The Sturm method in the complex case

Jean-Claude Yakoubsohn
Laboratoire Analyse Numérique, Université Paul Sabatier, 31062 Toulouse Cedex, France

Communicated by M.-F. Roy
Received 11 October 1991
Revised 6 May 1992

Abstract

Yakoubsohn, J.-C., The Sturm method in the complex case, Journal of Pure and Applied Algebra 84 (1993) 95-105.

Let $Z_{K}^{0}(F), Z_{K}^{x}(F)$ be the number of zeros and the number of poles with their multiplicities of a complex rational fraction lying inside a compact K of \mathbb{C} the boundary of which is a Jordan curve parametrized piecewise by rational curves. We compute the difference $Z_{K}^{\prime \prime}(F)-Z_{K}^{\gamma}(F)$ extending the Sturm method in the complex case.

1. Introduction and notations

Let F be an irreducible complex rational fraction and K be a compact set in \mathbb{C}. The boundary ∂K is assumed io bu a con nested simple closed Jordan curve parameterized piecewise by rational curves. Furthermore, ∂K is oriented counterclockwise. The purpose of this note is computing the right-hand side of the formula of the Principle of Argument written in the following suggestive fashion [1]

$$
\int_{\partial K} \frac{F^{\prime}}{F}=2 \mathrm{i} \pi(\text { number of zeros }- \text { number of poles) },
$$

using the method of Sturm sequences. In the case where F is a complex polynomial with no root on the real axis, Marden in Chapter 9 of [3] uses the Sturm sequences to find the number of zeros of F in the upper and lower half-planes. But only an upper bound of the number of zeros of a complex

Correspondence to: Professor J.-C. Yakoubsohn, Laboratoire Analyse Numérique, Université Paul Sabatier, 31062 Toulouse Cedex, France.
polynomia! is given in a sector of plane. In this note we generalize the results obtained in [3] and we compute exactly the number of zeros.

First we precise the notations and hypotheses.
1.1. The boundary ∂K is the union of rational curves denoted by $\gamma_{j}(t)$ defined on the interval $\left[a_{j}, b_{j}\right], 0 \leq j \leq n-1$, such that

$$
\gamma_{j}\left(b_{j}\right)=\gamma_{j+1}\left(a_{j+1}\right)
$$

with the convention $\gamma_{n}=\gamma_{0}$ and $a_{n}=a_{0}$. We define the real rational fractions $F_{0 j}(t)$ and $F_{1 j}(t)$ such that

$$
F\left(\gamma_{j}(t)\right)=F_{0 j}(t)+\mathrm{i} F_{1 j}(t) \quad \text { for } t \in\left[a_{j}, b_{j}\right], 0 \leq j \leq n-1,
$$

and we consider the polynomiais $\boldsymbol{P}_{0 j}$ and $P_{1 j}$ such that

$$
\frac{F_{1 j}(t)}{F_{0 j}(t)}=\frac{P_{1 j}(t)}{P_{0 j}(t)} \quad \text { for } t \in\left[a_{j}, b_{j}\right], 0 \leq j \leq n-1 .
$$

1.2. Let $Z_{K}^{0}(F)$ and $Z_{K}^{x}(F)$ be the number of zeros of F and the number of poles of F respectively with their multiplicities lying inside K.
1.3. Let f, g be real rational fractions and a, b be real numbers. We define the quantity

$$
\theta(f, g, a, b)=\frac{1}{2}\left(\operatorname{sign} f\left(a^{+}\right)-\operatorname{sign} g\left(b^{-}\right)\right) .
$$

When $f=g$ and $a=b=t$, this quantity is the Cauchy index of f at the point t : in this case we shall write $\theta(f, t)$. Also we adopt the convention that $\operatorname{sign} 0=0$. This function θ appears naturally at the end of the proof of Theorem 1.6.
1.4. We recall an algorithm to construct a Sturm sequence and the principal result concerning them. Given two real polynomials $P_{0}(t)$ and $P_{1}(t)$, the associated Sturm sequence $\operatorname{sturm}_{i}\left(P_{0}, P_{1}\right)$ is defined in the following way:

- If degree $\left(P_{0}\right) \geq \operatorname{degree}\left(P_{1}\right)$ then

$$
\operatorname{sturm}_{0}\left(P_{0}, P_{1}\right)=P_{0}, \quad \operatorname{sturm}_{1}\left(P_{0}, P_{1}\right)=P_{1}
$$

else

$$
\operatorname{sturm}_{0}\left(P_{0}, P_{1}\right)=P_{0}, \quad \operatorname{sturm}_{1}\left(P_{0}, P_{1}\right)=\operatorname{rem}\left(P_{1}, P_{0}\right)
$$

where $\operatorname{rern}\left(P_{1}, P_{n}\right)$ is the remainder of the euclidean division of P_{1} by P_{0}.

- For $i \geq 1$ we compute

$$
\operatorname{sturm}_{i+1}\left(P_{0}, P_{1}\right)=-\operatorname{rem}\left(\operatorname{sturm}_{i-1}\left(P_{0}, P_{1}\right), \text { sturm }_{i}\left(P_{i}, P_{1}\right)\right)
$$

- We stop when there is an index p so that $\operatorname{sturm}_{p+1}\left(P_{0}, P_{1}\right)=0$.

This construction appears in [3]. The previous sequence appears in [2] as being the signed remainder's sequence reserving to Sturm sequence of polynomials P and Q the signed remainder's sequence of polynomials P and rem $\left(P^{\prime} Q, P\right)$. Let us consider $\operatorname{Var}\left(P_{0}, \ldots, P_{n}, t^{ \pm}\right)$, the number of consecutive variations of sign in a polynomial's sequence P_{0}, \ldots, P_{n} at $t^{ \pm}$. If the previous sequence is the Sturm sequence $\operatorname{sturm}_{0}\left(P_{0}, P_{1}\right), \ldots$, sturm $_{\mu}\left(P_{0}, P_{1}\right)$, the number Var shall be denoted by $\operatorname{Var}\left(\operatorname{sturm}\left(P_{\mathrm{a}}, P_{1}\right), t^{ \pm}\right)$. We denote by

$$
\begin{aligned}
& \operatorname{Var}\left(\operatorname{sturm}\left(P_{0}, P_{1}\right), a^{+}, b^{-}\right) \\
& \quad=\operatorname{Var}\left(\operatorname{sturm}\left(P_{0}, P_{1}\right), a^{+}\right)-\operatorname{Var}\left(\operatorname{sturm}\left(P_{0}, P_{1}\right), b^{-}\right) .
\end{aligned}
$$

If the polynomial P_{1} is identically zero, we say that $\operatorname{Var}\left(P_{0}, P_{1}, t^{ \pm}\right)=0$. We have the following result:

Theorem 1.5. Let a and b be real numbers with $a<b$ and P_{0}, P_{1} be real polynomials. Then,

$$
\operatorname{Var}\left(\operatorname{sturm}\left(P_{0}, P_{1}\right), a^{+}, b^{-}\right)=\sum_{\left\{t \in|a, b|: P_{0}(t)=0\right\}} \theta\left(\frac{P_{1}}{P_{0}}, l\right)
$$

The proof of this theorem is based on the same ideas given in [2] or [3].
With these notations and pronerties. we shall prove the following theorem:
Theorem 1.6. Let F be an irreducible complex rational fraction. Assume that F has neither zero nor pole on the boundary of a compact set K as introduced in 1.1. Let $F_{1 j}(t)$ and $F_{0 j}(t), P_{1 j}$ and $P_{0 j}, 1 \leq j \leq n-1$, be defined as in 1.1. We have

$$
\begin{aligned}
& Z_{K}^{0}(F)-Z_{K}^{\alpha}(F)=-\frac{1}{2} \\
& \sum_{j=0}^{n-1} \operatorname{Var}\left(\operatorname{sturm}\left(P_{1 i j}, P_{1 j}\right), a_{j}^{+}, b_{i}^{-}\right) \\
&-\frac{1}{2} \sum_{\substack{\left\{j: P_{0 i j}\left(b_{j}\right)=0 . \\
0 \leq j \leq n-1\right\}}} \theta\left(\frac{P_{1 j+1}}{P_{(i j+1}}, \frac{P_{1 j}}{P_{1 i j}}, a_{j+1}, b_{i}\right),
\end{aligned}
$$

with the convention $P_{i n}=P_{t 0}, l=0,1$.
In [4], the previous formula is given without the second sum and only in the case where F is a polynomial. Example 3.1 illustrates that the second sum is actually necessary.

2. Proof of Theorem 1.6

First, we state a lemma.
Lemma 2.1. Let γ be a rational curve defined on the real interval $[a, b]$ in C and F be a complex rational fraction which has neither zero nor pole in $\gamma([a, b])$. Define F_{0} and F_{1} to be real rational fractions verifying

$$
F(\gamma(t))=F_{0}(t)+\mathrm{i} F_{1}(t)
$$

and consider the polynomials P_{0} and P_{1} so that

$$
\frac{F_{1}}{F_{0}}=\frac{P_{1}}{P_{0}}
$$

We have

$$
\begin{aligned}
\int_{\gamma} \frac{F^{\prime}(z)}{F(z)} \mathrm{d} z= & \frac{1}{2}\left[\log \left(F_{0}^{2}(t)+F_{1}^{2}(t)\right)\right]_{a}^{b} \\
& +\mathrm{i}\left(\arctan \frac{P_{1}}{P_{0}}\left(b^{-}\right)-\arctan \frac{P_{1}}{P_{0}}\left(a^{+}\right)\right. \\
& \left.-\pi \operatorname{Var}\left(\operatorname{sturm}\left(P_{0}, P_{1}\right), a^{+}, b^{-}\right)\right)
\end{aligned}
$$

Proof. We obtain by a direct computation:

$$
\begin{aligned}
\int_{\gamma} \frac{F^{\prime}(z)}{F(z)} \mathrm{d} z= & \int_{a}^{b} \frac{F_{0}^{\prime}(t)+\mathrm{i} F_{1}^{\prime}(t)}{F_{0}(t)+\mathrm{i} F_{1}(t)} \mathrm{d} t \\
= & \int_{a}^{b} \frac{F_{0}^{\prime}(t) F_{0}(t)+F_{1}^{\prime}(t) F_{1}(t)}{F_{0}^{2}(t)+F_{1}^{2}(t)} \mathrm{d} t \\
& +\mathrm{i} \int_{a}^{b} \frac{F_{1}^{\prime}(t) F_{0}(t)-F_{0}^{\prime}(t) F_{1}(t)}{F_{0}^{2}(t)+F_{1}^{2}(t)} \mathrm{d} t
\end{aligned}
$$

Since F has neither zero nor pole in $\gamma([a, b])$, the first integral is equal to

$$
\frac{1}{2}\left[\log F_{0}^{2}(t)+F_{1}^{2}(t)\right]_{a}^{b} .
$$

Computing the second, we write

$$
\frac{F_{1}}{F_{0}}=\frac{P_{1}}{P_{0}}
$$

where P_{0} and P_{1} are real polynomials. A short computation gives

$$
A=\int_{a}^{b} \frac{F_{1}^{\prime}(i) F_{0}(t)-F_{0}^{\prime}(t) F_{1}(t)}{F_{0}^{2}(t)+F_{1}^{2}(t)} \mathrm{d} t=\int_{a}^{b} \frac{P_{1}^{\prime}(t) P_{0}(t)-P_{0}^{\prime}(t) P_{1}(t)}{P_{0}^{2}(t)+P_{1}^{2}(t)} \mathrm{d} t .
$$

Let us consider the roots t_{k} of $P_{0}(t)$ in $] a, b\left[\right.$ with $a<t_{1}<t_{2}<\cdots<t_{l}<b$. Then,

$$
\begin{aligned}
A= & \int_{a^{+}}^{t_{1}^{-}} \frac{P_{1}^{\prime}(t) P_{0}(t)-P_{0}^{\prime}(t) P_{1}(t)}{P_{0}^{2}(t)+P_{1}^{2}(t)} \mathrm{d} t \\
& +\sum_{k=1}^{t-1} \int_{t_{k}^{+}}^{t_{\bar{k}+1}^{-}} \frac{P_{1}^{\prime}(t) P_{0}(t)-P_{0}^{\prime}(t) P_{1}(t)}{P_{0}^{2}(t)+P_{1}^{2}(t)} \mathrm{d} t \\
& +\int_{t_{i}^{+}}^{b-} \frac{P_{1}^{\prime}(t) P_{0}(t)-P_{0}^{\prime}(t) P_{1}(t)}{P_{0}^{2}(t)+P_{1}^{2}(t)} \mathrm{d} t
\end{aligned}
$$

The integral A now becomes

$$
\begin{aligned}
A= & \arctan \frac{P_{1}}{P_{0}}\left(b^{-}\right)-\arctan \frac{P_{1}}{P_{0}}\left(a^{+}\right) \\
& +\sum_{k=1}^{l} \arctan \frac{P_{1}}{P_{0}}\left(t_{k}^{-}\right)-\arctan \frac{P_{1}}{P_{0}}\left(t_{k}^{+}\right)
\end{aligned}
$$

Then using the definition of the Cauchy index, we find that

$$
\begin{aligned}
& \arctan \frac{P_{1}}{P_{0}}\left(t_{k}^{-}\right)-\arctan \frac{r_{1}}{P_{0}}\left(t_{k}^{+}\right) \\
& \quad=\frac{\pi}{2}\left(\operatorname{sign} \frac{P_{1}}{P_{0}}\left(t_{k}^{-}\right)-\operatorname{sign} \frac{P_{1}}{P_{0}}\left(t_{k}^{+}\right)\right)=-\pi \theta\left(\frac{P_{1}}{P_{0}}, t_{k}\right) .
\end{aligned}
$$

Hence,

$$
A=\arctan \frac{P_{1}}{P_{0}}\left(b^{-}\right)-\arctan \frac{P_{1}}{P_{0}}\left(a^{+}\right)-\pi \sum_{k=1}^{l} \theta\left(\frac{P_{1}}{P_{0}}, t_{k}\right) .
$$

Applying Theorem 1.5 to the previous sum, we obtain finally

$$
A=\arctan \frac{P_{1}}{P_{0}}\left(b^{-}\right)-\arctan \frac{P_{1}}{P_{0}}\left(a^{+}\right)-\pi \operatorname{Var}\left(\operatorname{sturm}\left(P_{0}, P_{1}\right), a^{+}, b^{-}\right) .
$$

This achieves to prove the lemma.

We shall use the following lemma, the proof of which is easy and left to the reader.

Lemma 2.2. Let a, b be real numbers and $P_{0}, P_{1}, Q_{0}, Q_{1}$ be real polynomials so that

$$
\begin{aligned}
& P_{0}(b)=0 \Leftrightarrow Q_{0}(a)=0, \\
& \text { if } P_{0}(b) \neq 0 \quad \text { then } \frac{P_{1}}{P_{0}}(b)=\frac{Q_{1}}{Q_{0}}(a) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \arctan \frac{P_{1}}{P_{0}}\left(b^{-}\right)-\arctan \frac{Q_{1}}{Q_{0}}\left(a^{+}\right) \\
& \quad= \begin{cases}0, & \text { if } P_{0}(b) \neq 0, \\
-\pi \theta\left(\frac{Q_{1}}{Q_{0}}, \frac{P_{1}}{P_{0}}, a, b\right), & \text { otherwise } .\end{cases}
\end{aligned}
$$

We prove now Theorem 1.6. By the Argument Principle applied to a complex rational fraction which has neither zero nor pole on the boundary ∂K we have:

$$
Z_{K}^{0}(F)-Z_{K}^{x}(F)=\frac{1}{2 \mathrm{i} \pi} \int_{K} \frac{F^{\prime}(z)}{F(z)} \mathrm{d} z=\frac{1}{2 \mathrm{i} \pi} \sum_{j=0}^{n-1} \int_{\gamma_{j}} \frac{F^{\prime}(z)}{F(z)} \mathrm{d} z
$$

We apply Lemma 2.1. First we remark that

$$
\sum_{j=0}^{n-1}\left[\log \left(F_{0 j}^{2}(t)+F_{1 j}^{2}(t)\right)\right]_{a_{j}}^{b_{j}}=0
$$

since by construction the real rational fractions $F_{0 j}$ and $F_{1 j}$ verify $F_{0 j}\left(b_{j}\right)=$ $F_{0 j+1}\left(a_{j+1}\right)$ and $F_{1 j}\left(b_{j}\right)=F_{1 j+1}\left(a_{j+1}\right)$.

Next we estimate the following sum:

$$
\begin{aligned}
& \sum_{j=0}^{n-1} \arctan \frac{P_{1 j}}{P_{0 j}}\left(b_{j}^{-}\right)-\arctan \frac{P_{1 j}}{P_{0 j}}\left(a_{j+1}^{+}\right) \\
& \quad=\sum_{j=0}^{n-1} \arctan \frac{P_{1 j}}{P_{0 j}}\left(b_{j}^{-}\right)-\arctan \frac{P_{1 j+1}}{P_{0 j+1}}\left(a_{j+1}^{+}\right) .
\end{aligned}
$$

Since the a_{j} and b_{j} are neither pole nor zero of F, it is easy to see that the polynomials $P_{0 j}, P_{1 j}, P_{0 j+1}, P_{1 j+1}$ verify the hypotheses of Lemma 2.2 for all j, $0 \leq j \leq n-1$. Consequently,

$$
\begin{aligned}
& \arctan \frac{P_{1 j}}{P_{0 j}}\left(b_{j}^{-}\right)-\arctan \frac{P_{1 j+1}}{P_{0 j+1}}\left(a_{j+1}^{+}\right) \\
& \quad= \begin{cases}0, & \text { if } P_{0 j}\left(b_{j}\right) \neq 0, \\
-\pi \theta\left(\frac{P_{1 j+1}}{P_{0 j+1}}, \frac{P_{1 j}}{P_{0 j}}, a_{j+1}, b_{j}\right), & \text { otherwise }\end{cases}
\end{aligned}
$$

Finally we obtain

$$
\begin{aligned}
Z_{K}^{0}(F)-Z_{K}^{x}(F)= & -\frac{1}{2} \sum_{i=0}^{n-1} \operatorname{Var}\left(\operatorname{sturm}\left(P_{0 j}, P_{1 j}\right), a_{j}^{+}, b_{j}^{-}\right) \\
& -\frac{1}{2} \sum_{\substack{\left\{j: P_{0 j}\left(b_{j}=0 . \\
0 \leq j \leq n-1\right)\right.}} \theta\left(\frac{P_{1 j+1}}{P_{0 j+1}}, \frac{P_{1 j}}{P_{0 j}}, a_{j+1}, b_{j}\right),
\end{aligned}
$$

and the conclusion of Theorem 1.6 holds.

3. Examples

Example 3.1. Let us consider the rectangle $K=[-i, 1-i \quad 1+i, i]$ and $P(z)=$ $z^{2}-z+1$ with roots $(1-i \sqrt{3} / 2)$ and $(1+i \sqrt{3} / 2)$. The curves are defined on [0, 1] by (see Fig. 1):

$$
\begin{array}{ll}
\gamma_{0}(t)=-\mathrm{i}(1-t)+(1-\mathrm{i}) t, & \gamma_{1}(t)=(1-\mathrm{i})(1-t)+(1+\mathrm{i}) t, \\
\gamma_{2}(t)=(1+\mathrm{i})(1-t)+\mathrm{i} t, & \gamma_{3}(t)=\mathrm{i}(1-t)-\mathrm{i} t .
\end{array}
$$

On the segment $[-\mathrm{i}, 1-1]$ we have $?_{\text {g }}(t)=t^{2}-t, P_{\text {wif }}(t)=-2 t+1$. The associate Sturm sequence is: $P_{00}, P_{10}, 1$; and $\operatorname{Var}\left(\operatorname{sturm}\left(P_{00}, P_{10}\right), 0^{+}, 1^{-}\right)=0$.

On the segment $[1-\mathrm{i}, 1+\mathrm{i}]$ we have $P_{01}(t)=-t^{2}+t, P_{11}(t)=2 t-1$. The associate Sturm sequence is: $P_{01}, P_{11},-1 ;$ and $\operatorname{Var}\left(\operatorname{sturm}\left(P_{0.1}, P_{11}\right), 0^{+}, 1^{-}\right)=0$.

The result on the segment $[1+i, i]$ (resp. $[i,-i]$) is the same as that on the segment $[-i, 1-i](r e s p .[1-i, 1+i])$. Since $P_{0 j}(1)=0,1 \leq j \leq 4$, we compute the function θ at the summits of the rectangle. We obtain $\theta\left(\frac{P_{i, j}}{P_{11},-1}, \frac{P_{i f}}{P_{i /}}, 0,1\right)=-1$. Applying Theorem 1.6 we find $Z_{K}^{0}(P)=2$. The first sum of the formula of Theorem 1.6 is zero and does not compute the number $Z_{K}^{0}(P)$ as it is asserted in [4].

Example 3.2. Let us consider ∂K composed of

$$
\gamma_{0}(t)=\frac{-2 t}{t^{2}+1}+\mathrm{i} \frac{1-t^{2}}{1+t^{2}}, \quad-1 \leq t \leq 1
$$

Fig. 1.

$$
\begin{array}{ll}
\gamma_{1}(t)=-(1-t)-\mathrm{i} t, & 0 \leq t \leq 1, \\
\gamma_{2}(t)=-\mathrm{i}(1-t)+t, & 0 \leq t \leq 1,
\end{array}
$$

(see Fig. 2) and $F(z)=\left(2 z^{2}+1\right) / z$ with for roots $\pm \mathrm{i} \sqrt{2} / 2$ and 0 for pole.
On γ_{0} we have $P_{00}(t)=6 t, P_{10}(t)=t^{2}-1$. The associate Sturm sequence is: $6 t$, -1 ; and $\operatorname{Var}\left(\operatorname{sturm}\left(P_{00}, P_{10}\right),-1^{+}, 1^{-}\right)=-1$.
On γ_{1} we have $P_{01}(t)=(t-1)\left(4 t^{2}-4 t+3\right), P_{11}(t)=-t\left(4 t^{2}-4 t+1\right)$. The associate Sturm sequence is:

$$
P_{01}, P_{11}, 4 t^{2}-6 t+3,2 t-3,-3 ;
$$

and $\operatorname{Var}\left(\operatorname{sturm}\left(P_{00}, P_{10}\right), 0^{+}, 1^{-}\right)=0$.
On γ_{2} we have $P_{02}(t)=t\left(4 t^{2}-4 t+3\right), P_{12}(t)=(t-1)\left(4 t^{2}-4 t+1\right)$. The associate Sturm sequence is:

$$
P_{02}, P_{12},-4 t^{2}+2 t-1,-2 t-1,3 ;
$$

and $\operatorname{Var}\left(\operatorname{sturm}\left(P_{02}, P_{12}\right), 0^{+}, 1^{-}\right)=0$.

Fig. 2.
Furthermore, $P_{01}(1)=P_{02}(0)=0$ and

$$
\theta\left(\frac{P_{12}}{P_{02}}, \frac{P_{11}}{P_{01}}, 0,1\right)=-1
$$

Applying Theorem 1.6 we find $Z_{K}^{0}(F)-Z_{K}^{x}(F)=1 / 2+1 / 2=1$.
Example 3.3. Let us consider the sector of boundary ∂K composed of

$$
\begin{array}{ll}
\gamma_{0}(t)=\frac{24+7 \mathrm{i}}{25} t, & 0 \leq t \leq 1, \\
\gamma_{1}(t)=\frac{-2 t}{t^{2}+1}+\mathrm{i} \frac{1-t^{2}}{1+t^{2}}, & -\frac{3}{4} \leq t \leq-\frac{1}{4}, \\
\gamma_{2}(t)=\frac{8+15 \mathrm{i}}{17}(1-t), & 0 \leq t \leq 1,
\end{array}
$$

(see Fig. 3) and $P(z)=4 z^{3}-(6+4 \mathrm{i}) z^{2}+(2+4 \mathrm{i}) z-\mathrm{i}$ with $(1+\mathrm{i}) / 2$ as double root inside K.

On γ_{0} we have

$$
P_{00}(t)=\frac{10296}{3125} t^{3}-\frac{909}{250} t^{2}+t, \quad P_{10}(t)=\frac{23506}{3125} t^{3}-\frac{2062}{125} t^{2}+11 t-1 .
$$

The associate Sturm sequence is:

$$
P_{00}, P_{10},-16875 t^{2}+17950 t-5148, \frac{4714}{9} t-\frac{3623}{25}, 1 ;
$$

and $\operatorname{Var}\left(\operatorname{sturm}\left(P_{00}, P_{10}\right), 0^{+}, 1^{-}\right)=0$.

Fig. 3.

On γ_{1} we have

$$
\begin{aligned}
& P_{00}(t)=5 t^{6}+18 t^{5}-13 t^{4}-44 t^{3}-17 t^{2}+2 t+1 \\
& P_{10}(t)=5 t^{6}-32 t^{5}-85 t^{4}-16 t^{3}+39 t^{2}+16 t+1
\end{aligned}
$$

The associate Sturm sequence is:

$$
\begin{aligned}
& P_{00}, P_{10},-25 t^{5}-12 t^{4}+14 t^{3}+28 t^{2}+7 t, 3219 t^{4}+4044 t^{3}+438 t^{2} \\
& \quad-628 t-125 \\
& 26678 t^{3}-\frac{82024}{3} t^{2}-591 t+\frac{616}{3}, 481519 t^{2}+356184 t \\
& \quad+59255,2831 t+10984,1
\end{aligned}
$$

and $\operatorname{Var}\left(\operatorname{sturm}\left(P_{00}, P_{10}\right), 0^{+}, 1^{-}\right)=-2$.
On γ_{2} we have

$$
\begin{aligned}
& P_{00}(t)=\frac{4888}{289}(1-t)^{3}+\frac{963}{34}(1-t)^{2}+11(t-1) \\
& P_{10}(t)=\frac{1980}{289}(1-t)^{3}-\frac{796}{17}(1-t)^{2}-62 t+45
\end{aligned}
$$

The associate Sturm is:

$$
P_{00}, P_{10},-8381 t^{2}+7208 t-1271,34822 t-\frac{223861}{17},-1 .
$$

And $\operatorname{Var}\left(\operatorname{sturm}\left(P_{00}, P_{10}\right), 0^{+}, 1^{-}\right)=-1$.
Furthermore, we have $P_{00}(0)=P_{02}=0$ and

$$
\theta\left(\frac{P_{10}}{P_{0}}, \frac{P_{12}}{P_{02}}, 0,1\right)=-1
$$

Applying Theorem 1.6 we find $Z_{K}^{0}(P)=\frac{3}{2}+\frac{1}{2}=2$.

Acknowledgment

To Henri Lombardi for his judicious remarks.

References

[1] S. Lang, Complex Analysis, Graduate Texts in Mathematics (Springer, Berlin, 2nd ed., 1985).
[2j G. Laureano, H. Lombardi, T. Recio and M.F. Roy, Specialisation de la suite de Strum et sous-résultants, RAIRO Inform. Théor. Appl. 24 (6) (1990) 561-588.
[3] M. Marden, Geometry of polynomials, Mathematical Surveys, Vol. 3 (American Mathematical Society, Providence, RI, 1966).
[4] C.A. Neff, Specified precision polynomial root isolation is in NC, Research Report RC 15653, IBM, Research Division San Jose-Yorktown-Zurich, 1990.

