The Sturm method in the complex case

Jean-Claude Yakoubsohn

Laboratoire Analyse Numérique, Université Paul Sabatier, 31062 Toulouse Cedex, France

Communicated by M.-F. Roy Received 11 October 1991 Revised 6 May 1992

Abstract

Yakoubsohn, J.-C., The Sturm method in the complex case, Journal of Pure and Applied Algebra 84 (1993) 95-105.

Let $Z_{k}^{0}(F)$, $Z_{k}^{*}(F)$ be the number of zeros and the number of poles with their multiplicities of a complex rational fraction lying inside a compact K of \mathbb{C} the boundary of which is a Jordan curve parametrized piecewise by rational curves. We compute the difference $Z_{K}^{0}(F) - Z_{K}^{*}(F)$ extending the Sturm method in the complex case.

1. Introduction and notations

Let F be an irreducible complex rational fraction and K be a compact set in \mathbb{C} . The boundary ∂K is assumed to be a connected simple closed Jordan curve parameterized piecewise by rational curves. Furthermore, ∂K is oriented counterclockwise. The purpose of this note is computing the right-hand side of the formula of the Principle of Argument written in the following suggestive fashion [1]

$$\int_{\partial K} \frac{F'}{F} = 2i\pi (\text{number of zeros} - \text{number of poles}) ,$$

using the method of Sturm sequences. In the case where F is a complex polynomial with no root on the real axis, Marden in Chapter 9 of [3] uses the Sturm sequences to find the number of zeros of F in the upper and lower half-planes. But only an upper bound of the number of zeros of a complex

0022-4049/93/\$06.00 (C) 1993 - Elsevier Science Publishers B.V. All rights reserved

Correspondence to: Professor J.-C. Yakoubsohn, Laboratoire Analyse Numérique, Université Paul Sabatier, 31062 Toulouse Cedex, France.

polynomial is given in a sector of plane. In this note we generalize the results obtained in [3] and we compute exactly the number of zeros.

First we precise the notations and hypotheses.

1.1. The boundary ∂K is the union of rational curves denoted by $\gamma_j(t)$ defined on the interval $[a_i, b_i], 0 \le j \le n-1$, such that

$$\gamma_j(b_j) = \gamma_{j+1}(a_{j+1})$$

with the convention $\gamma_n = \gamma_0$ and $a_n = a_0$. We define the real rational fractions $F_{0i}(t)$ and $F_{1i}(t)$ such that

$$F(\gamma_{i}(t)) = F_{0i}(t) + iF_{1i}(t) \quad \text{for } t \in [a_{i}, b_{i}], \ 0 \le j \le n-1,$$

and we consider the polynomials P_{0i} and P_{1i} such that

$$\frac{F_{1j}(t)}{F_{0j}(t)} = \frac{P_{1j}(t)}{P_{0j}(t)} \quad \text{for } t \in [a_j, b_j], \ 0 \le j \le n-1.$$

1.2. Let $Z_K^0(F)$ and $Z_K^{*}(F)$ be the number of zeros of F and the number of poles of F respectively with their multiplicities lying inside K.

1.3. Let f,g be real rational fractions and a,b be real numbers. We define the quantity

$$\theta(f, g, a, b) = \frac{1}{2}(\text{sign } f(a^+) - \text{sign } g(b^-)).$$

When f = g and a = b = t, this quantity is the Cauchy index of f at the point t: in this case we shall write $\theta(f, t)$. Also we adopt the convention that sign 0 = 0. This function θ appears naturally at the end of the proof of Theorem 1.6.

1.4. We recall an algorithm to construct a Sturm sequence and the principal result concerning them. Given two real polynomials $P_0(t)$ and $P_1(t)$, the associated Sturm sequence sturm_i(P_0 , P_1) is defined in the following way:

- If degree(P_0) \geq degree(P_1) then

$$sturm_0(P_0, P_1) = P_0$$
, $sturm_1(P_0, P_1) = P_1$

else

$$\operatorname{sturm}_{0}(P_{0}, P_{1}) = P_{0}, \quad \operatorname{sturm}_{1}(P_{0}, P_{1}) = \operatorname{rem}(P_{1}, P_{0})$$

where rem (P_1, P_0) is the remainder of the euclidean division of P_1 by P_0 .

- For $i \ge 1$ we compute

$$\operatorname{sturm}_{i+1}(P_0, P_1) = -\operatorname{rem}(\operatorname{sturm}_{i-1}(P_0, P_1), \operatorname{sturm}_i(P_0, P_1))$$

- We stop when there is an index p so that $sturm_{p+1}(P_0, P_1) = 0$.

This construction appears in [3]. The previous sequence appears in [2] as being the signed remainder's sequence reserving to Sturm sequence of polynomials Pand Q the signed remainder's sequence of polynomials P and rem(P'Q, P). Let us consider Var $(P_0, \ldots, P_n, t^{\pm})$, the number of consecutive variations of sign in a polynomial's sequence P_0, \ldots, P_n at t^{\pm} . If the previous sequence is the Sturm sequence sturm $_0(P_0, P_1), \ldots$, sturm $_p(P_0, P_1)$, the number Var shall be denoted by Var(sturm $(P_0, P_1), t^{\pm})$. We denote by

Var(sturm(
$$P_0, P_1$$
), a^+, b^-)
= Var(sturm(P_0, P_1), a^+) - Var(sturm(P_0, P_1), b^-).

If the polynomial P_1 is identically zero, we say that $Var(P_0, P_1, t^{\pm}) = 0$. We have the following result:

Theorem 1.5. Let a and b be real numbers with a < b and P_0, P_1 be real polynomials. Then,

Var(sturm(P_0, P_1), a^+, b^-) =
$$\sum_{\{t \in]a, b [: P_0(t) = 0\}} \theta\left(\frac{P_1}{P_0}, t\right).$$

The proof of this theorem is based on the same ideas given in [2] or [3]. With these notations and properties, we shall prove the following theorem:

Theorem 1.6. Let F be an irreducible complex rational fraction. Assume that F has neither zero nor pole on the boundary of a compact set K as introduced in 1.1. Let $F_{1i}(t)$ and $F_{0i}(t)$, P_{1i} and P_{0i} , $1 \le j \le n - 1$, be defined as in 1.1. We have

$$Z_{K}^{0}(F) - Z_{K}^{\infty}(F) = -\frac{1}{2} \sum_{j=0}^{n-1} \operatorname{Var}(\operatorname{sturm}(P_{0j}, P_{1j}), a_{j}^{+}, b_{j}^{-}) -\frac{1}{2} \sum_{\substack{\{j: P_{0j}(b_{j})=0, \\ 0 \leq j \leq n-1\}}} \theta\left(\frac{P_{1j+1}}{P_{0j+1}}, \frac{P_{1j}}{P_{0j}}, a_{j+1}, b_{j}\right),$$

with the convention $P_{ln} = P_{l0}$, l = 0,1.

In [4], the previous formula is given without the second sum and only in the case where F is a polynomial. Example 3.1 illustrates that the second sum is actually necessary.

2. Proof of Theorem 1.6

First, we state a lemma.

Lemma 2.1. Let γ be a rational curve defined on the real interval [a, b] in C and F be a complex rational fraction which has neither zero nor pole in $\gamma([a, b])$. Define F_0 and F_1 to be real rational fractions verifying

$$F(\gamma(t)) = F_0(t) + iF_1(t) ,$$

and consider the polynomials P_0 and P_1 so that

$$\frac{F_1}{F_0} = \frac{P_1}{P_0} \ .$$

We have

$$\int_{\gamma} \frac{F'(z)}{F(z)} dz = \frac{1}{2} [\log(F_0^2(t) + F_1^2(t))]_a^b + i \left(\arctan \frac{P_1}{P_0} (b^-) - \arctan \frac{P_1}{P_0} (a^+) - \pi \operatorname{Var}(\operatorname{sturm}(P_0, P_1), a^+, b^-)\right).$$

Proof. We obtain by a direct computation:

$$\int_{\gamma} \frac{F'(z)}{F(z)} dz = \int_{a}^{b} \frac{F'_{0}(t) + iF'_{1}(t)}{F_{0}(t) + iF_{1}(t)} dt$$
$$= \int_{a}^{b} \frac{F'_{0}(t)F_{0}(t) + F'_{1}(t)F_{1}(t)}{F^{2}_{0}(t) + F^{2}_{1}(t)} dt$$
$$+ i\int_{a}^{b} \frac{F'_{1}(t)F_{0}(t) - F'_{0}(t)F_{1}(t)}{F^{2}_{0}(t) + F^{2}_{1}(t)} dt$$

Since F has neither zero nor pole in $\gamma([a, b])$, the first integral is equal to

$$\frac{1}{2} [\log F_0^2(t) + F_1^2(t)]_a^b.$$

Computing the second, we write

$$\frac{F_1}{F_0} = \frac{P_1}{P_0} \; ,$$

where P_0 and P_1 are real polynomials. A short computation gives

$$A = \int_{a}^{b} \frac{F_{1}'(t)F_{0}(t) - F_{0}'(t)F_{1}(t)}{F_{0}^{2}(t) + F_{1}^{2}(t)} dt = \int_{a}^{b} \frac{P_{1}'(t)P_{0}(t) - P_{0}'(t)P_{1}(t)}{P_{0}^{2}(t) + P_{1}^{2}(t)} dt.$$

Let us consider the roots t_k of $P_0(t)$ in]a, b[with $a < t_1 < t_2 < \cdots < t_l < b$. Then,

$$A = \int_{a^{+}}^{t_{1}^{-}} \frac{P_{1}'(t)P_{0}(t) - P_{0}'(t)P_{1}(t)}{P_{0}^{2}(t) + P_{1}^{2}(t)} dt$$

+
$$\sum_{k=1}^{l-1} \int_{t_{k}^{+}}^{t_{k+1}^{-}} \frac{P_{1}'(t)P_{0}(t) - P_{0}'(t)P_{1}(t)}{P_{0}^{2}(t) + P_{1}^{2}(t)} dt$$

+
$$\int_{t_{1}^{+}}^{b^{-}} \frac{P_{1}'(t)P_{0}(t) - P_{0}'(t)P_{1}(t)}{P_{0}^{2}(t) + P_{1}^{2}(t)} dt.$$

The integral A now becomes

$$A = \arctan \frac{P_1}{P_0} (b^-) - \arctan \frac{P_1}{P_0} (a^+) + \sum_{k=1}^{l} \arctan \frac{P_1}{P_0} (t_k^-) - \arctan \frac{P_1}{P_0} (t_k^+).$$

Then using the definition of the Cauchy index, we find that

$$\arctan \frac{P_1}{P_0} (t_k^-) - \arctan \frac{P_1}{P_0} (t_k^+)$$
$$= \frac{\pi}{2} \left(\operatorname{sign} \frac{P_1}{P_0} (t_k^-) - \operatorname{sign} \frac{P_1}{P_0} (t_k^+) \right) = -\pi \theta \left(\frac{P_1}{P_0}, t_k \right).$$

Hence,

$$A = \arctan \frac{P_1}{P_0} (b^-) - \arctan \frac{P_1}{P_0} (a^+) - \pi \sum_{k=1}^{l} \theta \left(\frac{P_1}{P_0}, t_k \right).$$

Applying Theorem 1.5 to the previous sum, we obtain finally

$$A = \arctan \frac{P_1}{P_0} (b^-) - \arctan \frac{P_1}{P_0} (a^+) - \pi \operatorname{Var}(\operatorname{sturm}(P_0, P_1), a^+, b^-).$$

This achieves to prove the lemma. \Box

We shall use the following lemma, the proof of which is easy and left to the reader.

Lemma 2.2. Let a,b be real numbers and P_0 , P_1 , Q_0 , Q_1 be real polynomials so that

$$P_0(b) = 0 \Leftrightarrow Q_0(a) = 0,$$

if $P_0(b) \neq 0$ then $\frac{P_1}{P_0}(b) = \frac{Q_1}{Q_0}(a).$

Then we have

$$\arctan \frac{P_1}{P_0} (b^-) - \arctan \frac{Q_1}{Q_0} (a^+)$$
$$= \begin{cases} 0, & \text{if } P_0(b) \neq 0, \\ -\pi \theta \left(\frac{Q_1}{Q_0}, \frac{P_1}{P_0}, a, b\right), & \text{otherwise}. \end{cases} \square$$

We prove now Theorem 1.6. By the Argument Principle applied to a complex rational fraction which has neither zero nor pole on the boundary ∂K we have:

$$Z_{K}^{0}(F) - Z_{K}^{\infty}(F) = \frac{1}{2i\pi} \int_{K} \frac{F'(z)}{F(z)} dz = \frac{1}{2i\pi} \sum_{j=0}^{n-1} \int_{\gamma_{j}} \frac{F'(z)}{F(z)} dz.$$

We apply Lemma 2.1. First we remark that

$$\sum_{j=0}^{n-1} \left[\log(F_{0j}^2(t) + F_{1j}^2(t)) \right]_{a_j}^{b_j} = 0 ,$$

since by construction the real rational fractions F_{0j} and F_{1j} verify $F_{0j}(b_j) = F_{0j+1}(a_{j+1})$ and $F_{1j}(b_j) = F_{1j+1}(a_{j+1})$.

Next we estimate the following sum:

$$\sum_{j=0}^{n-1} \arctan \frac{P_{1j}}{P_{0j}} (b_j^-) - \arctan \frac{P_{1j}}{P_{0j}} (a_{j+1}^+)$$
$$= \sum_{j=0}^{n-1} \arctan \frac{P_{1j}}{P_{0j}} (b_j^-) - \arctan \frac{P_{1j+1}}{P_{0j+1}} (a_{j+1}^+).$$

Since the a_j and b_j are neither pole nor zero of F, it is easy to see that the polynomials P_{0j} , P_{1j} , P_{0j+1} , P_{1j+1} verify the hypotheses of Lemma 2.2 for all j, $0 \le j \le n-1$. Consequently,

$$\arctan \frac{P_{1j}}{P_{0j}} (b_j^-) - \arctan \frac{P_{1j+1}}{P_{0j+1}} (a_{j+1}^+)$$
$$= \begin{cases} 0, & \text{if } P_{0j}(b_j) \neq 0, \\ -\pi \theta \left(\frac{P_{1j+1}}{P_{0j+1}}, \frac{P_{1j}}{P_{0j}}, a_{j+1}, b_j\right), & \text{otherwise}. \end{cases}$$

Finally we obtain

$$Z_{K}^{0}(F) - Z_{K}^{*}(F) = -\frac{1}{2} \sum_{j=0}^{n-1} \operatorname{Var}(\operatorname{sturm}(P_{0j}, P_{1j}), a_{j}^{+}, b_{j}^{-}) -\frac{1}{2} \sum_{\substack{\{j: P_{0j}(b_{j})=0, \\ 0 \leq j \leq n-1\}}} \theta\left(\frac{P_{1j+1}}{P_{0j+1}}, \frac{P_{1j}}{P_{0j}}, a_{j+1}, b_{j}\right),$$

and the conclusion of Theorem 1.6 holds. \Box

3. Examples

Example 3.1. Let us consider the rectangle K = [-i, 1-i, 1+i, i] and P(z) = $z^2 - z + 1$ with roots $(1 - i\sqrt{3}/2)$ and $(1 + i\sqrt{3}/2)$. The curves are defined on [0, 1] by (see Fig. 1):

$$\begin{aligned} \gamma_0(t) &= -i(1-t) + (1-i)t , \qquad \gamma_1(t) = (1-i)(1-t) + (1+i)t , \\ \gamma_2(t) &= (1+i)(1-t) + it , \qquad \gamma_3(t) = i(1-t) - it . \end{aligned}$$

On the segment [-i, 1-i] we have $P_{00}(t) = t^2 - t$, $P_{10}(t) = -2t + 1$. The associate Sturm sequence is: P_{00} , P_{10} , 1; and Var(sturm(P_{00} , P_{10}), 0^+ , 1^-) = 0. On the segment [1-i, 1+i] we have $P_{01}(t) = -t^2 + t$, $P_{11}(t) = 2t - 1$. The

associate Sturm sequence is: P_{01} , P_{11} , -1; and Var(sturm($P_{0,1}$, P_{11}), 0^+ , 1^-) = 0.

The result on the segment [1+i, i] (resp. [i, -i]) is the same as that on the segment [-i, 1-i] (resp. [1-i, 1+i]). Since $P_{0j}(1) = 0, 1 \le j \le 4$, we compute the function θ at the summits of the rectangle. We obtain $\theta(\frac{P_{i_l-1}}{P_{i_l-1}}, \frac{P_{i_l}}{P_{i_l}}, 0, 1) = -1$. Applying Theorem 1.6 we find $Z_K^0(P) = 2$. The first sum of the formula of Theorem 1.6 is zero and does not compute the number $Z_K^0(P)$ as it is asserted in [4].

Example 3.2. Let us consider ∂K composed of

$$\gamma_0(t) = \frac{-2t}{t^2+1} + i \frac{1-t^2}{1+t^2}, \quad -1 \le t \le 1,$$

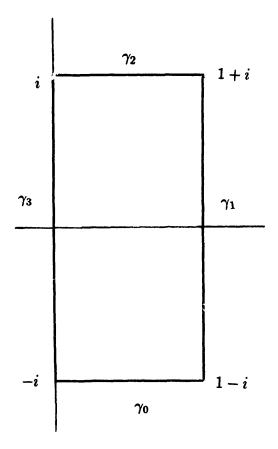


Fig. 1.

$$\gamma_1(t) = -(1-t) - it$$
, $0 \le t \le 1$,
 $\gamma_2(t) = -i(1-t) + t$, $0 \le t \le 1$,

(see Fig. 2) and $F(z) = (2z^2 + 1)/z$ with for roots $\pm i\sqrt{2}/2$ and 0 for pole. On γ_0 we have $P_{00}(t) = 6t$, $P_{10}(t) = t^2 - 1$. The associate Sturm sequence is: 6t, -1; and Var(sturm($P_{00}, P_{10}), -1^+, 1^-$) = -1. On γ_1 we have $P_{01}(t) = (t-1)(4t^2 - 4t + 3)$, $P_{11}(t) = -t(4t^2 - 4t + 1)$. The

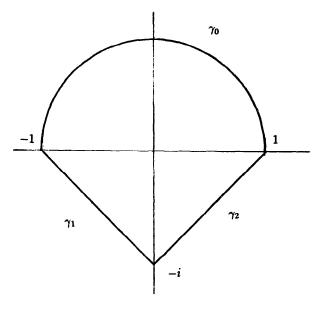
associate Sturm sequence is:

$$P_{01}$$
, P_{11} , $4t^2 - 6t + 3$, $2t - 3$, -3 ;

and Var(sturm(P_{00}, P_{10}), 0⁺, 1⁻) = 0. On γ_2 we have $P_{02}(t) = t(4t^2 - 4t + 3)$, $P_{12}(t) = (t - 1)(4t^2 - 4t + 1)$. The associate Sturm sequence is:

$$P_{02}$$
, P_{12} , $-4t^2 + 2t - 1$, $-2t - 1$, 3;

and Var(sturm(P_{02}, P_{12}), 0⁺, 1⁻) = 0.



Furthermore, $P_{01}(1) = P_{02}(0) = 0$ and

$$\theta\left(\frac{P_{12}}{P_{02}},\frac{P_{11}}{P_{01}},0,1\right) = -1$$

Applying Theorem 1.6 we find $Z_{K}^{0}(F) - Z_{K}^{*}(F) = 1/2 + 1/2 = 1$.

Example 3.3. Let us consider the sector of boundary ∂K composed of

$$\begin{aligned} \gamma_0(t) &= \frac{24+7i}{25} t , \qquad 0 \le t \le 1 , \\ \gamma_1(t) &= \frac{-2t}{t^2+1} + i \frac{1-t^2}{1+t^2} , \quad -\frac{3}{4} \le t \le -\frac{1}{4} , \\ \gamma_2(t) &= \frac{8+15i}{17} (1-t) , \qquad 0 \le t \le 1 , \end{aligned}$$

(see Fig. 3) and $P(z) = 4z^3 - (6+4i)z^2 + (2+4i)z - i$ with (1+i)/2 as double root inside K.

On γ_0 we have

$$P_{00}(t) = \frac{10296}{3125}t^3 - \frac{909}{250}t^2 + t , \qquad P_{10}(t) = \frac{23506}{3125}t^3 - \frac{2062}{125}t^2 + 11t - 1 .$$

The associate Sturm sequence is:

$$P_{00}$$
, P_{10} , $-16875t^2 + 17950t - 5148$, $\frac{4714}{9}t - \frac{3623}{25}$, 1;

and Var(sturm(P_{00}, P_{10}), 0⁺, 1⁻) = 0.

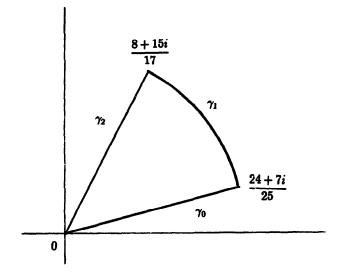


Fig. 3.

On γ_1 we have

$$P_{00}(t) = 5t^6 + 18t^5 - 13t^4 - 44t^3 - 17t^2 + 2t + 1,$$

$$P_{10}(t) = 5t^6 - 32t^5 - 85t^4 - 16t^3 + 39t^2 + 16t + 1.$$

The associate Sturm sequence is:

$$P_{00}, P_{10}, -25t^{5} - 12t^{4} + 14t^{3} + 28t^{2} + 7t, 3219t^{4} + 4044t^{3} + 438t^{2} - 628t - 125,$$

26678t³ - $\frac{82024}{3}t^{2} - 591t + \frac{616}{3}, 481519t^{2} + 356184t + 59255, 2831t + 10984, 1,$

and Var(sturm(P_{00}, P_{10}), 0⁺, 1⁻) = -2.

On γ_2 we have

$$P_{00}(t) = \frac{4388}{289} (1-t)^3 + \frac{963}{34} (1-t)^2 + 11(t-1) ,$$

$$P_{10}(t) = \frac{1980}{289} (1-t)^3 - \frac{796}{17} (1-t)^2 - 62t + 45 .$$

The associate Sturm is:

$$P_{00}$$
, P_{10} , $-8381t^2 + 7208t - 1271$, $34822t - \frac{223861}{17}$, -1

And Var(sturm(P_{00}, P_{10}), $0^+, 1^-$) = -1. Furthermore, we have $P_{00}(0) = P_{02} = 0$ and

$$\theta\left(\frac{P_{10}}{P_0}, \frac{P_{12}}{P_{02}}, 0, 1\right) = -1$$

Applying Theorem 1.6 we find $Z_K^0(P) = \frac{3}{2} + \frac{1}{2} = 2$.

Acknowledgment

To Henri Lombardi for his judicious remarks.

References

- [1] S. Lang, Complex Analysis, Graduate Texts in Mathematics (Springer, Berlin, 2nd ed., 1985).
- [2] G. Laureano, H. Lombardi, T. Recio and M.F. Roy, Specialisation de la suite de Strum et sous-résultants, RAIRO Inform. Théor. Appl. 24 (6) (1990) 561-588.
- [3] M. Marden, Geometry of polynomials, Mathematical Surveys, Vol. 3 (American Mathematical Society, Providence, RI, 1966).
- [4] C.A. Neff, Specified precision polynomial root isolation is in NC, Research Report RC 15653, IBM, Research Division San Jose-Yorktown-Zurich, 1990.