22. B. Mourrain, V. Y. Pan, Multivariate Polynomials, Duality, and Struc
tured Matrices, J. of Complexity, 16, 1, 110-180, 2000. 

23. C. A. Neff, J. H. Reif, An 0(nl+t) algorithm for the complex root prob
lem, in Proc. 35th Ann. IEEE Symp. on Foundations of Computer Sci
ence, 540-547, IEEE Computer Society Press, Los Alamitos, California, 
1994. 

24. C. A. Neff, J. H. Reif, An efficient algorithm for the complex roots prob
lem, J. of Complexity, 12, 81-115, 1996. 

25. V. Y. Pan, Sequential and parallel complexity of approximate evaluation 
of polynomial zeros, Computers & Math, (with Applications), 14, 8, 
591-622, 1987. 

26. V. Y. Pan, Optimal (up to polylog factors) sequential and parallel al
gorithms for approximating complex polynomial zeros, Proc. 27th Ann. 
ACM Symp. on Theory of Computing, 741-750, ACM Press, New York, 
May, 1995. 

27. V. Y. Pan, Deterministic improvement of complex polynomial factoriza-

http://www.elsevier


347 

tion based on the properties of the associated resultant, Computers & 
Math, (with Applications), 30, 2, 71-94, 1995. 

28. V. Y. Pan, Optimal and nearly optimal algorithms for approximating 
polynomial zeros, Computers & Math, (with Applications), 3 1 , 12, 97-
138, 1996. 

29. V. Y. Pan, Solving a polynomial equation: Some history and recent 
progress, SIAM Review, 39, 2, 187-220, 1997. 

30. V. Y. Pan, Approximate polynomial gcds, Pade approximation, polyno
mial zeros, and bipartite graphs, Proc. 9th Ann. ACM-SIAM Symp. on 
Discrete Algorithms, 68-77, ACM Press, New York, and SIAM Publica
tions, Philadelphia, 1998. 

31. V. Y. Pan, Univariate polynomials: nearly optimal algorithms for fac
torization and rootfinding, ACM-SIGSAM International Symposium on 
Symbolic and Algebraic Computation (ISSAC 2001), ACM Press, New 
York, 2001. 

32. V. Y. Pan, Approximate polynomial gcd, Information and Computation, 
in press. 

33. V. Y. Pan, Structured matrices and polynomials: Unified superfast Algo
rithms, Birkhauser/Springer, Boston, 2001. 

34. V. Y. Pan, Z. Q. Chen, The complexity of the matrix eigenproblem, Proc. 
31st Annual ACM Symposium on Theory of Computing, 507-516, ACM 
Press, New York, 1999. 

35. G. Polya, G. Szego, Aufgaben und Lehrsdtze aus der Analysis, Verlag Von 
Julius Springer, Berlin, 1925. 

36. A. Schonhage, Asymptotically fast algorithms for the numerical multi
plication and division of polynomials with complex coefficients, Proc. 
EUROCAM, Marseille, Lecture Notes in Computer Science, 144, 3-15, 
Springer, Berlin, 1982. 

37. A. Schonhage, The fundamental theorem of algebra in terms of compu
tational complexity, Math. Dept., University of Tubingen, Tubingen, 
Germany, 1982. 

38. A. Schonhage, Quasi-gcd computation, J. of Complexity, 1, 118-137, 
1985. 

39. S. Smale, The fundamental theorem of algebra and complexity theory, 
Bull. Amer. Math. Soc., 4, 1, 1-36, 1981. 

40. S. Smale, On the efficiency of algorithms of analysis, Bulletin of the Amer
ican Mathematical Society, 13, 2, 87-121, 1985. 



348 

Appendix A: Extension to Splitting over Any Circle 

By the initial scaling of the variable, we may move the zeros of a given polyno
mial into the unit disc D(0,1). Therefore, it is sufficient to consider splitting 
of a polynomial p of (1.1) (within a fixed error tolerance e) over any disc 
D(X,r), with X and r satisfying the bounds r > 0 and 

r + | X | < l . (A.l) 

To reduce such a splitting to the normalized case of splitting over the 
unit circle C(0,1), we will shift and scale the variable x and estimate the new 
relative error norm bound e as a function in e, X and r. To relate e and e, we 
will prove the following result: 
Proposition A . l . Let relations (1.11) and (A.l) hold. Write 

y = rx + X, (A.2) 

P(y) = ̂ 2PiVl = p(rx + x) = q(x), 
i=0 (A.3) 

p{x)=q(x)/\\q(x)\\, 

F*(y) = F*(rx + X) = F*{x)rk, 

G*{y) = G*{rx + X) = G* {x) / {\\q{x)\\rk), 

A(x)=p(x)-F*(x)G*(x), 

My)=p(y)-F*(y)G*(y). 

Then (A.2) maps the disc D(0,1) = {x : |a;| < 1} onto the disc D(X,r) = 
{y : \y — X\ < r}; moreover, 

\\A(y)\\ < \\A(x)\\ • ((1 + \X\)/r)» • \\P(y)\\ „ 4 ) 

<| |A(x) | | - ((2 -r)lr)n • ||p(y)||. 

Proof. Clearly, (A.2) maps the disc D(X,r) as we stated. To prove (A.4), 
first observe that A(x) = A ( 2 ^ ) = A(y)/\\q(x)\\. Therefore, 

||A(y)|| = | | A ( ^ ) | | • 11,(1)11. (A.5) 
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By combining the relations 1 < Wiy-XY/r^] = (l + | X | ) 7 r \ for i = 0 , 1 , . . 
with the one of (A.l), we deduce that 

| A ( ^ ) | | < | | A ( x ) | | . m a x ( M i ^ ) 

= | | A ( , ) | | ( i i ^ i ) n 

< | | A ( x ) | | ( 2 = r ) n . 

(A.6) 

On the other hand, having q(x) = p(rx + X) and IKrx + X)*!! = ( r + | X | ) J 

for i = 0 , 1 , . . . , we deduce that 

^ptirx + Xy 
i=0 

<X>i | (r + |X|)' 
i = 0 

\\q(x)\\ = \\p(rx + X)\\ = 

Due to (A.l), it follows that 

Il9(*)ll < ElPil = 
i=0 

Combine the latter bound with (A.5) and (A.6) to obtain (A.4). 

Appendix B: Error Estimates for Recursive Splitting 
Suppose that we recursively split each approximate factor of p over the bound
ary circle of some well isolated disc and continue this process until we arrive 
at the factors of the form (ux + v)d. This gives us a desired approximate 
factorization 

• 

P* =P*(x) = J I ^ - z + Vj), 

and we next estimate the norm of the residual polynomial 

A* = p* - p. 

(B.l) 

(B.2) 

Note that the perturbation of the coefficients of p such that \p* — p\ < 5 
implies that a zero Zj oip is perturbed by at most Sfij where fij is the condition 
number of this zero 7. We are going to estimate the perturbation of the zeros 
without involving the condition numbers fij. We begin with an auxiliary result 
from 37 . 
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Proposition B . l . Let 

&k = \p-fi---fk\<ke\p\/n, (B.3) 

A = | / i - / f f | < e * | / i | , (B.4) 

for some nonconstant polynomials fi, •. • , fk, f and g and for 

k 

e*<e|p|/("IIW)- (BJ5) 

Then 

|A fc+i | = \p - fgh • • • fk\ < (k + l)e\P\/n. (B.6) 

Proof. Ak+1 = \p-h ... fk + (fi ~fg)f2 ...fk\< A f c+A|/ 2 ...fk\. Substitute 
(B.3)-(B.5) and deduce (B.6). D 

If we write / i = / , fk+i = g, then (B.6) will turn into (B.3) for k replaced 
by k + 1. If we now split one of the factors fi, as in (B.4), we may apply 
Proposition B.l and then recursively continue splitting p into factors of smaller 
degrees until we arrive at factorization (B.l), with 

|A* |<e |p | (B.7) 

for A* of (B.2). Let us call this computation Recursive Splitting Process 
provided that it starts with k = 1 and fi=p and ends with k — n. 
Proposition B.2. 37 . Performing Recursive Splitting Process for a positive 
e < 1, it is sufficient to choose £jt in (B.4) satisfying 

ek < e/(n2"+1) (B.8) 

for all k in order to support (B.3) for all k = 1,2,... ,n. 

Proof. We will prove the bound (B.3) for all k by induction on k. Clearly, 
the bound holds for k = 1. Therefore, it remains to deduce bound (B.6) from 
bounds (B.3) and (B.8) for any k. By first applying Proposition 4.1 and then 
the bound of (B.3), we obtain that 

< 2n{l+ keIn)\p\, 

which cannot exceed 2 n + 1 |p | for k < n,e < 1. Consequently, (B.8) ensures 
(B.5), and then (B.6) follows by Proposition B.l. D 

k 

l[\fi\<ln 
k 

»=i 
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Appendix C: Initial Approximate Splitting via FFT 

In this section, we follow 9 and 37 (compare also Appendix A of 27) to describe 
an algorithm that supports Theorem 1.2, that is, given a polynomial p sat
isfying (1.1), (1.9) and (1.12) computes its initial approximate splitting over 
the unit circle C(0,1) into the product of two factors F and G . Furthermore, 
the algorithm performs within the cost bounds of Theorem 1.2. 

The algorithm first computes sufficiently close approximations 

1 g _ 1 Q - i 
,(m+l)qP'(uq) 

Q U *(«") ' 

m = 1 , . . . , <2; ui = exp(27T\A-T/Q), to the power sums, 

k 

sm = J2z7> m = l,... ,2k-l, 

and then approximates (within the error bounds 2~cn for two fixed constants 
c = cp and c = CQ) the coefficients of the two factors F and G. 

Let us estimate the errors of tha computed approximations and the com
putational cost. By 37, we have 

\s*m - am\ < (kz<3+m + (n - fc)^-m)/(l - zQ), (C.2) 

z — max min(|z,-|, l/|z,-|). (C3) 
l<j<n 

The computation of the values s j , . . . , s | f c _ 1 costs 0(QlogQ) ops for 
Q > n because it is reduced to performing three discrete Fourier transforms 
(DFT's) on the set of the Q-th roots of 1. Due to (C.2) and (C.3), it is 
sufficient to choose Q of the order of N(n)/(i/j — 1) to ensure the error bound 

\s*m - S m | < 2"cJV<") (C.4) 

for any function N(n) > n, for all m < 2k, and for any fixed constant c. 
Under such a choice, the bound 0{Q log Q) turns into 0(-J^f log -J^-), and 
it is sufficient to perform the computations with the precision of 0(N(n)) 
bits (cf. Corollary 4.1 of 6 , Chapter 3). Then, the algorithm from Sec
tion 4 of Chapter 1 of 6 for Problem 4.8 {I • POWER • SUMS) which uses 
0(nlogn)ops(performed with 0(iV(n))-bit precision) computes an approxi-

mation F* to the factor F = T\(x — Zj) of the polynomial p, within the error 
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norm bound 

eF\F\ = \F* - F\, eir < 2" C F i V ( " \ (C.5) 

for some fixed constant cp (provided that the exponent c in (C.4) is chosen 
sufficiently large). Then again, it is sufficient to perform the computations by 
this algorithm with 0(iV(n))-bit precision (cf. 37 . 

Similarly we compute an approximation G*ev to the factor Grev of the 
reverse polynomial prev = FrevGrev, where we write wrev(x) = xmw(l/x) = 
m m 

^S2,WiXm~l for a polynomial w{x) — Y^u^a;2 of a degree m. Observe that, 
j=0 i=0 

the sets of the coefficients as well as the norms of any pair of polynomials w 
and wrev coincide with each other. On the other hand, all zeros of the reverse 
polynomial Grev lie in the disc D(0,1//). Therefore, the same techniques that 
we applied previously enable us to approximate the polynomial Grev, which 
gives us a polynomial G* of degree n — k satisfying 

ea\G\ = \G* - G\, eG < 2~CGN^ (C.6) 

for some fixed constant cG. (See 37 for the alternative ways of the computation 
of the approximate factor G* via polynomial division.) 

Let us now deduce the bound 1.10. With no loss of generality, we may 
assume that |p| = 1. Write p* = F*G* and recall that \F\ < 2" (by (1.9)), 
|F*| > 1 (because F* is a monic polynomial), |G*| < 2n\p*\/\F*\ (by Propo
sition 4.1), and therefore, |G*| < 2n|p*| < 2 n( l + \p* - p\). Observe that 
p* - p = F*G* - FG = (F* - F)G* + F(G* - G), write ep = \p* - p\, and 
deduce that 

eP < eF\G*\ + eG\F\ < 2"(eF(l + ep) + eG) < 2^N^ (C.7) 

for cp < min(cp, CQ) — n — 2, provided that cp > 1. 
It is sufficient to perform the entire algorithm for the above computa

tion of F* and G* with the precision of 0(N(n)) bits to arrive at the error 
norm bounds of (C.5)-(C7) (apply the estimates of 36, equation (12.6) of 37, 
and Corollary 4.1 of 6 , Chapter 3). By summarizing our analysis, we obtain 
Theorem 1.2. • 
R e m a r k C . l . By choosing sufficiently large constants cp (or cp and cG), 
one may ensure that the unit circle C(0,1) splits the polynomials F* and G* 
(see Theorem 3.1). 
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Appendix D: Modifications of the Descending Process 

Consider modifications of the descending stage of Algorithm 2.1 based on 
either or both of the two following equations applied for all j : 

Fu-.j(x) = gcd(qu-j{x),Fu-j+1{x2)), 

Gu-j(x) = gcd(qu-j(x),Gu-j+i(x2)), j = 1 , . . . ,u. 

Here and hereafter, gcd(u(x),v(x)) denotes the monk greatest common 
divisor (gcd) of the two polynomials u(x) and v(x). 

In this modification of Algorithm 2.1, Pade computation is replaced by 
the polynomial gcd computation. This produces the same output as in Al
gorithm 2.1 if we assume infinite precision of computing. The approach was 
originally introduced in the proceedings paper 26 but in its journal version 
28 was replaced by the one based on Pade computation. This enabled more 
direct control over the propagation of the perturbation errors (cf. Theorem 
3.2), although both approaches can be made computationally equivalent be
cause both Pade and gcd computations can be reduced to the same Toeplitz 
linear system of equations (cf. 5, 6 ) . 

The gcd approach, however, may lead into a trap if one tries to solve the 
gcd problems based on the fast Euclidean algorithm (cf. Algorithm 5.1a of 
6 or 33 ). In this case, each descending step (2.4) is replaced by a recursive 
Euclidean process, known to be prone to the severe problems of numerical 
stability involved in it (cf. 38, 10, and 12) and to possible blow up of the 
precision of the computations and their Boolean cost as a result. In partic
ular, this is the case with the paper 24 where the fast Euclidean algorithm 
in the gcd version of the descending process is applied reproduced from 26, 
but unfortunately their analysis of its Boolean cost has been invalidated by 
a technical flaw. Namely, the analysis hinges on the invalid assumption that 
the value 5 = ip — 1 exceeds a fixed positive constant (tp2 being the relative 
width of the basic annulus for splitting a polynomial qu-j)- This assumption 
is satisfied only for the polynomials qu-j computed at a few last lifting steps, 
that is, for j = u — 0(1) but not for j = 0 , 1 , . . . ,u/2 (say). Thus, the analysis 
presented in 24 applies only to a few first descending steps, and the Boolean 
cost of performing all other steps remains unbounded. Furthermore, this flaw 
is not easy to fix; clearly it cannot be fixed based on the techniques of the 
paper 24. Fortunately, the distinct construction of 28 achieves the same result, 
and now we have its extension to the complete factorization problem as well. 
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COMPLEXITY ISSUES IN D Y N A M I C GEOMETRY 
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This article deals with the intrinsic complexity of tracing and reachability questions 
in the context of elementary geometric constructions. We consider constructions 
from elementary geometry as dynamic entities: while the free points of a construc
tion perform a continuous motion the dependent points should move consistently 
and continuously. We focus on constructions that are entirely built up from join, 
meet and angular bisector operations. In particular the last operation introduces 
an intrinsic ambiguity: Two intersecting lines have two different angular bisectors. 
Under the requirement of continuity it is a fundamental algorithmic problem to 
resolve this ambiguity properly during motions of the free elements. 
After formalizing this intuitive setup we prove the following main results of this 
article: 

• It is NP-hard to trace the dependent elements in such a construction. 

• It is NP-hard to decide whether two instances of the same construction lie in 
the same component of the configuration space. 

• The last problem becomes PSPACE-hard if we allow one additional sidedness 
test which has to be satisfied during the entire motion. 

On the one hand the results have practical relevance for the implementations of 
Dynamic Geometry Systems. On the other hand the results can be interpreted as 
statements concerning the intrinsic complexity of analytic continuation. 

1 Introduction 

1.1 What is Dynamic Geometry 

Imagine any construction of elementary geometry - for instance, a ruler and 
compass construction of the midpoint of two points A and B. It consists of 
certain free elements (the points A and B) and certain dependent elements 
whose positions are determined by the positions of the free elements. Each 
specific drawing of such a construction is a snapshot that belongs to the 
whole continuum of all possible drawings for all possible locations of the free 

Keywords: Dynamic Geometry, analytic continuations, NP, PSPACE, complexity, 
reachability, ruler and compass, linkages, warehouseman's problem 

mailto:richter@ma.tum.de
mailto:kortenkamp@inf.fu-berlin.de


356 

elements. If we move the free elements we can walk continuously from one 
instance (i.e. snapshot) of the construction to another one. During such a 
walk a continuous motion of the free elements should result in a continuous 
movement of the dependent elements. 

This article deals with those effects and problems that genuinely arise 
from such a dynamic and continuous setup of geometry. The research that 
led to the results presented in this article was motivated by the desire (and 
the actual work) of implementing a software package for doing Dynamic Ge
ometry on a computer 22>23. With such a program one should be able to 
do constructions of elementary geometry with a few mouse clicks, and after 
this pick the free elements with the mouse - drag them around - while the 
whole construction follows accordingly. The unsuspicious looking requirement 
of continuity of dependent elements turned out to be fundamentally hard to 
fulfill. In fact, one has to rely on notions of complex function theory and Rie-
mann surfaces to get a mathematically sound treatment of these effects 11>12. 
While this is no problem in theory, we prove here that from a complexity 
theoretic point of view most algorithmic questions related to that context are 
provably intractable (unless P=NP, of course). The complexity classes that 
arise here range from NP-hard problems via PSPACE-hard problems up to 
even undecidable problems. In particular we prove that . . . 

. . . it is NP-hard to calculate the positions of the dependent elements after 
a specific move of a free element (Sec. 5), 

. . . in general, it is PSPACE-hard to decide whether two instances of the 
same construction can be continuously deformed into each other if all 
free and dependent elements must have real coordinates (Sec. 6), 

. . . this reachability problem is still NP-hard if only join, meet, and angular 
bisector operations occur (Sec. 4), 

. . . it is undecidable whether two instances of a construction involving 
"wheels" - devices that transfer angles to distances - can be continu
ously deformed into each other by moving the base elements (Sec. 7). 

Although the results of this article arose from the study of configuration 
spaces of elementary geometric constructions they are naturally related to 
many other setups in the area of geometry. Among those are the study of 
configuration spaces of mechanical linkages 6<g<10

t realization spaces of ori
ented matroids 16>4>20,25 and polytopes 21, and the warehouseman's problem 
7,24. The results of this article are partially generalizations and strengthenings 
of known complexity results in these areas. Besides the context of Dynamic 
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1: A=FreePoint; 
2: B=FreePoint; 
3: C=FreePoint; 
4: a=Join(B,C); 
5: b=Join(A,C); 
6: c=Join(A,B); 
7: d=AngularBisector(b,c) 
8: e=AngularBiseetor(a,e) 
9: f=AngularBisector(a,b) 
10: D=Heet(d,e); 

Construction sequence static picture idea of the dynamic picture 

Fig. 1: Dynamic behavior of the angular bisector theorem. 

Geometry our results are relevant for all areas where geometric objects are 
moved around under certain geometric constraints, like robotics, paramet
ric CAD 5 , virtual reality, or computational kinematics. Our results imply 
that many problems of these areas are computationally difficult (like the per
sistent naming problem of parametric CAD 5 or the navigation problem of 
computational kinematics). Also one can interpret the results of this paper 
as statements on the complexity of analytic continuation (all coordinate func
tions in our setup turn out to be analytic). In particular this gives intrinsic 
complexity bounds on homotopy methods for solving polynomial equations 
as they were discussed in 26,27,28,29,30 This article is complemented by n ' 1 2 

were we give conceptual approaches to handle a dynamic setup of geometry 
at all. 

1.2 Constructions, Forbidden Situations and Ambiguities 

In a typical setup for this article we will study construction sequences in 
which each single construction step is of very elementary nature like taking 
the join of two points, the meet of two lines, the angular bisector of two lines, 
or the intersection of a line and a circle, etc. A construction sequence starts 
with some free points and generates new elements by performing elementary 
operations on already existing elements one at a time. It may happen that an 
operation cannot be carried out (for instance, if one wants to construct the 
join of two identical points, the meet of two identical or parallel lines, or the 
intersection of a line and a circle that do not meet). In order to avoid such 
situations let us assume that the input points are in suitable positions such 
that each step of the construction sequence can be done. In that case we will 
call the input point position admissible, otherwise we call it forbidden. 

The join and meet operations are deterministic construction steps in the 
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A A 
Fig. 2: Two instances of the angular bisectors of a triangle. 

sense that for each admissible input there exists exactly one corresponding 
output element (for instance two distinct, non-parallel lines have exactly one 
point of intersection). Construction sequences that exclusively involve join 
and meet operations are easy to handle: If for a certain position of the free 
elements each construction step is admissible then the positions of the depen
dent elements are uniquely determined. 

The situation is substantially different for operations like intersection of 
a circle and a line, or angular bisector of two lines. For these operations one 
has a binary choice of what the output of an operation should be (two lines 
have two angular bisectors, a line and a circle have in general two points of 
intersection). For a construction involving such operations the positions of 
the dependent elements are no longer uniquely determined by the positions 
of the free elements. This kind of non-determinism will be captured by the 
concept of a geometric straight line program, which is formalized in Sec. 2 (see 
also n ) . 

The intrinsic ambiguities of these operations together with continuity re
quirements are the fundamental sources that make the algorithmic problems 
studied in this article difficult. These intrinsic ambiguities even touch the very 
heart of the notion of "What is a geometric theorem?" Consider the theorem 
stating that the angular bisectors of the sides of a triangle meet in a point. 
Due to the intrinsic ambiguity of the angular bisector operation this sentence 
stated as such is not true. Consider the drawing in Fig. 2. It shows two valid 
instances of the construction: Take three points - form the three joins of any 
pair of them - draw the three angular bisectors of any pair of lines. In the 
left drawing the chosen angular bisectors meet, in the right drawing they do 
not. 

Having these ambiguities in mind, in the context of Dynamic Geometry 
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two natural questions arise: 

• Reachability problem: Is it possible to move the free points such 
that a first instance is smoothly deformed into a specific second one? 

• Tracing problem: How can a Dynamic Geometry program decide 
after a motion of the free elements what instance to draw for the new 
position? 

After a suitable formalization, we will show that the reachability problem 
is in general PSPACE-hard. It is still NP-hard if one restricts oneself to 
constructions that only use join, meet, and angular bisector operations. The 
tracing problem turns out to be (at least) NP-hard. 

1.3 Restricting the Operations 

We try to formulate our statements as strongly as possible and restrict the 
allowed elementary operations to a minimum. The only operations we will use 
are join, meet, angular bisectors and intersection of circle and line. Further
more, we assume that initially four fixed constant base points (0,0), (1,0), 
(0,1) and (1,1) are given. In fact, we try to use the intersection of circle 
with line operation as sparsely as possible. The reason for this is that the 
possible non-existence of such an intersection includes the possibility to en
code sidedness conditions and "cutting holes" in the admissible range of input 
parameters. By explicitly excluding operations like intersection of circle and 
line we substantially strengthen our results. In fact the NP-hardness results 
for the tracing and reachability problems can be exclusively stated in terms 
of angular bisectors, join and meet. The PSPACE-hardness results need just 
one single intersection-of-circle-and-line operation. We also try to introduce 
as few free points as possible into or constructions. This complements many 
other related complexity results since there usually many free variables are 
needed. The following table summarizes the complexity results covered in this 
article: 

Problem 

Tracing 
Reachability 
Reachability 
Reachability 
Reachability 
Reachability 

Complexity 

NP-hard 
NP-hard 
NP-hard 

PSPACE-hard 
PSPACE-hard 
Undecidable 

#free points 

1 
many 

1 
1 

many 
1 

^angular bisectors 

many 

3 
many 
many 

— 
2 

# int. circle/lines 

— 
— 
— 
1 
1 

— 

# wheels 

— 
— 
— 
— 
— 
11 
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In order to exclude unnecessary technicalities arising from special cases 
we also assume that the plane is extended by elements at infinity to the usual 
projective plane. 

The results that use exclusively angular bisectors (and join and meet) 
are in a sense generalizations of corresponding results in other setups in the 
following sense. While with mechanical linkages or with ruler and compass 
constructions it is easily possible to construct angular bisectors, the converse 
is impossible. A complexity theoretic lower bound for a setup that uses only 
angular bisectors is therefore a stronger result than a corresponding one for 
linkages or ruler and compass constructions. 

1.4 Related Results 

There are other related areas of geometry where similar complexity results 
arise. In this section we want to briefly discuss the relations - similarities and 
differences - to these results. 

I.4.I Oriented Matroids and Polytopes 

Research over the last few decades showed that for oriented matroids and poly
topes so called universality theorems can be proved. These theorems show that 
the corresponding realization spaces can essentially be (stably equivalent to) 
any solution space of a system of (finitely many) polynomial equations and in
equalities 16.4,20,2i,25_ These results are usually derived by a direct translation 
procedure, which starts from a system of polynomials and ends up with a con
figuration of the desired category (an oriented matroid or a polytope). In the 
realization space of the oriented matroid (or polytope) the original variables 
of the algebraic equations can be rediscovered from the coordinates of certain 
points. The constructions of universality theorems deeply rely on the genera
tion of large loops that feedback the result of an evaluation of a polynomial to 
a initially chosen constant (for instance a point whose coordinates represent 
the "1".) Deciding whether the realization space of an oriented matroid or 
polytope is empty or not turns out to be NP-hard. Deciding whether two 
realizations of an oriented matroid (or polytope) are in the same connected 
component of the realization space turns out to be PSPACE-hard. 

In Sec. 4 although we derive a similar result for elementary geometric 
constructions where we rely on very different effects. The complex behavior is 
generated by a strictly forward oriented construction without any feedback of 
information. Orientation information cannot and is not included in any way 

IFor the PSPACE-hardness result in Sec. 6. the significant difference to 
the constructions for oriented matroids or polytopes is that we use only one 
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free point instead of many free points. 

1.4-2 Mechanical Linkages 

A similar comparison holds for mechanical linkages, for which universality 
theorems are known 6>9>10 that prove that arbitrary primary semialgebraic 
sets can show up as components of configuration spaces. The corresponding 
reachability problem ("Do two instances of a linkage lie in the same component 
of the configuration space?") is also PSPACE-hard. 

The results there are obtained by making use of construction loops and 
inequality relations. The inequality relations arise naturally in that context, 
since the bars of a linkage are only of finite length. In our setup only weaker 
construction primitives are allowed. Furthermore also the linkage results rely 
on the introduction of many free elements, in contrast to our results. 

1-4-3 Warehouseman's Problem 

Moving an object with a non-restricted number of degrees of freedom through 
a world of geometric obstacles leads to another PSPACE-hard reachability 
problem 7 '24. Again, the use of inequality relations is already inherent in the 
statement of the problem, and many free elements are needed. 
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2 Geometric Constructions 

2.1 Geometric Straight Line Programs 

We now start to formalize the concept of a geometric construction. We take 
special care to have a setup that allows the results of an operation to be 
non-existent or ambiguous. For this we first define the notion of a relational 
instruction set. Here, instead of giving an algorithm or formula for the op
eration, only a relation is specified that enables us to check the validity of a 
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certain input and output pair. A slightly more general approach can be found 
in 1 1 . 
Definition 2 .1 . A relational instruction set (RIS) is a pair (0,fi) of objects 
O and primitive operations fi with the following properties: O = ( C i , . . . , Ok) 
is a family of sets d. These sets partition the objects into classes of the same 
type. The primitive operations $7 = (uii,... ,ui{) are relations 

with input size (arity) ar(wj) = Si and type type(wi) := Oxi . An element 
(o i , . . . , oar(w)) € Oxt x • • • x 0 X J is called an input and an element o € 0 ^ +1 

is called an output of w;. 
Remark 2.2. For the relation (o\,... ,oaT^,o) £ to, we will also use the 
more intuitive notation 

o <- Ui(oi,... , o a r ( w ) ) . 

This notion may be considered as a non-deterministic assignment operation. 
It assigns to an input (o\,... ,oar(w)) one of the potential outputs o of ui. 
However, one should have in mind that this notion still represents a relation 
that can be true or false. It is true if the input is admissible for the operation 
and if the output is one of the proper evaluations of ui on this input. 

In our geometric setup the different classes of objects will correspond to 
points, lines, circles, etc. Each primitive operation will represent a certain 
type of geometric primitive construction like join, meet, angular bisectors, 
etc. In addition, we will allow special operations to create free points which 
will play the role of the "input" of our constructions. Observe that relational 
instruction sets are general enough to describe not only geometric, but also 
arithmetic operations (see u ) . 

We now describe the specific objects and operations used in this article. 
Although we will make use of Euclidean operations, we will describe the purely 
incidence geometric part for points and lines in terms of projective geometry. 
This will exclude unnecessary special cases and helps in defining the right 
concept of continuity later on. We embed everything in the real projective 
plane MP2. In the usual way we can represent points and lines (in homoge
neous coordinates) by vectors in K3 \ {(0,0,0)}. Vectors that only differ by a 
scalar multiple are identified and represent the same point (or line). A point 
(x, y, z) is on a line (a, 6, c) if and only if ax + by + cz = 0. Meet and join can 
then be simply expressed as cross-products of such vectors (see for instance 

" ) • 

Since we also want to deal with objects and operations of Euclidean geom
etry like circles and angular bisectors, we have to embed the usual Euclidean 



363 

plane (equipped with a Euclidean metric) in RP2. A finite point (x,y) € R2 

will be represented by the point (x,j/,l) of UP2. With this standard em
bedding a line ax + by + c = 0 of R2 is represented by (a, b, c), i^ — (0,0,1) 
represents the line at infinity, and two lines l\ = (a\, b\, c\) and I2 = (02, ̂ 2, C2) 
are orthogonal if 0162 — b2a2 — 0. In order to simplify the notation later on 
we will also identify a finite point (a;, y, 1) with a complex number x + iy. By 
this we identify the finite part of the projective plane with C 

We restrict the use of angular bisectors to those lines that pass through 
the origin (0,0) of E2 . An angular bisector of two lines l\ and l2 through the 
origin is a line t through the origin such that Z(/i,£) = /(•£, k)- For a pair 
of lines there are two angular bisectors, which are orthogonal to each other. 
Restricting the use of angular bisectors to lines through the origin reduces 
the occurrence of non-admissible situations to a minimum. Formally, we will 
make use of the following primitive operations. For the sets P of points and 
L of lines, we define: 

JOIN := {(pi,P2,0 I I is the line through p\ and p% and p\ ^ p2} 

C{PxP)xL 

MEET := {{h,l2,p) I P is the intersection of l\ and Z2 and /1 ^ l2} 

C{LxL)xP 

BISECT := {(/i,/2,0 I Hs an angular bisector of l\ and I2 and 

h,h,l pass through the origin} 

C (L x L) x L 

Furthermore, we define the following four constants (i.e. primitives with input 
size zero): 

p(a,b) . = {(a j 6) !)}<- p. for a b £ | 0 ; J} 

These constants will be used to fix a coordinate system. For the generation 
of free points we define a special instruction that has no input elements and 
allows the output to be any point of P: 

FREE := P. 

We will deal with the following relational instruction set: 

JMB := ((P, L), (JOIN, MEET, BISECT, FREE, p(0,0)) p(l,0) ( p(0,l)) p(Ll))). 
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Remark 2.3. Here are three comments on the choice of the primitive oper
ations: 

(i) The only cases where the two operations JOIN and MEET are not admissi
ble is when the two input elements are identical. For all other cases they 
are well-behaved. 

(ii) The only operation that introduces an ambiguity is BISECT. The primi
tives JOIN and MEET are "deterministic" in the sense that each admissible 
input has exactly one possible output. 

(iii) The operation BISECT has been chosen for our investigations since it iso
lates the effect of generating an ambiguity. Unlike the intersection circle 
with line operation it has no open region of the input parameters where 
it is not admissible. Such effects (which we want to exclude here) would 
allow the possibility to construct some kind of "sidedness test", which 
are at the core of of complexity results for oriented matroids, polytopes, 
mechanical linkages or the warehouseman's problem. In Sec. 6 when we 
prove the PSPACE-hardness result we will make a very selected use of 
one such additional operation. 

A construction sequence is formalized by the concept of a geometric 
straight line program (GSP). 
Definition 2.4. A geometric straight-line program on a relational instruction 
set (0,0.) is defined by a sequence of statements F = (Ti,..., Fm). Each Tj 
has the form P,- = (oJ,ii, • • • ,«ar(o;)) where 

(i) UJ is an operation from the instruction set fl, 

(ii) the type of Fj is defined to be the type of w, 

(iii) for each k 6 { 1 , . . . , ar(w)} we have iu < j , 

(iv) for each k G { 1 , . . . , ar(w)} the type of F;fc matches the type of the A;-th 
input of u. 

After a suitable set of primitive operations is given it is straightfor
ward to describe construction sequences by a GSP. Each statement Fj — 
(w, i\,... , iar(tj)) °f a GSP describes the generation of a new element by means 
of a primitive operation ui whose input is given by the output of the statements 
r ^ , . . . ,Fi^(ui). Item (iii) of the above definition ensures that only elements 
are used as input that have been already constructed. Item (iv) ensures a cor
rect typing. The concept of a GSP emphasizes the constructive step-by-step 
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nature, however it allows for a certain "non-determinism" during a construc
tion, since it does not specify which output of an (ambiguous) operation to 
take. To make GSPs more readable we also use the " <— " notation of Remark 
2.2 to encode each statement. A statement Tj = (ui,ii, • •. , *ar(w)) will then 
be written as j <— u>(ii,. • • ,iar(u,))- Furthermore, we allow to exchange the 
references j,i\,... ,iar(w) by meaningful variable names. 

We may consider a certain set of primitive operations as a kind of pro
gramming language. Each GSP is a certain program. In what follows we are 
mainly interested in the constructions/programs that can be described by the 
operations in JMB. 
Example 2.5. The following sequence of instructions is a simple GSP over 
the JMB instruction set. It takes two free points p and q, joins them to the 
origin o, and constructs the angular bisector of the two resulting lines. 

p 4 - FREE 

q « - FREE 

o « - P(°>°) 

lx < - JOIN(a ,o ) 

l2 <r- JOIN(6,o) 

b < - BISECT( / i , / 2 ) 

We will still simplify the notions by assuming that points that do not 
occur explicitly on the left of any assignment are automatically initialized by 
a FREE operation. Furthermore, if the output of an operation is unique and 
used only once we allow that it is used directly (without intermediate variable) 
as an input of another operation. In particular this convention applies to the 
constants in JMB. With these conventions the above GSP can simply be 
written as 

b <- B I S E C T ( j O I N ( p , P ( 0 ' 0 ) ) , J O I N ( g , P ( 0 ' ° ) ) ) . 

Closely related to the concept of a GSP ( r \ , . . . , Tm) is the notion of an 
instance of the GSP. Roughly speaking an instance of a GSP is an assignment 
of a concrete object to each of the statements r» such that all corresponding 
relations are satisfied. 
Definition 2.6. An instance of a geometric straight-line program 
(ITi,... , r m ) is an assignment of objects X — Xi,...,Xm such that all 
primitives are satisfied, that is, for every statement Fj = (uij,i\,... ,*ar(wj)) 
the relation (Xtl,... ,-Xi„(„.>,Xj) & LOJ holds. 
Example 2.7. For the GSP given in Example 2-5. we have in particular the 
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following instance (in homogeneous coordinates): 

p= (1,0,1) gf= (0,1,1)5 = (0,0,1) 
J~i = (1,0,0) J2 = (0,1,0)6 = (1,1,0) 

It is important that for the same choice of free elements there also exists an
other possible instance that exactly differs in the choice of the angular bisector: 

p = (1,0,1) q= (0,1,1) 5= (0,0,1) 
fi = (l,0,0)f2 = (0,1,0)6 = ( - 1 , 1 , 0 ) 

R e m a r k 2.8. By our definition of an instance we implicitly assume that for 
any specific instance the positions of the elements are admissible in the sense 
that each primitive operation can be executed. 
R e m a r k 2.9. A more formal treatment of RIS's and GSPs would include a 
careful separation of syntax and semantics of GSPs, a separation of references 
to objects and the objects themselves, and many other subtleties that are 
present whenever the aim is to formalize the concept of computing. However, 
we hope that the slightly informal treatment used in this article satisfies the 
needs of the reader as long as only complexity issues are concerned. A more 
elaborated treatment of GSPs can be found in n . 

2.2 Continuity 

Along with the notion of GSPs and their instances comes a natural notion 
of continuity. For this we will split a specific GSP V = (I"i , . . . , r m ) over 
the instruction set JMB into input variables and dependent variables. We 
consider each point in V that comes from a FREE operation as an input to V. 
W.l.o.g. we may assume that the definition of the input points are the first k 
statements V. Each of the operations JOIN,MEET, and BISECT has only a finite 
number of possible output values. This is the case since if we prescribe the 
positions of the input points all other objects of this instance are determined 
up to a finite number of possible binary choices. Each choice that has to be 
made comes from one application of a BISECT operation. 

Now assume that p\,... ,Pk are the input points of V- Furthermore, 
assume that we are given continuous functions 

Pi{t): [0,1] - > M 3 \ {(0,0,0)} 

for each i g {1, - • • ,k}. These functions describe a continuous movement of 
the input points (in homogeneous coordinates). 
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Definition 2.10. A continuous evaluation of the GSP V over the JMB in
struction set under the movement pi(t) is an assignment of continuous func
tions 

0i(t): [0,1]-> E 3 \ { (0 ,0 ,0 )} 

for each i € {k + 1 , . . . , m} such that for all t £ [0,1] the objects 

(Pi(*),--- ,Pk{t),ok+i(t),... ,om(t)) 

form an (admissible) instance of V'. 
This concept formalizes the intuitive requirement that under a continuous 

movement of free elements the dependent elements should move continuously 
as well. For instance, if we have the simple GSP of Example 2.5 and move 
from one instance to another by changing the positions of the free elements a 
and b, a continuous evaluation makes sure that we do not jump spontaneously 
from one choice of the angular bisector to the other one. 

Observe that the way we define continuity leaves room for the necessary 
indeterminism: Usually one would require that the output elements are given 
by continuous functions in the input, but here both the path of the input and 
the path of the output are given by continuous functions on the interval [0,1]. 

The following property of continuous evaluations is crucial: 
Lemma 2.11. If there exists a continuous evaluation of the GSP V over the 
JMB for a continuous movement Pi(t) then it is unique. 

Proof. We can prove this lemma by induction on the length of P. Assuming 
that the statement holds for all programs of length m — 1 we prove that it 
also holds for programs of length m. Assume that for such a program V the 
functions pi (t) describe a continuous movement for which a continuous evalu
ation exists. If the last operation of V is one of the constant points then the 
statement holds trivially. If the last operation of V is one of the determinis
tic operations JOIN or MEET, then the statement holds by the continuity of 
these operations. If the last operation is BISECT then we can argue as follows: 
The two possible outputs of BISECT are two lines that are orthogonal to each 
other. If there was a way to continuously get from one branch to the other 
there must be a position in which these two lines coincide. This is impossible 
since the two angular bisectors are orthogonal. • 

R e m a r k 2.12. This Lemma shows the importance of non-admissible posi
tions: At these singularities the different branches coincide, both angular 
bisectors degenerate to the zero vector. It is not possible to extend the pro
jective setting by this additional line (0,0,0) (and a corresponding point) 
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without destroying the uniqueness of continuous evaluations, even though it 
is possible to extend the JMB instruction set to include them. 

2.3 Fundamental Problems in Dynamic Geometry 

After formalizing the concept of GSPs and continuity we are finally in the 
position of formalizing the main questions of this work. The first problem 
formalizes the most fundamental operation of a Dynamic Geometry program: 
After you pick a free point of a construction and move it to another position, 
how did the rest of the construction change? 
Definition 2.13. (Tracing problem): Let V be a GSP and let 
Pi(t) describe a continuous movement for which a continuous eval
uation (pi(t),... ,Pk(t), Of.+i (t),... , om(t)) exists. Furthermore, let 
(p i , . . . ,pk,Ok+i, • • • ,om) be an instance of V with free points pi — Pi{l) 
for alH 6 { 1 , . . . , k}. Decide whether Oj = 0^(1) for alH 6 {k + 1 , . . . , m}. 

The second problem asks for the mere existence of a path from one in
stance to another. 
Definition 2.14. (Reachability problem): Let P° = 
(/>?,••• ,P°k,o0

k+i,--- ,o°m) and P 1 = (p{,... ,pl,ol+1,. •. ,oJ„). Decide 
whether there exists a continuous evaluation that starts at P° and ends at 
P1. 

We will see that both problems turn out to be (at least) NP-hard. If we 
allow one single use of a sidedness test to constrain admissible regions the 
reachability problem even turns out to be PSPACE-hard. 

3 Useful Gadgets 

This section will describe small constructions that are helpful to compose the 
more complicated constructions that we need later. 

3.1 More Primitives 

Since our set of primitive operations is very restricted we first show that other 
useful primitive operations can be easily composed from these primitives. 



369 

3.1.1 The Line at Infinity 

By a simple sequence of join and meet operations we can construct the line 
at infinity: 

a <- MEET(JOIN(P(°'0),P(0'1)),JOIN(P(1'°),P(1'1))) 

b «- MEET(JOIN(P(0'0»,P(1'°)),JOIN(P(0'1),P(1'1))) 

too «- JOIN(O,6) 

By construction, a and b are two distinct points on the line at infinity and 
hence l^ is the line at infinity with homogeneous coordinates (0,0,1). 

3.1.2 Parallel Lines 

For a line / and a point p we can calculate the parallel to / through p by 

JOIN(MEET(Z,4O) ,P) . 

If p lies on / this formula produces I itself. If / = 1^ this formula is not 
admissible. We will refer to this "macro" by PARALLEL ,̂ p). 

3.1.3 Perpendicular 

A bit less trivial is the construction of a perpendicular to I trough p. We 
can only do such a construction since the choice of our constant points pro
vides us with a sample of two perpendicular lines. This right angle can then 
be transferred to another line. Since we already have a parallel operation 
w.l.o.g. we may assume that I passes through p(°>°) and that p = p(°'°). The 
construction is given in Fig. 3. We have 

a <- MEET(JOIN(P( 1 ' 0 \P( 1 ' 1 ) ) , / ) , 

b <- MEET(jOIN(p(0 '0),P(0 '1)),PARALLEL(a,JOIN(p(1 '°),p(0 '1)))), 

C «- MEET(JOIN(P(° '1 ) ,P(1 '1 ' ) ,PARALLEL(6,JOIN(P ( 0 '0 ) ,P ( 1 '1 )))) , 

perp <- JOIN(C, P ( 0 ' 0 )) . 

This construction is admissible for all situations where I passes through 
p(°.°). We will refer to the general construction for perpendiculars by 
PERPENDICULAR^, p) . 
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Fig. 3: Construction of a perpendicular. 

3.2 Arithmetics 

An essential part of our constructions will be the evaluation of certain poly
nomial expressions. For this we single out one particular line / on which we 
perform the evaluation. On this line we fix two points that play the roles of 
"0" and " 1 " and therefore fix an origin and a scale. To every point x on this 
line we can assign a unique value with respect to this scale. This value is 
given by the ratio |~f of oriented segment lengths. Sometimes we will abuse 
notation and use the name of the point as name for the value. 

3.2.4 Von Staudt Constructions 

The evaluation of arbitrary polynomials can be done if we are able to perform 
an elementary addition z = x + y and an elementary multiplication z = x • y. 
This can be done by the classical von Staudt constructions. They are shown 
in Fig. 4. In these pictures lines that seem to be parallel are really parallel. 
The desired arithmetic relations follow immediately from the similarities of 

\ 
1 

___ 

[ M 

k 
ir"1'A* * y \ i + V 

Fig. 4: Von Staudt constructions for addition and multiplication. 
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jo 1 U TR TO 

Fig. 5: Coordinate extraction for "complex" points. 

the darkened triangles. Both constructions can be easily decomposed into a 
sequence of JOIN, MEET and PARALLEL operations, that start from the points 
0, 1, x, y and one auxiliary point p not on! . In particular we get 

MEET(JOIN(0 ,X) , 

PARALLEL(JOIN(:E,P), 

MEET(PARALLEL( JOIN(0, p), y), 

PARALLEL(JOIN(0, x),p)))), 
MEET(JOIN(0 ,X) , 

PARALLEL(JOIN(:E,P), 

MEET(PARALLEL(JOIN(1,P), y), J O I N ( 0 , P ) ) ) ) . 

These construction sequences are chosen with care such that as long as the 
auxiliary point p is not on Z the only non-admissible situations arise when in 
the addition both points x and y are at infinity or in the multiplication one 
of the points is at 0 and the other is at infinity. 

x + y «-

x-y «-

3.2.5 Complex Arithmetics 

As well as calculations over the real numbers we can also do calculations over 
complex numbers. For this we fix points "0", " 1 " and "i" in the plane, such 
that the lines ZR «— JOIN(0,1) and Z$R <- JOIN(0 , I ) are perpendicular and 
such that the distance from 0 to 1 is the same as the distance from 0 to i. 
For convenience we take 0 «- p(°-°), 1 «- pC1-0), i <- p(°,i). The lines lR 

and ZJR play the roles of the real and imaginary axes of the complex plane. 
The points 0 and 1 define a scale on ZR. The points 0 and i define a scale 
on ZJR. For each point p in the plane we can (after orthogonal projection to 
these two axes) assign two coordinates, the real and the imaginary part of a 
complex number a + ib. If no confusion can arise we simply denote the points 
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with homogeneous coordinates (a, b, 1) by the corresponding complex number 
a+ib. By a parallel projection along the direction of JOIN(1, i) we can transfer 
any number in ZJR to the corresponding number on ZR, and vice versa. Let 
z\ = a,\ + ib\ and z2 = a2 + ib2 be two complex numbers. With respect to our 
coordinate system we can model complex addition and complex multiplication 
of the points z\ and Z2 by first transferring the real and imaginary parts to 
the line ZR, then modeling the formulas 

z\ + z2 — (ax + o2) + i(h + b2), 
z\ • z2 = (aia2 - hb2) + i(aib2 + b\a2), 

by a sequence of von Staudt constructions and finally construct a new point 
from the resulting real and imaginary part. The complex addition can be used 
for addition of vectors as well. 
Remark 3.1. One might think that using von Staudt constructions for vector 
addition is more than necessary. The simple construction sequence 

Zi+Z2 4- M E E T ( P A R A L L E L ( 0 , ; ? I ) , P A R A L L E L ( 0 , 2 : 2 ) ) 

seems to work as well. However, this construction has the disadvantage that 
it is non-admissible whenever 0, z\ and z2 are collinear. For the complexity 
issues that we consider later the actual length of these elementary operations 
is irrelevant as long as it is constant. 

3.2.6 Integer and Rational Points 

By being able to add and multiply via von Staudt constructions we are also 
able to construct points a + ib for arbitrary integers a and b with respect 
to our coordinate system. We simply have to find a sequence of additions 
and multiplications that computes the numbers a and b starting from 0 and 
1. In particular, using the binary representation any integer n > 0 can be 
constructed in 0(log(n)) construction steps. 

It is also easy to construct numbers of the form ^ . The construction in 
Fig. 6 shows that this can be done in 0(n) steps. 

3.3 Points on Circles and Intervals 

In our relational instruction set JMB we do not have direct access to circles. 
However, by Thales' theorem we can freely generate points on circles that 
are given by two diameter points (see Fig. 7 left). Let a and b be the two 
endpoints of a diameter of the desired circle. We take a free point p and 
construct 

q 4- MEET(jOIN(a,p),PERPENDICULAR(jOIN(a,p),6)). 
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Fig. 6: Constructions for ^ - . 

Using Thales' theorem it is immediate that the point p is on the circle with 
the segment [ab] as diameter. We will abbreviate this construction by 

q <- ONCIRCLE(a, b,p). 

If we furthermore project the resulting point orthogonally to the line a, b 
by 

X « - M E E T ( J O I N ( O , 6) ,PERPENDICULAR(jOIN(a,6) ,ONCIRCLE(a, b,p))), 

we get a point x that is constrained to lie in the closed segment from a to b 
(see Fig. 7 right). We abbreviate this by 

X <- ONINTERVAL(a, b,p). 

Only if p and a coincide these two operations are not admissible. 
Remark 3.2. This construction has the side effect that while point p cycles 
once around point o, the derived point q makes two full cycles on the circle. 

Fig. 7: Constructing points on circles and on segments. 
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Fig. 8: Detection of a winding number. 

Remark 3.3. Although by this construction we can generate a point freely 
on the boundary of a circle, this circle is not available for further constructions 
like intersecting it with a line. 

3.4 Detecting a Winding Number 

So far the constructions used in our gadgets did not contain any BISECT op
erations and therefore no non-determinism occurred. The basic functionality 
for which we will use BISECT operations is the generation of monodromy ef
fects: "One can start with an instance A of a GSP and continuously make a 
round-trip with the free elements and end up in a different instance B." The 
smallest device for which such an effect occurs is given by the following GSP: 

£0 «- JOlN(a,0) 
£l < - B I S E C T ( / R , ^ 0 ) 

£2 < - BISECT(ZR, ^ i ) 

It takes a free point a, joins it with the origin and constructs an angular 
"quad-sector" of this line and /R. Assume that a is in a certain position (^ 0) 
and from there makes a round-trip with continuous speed around the origin. 
While £0 moves with an angular velocity w the line £\ moves with angular 
velocity w/2 and the line £2 moves with angular velocity u/4. Thus after a 
has performed a full cycle around the origin the line £2 has made a quarter 
turn. If a moves along an arbitrary path (that avoids point 0) and returns 
to its original position then the resulting situation reflects the parity of the 
winding number of a around the origin. If £2 returned to its original position, 
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the winding number was even, if £2 moved to the orthogonal of its original 
position the winding number was odd. 

We can furthermore iterate this construction by adding more statements 
of the form 

li « - B I S E C T ( / R , ^ _ i ) 

for i £ { 3 , . . . ,k}. The resulting line l^ moves with angular velocity uj/2k. 
By this construction we can determine the winding number of a round-trip of 
a modulo the exponential number 2k~1. If the line Ik made a total turn of 
i • n/2k~1 the winding number w satisfies 

w = i mod2* _ 1 . 

The situation for the first two iterations is shown in Fig. 8. 

4 Reachability Problems 

This chapter is dedicated to our first theorem. We will prove: 
Theorem 4.1. The following decision problem is NP-hard: Given a GSP 
V over the JMB instruction set that uses at most three BISECT operations. 
Furthermore, given two instances A and B of V• Decide whether there is an 
admissible real path from A to B. 

We will prove this theorem by giving a reduction from the well known 
3-SAT decision problem. 

4.1 From 3-SAT to Algebra 

The following problem is one of the standard NP-complete decision problems 
2 

Decision Problem 4.2 (3-SAT). Let B = (b\,... ,bn) be boolean vari
ables, and let the literals over B be B = (61 , . . . ,bn, ->&i,... , ->6n)- Further
more, let C\,... , Ck be clauses formed by disjunction of three literals from 
B. Decide whether there is a truth assignment for B that satisfies all clauses 
Ci,... ,Ck simultaneously. 

W.l.o.g. we may assume that each variable occurs at most once in each 
clause. We first give a (polynomial time) procedure that transfers each in
stance of 3-SAT into a corresponding problem concerning the roots of a multi
variate polynomial. Let b\,... , bn be the boolean variables and let C\,... ,Ck 
be the clauses of a given 3-SAT S. To each bi we assign a formal variable £;. 
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For a literal /, € {&;,-•&;} we set 

r/ \ J %i U ii = Oj, 

J ^ ^ - \ l _ a ; i i f / i = - , 6 i . 

Assume that for each j = 1 , . . . , k the clause Cj is of the form Z£ V /̂  V l\ 
where the literal l\ is either bi or -hi. We set 

Finally we set 

By this translation for instance the 3-SAT formula (&! V-163 V65) A (~^b2 V 
64 V -165) is translated to (x\ • (1 — X3) • x5) + ((1 — X2) • X4 • (1 — £5)). The 
satisfying truth assignments for S and the roots of Fs in [0,1]" are related by 
the following lemma (here [0,1] denotes the closed interval between 0 and 1). 
Lemma 4.3. S has a satisfying truth assignment if and only if there are 
(xi,... , xn) e [0,1]™ with Fs(xi,... , xn) - 0. 

Proof. If S has a satisfying truth assignment (b\,... , bn) £ {TRUE, FALSE}" 

we set 

- { 
0 if bi = TRUE, 

1 if bi = FALSE. 

Since every clause contains at least one true literal we the get that all 
/ 1 , . . . , fk are zero. This yields that Fs is zero as well. Conversely, assume 
that there are values ( x i , . . . ,xn) e [0,1]" such that Fs(xi,... ,xn) = 0. 
If the X j 3/1TG chosen in the interval [0,1] all fj are non-negative. Thus 

Ylj=i fj = 0 implies that all fj are zero. However, each fa can only be 
zero if at least one of its factors is zero. By setting 

, _ J TRUE if Xi = 0, 
{ :~ { FALSE if x{ ^ 0, 

we get a satisfying truth assignment for S. • 

Using the structure of the polynomial Fs(a; i , . . . ,xn) we can derive a 
simple gap theorem in the case that 5 is not satisfiable. 
Lemma 4.4. / / S is not satisfiable then Fs(xi,... ,xn) > 1 for all 
(Xl,...,xn)€[0,i\n. 
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Proof. This is true since F$ is a multilinear form and Fs(x\,... ,xn) is an 
integer that is greater or equal to zero for all vertices (x\,... ,xn) 6 {0,1}™ 
of the unit cube. • 

4-2 From Algebra to Geometry 

Our next step is to transfer the algebraic situation in Fs to a geometric 
construction using exclusively JOIN and MEET operations and the constant 
points 0, 1, i, and 1 + i. This construction has the following properties: It 
contains freely movable points p\,... ,pn (one for each boolean variable in 
S), and a dependent point q that is constrained to lie on ZR. There will be 
admissible positions for p\,. . . ,pn such that 0 and q coincide if and only if 5 
is satisfiable. 

Using the gadgets from Sec. 3 the construction is straightforward. We 
construct n points x\,... ,xn according to 

Xi « - ONINTERVAL(0, I,Pi). 

The construction constrains each of the points Xi to the segment [0,1] (see 
Sec. 3.3). Except for this there is no restriction to the positions of the points 
xi,... ,xn. These points model the input variables x\,... , xn of the equation 
Fs whose values should be chosen in the interval [0,1]. 

Using von Staudt constructions we now encode the polynomial 
Fs(xi,... ,xn) geometrically. All calculations are carried out on the line 
/R. The point that finally represents the result of the calculation is called q. 
This point q lies on /R by its construction and Lemma 4.3. It can coincide 
with 0 if and only if S was satisfiable. We call the whole construction Cs-
Altogether we obtain: 
L e m m a 4.5. (i) In Cs the point q lies on ZR. 

(ii) There is an admissible position for pi,.. • ,p„ in Cs such that q and 0 
coincide if and only if S has a satisfying truth assignment. 

(iii) If S is not satisfiable then q > 1 for all admissible positions ofpi,... ,pn. 

Proof, (i) The point q lies on /R by construction, (ii) is a consequence of the 
construction and Lemma 4.3. (iii) is a consequence of the construction and 
Lemma 4.4. • 

4-3 A Geometric Combination Lock 

Our final task for proving Thm. 4.1 is to transfer the construction Cs into a 
construction that can be used for proving NP-hardness of a reachability prob-
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Fig. 9: Schematic view of the construction of a "geometric combination lock". 

lem. The construction of Cs so far included only JOIN and MEET operations 
without non-determinism. The idea now is to conclude the construction by 
linking it to the "winding number gadget" presented in Sec. 3.4. We will do 
this in such a way such that a certain angular bisector can be rotated by 7r/2 
if and only if the original 3-SAT problem was satisfiable. 

For this we add a new free point p from which we construct a derived 
point v on the circle with diameter [—| + Oi, | + Oi]. The construction is 
standard using the point on circle gadget from Sec. 3.3: 

V 4- ONCIRCLE(--, ~,p). 

Then we take the construction for Cs and use our gadget for complex addition 
to construct w = q + v and the line £Q 4— JOIN(0, W). Finally, we add three 
non-deterministic statements 

(.1 <r- BISECT(/R,£ 0 ) , £2 <~ BISECT(/R,^I) , £3 <r- BISECT(/K,£2)-

The line £3 is a three times iterated angular bisector of /R and £$. By con
struction the lines £0, £1, and £2 pass through the origin. Hence the bisector 
operations are admissible. If the positions of p, pi,... ,pn are fixed then the 
construction is completely determined up to the actual position of £\, £2, and 
£3. The final construction is called TZs-

For the positions p — p{ = ...=p^=l the line £0 coincides with ZR and 
the choice 

£i=£2 = £3 = IK 
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is a proper instance A of Us- For these positions of p,pi,... ,pn also the 
choice 

(l = (-2 = IR, @3 = liR 

is a proper instance B. The only distinction between the instances A and B 
is the position of £3. 
Lemma 4.6. There is a continuous admissible path from A to B (induced by 
a movement of the free points p,p±,... ,pn) if and only if S is satisfiable. 

Proof. The only way to get from A to B is that the point w = q + v turns an 
odd number of cycles around the origin. Assume for a moment that pi,... ,pn 

are fixed. Then the point q has a certain position on the line IR. The point 
w is then constrained to lie on a circle of radius \ around q. By moving p we 
can freely influence the position of w on this circle. The only way to let w 
cycle around the origin is to move p to a position that has less than distance 
I to the origin, and then move p to achieve a full cycle of w around the origin. 
However, Lemma 4.5 shows that q can only come so close to the origin if and 
only if S was satisfiable. This proves the claim. • 

We may think of the whole construction as a "geometric combination 
lock:" The points pi, • • • ,pn play the role of the code dials. The point p plays 
the role of an opening wheel. The angular bisector is the bolt of the combi
nation lock. The reachability problem translates to the question whether one 
can open the lock. Initially the dials and the wheel are in some position. If 
we want to open the combination lock we first have to move the dials into the 
correct position (this can only be done if we know the solution to the 3-SAT 
problem 5). If the dials are in the correct position we can turn the opening 
wheel and open the lock. After opening the lock we move all dials and the 
opening wheel again to the initial position. Nothing has changed except for 
the fact that the lock is now open. 

A schematic picture of the whole situation is shown in Fig. 9. Points on an 
interval are used for von Staudt constructions. The result of this computation 
is used for the opening wheel. 

Finally, observing that the whole translation from the original 3-SAT to 
the construction TZs can be carried out in polynomial (even linear) time in 
the length of the 3-SAT problem proves Thm. 4.1. 

5 Computing a Specific Trace 

The goal of this section is to prove our next main theorem. It describes the 
complexity of the basic situation in a Dynamic Geometry system: You pick 
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a point and move it from one position to another. It will turn out to be NP-
hard to decide whether a continuous evaluation of the situation ends up in a 
specific situation. 
Theo rem 5.1. Given a GSP V over the JMB instruction set that contains 
exactly one free point p. Furthermore, given two instances A and B such that 
p is at position a in A and p is at position b in B. Let p{t) : [0,1] —> [a, b] 
be a (straight) movement of p with p(0) = a and p(l) = b. It is NP-hard to 
decide whether a continuous evaluation of V under this movement that starts 
at instance A ends up at the instance B. 

Here is an overview over the ingredients of our proof: First, we map the 
moving point p to the unit circle. Then we construct a set of polynomials 
Bj(z) that correspond to the variables of a given 3-SAT problem in a way 
that all possible 0-1 combinations are represented by the values of the Bj 
on the unit circle. Finally, another polynomial Fs(z) encodes the boolean 
formula of the 3-SAT problem and controls a point q, that will cycle around 
the origin. The winding number of this point can be used to read off the 
satisfiability of the 3-SAT. 

A similar polynomial construction has been used by Plaisted in 17>18'19. He 
used it to prove that it is NP-hard to decide for a sparse univariate polynomial 
whether it has a complex root of modulus 1. Our constructions differ from 
Plaisted's work by being more focused on evaluations of polynomials over the 
real numbers. One of the direct consequences of our construction is that it 
is NP-hard to decide whether a real polynomial encoded by a straight line 
program has a root over the real numbers (see Sec. 5.7). This fact can also be 
derived as a consequence of Plaisted's Theorem by a Moebius transformation 
argument. The alert reader will find out that we could have used the binary 
counter construction of Sec. 6 to prove Thm. 5.1, but the additional results 
for real polynomial roots (and some additional insight) would not have been 
possible then. We are convinced that the additional effort pays off very well. 

5.1 A Point on the Unit Circle 

We will start our construction with a little gadget that maps a certain line 
segment to a point on the unit-circle. For this we first use the point-on-circle 
gadget of Sec. 3.3. and set 

W <- ONCIRCLE(- l , l ,p) . 

If p is located at 2 the point w is located at 1. While p moves on a straight 
vertical path to the point 2 + 3i point w makes a quarter turn on the unit 
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circle. We set 

This point is constructible by the gadgets for complex arithmetics from 
Sec. 3.2. While p moves along the segment from 2 to 2 + 3i the point z =: z(p) 
makes exactly one full cycle on the unit circle. 

5.2 Complex Polynomials for Variables 

From now on we fix a specific instance 5 of a 3-SAT problem with variables 
b\,... ,bn and clauses C\,... ,Ck- We will encode S into an instance of the 
decision problem of Thm. 5.1. 

Let Pj be the j-th prime number, and let M = n?=i Pj ^ e t n e product 
of the first n primes. The size of the j - th prime is less than jlog(j). Hence 
the size of M is less than n " l o g n . The polynomial zM — 1 has altogether 
M single roots, the M-th roots of unity, equally spaced on the unit circle at 
z = e

2i^rlM\ for r G {1,2 , . . . , M } . We abbreviate eM(r) = e
2i<r'M\ We 

consider two classes of polynomials for which the sets of roots are subsets of 
the roots of zM - 1: 

Bj(z) = \-zMlpi, 
Bj{z) = 1 + ZMlPi + Z2MlPi + Z3M'Pi +••• + zlPi-»M/Pi. 

For each j e { l , . . . , n } we set Aj = {PJ,2PJ,3PJ, ... , M} and Aj = 
{1,2 , . . . , M] — Aj. The following relations are immediate. 
Lemma 5.2. With the notation as set above we have: 

(i) For each j S { 1 , . . . ,n} we have Bj(z) • Bj(z) = zM — 1. 

(ii) The roots of Bj(z) are at z = EM(r), for r G Aj. 

(iii) The roots of Bj(z) are at z — eM{f), for r S Aj. 

Proof. Claim (i) can be directly proved by expansion of the product. Claim 
(ii) is trivial. Claim (iii) is a consequence of (i) and (ii) and the fact that 
there are no multiple roots in zM — 1. • 

Later on we will associate to each number r £ {1 ,2 , . . . ,M} a certain 
evaluation of the boolean variables b\,... ,bn. For a number r the boolean 
variable bj will be considered T R U E if ej^(r) is a root of Bj and FALSE oth
erwise. The above lemma proves that under this correspondence bj is FALSE 

(at r) if and only if CM (r) is a root of Bj. We set 

i , M . _ / T R U E ifBj(eM(r))=0, 
j{ ' — \ FALSE if Bj(eM(r)) ± 0. 



382 

Lemma 5.3. For each truth assignment (&i,... ,bn) € {TRUE, FALSE}" 

there is at least one number r € { 1 , . . . ,M} such that bj(r) = bj for all 
j e { 1 , . . . ,n}. 

Proof. For a given assignment (&i,... , bn) e {TRUE, FALSE}" we are looking 
for an integer r < M that has Pj as a prime factor if and only if bj(r) = TRUE. 

For this we can simply take the number 

n ^ 
{j |6i(r)=TRUB} 

which has this property. • 

We will explicitly calculate the above polynomials Bj(z), Bj{z) and zM — 1 
by suitable geometric constructions. We will have to take care that the effort 
of doing this is no more than polynomial in the coding length of the original 
3-SAT 5. For this we need: 
Lemma 5.4. For each n the polynomial zn can be evaluated by a straight line 
program using at most 0(log2(n)) multiplications. Similarly for each n and 
each divisor m of n the polynomial 1 + zm + z2m -\— • + zn can be evaluated by 
a straight line program using at most 0(log(n)2) additions or multiplications. 

Proof. Let n = CT02° + ax2
l + a22

2 + • • -+ah2
k with k < log2(n) and a{ € {0,1} 

be the binary expansion of n. We can write zn = Y[u i a=i\ z2' • This product 
has at most log2(n) terms. The polynomial z2' — z2' • z2' uses only one 
additional multiplication if we already have z2' . This proves the first claim. 

For the second claim we first set fk{z) = 1 + z1 + z2 + • • • + zk. We 
have 1 + zm + z2m + • • • + zn = fn/m(zm). Thus after having used 21og2(m) 
multiplications for computing zm we just have to care about fk(z) for k — 
n/m. If k is even we get fk{z) = fk/2{z){l + zkl2), if k is odd we get fk(z) = 
fk/2-i(z)(l + zhl2) + zk/2, and a simple recursion on k proves the claim. • 

The last lemma together with the observation that M is less than n™log n 

shows that all polynomials Bj(z), Bj(z) and zM — 1 can be encoded by straight 
line programs whose length is polynomial in n. 

5.3 Evaluating a 3-SAT 

We now proceed by encoding the original 3-SAT instance 5 into our con
struction. For a complex number z = o + ib we set ||z|| — a2 + b2. For all 
i e { l , . . . , n } we consider Lj(z) = ||i?j(,z)|| and Lj(z) = ||Bj(,z)||. These two 
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functions are real-valued and even non-negative. The only way for these func
tions to be zero is that the corresponding functions Bj (z) and Bj (z) become 
zero. For a literal lj 6 {bj, -*bj} we set 

1 (Z)- \Lj(z)iili = -,bi. 

Assume that for each j = 1 , . . . , k the clause Cj is of the form Pr V l{ V l\ 
where the literal l\ is either b^ or —>6fe. We set 

Fj(z) := flHz) • fli(z) • fHz)-

Finally we set 

k 

Fs(z) = Y,Fj(z). 

If z = a + ib the function Fs(z) is a real polynomial in a and b that can 
be realized by a straight line program with length polynomial in the size of 
the 3-SAT instance S. It is important that Fs{z) is not an element of the 
polynomial ring C[Z], because otherwise the following lemma could not be 
true. 
Lemma 5.5. It is NP-hard to decide whether there is a z e C with Fs(z) = 0. 

Proof. The only way for Fs(z) to become zero is that all its summands are 
zero. This however can only be the case if z is of the form cu (r) for an r that 
corresponds to a satisfying truth assignment of 5. • 

Example 5.6. Let us consider a specific satisfiability problem S and the 
associated function Fs • In order for the example to have a reasonable size we 
consider a 2-SAT instead of an actual 3-SAT instance: 

S = (&! V 63) A (62 V 61) A (-.&2 V 63). 

The satisfying truth assignments are (1,0,0), (1,0,1) and (1,1,1). We asso
ciate 61 with the prime number 2, 62 with 3, and 63 with 5. The resulting 
graph of Fs(cos(27ri/30) + i sin(2-7ri/30)) together with the corresponding bit 
patterns is shown in Fig. 10. The ticks mark the corresponding 30 th roots of 
unity. Whenever we have a bit pattern corresponding to a satisfying assign
ment the function is zero, else it is greater than zero. 
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Fig. 10: The graph of the function Fs(cos(27rt/30) + isin(27ri/30)). 

5.4 Another Gap-Theorem 

Again we need an estimate how small the function Fs(z) can become if S is 
not satisfiable. In fact we will need this minimum only for points tM{r) with 
r € {1 ,2 , . . . , M } . We can get a lower bound for this value by calculating 
the smallest possible non-zero summand of FS{€-M{T))- This value in turn 
can be bounded by the cube of the smallest non-zero value a that one of the 
functions Lj(eM(r)), Lj(cM(r)) can take for r £ {1 ,2 , . . . , M } . For this it is 
useful to observe that Lj{eM{r)) = 2 — 2cos(27T • r/Pj). This desired value a 
is taken at £ „ ( £ M ( 1 ) ) - Thus we have a = 2 — 2cos(27r/Pn). We obtain the 
following lemma. 
L e m m a 5.7. / / Fs(eM(r)) *s non-zero for some r 6 { 1 , . . . ,M}, then we 
have 

FS{tM{r)) > (2 - 2cos(27r/P„))3 > (2 - 2cos(27r2-los<n>2)3. 

Proof. The first inequality follows from our considerations above. The second 
inequality is a very rough estimate following from the monotonicity of cos(i) 
in [0, TT/2] and the fact that Pn < 2los(")2. • 

We set /3S = (2 - 2cos(2?r • 2- los(")2))3 . This number can be constructed 
geometrically using an iterative sequence of log(n)2

 BISECT operations start
ing with the right angle followed by a constant number of JOIN and MEET 

operations. 

5.5 Tracing the Flight of a Bumble Bee 

Now we are done with the algebraic part of our construction. We come back to 
the geometric part that started with the construction of a point z that moves 
once around the unit circle while the free point p moves from a to b (Sec. 5.1). 



385 

Fig. 11: The path of the dependent point <?s(z)-

We take z as the input of Fs(z) and model the evaluation of Fs(z) by von 
Staudt constructions as described in Sec. 3.2. The result is a non-negative 
point q on the real axis JR. This point can coincide with the origin whenever 
z corresponds to a satisfying truth assignment of 5. In particular, this can 
only happen if z = E M W for a suitable r. We now consider the function 

gs(Z)~ZM-l-FS(z)+PS. 

Lemma 5.8. Let G be the path of gs{z) while z makes one full cycle around 
the unit circle. The winding number of G with respect to the origin is zero if 
and only if S has no satisfying truth assignment. 

Proof. Let z = e2l7rt for t € [0,1] move with constant speed on the unit 
circle. We can get the corresponding winding number around the origin in 
the following way: We take the ray of all positive real numbers. We calculate 
two numbers: w+ counts how often the point gs(z) crosses this ray moving 
from the lower to the upper half plane, and w~ counts how often the point 
gs(z) crosses this ray moving from the upper to the lower half plane. The 
number w+ — w~ gives the winding number. 

The real part of gs{z) is by construction and by Lemma 5.7 at most j3s-
For gs(z) being real and positive the numbers zM — 1 and Fs(z) must both 
vanish. Thus we obtain 

w+ = \{r e { 1 , . . . ,M} \Fs{eM{r)) = 0}| and w~ = 0. 

The winding number counts exactly the number of possible r € {0 , . . . , M} 
for which bj(r) is a satisfying truth assignment of S. • 

Fig. 11 shows the trace of gs(z) for the 2-SAT formula of Example 5.6. 
The origin lies on the symmetry axis of the figure very close to the right 
boundary. The winding number will be exactly 12 corresponding to the 12 
zeros of Fs(z) shown in Fig. 10. 



386 

5.6 NP-hardness of Tracing 

Now we are in principle done. We do a geometric construction that calculates 
gs(z(p)) using the free point p as input parameter. This can be done by 
a number of JOIN, MEET, and BISECT operations that is polynomial in the 
parameter n and k of S (by Lemma 5.4 and the considerations in Sec. 5.4). We 
construct the line £0 = JOIN(0, gs(z(p))). Finally, we add n3 non-deterministic 
statements: 

ti <- B I S E C T ( / R , 4 ) 
l2 *r- B I S E C T ( / R , 4 ) 

£„3 <- BISECTOR, £„3_!) 

The winding number w of Lemma 5.8 satisfies 

w < M < n
nl0«<n> < n"2 < (2n)"2 = 2"3. 

Thus we obtain the following lemma. 
L e m m a 5.9. Let A be an initial position of our entire construction for p = 2 
and let B be the corresponding position with identical choice of the angular 
bisectors for p = 2 + 3i. B is the result of a continuous evaluation under the 
straight movement of p if and only if S was not satisfiable. 

Proof. If 5 is not satisfiable, then the winding number of gs(z(p)) around the 
origin is zero and the position of the angular bisectors remains unchanged. 
If S is satisfiable, then the winding number lies between 1 and 2™ . Thus a 
movement of p causes a change of the positions of the angular bisectors. • 

This concludes our proof of Thm. 5.1, which is a direct consequence of 
the above Lemma and the fact that the construction was polynomial in the 
size of n and k. 

5.7 Roots of Univariate Polynomials 

We will close this chapter with a little side remark. Assume that the free point 
p of our construction is parameterized by (2, x, 1) (in homogeneous coordinates 
with i 6 E ) . The construction of the function Fs(z(p)) could be exclusively 
done with JOIN and MEET operations. The coordinates of the resulting point 
Fs(z(p)) = (a(x),0(x),'y(x)) are then polynomials in the single variable x. 
These polynomials can be calculated by straight line programs whose length 
is polynomial in the size of 5 , by translating the GSP into an equivalent SLP 
(see n ) . The 3-SAT 5 is satisfiable if and only if there is an x with a(x) = 0. 
Thus we obtain 
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Theorem 5.10. It is NP-hard to decide whether a univariate polynomial en
coded by a straight line program has a real root. 

6 PSPACE-Hard Problems 

This section focuses on proving that certain reachability problems are 
PSPACE-hard do decide. Compared to the previous sections there is one 
important difference. Every construction done so far only needed constant 
points, meet, join, and bisect operations. For the proof of the following 
PSPACE-hardness results for real reachability we need one additional ingre
dient, a semialgebraic constraint on the configuration space of the geometric 
configuration. We will demonstrate several variants of the result with different 
such constraints: 

• the condition that a certain point is always on the left of a certain line, 

• the condition that a certain point is always inside a certain circle, 

• the condition that the intersection of a line and a circle is always real, 

• the condition that the total length of the path of a freely movable point 
stays below a certain threshold. 

Note that the first three variants can be transformed into each other. In 
fact there are many other variants of the result since the necessary restrictions 
that come from the additional inequality can be formalized in a very weak way. 
Nevertheless we have not been able to derive a comparable result without 
the additional condition. Our proof will be entirely constructive and self 
contained. It just relies on the well known PSPACE hardness of quantified 
boolean formulas. Moreover we will be very restrictive in the use of free points: 
the final construction has only one free point. 

Let us first formulate one of the natural version of the main result of this 
section which is very similar to Thm. 4.1, except for the additional inequality 
constraint (for which we choose an incircle test here). 
Theorem 6 .1. The following decision problem is PSPACE-hard: Given a 
GSP V over the JMB instruction set that has exactly one free point and a 
certain dependent point d. Furthermore, given two instances A and B of V. 
Decide whether there is an admissible real path from A to B, such that along 
the path we always have \d\ < 2. 

The proof of this result will be done by a reduction to the PSPACE-
hardness of Quantified Boolean Formulas (QBF). Formally the PSPACE-
hardness of QBF can be stated as "it is PSPACE-hard to decide whether 
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the formula 

Vxi3y1Vx23y2 • ••Vxn3ynf(xi,y1,x2,y2,... ,x„,yn) 

is true, where / is a boolean expression." In a sense this formula resembles 
a two player game with players X and Y. It asks for a winning strategy for 
player Y. The formula / encodes the winning positions of Y: "For each move 
xi of X there is a move j/i for Y such that for each move x2 of X there is a 
move 2/2 for Y such that . . . such that there is a final move yn for Y such that 
Y wins the game. 

For the proof we will geometrically construct a binary counter that counts 
through all possibilities for the x\,... ,x„. The entire construction is such 
that in order to get from position A to B in the reachability problem one has 
(at certain positions) to set the values of the j / i , . . . ,yn properly which can 
only be done if one knows the complete strategy for player Y. 
Remark 6.2. Before we start with the proof let us contemplate for a mo
ment the value of the following constructions. It is a remarkable fact that a 
similar result can be obtained even without using the BISECT operation at all 
- however for the price of an unbounded number of free points. The idea for 
this is to use one of the well known PSPACE-hard semialgebraic reachability 
problems (like the warehouseman's problem 7 '24) as the starting point of the 
reduction. All involved equations and inequalities can be condensed into one 
big inequality (this new inequality describes an e-approximation of the orig
inal problem). This translation can only be done with the help of additional 
slack-variables (one variable per original inequality). The information of a 
certain state of the construction is "stored" in the actual values of the slack 
variables. Particular technical difficulties arise from the right choice of the 
involved e-sizes. 

Compared to this approach the construction presented on the following 
pages is much more direct. Its "computational power" is more or less dis
tributed among the monodromy behavior of several BISECT operations. Each 
of these angular bisectors contributes one bit of information to the "storage" 
of the device. 

Our construction allows for variants and extensions that are not possible 
in the other approach. In particular, the results can be strengthened further 
to have only one free complex input variable. A streamlined variant of this 
result for the case of analytic continuation will be presented in 14. 
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Fig. 12: Two instances of an INT-UNITCIRCLE(Z) gadget. 

6.1 Another Gadget 

Before starting the crucial construction of a binary counter we will introduce 
another gadget that simplifies this construction. We show that over the JMB 
construction set, we can intersect a line through the origin with the unit circle 
(note that there are no circles available in JMB). Let I be a line through the 
origin and ZR be the real axis. We consider the following GSP: 

g<- BISECT(Z,/R) 
q <- MEET(Z, P A R A L L E L ^ , - 1 ) ) 

The output point q is one of the intersections of I and the unit circle. Which 
of the two intersections we get, depends on the choice of angular bisector. If 
the line I makes a half turn (and by this comes back to its original position), 
the intersection moves continuously from one possibility to the other, see 
Fig. 12. We will encapsulate this construction within a (non-deterministic) 
macro INT_TJNITCIRCLE(Z) that produces one of the two intersections. 

6.2 A Binary Counter 

Our first sub-goal is to construct a binary counter, that drives the construction 
through an exponential number of different stages. For this we again start 
with a point z, which is given by 

w <- O N C I R C L E ( - 1 , 1 , P ) , 

Z 4- W4. 

As described in Sec. 5.1, while p moves on a straight vertical path from 
o = 2 to the point b = 2 + 3i, the point z makes one full counterclockwise cycle 
on the unit circle, starting and ending at 1. W.l.o.g. for our considerations 
we may assume that p is bound to lie on the line that connects a and b. 
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We will consider the point z directly as a driving input point that is bound 
to lie on the unit circle. We now have a look at the following functions: 

zi <- Re(z2) + z2" - 2 
z2 *- Re(z4) + z2" - 2 
z3 <- Re(z8) + z2" - 2 

zn <r- Re(z2") + z2" - 2 

The Re( . . . ) operation (that extracts the real part of complex number) can be 
carried out geometrically by a projection to the real axis. All the z\,... ,zn 

can be constructed by a GSP whose total number of construction steps is 
linear in n. No angular bisectors are needed. 

All the real parts of the functions z\,... ,zn are in the interval [—2,0], 
since the numbers zk all lie on the unit circle. While z moves along the unit 
circle the function Zk is zero exactly if z is a 2fc-th root of unity. Each of the 
functions z/. is real iff z is a 2"+1-st root of unity. For j = 0 , . . . , 2n we set 

a. =e2«r072») a n d 6 j = e 2«r ( i / 2 " + l/2" + 1). 

We will refer to regions on the unit circle by the term circular interval. For 
two points a, b on the unit circle the open circular interval (a, b) is the (open) 
arc on the unit circle that arises by traveling counterclockwise from a to b. 

The imaginary parts of the functions Zk only depend on the function z2". 
lm(zk) is positive in the circular intervals (a,j,bj) and negative in the circular 
intervals (bj,a,j+i) for j = 0 , . . . ,2n. The largest purely real value that occurs 
for the function Zk is 0, the second largest real value is cos(27r/2fc) - 1. We 
set e — — cos(27r/2n+1) + 1, a number that can be constructed geometrically 
by n successive BISECT operations of a right angle, followed by a projection. 

Now let ZR be the real axis and we add for each A; = 1 , . . . , n the following 
instructions to our GSP: 

lk <- BISECT(]OlN(0,zk+e),lu) 
qk <~ INT_UNITCIRCLE(Zjfc) 

First observe that the operation JOIN(0, Zk+e) is always admissible, since 
Zk +e is never 0. The line JOIN(0,Zk+e) is identical to ZR whenever z is either 
Oj or bj for some i £ {0 , . . . ,2™}. Thus at these places the line lk can either 
be the real or the imaginary axis. Note that the only freely movable point in 
the whole construction so far is z (indirectly controlled by p). As a starting 
instance of the GSP we set z = 1. All lines JOIN(0, Zk + e) are then identical 
to ZK. We get an admissible instance of the above operations by setting all 
lk = ZR and setting all qk = 1. 
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From this admissible starting instance A the behavior of the entire con
struction is determined (by analytic continuation) while z travels along the 
unit circle. 
Lemma 6.3. With all settings as above (starting at A) the values of the qk 
are uniquely determined for all z (with \z\ = 1). In particular, we have that 
for all j € {0 , . . . , 2™ — 1} the value z = bj implies that 

_[ i for an-k = 0, 
\-i for <r„_fc ^ 0. 

Here j = a02° + ax2
Y + a22

2 H h an-^71'1 with ak 6 {0,1} is the binary 
expansion. 

Proof. For the proof let us investigate what happens during a full counter
clockwise cycle of the driving point z. At the beginning (z = 1 = a0) all the 
Ik are by definition of A identical to the real axis and all qk are by definition 
equal to 1. Furthermore, all Zk are positive (namely equal to e). While z 
travels from oo to bo all Zk move through the upper halfplane to a negative 
value. Thus all lines JOIN(0, Zk + e) make a counterclockwise half turn. Con
sequently all 1^ make a counterclockwise quarter turn and all qk move to the 
value i as stated in the theorem. 

Now let us investigate what happens when z moves from position bj on 
the shortest possible path via aj+i to position bj+\. During such a move the 
position of qk will make a half turn if and only if Zk makes a cycle around 
the origin. This in turn exactly happens if for z = o,-+i the value of Zk is 
positive. However, this is only the case if a ,+ i is a 2*-th root of unity. This 
gives exactly the desired counting behavior. Finally after z has completed 
one full cycle, all elements are back to their initial positions. Hence no global 
monodromy occurs and the behavior is globally determined. • 

The whole construction behaves like a binary counter. For each position 
z = bj all qk are either i or — i. The positions exactly resemble the behavior 
of the binary expansion of j with i playing the role of the 0 and —i playing 
the role of the 1. 

6.3 A Register 

The output of the counter we constructed so far will later on play the role of 
the Xk that occur in the quantified boolean formula 

Vxi3yiV:E23y2---V:cn3yn/(xi,2/1,12,J/2,--- ,xn,yn). 
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We now explain how to model the yk. For this we construct a register with 
dependent points r\,... ,rn. Whenever the driving point z is at a position bj 
the rk will either be i or —i. However, which of the two values will be taken 
depends on the position of certain free points P i , . . . , p„ during z being at a 
position a,j. We will call the points bj evaluation points and call the points 
aj setting points. For each k £ { 1 , . . . , n} we add the following four lines to 
our GSP constructed so far: 

p'k <- ONINTERVAL(0, l,pk) 

4 <- p'k-l + zk+e 
l'k <r- B I S E C T ( J O I N ( 0 , 2 ^ ) , Z R ) 

rk < - INT_UNITCIRCLE(/fc) 

We extend our initial position A (remember there we had z = 1) first by 
setting pi = p2 = ... = pn = 2. This forces the lines JOIN(0, z'k) to be ZR. AS 
we did for the counter we set all l'k — ZR and all rk = 1. The following Lemma 
summarizes the properties of the register. 
Lemma 6.4. For any admissible move of the free input points p,pi , • • • ,pn 

starting from instance A we have the following properties: 

(i) Whenever z is at an evaluation point each of the rk is either i or —i. 

(ii) For each k £ { 1 , . . . , n} and each j € {0 , . . . , 2k — 1} we have: Whenever 
z stays in the circular interval Ikj = (aj.2"-k,aij+1\.2

n-k)> aH values of 
rk when z is at an evaluation point in Ikj are identical. 

(iii) Except conditions (i) and (ii) there are no other restrictions to the values 
of rk when z is at an evaluation point. 

Proof. The proof is very similar to the proof of Lemma 6.3. The initial situa
tion of A ensures that condition (i) is satisfied. For each j e {0 , . . . , 2k — 1} the 
function z'k is always negative within the entire circular interval Ikj. Hence, 
as long as z does not leave this interval for all evaluation points the values 
of the rk must be identical (since z'k cannot cycle around the origin.) This 
proves (ii). The function z'k can be positive whenever z takes one of the values 
aj.2^-k with j £ {0, . . . , 2k — 1} (these are the 2^-th roots of unity). Whether 
it actually is positive depends on the position of the free point pk. Thus 
whenever z makes a transition between the intervals Ikj and Ikj+i (in either 
direction) we can (by moving pk accordingly) control whether the rk at z be
ing at an evaluation point in Ikj and Ikj+i are identical for both intervals or 
not. This proves (iii). • 
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Fig. 13: The timing of the counter and the register 

6.4 Encoding the QBF 

Let us now step back and see what we have achieved so far. We have con
structed a GSP together with an initial position A. The free points of the 
GSP are p,p\,,... ,pn. We have output points qi,- • • , qn for the counter and 
r i , . . . ,rn for the register. Whenever z is at an evaluation point all these 
output points are either i or —i. For n = 3 the "timing" of the whole con
struction is shown in Fig. 13. The horizontal axis shows the positions for z on 
the unit circle. Each of the oscillating curves roughly represents the values of 
the counting points qi,q2,qz- The dots mark those positions that are relevant 
for possibly changing the values of the register points r\,r2,rz. The bottom 
row represents the point pair (g3, r3) . The middle row represents (92, r2) , and 
the top row represents (qi,ri). Between two of the positions marked with a 
dot the corresponding r-point always has the same value at the evaluation 
points. If for instance z passes ao in clockwise direction the position of p\ de
termines which values n can take at the evaluation points 60, &i, b2,63. These 
values can only be changed if z passes once more one of the setting points ao 
or 04. 

We are now going to link a given QBF formula to our construction. For 
this consider the QBF 

Va;i32/iVa;23j/2 • • • ^xn3ynf{xi,yx,x2,2/2, • • • ,xn,yn) 

where we assume that / is given in conjunctive normal form. As in Sec. 4.1 
we first translate the boolean formula / into a polynomial Ff by replacing 
each positive literal Xk by a real variable Xk and each negative literal -ixk 
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by (1 — Xk)- We do so similarly for the y%. Then each and-operation is 
replaced by a multiplication and each or-operation is replaced by an addition. 
The resulting polynomial is called Ff(xi,yi,x2,y2, • • • ,xn,yn)- Similar to 
Lemma 4.4 we obtain 
Lemma 6.5. We have Ff(xi,yi,x2,y2,-• • ,xn,yn) = 0 for some 
(xi, 2/i, • • • , xn,yn) € [0, l ] 2 n if and only if all variables are either 0 or 1, and 
f(b(xi), b(yi),... , b{xn), b{yn)) = TRUE with b(0) - TRUE and 6(1) = FALSE. 
For all other choices of the variables in [0, l ] 2 " the value of Ff is strictly 
positive. Furthermore, at each corner of the cube [0, l]2™ the polynomial Ff 
evaluates to an integer number. 

Proof. The proof is straightforward. It follows exactly the considerations in 
Sec. 4.1. • 

We now (constructively) identify the values —i and i (of the Qk and r^) 
with the boolean values T R U E and FALSE, respectively by adding the state
ments 

Xk <- \{iqk + 1), 

Vk <- §(""* + 1) 

for k — 1 , . . . , n to our GSP. Furthermore, we set with these newly constructed 
points 

F'«- Ff(xi,yi,x2,y2,... ,xn,yn). 

The next lemma brings us close to the complexity result we are aiming for. 
Recall that the point p was w.l.o.g bound to the line connecting 2 and 2 + 3t, 
and that while p moves straight from 2 to 2 + 3i the path of the point z is a 
full clockwise cycle on the unit circle, by 
Lemma 6.6. The QBF \fxi3y1^x2By2---^xn3ynf(xi,y1,x2,y2,--- ,xn,yn) 
is true if and only if the following holds: In our GSP starting with instance 
A there is an admissible path that moves point p from 2 to 2 + 3i such that 
the value of F is 0 whenever z is at an evaluation point. 

Proof. First assume that ^Xi3yi\/x23y2 • • -Vxn3ynf(xi,yi,x2,y2,... ,xn,yn) 
is true. We can skolemize the variables yk of the B-quantors by introducing 
Skolem functions 

si{xi),S2{xi,x2),... ,sn(xi,... ,xn) 

such that 

f(xi,si(x1),x2,s2(xi,x2),... ,xn,sn(xi,... , i n ) ) 
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is a tautology. These Skolem functions are exactly the "strategy" of the two 
player game associated to the QBF, which tell player Y how to move. We can 
derive a path as desired in the theorem as follows. We first choose S to be 
a sufficiently small positive number such that for p — 2 — Si the point z lies 
in the circular interval (fc2n_i, eto) and move point p straight from 2 to 2 — 6i 
while leaving the pk unchanged. 

After that we move point p straight from 2 — 5i to 2 + 3i. Whenever z 
passes one of the setting points we make sure that the positions of the points 
P\,... , pn were adjusted such that for the forthcoming evaluation point the 
j/t take the values of the corresponding Skolem functions (this is possible by 
Lemma 6.4). The construction allows exactly enough freedom to possibly 
change the value of Sk whenever the variable Xk changes its value. By this 
choice and by Lemma 6.5 the derived point F is 0 at each evaluation point. 

Conversely assume that we know how to move the points Pk such that 
point p can move from 2 to 2 + 2>i in a way that whenever z is at an evaluation 
point the dependent point F is 0. We call such a path correct. We show 
how to reconstruct the Skolem functions from the situations at the evaluation 
points. One technical difficulty arises from the fact that it may happen that p 
changes its moving direction while traveling from 2 to 2 + 2>i arbitrarily often. 
If this is the case the point z possibly meets several of the points a,j or bj 
more than once. 

Assume that the movement of p — 2 + 4>(t)i is given by the function 
<f>{t) : [0,1] -> E with <p(0) = 0 and 0(1) = 3. The induced movement of z will 
be denoted by z(t). Furthermore, we set b(i) = FALSE and b(—i) = TRUE. 
Let us abbreviate T R U E by T and FALSE by F. We describe step by step 
how to derive the functions s(xi), s{x\,x2), • • • • 

Since z(t) (continuously) describes one full cycle there is an (open) interval 
If C (0,1) such that z(lf) equals the (open) circular interval (ao,a2n-i). 
Lemma 6.5(h) tells us, that within this interval the value of point ri must 
be the same for all evaluation points. Lemma 6.5(i) shows that this value rf 
must be either i or —i. We set Si(F) = b(rf). Similarly there is an open 
interval if C (0,1) such that z{lf) = (a2n~i,a2n). Also there the value rj 
at the evaluation points is uniquely either i or —i. We set Si(T) = b(rj). 

We now proceed inductively. Within the interval If there are subintervals 
I2 ' a n d / 2 ' such that z (I2' ) = (ao,o2n-2) andz( / 2 ' ) = (fl2.-2,a2n-i). We 
let s 2 (F,F) = 6(r2 'F) and s 2(F,T) = b(rl'T). Similarly we define the values 
s 2(T,F) and s 2 (T,T) by considering suitable subintervals of if. The values 
of the Skolem functions S3, . . . ,sn are defined similarly each one by looking 
at a suitable subintervals of the intervals considered for the previous function. 
Now, by our initial assumption the value of F was 0 at each evaluation point. 
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Lemma 6.5 thus ensures that 

/(zi,si(a;i),a;2,S2(xi,a;2),... ,xn,sn(xi,... ,xn)) 

is a tautology. Hence the original QBF was true. • 

In the current construction the number of free points depends on the 
problem size. However, the character of the construction allows for an easy 
alternative that has just one free input point. We can strengthen Lemma 6.6 
to the following version. 
Lemma 6.7. The GSP of Lemma 6.6 can be assumed to have only one free 
point p. 

Proof. For this note that in order to get a correct path we have to set the 
points p[,... ,p'n to suitable values in {0,1} whenever z is at a setting point. 
We construct a second counter controlled by a free point p' on the segment 
from 2 to 2 + 3i. This new counter is just an identical copy of the decvice 
described in Sec. 6.2. We connect the outputs q[,... , q'n of this new counter 
directly to the p'k by setting (i.e. redefining) 

p'k «- Re((tg£ + l) /2) . 

Now the position of thep'k can be controlled by the position ofp'. In particular 
every 0/1-combination of the p'k can be achieved by placing p' to a suitable 
position. This construction still behaves like the construction of Lemma 6.6 
but it has only two input points p and p'. We now "rename" our input point p 
to p", then we introduce a new free point p, and add the following instructions 
p" <r- 2 + Im(p)andp' <- 2 + Re(p- 2) -i to our GSP. This controls the points 
p' and p" by the x and y parameter of just one single input point p. Still all 
necessary freedom that makes Lemma 6.6 work is maintained. • 

6.5 The Inequality Condition 

Our final task is now to transfer the "existence of a correct path"-property 
of Lemma 6.7 to a suitable geometric condition like the incircle condition in 
Thm. 6.1. For this we add the following statements to our GSP: 

G « - F + z2" + 1/2 
z' «- INT_UNITCIRCLE(JOlN(C?,0)) 
d <— zn — z' 

We resolve the nondeterminisms by setting h = /R at our initial position A 
and z' = 1. 
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Lemma 6.8. In our GSP starting with instance A consider an admissible 
path that moves point p from 2 to 2 + 3i. For such a path the following 
conditions are equivalent: 

(i) If z is at an evaluation point the value of F is 0. 

(ii) We have \d\ < 2 throughout the path. 

Proof. Since F is positive and stays on the real axis the value of G is real if 
and only if z2" is real. This is exactly the case if z is either at a setting point 
aj (then z2 — 1) or at an evaluation point bj (then z2 = — 1). This implies 
that G is positive at all setting points. Remember that F assumes only integer 
values at the evaluation points. Hence G is negative at an evaluation point if 
and only if F = 0 at this evaluation point. Point z' is the image of this point 
G mapped by a central projection to the unit circle. 

Now assume that the path has the property as claimed in (i). We prove 
that this path automatically satisfies (ii). In this path z' = 1 at each set
ting point, z' — — 1 at each evaluation point. Furthermore, sign(Im(z')) = 
sign(Im(z2")). Hence there is always a line through the origin that has z' and 
z2 on the same side and therefore we have |d| < 2 throughout the path. 

Conversely, assume that there is no path that satisfies condition (i). This 
means that for every possible path along which p is moved from 2 to 2 + 3i 
the total winding number of z' with respect to the origin is less than 2". This 
is the case since z' can cross the negative half line only for all the evaluation 
points. On the other hand the total winding number of z2 with respect to 
the origin is 2". This implies that there is at least one position along the 
path where z and z2" are antipodals on the circle. At this position we have 
d = 2. • 

Now we obtain Thm. 6.1 as a direct consequence of the PSPACE-hardness 
of QBF, Lemma 6.5 and Lemma 6.6. This finishes the proof of Thm. 6.1. 
Remark 6.9. Without formal proof we mention a few possible alterations of 
Thm. 6.1. 

• Non-Strict inequalities: The construction we gave really needed a strict 
inequality as additional obstruction (two points on the unit circle cannot 
be further apart than 2 units). It is easy to obtain the same result 
also with a non strict inequality. For instance one could introduce an 
additional BISECT operation of J O I N ( G , 0 ) and ZK intersect the result with 
the unit circle and compare the resulting point with z2 

• Sidedness vs. incircle test: One can turn an incircle condition \d\ < 1 
as used in Thm. 6.1 into a sidedness test of a point w.r.t. a line. One 
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possibility for this is to construct the point 

d! <- (MEET(PERPENDICULAR(jOIN(0,rf),d),/K))2. 

The incircle condition then translates to d! < 1. 

• Admissibility of circle-line intersections: We may also introduce the 
operation of intersecting the unit circle with a line. We may restrict 
the range of admissible situations to those where such an intersection 
properly exists. By this we can also express the inequality conditions 
that are needed in Thm. 6.1. 

• Restriction on total length of the path of p: One can also perturb 
Thm. 6.1 in a way such that the inequality becomes a restriction on 
the total length of the path of p in a reachability problem. For this we 
first replace our assignment p' <— 2+Re(p— 2)i hyp' <- 2 + N-Re(p—2)i 
for a very large number N. This operation rescales the imaginary part of 
p such that the control of the p\ does not really contribute significantly 
to the overall length of the path p takes. Then we take the (n + l)-times 
iterated angular bisector hn+\ of JOIN(G, 0) and /R and ask the following 
reachability problem. "Is it possibly to move p from 2 to 2 + 3i such 
that / J„+I make a 90°-turn into its other alternative such that the total 
length of the path described by p does not exceed 3 + S (for sufficiently 
small S > 0)?" The only way to do this is to move straight from 2 to 
2 -I- 3i by passing every setting point at most once. At each evaluation 
point the function F must be 0 in order to end up with a rotation of the 
desired amount. This is by Lemma 6.5 equivalent to knowing the Skolem 
functions for the QBF. This variant is particularly important, since then 
no additional sidedness or incircle test is needed. 

• Games against external forces: The last statement can reformulated also 
in another way. Redefine p' and p" as free points again. Assume that an 
exterior force moves p" from 2 — 6i to 2+3i. Can you simultaneously move 
the points p' such that hn+1 makes a 90°-turn? This is PSPACE-hard to 
decide. 

7 Undecidable Problems 

In this section we enlarge the set of our possible primitive operations. We 
add one non-deterministic operation that models the mechanical behavior of 
a wheel that rolls along a road. In principle wheels have the ability to transfer 
angles to distances. If the wheel was rotated for a certain angle it has traveled 
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along the road for a certain distance. If we (as usual) denote angles modulo 
2ir this introduces a new kind of monodromy behavior to our context. For 
the same angle as input there is an infinity of possible output values. All 
these output lengths are integer multiples of the length that is generated by 
rotating the wheel once by 2n. 

This new type of monodromy introduces a drastic change in the complex
ity behavior of the reachability problem. We will see that we can translate 
the solvability of Diophantine equations into a reachability problem for a con
struction involving several wheels. By the undecidability of Hibert's 10th 
problem this induces the undecidability for this reachability problem. 

1.1 Wheels 

Let us first formalize the concept of a wheel to fit into our setup of geo
metric straight line programs. The right algebraic function that models the 
behavior of wheels is the logarithm function applied to points on the unit 
circle. Our WHEEL-primitive will take a point p = r • elv / 0 and map it 
non-deterministically to a point on the real axis that represents the possible 
angles. We define the relation 

WHEEL := {(p, q) \q = f/2ir; q = r • e ^ j c P x P. 

As usual we allow ourselves to write q 4- WHEEL(P) if (p, q) e WHEEL. The 
operation is not admissible for p = 0. If (p, q) € WHEEL then we have also 
(p, q + k) e WHEEL for all k 6 Z. In particular we have (1, k) e WHEEL for all 
k € Z. If we start with an admissible instance p = l;q = 0 oi q «- WHEEL(P) 

then we can continuously reach the situation p = l;q = k by letting p spin 
around the origin k times. In our picture of an actual mechanical wheel the 
operation WHEEL is designed to model the properties of a wheel of circum
ference 1 (and thus of irrational (!) radius ^ ) . The resulting MS is called 
JMBW. 

1.2 Diophantine Equations 

The following theorem states one version of the famous undecidability of Dio
phantine equations. 
Theo rem 7.1 . Let N = 11 and f € l*[xi,... ,x;v] be a polynomial. It is 
algorithmically undecidable whether f has a zero in X . 

The number N depends on the actual state of research in the area around 
Hilbert's 10th problem 31-32. We keep it fixed for the following considerations. 

We will prove the following theorem by reduction to the above statement: 
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Theorem 7.2. Let V be a GSP over the JMBW instruction set with at least 
N WHEEL -operations and two BISECT -operations. Let A and B be two admis
sible instances ofV. It is undecidable whether there is an admissible real path 
from A to B. 

Proof. Step by step we will construct the translation from the polynomial in 
Thm. 7.1 to the GSP in Thm 7.2. We start with a free point p and a point z 
given by 

z 4- O N C I R C L E ( - 1 , 1 , P ) . 

Then we add for i = 1,... ,N the instructions: 

qi 4- ONINTERVAL(0, 2, p^ 
Xi 4- WBEEh(qi + z) 

Assume that in the instances A and B we have p = p\ = ... = p^ = (3,0) 
and thus z — 1, and q\ = . . . = qn — 2. Any admissible instance with 
z = 1 that is reachable from A by an admissible path satisfies i j £ Z for all 
i = 1 , . . . ,N, since whenever z = 1 the qi + z are positive. Additionally, for 
every (y; , . . . , IJN) £ 1>N there is an admissible path starting at A and ending 
at a position with z — 1 and X{ = yi for all i — 1 , . . . , N. For this claim we 
only have to prove that each variable Xi can be changed by ±1 independently 
from the others. In order to obtain such an elementary change simply set 
qi = 0 and qj = 2 for i ^ j , and do a full clockwise or counterclockwise turn 
with point z. 

Now let f(xi,... ,XN) be an instance of the polynomial used in Thm. 7.1. 
We finish our construction by adding the following statements to our GSP: 

F 
QN+I 

lo 

h 
h 

•f-
•f-

<-
4-
4-

-(f(xu... ,xN))2-3/: 
ONINTERVAL(0, 1,PN+I) 

30lN(qN+1 +F + z,0) 

B I S E C T ( / R , / 0 ) 

B I S E C T ( Z R , / I ) 

For the starting instance A we assume that we have PN+I = — 1 and hence 
<7JV+I = 0. This implies that QTV+I + F is real. Thus in A we have /0 = /K. For 
A we resolve the ambiguities of the BiSECT-operations by setting h = h = IR-
The only point in which instance B differs from A is that in B we set l<i = ZJR-

We now claim that it is undecidable whether instance B is reachable from 
instance A: Observe that the only way in which A can be transformed into 
B is that the point qN+i + F + z makes an odd number of cycles around the 
origin. 
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If there are (?/;,... ,DN) € Z N with f(y\,... , T/AT) = 0 we can achieve 
such a movement as follows. We set C[N+I = 0. By the procedure described 
above we follow a path that puts the Xi to the values of the yi. Then we set 
all Qi = ...qpf = 0 and QN+I = 1> do another full cycle with z, set qN+i = 0 
again, and reset to Xi — 0 again by a suitable movement. The resulting 
situation is exactly instance B. 

Conversely assume that there is an admissible path from A to B. During 
this path we must have at least one position where qN+i + F + z is real 
and positive. This can only happen if z — 1, since <7JV+I + F is always real 
and by definition at most —1/2. However, if z = 1 the f(x\,... , XN) must 
have an integer value. The only way to get <7JV+I + F + z > 0 is to have 
/ ( x i , . . . ,XN) — 0. Since all Xi were integral this means that a solution of 
the Diophantine equation exists. • 

8 Open Problems 

We end our considerations by stating at least some of the open problems in 
decision complexity of tracing and reachability. 
Problem 8.1. Determine upper bounds for the decision complexity in the 
various setups described in this paper. 
Problem 8.2. Extend the JMB instruction set by a new non-deterministic 
operation that intersects a circle and a line. Furthermore, enlarge the setup 
such that also complex coordinates for points lines and circles are allowed. By 
this a circle and a line always have two or one intersections. What is the 
decision complexity of the reachability problem in this context? 

This problem is of fundamental importance, since if the intrinsic com
plexity would turn out not to be too big this might yield good algorithms for 
randomized theorem proving for ruler and compass theorems. The structure 
of this problem seems to be fundamentally different from the problems dis
cussed in this paper. It is not unlikely that for this problem there are effective 
randomized methods. However, we are pessimistic about fast deterministic 
methods, since we can prove that it is at least as hard as zero testing for 
polynomials 13. 

Closely related to the above problem is the following: 
Problem 8.3. Extend the JMB instruction set by a new non-deterministic 
operation that intersects a circle and a line. Furthermore, enlarge the setup 
such that also complex coordinates for points, lines, and circles are allowed. 
Let A be an instance of a construction and let B' be a partial instance that 
just defines the positions of the free elements. How difficult is it to complete 
B' to an instance B that is reachable from A ? 



Our last problem forms another approach that may single out certain 
tracing problems to be more easy than others. Since it asks for a new concept, 
the formulation is kept a little vague on purpose. 
Problem 8.4. Define the "right" concept of output sensitivity for the tracing 
problem that allows statements like "if the elements move not too wildly we 
can trace them easily". 

Finally we ask for a slightly stronger version of Thm. 7.2 that gets rid of 
the constant n hidden in the WHEEL-operation. 
Problem 8.5. Redefine the relation WHEEL by 

WHEEL := {{p, q)\q = f,q = r • eiv}C P x P. 

Is Thm. 7.2 still valid in this setup? 
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GRACE-LIKE POLYNOMIALS 

DAVID R U E L L E 

IHES, 91440 Bures sur Yvette, France 
E-mail: ruelle@ihes.fr 

Results of somewhat mysterious nature are known on the location of zeros of certain 
polynomials associated with statistical mechanics (Lee-Yang circle theorem) and 
also with graph counting. In an attempt at clarifying the situation we. introduce 
and discuss here a natural class of polynomials. Let P(z\,... , zm, w\, • • • , % ) be 
separately of degree 1 in each of its m + n arguments. We say that P is a Grace
like polynomial if P(z\, • . • ,wn) ^ 0 whenever there is a circle in C separating 
z\,... , zm from wi, • •. , wn. A number of properties and characterizations of these 
polynomials are obtained. I had the luck to meet Steve Smale early in my scientific 
career, and I have read his 1967 article in the Bulletin of the AMS more times than 
any other scientific paper. It took me a while to realize that Steve had worked 
successively on a variety of subjects, of which "differentiable dynamical systems" 
was only one. Progressively also I came to appreciate his independence of mind, 
expressed in such revolutionary notions as that the beaches of Copacabana are a 
good place to do mathematics. Turning away from scientific nostalgy, I shall now 
discuss a problem which is not very close to Steve's work, but has relations to 
his interests in recent years: finding where zeros of polynomials are located in the 
complex plane. 

1 Introduction 

One form of the Lee-Yang circle theorem 3 states that if |a; j | < 1 for i, j = 
1 , . . . ,n, and ay = a*̂ , the polynomial 

xc{i,••-,"} iex jgx 

has all its zeros on the unit circle {z : \z\ = 1}. 
Let now T be a finite graph. We denote by r" the set of dimer subgraphs 7 

(at most one edge of 7 meets any vertex of T), and by T" the set of unbranched 
subgraphs 7 (no more than two edges of 7 meet any vertex of T). Writing I7I 
for the number of edges in 7, on proves that 

x>w i 

7er" 

has all its zeros on the negative real axis (Heilmann-Lieb 2) and 

mailto:ruelle@ihes.fr
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has all its zeros in the left-hand half plane {z : Imz < 0} (Ruelle 6 ) . 
The above results can all be obtained in a uniform manner by studying 

the zeros of polynomials 

P(zi,... ,zn) 

which are multiaffine (separately of degree 1 in their n variables), and then 
taking z\ = ... = zn = z. The multiaffine polynomials corresponding to 
the three examples above are obtained by multiplying factors for which the 
location of zeros is known and performing Asano contractions: 

Auv + Bu + Cv + D ->• Az + D 

The key lemma (see 5) is that if K, L are closed subsets of C\{0} and if 

u$ K,v <£ L => Auv + Bu + Cv + D ^ 0 

then 

z<£-K*L => Az + D^0 

where we have written K * L = {uv : u € K,v S L}. 
To get started, let P{z\,... ,2n) be a multiaffine symmetric polynomial. 

If W\,... , Wn are the roots of P(z,... , z) = 0, we have 

n 

P(z i , . • • , zn) = const. ^ Y[{ZJ - Wn(j)) 
n j=l 

where the sum is over all permutations •K of n objects. Grace's theorem asserts 
that if Z\,... ,Zn are separated from W\,... , Wn by a circle of the Riemann 
sphere, then P{Z\... , Zn) ^ 0. For example, if a is real and - 1 < a < 1, the 
roots of z2 + 2az + 1 are on the unit circle, and therefore 

uv + au + av + 1 

cannot vanish when \u\ < 1, \v\ < 1; from this one can get the Lee-Yang 
theorem. 

In view of the above, it is natural to consider multiaffine polynomials 

P(zi,... ,zm,wi,... ,wn) 

which cannot vanish when z\,... , zm are separated from w\,... ,wn by a 
circle. We call these polynomials Grace-like, and the purpose of this note is 
to study and characterize them. 



407 

2 General theory 

We say that a complex polynomial P(zi,z2,. •.) in the variables z\, z2,. •. is 
a Multi-AfRne Polynomial {MA-nomial for short) if it is separately of degree 
l'vnzi,Zi, We say that a circle T C C separates the sets A', A" C C if 
C \ r = C U C", where C, C" are open, C" n C" = 0 and A' cC, A" C C". 
We say that the MA-nomial P ( z i , . . . , zm, w\,... , wn) is Grace-like (or a G-
nomial for short) if it satisfies the following condition 

(G) Whenever there is a circle T separating {Zi,... , Zm}, {Wi,... , Wn}, 
then 

P(Zu...,Wn)?0 

[Note that we call circle either a straight line F C R or a proper circle T = 
{z e C : \z - a\ = R} with a e C, 0 < R < oo]. 
Lemma 1 (homogeneity) . The G-nomial P is homogeneous of degree k < 
min(m,n). 

If there is a circle Y separating {z\,... ,zm}, {wi,... ,uin}, then the 
polynomial A H> P(\zi,... ,Xwn) does not vanish when A ^ 0, hence it is 
of the form C\k, where C = P{z\,... , wn). Thus 

P{Xz1,... , \wn) = XkP(z!,... ,wn) 

on an open set of C m + n , hence identically, i.e., P is homogeneous of degree 
k. 

Assuming k > n, each monomial in P would have a factor zt, hence 

P ( 0 , . . . , 0 , 1 , . . . , 1 ) = 0 

in contradiction with the fact that {0 , . . . ,0}, { 1 , . . . ,1} are separated by a 
circle. Thus k <n, and similarly k < m. [] 
Lemma 2 (degree). If all the variables z\,... ,wn effectively occur in the 
G-nomial P, then m = n and P has degree k = n. 

By assumption 
m n 

(n^xn^wr1.---,^1) 
t=i i = i 

is a homogeneous MA-nomial P{z\,... ,wn) of degreem+n — k. \iZ\,... ,W„ 
are all ^ 0 and {Zx,... ,Zm}, {W\,... ,W»} are separated by a circle T, 
we may assume that T does not pass through 0. Then {Z^1,... ,Z^}, 
{Wf 1 , . . . ,W~1} are separated by r _ 1 , hence P(Zi,... ,Wn) jt 0. Let V 
be the variety of zeros of P and 

Zi = {{zi,... , wn) : Zi = 0} , Wj = {(zi,... ,wn) : Wj = 0} 
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Then 

V C (V\ Uitj {Zi U W,)) U Ui,j(Zi U W,-) 

Since all the variables z%,... ,wn effectively occur in P(zi,... ,wn), none of 
the hyperplanes Zi, Wj is contained in V, and therefore 

V C closure(V\ Uitj (Zi U VV,)) 

We have seen that the points (Z\,... , Wn) in V\ Ujj (Zi U VV,) are such that 
{Zi,... , Zm}, {W\,... , Wm} cannot be separated by a circle F, and the same 
applies to their limits. Therefore P again satisfies (G). Applying Lemma 1 
to P and P we see that k < min(m,n), m + n — k < min(m,n). Therefore 
m + n <2min(m,n), thus m = n, and also k — n. [] 
Proposition 3 (reduced G-nomials). / / P(zi,... , zm, u>\,... , wn) is a 
G-nomial, then P depends effectively on a subset of variables which may be 
relabelled Z\,... ,Zk,W\,... ,Wk so that 

P(zi,... ,zm,wi,... ,w„) =aR(z1,... ,zk,wi,... ,wk) 

where a ^ 0, the G-nomial R is homogeneous of degree k, and the coefficient 
of zi • • • Zk in R is 1. 

This follows directly from Lemma 2. [] 
We call a G-nomial R as above a reduced G-nomial. 

Lemma 4 (translation invariance). IfP(z\,... ,wn) is a G-nomial, then 

P(Z! +S, . . . ,Wn +S) = P(Z1,... ,Wn) 

i.e., P is translation invariant. 
If there is a circle T separating {z\,... ,zm}, {u>i,... ,wn}, then the 

polynomial 

p(s) = P(zi +s,... ,wn + s) 

satisfies p(s) ^ 0 for all s G C. This implies that p(s) is constant, or dp/ds = 
0, for (z\,... ,w n ) in a nonempty open subset of C 2" . Therefore dp/ds = 0 
identically, and p depends only on (z\,... , wn). From this the lemma follows. 

D 

Proposition 5 (properties of reduced G-nomials). If P(zi,... ,wn) is 

a reduced G-nomial, the following properties hold: (reduced form) there are 

constants Cn such that P has the reduced form 
n 

pfa,..., wn)=^2c* n (ZJ ~ w*u)) 
7T j=\ 
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where the sum is over all permutations IT of ( 1 , . . . , n) (conformal invariance) 

if ad— bc^ 0, then 

'azi+b awn+b\ -r-r ad — be fazi+b awn+b\ -pr 
^ (CZJ + d)(cu)j + d) 

in particular we have the identity 

[flZi) lfl^\li(h1,...,^1) = (-l)kIi(zi,-..,wk) 

(roots) the polynomial 

P(z) = P(z,... ,z,wx,... ,wn) 

is equal to Y\k=1{z — Wk), so that its roots are the wk (repeated according to 
multiplicity). 

Using Proposition 3 and Lemma 4, the above properties follow from 
Proposition A2 and Corollary A3 in Appendix A. Q 
Proposition 6 (compactness). The space of MA-nomials in 2n variables 
which are homogeneous of degree n may be identified with C^ » ' . The set Gn 

of reduced G-nomials of degree n is then a compact subset of C* * ' . We shall 
see later (Corollary 15) that Gn is also contractible. 

Let Pk e Gn and Pk -> Poo • In particular P ^ is homogeneous of degree 
n, and the monomial z\ • • • zn occurs with coefficient 1. Suppose now that 

Poo(Z1,...,Zm,W1,...,Wn) = 0 

with {Zi,... ,Zm}, {Wi,... ,Wn} separated by a circle T. One can then 
choose discs Di, . . . , D2n containing {Zi,... , Wn} and not intersecting T. 
Lemma Al in Appendix A would then imply that Poo vanishes identically in 
contradiction with the fact that Poo contains the term z\ • • • zn. Therefore 
î oo € Gn, i.e., Gn is closed. 

Suppose now that Gn were unbounded. There would then be Pk such 
that the largest coefficient (in modulus) Ck in Pk tends to oo. Going to a 
subsequence we may assume that 

cllPk -)• Poo 

where P ^ is a homogeneous MA-nomial of degree n, and does not vanish 
identically. The same argument as above shows that Poo is a G-nomial, hence 
(by Proposition 3) the coefficient a of z\ • • • zn does not vanish, but since 
a — l imc^1 , Cfc cannot tend to infinity as supposed. Gn is thus bounded, 
hence compact. [] 
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Proposition 7 (the cases n = 1, 2). The reduced G-nomials with n = 1,2 
are as follows: 

For n = 1: P = z\ — W\. 

For n = 2: P = (1 — #)(2i — ivi)(z2 — w2) + 0(z\ — u ^ X ^ — u>i) with real 
AG [0,1]. 

We use Proposition 5 to write P in reduced form. In the case n = 1, we 

have P = C{z\ —wi), and C = 1 by normalization. 

In the case n = 2, we have 

P = C"(2i - tl>l)(z2 - W2) + C"{ZX - W2)(Z2 - U>l) 

In view of (G), C", C" are not both 0. Assume C" ^ 0, then (G) says that 

Zl - 1 U 2 Z2 - W2 C 

when { z i , ^ } , {u;i,w)2} are separated by a circle. If C"/C" were not real, we 
could find z\,z2,wi,w2 such that 

z\ -wi z2 -wi _ _ C ^ 
2i - w2 ' z2 - w2 C" 

but the fact that the cross-ratio in the left hand side of (2) is not real means 
that zi,z2,wi,W2 are not on the same circle, and this implies that there is a 
circle separating {zi,z2}, {wi,W2}. Therefore (1) and (2) both hold, which 
is impossible. We must therefore assume C" jC real, and it suffices to check 
(1) for z\,z2,w\,w2 on a circle. The condition that {2:1,2:2}, {^1^2} are 
separated by a circle is now equivalent to the cross-ratio being > 0, and 
therefore (G) is equivalent to C" jC > 0. If we assume C" ^ 0, the argument 
is similar and gives C /C" > 0. The normalization condition yields then 

c = i-e,c" = ewith9e[0,1] D 
Proposition 8 (determinants) . Let Az be the diagonal nxn matrix where 
the j-th diagonal element is Zj and similarly for A.w. Also let U be a unitary 
nxn matrix (U&.wU~l is thus an arbitrary normal matrix with eigenvalues 
w\,... , wn). Then 

P(zi,... ,zn,wi,... ,wn) =de t (A z -UAyjU'1) 

is a reduced G-nomial. We may assume that det [7 = 1 and write 

det(Az - U&WU-1) = detHUijizi ~ Wj))) 

Let {z\,... ,zn}, {wi,... ,wn} be separated by a circle T. We may assume 
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that T is a proper circle. Suppose first that the Zj are inside the circle V and 
the Wj outside. We want to prove that det{Az—U AWU~X) ^ 0. By translation 
we may assume that T is centered at the origin, say r = {z : \z\ = R}- then, 
by assumption, using the operator norm, 

| |A z | |< i? , HA"1!! <JR-1 

Therefore 

\\Az(UAwU-1r1\\<l 

so that 

det(Az - UAwU~l) = deti-UAuU-1) det(l - A ^ t / A ^ f / " 1 ) " 1 ) ^ 0 

as announced. The case where the Wj are inside F and the Zj outside is similar 
(consider det(A„ -U~lAzU). Q 
Proposition 9 (Grace's theorem). The polynomial 

1 " 
Ps(zi,... ,zn,wi,... ,wn) = —^2Yi(zj -w*U)) (3) 

IT j = l 

where the sum is over all permutations of ( 1 , . . . ,n) is a reduced G-nomial. 
See Polya and Szego 4 Exercise V 145. [] 

This result will also follow from our proof of Corollary 15 below. 
Proposition 10 (permanence properties). (Permutations) / / 
P(zi,... ,zn,uii,... ,wn) is a reduced G-nomial, permutation of the Zi, 
or the uij, or interchange of (z\,... ,zn) and (w\,... , wn) and multiplication 
by (—1)" produces again a reduced G-nomial. 

(Products) If P'{z[,... ,w'n,), P"(z",... ,w'^„) are reduced G-nomials, 
then their product P' ® P"(z'l,... , z'^„, w[,... , w'^,,) is a reduced G-nomial. 

(Symmetrization) Let P(zi,... ,zn,Wi,... ,wn) be a reduced G-nomial, 
and 

Ps(z!,... ,zn,wlt... ,wn) 

be obtained by symmetrization with respect to a subset S of the variables 
zi,... ,zn, then P$ is again a reduced G-nomial. Symmetrization with re
spect to all variables z%,... , zn produces the polynomial Ps given by (3). 

The part of the proposition relative to permutations and products follows 
readily from the definitions. To prove the symmetrization property we may 
relabel variables so that S consists of z\,... ,zs. We denote by P{z) the 
polynomial obtained by replacing z\,... , zs by z in P (the dependence on 
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zs+\,... ,wn is not made explicit). With this notation Ps is the only MA-
nomial symmetric with respect to z\,... ,zn and such that Ps{z) = P{z). We 
may write 

P{z) = a(z - en) • • • (z - a.) (4) 

where a,ai,... ,as may depend on z s + 1 , . . . ,wn. If F is a circle separating 
the regions C", C", and z s +i , . . . ,zn € C , wi, •.. ,wn £ C", (G) implies that 
Q / 0 and a\,... ,as $. C. Grace's theorem implies that Ps does not vanish 
when z\,... ,zs are separated by a circle from a\,... ,as. Therefore Ps does 
not vanish when z\,... ,zs € C", hence Ps is a G-nomial, which is easily seen 
to be reduced. If s = n, (4) becomes 

P(z) = (z-wi)---(z- wn) 

in view of Proposition 5, hence symmetrisation of P gives Ps-

3 Further results 

We define now Go-nomials as a class of MA-nomials satisfying a new condition 
(G0) weaker than (G). It will turn out later that Go-nomials and G-nomials 
are in fact the same (Proposition 12). The new condition is (Go) If there are 

two proper circles, or a proper circle and a straight line F', F" C C such that 
zi,... ,zm € r ' , wi,... ,wn £ T", a n d m r " = 0 , then 

P(z1,... ,zm,W!,... ,wn) ^0 

Remember that a proper circle is of the form {z :\z — a\ = R}, with 0 < R < 
oo. For the purposes of (Go) we may allow R = 0 (because a circle F' or F" 
reduced to a point o' or a" can be replaced by a small circle through a' or 
a"). 
L e m m a 11. Let P{z\,... ,wn) be a Go-nomial, and define 

P(zu...,wn)=\f[zi) f J l ^ J P ^ f 1 , . . . , ^ - 1 ) (5) 

(a) P is translation invariant. 

(b) If P depends effectively on z\,... ,wn, then P is translation invariant, 
and therefore a Go-nomial. 
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The polynomial a i-t p(a) = P{z\ + a,... ,wn + a) does not vanish, and 
is therefore constant if z\,... ,zm 6 T', wi,... ,wn G T", and T' !~l T" = 0. 
But this means dp/da = 0 under the same conditions, and therefore dp/da 
vanishes identically. This proves (a). From the fact that P depends effectively 

on z\,... , wn, we obtain that none of the m + n polynomials 

P(0,z2 - z1:... ,wn - zi) 

P(zi -wn,... ,wn_i,0) 

vanishes identically. The union Z of their zeros has thus a dense complement 
in Cm+n. Let now L", T" be disjoint proper circles in C. If z\,... ,zm € T', 
wi,... ,wn € T", the polynomial 

a •-» p(a) = P(zi + a,... , wn + a) 

can vanish only if a £ {—z\,... , — wn}. [This follows from (Go) and the fact 
that (a + T ' ) - 1 , (a + T " ) - 1 are disjoint and are proper circles or a proper 
circle and a straight line]. To summarize, p(a) can vanish only if 

a € {—zi,... ,-wn) and (z i , . . . , wn) € Z 

Since a polynomial vanishing on a nonempty open set of T'm x T"n must 
vanish identically on C m + n , we have 

(cm+n\z) n (r'm x r"n) ^ 0 
There is thus a nonempty open set U C (T'm x T"n)\Z. For ( z i , . . . ,wn) e 
U, p(-) never vanishes, and is thus constant, i.e., dp(a)/da — 0. Therefore 
dp(a)/da = 0 for all (z\,... ,wn) € cm+™. In conclusion, P is translation 
invariant. This implies immediately that P is a Go-nomial. Q 
Proposition 12. If the MA-nomial P(z\,... , zm, wi,... , wn) satisfies (Go), 
it also satisfies (G). 

If the sets {z\,... ,zm} and {wi,... , wn} are separated by a circle T, we 
can find two disjoint proper circles T' and T" close to F and separating them. 
By a transformation $ : z H> [Z + a ) - 1 , we may assume that $ z i , . . . , $zTO 

are inside of the circle 3>r", and $wi,... , to„ inside of the circle $]?". We 

may write 

$ r ' = {z:\z-u\= r'} , # r " = {w : \w - v\ = r"} 

The assumption that P is a Go-nomial and Lemma 11 imply that P (defined 
by (5)) satisfies P(z\,... , wn) ^ 0 if 

zi,... ,zm € {z : \z -u\ = p'}, , wi,... ,wnG {w :\w-v\ = p"} 
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whenever 0 < p' < r' and 0 < p" < r". Considered as a function of the 
£ = \og(zi — u) and rjj — log(wj - v), P has no zero, and 1/P is thus analytic 
in a region 

{Re & < c for i = 1 , . . . , m and Re r]j < c for j = 1 , . . . , n] 

U{Re£i = . . . = Re£m < logr' and Rer/i = . . . = Rer?„ < logr"} 

for suitable (large negative) c. This is a tube and by the Tube Theorem" 1/P 
is analytic in 

{Re£j < logr' for i = 1 , . . . , m and Re^j < logr" for j = 1 , . . . , n} 

and therefore P does not vanish when z\,... ,zm are inside of $ r ' and 
u>i,... ,wn inside $ r " . Going back to the polynomial P, we see that it 
cannot vanish when {z\,... ,zm} and {wi,... ,wn} are separated by T' and 

r". D 
Proposition 13. Suppose that P(z\,... ,z„,wi,... ,wn) satisfies the condi
tions of Proposition A2 and that 

P(zi,... ,zn,wi,... ,wn) 7^0 

when \z\\ — ... = \zn\ = a, \wi\ = . . . = \wn\ = b and 0 < a ^ b. Then P is a 
G-nomial. 

Taking zi,...,z„ = 3/2, wi,...,wn = 1/2, we have 0 ^ 
P ( 3 / 2 , . . . ,1/2) = P ( l , . . . ,0) = a, i.e., the coefficient a of the monomial 
z\... zn in P is different from 0 . Therefore we have 

P{z1,... ,zn,wi,... ,wn) j^ 0 (6) 

if |zi| = . . . = \zn\ = a, \wi\ — ... = |u;n| = b and 0 < a < b; (6) also holds if 
\w\\ = ... = \wn\ = b provided \zi\,... , \zn\ < ec for suitable (large negative) 
c. Applying the Tube Theorem as in the proof of Proposition 12 we find thus 
that (6) holds when 

\zi\,... ,\zn\ <b , \wi\ = . . . = |wn | = b. 

In particular, P{z\,... ,wn) / 0 if z\,... ,zn £ V, w\,... ,wn E T" where V, 
T" are proper circles such that T' is entirely inside T" and T" is centered at 0. 
But by conformal invariance (Corollary A3) we can replace these conditions 
by r" fl T" = 0. Proposition 12 then implies that P is a G-nomial. [] 

aFor the standard Tube Theorem see for instance 7 Theorem 2.5.10. Here we need a variant, 
the Flattened Tube Theorem, for which see Epstein : 
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Proposition 14. Suppose that PQ(Z\,... ,wn) and P\(zi,... ,wn) are re
duced G-nomials which become equal when z\ = z2: 

P0(z,z,z3,... ,wn) = Pi(z,z,z3,... ,wn) 

Then, for 0 < a < 1 

Pa(zi,... ,wn) = (1 -a)P0(zi,... ,wn) +aP1(zi,... ,wn) 

is again a reduced G-nomial. 
[Note that instead of the pair (z\, z2) one could take any pair (ZJ, Zj)]. We 

have to prove that if the proper circle T separates {z\,... ,zn}, {wi,... ,wn}, 
then Pa{z\,... ,wn) ^ 0. Let pa(z\,z2) be obtained from Pa(z\,... ,wn) 

by fixing z$,... ,zn on one side of T and w\,... ,wn on the other side. By 
assumption 

pa(zi,z2) = aziz2+baz1+caz2+d (7) 

where ba = (1 — a)b0 + abi, ca = (1 — a)co + ac\, and bo + CQ = b\ + c\. We 
have to prove: (A) If z\, z2 € A where A is the region bounded by T and not 

containing Wi,... , wn, then pa(zi,z2) ^ 0. We remark now that, as functions 

of z3,... ,wn, the expressions 

(&O + C Q ) 2 , j a , ha 
4a 

cannot vanish identically. For a this is because the coefficient of z\ • • • zn in 
(7) is 1. Note now that if we decompose a in prime factors, these cannot occur 
with an exponent > 1 because a is of degree < 1 in each variable z-$,... ,wn. 
Therefore if — (bo +co)2/4a + d = 0, i.e., if a divides (bo + co)2, then a divides 
(bo + co) and the quotient is homogeneous of degree 1. But then (60 + co)2/4a 
contains some variables with an exponent 2, in contradiction with the fact that 
in d all variables occur with an exponent < 1. In conclusion — (&o + co)2/4a + d 
cannot vanish identically. By a small change of z 3 , . . . ,ra„we can thus assume 

that 

a^0 , J 6 ° + c°) 2
 + d ^ 0 ( 8 ) 

4a 
We shall first consider this case and later use a limit argument to prove (A) 
when (8) does not hold. By the change of coordinates 

bo + c0 6o + Co 
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(linear in z\, z2) we obtain 

L 1 ^ \i \ ( & o + c o ) 2 , j pa — auiu2 + -{ba - c„)(ui - u2) r 1- a 

(Note that ba + ca = b0 + Co). Write 

A=(bo + c0f-4ad , (3=^ , A(a) = ^ 2 . 

for some choice of the square root of A, and 

ui = M , u2 - f3v2 

then 

P« = x"(wiW2 + A(a)(i>i - u2) - 1) 

If we write «i = (Ci + l)/(Ci - 1). v2 = (C2 + 1)/(C2 - 1), the condition pa ^ 0 
becomes 

Ci(l-A(a)) + C2(l + A(a))#0 (9) 

Note that A(a) = ±1 means (ba — ca)
2 — A = 0, i.e., od — baca = 0 and 

Pa = a(^i - 5 Q ) ( 2 2 - T Q ) 

By assumption p0(z,z) ^ 0 when z € A. Therefore, the image A„ of A 
in the v-variable does not contain +1 , —1, and the image A^ in the (^-variable 
does not contain 0, 00. In particular A^ is a circular disc or a half-plane, and 
thus convex. If X(a) is real and —1 < X(a) < 1, (9) holds when Ci,C2 e A^. 

[This is because A^ is convex and A^ ^ 0]. Therefore in that case (A) holds. 
We may thus exclude the values of a such that —1 < A(Q) < 1, and reduce 

the proof of the proposition to the case when at most one of A(0), A(l) is in 
[—1,1], and the other A(Q) ^ [—1,1]. Exchanging possibly P0 , Pi , we may 
assume that all A(a) ^ [—1,1] except A(l). Exchanging possibly z±, z2, (i.e., 
replacing A by —A) we may assume that A(l) ^ 1. We may finally assume 
that 

|A(0) + 1| + |A(0) - 1| > |A(1) + 1| + |A(1) - l | (10) 

where the left hand side is > 2 while the right hand side is =2 if A(l) £ [—1,1]. 
For a £ [0,1] we define the map 
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When a = 0,1 the inequality (9) holds by assumption for d,(2 & A^. [Note 
that the point v = 00, i.e., £ = 1 does not make a problem: if A ^ ±1 this is 
seen by continuity; if A = ±1 this follows from A^ ^ 0]. Therefore 

A c n / o A c = 0 , A c n / i A c = 0 

We want to show that A^ n /QA^ = 0 for 0 < a < 1. In fact, it suffices to 
prove 

A;, n faA'c = 0 

for slightly smaller A' C A^, viz, the inside of a proper circle T' such that 0 
is outside of V. Since we may replace A' by any cA' where c € C\{0}, we 
assume that A' is the interior of a circle centered at A(0) — 1 and with radius 
r°_ < |A(0) — 1|. Then / 0 A' is the interior of a circle centered at A(0) + 1 and 
with radius r+. The above two circles are disjoint, but we may increase r^_ 
until they touch, obtaining 

r o + r o _ 2 r o _ , A ( 0 ) + 1,0 
r_+r+-Z , r + - I A ( 0 ) _ ! !»• -

r° 
2 |A(0 ) -1 | _0 2|A(0) + 1| 

|A(0) + 1| + | A ( 0 ) - 1 | ' + |A(0) + 1| + | A ( 0 ) - 1 | 

We define r" and r" similarly, with A(0) replaced by A(Q) for a G [0,1]. To 
prove that A' n faA' = 0 for 0 < a < 1, we may replace A' by ^ o j l i A ' 
(which is a disc centered at A(a) — 1) and it suffices to prove that the radius 

I x[o)-i l r- o f t h i s d i s c i s - r - ' *-e-' 

2 | A ( a ) - l | < 2 | A ( a ) - l | 
|A(0) + 1| + |A(0) - 1| - |A(a) + 1| + |A(a) - 1| 

or 

|A(0) + 1| + |A(0) - 1| > |A(a) + 1| + |A(a) - 1| (11) 

Note now that {A £ C : |A + 1| + |A — 1| = const.} is an ellipse with foci ± 1 , 
and since A(a) is affine in a, the maximum value of |A(a) + 1 | + |A(a) — 1| for 
a £ [0,1] is reached at 0 or 1, and in fact at 0 by (10). This proves (11). This 

concludes the proof of (A) under the assumption (8). Consider now a limiting 
case when (8) fails and suppose that (A) does not hold. Then, by Lemma 
Al, pa vanishes identically. In particular this would imply pa(z,z) = 0, 
in contradiction with the assumption that PQ is a G-nomial. We have thus 
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shown that Pa is a G-nomial, and since it is homogeneous of degree n in 
the In variables z\,... ,wn, and contains z\ • • • zn with coefficient 1, Pa is a 
reduced G-nomial. [] 

Corollary 15 (contractibility). The set Gn of reduced G-nomials is con-
tractible. 

In the linear space of MA-nomials P(z\,... , io„) satisfying the conditions 
of Proposition A2 we define a flow by 

J- = -P + C2)-
lZ**P (12) 

where S* is the sum over the (^) transpositions n, i.e. interchanges of two of 
the variables z\,... ,znoiP. In view of Proposition 14, the positive semiflow 
defined by (12) preserves the set Gn of reduced G-nomials. Condition (b)n of 
Proposition A2 shows that the only fixed point of (12) is, up to a normalizing 
factor, Grace's polynomial P^. We have thus a contraction of G„ to { P E } , 
and Gn is therefore contractible. [] 

Appendix 

Lemma 15 (limits). Let D\,... ,Dr be open discs, and assume that the 
MA-nomials Pk(z\,... ,zr) do not vanish when z\ £ D\, ... , zr G Dr. If 
the P). have a limit Poo when k -» oo, and if P^^i,... ,zT) = 0 for some 
i\ € D\, ... , zr 6 Dr, then Poo = 0 identically. 

There is no loss of generality in assuming that i\ = ... = zr = 0. We prove 
the lemma by induction on r. For r = 1, if the affine function Poo vanishes at 
0 but not identically, the implicit function theorem shows that Pk vanishes for 
large k at some point close to 0, contrary to assumption. For r > 1, the induc
tion assumption implies that putting any one of the variables z\,... ,zr equal 
to 0 in PQO gives the zero polynomial. Therefore Poo(zi,... , zT) — az\ • • • zr. 
Fix now Zj = a,i 6 Z);\{0} for j = 1 , . . . , r — 1. Then Pk (a,i,... , a r_i , zr) ^ 0 
for zr € Dr, but the limit Poo(ai,..- , a r _ i , z r ) = aa\ •••ar-\zr vanishes at 
zr = 0 and therefore identically, i.e., a = 0, which proves the lemma, [j 
Proposition 16 (reduced forms). For n > 1, the following conditions on 
a MA-nomial P{z\,... ,zn,u>i,... ,wn) not identically zero are equivalent: 

(a)n P satisfies 

P{z\ + £ , . . . , wn + £) = P(z\,... , wn) (translation invariance) 

P(Xz\,... , Xwn) = XnP(zi,... ,i»„) (homogeneity of degree n) 
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(b)n There are constants CV such that 
n i 

P(Zl,... , wn) = Y^ C* Y[(ZJ ~ wAi)) 

where the sum is over all permutations n of ( 1 , . . . , n). 

We say that (b)„ gives a reduced form of P (it need not be unique). Clearly 

(b)n =^(a)n- We shall prove (a)„ =^(b)„ by induction on n, and obtain at the 
same time a bound ^Z IC^I < &n-ll-P|| for some norm | |P | | (the space of P 's 
is finite dimensional, so all norms are equivalent). Clearly, (a)i implies that 
P(zi,wi) = C(z\ —w\), so that (b)i holds. Let us now assume that P satisfies 
(a)„ for some n > 1. If X is an n-element subset of {z\,... ,wn}, let A(X) 

denote the coefficient of the corresponding monomial in P. We have 

^ ^ ( X ) = P ( 1 , . . . , 1 ) = P ( 0 , . . . , 0 ) = 0 
x 

In particular 

max \A{X') - A(X")\ > ma,xA(X) 

Note also that one can go from X' to X" in a bounded number of steps 
exchanging a Zj and a Wk- Therefore one can choose Zj, Wk, Z containing Zj 
and not u>k, and W obtained by replacing Zj by Wk in Z so that 

\A(Z)-A(W)\>aC£\A(X)\2)^2 

x 
where a depends only on n. Write now 

P = azjWk + bzj + cwk + d 

where the polynomials a, b, c, d do not contain ZJ, u>k- We have thus 

P = Pi +-(b - c)(Zj - wk) 

where 

Pi = azjWk + -(b + C){ZJ + Wk) + d 

Let a, 6, c, d be obtained by adding f to all the arguments of a, b, c, d. By 
translation invariance we have thus 

azjWk + bzj + cwk + d = a(zj + £)(wk + £) + b(zj + £) + c(wk + 0 + d 

= aZjWk + (a£ + b)zj + (a£ + c)u>k + a£2 + (b + c)£ + d 
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hence b — c = b — c. Therefore b — c satisfies (&)n-i arid, using the induction 
assumption we see that 

-{b-c)(zj -wk) 

has the form given by (b)n. In particular Pi again satisfies (a)„. We compare 

now the coefficients Ai (X) for Pi and A(X) for P: 

J2 \MX)f - £ |Ai(X)|2 > \A(Z)\2 + \A(W)\2 - \\A{Z) + A(W)\2 

x x 

= ±\A(Z)-A(W)\2>^-Y1\AW\2 

so that 

1 x 

We have thus a geometrically convergent approximation of P by expressions 
satisfying (b)„, and an estimate of ^ \C^\ as desired. [] 
Corollary 17. / / the MA-nomial P(zi,... ,wn) satisfies the conditions of 
Proposition A2, the following properties hold: (conformal invariance) if ad — 

be ^ 0, then 

p/QZi +ft awn + b __ -pr ad-be 
W + d'''' ' cwn + d> ~ [Zl' •••>Wn) JUL (CZj + d ) ( C W j + d) 

(roots) t/ie polynomial 

P(z) = P(z,... ,z,wi,... ,wn) 

has exactly the roots I O J , . . . , wn (repeated according to multiplicity). 
These properties follow directly if one writes P in reduced form. [] 
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FROM DYNAMICS TO COMPUTATION A N D BACK? 

MICHAEL SHUB 
IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598 

E-mail: mshub@us.ibm.com 

Felicitations 

It is a pleasure for me to be celebrating Steve's seventieth birthday. Twenty 
years ago I sent him a note congratulating him on his fiftieth birthday and 
wishing him another half century as productive as the first. Twenty years later 
I can say, so far so good. Real computation and complexity and now learning 
theory are added to the tremendous influence he has had on twentieth (now 
twenty first)century mathematics. Steve is an impossible act for his students 
to follow and there is no end in sight. Last week I was in Paris where I visited 
the Monet museum. Monet was doing his best work at eighty-five. I expect 
that Steve will be doing the same. 

The title of my talk echoes the title of the last Smalefest for Steve's sixtieth 
birthday "From Topolology to Computation". I met Steve in 1962. He had 
by this time finished his immersion theorem-turning the sphere inside out, the 
generalized Poincare conjecture and the H-cobordism theorem. He had found 
a horseshoe on the beaches of Rio and had begun his modern restructuring 
of the geometric theory of dynamical systems, focusing on the global stable 
and unstable manifolds and their intersections. The period 1958 to 1962 
had been incredibly creative for Steve. The number of Steve's remarkable 
accomplishments still boggles my imagination. And they are not of a whole, 
one following from the other, but rather disparate independent inventions. 
By 1962 Steve had already left finite dimensional differential topology. So I 
missed this wonderful part of his career. But luckily for the subject and for 
me he had not left dynamical systems. So that is where my story begins. 
My work in dynamics has been tremendously influenced by Steve. Now after 
years of collaboration with Steve, Felipe and Lenore on computation, I find 
that some of the techniques that Steve and I used in our sequence of papers 
on Bezout's theorem and complexity may be useful again back in dynamics. 

What I am reporting on today is joint work with Keith Burns, Charles 
Pugh, Amie Wilkinson, and Jean-Pierre Dedieu see 6,7. Much of what I 
am saying is taken from these two papers without specific attribution.The 
material may be found in much expanded form in these two references. 

mailto:mshub@us.ibm.com
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1 Introduction 

In his 1967 survey paper on dynamical systems 15 Steve asked for stable 
properties which hold for most dynamical systems and which in some sense 
describe the orbit structure of the system. The concepts under study at 
the time were structural stability and fi stability, which roughly require that 
at least on the most dynamically interesting sets the orbit structure of the 
dynamical system be locally constant under perturbation of the system up to 
continuous change of coordinates. By work beginning with Steve's work on 
the horseshoe, Anosov's 3 structural stability theorem and Steve's Q. stability 
theorem 15, uniform hyperbolicity of the dynamics is known to imply il or 
structural stability. A remarkable feature of these new results, which set them 
apart from previous work on structural stability by Andronov-Pontryagin and 
Peixoto, is the complexity of the dynamics encompassed. The horseshoe, 
strange attractors and globally hyperbolic dynamics are chaotic. They exhibit 
exponentially sensitive dependence on initial conditions. Thus, while in some 
sense the future history of a particular orbit may be too difficult to predict, 
the ensemble of orbits in these stable systems is topologically rigid in its 
behaviour. 

One of the major achievements of the uniformly hyperbolic theory of dy
namical systems is the work of Anosov, Sinai, Ruelle and Bowen on the ergodic 
theory of uniformly hyperbolic systems. Anosov proved that smooth volume 
preserving globally hyperbolic systems are ergodic. Sinai, Ruelle and Bowen 
extended this work to specifically constructed invariant measures for general 
uniformly hyperbolic systems now called SRB measures. The ergodicity of 
these measures asserts that although particular histories are difficult to com
pute the statistics of these histories, the probability that a point is in a given 
region at a given time, is captured by the measure. 

Steve's program is however not accomplished, since structurally stable, 
ft stable and uniformly hyperbolic systems are not dense in the space of 
dynamical sysytems 14 '2. Much of the work in dynamical systems in recent 
years has been an attempt to extend the results of the uniformly hyperbolic 
theory to more general systems. One theme is to relax the notion of uniform 
hyperbolicity to non-uniform or partial hyperbolicity and then to conclude 
the existence of measures sharing ergodic properties of the SRB measures. 
The Proceedings of the Seattle AMS Summer Symposium on Smooth Ergodic 
Theory will surely contain much along these lines. In particular, you can find 
the survey of recent progress on ergodicity of partially hyperbolic systems 6 

included there. There is much more available concerning the quadratic family, 
Henon and Lorenz attractors and more, but I will not try to reference that 



425 

work here. It is my feeling that much of the work proving the presence of non
uniform hyperbolicity or non-zero Lyapunov exponents (which is the same) is 
too particular to low dimensions to be able to apply in general. 

This paper reports on a result in the theory of random matrices which 
is an analogue in linear algebra of a mechanism we may hope to use to find 
non-zero Lyapunov exponents for general dynamical systems. 

2 Rich Families 

In rich enough families individual members generally inherit family properties. 

This sentence which a truism in ordinary language sometimes also applies 
in mathematics. The first theorem I learned from Steve in his 1962 course 
on infinite dimensional topology, the Abraham transversality theorem is an 
example. Let us recall that a smooth map F : M -¥ N between differentiable 
manifolds is transversal to the submanifold W of N if TF(x)(TxM) contains 
a vector space complement to Tp(x)W in Tp^N for every x £ M such that 
F(x) 6 W. 

We give a simple finite dimensional version of the Abraham transversality 
theorem which is valid in infinite dimensions 1. Let V be a finite dimensional 
smooth manifold which we will think of as a space of parameters for a space of 
maps . Suppose < i> : 'PxM-»A r i s a smooth map. For p £ V let $ p = $(p, —) 
which is a smooth mapping from M to N. Suppose that $ is transversal to 
W. Then V = ^~1(W) is a smooth submanifold of V x M. Let FL : V ->• V 
be the projection o f P x M onto the first factor restricted to V. The following 
proposition is then an exercise in counting dimensions of vector spaces. 

Proposition 2.1. With §,M,V, N,W and V as above and p £ V; 
$ p is transversal to W on M if and only if p is a regular value of Hi. 

Now by Sard's Theorem it follows that almost every p 6 V is a regular 
value of III. So we have proven a version of Abraham's theorem. 

Theorem 2.2. / / $ : V x M —> N is a smooth map transversal to W then 
$p is transversal to W for almost every p € V• 

Thus almost every member of the family $ p inherits the transversality 
property from the transversality of the whole family. The richness of the 
family is expressed by the transversality of the mapping 3>. 
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Here is another, more dynamical, example of our truism in ergodic theory 
11 

Theorem 2.3. If $ : W1 x l -> X is an ergodic action o/R" on a probability 
space X then for almost every r € E™, $ r : X —>• X is ergodic. 

The ergodicity of the family is inherited by almost all elements. Further 
examples of our truism in ergodic theory are provided by the Mautner phe
nomenon 9,5. Both Theorem 2.3 and the Mautner phenomenon are proven via 
representation theory. The richness in the family comes from the Lie group 
structure and the ergodicity of the group. 

We would like to have a notion of richness of a family of dynamical systems 
and Lyapunov exponent of the family so as to be able to conclude that most 
or at least many of the elements of the family have some non-zero exponents 
when the family does. For the notion of Lyapunov exponent of the family we 
shall use the exponents of random products of elements of the family with 
respect to a probability measure on the space of systems. 

We begin in the next section with linear maps where we use as a notion 
of richness the unitary invariance of the probability distribution on the space 
of matrices. 

3 Unitarily invariant measures on GLn(C) 

Let Li be a sequence of linear maps mapping finite dimensional normed 
vector spaces V; to V^+i for i € N. Let v € Vo\{0}. If the limit 
lim £ log ||Ljfe-i •. • £o(v)|| exists it is called a Lyapunov exponent of the se
quence. It is easy to see that if two vectors have the same exponent then so 
does every vector in the space spanned by them. It follows that there are at 
most dim(Vo) exponents. We denote them Xj where j < k < dim(Vo). We 
order the A* so that A; > Aj+i Thus it makes sense to talk about the Lyapunov 
exponents of a diffeomorphism / of a compact manifold M at a point m € M, 
\j(f,m) by choosing the sequence Li equal to Tf{p{m)). 

Given a probability measure fi on GL„ (C) the space of invertible n x 
n complex matrices we may form infinite sequences of elements chosen at 
random from /i by taking the product measure on <GL„ (C)N. Thus we may 
also talk about the Lyapunov exponents of sequences or almost all sequences 
in<GL„(C)N. 

Oseledec's Theorem applies in our two contexts. 
For diffeomorphisms / Oseldec's theorem says that for any / invariant 

measure v, for v almost all m £ M, f has dim(M) Lyapunov exponents at 
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m, \j(f,m) for 1 < j < dim(M). 
For measures \i on GLn(C) satisfying a mild integrability condition, we 

have n Lyapunov exponents r\ > r-z > . . . > r„ > -oo such that for almost 
every sequence . . . gk ... g\ G GLn (C) the limit lim \ log \\gk... giv\\ exists for 
every v G C" \ {0} and equals one of the rt, i = 1 . . .n, see Gol'dsheid and 
Margulis 8 or Ruelle 12 or Oseledec 10. We may call the numbers n , . . . , r n 

random Lyapunov exponents or even just random exponents. If the measure 
is concentrated on a point A, these numbers lim i log ||.Ani>|| are log \X\ |, . . . , 
log |An| where Xi(A) = Aj, i = 1 . . .n, are the eigenvalues of A written with 
multiplicity and |Ai| > |Aa| > . . . > |An|. 

The integrability condition for Oseledec's Theorem is 

g G <GLn(C) -> log+(||3||) is /x - integrable 

where for a real valued function / , / + = max[0, / ] . Here we will assume more 
so that all our integrals are defined and finite, namely: 

(*) g £ GL„(C) -> lpg+(||5 | |) and log+dlg"1!!) are /x-integrable. 

In 7we prove: 
Theorem 3.1. If \x is a unitarily invariant measure on GLn(C) satisfying 
(*) then, for k = 1 , . . . , n, 

k k 

TlozWiAMKA) > ]>>. 

By unitary invariance we mean n(U(X)) = n(X) for all unitary transfor
mations U € U„(C) and all /u-measurable X G GLn(C). 

Thus non-zero Lyapunov exponents for the family, i.e. non-zero ran
dom exponents, implies that at least some of the individual linear maps have 
non-zero exponents i.e eigenvalues. The notion of richness here is unitary in
variance of the measure. For complex matrices we have achieved part of our 
goal. Later we will suggest a way in which these results may be extended to 
dynamical systems. 
Corollary 3.2. 

/ 

L Ae<GL„(C) i = 1 i = 1 

Theorem 3.1 is not true for general measures on GLn(C) or GLn(M) even 
for n = 2. Consider 



428 

and give probability 1/2 to each. The left hand integral is zero but as is 
easily seen the right hand sum is positive. So, in this case the inequality goes 
the other way. We do not know a characterization of measures which make 
Theorem 3.1 valid. 

In order to prove 3.1 we first identify the the right hand summation in 
terms of an integral. Let Gn,k (C) denote the Grassmannian manifold of k 
dimensional vector subspaces in C". If A £ GL„(C) and Gn^ € Gn>fc(C), 
A\Gn,k the restriction of A to the subspace Gn,fc. Let v be the natural uni-
tarily invariant probability measure on <Gn,k (Q- The next theorem is a fairly 
standard fact. 
Theo rem 3.3. If fi is a unitarily invariant probability measure on GL„(C) 
satisfying (*) then, 

J2ri= I I \og\det(A\Gn,k)\dv(Gn,k)dfi(A). 
i = 1 JAeOLn(C) JG„,keGnik(C) 

We may then restate Theorem 3.1. 
Theo rem 3.4. If fi is a unitarily invariant probability measure on GL„ (C) 
satisfying (*) then, for k = 1 , . . . , n 

k 

^og\\i{A)W{A) > 
A£VLn(C) i=1 

[ f \og\det(A\Gn,k)\du(Gn,k)dn(A). 
JAeGLn{C) ^ G „ , t e G „ , f c ( Q 

Theorems 3.4 reduces to a special case. 
Let A 6 GL„(C) and \i be the Haar measure on Un(C) (the unitary 

subgroup of GLn(C)) normalized to be a probability measure. In this case 
Theorem 3.4 becomes: 
Theorem 3.5. Let A e GL„ (C). Then, forl<k<n, 

k 

f Tlog\\i(UA)\dLi(U)> f \og\det(A\Gn,k)\dv(Gn,k) 
JUeV„(Q i=1 •/G„, f c€G„, f c(C) 

We expect similar results for orthogonally invariant probability measures 
on GLn (E) but we have not proven it except in dimension 2. 
Theo rem 3.6. Let n be a probability measure on GL2(K) satisfying 

g e GL2(K) -> log+(||p||) and log+( | |s_ 1 | | ) are fj, - integrable. 

a. If fi is a 80^ (K) invariant measure on GLj (E) then, 

[ log\\1(A)\dii(A)= [ f log\\Ax\\dS1(x)d^(A). 
JAeGL^ (R) J 4 6 G L + (R) JxgS1 

/ , 
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b. If n is a §Cfe(E) invariant measure on QL^~(E), whose support is not 
contained in MQ)2(K) i.e. in the set of scalar multiples of orthogonal matrices, 
then 

[ \og\\1(A)\dii{A)> f [ log\\Ax\\dS\x)dn(A). 
JAe€L-(R) J AeGLz (R) JxeS1 

Here &L% (E) (resp. GLJ (E)) is the set of invertible matrices with posi
tive (resp. negative) determinant. 

4 Proofs and the Complexity of Bezout's Theorem 

In our series of papers on complexity and Bezout's theorem, Steve and I con
centrated on the manifold of solutions V = {(P, z) £ V{H(D)) x P(Cn) |P(z) = 
0} and the two projections 

V 
rij n2 

F(H{D)) ' ^ P(C") 

in order to transfer integrals over T(H(D)) to integrals over P(C"). See 4 

Here (D) = (di, • • •, dn_i) and H(D) is the vector space of homogeneous 
polynomials systems P = ( P i , . . . ,Pn-\) where each P; is a homogeneous 
polynomial of degree di in n complex variables. For a vector space V, P(V) 
denotes the projective space of V. 

Our proof of 3.5 relies heavily on this technique, but with respect to a 
manifold of fixed points. 

A flag F in C™ is a sequence of vector subspaces of C : F = 
(Fi,F2,... ,Fn), with Fi C Pi+i a n d dimP, = i. The space of flags is 
called the flag manifold and we denote it by Fn(C). An invertible linear 
map A : C" -» Cn naturally induces a map A$ on flags by 

Ai(F1,F2,...,Fn) = (AF1,AF2,...,AFn). 

The flag manifold and the action of a linear map A on F n (C) is closely related 
to the QR algorithm, see 13 for a discussion of this. In particular if F is a fixed 
flag for A i.e. A$F = P , then A is upper triangular in a basis corresponding 
to the flag P , with the eigenvalues of A appearing on the diagonal in some 
order: \i(A,F), ...,\n{A,F). 

Let 

VA = {(U,F)eVn(QxFn(Q : {UA)iF = F}. 
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We denote by III and n 2 the restrictions to VA of the projections U„ (C) x 
F„(C) ->• U„(C) and U„(C) x F„ (Q -> F„(C). V^ is a manifold of fixed 
points. We use the diagram 

rii n 2 

Un(C) ' ^ F„(C) 

in order to transfer the right hand integral in 3.5 over F„ (C) to an integral 
overU„(C). 

5 A dynamical systems analogue 

Is there a notion of richness for a family V of diffeomorphisms of a compact 
manifold M which would allow us to conclude that at least some members of 
the family have non-zero exponents? 

We introduce now a notion of richness of V which might, in some situ
ations, be sufficient to deduce properties of the exponents of elements of V 
from those of the random exponents. This notion was suggested to us by 
some preliminary numerical experiments and by the results in the setting of 
random matrix products in section 3. 

We focus on the problem for M = 5" , the n-sphere. Let /J. be Lebesgue 
measure on Sn normalized to be a probability measure, and let m be Liou-
ville measure on Tj(5n) , the unit tangent bundle of Sn, similarly normalized 
to be a probability measure. The orthogonal group 0(n + 1) acts by isome-
tries on the n-sphere and so induces an action on the space of ^-preserving 
diffeomorphisms by 

/ H O O / , for 0 € 0(n + 1). 

Let v be a probability measure supported on V C Diff^(5"). We say that v 
is orthogonally invariant if v is preserved by every element of 0{n + 1) under 
the action described above. 

For example, let 

F„(C) =0{n + l)f={Oof | OeO(n + l)}, 

for a fixed / e Diff^(5") Defining v by transporting Haar measure on 0 (n + l) 
to V, we obtain an orthogonally-invariant measure. Because 0(n + 1) acts 
transitively on Ti(Sn), a random product of elements of V will pick up the 
behavior of / in almost all tangent directions — the family is reasonably rich 
in that sense. 
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Let v be an orthogonally invariant measure on V. The largest random 
Lyapunov exponent for V, which we will denote by R{v), can be expressed as 
an integral: 

R(i/)= R(u,x)dfj,= [ \n\\Df{x)v\\dmdv. 
J yDiff;(s»)M(S") 

We define the mean largest Lyapunov exponent to be 

A(i/) = / / \i(f,x)dndu 
•/Diff^S") JS" 

where Ai (/, x) is the largest Lyapunov exponent of / at x. 
Question 5.1. Is there a positive constant C(n) — perhaps 1 — depending 
on n alone such that A(z/) > C{n)R{u)1 

If the answer to Question 5.1 were affirmative, then a positive measure 
set of elements of V would have areas of positive exponents, (assuming a mild 
nondegeneracy condition on v). We add here that this type of question has 
been asked before and has been the subject of a lot of research. What is 
new is the notion of richness which allows us to express the relation between 
exponents as an inequality of integrals. 

The question is already interesting for S2. Express S2 as the sphere of 
radius 1/2 centered at (1/2,0) in R x C, so that the coordinates (r, z) € S2 

satisfy the equation 

|r - 1/2|2 + \z\2 = 1/4. 

In these coordinates define a twist map / e : S
2 -»• S2 , for e > 0, by 

fe(r,z) = (r,exp(27rire)z). 

Let V be the orbit 0 ( 3 ) / and let v be the push forward of Haar measure on 
0(3). A very small and inconclusive numerical experiment seemed to indicate 
that for e close to 0 the inequality may hold with C{ri) = 1. It seemed the 
constant may decrease as the twist increases speed. 

Michel Herman thinks Question 5.1 has a negative answer, precisely for 
the twist map example / e , for e very small due to references cited in section 
6 of 6. Perhaps more and better experiments would shed some light on the 
question. Whether or not Herman is correct, it would be interesting to know 
if other lower bound estimates are available with an appropriate concept of 
richness of the family. 
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We first prove a conjecture concerning the local behaviour of the Weierstrass 
method to approximate simultaneously all the zeroes of a univariate polynomial. 
This conjecture states that the convergence of each coordinate of the Weierstrass 
sequence depends only on the multiplicity of each root. There is quadratic conver
gence toward the simple roots. We prove that if there is a root of multiplicity m 
then there are m coordinates of the Weierstrass sequence which converge geomet
rically with a limit ratio m~1. We reformulate this numerical result in terms of 
the notion of zero-clusters, which is a more natural way to study this problem. We 
next combine numerical path-following with Weierstrass method to approximate 
all the zero-clusters. These theoretical results are illustrated by some numerical 
experiments. We also apply this process to approximate all the clusters of the 
eigenvalues of a matrix, without the computation of the characteristic polynomial. 

1 Introduction 

The purpose of this paper is to study the computation of all the zero-clusters 
of a univariate polynomial by the Weierstrass method. This method was 
introduced in 21 to give a constructive proof of the fundamental theorem of 
algebra. The Weierstrass method consists of applying Newton's method to 
the system of Viete symmetric functions associated to a polynomial f(x) = 
^2k=0a,kZk S C[z}. For x = (x\,... ,xd) S Cd denote by S(x) the n-tuple 

(S i (z ) , . . . ,Sd(x)) where Si(x) := (Zi<i1<...<ik<dXh • • • ** ) ~ ( - l ) f c 5 t r 
for all i. The number of zeroes of this system is d\ and the set of zeroes of 
S(x) is equal to Z{S) = {w = (wi , . . . ,wd) G Cd \ f(wi) = 0, 1 < i < d}. 
The Weierstrass function is the function denned by 

x € Cd -* W(f,x) =x- (Z?5(a;))-1S(a;) € Cd. 

The Weierstrass sequence is the sequence of points in Cd defined by 

x° e C d , . . . ,xk+1 =W(f,xk), k>0. 

We say that the Weierstrass method converges iff the sequence {%k)k>0 con
verges towards some point w £ Z{S). Clearly, the Weierstrass method can be 

mailto:yak@mip.ups-tlse.fr
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\xk-w\\<ll) \\x°-w\ 

used to approximate all the roots of / simultaneously. 
In this context, it is fundamental to know a condition for the quadratic 

convergence of the Weierstrass sequence. In terms of the modern analysis 
of the Newton method by the alpha-theory of S. Smale 4 , we can state the 
following theorem. 
Theorem 1 Let f € C[x] be a polynomial whose roots are all simple. Let us 
consider w € Z(S) and the quantity 

f\\DS-'S(w)DkS(w)\\\^ 
7(5, w) = ma* ^ _ U J . 

Then for all x € Cd satisfying the inequality 

II n^ 3->/7 
\\x — w\\ < ——-—-

the Weierstrass sequence initialized at x° = x converges towards w. Moreover 

2 f c - l 

As it is mentioned, this result holds in the case of simple roots. The purpose 
of this paper is to investigate the general case of zero-clusters. In fact, the 
case of multiple zeroes is meaningless, from a numerical analysis point of view, 
see 24. For that we will use the explicit formulas for the Weierstrass function. 
It is well-known how to calculate formally the inverse of DS(x) (see 3 ) . We 
have: 
i e C -+W(f,x) = (xi u

f{x
(
l] > , . . . , x d rr^A ) ec

d. 

A very good survey of the Weierstrass method and possible extensions is 
done by Sendov, Andreev, and Kjurkchiev in 18. We recall the result obtained 
by Kjurkchiev and Markov in 1983. 
Theorem 18.1 (See page 700 of 1 8 . ) Let f G C[x] be a polynomial of degree 
d with roots w\,... ,Wd- Let 0 < q < 1, s = min \wi — Wj\ and 0 < c < . 5. 

*#j a 

where a = 1.7632283... is determined from the equality a = e» . If the initial 
approximations x ° , . . . ,x° °f ^e roots w\,... ,Wd of f(x) = 0 satisfy the 
inequalities 

\x0i~Wi\<cq, i = l,...,d, 

then the sequence {xk}k>o — {(xk,... ,x^)}fc>o satisfies the inequalities 

\xk -wi\ < cq2", 2 = 1 , . . . ,d. 
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We will state an alternative version of the above result where knowledge of 
the spacings of the roots is unneeded: we instead use the quantity 7( / ) defined 
below and introduced by Smale 4 (see theorem 2 of the next section). Indeed, 
the hypotheses of our result will ensure that the quantity s = min,^- \u>i — Wj\ 
is positive. This is done through the point estimate s > ^rjj (see Lemma 1). 

To understand the convergence of Weierstrass method in the general case, 
consider the polynomial f(z) = zm. Then W(f,x) = mj=^-x. Each coordi
nates, say xk, of the sequence xk+1 = W(zm,xk) converges towards 0 with a 
geometric rate of convergence ^ ^ following the straight line [x°,0]. 

The main result of this paper is that the previous example describes the 
general case, in the following sense: the behaviour of the Weierstrass sequence 
xk towards a zero-cluster depends of the multiplicity of this cluster. There 
is a quadratic convergence if the cluster is a simple root and a geometric 
convergence if the cluster contains m zeroes: see Theorem 3. 

In the second part of this paper, we combine a path-following method 
with the Weierstrass method in order to follow a curve which finishes to a 
point of Z(S). The complexity of this homotopy method is given in theorem 
4. We next give some numerical experiments and we show an application of 
this process to the computation of all the eigenvalues of a matrix without 
computation of coefficients of characteristic polynomial. 

We conclude this introduction by some short remarks and historical com
ments to explain the context and the new results of this paper. Globally the 
ideas of this study are those developed by Weierstrass in 21. In fact, Weier
strass has used the Newton iteration applied to the Viete symmetric functions 
system to give a constructive proof of the Fundamental Theorem of Algebra: 
in the case of simple roots, he first proves the local quadratic convergence of 
the method. He then introduced a classical linear homotopy with rational 
subdivision of the time interval to conclude. Many authors have re-discovered 
this method which is also known as the Durand-Kerner's method 7, 12, 13. 
Most of the earlier literature only studied the local behaviour of this method 
in the context of circular arithmetic: see 17 and 16. The use of classical linear 
homotopy or other can be found in 20 and 6. The cited authors were primar
ily interested in polynomials with simple roots. The dependence of the rate 
of convergence of the Durand-Kerner method on the multiplicity of the root 
has been numerically observed in 9,14,10,2. However, the proof of a precise 
numerical result along these lines has not appeared before in the literature. 



436 

2 Main Results 

Denote by 

d d 

f{z) = ^Z akzk = ad X\SZ ~ W^ 
k=0 i= l 

a complex polynomial of degree d > 2. We will let w = (w\,... , w<j)- The 
analysis of the convergence will be done with respect to the quantities 

Pm(f,z)= „ max 
0<k<m — 1 

lm(f,z) = max 
fc>m+l 

m !/<*>(*) 
fc!/(m)(z) 

m!/<fc)(z) 
A:!/(m)(z) 

2 6 C,m > 1, 

z G C,m > 1. 

These quantities were first introduced in 24. We first treat the case where all 
the roots of polynomial / are simple and state a 7-theorem, see 4 Theorem 1 
page 156. For that we introduce the quantity: 

7 ( / ) = max:/yi(f,Wi). 
l<i<d 

Theorem 2 Let us consider x — (x±,... ,Xd) € Cd be such that 

Then the Weierstrass sequence defined by 

x° = x, xk+1 =W(f,xk), k>0 

converge towards w with error bound: 

/ 1 \ 2 * - 1 

\Xi~m\<[j) k ° - ^ l , l<i<d. 

This result is based on the following lemma which appears in 24. 
Lemma 1 Following the notation above, if Wi ^ Wj then \wi — Wj\ > YTT) ' 

We now consider the case of zeroes clusters. Recall that an m-cluster of 
/ is a disk which contains m roots of / . We will denote by D(x,r) any disk 
around x of radius r and cD(x,r) the disk D(cx,cr). We assume without 
loss of generality that the roots of / can be partitioned to lie in p disjoint 
clusters where, for all i G {1, • • • ,p}, the i— cluster is an m^-cluster D(zi,r). 
Denote the roots in the rrij-cluster D(zi,r) by wn,... ,Wimi and let Mi — 
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{ 1 , . . . ,m,i}. Clearly 5Zf=1 m; = d. In this context, we will write x € Cd as 
x = ( x n , . . . ,xlmi,... ,xpl,... ,xpmp) and W(f,x) becomes 

W(f,x) = (Wn(f,x),... Wlmi (f,x),... , Wpl(f,x),... WpmF(f,x)) . 

Consequently the coordinates of xk+l = W(f,xk) will be xk^~x — Wtj(xk), 
1 < j < mi and 1 < i < p. The quantities /3(f) and j(f) above are now 
define as: 

/3(f) = max /3mi(f,Zi), y(f) = max -ym.(f,Zi). 
l<i<p IS'SP 

Also, introduce 

ami (f, Zi) = Pmi (/, Zi)-ymi (/, Zi), a(f) = /3(f)~/(f). 

We will also define the function 
7 m - l , 2(m2-l)u . 2(<j-m)(H-u)"'-1v . (1+.)"—J (l+v)d-mu \ j Cm > 1 "l 

, . I 2-(m-2)u 

¥>("»,«)=< 2(d- l )u 

Irrp^ (m=1)' 
w i t h « = i4- ( 4u-L" a n d ° = 3 a ( / ) -
Theorem 3 Let r, R, and u be positive real number such that u = j(f)R 
and 

r 

<u. 
V1-(*)'(£-*) 

Suppose also that 9a(f) < 1, ip(mi,u) < 1 for all i = 1 , . . . ,p, and that the 
radius r of the rrii-cluster satisfies 

r > ms) 
for all i. 

Choose p complex numbers yn,---ypi lying respectively on the circles 
S(z1,R),.. .S(zp,R). Next, fori = l,...p, consider respectively the roots 
2/iij • • -yirm of the equation in z: 

(z - zt)
m' = (ya - Zi)m<. 

Then the Weierstrass sequence 

x°=y, xk+1 =W(f,xk), k>0, 

is well defined and converges toward w as follows: 
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1. For all i such that m, > 1 and for all x\p j G Mi, which satisfies r < 
u\x\j — Zi\, we have: 

\%ij ~ z%\ < <p(mi,u)k(R + r),l < j < mu k> 0. 

Moreover each x\p j G Mi, lies in the disk ip(mi,u)kD(x°j,r). 

2. On other hand, if Wi is a simple root (mi — 1), we have 

We now say how to simultaneously find all the clusters. For that, we intro
duce the homotopy studied in 4,23, and 24. Denote by S — {x = (xi,... , Xd) € 
Cd | 3i / j , Xi = Xj}. Let z° G Cd - E. For t G [0,1], let us consider the 
family of map St defined by: 

x G Cd - • St(x) = S(x) - tS(z°). 

A straightforward computation shows that the polynomial ft associated to St 

is equal to 

ft(z) = (l-t)f(z) + tg(z), 
d-l 

with g(z) = adz
d + ^2(-l)d~kadSd-k{z°)zk. Hence the homotopy defined 

fc=0 
with the function St induces a linear homotopy with the polynomials f(z) 
and g(z). Let w1 = (w\,... ,wd) the curve of Cd such that 5 t(w') = 0. The 
linear map DSt(wt) is invertible for all t €]0,1]. To follow numerically the 
curve wl, consider a positive real number M < 1, the sequences (tk)k>o and 
(zk)k>o defined respectively by 

t0 = l,tk = Mk, 

zk+1=W(fk+llz
k) 

where fk — ftk • The purpose is to quantify the computational complexity of 
the preceding numerical path-following method. More precisely, we estimate 
the number of steps k such that each coordinates zf of zk is a point which is 
closed to a zero of / . Toward this end, let us introduce the following quantities 
where u > 0 and i are given a priori: 

• D(xi,r) is an mj-cluster which contains the root Wi = iu° of / . If mi = 1 
then Xi = Wi and r = 0. 
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Let R be such that u = j(f)R. 

tf = suP{* e]o, l] Wf - W{ = R}. 

g = maxj max (+<K1 j(ft) 

b — max; (maxt+ 

h = max0<i<i 

"<t<i /,'K) I J' a-b9-
mi'.g(wt

i) 

Theorem 4 Suppose u < 5J_2> 4u^ < 1 and /?(/) < uR. Let i be given 

and denote by fcj the index satisfying tk{ < tf < £fc;_i. Then, the following 

assertions hold: 

1. For all k such that tk > tf, the points z\'s are well defined and are 
approximate zeroes of wf. 

2. The value tf is bounded by 

h{u)Rmi rrii — 1 

at + h(u)Rmi-x <t1 

3. \zk wA <R+%. 

3 Practical Algorithms and Numerical Experiments 

Our first numerical experiment will be per
formed on the polynomial f(z) g i v e n b y 
z15 + (-6.30211 - 6.51486i)z14 + (-4.602131368 + 34.33661782 i)zl3 + (63.59234833 -17.54183753 i) z12 

+ (7.872508933 - 100.8166243») z11 + (-222.2761285 - 64.53993948»") z10 + (-167.1645824 + 289.8629099 »') z9 

+ (388.8936599 + 490.8785827 i) zs + (642.5739956 - 425.4499699 i) z7 + (78.15261237 - 888.3687140 i) z6 

+ (-1127.773435 - 316.6287328»') z5 + (-750.6198536 + 605.88985631) z4 + (441.7642441 + 974.1649811 i) z3 

+ (422.0315160 + 163.1681751 i) z2 + (416.5648287 - 448.9257391 i) z + 8.41840810 - 48.40497033 i 
T h i s p o l y n o m i a l h a s t h e five « -c lus t e r s D(zi, 0 .05) w i t h : 

Zl = -0.071 + 0.043i , z2 = -1.227 + 0.179* , z3 = -0.686 - 0.855* 
24 = 0.388 + 1.825* , z5 = 1.866 + 0.275*. 
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We first show the behaviour of the Weierstrass iteration around the 5-
cluster D(z$, 0.05). For tha t the sequence xk is initialized with the coordinates 
of x° specified as follows: x°k, = Zi + O.le* -* -, 1 < j < k, 1 < k < 5-
Figures 1 and 2 illustrate theorem 3. 

-1.5 -1 -0.5 0 0.5 1 1.5 2 

Figure 1: Local behaviour of Weierstrass iteration. 

1.5 1.6 1.7 1.8 1.9 2 2.1 

Figure 2: Enlargement around the 5-cluster D(zs, 0.05). 
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We next illustrate the numerical path-following using Weierstrass method 
via the algorithm described below. Recall that ft(z) = (1 - t)f(z) + tg(z) is 
defined previouly and Wft is the Weierstrass operator associated to ft- For 
a given integer nu > 2 we will denote W?" the repeated composition of the 
operator Wft nu times. 

Weierstrass Path-Following Algorithm 
Inputs: / a polynomial of degree d, z° € Cd , e a positive real number, 

nu > 2 an integer and 0 < M < 1. 
/? = 2e, t0 = 1, ti = 1 - M. 
while p > e or t0 > 0 
Compute the point z1 = W£'(z°). 

/? = n ' ' i i if /3 < e and t\ = 0 Determine the clusters and stop, 
i ij^i zi zj 

if 0 > e and tx > 0 replace tx by ^ ± ^ -
If P < e and ti > 0 replace t0 by t i , t\ by max(3ti - 2t0,0) and z° by z1. 
end Outputs: the set of all the clusters. 
The proof of the convergence of this algorithm is given in 23. It also has 

been used in 24 to compute only one cluster. The figure below was derived by 
taking z£ = e - ^ , 1 < k < d. 

Figure 3: Simultaneous computation of all the zeroes-clusters. 
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3.1 Computing Eigenvalues 

We consider any d x d matrix A whose eigenvalues are the roots of the poly
nomial / above. To compute the clusters of the eigenvalues we use the Weier-
strass function with 

d 

ht(z) = (1 - t)det(zl -A)+ t(zd + £ ( - l ) d _ f c + % - * + i ( z V _ 1 ) -
fc=i 

Consequently the process only requires evaluation of a determinant. Obvi
ously the coefficients of the characteristic polynomial are not calculated. 

To illustrate this approach, take any 15 x 15 matrix whose eigenvalues are 
the roots of the polynomial / above. Setting z ° = e " ^ L , l < f c < d w e then 
obtain the following behavior for our sequence of approximations. 

Figure 4: Simultaneous computation of all the eigenvalues-clusters. 

4 Proof of Theorem 2 

To prove this theorem we need some lemmas. We first state a similar lemma 
given in 4 Lemma 10 page 269: 
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L e m m a 2 

/ i M y - 1 _ P - I 
k>2 \P U> 

Proof: It is sufficient to prove that ( - (£) ) is a decreasing function of 

k. For that verify 

p\k + lj ~ \p \kj 

This inequality is equivalent to 

( p - l ) . . . ( p - f c ) < ^ ( p _ i ) . . . ( p _ f c + i ) y + i i T 

(fc + 1)! - V A! / 

We first have f(P~1)-"^-k + 1)\ fc_1 > p ~ * + 1 . On the other hand, 

we have g=* < ^ ± i . Hence 

( p - l ) - - - ( p - A ; + l ) y + ^ T ( p - l ) - - - ( p - f c + l ) p - A ; + l 

Jfe! / - k\ k 
( p - l ) - - - ( p - f c + l ) p - f c 

A;! fc + 1' 

We are done.B 
We now give a point estimate for | n ? = i ( l + zj) ~ M improving one given 

by Higham on page 75 of n . 
L e m m a 3 Let p > 1 an integer and e a real number be such that 0 < e < - ^ . 
Considerp complex numbers z\,... ,zp satisfying \ZJ\ < e. Then, 

Moreover | ̂ = 1 ( 1 + zj)\ > 1 - ^f^. 

Proof: We have ] l j= i ( l + zi) ~ 1 = YJk=\ ak(zi, • • • ,zp) where the ak's 
are the Viete symmetric functions of z\,... ,zp. We know \ak(z\,... , zp)\ < 



444 

(£)efc. Prom lemma 2 with u = ^ ^ e , it follows that 

Y[(l + Zj)-l 

<pe f 1 + ^V" 1 

k>2 

< pe 
l-Z=±e 

So we are done.B 
L e m m a 4 Z€£ ar = (xi,... ,Xd) be such that X* 6 D{wi,r), 1 < i < d. Let 
u — l(f)r < J3- Then the Wi(f,x)'s are well defined and we have 

m i f ^ ) - ^ ^ - 1 ^ ; - ^ ^ - ^ i<i<d. 
1 — (a + z)u 

Moreover, Wi(f,x) ^ Wj(f,x) for all i ^ j . 
Proof: The distance between two distinct disks D(wi,r) and D(wj,r) is 

equal to max(0, \wi— Wj\ — 2r). From lemma 1 and since u = "/(f)r < — < - , 
3a 6 

(d > 2), we get 

\wi — Wj\ — 2r > 
27(/) 67( / ) 37 ( / ) 

> 0 . 

Consequently, the two disks D(wi,r) and D(vjj,r) are disjoint and X, ^ x̂ - for 
all i ^ j . Hence the Wi(f, x)'s are well defined. A straightforward calculation 
shows that 

Wi(f,x)-Wi= ( l -nf 1 -^—))^-^) , 1 < * < d-

From lemma 1 we have the point estimate with u — j(f)r, 

Xj — Wj 

K -Wi\ -

\Xj -Wj\ 

- \X{ -Wi\ --\Xj~Wj\ 

/ \xj-Wj\ ^ 2w 

27(/) ^ i iU 
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_ 2M where i ^ j and 1 < i, j < d. Applying the lemma 3 with p = d—l,e=j^ 
and zi = l^ff' for 1 ^ 3 < d > J : t ' we obtain: 

2(d— 1) 2" 

\wi(f,x)-Wi\ < \ y-% \Xi-Wi\ 
2 ( d - l ) w , , , . 

We now show that the Wj(/, x)'s are distinct real numbers: The condition 
u < jg implies 1_tJ+l)u < 1- Consequently \Wi((f,x) — wi\ < \xi — Wj| < r. 
But the disks D{wi,r) are distinct. Hence Wi(f,x) ^ Wj(f,x) if i ^ j . We 
are done.B 
Proof of T h e o r e m 2. We proceed by induction. The condition u < ^jz2 
and d > 2 implies u < ^ . From lemma 4, if i ^ j then â  7̂  Xj and 
x1 = W(f, x) is well defined. Obviously the inequalities 

\xi-Wi\<(-) r, l<i<d, 

hold for k = 0. Suppose now that for a given k we have that xk is well defined 
and that the previous inequalities are satisfied. From lemma 4 we have 

\x^-w\< ^ - l ) 7 ( / ) i ^ - ^ l 2
 1 < i < d 

I*. W ' l ^ l - ( d + 2 ) 7 ( / ) | : B » - « , i | ' - ~ 

On the other hand, the condition u < ^ ^ implies x_i^Z^)u < | - We then 
get by induction that 

l*' w * l ^ l _ ( d + 2 ) u ^2 J |Xt W i | 

< f 2 ) \xi ~wi\-

Moreover x\+1 ^ xk+1 for i ^ j . Then the theorem follows.• 

5 Proof of T h e o r e m 3 

Denote by x = (x\\,... ,ximi,... ,xP\,... ,xpmp) 6 Cd. Remember also 
u — 7( /) iJ . The radius r of each cluster D(zi,r) satisfies r < uR. 
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Lemma 5 Let i and j € Mi be given. Let Xik, 1 < k < rrii the roots of the 
equation in z 

yZ Zi) — \%ij Zi) 5 

such that Xn = Xij. Let us suppose 

(a) \xik - Xik\ < u\xij - Xik\, 1 < k < rrii, k ^ j 

(b) \zi — Wik\ < u\xij — Zi\, 1 < k < rrii, and k ^ j . 

Then 
2 ( m ? - l ) « 

2. n 

Lk€Mi,k^j Xij-Xik 

< 

< 
rm-l + 2 - ( m , - 2 ) n 

fceMi.fc^j nj—ijfc 

V1 2-(m i-2)u // 

(! + ")" 
/ 2 ( m ; - l ) u \ -

m ' ^ 2 - ( m , - - 2 ) « ; 

Proof: Since the x ^ are the roots of the equation given in this lemma, we 
n a v e HkeMi,kyij(xij - %ik) = mi(xij - Zi)mi~l. We can then write 

T T Xjj -Wjk _ (Xjj - Zj)mi~l U.k€Mj,k^j [l + xij-'zi ) 

„M. w , XH ~ xik UkeMiM(xiJ - xik) UteMuW (X + f ^ f ^ ) k€Mi,kj:j 

n 
mi Uk£Mi ,*#,- ( l + ftt^ftt) *€«< .**> ^ Xii 

1 + Zi - Wik 

- Zi 

= m < - i + m < ( n t 6 M . > f > i ( i + ^ i ^ ) - i ) - ( n t 6 M < , w ( i + ^ ^ ) - 0 

Using lemma 3 with p = mi — 1, e = u, and the assumptions 1 and 2, a 
straightforward computation gives successively 

n •^ij ^ik 

kEMt^j Xii Xik 

< 

< 

1 . 2mi(mj — \)u . 2(roj —l)n 
mi J- + 2-(m,--2)« + 2 - ( m j - 2 ) « 

/ 1 _ 2 ( m < - l ) u \ 
m t ^ 2-(mi-2)u) 

_ -i , 2 (m?- l )u 
m ' i + 2 - ( m ; - 2 ) u 

m. f 1 _ ^p=^-) 
1 y 2 — {rrii— 2)u / 

Just as n keMi,k^j Xij-xik 
before, we have 

—^ V . . ^ - . ^ IlfceM*,*^ f1 + f # = t ) > a n d u P ° n u s i n S l e m m a 3> 

part 2 is directly obtained. • 
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Lemma 6 Let i be given. Let Xki £ D(zk,r), I = 1 , . . . ,mjt and k = l,...p. 
Suppose 9a(f) < 1, r > 30(/) and r < uR. Then 

1. Fork^i we have \Zi -wki\> ^ j y - §/?(/)• 

2. For (k,l) ^ (i,j) we have 

3. Moreover 

Xkl-Wkl 
Xij—Xkl < i - a - t o - L " = V> Witfl ° = 3 a ( / ) -

B = n 
kjLi,l£Mk 

1 + 
Xkl ~ Wkl 

< 
2(d — mi)v 

2 — (d — rrii — l)v 

B + l<(l + v)d-mi. 

Proof: 
(1): Let us consider w a zero of / which don't lies in D(zi,r). We have 
successively: 

I/(«OI = O= ^ = 0 = & i ) ( u , _ Z i ) 

> l £^£ i ] iu ,_ z . r 
— m;! 

_ v m ; - l | /W( Z < ) | 
W — Zi\ sk>m.i + l i^imun-W-Zi 

^ m i! I1" Z'l \ l L,k=0 W\!^i\zi)\\W Z%\ Lkymi+l jfe!|/("H>(zi) \W Z'\ ) 

> u^w - *r (i - E:=O x ( ^ ) m ' ~ * - E,>mi+1 (7m;(/)i^ - *ip- f c 

Via the inequality 7 m i (/) < 7 ( / ) we finally get: 

0 > 1 -
\W-Zi\ 

1 JUL 

-y(f)\w- Zj\ 
1--Y(f)\w-Zi 

> 

\W-Zi\ 

-2j(f)\w - Zi\
2 + (1 + 3 7 ( / ) / ? ( / ) )k - *i\ - W ) 

{l-lU)\v-Zi\){\v-Zi\-PU)) 

Under the condition 9a ( / ) < 1, the polynomial 

- 2 7 ( / ) i 2 + (l + 3 7 ( / ) /3 ( / ) ) i -2 /? ( / ) 

has two real roots: r± 
_ l + 3 a ( / ) - > / l - 1 0 a ( / ) + 9 a ( / ) 2 a n d 

47 ( / ) ^2 = 

l + 3 a ( / ) + v / l - 1 0 a ( / ) + 9 a ( / ) 2 

-2j(f)\w - Zi\
2 + (1 + 3 7 ( / ) / ? ( / ) )k - *i| " 20(f) < 0 

4 ,.> . It is then easy to see that the assumption 
r > 30(f) implies r > r j . Since \w — Zi\ > r, the inequality 
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holds when \w - zt\ > r2 . A lower bound for r2 is ^rjj ~ \P(f)- ^n 

fact, the study of the function t e [0, | ] -> i+st+Vi-iot+m s h o w s t h a t 

i-\-3t+y/i-iot+9t2 > | _ |£ Replace t by a and divide the previous inequality 
by 7 ( / ) , we find the lower bound announced for r2 . By definition of /?(/) and 
7( / ) we finally have 

\w - zA > WT)-\m-

yij 

(2): From part (1) we have 

\Xii -Xkl\ = \Xij -Zi + Zi- Wki + Wkt - Zk+ Zk - Xkl 

> \Zi - Wkl\ - \Xij - Zi\ - \wkl - Zk\ 

1 3 
> 

Zk - Xkl 

5^-i«fl-M-r. 
Since r < uR, it follows 

Xkl ~ Wkl 

Xij Xkl 
< 

< 

R + r 

27(7) 

2u(l + u) 

\P{f)-2R-r 

= v, 1 — a — Au — 2u2 

with a = 3a( / ) . 
(3): There are d — rrii factors in the product of the quantity B. From lemma 
3 and part (2) we get 

2(d — rrii)v 
B < (1 + v)d-mi - 1 < 

2 — (d — m,i — l)v' 

The quantity B + 1 is obviously bounded by: B + 1 < (1 + v)d m' We are 
done.B 

r 2 
Lemma 7 Let R, r and be two positive real numbers which such that — < —. 

R m 
Introduce the point y — (y\,... ym) such that yj1 — Rm, 1 < j <m. For c < 1, 
consider the sequence of disks 

£ ° = D(yj,r), D) = ckD (yj,r) ,l<j<m,k>l. 

Then for k be fixed, we have DjflDi = 0 and the distance between two distinct 
disks is greater than 
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Proof: Each disk Dj is contained in a wedge of angle 26 such that sin 6 = -^, 
see figure. It is obvious that D) n D\ = 0 for j ^ / if ^ - 2(9 > 0. But 
^ = sin# > ^0. Hence, using the assumption -^ < ~, the inequality 

2TT „ „ 2n irr 
2(9 > > 0 

m m R 

holds. 
Elementary geometric considerations in the triangle OAB (see figure ) 

show that the distance between two distinct disks Dj and D® is greater than 

Since sin ( ^ - 9) > ^ — ^ , the result follows.• 

Dl(Vi,rL D(yj,r) 

^ - 26> 0 

Figure 5: Illustration of the proof of lemma 7. 
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Lemma 8 Let us consider positive real numbers r, R, and u such that 

r 

V1-^)2^-*) 
< u. 

Suppose also that 9a(f) < 1 and r > 30(f). Introduce p complex numbers 
2/ni • • • >Vpi be such that \z% — yn\ < R • 

For all i, 1 < i < p, consider respectively the roots yii,...yimi of the 
equations 

(z - Zi)
m< = (yn - Zi)

m<. 

Let x be such that Xij £ D(yij,r), j £ Mit 1 < i < p. 

Suppose for alii, (p(m,i,u) < 1, and \z%— Wij < u\xij — Zi\. We then have: 

1. For all i, 1 <i <p such that rm > 1 we have: 

\Wij(f,x) - Zi\ < ip(mi:u)\xij - Zi\, 1 < j < mi. 
The Wij(f,x) respectively belong to the disks <fi(mi,u)D(yij,r), j £ Mi, 
1 < i < p. Moreover, these disks are pair-wise disjoint. 

2. For all i, 1 < i < p such that rrii = 1 we have: 

WaU^x) -Wi\ < - , , , „ , Fti -ml 
1 — (a + 2)u 

Proof: Let us first consider an index i such that m; > 1. 
A straightforward computation shows that: 

wij{f,X)-zi=(i- n 2^?rW-*)- n 2^f^-^)-

We first bound 1 - n ^ ) ^ ) ^ f f f For that we write 

1 _ TT J' — i _ TT J" ~ ' TT fii 

(k,i)?(i,j) Xij ~ Xkl w Xij ~ Xil k^i Xii 

ift xv Xi1 k^i 

l-A-AB 

Xij -Wil TT l, , xkl ~ wkl 

ij kl 
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with A = n w %^% and B = U^ ( l + f ™ ) - 1- Hence, using the 

assumtion |ZJ — Wij\ < u\x{j — Zi\, we get 

\Wij(f,x) - Zi\ < (|1 - 4 | + |AB| + \A(B + l)|u) |xy - z4|. 

Verify the assumption 2 of lemma 5 to bound |1 - A\. With the point Xij, 
construct the roots Xik of the equation (z — Zi)mi — (ijj - Zi)mi as in lemma 
5. By definition of rjij and since x^ G D(yij,r), we have £** € D(yij,r). 
Hence \xik — xtk\ < 2r. Using lemma 7, the distance between two distinct 
disks D(yij,r) and D(yik,r) is greater than 

Hence, for all A; 7̂  j , 1 < k < mi, we have 

\xik -Xik\ , r 
< , = < u. 

The assumptions of lemma 5 hold. Consequently |1 — A\ is bounded by 

_ 1 , 2 (m?- l )u 
\1-A\< ^ 2-(mi-2)« 

mil- 2(m;~1)" V 
"'« ^ 2-(rrn-2)u) 

We bound the quantities 5 and J3 + 1 using the lemma 6: 

B < 2{d-mj)v 

~ 2 — (d — rrii — l)v 

B + 1 < (1 + v)d-mi, 

where v is defined in the introduction. From part 2 of lemma 5 we bound A 

With all these point estimates, we obtain 
the following upper bound on \Wij(f,x) — Z{\: 
(n.j-1 2(m?-l)„ 2(J-mi)(l + »)" i - '„ (H.,)"»i-l(l+ ,^- '".-,\ t , , w m r h 
I mf +m;(2- (m j -2 )«)+ r»j (2- (d-m; -1)„) + mf I 2 ( ^ - 1 ) - ' X ' J Z>>' W I 1 1 U 1 
V ' 2-(mi-2)u 

in turn is bounded above by ip(rm,u)\xij — Zi\. Hence the point Wij(f,x) 
lies in the disk (p(rrii,u)D (yij, \xij — Zi\). Lemma 7 shows that the Wij's are 
distinct points. We have thus proved the first part. 

Let us now suppose there exists an index i be such that m; = 1. In this 
case, the point estimate is a direct consequence of lemma 4. So we are done. 
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Proof of Theorem 3: We proceed by induction. The case k = 0 is obvious. 
Suppose the sequence (xh)k>o is well defined and that the x^'s are distinct 
points satisfying the point estimates of our theorem. For the indices i such 
that m,i > 1, the assumptions of lemma 8 are satisfied. Then for j ^ I we have 
x^1 ^ a^+1. Remember also that a;*- e D^ and from inductive assumption 

k * / 1 ~Zi\< <p{muu)\xij - zt\ 

<<p{mi,u)k+1{R + r) 

In the case m, = 1, suppose |x*x — iUi| < y>(l,u)2 - 1 . By lemma 8, we have 

|a&+ 1-u/i |<¥>(l,u) |a:$i-Tt;i | 

D \xil W*l 

V?(l,u) 9 k + l 

^Mi.u))2**1-1^. 

We are done.I 

6 Proof of Theorem 4 

Remember that we consider the curve w\ for an index i be given, 1 < i < d 
defined by ft{w\) = 0. We first prove the following 
Lemma 9 Lett/. > tf. For allt ands lying in [tk+i,tk], we have \w\ — w\\ < 
u. 
Proof: We obviously have 0 = /t(u>f) = fs{wl) = ft(wf) + {s — t)(g(wf) — 
/(wf)). From Taylor's formula, we get 

f't(wt)(wl - «,?) + £ ^ J ^ - <)" = (*- s)(9«) ~ /Ks))-
fc>2 

Hence, usingg = maxjmax t + < t < 1 7( / t ) and \t-s\ < tk~tk+i = M f c ( l - M ) < 

1 — M, we obtain, for all t,s € [tfc+i>*k] 

1 - y^(g|w* - w1\)h 1\ < | s - t | m a x max \W*.-W'\ I i - ^t~\...t .....Mfe-i I ^ i„ + i _ _ l f f « ) - / K s ) l 
I/;K)I 

ffK-ti;f|(l-2gK-W||) _ = u(l - 2u) 
1 -g\w\ -w?\ ~ 1 - M 

Since u —• tZ is a decreasing function, we conclude g\w\ — wf\ < u.t 
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Lemma 10 Let h(u) = ( 1 ^ " . Then tf := sup{i e]0,l] | \w\ - w{\ = R} 
satisfies 

h{u)Rmi-1
 + 

at + h^R™'-1 -** 

Proof: Let D(zi,r) be a rrii cluster and Wi £ D(xt,r) be a zero of / . 
Denote t = tf. We have 0 = ft{w\) = (1 - t)f(w\) + tg{w\). Consequently 

(1 _ t) ^ - , f^M{wl. ^ + / ^ w _ ^ + ^ + i / ( ^ _ ^ = tj(u{)_ 

As in the proof of lemma 6, we obtain from \w\— Wi\ = R and /?(/) < Ru that... 

(1 - 0 (l - EET1 ( ^ ) m ' " * - Efc>m.+1(7(/^i)i?)fc-"") *"- < ma^K, | ^ g | t 
So (1 - t) (l - Y f f e - I ^ $ ? R ) 7 ( / ) i? m i < Oi* and thus 

(1 - t ) * 1 " ^ ) " ^ - * < ait. The inequality of our lemma follows. • 

Proof of Theorem 4: Let an index i and tf be such that \w\ — Wi\ = R. 
For all t € [*i")l], the polynomial ft only has simple roots. The quantity 
g = maxjmax t+< i < : i 7(/t) is bounded and we have, from lemma 1 

(1): We first prove by induction that the zf's are approximate zeroes of fk 

associated to wf for all index k such that tk G [tf, 1]. It is obvious for k = 0. 

Suppose the z\ are distinct points and we have g\z\ — w\\ < u.Then prove 

9\zi+1 ~ wi+11 < u- Applying lemma 9, we have 

g\z\ - w\+11 < g\z\ - wki \ + g\w* - w\+1 \<u + u = 2u. 

Since u < j-jrf, we have from theorem 2 for all k be such that tk 6 [tf, 1]: 

g\z!+1-w*+1\<±g\z!-w*+1\<u. 

Prove now that the z\ are distinct points. For i ^ j we have from the 
assumption Aug < 1: 

k*+1 - 4+11 > kfc+1 - ^fc+11 - \4+1 - ™t+11 - Kfc+1 - 4+ 11 > ^ - 2« > 0. 

Hence the z^+1's are distinct points and W(ft,z
k+1) is well defined. 

(2): Part 2 follows from lemma 10. 
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(3): Prom lemma 9 and the part 1 of this theorem,the point zi * is an approx-
t+ 

imate zero of wt' . Hence 

\4' - Wi\ < \wf - Wi\ + |z,*- -wf\<R+ -^ 

We are done.B 
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CROSS-CONSTRAINED VARIATIONAL PROBLEM A N D 
NONLINEAR SCHRODINGER EQUATION 

JIAN ZHANG 
Department of Mathematics, Sichuan Normal University, Chengdu, 610066, China* 

E-mail: jianzhan@mail.sc.cninfo.net 

By constructing a type of cross constrained variational problem and establishing so-
called cross-invariant manifolds of the evolution flow, we derive a sharp criterion for 
global existence and blowup of the solutions to the nonlinear Schrodinger equation. 
The instability of the standing waves in the equation is also shown. 

1 Introduction 

We are concerned with the following nonlinear Schrodinger equation 

iipt + Aip + \<p\p- V = 0, t>0,xeRN, (1.1) 

where 1 < p < ( J^t^+ (we use the convention: 1^-2)+ = ° ° w n e n N = 
1,2 and (n - 2)+ = N - 2 when N>3). 

Ginibre and Vero 5 established the local existence of (1.1) and the global 
existence of (1.1) for 1 < p < 1 + -fa, as well as 1 + -^ < p < (^Jh

2
2)+ w i t ^ 

small initial data. Glassey 6 , Ogawa and Tsutsumi 9 '10 studied the blowup 
properties of (1.1) for some initial data. Berestycki and Cazenave 1 as well 
as Weinstein 16 showed some interesting sharp criteria for blowup and global 
existence of (1.1), as well as the strong instability of the standing waves in 
(1.1) by variational arguments. The related work also sees 15 and 19 etc. 

In the present paper, we construct a type of cross-constrained variational 
problem and establish it's property, then apply it to the nonlinear Schrodinger 
equation (1.1). By studying the corresponding cross-invariant manifolds un
der the flow of equation (1.1), we establish the sharp criterion for global 
existence and blowup of the solutions. By this criterion and the property of 
the cross-constrained variational problem, we also show the strong instabil
ity of the standing waves in equation (1.1). Berestycki and Cazenave x as 
well as Weinstein 16 have studied the similar problems. But in x and 16, the 
related variational problems have to be solved, the Schwarz symmetrization 
and complicated variational computation have to be conducted. By our new 
variational argument, we can refrain from solving the attaching variational 

•Former address: Department of Mathematical Sciences, The University of Tokyo, 
3 - 8 - 1 Komaba, Meguro-Ku, Tokyo 153, Japan 

mailto:jianzhan@mail.sc.cninfo.net
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problems, and directly establish the sharp criterion for global existence and 
blowup of equation (1.1), which is different from 1 and 16. Furthermore By us
ing our sharp criterion for blowup, the strong instability of the standing waves 
in equation (1.1) is also shown. Moreover we see that the argument proposed 
here may be developed to treat nonlinear Schrodinger equation with potentials 
as well as systems. For these equations, in solving the attaching variational 
problems, we often meet some essential difficulties (for example see 12 and n ) . 

In the following, we first state some preliminaries for nonlinear 
Schrodinger equation in section 2. Next we establish the cross-constrained 
variational problem and the invariant manifolds in section 3. Then we derive 
the sharp criterion for global existence and blowup in section 4. Lastly we 
show the strong instability of the standing waves in section 5. 

2 Preliminaries 

We impose the initial data of (1.1) as follows. 

ip{0,x) = ipo(x), i e f . (2.1) 

From Ginibre and Velo 5, we have the following local well-posedness for 
the Cauchy problem (1.1)—(2.1). 
Theo rem 2.1 Let </?o £ Hl{KN). Then there exists a unique solution <p(t,x) 
of the Cauchy problem (1.1) - (2.1) in C([0, T); H1^)) for some T e (0, oo) 
(maximal existence time), either T = oo, or else T < oo and 

lim ||¥>(i,-)||jyi(R") = ° o -

Furthermore for Vt 6 [0, T), if(t, x) satisfies 

[ \<p(t,x)\2dx= [ \<p0(x)\2dx, (2.2) 
JRN J R « 

E(<P) •= [ Wt,aoi2--4Ti¥>(i,aori 

2 p+ 1 

dx = E{<p0). (2.3) 

From Glassey 6 and Cazenave 3, we have the following result. 
Theorem 2.2 Let <p0 6 F 1 ^ ) , | • \(p0(-) 6 L2(RN) and<p(t,x) be a solution 
of the Cauchy problem (l.l)-(Z.l). Put J{t) := fRN ±\x\2\<p(t,x)\2dx. Then 

J"(t) = [ 4 (W|2 - ^tzl\v^) dx. (2.4) 
JRN \ 2 p+l ) 
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3 The cross-constrained variational problem and invariant 
manifolds 

For u e if1(KJV) and 1 < p < (J^_j"2^+ , we define the following functionals. 

/ W : = L ( 5 l " | 2 + l | v" | 2-^ l"r') f c (31) 

S(u):= [ {\u\2 + \Vu\2-\u\p+1)dx. (3.2) 

(«) == f (|Vt Q(u) := I ( \Vu\2 - ^ £ _ | | „ | i ' + ^ dx. (3.3) 

From the Sobolev's embedding theorem, the above functionals are well 
defined. In addition, we define a manifold as follows. 

M :={u£H1(RN), Q(u) = 0, S{u) < 0}. (3.4) 

In section 5, we will give a remark to explain that M is not empty. 
Now we consider the following two constrained variational problems. 

d : = inf I(u). (3.5) 
{«eff1(RJV)\{o},s(«)=o} 

d,M '•= inf I(u). (3.6) 
M 

First from (3.5) we have the result. 
Lemma 3.1 d > 0. 
Proof: From S(u) = 0 and the Sobolev's embedding inequality, we have 

E+i 

/ 
Jut. 

( \u\p+1dx<c( f \u\p+1dx) 2 . (3.7) 
M" \JRN / 

Here and hereafter c denotes various positive constants. From p > 1 and 
u ^ O , (3.7) implies that 

/ |u|p+1da; > c > 0. (3.8) 
JRN 

By (3.5), we have 

J^ = G-FTi) / R . | t t r l < f a - (3-9) 
Thus we get d > c > 0. 

Next from both (3.5) and (3.6) we have the result. 
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Lemma 3.2 <1M > d provided 1 + -^ < p < n ^ M r -
Proof. Let u 6 M and 

ux = X^u(Xx) far A > 0. (3.10) 

Puta=N+2-/_[N-2\/3=^E^. FVoml + A < p < I ] | ^ T ) w e h a v e 

a > 0 ; £<0 ; a = /? + 2. (3.11) 

Moreover 

5(uA) = A" /" (|Vu|2 - |u|p+1)dx + X0 [ \u\2dx. (3.12) 
ill" J-RN 

Q(ux) = X<* [ (\Vu\2 - ^LP^±\u\*>+l)dx. (3.13) 
yRN 2 p + 1 

Thus S(u) < 0 implies that there exists a unique 0 < A* < 1 such that 
S(u\*) = 0 . It is clear that u ^ O and u\* ^ 0. By (3.5) it follows that 

I{ux-)>d. (3.14) 

At the same time, Q(u) = 0 implies that for any A > 0, Q(u\) = 0. It follows 
that 

T^=f NPA^U4^P+ldX+ l \\U^dX- (3-15) 
JRN 4 (p+ 1J JRN I 

S(ux)=[ NP~?P~N~2\uxr>dX+ f \ux\
2dx. (3.16) 

JRN 2[p+l) JRN 

By (3.15), we have 

X±I(ux)=aX<* [ ^ ~ f ~ V + 1 ^ + / ^ / i|«|a<fe. (3.17) 
« A yRw 4(p + 1 ) yRiv 2 

Note tha t JVp - AT - 4 = (3(1 - p) and TVp - 2p - JV - 2 = a ( l - p). Then 
(3.16) and (3.17) imply tha t 

xlxI{ux) = \^M- <3-18) 
So / ( « A ) takes the minimal value at A = A*. Thus for A = 1 > A*, we have 

I(u) = I{ux) > I(ux*). Recall (3.14), we get /(«) > d . Therefore dM > d. 
Remark 3.1 We call the variational problem (3.6) cross-constrained varia
tional problem since there are two constrained conditions in (3.6). The follow
ing corresponding invariant manifold will be called cross-invariant manifold. 
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Theorem 3.1 Define 

K:={(t>£H1{MN), I{4>) <d,Q{cf>) <0,S(cf>)<0}. 

If 1 + jf < p < (jv^2)+' ^en K is an invariant manifold of (1.1). More 
precisely, from ipo £ K it follows that the solution p(t,x) of the Cauchy 
problem (1.1)-(2.1) satisfies ip(t, •) £ K for any t £ [0,T) . 

Proof. Let <po £ K. By Theorem 2.1, there exists a unique ip(t, •) £ 
C([0,T);H1(MN)) with T < oo such that ip(t,x) is a solution of the Cauchy 
problem (1.1)-(2.1) . From (2.2), (2.3), we have 

I(<p(t,-))=I(<po), te[0,T). (3.19) 

Thus I((f0) < d implies that I{(p{t, •)) < d for any t £ [0,T). 
Now we show S(<p{t, •)) < 0 for t € [0, T). If otherwise, from the continuity, 

there were a t0 G (0,T) such that S(ip(t0,-)) = 0. By (3.19), ip(t0, •) ^ 0. From 
(3.5) it follows that I(ip(t0,-)) > d. This is contradictory with I(<p(t, •)) < d 
for t e [0,T). Therefore S{<p(t,•)) < 0 for all t £ [0,T). 

At last we show Q(<p(t, •)) < 0 for t £ [0,T). If otherwise , from the 
continuity, there were a t\ £ (0,T) such that Q{^p{h, •)) = 0. Because we have 
showed S{ip(ti,-)) < 0, it follows that f(h,-) £ M. Thus (3.6) and Lemma 
3.2 imply that I((p(h, •)) > djvf > d. This is contradictory with I(ip(t, •)) < d 
for t £ [0,T). Therefore Q(<p(t, •)) < 0 for all t £ [0,T). 

From the above we proved <p(t, •) £ K for any t £ [0, T). 
This completes the proof of this theorem. 
By the same argument as Theorem 3.1, we get the following results. 

Theorem 3.2 Define 

K+ := {cf> £ Hl(RN),I{4>) < d,Q(4>) > 0,S(<j>) < 0}, 

fL. : = { 0 € H 1 ( « / v ) , / ( 0 ) <d,5((/>) < 0}, 

R+ := {4> £ Hl{RN),I{4>) < d,S{(f>) > 0}. 

/ / 1 + jj < p < Tfi^WF,then K+,R- and R+ are all invariant manifolds of 
(1.1). 

4 Sharp criterion for global existence and blow up 

Theorem 4.1 / / <fo £ K+ U R+, then the solution tp(t,x) of the Cauchy 
problem (1.1)-(2.1) exists globally in t £ (0, oo). 



462 

Proof: Firstly we let </?o € K+. Thus Theorem 3.2 implies that the solution 
<p(t,x) of the Cauchy problem (1.1)—(2.1) satisfies that <p(t,-) € K+ for t e 
[0,T). For fixed t G [0, T), denote tp(t, •) = <p. Thus we have I(ip) < d, Q(ip) > 
0. It follows that from (3.1) and (3.3) 

/ 
Np-N -4,„ ,, , 1, ,2 - y — \V<p\2dx +-]?)* 
2N(p-l) ' i r i 2' 

dx < d. (4.1) 

First we treat with the critical case p — 1 + ^ . In this case, by (4.1), we 
have 

f h,p\3dx<d. (4.2) 
JRN I 

We put ip1* = fxt+i<p([ix). Noting that p = 1 + ~f, we get 

Q(^)=H^ f \V<p\2dx- f EE^±\<p\r+idx. (4.3) 

Thus <5(<y?) > 0 implies that there exists a 0 < fi* < 1 such that Q(ip^) = 0 
By (3.1), (3.3) , we have 

%>"*)=/ V*|2d* = /i*^/" JM2^. (4.4) 
7R iV / 7K1V ^ 

From (4.2), it follows that 

I(ip^')<fj,*^d. (4.5) 

Now we see S(ip^ ) , which has two possibilities. One is S(</>M*) < 0. In 
this case, note that Q(ip***) = 0, then Lemma 3.2 implies that 

I(<P**)>dM>d>I(<p). (4.6) 

It follows that 

7 ( ^ ) - 7 ( ^ * ) < 0 . (4.7) 

That is 

( 1 - / * * * * * ) / hv<p\2dx + (l-f*%) ( h<pfdx<0. (4.8) 
JRN z

 JR" * 
It follows that 

f \Vip\2dx <c f \<p\2dx. (4.9) 
JRN J R N 
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By (4.2), we get 

\V<p\2dx < c. (4.10) / 
in1' 

For S(yM*), the other possible case is S(</?M*) > 0. In this case, from (4.5), 
we have 

%>"*) ^ - S V * ) < / i * * ^ d . (4.11) 

It follows that 

i\ - ~in) I (lv^*l2 + \^'\2)dx < »*md- (4-12) 
V2 P+1J 7RN 

That is 
H*i&* [ \Vv\2dx + ti*^& [ \y\2dx< 2{p+l\*^d. (4.13) 

It follows that 

/ \Vip\2dx < c. (4.14) 

(4.10) and (4.14) show that in the critical case p = 1 + JJ, we always get 
JRJV \Vp\2dx is bounded for any t £ [0,T) . Thus by Theorem 2.1, we get 
tp(t, x) exists globally in t £ [0, oo). 

For the subcritical case 1 < p < 1 + ^ , from 5 , for any ipo £ 
F1^),</>(*,a;) exists globally in t € [0,oo). 

For the supercritical case 1 + jj < p < (jy ĵU•> from (4.1), we always 
get 

f |V<p|2da; < c. (4.15) 

Therefore Theorem 2.1 implies that <p(t,x) exists globally in t £ [0,T). 
Thus for <p0 £ # + we proved the solution tp(t, x) of the Cauchy problem 

(1.1)-(2.1) exists globally in t £ [0,oo). 
Now we see <po £ -R+. This case is simple. By ipo £ R+, Theorem 3.2 

implies that the solution <p(t,x) of the Cauchy problem (1.1)-(2.1) satisfies 
that <p(t,-) G R+ for t G [0,T). Thus we have I(<p(t,-)) £ R+ for t £ [0,T). 
Then we have I(tp) < d, S(ip) > 0. It follows that 

[\ - - i n ) f (IV(^2 + M2)dx < d- (416) 

\2 p+lj JRN 

Thus Theorem 2.1 implies that tp{t,x) exists globally in t £ [0, oo). 
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Theo rem 4.2 Let 1 + j ^ <p< jjfz£+- If fo € K and satisfies | • \<fo(-) € 
L2(M.N), then the solution ip(t,x) of the Cauchy problem (1.1)-(2.1) blows up 
in a finite time. 

Proof: From <p0 6 K, Theorem 3.1 implies that <p(t, •) € K with t 6 [0,T). 
For J(t) = fRN \\x\2\ip(t,x)\2dx, (2.4) and (3.3) imply that 

J"(t) = 4Q(p(t,-)), te[0,T). (4.17) 

Fix t £ [0, T) , and denote <p(t, •) = tp. Thus ip satisfies that Q(ip) < 0, S(tp) < 
0. For A > 0, we let ipx = \%<p(\x). Thus 

S(<px) = \2 f \V<p\2dx + f \iP\2dx-\miTil f \<p\p+1dx. (4.18) 

Q ( ^ A ) = A 2 / IVyfdz - A ^ 1 / ^ ^ l M P + i d a ; . (4.19) 

Since 1 + ^ < p < , ^ + L , S(ip) < 0 , it yields that there exists 0 < A* < 1 
such that S(tpx*) = 0, and when A G (A*, l],S(<px) < 0. For A € [A*, l],Q(<p\) 
has the following three possibilities. 

i)- Q(<Px)<0 for Ae[A*,l] . 
ii). Q(<p*x) = 0. 
iii). There exists A* < fj, < 1 such that <3(<̂ M) = 0. 
For the case i) and ii), we all have S(ipx*) — 0 and Q(fX-) < 0. It follows 

that I(if\') > d. Moreover by 

I(<p) - I(<px.) = hl- A*2) [ \VV\2dx - - L - [ l - A * " ^ ] / MP+1dz, 

(4.20) 

0M-0(n-) = (i-A'2)/ | v ^ | 2 & - ^ ^ [ i - A * z ^ ] / M^dx, 
. /R* A p+ I JRN 

(4.21) 
0 < A* < 1 and 1 + ^ < p < (J^_+2

+, we have 

I(<p) - I (pA . ) > \Q{V) ~ \Q{<PX*) > \Q{<e). (4-22) 

For the case iii), we have Q(<Pp) — 0 and 5(yM) < 0. Thus Lemma 3.2 
implies that 7(</?M) > d^ > d. And 

H<P) - H^) > \Q(<P) - \Q{V») > \Q(<P). (4.23) 
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Since I(V?A«) > d,I{<p„) > d, from (4.22), (4.23), we all get 

Q{<p) < 2[J(</>) - d]. (4.24) 

From (2.2), (2.3), and (3.1), I(ip) = I(ip0)- Thus by tp0 <= K and (4.17), we 
have 

J"(t) = 4Q{ip)<8[I{p0)-d]<0. (4.25) 

Obviously J(t) can not verify (4.25) for all time t. Therefore from Theorem 
2.1, it must be the case that T < oo, which implies 

hm | M*, 01 Iff MR") = °°-

Remark 4.1 It is clear that 

{</>ei?1(KN)\{0}, I(<f>)<d} = R+l>K+UK. 

Thus Theorem 4% shows that Theorem 4-1 is sharp. 

Corollary 4.1 Let <p0 € i?1(MiV) and satisfy ||</>o||#i(Riv\ < 2d. Then the 
solution ip(t,x) of the Cauchy problem (1.1)~(2.1) exists globally int G [0,oo). 
Proof. From ||<A)||jyi(Rjv\ < 2d, we have I{ifo) < d. Moreover we claim that 
5(</>0) > 0. If otherwise, there were a 0 < A < 1 such that S(Xipo) = 0. Thus 
I(Xipo) > d. On the other hand 

II^Volli/ifRiV) = A ||vo||ffi(RN) < 2A d < 2d. 

It follows that I(Xifo) < d. This is a contradiction. Therefore we have ipo € 
R+. Thus Theorem 4.1 implies this corollary. 

5 Instability of the standing waves 

Let u be a solution of (3.5), that is we have 

d = min Hu)- (51) 
{u£H1(KN)\{0},S(u)=0} 

Then by a standard variational computation, we have that u is a solution of 
the following nonlinear Euclidean scalar equation 

-Au + u-uluf-1 = 0 , uGi f 1 (E i V ) \ {0} . (5.2) 

Thus <p(t,x) — eltu{x) is a standing wave solution of (1.1). Since u is a 
minimizer of (5.1) , we call u{x) to be a ground state solution of (5.2). 13 and 
2 all provided the existence of the minimizer of (5.1) for N > 2. Berestycki 
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and Cazenave * have proved the strong instability of the standing wave. But 
their proof has to rely on the solvability of the following variational problem 

dQ := inf I(u). (5.3) 
{«eifi(RJ V)\{o},Q(«)=o} 

In general this is difficult even though we have got the solvability of (5.1). Now 
by Lemma 3.2 and Theorem 4.2, we can refrain from solving the problem (5.3), 
and show the instability directly. Firstly we state two lemmas. 
Lemma 5.1 Let 4> £ ff1(M;v)\{0}. Then there exists a unique fi > 0 such 
that S(/J.(j)) = 0 and I{fi<t>) > I(^(f>) for any A > 0 and A ^ /z. 
Proof. For A > 0, we have 

S(\<p) = \2 [ {\(t>\2 + \V<p\2)dx-\r+1 [ \<p\P+1dx. (5.4) 

J ^ W ) = A"15(A<A). (5.5) 

From (5.4) and (5.5), Lemma 5.1 is obtained immediately. 

Lemma 5.2 Let u be a minimizer of (5.1). Then Q{u) = 0. 

Proof: Since wis a minimizer of (5.1), u is also a solution of (5.2). Thus we 
have Pohzaev identity 

/ (' 
u\2 + ^ | V U | 2 - - ^ ) «& = 0, (5.6) 

which is obtained from multiplying (5.2) by x - Vu. Note that S(u) = 0. Thus 
Q(u) = 0. 

Remark 5.1 From (5.1), (5.2) and Lemma 5.2, we know that there exists 
u G i?1(KAr)\{0} such that both S(u) = 0 and Q(u) = 0. As (3.10), we 
denote ux = \^u{\x) for A > 0. Then from (3.11), (3.12) and (3.13), 
for A > 1 we always have S(u\) < 0 and Q(u\) = 0. This shows that M in 
(3.4) is not empty. 

Now we give the following theorem which originates in Berestycki and 
Cazenave 1 as well as Weinstein 16. As stated in the above, our argument in 
terms of Theorem 4.2 is more direct and simple than ones in 1 and 16. 
Theorem 5.1 For 1 + -^ < p < r ^ ^ r , let u be a minimizer of (5.1). Then 

for any e > 0, there exists <p0 £ i?1(IRN) with \\ipo — U||JJI(RJV) < £ such that 
the solution <p(t,x) of the Cauchy problem (1.1)-(2.1) blows up in a finite 
time. 

file:////ipo
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Proof. From Lemma 5.2, Q{u) = 0. Thus we have S(u) = 0;Q(u) = 0. 
It follows that for any A > 1, we have 

S(Xu) < 0, Q(\u) < 0, A > 1. (5.7) 

On the other hand from Lemma 5.1, S(u) = 0 implies that I(Xu) < I(u) 
for any A > 1. Note that I(u) = d. Thus for any A > 1 we have Xu € K. 
Furthermore since u has an exponential fall-off at infinity (see e. g. Strauss 13 

or Berestycki and Lions 2 ) , it is clear that | • \u{-) e L2(RN). Thus A| • \u(-) e 
L2(M.N). Now we take A > 1, and A is sufficiently close to 1 such that 

||Au - u||jfi(Rjv) = (A - l)||u||#i(Riv) < e. (5.8) 

Then take ip0 = Xu(x). From Theorem 4.2, the solution ip(t,x) of the Cauchy 
problem (1.1)—(2.1) blows up in a finite time. 

This completed the proof of this theorem. 
In addition, for the above u, if we put 

uU)(x) = CJP=TU(U~'5X), with CJ > 0, (5.9) 

then by a scaling argument , uu is a solution of the variational problem 

where 

du ~ min Iu(v), (5.10) 
{ « € H 1 ( H J V ) \ { 0 } , 5 „ ( « ) = 0 } 

Uv) := L fa™2 + 5 | V t , | a - F T T H P + 1 ) dx- (5"n) 

Su(v) := / {u>\v\2 + |Vv|2 - \v\p+1)dx. (5.12) 

Moreover uu is also a solution of the equation 

-Av + ujv-v\v\p-x = 0 , v 6 f l 1 ( R " ) \ { 0 } - (5.13) 

Thus for every u > 0, 

<p(t,x)=ei"tuu{x) (5.14) 

is a standing wave solution of (1.1). By a completely analogous process, we 
may get 
Theorem 5.2 For 1 + jj <P< /JV^2)+ > 'e* u ^e a minimizes of (5.1). Then 
for any LJ > 0 and e > 0, there exists ipo € i?1(MN) with \\ipo — «u;||ffi(RN) < £ 
such that the solution <p(t,x) of the Cauchy problem (1.1)-(2.1) blows up in 
a finite time. 

file:////ipo
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