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Abstract 

Yakoubsohn, J.-C., The Sturm method in the complex case, Journal of Pure and Applied 
Algebra 84 (1993) 95-105. 

Let Z:(F), Z;(F) be the number of zeros and the number of poles with their multiplicities of a 
complex rational fraction lying inside a compact K of @ the boundary of which is a Jordan curve 
parametrized piecewise by rational curves. We compute the difference Z:(F) - Z;(F) extend- 
ing the Sturm method in the complex case. 

1. Introduction and notations 

Let F be an irreducible complex rational fraction and K be a compact set in @. 
The boundary ai;l is assumeu w IjL L cc? :Trted simple C!CSX! Jordan curve 
parameterized piecewise by rational curves. Furthermore, a K is oriented counter- 
clockwise. The purpose of this note is computing the right-hand side of the 
formula of the Principle of Argument written in the following suggestive fashion 

Ill 

I F’ 
F = 2in(number of zeros - number of poles) , 

83K 

using the method of Sturm sequences. In the case where F is a complex 

polynomial with no root on the real axis, Marden in Chapter 9 of [3] uses the 
Sturm sequences to find the number of zeros of F in the upper and lower 
half-planes. But only an upper bound of the number of zeros of a complex 
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polynomial is given in a sector of plane. In this note we generalize the results 
obtained in 13) and we compute exactly the number of zeros. 

First we precise the notations and hypotheses. 

1.1. The boundary 8K is the union of rational 
the interval [ai, b,], 0 5 j 5 n - 1, such that 

curves denoted by ri(r) defined on 

Yjtbj) = Yj+ iCaj+ I) 

with the convention ‘y,, = ‘yO and a,, = a,,. We define the real rational fractions 

F&(t) and F,,(t) such that 

F(y,(t)) = F,,.(t) + iF,,(t) for t E [aj5 “i] ) 0 5 j 5 n - 1 , 

and we consider the polynomials Poj and P,j such that 

Flj(r) Plj(r) 
-- =- fOrtE[aj,bi], Osjln-1. 
F,i(t) pOj(r) 

1.2. Let Z:(F) and Z:(F) be the number of zeros of F and the number of poles 
of F respectively with their multiplicities lying inside K. 

1.3. Let f,g be real rational fractions and a,b be real numbers. We define the 

quantity 

0( f, g, a, b) = $(sign f(a’) - sign g(b-)) . 

Whenf=ganda= b = t, this quantity is the Cauchy index off at the point t: in 
this case we shall write 0( f, t). Also we adopt the convention that sign 0 = 0. This 
function 8 appears naturally at the end of the proof of Theorem 1.6. 

1.4. We recall an algorithm to construct a Sturm sequence and the principal result 
concerning them. Given two real polynomials P,,(t) and P, (t), the associated 
Sturm sequence sturm,(P,,, P,) is defined in the following way: 

- If degree( PO) Z- degree( P, ) then 

sturm,(P, 7 p, ) = po , sturm,(P,, P,) = P, 

sturm,,(P,,, P, ) = PO , sum I (PO, P, ) = rem( P, , p0) 

where rem( P, , P,,) is the remainder of the euclidean division of P, by PO. 



- For i r I we compute 

sturm,+,(P,,, P,J = -rem(sturm,_,(P,,, Pi). Sturm,(P,,, P,)J . 

- We stop when there is an index p so that sturmp+ l(P,,, P,) = 0. 

This constructjon appears in f3]. The previous sequence appears in [2] as being 
the signed remainder’s sequence reserving to Sturm sequence of polynomials P 
and Q the signed remainder’s sequence of polynomials P and rem(f)‘& P). Let 
us consider Var(Po, . . . . , P,, , ft ), the number of consecutive variations of sign in 
a polynomial’s sequence P(,, . . . , P, at t?. If the previous sequence is the Sturm 
sequence sturm~( P,, P, ), . . . , sturm~(P,~, Pi), the number Var shall be denoted 
by Var(sturm(P,,, P, ), tr ). We denote by 

Var(sturm(P~~, P, ), a+, b-) 

= Var(sturm(P,,, Pr), a+) -Var(sturm(P;),,, P, ), b-) . 

If the polynomial P, is identically zero, we say that Var( Prr, P, , tt ) = 0. We have 
the followjng result: 

Theorem 1.5. Let a and b be real numbers with a < b and P,,,PI be real 
polynomials. Then, 

Var(sturm(P,,, P, ), a+, b-) = 2 
ffE)o,ht: P,,~t)=O~ 

The proof of this theorem is based on the same ideas given in [2] or [3]. 
With these notations and pronprties. we shall prove the follo~vin~ theorem: 

Theorem 1.6. Let F be an irred~cibte complex rational ~racti~~~. Assume that F has 
neither zero WV pule on the boa~dary of a compact set K as i~tr~d~~ed in 1.1. Let 
FJt) and F,,(t), P,, and PO,!, 15 j’ n - 1, be defined as in 1.1. !Ye have 

??-I 
Z;(F) - Z;(F) = - 4 c Var(sturm(P,,j, a,,), a; I by) 

j=O 

with the convention P,,, = Pfr,, I= %I. 

In [4], the previous formula is given without the second sum and only in the 
case where F is a polynomial. Example 3.1 illustrates that the second sum is 
actually necessary. 
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2. Proof of Theorem L6 

First, we state a lemma. 

Lemma 2.1. Let y be a rational curve defined cm the real interval [a, b] in C and F 

be a complex rational fraction which has neither zero nur pole in r([a, b]). Define 
F. and F, to be real rationed fractions verifying 

F( y(t)) = F,(t) + ip’1 It) 9 

arzd consider the polynomials PO and P, so that 

F, P, -=- 
FIB PO l 

We have 

+ i 4 PI arctan p (b-) - arctan p (a’) 
0 0 

- Nar(sturm(P,, PJ, a+, b-l) . 

Proof. We obtain by a direct computation: 

I 
F’(z) dz = -_ F;(t) + iF;(t) 

Y F(z) F,(t) + iF,(t) dt 

Since F has neither zero nor pole in y( [a, b J), the first integral is equal to 

mog F%(t) + F:wl: l 

Computing the second, we write 
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where P,, and P, are real polynomials. A short computation gives 

p;w,,w - ~6WP,(t) dt 

Pi(t) + Pf(t) * 
a 

99 

Let us consider the roots t, of &,(t) in ]a, b[ with a < t, < t2 < l l l < t, < b. Then, 

A= 
p;~t)p&) - Ph(t)P,(t) dt 

lk+ 1 
I-I 

+c 
&=I 

I 
1; 

+ 

P;(r)pdt) - ph(t)p,(t) dt 

Pi(t) + P;(t) - 

The integral A now becomes 

p, A = arctan p (h- ) - arctan p, (a+) 
11 

P 
0 

+ i arctan :i (tk ) - arctan 2 
k=l 0 (i 

Then using the definition of the Cauchy index, we find that 

= IL ( sign : (ti) - sign : (ti)) = -ITO 
PI 

2 0 0 ( ) 9 . 0 

Hence, 

P- 
A = arctan 2 (b- ) - arctan 

P. 

0 
lca+)-rri O(&). p 

II k-l 0 

Applying Theorem 1 .S to the previous sum, we obtain finally 

4 p, + 
A = arctan p (b-) - arctan p (a ) - vVar(sturm(P,,, P,), a+, 6) - 

0 0 

This achieves to prove the lemma. Cl 
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We skall use the following lemma, 
reader. 

the proof of which is easy and left to the 

Lemma 2.2. Let a,b be real numbers 
that 

and PO, P, , QO, Q 1 be real polynomials SO 

P,,(b) = Oe Q,(a) = 0, 

P. 
if P,(b) # 0 e, 

then $ (b) = e, (a) . 

Then we have 

P Q, arctan 1 (b-) - arctan - (a’) 
PO QO 

if p,(b) # 0 7 

Cl 

We prove now Theorem 1.6. By the Argument Principle applied to a complex 
rational fraction which has neither zero nor p& on the boundary c?M we have: 

We apply Lemma 2.1. First we remark that 

n-l 

2 [lOg(Fij(t) + Fij(t))]$ = 0 7 

j=O 

since by construction the real rational fractions Foj and Flj verify Foj(bi) = 

FOj+l(aj+ll and F*j(bj) = Flj+l(aj+*)* 

Next we estimate the following sum: 

I1 - 1 

z 
P- 

1 arctan J (b7 ) - 
j=O 'Oj 

n-l 

c 

P. 
arctan --? (bf ) - 

P 
= lj+l 

arctan - 
j=O 'Oj P Oj+l 

(ai=,) l 

Since the aj and bj are neither pole nor zero of F, it is easy to see that the 
polynomials Poi, PIj, P,i+ *, P*i+, 

’ 

verify the hypotheses of Lemma 2.2 for all j, 
0 5 ] 5 n - 1. Consequently, 
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arctan 2 (bf ) - arctan iy (a;+,) 
()I Uj + 1 

0, if Pclj(bj) # 0 , 
=5 

-d Ptj+l P!j 
- - 
P 7 PO,? ++I? , b.), otherwise . 

Oj+l 

Finally we obtain 
n-l 

ZO,(F) - Z”,(F) = - & x Var(sturm(~~j, PIi), a;, bf ) 
j=O 

and the conclusion of Theorem 1.6 holds. q 

3. Examples 

Example 3.1. Let us consider the rectangle K = [-i, 1 - i 1 + i, i] and P(z) = 
2= - z f 1 with roots (1 - ifi/2) and (I+ ifi/2). The curves are defined on 
[0, 1] by (see Fig. 1): 

Y”(f) = -i(l - t) -t (1 - i)t , y#j=(l -i)(l- t)+(l +i)r, 

y,(t) = (1 + ij(1 - tj + it, y3(f) = i( 1 - t) - it . 

Un the segment i--i, ii -I] ut: haki P,,, It\ = t* - t, PI,,;;j = -2t+ 1. The ps- 
sociate Sturm sequence is: PO”, P,,,, 1; and Var(sturm(P,,,, I’,,), O”, l-) = 0. 

On the segment [1-i.l+i] we have P,,(r)=-t2+t, P,,(t)=2t-1. The 
associate Sturm sequence is: P,, , P,, , -1; and Var(stu~(~~.*, P,, ), 0’, l-) = 0. 

The result on the segment [1 + i, i] (resp. [i, -i]) is the same as that on the 
segment [-i, 1 - i] (resp. [l - i, 1 + i]). Since P,,(l) = 0, 1 I j 5 4, we compute 
the function 8 at the summits of the rectangle. We obtain f?( %, 2, 9, ii = -1. 
Applying Theorem 1.6 we find Z;(P) = 2. The first sum of the formula of 
Theorem 1.6 is zero and does not compute the Turner Z:(P) as it is asserted in 

M 

Example 3.2. Let us consider 8K composed of 

y,(t) 
-2f .1-t” 

=-i-_+1---- 
1+t* ’ 

-1stll 
t- + 1 

, 
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Fig. 1. 

Y, (0 = -(l - t) -it, 0951, 

y*(t) = -i(l - t) + t , O%a, 

(see Fig. 2) and F(z) = (2~’ + 1)/z with for roots +ia/2 and 0 for pole. 
On y. we have P,,(t) = 6t, PJt) = t’ - 1. The associate Sturm sequence is: 6t, 

-1; and Var(sturm(P,,, P,,), -l+, l-) = -1. 
On yl we have PO,(t) = (t - 1)(4t’ - 4t + 3), PI,(t) = -t(4t’ - 4t + 1). The 

associate Sturm sequence is: 

p 41, 01 ’ 4t’-6t+3, 2t-3, -3; 

and Var(sturm(P,,, P,,), O+, 1 -) = 0. 
On y2 we have PO*(t) = t(4t2 - 4t + 3), P*?(t) = (t - 1)(4tZ - 4t + 1). The as- 

sociate Sturm sequence is: 

p 42 02 ’ -4t”+2t-1, -2t-1,3; 

and Var(sturm( Po2, P,,), 0’, l-) = 0. 
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I 

-i 

Fig. 2. 

Furthermore, PO1 (1) = &(O) = 0 and 

Applying Theorem 1.6 we find Z:(F) - Z:(F) = 1 /2+ l/2= 1. 

Example 3.3. Let us consider the sector of boundary aK composed of 

24 + 7i 
r,(t) = 25 t 9 Ostrl 9 

Y2(0 
8 + 15i 

=7(1-t), Ostsl, 

(see Fig. 3) and P(z) = 4z3 - (6 + 4i)z’ + (2 + 4i)z - 

root inside K. 
On ‘yO we have 
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i with ( d, t i) /2 3s double 

P,,,(tj = wt3 - Et2 + t , P*Jt) = wt’ - +t’ + llt - 1 . 

The associate Sturm sequence is: 

p 00 ’ PI0 3 -16875t2+17950t-5148, yt- g, 1; 

and Var(sturm( Poe, P,,), 0’, 1 -) = 0. 
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On ‘yI we have 
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Fig. 3. 

P,,(t) = 5t6 + 18t5 - 13t4 - 44t3 - 17t2 + 2t + 1 , 

P1()(t) = 5t6 - 32t’ - 85t4 - 16t3 + 39t2 + 16t + 1 . 

The associate Sturm sequence is: 

p 40, 00 3 
-25t5 - 12t4 + 14t3 + 28t2 + 7t, 3219t4 + 4044t3 + 438t’ 

- 628t - 125, 

26678t3 - 9,’ - 591t + y , 481519t2 + 356184t 

+ 59255 , 2831t + 10984 , 1 , 

and Var(sturm(P,,, P,,), O’, l-) = -2. 
On y2 we have 

poow = gf(l- t)3 + %(l- t)2 + ll(t - 1)) 

Plow = !$g(l- t)3 - p(l-t)‘-62t+45. 

The associate Sturm is: 

p 40 00 ’ -8381t2 + 72Q8t - 1271, 34822t - v , -1 . 

And Var(sturm( Poe, P,,), O+, 1 - ) = - 1. 
Furthermore, we have PO&I) = PO2 = 0 and 
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e ( 4” 42 
* 1) po9p,z9 ’ 

=-- 1. 

Applying Theorem 1.6 we find Z",(P) = 2 + i = 2. 
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