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“This is to Newton’s what Fourier’s is to Descartes.” 

Sylvester 

We study a rule given by Newton and proved by Sylvester, on an upper bound for the number 

of real roots of a polynomial. The notion of variation-permanence permits us to ameliorate 

Descartes’ rule. We explain the link between a lemma given by Cauchy and Newton’s rule and 

we give some applications. 

0. Introduction 

The Budan-Fourier theorem of which Descartes’ rule is a special case, gives an 

upper bound for the number of roots that a polynomial has in a given interval. The 

rule stated by Newton is not well-known at present: it was generalized and proved 

by Sylvester in 1865. However this rule is better than Descartes’. The purpose of 

this article is to give a synthesis of Sylvester’s work, but with a modern and different 

approach. Marchand had a similar goal when he wrote his thesis under the direction 

of Hurwitz [5]. We will follow a different method based on two original lemmas 

(Lemmas 4.6 and 4.8). Lemma 4.6 establishes a relation between the roots of a poly- 

nomial and its derivatives. This lemma uses a result given by Cauchy (Lemma 4.5). 

Lemma 4.8 is another way to write Lemma 4.6 using the theory developed by Karlin 

t41. 
We explain the origin of the even number in the Budan-Fourier theorem. This 

approach is contained in Sections l-4. In Section 5, we show how Newton’s rule 

permits us to establish inequalities satisfied by the coefficients of a polynomial with 

real roots. Furthermore, we compute the average number of roots of a polynomial 

when the coefficients are equal to - 1 or 1. In conclusion, we study the complexity 

of computation of Newton’s rule. 
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1. Preliminaries and notations 

Let 

f(x) = i akxnmk 
k=O 

be a polynomial of degree n. The derivatives off are denoted by fo, fi, . . . , fk, . . . , f, 
with f. = f. Rather than writing g(x), it is more convenient to write g. We consider 

the functions Fk given by: 

Fo =f =, 
Fk=rkfk2_rk~Ifk-,fk+,, k=l,...,n-1, 

F, = f,‘. 

The constants r, and r, are given, and the rk are defined by the two relations: 

rk > O, k=O, . . ..n-1. (1) 

rk+l = zrk-rk- I, k=l,...,n. (2) 

The second relation is introduced to sivplify the calculation of the derivative of the 

functions Fk. These two relations are equivalent to: 

nr,-(n-1)ro20, (1’) 

rk=krl-(k-l)ro, k=2 ,..., n. (2’) 

We denote r = (ro, rd. 
Now let for k=l,...,n, 

be the term of order k of the double sequence (S): 

_h h *** fn 

F. F, ... F,,. 
(9 

We investigate the signs of polynomials comprising Sk. If any of the f’s and F’s in 

Sk is zero in x, only the following cases occur: 

Case 1. permanence-permanence denoted by pP 

++ -- ++ -- 

++ ++ -- -- 

Case 2. permanence-variation denoted by pV 

++ -_ ++ _- 

+- +- -+ -+ 
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Case 3. variation-permanence denoted by VP 

+- +- -+ -+ 

++ _- ++ -- 

Case 4. variation-variation denoted by VV 

The number of permanence-permanences of (S) at x for a value of r is denoted by 

PP,WI. The notations pkf), v&f>, Vhf), Wx,f), pV,kf), vP,(x,f) and 
vV,(x,f), are defined likewise. 

Let a and b be two real numbers with a< b. We denote by ZR(a, b,f) the number 

of real roots of polynomial f in the interval [a,b], by ZR+(f) (resp. ZR_(f)) the 

number of positive (resp. negative) roots off. Every root is counted with its order 

of multiplicity. 

When there is no ambiguity, we abbreviate the previous notation into: p(x), 

v(x), ... , PV,(X), **a, vV,(x), ZR(a,b), ZR,, ZR-. 

We denote by VP(X) (resp. pP(x)), the minimum of vP,(x)‘s (resp. pP,.(x)‘s). 

2. Statements of Sylvester’s theorem and Newton’s rule 

We suppose that the real numbers a and b are roots of neither fk nor Fk. 

Theorem 2.1. The number of real roots of a polynomial f with real coefficients is 

given by: 

ZR(a, 6) = VP(a) - VP(b) - 2cz, where (Y E N . 

Theorem 2.2. The number of real roots of a polynomial f with real coefficients is 

given by: 

ZR(a,b) = pP(b)-pP(a)-2P, where PE N. 

Newton’s rule. (1) The number of real positive roots of a polynomial with real 
coefficients is given by: 

ZR, = VP(O) - 2a, where cr E N. 

(2) The number of real negative roots of a polynomial with real coefficients is 

given by: 

ZR_ = pP(O)-2/3, where /3~ N. 

3. Remarks 

3.1. If either of the real numbers a, b is a root of function fk or Fk (kz 1) then 
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VP(~) or VP(~) is not defined. In the case where none of the Fk’s is identically zero, 

we consider that: 

VP(Q) - VP(b) = vP(a + h) - vP(b - h), 

where h is a positive infinitesimal. We proceed identically with the difference 

PP(b) - PP@). 

3.2. Marchand states a necessary and sufficient condition for one of the Fk’s to be 

identically zero (Fk = 0): 

Proposition 3.3. A function Fk is identically zero iff the following two conditions 
hold: 

nr, -(n - l)r, = 0, (3) 

fk_, = c(x-d)“-k+l, c and d being real numbers. (4) 

Proof. For the proof see Marchand [.5]. 0 

A corollary is that if fk=O, then Fk+,=...=Fnpl=O. 
Starting with the sequence (S), we define a sequence (S’) giving sign-conventions 

for the Fk which are identically zero. 

Convention 3.4. If at x, 

Fk_,#O, Fk=...=F,_,=O, kr2, 

holds, in the sequence (S) we substitute F, _ i by (- 1)’ for i = 1, . . . , n - k. 

Convention 3.5. If at x 

fk-, zo, fk=...= f,_, =o, f,#O, 

Fkp, ~0, Fk= . ..=F._, ‘0, F,,#O, 

holds, two cases may occur: 

(1) f, fk_, > 0. We proceed as in Convention 3.4 for the fn_i by Sgn(f,) for 

i=l ,...,n-k. 
(2) f, fk _ 1 < 0 in the sequence (S). We substitute the F, _; and f, _ i respectively by 

(-1)’ and Sgn(f,) for i=l,..., n-k+ 1; and Fk and fk respectively by Sgn(F,_,) 

and %ULd. 

Convention 3.6. If at x 

fo+o, fi fO,...,fn-l zo, f,ZO, 
F,#O, F, = ... = F,_, ~0, F,,#O, 

holds, we substitute in the sequence (S) F,-; by Sgn(F,,) for i = 1, . . . , n - 1. 
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3.3. The method of proof for Theorems 2.1 and 2.2 (as used by Sylvester and 
Marchand) is the same as Fourier’s: we investigate the changes of signs in the 
sequence (S) which hold only when one of fk’s or Fk’s is zero at a point in [a, 61. 
The technical background is Taylor’s formula. We give two results that state the 
signs of fk’s and Fk’s in the neighbourhood of a point x whenfJx) = 0 or Fk(x) = 0. 

Proposition 3.7. If at x, 

fk=fk+, =...=fk++, =0, fk+m#O, O<kln-1, llm<n-k-l, 

holds, then 
h”-1 

Fk(x+h) = - (m_l)! --rk-lfk-lfk+m+o(hmpl), (3 

Fk+;(x+ h) = 
hh - 2i 1 

[(m-i)!12 (m-i+l) ‘k+m k+m f2 

h2,,-2i+l 2 
+ 

(m-i)! (m-i+l)! (m-i)(m-i+l)(m-i+2) 

Xrk+m+lfk+m-lfk+m+l +o(h2”-2i+‘). 

for i=l,...,m-1. (6) 

Proposition 3.8. If at x 

Fk=Fk+, =...=Fk+,,_, =O, Fk,,+O, 

fk+i f 0, for i=O, . . ..m. 

Olkln-1, l<m<n-k-l, 

holds, then 

Fk(x+ h) = m~+mfkFk+m+O(h”). 

These two propositions are proved in the Appendix. 

3.4. Role of constants r, and r,. The introduction of the constants rk is due to 
Sylvester and is also used by Marchand. But these authors do not explain how 
to calculate r,, and rl in order to minimize the quantities VP,(a) -VP,(~) or 
pP,.(b) - pP,(a). We give a method for this. The calculation of Fk is for k = 1, . . . , n: 

Fk= [kf&(k-l)fk-Ifk+l] ri-[(k-l)fi-(k-2)fk-lfk+I]r0s 

Let 
Pk = (k-l)f/$(k-2)fk-1fk+1 

kf;-(k--)fk-,fk+l ’ 

mk= inf(pk,pk+l), Mk = suP(Pk9Pk-d- 



298 J.-C. Yakoubsohn 

We consider the following notation: 

D = 
i 

n-1 
(rO, rl): r, > 0, rl = n r. 

1 
, 

S = 
L 

n-l 
(ro,rl): ro>O, rl >nrO 

I 
, 

Q&d = {(ro,rl): ro>O, rl =Mkd, 

40) = {(rO,rl>: ro>O, rl =mkro>, 

Sk(x) = ((r0,rJ: rl>mkro, rl<M,ro}. 

3.4.1. Minimization of VP,.(x). There are three cases: 

(a) Sk rl S - (0,O) = 0 for any k for which fk fk+ i < 0. Then the number of varia- 

tion-permanences is the same for any (ro,rl) in S. 

(b) There exists k,, . . . , k, for which: 

_ _ 
fk,fk,+l <o? sk,nw% for i=l, . . . . 1, h Sk = 0. 

i=i ’ 

Then the number of variation-permanences is minimum for any (ro,rl) in one of 

Sk, n s, Dkz Or dk,. 

(c) There exist k,, . . . , k, such that: 

Then the number of variation-permanences is minimum for any (ro,rl) in I. 

3.4.2. Maximization of VP,(x). The number of variation-permanences in x is 

maximum for any (ro, r,) in one of the S - (Sfl Sk,), if cases (b) or (c) hold. In case 

(a), any (ro,rl) in S is admissible. 

3.4.3. Minimization of VP,(a)-VP,(~). The two previous descriptions are used 

here. We calculate respectively: 

(a) the Sk, (a) n S, Dk, (a) and dk, (a) for i = 1,. . . ,I when fk, (a) fk, (a) < 0; 
(b) the S-(&(b)nS) forj=l,...,n When fk,(b)fk,+l(b)<O. 
Thus we obtain q subsets Qk of S. We order the Qk via the following relation: 

if Qk = (ro,rr): ro>O, riz&ro, rl<bkrO, 
n-l 
-<ak<bk , 

n I 

Qk < Qi iff bk < a,, 

Qk > Qi iff ak > b;, 

Qk C Qi iff a; 5 ak I bk 5 b,. 

Then we investigate the difference VP(a) -VP(b) in each set of the partition of S 
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induced by the Qk thus ordered. Then there exists a subset Qk of S where the latter 

is minimal. 

3.5. Examples. 

Example 1. We want to know the number of positive roots of 

f(x) =jo (-l)kX’V 

By Descartes’ rule, we obtain ZR, = 7 - 2o. 

The calculation of Fk gives: Fk = k! (k - l)! (r, - 2r,) at x = 0. For r. = 1 and rl > 2, 
Fk is positive and we conclude that VP(O) = 7. For r. = 1 at 8 <r, < 2, Fk is negative 

and we conclude that VP(O) = 5. So ZR, = 5 -2a. 

For ro= 1 and rl =2, all the Fk’s (l<ks6) are zeros. We use Proposition 3.8 in 

order to know the sign of Fk in an infinitesimal h. We obtain 

F,(h) = &LdO) F7W 
. 7 

The sign of F,(h) is that of fk(0). So VP(O) = 1. Finally ZR, = 1. 

Sylvester compares Theorems 2.1 and 2.2 to “un fusil a deux coups, si l’un des 

canons rate l’autre peut atteindre le but”. We give an example illustrating this. 

Example 2. We want to know the number of roots in the interval [0, l] of the poly- 

nomial 

f(x) =x3-x2-+x+2. 

For x=0, 

-2 

llrr-4ro 

For x= 1, 

4 

29r,-16ro 

Then v(O)-v(l)=vP(O)-vP(1)=2, and pP(l)-pP(O)=l-l=O. 

We now give an example that shows the limitations of Sylvester’s theorem. 

Example 3. The polynomial 

f(x) = 5x3 - 8x2 + 4x- j$ 

possesses one root in the interval [0, 11. For x= 0, 

4 -16 30 s= -6 

’ $, 16r, - yro 392r, -256ro 900 > 
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For x= 1, 

i% 3 14 30 
s= 

> . $, 9r,-f 302r, -196r, 900 

We find: v(O)-v(l)=vP(O)-vP(l)=pP(l)-pP(O)=3. 

4. Proof of Theorem 2.1 

We use an inductive method in order to prove Theorem 2.1. 

Definition 4.1. We define: 

(1) Extremum of the first kind: a point with coordinates (x, f(x)) such that there 

exists a p for any infinitesimal h and for k = 1,. . . ,2p, 

fk(x) = 0 and fzp(x)f(x+ h) < 0; 

(2) Extremum of the second kind: a point with coordinates (x, f (x)) such that 

there exists a p for any infinitesimal h and for k = 1, . . . ,2p - 1, 

fk(x) = 0 and f&(x) f(x+ h) > 0. 

We denote by E,(a, 6, f) and &(a, b, f) respectively the number of extrema of 

polynomials of the first and second kind. 

Definition 4.2. Let a and b such that: f(a) fi(a) fi(a) #0 and f(b) fi(b) f2(b) ~0. 

We define a(~, b, f) by: 

(1) 0,b,f)=O iff(a)fi(a)f(b)f,(b)>O; 

(2) G,b,f)=l iff(a)fi(a)f(b)fi(b)<O and if f(a)f(a)fi(a)<O and 

f(@f,(b)>O; 

(3) a(a,b,f)=-1 iff(a)fi(a)f(b)fi(b)<O and iff@)fi(a)>O andf(b)fi(b)<O. 

Remark 4.3. If f(a) fi(a) f2(a) = 0, we define a(~, b, f) by a(a + h, b, f) where h is 

infinitesimal, so that 

f@+h)f,(a+h)f,@+h)+O. 

In the same way, if f(b)fi(b)f,(b)=O, we define a(a,b,f) by a(a,b-h,f). 

Remark 4.4. ~(a, 6, f) indicates the behaviour of the curve that represents the poly- 

nomial f. 

If a(~, b, f) = 0, the curve goes away from the x-axis in a neighbourhood of one 

of the bounds of the interval [a, b], while it draws near to the x-axis in the neigh- 

bourhood of the other bound, while staying in [a,b]. 

If a(a, b, f) = 1, the curve goes away from the x-axis in the neighbourhood of the 

bounds of the interval [a, b], while staying in [a, 61. 
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If a@, b,f) = - 1, the curve draws near to the x-axis in the neighbourhood of the 

bounds of the interval [a, 61, while staying in [Q, b]. 

We now give a relation between the number of roots of polynomial f, the number 

of the extrema off in [a, b] and ~(a, b,f). 

Lemma 4.5. (Cauchy). Let NR(a, b, f) be the number of roots of the polynomial 
not counted with their order of multiplicity. Then: 

NR(a,b,f) =E,(4b,f)-E,(a,b,f)+a(a,b,f). 

Proof. We give a method of proof different from that of Cauchy’s [l]. 

(1) In the first step, we note that in an interval [a, b] such that f(a) = f(b) and 

W~hb[: f(x)<f(a) orf(x)>f(a)), 

E,(a,b,f)-&(a,b,f) = 1. 

An elementary use of the intermediate value theorem, of Rolle’s theorem and 

Taylor’s formula gives this result. 

(2) In an interval where there is no root of the polynomial f we have: 

4(4hf)-&(a,hf) = 1 if f(4f~(4f(b)fl(b) < 0, 

~l(~,b,f)-4(~,hf) = 0 if f(a)fi(4f(b)fl(b) > 0. 

(3) In an interval where the polynomial has a unique root, we write 

E,(a,b,f)-E,(a,b,f) 

= E,(a,a,,f)-E,(a,al,f)+E,(b,,b,f)-E,(b,b,,f), 

where the root belongs to the interval [a,, b,] and f is strictly monotone. Then we 

use (2) for the different values of ~(0, b, f) and we conclude as in Lemma 4.5. 0 

Lemma 4.6. 

ZR(a,b,f) =ZR(a,b,fi)+a(a,b,f)-2a, where aeN. 

Proof. We introduce the two following notations: I,(a, b, f) is the number of roots 

of the polynomial f with horizontal tangent, I,(a, b, f) is the number of points on 

the curve that represent the polynomial f such that f(x) #0 and fi(x) = 0 and that 

are not extrema. 

We start the proof with: 

NW,b,fi) =E,(a,b,f)+E,(a,b,f)+I,(a,b,f)+I,(a,b,f). 

Then, by Lemma 4.5: 

NW,b,f)-NW,b,f,) = o(a,b,f)-2E,(a,b,f)-Z,(a,b,f)-Z~(a,b,f). 
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On the other hand we observe that: 

ZWa, b,f) - ZR@, WI) 

= NW,b,f)+ c @k-l)-NR@,b,f,)- c (Pk-1). 

We explain C (ok - 1) and 1 (& - 1). Now we write E,, E2, I,, I2 instead 

E,(a,b,f),..., etc. 

c @k-l) =k;, @k-l), 

where the ak’s are the orders of multiplicity of the roots off in [a, b]. 

I, + 12 + E, I,iIztE,tEz 

+,=,:I +I u3k- l)+ I * k=I,+:tE,+l(Pk-l)’ 

with: 

(1) For k=l, . . . . I,, Pk is the order of multiplicity of the roots off and f, that 

verify: 
f =fi = . . . = f& = 0. 

Then pk = ok - 1, which implies 

(2) For k=Z, + 1, . . . . I, +Z2, Pk is the order of multiplicity of the root of fi that 

verifies: 

fi =e..= fi, = 0 and f#O. 

Then pk is an even number, as C;=+:, , pk. 

(3) For k=Zr +I,+ 1, . . . . I, +I,+ E, + El, Pk is the order of multiplicity of the 

root off that verifies: 

f, =...=f2p_1 = 0 and f+O. 

Then Pk is an odd number and C$_‘~~~+~“’ ( fik - 1) is an even number. 

Finally, 

ZR(a, hf I- ZR@, hf,) 
I1 + 12 I,tI,iE,tEz 

= a(a,b,f)-2E2-I,-Z2+II- c fik+zz- 
k-I,+1 k=I,?,tI (pk- ‘) 

11th I,tIztE,tEz 

= 4a9W-2EZ-k=~t, bk- ,=,;, t1 (pk-l) 
I I 2 

= (~(a, b) - even number. 
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We denote this even number by 

II + 12 I,+I~+E,+Ez 

2a=2E,- c &- 
k=I,+l 

Lemma 4.7. Let s, t, 1.4, v be non-zero real numbers. Then: 

vP( _; ;) =vP( _I :‘) ifUV>O, . 

.P( _; ;)=l-vP(r ;) ifuo<o. 

Proof. Proving Lemma 4.7 is easy. 0 

Lemma 4.8. 

vW,fi) - WWd+ da, WI 

= vP(a,f) - vP(b,f) - 2y, where y E (0, l}. 

Proof. We denote by 

the number of variation-permanences in x of the sequence with polynomials gi and 

hi. 
We investigate the different values of a(a, b,f). 

Case 1. a(a, b,f) =O. Then f(a)fi(a)f(b)f,(b)>O. 
1.1. f(a)fi(a)>O andf(b)fr(b)>O. 

1.1.1. F,(a)>0 and F,(b)>O. We write the sign of F, is ff’s in a and 6. Then: 

vP@,f) -vP@J) = vP@,fi) - vP(b,f,). 

1.1.2. F,(a)>0 and F,(b)<O. F,(b) has the same sign as -f:(b). Since F,(b)<0 
and f(b)f,(b) > 0, it follows that Jr (b)f,(b) > 0. Then 

vP&,f)-vP@J) =vP(a,fi)-vP,( _$ ::::n). 

Now, 

Since fi(b)f2(b)> 0 it follows from Lemma 4.7 that 
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We conclude 

vP@,f) - vP(b,f) = vP@,fl) - vP(kfl). 

We prove the same result by the same methods when 

(F,(a) < 0 and F,(b) > 0) and (F,(a) < 0 and F,(b) < 0). 

1.2. f(a)fi(a)<O andf(b)fi(b)<O. 

1.2.1. F,(a)>0 and Fi(b)>O. 

= VP&,fi> -vwdl). 

1.2.2. F,(a)>0 and Fi(b)<O. Herefi(b)f,(b)<O. 

vP(a,f)-VP&f) = l+vP(a,f~)-vpb 
fi f2..-fn 

-ff F2 ... F,, > 
= l+vP(a,f,)vPb( -22 ;)-vpb(;l::::",)s 

From Lemma 4.7 and fi(b) f2(b) < 0, it follows that: 

vpb( _;2 2) = l-vpb(-$ ;). 
We conclude 

vP(&f)-vP(b,f) = vP(a,f,)-vP(b,fi)+2vPb 

1.2.3. (F,(a)<0 and F,(b)>O) or (F,(a)<0 and F,(b)<O). It is possible to select 

(r,,, rJ such that F,(a)>0 so as in Case 1.2.1 or 1.2.2. Indeed if F,(a)<O, it follows 

that 

r 
1 

< f@)f2(4 r, and f@)f2(4 > n_l 

f;(a) f,2(4 - n ’ 

Thus we consider (rl,ro) such that 

r 
1 

, f(a)f2(a) r, 

f:(a) ’ 

Then F,(a) > 0. 

We can measure the technical importance of the choice of r, and rl and it is not 

in Sylvester’s or Marchand’s proof. 

Case2. a(a,6,f)=1.Thenf(a)fi(a)<Oandf(b)fi(b)>O.Asbefore,wechoose 
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(rO, ri) such that F,(a)>O. We indicate the results in each case: 

2.1. F,(a)>0 and F,(b)>O. 

vP(a,f)-vP(b,f) = l+vP(a,fi)-vP(b,fl). 

2.2. F,(a)>0 and Fi(6)<0. Herefi(b)fi(b)<O. 

vP@,f)-vP(b,f)= l+vP(a,f,)-vP(b,fi)+2vPb 
fi f2 

( > f: F2 * 

Case 3. a(a,b,f)=-1. Then f(a)fi(a)>O and f(b)f,(b)>O. We obtain the 

same results as in Case 2 for the difference vP(a, f)-vP(6, f) by substituting 1 by 

-1 in Cases 2.1 and 2.2. 0 

4.9. Proof of Theorem 2.1. It is easy to verify Theorem 2.1 for a polynomial of 

degree one. Suppose Theorem 2.1 is true for any polynomial of degree n - 1. Let 

f be a polynomial f of degree n. For fi it follows that 

ZR(a,b,f,) =vP(a,f,)-vP(b,f,)-2/I, where /IEN. 

From Lemmas 4.6 and 4.8 we conclude 

ZR(a,b,f) =vP(a,f)-vP(b,f)-2y--2a--2fi. 0 

Theorem 2.2 is proved in the same way by replacing Lemma 4.8 by: 

Lemma 4.8’. 

PP@,fi) - PP(@fi) + 0, kf) = PW,f) - PP(4f) - 26, 

where BE (0, l}. 

To conclude, we add that Lemmas 4.5 and 4.6 hold for functions of class 

Cm[,, b]. Besides, Lemma 2 and its proof give us information on the kind of even 

numbers intervening in Descartes’ rule, and in the theorems of Sylvester and Budan 

and Fourier. In fact, we have: 

Lemma 4.9. 

v(a,f)-WAf) =v(a,fi)-v(b,f,)+a(a,b,f). 0 

We can prove by induction the Bundan-Fourier theorem using Lemmas 4.6 and 

4.9. The even number in this theorem is a function of number O2 and I2 of the 

functions fk (Osn 5 n). We have a different result of Schumaker [7] who estab- 

lishes by induction: 

The fact that the difference between the two terms of the latter inequality is even 

is not considered by this author. 
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5. Applications 

Application 5.1. Newton’s rule can be used to prove the following theorem: 

Theorem 5.2. Let r. and r, such that r,zz ((n - l)/n)r,. We suppose that the poly- 
nomial 

f(x) = jJ akxnpk (a,#0 and a,#O) 
k=O 

possesses only real roots. Then the inequalities 

hold. 

rk n-k 

r&l n-k+1 
a~-ak~lak+I 2 0, llkln-1, 

Proof. The computation of Fn_k’s at x= 0 gives 

aieak-lak+l . 
1 

It is clear that if the polynomial has all of its roots positive, then the sequence 

of ak’s has n variations and the sequence of Fk’s has n permanences. Since F. and 

F,, are positive, the inequalities hold. 

We give the method of proof in the case where the polynomial f possesses nl 

positive roots and -f possesses n2 negative roots with n = n, + n2. Then vP(0, f) = 
ItI and vP(0, -f)=n,. 

The coefficient (lk (resp. (-l)kak) can be divided into sets such that (1) in each 

set the ak (resp. (-l)kak) have the same sign and are not all zero, (2) the ak’s of two 

consecutive sets have opposite signs. If akak+, < 0, we have FkFk+ , > 0. 

An elementary observation of the members of each set of coefficients ak and the 

fact that F. and F, are positive, permit us to conclude. 0 

Application 5.3. Let P,, the set of polynomials such that f(x) = C”,=, akxk with 

ao=l and akE{-l,l} for llkln. 
We compute the average number of variation-permanences at zero of a poly- 

nomial belonging to P,,. If we denote this number by VP,, and by vP,p the number 

of polynomials belonging to P,, which have k variation-permanences, then 

n 

VP, =’ c VP,&. 
2” k=O 

The computation of the average number of variations at zero for a polynomial 

belonging to P,, gives in. 
We recall that the average number of roots for polynomials belonging to P,, is 

equal to (2/n) log n. See [3]. 
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Theorem 5.4. The average number VP, of variation-permanences at zero for poly- 
nomials belonging to P,, is equal to h(n + 1) - A. 

Preliminary to the proof: Let x=0. We denote g for g(0). Since fk= k! ak, we 
obtain: 

if ak_rak+l=l, 

Pk = I 2k2-2k-2 
2k2-1 ’ 

if ak_iak+i = -1. 

ItiseasytoprovethatFk<(n-l)/nifC2k_1Qk+1=--l. WeconsiderrO=l andr,=2. 
Furthermore. 

Fk = 
0, if a,+iak+i=l, 

(k-1)!2(2k2+2k), if ak_iak+i=-1. 

By Proposition 3.8, the sign of Fk is the same as that of akak+m where m is the least 
integer such that Fk+,,, #O. Next we observe that a polynomial belonging to P,, has 
a variation-permanence iff 

for k=l:aO=a, and a2=-1, 
for 3Ikln_2:ak_2=ak_l=-ak=-ak+l, 
for k=n:a,_2=a,_1=-a,. 

Proof. We do not compute the numbers VP,,. By the preliminary, we write 
Ci=, k VP,,, as the sum of three quantities: 

(1) The number of polynomials belonging to P,, such that an_2 = a,_, = -a,. It 
is equal to 2”-3. 

(2) The number of polynomials belonging to P,, such that there exists a k, 
3rkln-2, such that &_2=ak_l=-ok=-a,&+] and a,_,=a,. We obtain 
Ciii 222”-6+2.2”-6 =2”-5(2n-9). 

(3) The number of polynomials belonging to P,, such that: there does not exist 
k, 31k<n-2, such that ak_2=ak_l=-ak=-ak+l and that the property an_2= 
a,_l =a,, does not hold. This number is equal to: 6. 2”-5. 

Furthermore, 

VP,, = (1/2”)(2”-2 + 2”-5(2n - 9) + 6(2n - 9) + 6(2”-4)) = $(n + 1) - &. 

6. Conclusion 

The study of the complexity is based on the work of Coste-Roy and Szpirglas [2]. 
Let N(f) = (Ci!O a$1’2. It is known that the complexity of Sturm’s method is at 

0(n4 log2N(f)). 
The computation of VP(0, f) +vP(O, -f) requires the computation of Fk’s and 

the sorting of pk’s defined in 3.4. The arithmetical operations are O(n) and the 
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sorting of pk’s O(n log n). Taking this into consideration, we obtain a complexity 

to computation at O(n log N(f)(log N(f) + log n)). 

Appendix 

A.l. Proof of Proposition 3.7. The derivative of order j of Fk+i in x (O<i<m - l), 

is equal to: 

Fij,‘i = i rk+i 
I=0 

( ;)fk+i+/fk+i+j-/-io rk-l+i (:) fk+i-l+ifk+i+I+j-i* 

For i = 0, it follows from the hypothesis of the proposition that 

Fij’=O, j=O ,..., m-2, 

and 
F(“-‘) = 

k -rk-lfk-lfk+m. 

We conclude from Taylor’s formula the relation for Fk. 

On the other hand, for i#O and j=0,...,2m-2i-1, 

Fk’j+‘i = 0. 

For j = 2m - 2i, we obtain: 

F(2ny - 2i) 
k+l 

Since 

m-i 1 
r k+i - 

m-i+1 
rk+i-1 = 

m-i+1 
rk+m, 

if follows that 

F(2y-i) = (2m-2i)! 
k+l (m-i)!2(m-i+l) 

fk.,f,‘,,* 

The same calculation gives for j = 2m - 2i + 1, 

F(2y-2i+l) = (2m-2i)! 
k+r (m_i)!*(m_i)(m-i+1)2(m-i+2)fk+“‘+1fk+”’-1fk+,,t+1’ 

Hence we have the second relation by applying Taylor’s formula to the Fk+i’So 0 

A.2. Proof of Proposition 3.8. We calculate FL: 

FL = @rk-rk-l)fkfk+l -rk&lfk+lfkpl 

= rk+lfkfkCl-rk-lfk+Ifk-l. 

Now we use the definition of Fk and obtain 
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fk& = L,fkfL -rkf;fk+2+Fkfk+2 

=fkFk+l +fk+?.Fk. 

It follows inductively that 

f,+kF,(j’ =‘c’ iTk,Fk+ISfkFk+j* 
I=0 

From the hypothesis of Proposition 3.8, we conclude 

Fy’=O, j=O ,..., m-l, 

fk+,,&@ =fkFk+m. 

Hence Proposition 3.8 follows. 0 
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