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0. INTRODUCTION AND MAIN RESULTS

We consider here the zero-finding problem for an analytic function
f : E � F between two real or complex Banach spaces. A classical algorithm
to solve this problem is Newton's sequence defined by

xk+1=xk&Df (xk)&1 f (xk),
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with x0 given. Under certain hypotheses this sequence converges quadrati-
cally towards a zero ` of f.

To analyse these convergence properties two approaches are possible:
Kantorovitch-type theorems that require estimates of the first and second
derivatives of f over a certain domain containing the starting point x0 , see
[5, 6], and Smale's :-theory in terms of data computed at the point x0

alone [9].
In this paper we study Regula Falsi (RF) and secant (S) methods to

compute approximately the zeros of f and we prove :-theory-like theorems
for these iterations. When f : R � R, the Regula Falsi sequence is defined by

r0 , r1 given, rk+1=rk&([rk , r0] f )&1 f (rk), k�1,

and the secant sequence

s0 , s1 given, sk+1=sk&([sk , sk&1] f )&1 f (sk), k�1,

where the starting points r0 , r1 , s0 , s1 are given and

[t, r] f =
f (t)& f (r)

t&r

is the first divided difference of f at points t and r. A study of the con-
vergence of these sequences can be found in [7]. Geometrically, the point
rk+1 is the intersection point of the straight line through the points
(rk , f (rk)) and (r0 , f (r0)) with the x-axis. The fundamental notion which
defines these methods is the quantity [t, r] f. It can be seen as a linear
operator from R into R verifying the functional equation f (t)& f (r)=
[t, r] f (t&r).

When the function f is a polynomial or an analytic function, we have
obviously

[t, r] f = f $(r)+ :
k�2

f (k)(r)
k !

(t&r)k&1.

When E and F are finite dimensional Banach spaces (with the same dimen-
sion) one can define in the same way a secant method, known as the n+1-
point secant Steffensen method, see [6]. When E and F are Banach spaces
and f is a Lipschitz function, secant type methods can be defined if
for x, y # E there exists a bounded linear operator A(x, y): E � F which
satisfies the functional equation

f (x)& f ( y)=A(x, y)(x& y).
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From an algebraic point of view, A(x, y) is a Bezoutian, see [3] for an
overview.

In this paper, since we deal with analytic functions, the divided difference
operator will be defined by

Definition of the Divided Difference Operator. Let f be an analytic
function from E into F. The divided difference operator at the points x and
y lying in E is the linear operator defined from E into F by

[ y, x] f =Df (x)+ :
k�2

Dkf (x)
k !

( y&x)k&1.

Notice that this definition makes sense: the series is converging in a ball
centered at x, and the functional equation

f ( y)& f (x)=[ y, x] f (x& y)

holds.
We are now able to define the RF and S sequences, similarly as in the

one dimensional case. The Regula Falsi method computes the RF-sequence

x0 , x1 given in E, xk+1=xk&([xk , x0] f )&1 f (xk). (RF)

The secant method computes the S-sequence

x0 , x1 given in E, xk+1=xk&([xk , xk&1] f )&1 f (xk). (S)

[ y, x] f involves the derivatives Dkf (x), k�1, when E=F=Rn or Cn, we
are able to compute them without any knowledge of these derivatives. This
aspect will be made precise in Subsection 8.3. The main interest of Regula
Falsi and secant methods lies in this remark since it will allow us to com-
pute approximate zeros of f even if the computation of the derivative Df (x)
is difficult or impossible. This is the case when f is given by some kind of
black-box allowing us to evaluate f at a point but no additional knowledge
of f is available.

A good way to study the convergence of the previous sequences is to
deal with the invariants

;( f, A, x)=&A&1f (x)&, #( f, A, x)=sup
k�2 \

&A&1 Dkf (x)&
k ! +

1�(k&1)

,

where x # E and A: E � F is an invertible bounded linear operator. Recall
from the closed graph theorem that such an operator has a bounded inverse.
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Smale's :-theory for Newton's method involves three invariants:

;( f, x)=;( f, Df (x), x), #( f, x)=#( f, Df (x), x), :( f, x)=;( f, x) #( f, x).

Our main results on RF and S methods are of two types, gamma theorems
and alpha theorems. Gamma theorems give an estimate of the size of a disc
of convergence about a zero. Alpha theorems give criteria for convergence
on a point from the value of alpha at that point. For comparison's sake we
state versions of :-theorems and #-theorems for Newton's method.

N-:-Theorem [4]. Let x0 # E such that

:=:( f, x0)�
13&3 - 17

4
.

Let

t1=
:+1&- :2&6:+1

4#
,

with #=#( f, x0). Then

(1) There exists a zero ` of the analytic function f in the open ball
B(x0 , t1) and t1�(5&- 17)�4#.

(2) The Newton sequence

xk+1=xk&Df (xk)&1 f (xk), k�0, (N)

is well defined, and we have for k�0

&xk+1&xk&�( 1
2)2k&1 ;( f, x0), and &xk&`&�( 1

2)2k&1 t1 .

In order to avoid complicated notations we now introduce

;i=;( f, [x1 , x0] f, xi), #i=#( f, [x1 , x0] f, xi), i=0, 1.

We will show in Section 3 the following RF-:-theorem.

RF-:-Theorem 0.1. Let x0 and x1 be two points given in E such that
[x0 , x1] f is invertible. Let

b=
1&2#0(;0&;1)
1&#0(;0&;1)

;0 , t1=
b#0+1&- (b#0)2&6b#0+1

4#0

.
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Let us suppose that the following conditions hold :

v #0 &x1&x0& t1�;0&;1�t1 .

v 0�b#0�(13&3 - 17)�4.

Then

(1) There exists a zero ` of the analytic function f in the open ball
B(x0 , t1) and, t1�(5&- 17)�4#0 .

(2) The RF-sequence is well defined, and we have, for k�1,

&xk+1&xk&�( 1
2)k&1 b, and &xk&`&�( 1

2)k&1 (t1&;0+;1).

We will see in Section 3 that this previous theorem is a corollary of a
more general RF :-theorem. We also will state a RF-:-theorem involving
the quantity #( f, Df (x0), x0).

In Section 4 we will give a S-:-theorem. In particular

S-:-Theorem 0.2. Let x0 and x1 be two points given in E such that
Df (x0) is invertible. Let

b=
1&2#(;0&;1)
1&#(;0&;1)

;0 , t1=
b#+1&- (b#)2&6b#+1

4#
.

with #=#( f, Df (x0), x0). Under the assumptions

v 0�;0&;1�t1 ,

v 0�b#�(13&3 - 17)�4,

it follows:

(1) The analytic function f possesses a zero ` # B(x0 , t1), and, t1�
(5&- 17)�4#.

(2) The S-sequence is well defined and converges towards `. Moreover,
for k�1,

&xk+1&xk&�( 1
2) ik&1 b, and &xk&`&�( 1

2) ik&1 (t1&;0+;1),

where i0=i1=1 and ik+1=ik+ik&1 , is the Fibonacci sequence.

When x0=x1 , the hypotheses of RF and S : are reduced at the one of
N :-theorem, i.e., :�(13&3 - 17)�4.
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In the RF-: and S-:-theorems, the points x0 and x1 are supposed to be
known. In Subsection 8.1 we explain a possible choice of the point x1 when
we only know x0 . When the computation of the derivative Df (x0) is easy,
we will establish that the points x0 and x1 defined by

x1=x0&* Df (x0)&1 f (x0), 0�*�1,

are good points to test the assumptions of the RF-:-theorem and
S-:-theorem.

The second part of this paper is devoted to state #-theorems of the secant
type methods and their application to the homotopy method. In fact, to
follow numerically a homotopy path we need a result which details under
which conditions we can say that a point is close to a zero. The notion of
an approximate zero relative to the Newton method has been introduced
by S. Smale [9]:

N Approximate Zero [9]. We say that x0 is an N approximate zero of
f with associated zero `, if the sequence xk+1=xk&Df (xk)&1 f (xk) is well
defined for all k�0, with

&xk&`&�( 1
2)2k&1 &x0&`&, k�0.

In [1] we find a sufficient condition to get an approximate zero in terms
of the invariant #( f, Df (`), `).

N-#-Theorem [1]. Let ` be a zero of the analytic function f. Let x0 # E
be such that u=#( f, Df (`), `) &`&x0&�(3&- 7)�2. The Newton sequence
(N) is well defined, and converges towards `, with

&`&xk&�\ u
1&4u+2u2+

2k&1

&`&x0&�\1
2+

2 k&1

&`&x0&, k�0.

Hence x0 is an N approximate zero of f with associated zero `.

In the sequel, we define a notion of approximate zero relative to RF and
S methods. We next give RF and S #-theorems using respectively the
invariants #( f, [`, x0] f, `), and #( f, Df (`), `) where ` is a root of f.

We first give the definition of an approximate zero relative to the RF
metthod:

Definition: RF Approximate Zero. Let x0 be given. We say that x0 is
a RF approximate zero of f with associated zero ` if there exists x1 # E such
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that the RF-sequence, xk+1=xk&([xk , x0] f )&1 f (xk), is well defined for
all k�1, and converges towards `, with

&xk&`&�( 1
2)k&1 &x1&`&, k�1.

The first RF-#-theorem gives a sufficient condition of the RF approxi-
mate zero with the quantity #( f, [`, x0] f, `). In a certain sense, it is
natural to consider this quantity rather than #( f, Df (`), `). In fact,
when the sequence (xk)k converges towards `, the operator sequence
([xk , x0] f )k converges towards the operator [`, x0] f.

RF-#-Theorem 0.3. Let ` be a zero of f and x0 , x1 be given. Let us
consider the quantities u=#( f, [`, x0] f, `) &`&x0& and v=#( f, [`, x0] f, `)
&`&x1&, and suppose

u
1&u&2v+uv

�
1
2

.

Then x0 is a RF approximate zero of f with associated zero `.

Consequently, we can determine a neighbourhood of x0 which satisfies
the notion of RF approximate zero.

Corollary 0.1. Let u=#( f, [`, x0] f, `) &x0&`&�(5&- 21)�2. Let
x1 be such that

#( f, [`, x0] f, `) &x1&x0&�
1&5u+2u2

2&u
.

Then x0 is a RF approximate zero of f with associated zero `.

There is equally a criterion of RF approximate zero using #( f, Df (`), `).

RF-#-Theorem 0.4. Let ` be a zero of f. Let x0 and x1 be such that u=
#( f, Df (`), `) &x0&`& and v=#( f, Df (`), `) &x1&`& verify

u
1&2u&2v+2uv

�
1
2

.

Then x0 is a RF approximate zero of f with associated zero `.
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Corollary 0.2. Let u=#( f, Df (`), `) &x0&`&�(3&- 7)�2. Let x1 be
such that

#( f, Df (`), `) &x1&x0&�
1&6u+2u2

2(1&u)
.

Then x0 is a RF approximate zero if f with associated zero `.

In the same way we introduce the notion of approximate zero relative to
the S method:

Definition: S Approximate Zero. Let x0 be given in E. We say that x0

is a S approximate zero of f with associated zero ` if there exists x1 such
that the S-sequence xk+1=xk&([xk , xk&1] f )&1 f (xk) is well defined for
all k�1, with

&`&xk&�( 1
2) ik&1 &`&x1&, k�1,

where (ik)k is the Fibonacci sequence with respect to i0=i1=1.

In Section 6, we give a sufficient condition to get an S approximate zero
relatively to the S method using the quantity #( f, Df (`), `).

S-#-Theorem 0.5. Let ` a zero of f and x0 , x1 be such that the quantities
u=#( f, Df (`), `) &x0&`& and v=#( f, Df (`), `) &x1&`& verify

u
1&2u&2v+2uv

�
1
2

and
v

1&2u&2v+2uv
�

1
2

.

Then x0 is a S approximate zero of f with associated zero `.

Corollary 0.3. Let u=#( f, Df (`), `) &x0&`&�(3&- 7)�2. Let x1 be
such that

#( f, Df (`), `) &x1&x0&�
1&6u+2u2

2(2&u)
.

Then x0 is an S approximate zero of f with associated zero `.

An application of these gamma theorems is the study of the complexity
of path-following methods. Let h: [0, 1]_E � F be a continuous function
such that ht =h(t, } ) is an analytic function. The set [ht : t # [0, 1]] is
named homotopy. A regular associated path the curve in E is given by

[`t : t # [0, 1], ht(`t)=0 and Dh t(`t)
&1 exists].
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A homotopy path is the set [(ht , `t) : t # [0, 1]]. The numerical path-
following consists in defining a subdivision 0=t0<t1< } } } <tk=1, and in
computing a sequence (zi)i such that each point zi , 0�i�k, is an
approximate zero of hi=hti

relative to a numerical method.
We study here two numerical path-following methods. The first method

is defined by

z0 , z1 given, zi+1=zi&([zi , zi&1] hi+1)&1 h i+1(zi), 1�i�k&1.

(H1)

Let r�0 be given. The second method is defined by

z0 , y0 # B� (z0 , r) given,

zi+1= yi&([ yi , zi] hi+1)&1 h i+1( yi), yi+1 # B� (zi+1 , r), 1�i�k&1,

(H2)

where B� (x, r) denotes the closed ball. When we take yi=zi for each i, the
sequence (H2) generalizes

z0 given, z i+1=z i&Dhi+1(zi)
&1 hi+1(zi), 1�i�k&1. (H0)

In the following we compute a sufficient k for zi to be an N approximate
zero of hi with associated zero `i :=`ti

, see the definition above. The N
path following theorem gives an answer for the sequence (H0) using the
three quantities:

�� #(h)=max0�t�1[#(ht , Dht(xt), xt)],

�� C(h)=max0�t�1 &Dht(xt)
&1&,

�� L(h) the length of the curve t # [0, 1] � ht .

N Path Following Theorem [2]. Let ==(3&- 7)�4t0.0885621722.
There exists a subdivision, 0=t0<t1< } } } <tk=1, such that z0=!0 and
each zi defined by (H0) is an N approximate zero of hi with associated zero
`i . Moreover, we can take

k=�C(h) #(h) L(h)
= | .

The properties of the sequences (H1) are given by the following result.
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Theorem 0.6. Let ==(4&- 13)�6t0.0657414541. There exists a sub-
division 0=t0<t1< } } } <tk=1 such that the following conditions hold:

�� z0=`0 .

�� #(h) &`1&`0&�=�2, and #(h) &z1&`0&�=�2.

�� the zi's of the sequence (H1) satisfy

#(h) &zi&`i &�=, 0�i�k.

Moreover, we can take

k=�#(h) C(h) L(h)
= |+1.

Hence for all i, 0�i�k, each point zi is a N approximate zero of hi with
associated zero `i .

The next theorem concerns the sequence (H2).

Theorem 0.7. Let *�0 be such that ==(3&- 7)�4&*�2>0. Let r*=
2*(*+- 7)�(2*+- 7&1). There exists a subdivision 0=t0<t1< } } } <
tk=1 such that the following conditions hold:

�� z0=`0 and y0 lies in the closed ball B� (0, r*).

�� the zi's of the sequence (H2) satisfy

#(h) &zi&`i &�=, 0�i�k.

Moreover, we can take

k=�#(h) C(h) L(h)
= | .

Hence for all i, 0�i�k, each point zi is a N approximate zero of hi with
associated zero `i .

These theorems provide a sufficient condition for path-following algo-
rithms with secant method to obtain N approximate zeros. In particular
Theorem 0.7 becomes N path-following with *=0.

In Section 7 we also give result of complexity of the homotopy using the
quantities C(h), L(h), and

#=(h)= max
0�t�1

max
z

[#(ht , [`t , z] ht , `t) : #(ht , [`t , z] ht , `t) &z&`t&�=].
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In conclusion, we have chosen to separate :-theory and #-theory as in
the first studies concerning :-theory (see [8]). This way is different from
the one given in [1], in which the :-theorem is a consequence of the classi-
cal fixed point theorem and of the #-theorem. The approach given here
permits us to compute the best values for the universal constants : and #
relative to the secant type methods.

On the other hand, we have studied the gamma theorems of these
methods, and we have used numerical path-following with secant type
methods to get an approximate zero relative to the Newton method.

1. REGULA FALSI METHOD AND SECANT METHOD FOR
UNIVERSAL FUNCTION

We use Kantorovitch analysis [5] to establish results of convergence of
RF-sequence and S-sequences. The Kantorovitch analysis establishes that
the convergence of the RF-sequence or S-sequence is conditioned by the
convergence of the real sequences (rk)k�0 or (sk)k�0 respectively associated
to the universal function h(t) defined by

h(t)=b&2t+
t

1& gt
,

where b and g are real positive numbers defined in Sections 3 and 4. In this
section we study precisely the rates of convergence of the RF-sequence and
S-sequence associated to the function h(t). For this, it is more convenient
to deal with the function h*({) defined by

h*({)= gh \ {
g+=a&2{+

{
1&{

,

where a=bg. This function h*({) is a convex function on the interval
[0, 1[. Let us suppose that the inequality

a<3&2 - 2

holds in this section. Under this condition, the function h*({) has two roots
{1<{2 in the interval [0, 1[, given by

{i=
a+1\- (a+1)2&8a

4
, i=1, 2.
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Proposition 1.1. Consider the following RF sequence (\k)k�0 associated
with the function h*({):

\0=0<\1�{1 , \k+1=&
h*(0)

[\k , 0] h*
, k�1.

Denote q={1(1&{2)�{2(1&{1) and uk=({1&\k)�({2&\k). Then the sequence
(\k)k�0 is strictly increasing and converges towards {1 . The convergence rate
is given by:

(1) {1&\k+1=(({2&{1)�(1&qku1)) y1qk�({1&\1) qk, k�0.

(2) \k+1 & \k = (({2 & {1)�(1 & qk&1u1)(1 & qku1))(1 & q) qk&1u1 �
aqk&1, k�1.

(3) rk=\k �g.

Proof. The convexity of the function h*({) ensures that the sequence
(\k)k�0 is strictly increasing and converges to {1 . Let us study the rate of
convergence of this sequence. From the definition of the sequence (\k)k�0 ,
it follows that

\k+1=
a(1&\k)
1&2\k

.

Next, using the fact {1 is a root of the function h*({), we can write
{1(2{1&1)+a(1&{1)=0. A direct computation gives

{1&\k+1=
{1(1&2\k)&a(1&\k)

1&2\k

=
{1(1&2\k)&a(1&\k)+{1(2{1&1)+a(1&{1)

1&2\k

=
({1&\k)(2{1&a)

1&2\k
.

Similarly we also have

{2&\k+1=
({2&\k)(2{2&a)

1&2\k
.
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Since 2{1 {2=a, we find

2{1&a
2{2&a

=
a(1&{2)

{2

{1

a(1&{1)
=q.

Hence

{1&\k+1

{2&\k+1

=q
{1&\k

{2&\k
= } } } =qk {1&\1

{2&\1

.

The inequality {1<{2 implies q<1. Some direct computations prove

{1&\k+1=
{2&{1

1&qku1

u1qk�
{2&{1

1&u1

u1qk=({1&\1) qk.

Part (2) is proved similarly. Let us prove the inequality in part (2). We
have u1<{1 �{2=u0 and a straightforward computation shows

{2&{1

(1&qk&1u1)(1&qku1)
(1&q) u1<

{2&{1

(1&u0)(1&qu0)
(1&q) u0=a,

and this lemma follows. K

Proposition 1.2. Let us consider the secant sequence (_k)k�0 associated
to the function h*({):

_0=0, 0<_1<{1 , _k+1=_k&
h*(_k)

[_k , _k&1] h*
.

We also define for k�0, the sequence uk=(_k&{1)�(_k&{2), and q=
(1&{2) {1�(1&{1) {2 . Moreover we consider the Fibonacci sequence i0=
i1=1, and uk+1=ik+ik&1 for k�1.

The sequence (_k)k�0 is strictly increasing and converges towards {1 . The
rate of convergence of this sequence is given by

(1) uk+1=(q�u0) ukuk&1�(u0 �q) qik+1, k�1.

(2) {1&_k+1=(({2&{1)�(1&uk+1)) uk+1

�(({2&{1)�(1&u1)) u1 qik+1&1=({1&_1) q ik+1&1, k�0.

(3) _k+1&_k=(({2&{1)�(1&uk)(1&uk+1))(1&(q�u0) uk&1) uk

�aqik&1, k�1.

(4) sk=_k �g.
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Proof. Since h*({)=2({&{1)({&{2)�(1&{), we obtain from a straight-
forward computation

_k+1&{1=
(_k&{1)(_k&1&{1)(1&{2)

_k+_k&1&_k_k&1+{1{2&{1&{2

, k�1.

A similar formula holds for _k+1&{2 . Hence

uk+1=cukuk&1 ,

where c=q�u0 . Since u1<u0 , it follows that

uk+1=
1
c

(cu1) ik (cu0) ik&1�
1
c

(cu0) ik+1 ,

where (ik) is the Fibbonacci sequence

i0=i1=1, ik+1=ik+ik&1 .

This proves the first part of this lemma follows easily. The second and
third parts follow from straightforward computations. Let us prove the
inequality of the third part.

The sequence (uk) decreases and, for c=q�u0 , the function u � (1&cu)�
(1&u) increases. Consequently

{2&{1

(1&uk)(1&uk+1)
(1&cuk&1)�

{2&{1

(1&uk)(1&uk+1)
(1&cuk)

�
{2&{1

(1&u0)(1&qu0)
(1&q)=a.

The proposition follows. K

The growth of the Fibonacci numbers is given by the following

Lemma 1.1. Let n1=(1+- 5)�2 and n2=(1&- 5)�2 be the roots of
t2&t&1=0.

(1) ik=(1�- 5)(nk+1
1 &nk+1

2 ).

(2) For all k�1, we have (1�- 5)(nk+1
1 &nk+1

2 )�nk&1
1 .
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Proof. The first part is well known. We observe n2
1&n1&1=0 and

- 5=n1&n2 . Consequently, we have for all k�1

nk+1
1 &nk+1

2 &(n1&n2) nk&1
1 =n2

2(nk&1
1 &nk&1

2 )�0. K

We end this section with some obvious lemmas.

Lemma 1.2. [t, r]h+1=1�(1& gt)(1& gr)&1.

Lemma 1.3. Let us suppose bg<3&2 - 2. For all 0<t�t1 , we have
&1=h$(0)<[t, 0]h<0. Hence 0<[t, 0]h+1<1.

Lemma 1.4. Let t=s&h(s)�[s, r]h. Then we have

h(t)=
g(t&r)(t&s)

(1& gr)(1& gs)(1& gt)
.

Proof. We have h(t)=h(s)+[s, t] h(t&s)+[t, s, r] h(t&s)(t&r)=
[t, s, r] h(t&s)(t&r), where [t, s, r]h is the second divided difference
of h at points r, s, t. Since h(s)+[s, t] h(t&s)=0 and [t, s, r]h=
g�(1& gr)(1& gs)(1& gt), the lemma follows. K

Lemma 1.5. We have h$((1&- 2�2)�g)=0. Consequently, the inequalities
h(t)>0 and gt�1&- 2�2 imply t<t1 .

2. POINT ESTIMATES AND BASIC LEMMAS

This section gives some technical lemmas which are used in the following
sections. We will use frequently

Lemma 2.1. For all 0�t<1, and k�0, we have � i�0 ( k+i
i ) t i=

1�(1&t)k+1.

In this section A denotes a bounded linear map from E into F. We first
recall von Neumann's perturbation lemma which is used in all point
estimates:

Lemma 2.2. Let A be a bounded linear map from E into F. If &I&A&<1
then A is invertible and

&A&1&�
1

1&&I&A&
.

We now justify the existence of the operator [ y, x0] f &1 for some y # E.
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Lemma 2.3. Let x0 be given in E.

(1) For some x1 # E, let us suppose that A=[x1 , x0] f is invertible.
Define for i # [0, 1], #i=#( f, [x1 , x0] f, xi), and suppose 1&#i &x0&x1&
>0 and 1&#i &y&x i&>0 for some y in E. Then

&[x1 , x0] f &1 [ y, x0] f &I&�
#i &y&x1&

(1&# i &x0&x1&)(1&#i &y&xi&)
.

In addition if

(1&#i &x0&x1&)(1&#i &y&xi&)>#i &y&x1&

then [ y, x0] f is invertible, and the point estimate

&[ y, x0] f &1[x1 , x0] f &�
(1&#i &x0&x1&)(1&#i &y&xi&)

(1&# i &x0&x1&)(1&#i &y&xi&)&#i &y&x1&

holds.

(2) Let A=Df (xi) be invertible for i=0 or i=1. Define #=
#( f, Df (xi), xi). For some x, y in E, we assume 1&# &x&xi &>0, and
1&# &y&xi&>0. Then we have

&Df (xi)
&1 [ y, x] f &I&�

1
(1&# &x&x i&)(1&# &y&x i &)

&1.

In addition if

2(1&# &x&xi &)(1&# &y&xi&)&1>0,

the operator [ y, x] f is invertible with the point estimate

&[ y, x] f &1 Df (xi)&�
(1&# &x&x i&)(1&# &y&x i&)

2(1&# &x&x i&)(1&# &y&xi &)&11
.

(3) In particular, if Df (x0) is invertible then the operator [ y, x0] f
is invertible for all y such that 2# &y&x0&<1, with #=#( f, Df (x0), x0).
Moreover we have

&[ y, x0] f &1 Df (x0)&�
1&# &y&x0&
1&2# &y&x0&

.
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(4) Reciprocally, if the operator [x1 , x0] f is invertible and if
2#0 &x0&x1&<1 with #0=#( f, [x1 , x0] f, x0), then the operator Df (x0) is
invertible. Moreover, we have

&Df (x0)&1 [x1 , x0] f &�
1&#0 &x1&x0&

1&2#0 &x1&x0&
.

Proof. First, we write with A=[x1 , x0] f

[ y, x0] f &A=|
1

0
|

t

0
D2f (sx0+(t&s) x1+(1&t) y)( y&x1) ds dt.

Next, using Taylor's formula at xi , the quantity A&1[ y, x0] f &I is equal
to

|
1

0
|

t

0
2 :

j�0
\j+2

2 + A&1 D j+2f (xi)
( j+2)!

_(s(x0&xi)+(t&s)(x1&xi)+(1&t)( y&xi)) j ( y&x1) ds dt.

The definition of #i=#( f, [x1 , x0] f, xi), and the assumptions imply

&A&1[ y, x0] f &I&

�|
1

0
|

t

0
2#i :

j�0
\j+2

2 +
_# j

i (s &x0&xi &+(t&s) &x1&xi &+(1&t) &y&xi &) j &y&x1& ds dt

�|
1

0
|

t

0

2#i &y&x1&
(1&#i (s &x0&xi &+(t&s) &x1&x i&+(1&t) &y&xi &))3 ds dt.

This previous integral is equal to

#i &y&x1&
(1&#i &x0&x1&)(1&#i &y&x i&)

,

and part (1) of this lemma follows.
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To prove part (2), we write

[ y, x] f =|
1

0
Df (tx+(1&t) y) dt

=Df (xi)+|
1

0
:

j�1

( j+1)
D j+1f (xi)

( j+1)!

_(t(x&xi)+(1&t)( y&xi)) j dt.

Since 1&# &x&xi&>0, and 1&# &y&xi&>0 with #=#( f, Df (x i), xi), it
follows

&Df (xi)
&1 [ y, x] f &I&�|

1

0
:

j�1

( j+1) # j(t &x&xi &+(1&t) &y&xi&) j dt

�|
1

0

1
(1&#(t &x&xi&+(1&t) &y&xi&))2 dt&1

�
1

(1&# &x&xi &)(1&# &y&xi &)
&1,

and from Lemma 2.2, part (2) is established.
Part (3) (respectively part (4)) is a direct consequence of part (1), with

x1=x0 (respectively y=x0). K

Lemma 2.4. Let A be an invertible linear bounded operator from E
into F, and #i=#( f, A, xi) for i # [0, 1]. Let us consider x2=x1&
([x1 , x0] f )&1 f (x1). Then we have

&A&1f (x2)&�
#i &x2&x1& &x2&x0&

(1&#i &x2&x i &)(1&#i &x1&x i&)(1&#i &x0&x i&)
,

i=0, 1.

Proof. Since f (x1)+([x1 , x0] f )(x2&x1)=0, we can write for i=0, 1:

f (x2)= f (x1)+([x1 , x0] f )(x2&x1)

+|
1

0
|

t

0
D2f (sx0+(t&s) x1+(1&t) x2)(x2&x1)(x2&x0) ds dt

=|
1

0
|

t

0
2 :

j�0
\j+2

2 + D j+2f (x i)
( j+2)!

_(s(x0&x i)+(t&s)(x1&xi)

+(1&t)(x2&x i)) j (x2&x1)(x2&x0) ds dt.
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Hence, we have successively

&A&1f (x2)&
&x2&x1& &x2&x0&

�|
1

0
|

t

0
2#i :

j�0
\j+2

2 +
_# j

i (s &x0&xi&+(t&s) &x1&xi&+(1&t) &x2&x i&) j ds dt

�|
1

0
|

t

0

2#i

(1&#i (s &x0&x i&+(t&s) &x1&x i&+(1&t) &x2&x i&))3 ds dt

�
#i

(1&#i &x0&xi&)(1&#i &x1&xi &)(1&#i &x2&xi &)
, i=0, 1,

and the lemma is proved. K

3. RF-:-THEOREM

We state a general RF-:-theorem. Let A be an invertible bounded linear
operator from E into F. Let us consider the universal function h(t) studied
in Section 1 with

b=
1&2g(;0&;1)
1& g(;0&;1)

;0 , g=#( f, A, x0).

The quantities ;0 , ;1 , #, and #0 are those defined in the Introduction. Let
us denote by t1 and t2 , the roots of h(t) when bg�3&2 - 2, and by (rk)
is the Regula Falsi sequence associated to h(t) with r0=0 and r1=;0&;1 .

RF-:-Theorem 3.1. Let x0 and x1 be two points given in E such that
Df (x0) is invertible. Let A be an invertible bounded linear operator from E
into F. Let us suppose that the following conditions hold:

v 2# &x1&x0&<1.

v \y # E, \r�0, (&y&x0&�r�t1 and
&y&x1&�r&r1) O &A&1[ y, x0] f &I&�[r, 0]h+1. (1)

v 0�;0&;1�t1 .

v 0�bg<3&2 - 2.
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Then

(1) The function h(t) has two positive roots, t1<t2 , and the sequence
(rk)k�0 converges towards t1 , as is stated in Proposition 1.1.

(2) There exists a zero ` of the analytic function f in the open ball
B(x0 , t1).

(3) The RF-sequence is well defined, and we have, for k�1,

&xk+1&xk&�rk+1&rk , and &xk&`&�t1&rk .

Let us give the signification of the assumptions in the previous theorem.
The condition 2# &x1&x0&<1 ensures that the divided difference operator
[x1 , x0] f is invertible (Lemma 2.3). The condition (1) is a technical
inequality in order to apply Von Neumann's perturbation lemma: in this
section, we will see that the operators A=Df (x0) and A=[x1 , x0] f satisfy
this condition. The inequality bg<3&2 - 2 implies that the function h(t)
has two positive roots and hence Kantorovitch's analysis can be done. The
inequality 0�;0&;1�t1 shows that (rk)k�0 is an increasing sequence and
converges towards t1 . Hence, the rate of convergence of the sequence
(xk)k�0 is given by the one of the sequence (rk)k�0 which has been studied
in Proposition 1.1.

Proof. To establish &xk+1&xk&�rk+1&rk , we proceed by induction.
From assumption the operator Df (x0) is invertible. From Lemma 2.3
part (3), and the inequality 1&2# &x1&x0&>0, the operator [x1 , x0] f is
invertible. The point x2 is well defined. The function h(t) and the sequence
(rk)k�0 have been constructed in order to get

&x2&x0&=;0=r2&r0=r2 and &x2&x1&=;1=r2&r1 .

From Section 1, the inequality bg<3&2 - 2 ensures that the function
h(t) has two roots t1<t2 . Since 0�r1=;0&;1<t1 , the sequence (rk)k�0

increases and converges towards t1 .
Let us suppose now that the xj's exist for all j, 2� j�k, and satisfy

&xj&xj&1&�rj&r j&1 .

We first prove xk+1 is well defined, i.e., the operator [xk , x0] f is inver-
tible. We have

&xk&x0&� :
k

j=3

&x j&xj&1&+&x2&x0&

� :
k

j=3

rj&r j&1+r2&r0=rk .
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For the same reasons, we also have

&xk&x1&�rk&r1 .

We now give an upper bound for rk . Since bg<3&2 - 2, we have

rk<t1�
bg+1

4g
�

1
g \1&

- 2
2 +<

1
2g

.

Consequently, we have simultaneously &xk&x0&�rk�t1 and &xk&x0&�
rk&r1 .

From condition (1) on the operator A, we obtain the point estimate

&A&1[xk , x0] f &I&�[rk , 0]h+1.

In other hand, Lemma 1.2 and the inequality 1&2grk>0 imply 0<
[rk , 0]h+1=1�(1& grk)&1<1. From Lemma 2.2, the operator [xk , x0] f
is invertible with the point estimate

&[xk , x0] f &1A&�
1

[rk , 0]h
. (2)

Hence xk+1 is well defined.
Let us now prove the inequality &xk+1&xk&�rk+1&rk . For that, we

write

&xk+1&xk&=&[xk , x0] f &1f (xk)&

�&[xk , x0] f &1A& &A&1f (xk)&.

The inequality (2) gives an upper bound for &[xk , x0] f &1A&. Lemma 2.4
gives an upper bound for &A&1f (xk)&. More precisely

&A&1f (xk)&�
g &xk&xk&1& &xk&x0&

(1& g &xk&x0&)(1& g &xk&1&x0&)

�
g(rk&rk&1)(rk&r0)
(1& grk)(1& grk&1)

.

Since r0=0, and from Lemma 1.3, we obtain

&A&1f (xk)&�
g(rk&rk&1) rk

(1& grk)(1& grk&1)
=h(rk).
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Finally

&xk+1&xk&�
&1

[rk , 0]h
h(rk)=rk+1&rk .

Hence the conclusions of this theorem follow easily. K

The two propositions below give examples of operators A which satisfy
condition (1) of Theorem 3.1.

Proposition 3.1. The operator A=Df (x0) satisfies condition (1) of the
RF-:-theorem.

Proof. Here g=#=#( f, Df (x0), x0). From Lemma 2.3, we have for all
y such that 1&# &y&x0&>0

&A&1[ y, x0] f &I&�
# &y&x0&

1&# &y&x0&
.

Hence for all r, such that &y&x0&�r�t1 , it follows

&A&1[ y, x0] f &I&�
#r

1&#r
=[r, 0]h+1<1. K

Proposition 3.2. If the inequality

&x1&x0& #0t1�;0&;1=r1 ,

holds, then the operator A=[x1 , x0] f satisfies condition (1) of the
RF-:-theorem.

Proof. Here g=#0=#( f, [x1 , x0] f, x0). Lemma 2.3 establishes the fol-
lowing inequality for A=[x1 , x0] f : for all y such that 1&#0 &y&x0&>0,
we have, with $=1�(1&#0 &x0&x1&),

&[x1 , x0] f &1[y, x0] f &I&�
$#0 &y&x1&

1&#0 &y&x0&
.

Under the assumptions &y&x0&�r�t1 , and &y&x1&�r&r1 , it follows

&[x1 , x0] f &1[y, x0] f &I&�
$#0(r&r1)

1&#0r
.
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Let us show now $#0(r&r1)�(1&#0 r)�&1+1�(1&#0r)=[r, 0]h+1. In
fact

$#0(r&r1)
1&#0r

&
#0 r

1&#0r
=

($&1) #0 r&$#0r1

1&#0r
.

This previous quantity is negative under the condition r<t1�$r1 �
($&1)=(;0&;1)�#0 &x1&x0&, and the proposition follows. K

Proof of RF-:-Theorem 0.1. Let us verify the assumptions of Theorem
3.1. The assumption 1&2# &x1&x0& is not necessary in this case since the
operator [x1 , x0] f is assumed invertible. The operator [x1 , x0] f is inver-
tible and the inequality 1&2#0 &x0&x1&>0 holds. From Proposition 3.2,
the condition (1) is satisfied. The inequality b#0�(13&3 - 17)�4 implies in
Proposition 1.1,

{1=#0 t1�
13&3 - 17

4
, q=

{1(1&{2)
{2(1&{1)

�
1
2

.

Hence

rk+1&rk=
1
#0

(\k+1&\k)�\1
2+

k&1

b=\1
2+

k&1 1&2#0(;0&;1)
1&#0(;0&;1)

;0 ,

and we obtain the point estimate on &xk+1&xk&. The point estimate on
&xk&x& is obtained in a similar way. K

Remark 3.1. Proposition 3.1 implies a RF-:-theorem using the Smale's
invariant #( f, x0). The next section proves under the same assumptions that
the S-sequence also converges.

4. S-:-THEOREM

In this section we consider A=Df (x0) and the universal function h(t)
with

b=
1&2#(;0&;1)
1&#(;0&;1)

;0 , g=#.

Let us consider the sequence (sk)k�0 with s0=0 and s1=;0&;1 .
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S-:-Theorem 4.1. Let x0 and x1 be two points given in E such that
Df (x0) is invertible. Under the assumptions

v 2# &x1&x0&<1

v b#<3&2 - 2

v 0�;0&;1�t1 ,

it follows:

(1) The function h(t) has two positive roots, t1<t2 , and the sequence
(sk)k�0 converges towards t1 , as is stated in Proposition 1.2.

(2) The analytic function f possesses a zero ` # B(x0 , t1).

(3) The S-sequence is well defined and converges towards `. Moreover,
for k�1,

&xk+1&xk&�sk+1&sk and &xk&`&�t1&sk .

Proof. The structure of the proof is similar to the proof of the
RF-:-theorem. We proceed by induction. The point x2 is well defined as in
the proof of the RF-:-theorem with

&x2&x0&=;0=s2&s0 and &x2&x1&=;1=s2&s1 .

Since ;0&;1�t1 the sequence (sk)k�0 converges towards t1 as described in
Proposition 2.2.

Let us suppose now the xj's exist for all j, 2� j�k and satisfy

&xj&xj&1&�sj&s j&1 .

We first prove that xk+1 is well defined and verifies &xk+1&xk&�
sk+1&sk .

We have

&xk&x0&� :
k

j=3

&xj&x j&1&+&x2&x0&� :
k

j=3

sj&s j&1+s2&s0=sk .

This implies &xk&x0&<t1<(b#+1)�4#. Since b#<3&2 - 2, it follows
# &xk&x0&<1&- 2�2. This inequality also holds for k&1. Consequently,

# &xk&x0&<1&
- 2

2
<1&

1
2(1&# &xk&1&x0&)

.
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Hence the inequality

2(1&# &xk&x0&)(1&# &xk&1&x0&)&1>0

holds. By Lemma 2.3, part (2) applied at the points xk , xk&1 , x0 , the
operator [xk , xk&1] f is invertible. Hence the point xk+1 is well defined.
Moreover, we have the following point estimate:

&[xk , xk&1] f &1 Df (x0)&�
(1&# &xk&x0&)(1&# &xk&1&x0&)

2(1&# &xk&x0&)(1&# &xk&1&x0&)&1

�
(1&#sk)(1&#sk&1)

2(1&#sk)(1&#sk&1)&1

�
&1

[sk , sk&1]h
.

We now prove &xk+1&xk&�sk+1&sk . We have

&xk+1&xk&=&[xk , xk&1] f &1f (xk)&

�&[xk , xk&1] f &1 Df (x0)& &Df (x0)&1 f (xk)&.

We have previously obtained an upper bound for &[xk , xk&1] f &1 Df (x0)&.
Lemma 2.4 gives an upper bound for &Df (x0)&1 f (xk)&. More precisely, for
k�2

&Df (x0)&1 f (xk)&�
# &xk&xk&1& &xk&xk&2&

(1&# &xk&x0&)(1&# &xk&1&x0&)(1&# &xk&2&x0&)

�
#(sk&sk&1)(sk&sk&2)

(1&#sk)(1&#sk&1)(1&#sk&2)
.

From Lemma 1.3, this last quantity is equal to h(sk). Finally the previous
point estimates imply

&xk+1&xk&�
&h(sk)

[sk , sk&1]h
=sk+1&sk .

Hence the theorem follows easily. K
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Proof of S-:-Theorem 0.2. It is a corollary of Theorem 4.1. Under the
assumption b#�(13&3 - 17)�4, the quantity q of Proposition 1.2 is
bounded by 1�2. Moreover, always by Proposition 1.2, we have

sk+1&sk�
1
#

(_k+1&_k)�\1
2+

ik&1

b.

We end this proof by straightforward computation. K

5. RF-#-THEOREM

In this section we prove a general RF-#-theorem. Here ` is a zero of f.
The goal is in estimating the radius of a ball centered in ` containing RF
approximate zeros with respectively the quantities #( f, [`, x0] f, `) and
#( f, Df (`), `).

We first state a RF-#-theorem relative to the quantity #( f, [`, x0] f, `).

Theorem 5.1. Let x0 , x1 be given in E and, ` be a zero of the analytic
function f. Let us consider the quantities u=#( f, [`, x0] f, `) &`&x0& and
v=#( f, [`, x0] f, `) &`&x1& such that

R(u, v)=
u

1&u&2v+uv
<1.

Then the RF-sequence (xk)k is well defined and converges towards x with

&`&xk&�R(u, v)k&1 &`&x1&, k�1.

The RF-#-theorem relative to the quantity #( f, Df (`), `) is

Theorem 5.2. Let x0 , x1 be given in E and ` be a zero of f. Let us
consider the quantities u=#( f, Df (`), `) &`&x0& and v=#( f, Df (`), `)
&`&x1& such that

S(u, v)=
u

1&2u&2v+2uv
<1.

Then the RF-sequence (xk)k is well defined, and converges towards ` with

&`&xk&�S(u, v)k&1 &`&x1&, k�1.

The proof of these RF-#-theorems needs some preliminary results.
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Lemma 5.1. Let L be a k-multilinear symmetric application from Ek into
L(E, F ). For all z1 and z2 given in E, we have

|
1

0
((k+1) L(tz1+(1&t) z2)k&Lzk

1) dt

=|
1

0
(k+1) :

k&1

i=0 \
k
i + t i(1&t)k&i Lz i

1 zk&i
2 dt.

Proof. Since L is a k-multilinear symmetric, we have

(k+1) L(tz1+(1&t) z2)k&Lzk
1)

=(k+1) :
k&1

i=0 \
k
i + ti(1&t)k&i Lz i

1zk&i
2 +((k+1) tk&1) Lzk

t .

Hence the lemma follows easily. K

Lemma 5.2. Let A be an invertible bounded linear operator from E into
F. Let ` be a zero of f. For x0 and y given # E, we introduce the quantities
u=#( f, A, `) &`=x0& and v=#( f, A, `) &`& y&. Let us suppose 1&u>0
and 1&v>0. Then we have

&A&1([ y, x0] f ( y&`)& f ( y))&�
u

(1&u)(1&v)
&y&`&.

Proof. We have simultaneously

[ y, x0] f =|
1

0
Df (ty+(1&t) x0) dt

=Df (`)+|
1

0
:

k�1

Dk+1f (`)
k !

(t( y&`)+(1&t)(x0&`))k dt,

and

f ( y)=\Df (`)+ :
k�1

Dk+1f (`)
(k+1)!

( y&`)k+ ( y&`).
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From Lemma 5.2 with L=Dk+1f (`)�(k+1)!, z1= y&`, and z2=x0&`,
the quantity A&1([ y, x0] f ( y&`)& f ( y)) is equal to

|
1

0 \ :
k�1

(k+1) :
k&1

i=0
\k

i + ti(1&t)k&i

_
A&1Dk+1f (`)

(k+1)!
( y&`) i (x0&`)k&i+ ( y&`) dt.

We obtain successively with #( f, A, `),

&A&1([ y, x0] f ( y&`)& f ( y))&

�|
1

0
:

k�1

(k+1) #k :
k&1

i=0
\k

i+
_ti(1&t)k&i &y&`&i &x0&`&k&i dt &y&`&

�|
1

0
:

k�1

(k+1)

_#k((t &y&`&+(1&t) &x0&`&)k&&y&`&k tk) dt &y&`&

�|
1

0 \
1

(1&tv&(1&t)u)2&
1

(1&tv)2+ &y&`&

�
u

(1&u)(1&v)
&y&`&.

Hence the lemma is proved. K

We next define the following functions of two real variables:

,(u, v)=1&u&2v+uv, R(u, v)=
u

,(u, v)
.

We state obvious properties of the function R(u, v).

Lemma 5.3. (1) For all u # [0, 1�3] and 0�v�(1&3u)�(2&u), we
have R(u, v)�1�2.

(2) In particular, for all u # [0, (5&- 21�2] and 0�w�(1&5u+
2u2)�(2&u), we have R(u, u+w)�1�2.

(3) For all u and v such that ,(u, v)>0, the function v � 1�,(u, v) is
a continuous strictly increasing function.

Proof. The proof is obvious and left to the reader.
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Proposition 5.1. Let ` be a zero of f. For x0 and y given # E, let us
consider the quantities

u=#( f, [`, x0] f, `) &`&x0&, v=#( f, [`, x0] f, `) &`& y&.

Let us suppose ,(u, v)>0. Then the point z= y&([ y, x0] f )&1 f ( y) is well
defined, and we have

&z&`&�R(u, v) &y&`&.

Proof. Let us consider A=[`, x0] f. Let us show that (1&u)(1&v)�
,(u, v) is an upper bound for &[ y, x0] f &1[`, x0] f &. The inequality
,(u, v)>0 is equivalent to (1&u)(1&v)>0. From Lemma 2.3, part (1),
the operator [ y, x0] f is invertible, and the point z is well defined.
Moreover

&[ y, x0] f &1[`, x0] f &�
1

1&v�(1&u)(1&v)
=

(1&u)(1&v)
,(u, v)

.

We now write

&z&`&=&y&`&([ y, x0] f )&1 f ( y)&

�&[ y, x0] f &1[`, x0] f & &([`, x0] f )&1 ([ y, x0] f ( y&`)& f ( y))&.

Using Lemma 5.2 which gives an upper bound for &([`, x0] f )&1

([ y, x0] f ( y&`)& f ( y)&, the result follows easily. K

Proof of the RF-#-Theorem 5.1. We proceed by induction. For k=1,
it is obvious. Let us suppose xk is well defined and &xk&`&�
R(u, v)k&1 &x1&`&. Consequently &xk&`&�&x1&`&. Hence

,(u, #( f, [x0 , `] f, `) &xk&`&)>,(u, v)>0.

From Proposition 5.1 the point xk+1=xk&([xk , x0] f )&1 f (xk) is well
defined and satisfies

&xk+1&`&�R(u, #( f, [x0 , `] f, `) &xk&`&) &xk&`&.

From Lemma 5.3, the function v � R(u, v) is strictly increasing, and we have

&xk+1&`&�R(u, v) &xk&`&.

Hence the RF-#-theorem follows. K
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Proof of RF-#-Theorem 0.3. The condition u�(1&u&2v+uv)�1�2 is
R(u, v)�1�2. From Theorem 5.1, the result follows easily. K

Proof of Corollary 0.1. Let w=#( f, [`, x0] f, `) &x1&x0&. We have
v�u+w. This implies R(u, v)�R(u, u+w). From Lemma 5.3, the condi-
tions u�(5&- 21)�2 and 0�w�(1&5u+2u2)�(2&u) give R(u, u+w)
�1�2. From Theorem 5.1 the result follows. K

To prove Theorem 5.2, we introduce the functions

�(u, v)=1&2u&2v+2uv, S(u, v)=
u

�(u, v)
.

We first have the obvious lemma:

Lemma 5.4. (1) If 1&4u&2v+2uv�0, S(u, v)�1�2.

(2) If 1&2u&4v+2uv�0, S(v, u)�1�2.

(3) For all u # [0, (3&- 7)�2] and 0�w�(1&6u+2u2)�2(2&u),
we have S(u, u+w)�S(u+w, u)�1�2.

(4) For all u>0 and v>0 such that �(u, v)>0, the functions u �
1��(u, v) and v � 1��(u, v) are continuous strictly increasing functions.

Proposition 5.2. Let ` be a zero of f. For y and z given # E, let us
consider the quantities

u=#( f, Df (`), `) &`& y&, v=#( f, Df (`), `) &`&z&.

Let us suppose �(u, v)>0. Then the point z$=z&([z, y] f )&1 f (z) is well
defined, and we have

&z$&`&�S(u, v) &z&`&.

Proof. Let us consider A=Df (`). From Lemma 2.3 part (2), the
inequality

2(1&#( f, Df (`), `) &`& y&)(1&#( f, Df (`), `) &`&z&)&1=�(u, v)>0

implies that the operator [z, y] f is invertible. The point z$ is well defined,
and we have the point estimate &[z, y] f &1 Df (`)&�(1&u)(1&v)��(u, v).
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On the other hand, we know, from Lemma 5.2 with A=Df (`), that the
quantity

u
(1&u)(1&v)

&z&`&

is an upper estimate &Df (`)&1 ([z, y] f (z&`)& f (z)&. Writing

&z$&`&=&z&`&([z, y] f )&1 f (z)&

�&[z, y] f &1 Df (`)& &Df (`)&1 ([z, y] f (z&`)& f (z)&,

this proposition follows easily. K

Proof of Theorem 5.2. Substituting , by � and R by S, and using the
previous proposition, this proof is similar to the one of Theorem 5.1. K

Proof of the RF-#-Theorem 0.4. The condition u�(1&2u&2v+2uv)�
1�2 is S(u, v)�1�2. From Theorem 5.2, the result follows easily. K

Proof of Corollary 0.2. Let w=#( f, Df (`), `) &x1&x0&. We have v�
u+w. This implies S(u, v)�S(u, u+w). From Lemma 5.4, part (3),
the conditions u�(3&- 7)�2 and 0�w�(1&6u+2u2)�2(1&u) give
S(u, u+w)�1�2. From Theorem 5.2, the result follows. K

6. S-#-THEOREM

In this section we deal with the quantities

u=#( f, Df (`), `) &x0&`&, v=#( f, Df (`), `) &x1&`&,

where ` is a zero of f, and x0 , x1 are two points in E. We also use the
function S(u, v)=u�(1&2u&2v+2uv). We will use the Fibonacci sequence
i&1=0, i0=1, ik+1=ik+ik&1 , k�0.

We first have the following

Theorem 6.1. Let x0 and x1 be given in E such that u=
#( f, Df (`), `) &x0&`& and v=#( f, Df (`), `) &x1&`& verify

1&3u&2v+2uv>0, and 1&2u&3v+2uv>0.
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Then the S-sequence xk+1=xk&([xk , xk&1] f )&1 f (xk), k�1, is well
defined and satisfies for all k�2

&xk&`&�S(v, u) ik&1&1 S(u, v) ik&2 &x1&`&

�S(u, v) ik&1 S(u, v) ik&2&1 &x0&`&.

Proof. We proceed by induction. The inequality 1&3u&2v+2uv>0
implies S(u, v)<1 and �(u, v)>0. Similarly, the inequality 1&2u&3v+
2uv>0 implies S(v, u)<1.

We have

&x1&`&=S(v, u) i0&1 S(u, v) i&1 &x1&`&=S(u, v) i0 S(u, v) i&1&1 &x0&`&.

Hence the case k=1 holds. Let us suppose that the inequalities hold for all
i, 2�i�k. Consequently &xi&`&�&x1&`& and &x i&`&�&x0&`&. Hence
�(#( f, Df (`), `) &xi&1&`&, #( f, Df (`), `) &xi&`&)��(u, v)>0. From
Proposition 5.2, the point xk+1 is well defined and satisfies

&xk+1&`&�S(#( f, Df (`), `) &xk&1&`&, #( f, Df (`), `) &xk&`&) &xk&`&.

Using the induction assumption and the definition of Fibonacci numbers,
it follows

&xk+1&`&�
#( f, Df (`), `)

�(#( f, Df (`), `) &xk&1&`&, #( f, Df (`), `) &xk&`&)

_&xk&1&`& &xk&`&

�
#

�(u, v)
S(v, u) ik&1&1 S(u, v) ik&2

_&x1&`& S(v, u) ik&2&1 S(u, v) ik&3 &x1&`&

�S(v, u) ik&1 S(u, v) ik&1 &x1&`&.

The inequality &xk+1&`&�S(v, u) ik S(u, v) ik&1&1 &x0&`& is obtained in
the same way. K

Proof of the S-#-Theorem 0.5. The case k=1 is obvious. The inequal-
ities 1&4u&2v+uv�0, and 1&2u&4v+2uv�0 imply respectively
S(u, v)�1�2 and S(v, u)<1�2. From Theorem 6.1, it follows for all k�2,

&xk&`&�( 1
2) ik&1 &x1&`&

�( 1
2) ik&1 &x0&`&. K
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Proof of Corollary 0.3. Let w=#( f, Df (`), `) &x1&x0&. We have
v<u+w. This implies S(u, v)�S(u, u+w) and S(v, u)�S(u+w, u). From
Lemma 5.4, part (3), the conditions u�(3&- 7)�2 and 0�w�
(1&6u+2u2)�2(2&u) give S(u, u+w)�1�2 and S(u+w, u)�1�2. From
Theorem 6.1, the result follows. K

7. PATH-FOLLOWING

We consider the homotopy defined in the Introduction. Remember that
the first path-following method computes the sequence (H1)

z0 , z1 given, zi+1=zi&([zi , zi&1] h i+1)&1 hi+1(zi), 1�i�k&1.

Theorem 7.1. Let us suppose that there exists g(h)>0 and =>0 such
that for all t # [0, 1] with ht(`t)=0, we have

\y, z, g(h) &y&`t &�3=, and g(h) &z&`t&�2= O g(h) &z$&`t&�=,

where z$=z&([z, y] ht)
&1 ht(z).

There exists a subdivision 0=t0<t1< } } } <tk=1 such that the following
conditions hold with `i :=`ti

:

�� z0=`0 .

�� g(h) &`1&`0&�=�2, and g(h) &z1&`0&�=�2.

�� the zi's of the sequence (H1) satisfy

g(h) &zi&`i&�=, 0�i�k.

Moreover, we can take

k=�g(h) C(h) L(h)
= |+1.

We need the following lemma to prove this theorem:

Lemma 7.1. Let a subdivision 0=t0<t1< } } } <tk=1 be given. Then

:
k&1

i=0

&`i+1&` i&�C(h) L(h).
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Proof. The identity ht(`t)=0 implies 4̀ t=&Dht(`t)
&1 ht(`t) where 4̀ t is

the derivative by respect to t. Consequently

:
k&1

i=0

&` i+1&` i&� :
k&1

i=0
|

ti+1

ti

& 4̀ t& dt=|
1

0
& 4̀ t & dt

�|
1

0
&Dht(`t)

&1 h4 t (`t)& dt

�|
1

0
&Dht(`t)

&1& &h4 t (`t)& dt

�C(h) L(h). K

Proof of Theorem 7.1. From Lemma 7.1 we have

:
k&1

i=0

&`i+1&` i&�C(h) L(h).

There exists a subdivision, 0=t0<t1< } } } <tk=1, such that the quan-
tities &`i+1&`i& are equal for i�1 and 2 &`0&`1&�&`i+1&`i&. Hence

&`i+1&`i&�
C(h) L(h)

k& 1
2

�
C(h) L(h)

k&1
, i�1.

For the value k=Wg(h) C(h) K(h)�=X+1, it follows for i�1,

g(h) &`i+1&`i&�=.

Hence g(h) &`1&`0&� 1
2 &`i+1&` i &�=�2. Choose z1 such that g(h) &z1&`0&

�=�2. At this step, we proceed by induction to prove that the zi's defined
by (H1) satisfy

g(h) &zi&`i&�=, i�1. (3)

This inequality holds for i=1. In fact,

g(h) &z1&`1&� g(h) &z1&`0&+ g(h) &`0&`1&�=.

Let us suppose now the inequality (3), for i�1, be given and prove it for
i+1. We first have

g(h) &zi&`i+1&� g(h)(&zi&`i&+&` i&`i+1&)�=+==2=.
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On the other hand,

g(h) &zi&1&` i+1&� g(h)(&zi&1&`i&1&+&`i&1&`i+1&)�=+2==3=.

By the assumption, it follows g(h) &zi+1&`i+1&�=. The inequality (3)
holds for i+1, and the theorem follows. K

Proof of Theorem 0.6. Let us verify the assumption of Theorem 7.1.
Here g(h)=#(h). Let us consider y and z such that #(h) &y&`t&�3=,
and #(h) &z&`t &�2=. Then S(#(h) &y&`t&, #(h) &z&`t&�S(3=, 2=). This
quantity is equal to 1

2 for ==(4&- 13)�6. From Proposition 5.2, the point
z$=z&([z, y]ht)

&1 ht(z) is well defined and satisfies &z$&`t&�S(3=, 2=)
&z&`t &= 1

2 &z&`t &. Hence the result follows Theorem 7.1. K

Let us recall that the second method of path-following is defined by the
sequence (H2)

z0 , y0 # B� (z0 , r) given,

zi+1= yi&([ yi , zi] hi+1)&1 h i+1( yi), yi+1 # B� (zi+1 , r),

where r>0 is given.

Theorem 7.2. Let us suppose that there exists g(h)>0, =>0, and r>0
such that for all t # [0, 1] with ht(`t)=0, we have

\z, \y, ( g(h) &z&`t&�2=, and g(h) &y&z&�r) O g(h) &z$&`t&�=,

where z$= y&([ y, z] ht)
&1 ht(z).

There exists a subdivision 0=t0<t1< } } } <tk=1 such that the zi's of the
sequence (H2) satisfy

z0=$0 , g(h) &zi&`i&�=, 0�i�k.

Moreover, we can take

k=�g(h) C(h) L(h)
= | .

Proof. The proof is similar to the proof of Theorem 7.1.
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Proof of Theorem 0.7. Let us recall that *�0, ==(3&- 7)�4&*�2 and
r*=2*(*+- 7)�(2*+- 7&1). Here g(h)=#(h). Let us verify the assump-
tions of Theorem 7.2. For this, we consider y and z satisfying #(h) &z&`t &
� 2= and #(h) &y & z& � r* . Then S(#(h) &z & `t&, #(h) &y & `t&) �
S(2=, 2=+r*). It is easy to see that this quantity is equal to 1

2 . From
Proposition 5.2, the point z$=z&([z, y] ht)

&1 ht(z) is well defined and
satisfies &z$&`t&�S(2=, 2=+r=) &z&`t&= 1

2 &z&`t &. Hence the theorem
follows. K

Let us define the quantity

#=(h)= max
0�t�1

max
z

[#(ht , [`t , z] ht , `t) : #(ht , [`t , z] ht , `t) &z&`t&�=].

We state two results of complexity of path following using #=(h).

Corollary 7.1. Let ==(13&- 145)�12t0.079867118 and g(h)=#3=(h).
Then Theorem 7.1 holds.

Proof. Let us consider y and z be such that #3=(h) &y&`t&�3= and
#3=(h) &z&`t &�2=.

Then R(#3=(h) &y&`t&, #3=(h) &z&`t &)�R(3=, 2=). We see that this quan-
tity is equal to 1

2 . From Proposition 5.1, the point z$=z&([z, y] ht)
&1 ht(z)

is well defined and satisfies &z$&`t&�R(3=, 2=) &z&`t &= 1
2 &z&`t&. Hence

the corollary follows. K

Corollary 7.2. Let ==(5&- 21)�4&*>0, g(h)=#2=(h), and r*=
2*(*+- 21)�(2*+- 21&1). Then Theorem 7.2 holds.

Proof. Let us consider #2=(h) &z&`t&�2= and y # B� (z, r*). Then
R(#2=(h) &y&`t &, #2=(h) &y&`t &)�R(2=, 2=+r=). We see that this quantity
is equal to 1

2 . From Proposition 5.1, the point z$=z&([z, y] ht)
&1 ht(z) is

well defined and satisfies &z$&`t&�R(2=, 2=+r=) &z&`t &= 1
2 &z&`t &.

Hence the corollary follows. K

8. MISCELLANEOUS

8.1. Computing a Good Point x1 . The goal is to show why

x1=x0&* Df (x0)&1 f (x0), 0�*�1,

is a good point x1 for the Regula Falsi and secant methods.
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In all of this section we will suppose Df (x0) invertible. We recall that

;=;( f, Df (x0), x0), #=#( f, Df (x0), x0), #0=#( f, [x1 , x0] f, x0),

:=;#, ;i=;( f, [x1 , x0] f, xi), i=0,1.

The two following corollaries are applications of the RF-:-Theorem 3.1
and S-:-Theorem 4.1 in this choice of point x1 . The case A=Df (x0) in the
RF-:-Theorem is studied in the following corollary.

Corollary 8.1. Let * # [0, 1], and suppose that the point x1=x0&
* Df (x0)&1 f(x0) is well defined. Let b=((1&2#(;0&;1))�(1&#(;0&;1))) ;0 .

(1) If 2*:�1&- :, then b#�:.

(2) If the inequalities

b#<3&2 - 2, and *:�
5&- 13

6
t0.2324081207

hold, then the points x0 and x1 satisfy the assumptions of the RF-:-Theorem
and S-:-Theorem.

Corollary 8.2 studies the case A=[x1 , x0] f.

Corollary 8.2. Let * # [0, 1] and the point x1=x0&* Df (x0)&1 f (x0)
is well defined. Let A=[x1 , x0] f and b=((1&2#0(;0&;1))�(1&
#0(;0&;1))) ;0 .

(1) If 2*;#0�1&- ;#0 then we have

b#0�
;#0(1&2*;#0)

(1&*;#0)2 �;#0 .

(2) If the inequalities

b#0<3&2 - 2, and *;#0�
- 2

4+- 2
t0.2612038749

hold, then the points x0 and x1 satisfy the assumptions of the RF-:-Theorem.

(3) In particular if

;#0� 19
34& 3

17 - 2& 1
34 - 44 - 2&43t0.1802953273

the points x0 and x1=x0&Df (x0)&1 f (x0) satisfy the assumptions of the
RF-:-Theorem.
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We first state

Lemma 8.1. Let us suppose 1&2:>0. For x1=x0&* Df (x0)&1 f (x0),
0�*�1, we have the point estimates

(1) ;0�
1&*:
1&2*:

; and ;�
1&*;#0

1&2*;#0

;0 .

(2) ;1�\1&*+
*2:

1&*:+\
1&*:
1&2*:+ ;.

(3) ;1�(1&*) ;0+
*2;#0

1&*;#0

;.

(4) #0�
1&*:
1&2*:

#.

(5) ;0&;1�*;.

Proof. Part (1) is a direct consequence of Lemma 2.3, part (3) and
part (4) with &x1&x0&=*;. Parts (2) and (3) provide the point estimate
obtained with the Taylor formula

&A&1f (x1)&�(1&*) ;( f, A, x0)+
*2;#( f, A, x0)

1&*;#( f, A, x0)
;,

where A=Df (x0) or A=[x1 , x0] f &1. Part (4) is easy and left to the
reader. Let us prove part (5). Under the condition 1&2:>0, and from
Lemma 2.3, the operator [x1 , x0] f is invertible. The definition of
[x1 , x0] f implies

;0&;1=&([x1 , x0] f )&1 f (x0)&&&([x11 , x0] f )&1 f (x1)&

�&[x1 , x0] f &1( fx0)& f (x1))&=&x0&x1&=*;. K

Proposition 8.1. If 1&3*;#0�0 or *:�(5&- 13)�6, then ;1�;0 .

Proof. From Lemma 8.1, parts (1) and (3), we have

;1�\1&*+
*2;#0

1&2*;#0+ ;0 .
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Hence it is sufficient to have

1&*+
*2;#0

1&2*;#0

�1.

This inequality is trivially satisfied if 1&3*;#0�0. Moreover, using the
point estimate (4) of Lemma 8.1, it is sufficient to have

3
1&*:
1&2*:

*:�1,

i.e., 1&5*:+3(*:)2�0. For *:�(5&- 13)�6 this previous inequality
holds. K

Proposition 8.2. If 2*:�1&- :, the point x1=x0&* Df (x0)&1 f (x0)
satisfies the inequality

b#=;0# \2&
1

1&#(;0&;1)+�(#;1+*:) \2&
1

1&*:+�:.

Proof. A straightforward computation shows that the function

t � t \2&
1

1&t+#;1+
is an increasing function for t # [0, 1+#;1& 1

2 - 2(1+#;1)]. From Lemma
8.1, part (5), we have ;0�;1+*;. Let us show that the condition 2*:�
1&- : implies #(;1+*;1)�1+#;1& 1

2 - 2(1+#;1).
In fact, the inequality - 2(1+#;1)�2(1&*:) is equivalent to 1+#;1�

2(1&*:)2. From Proposition 8.1, part (2), we have #;1�(1&*)((1&*:)�
(1&2*:)) :+*2:2�(1&2*:). Hence it is sufficient to verify 1+(1&*)
((1&*:)�(1&2*:)) :+*2:2�(1&2*:)�2(1&*:)2, i.e., &(1&*:)(4*2:2&
4*:+1&:)�0. Hence, we find 2*:�1&- :.

Then, we can write, with ;0#�(;1+*;)#�(1&*+*2:�(1&*:))
((1&*:)�(1&2*:)) :+:=((1&*:)�(1&2*:)):,

#;0 \2&
1

1&#(;0&;1)+�#(;1+*;) \2&
1

1&*:+
�

1&*:
1&2*:

: \2&
1

1&*:+
�:. K
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Proof of Corollary 8.1. From Proposition 8.2, the condition 2*:�
1&- : implies b#�:.

Let us prove now part (2), and verify the assumptions of the RF-:-
Theorem 3.1 with A=Df (x0). From Proposition 3.1, the operator Df (x0)
satisfies the condition (1). From Proposition 8.1, the condition *:�
(5&- 13)�6 ensures both 1&2*:>0, and ;1�;0 . On the other hand, we
know (;0&;1)#�*:�(5&- 13)�6<1&- 2�2. Moreover, we have

h(;0&;1)=
;1(1&2(;0&;1)#)

1&(;0&;1)#
>0.

From Lemma 1.4, we obtain ;0&;1<t1 .
The assumption b#0<3&2 - 2 achieves the proof of the corollary. K

Proposition 8.3. If 2*;#0�1&- ;#0 , the point x1=x0&* Df (x0)&1

f (x0) satisfies the inequality

b#0=;0 #0 \2&
1

1&#0(;0&;1)+
�(;1+*;) #0 \2&

1
1&*;#0+�

;#0(1&2*;#0)
(1&*;#0)2 .

Proof. From Lemma 8.1, ;1�(1&*+*2;#0 �(1&2*;#0)) ;0�((1&*)
((1&*:)�(1&2*:))+*2;#0�(1&2*;#0)) ;0 . As in the proof of Proposition
8.2, we can write under the condition 2*;#0�1&- ;#0

#0;0 \2&
1

1&#0(;0&;1)+�#0(;1+;) \2&
1

1&*;#0+ .

Now from Lemma 8.1, part (3) and part (5), we get ;1�(1&*)
(;1+*;)+(*2;#0�(1&*;#0);. Hence after computation

;1+*;�
;

1&*;#0

.

It follows that

b#0�
;#0

1&*;#0 \2&
1

1&*;#0+=
;#0(1&2*;#0)

(1&*;#0)2 . K
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Proof of Corollary 8.2. The first part follows from Proposition 8.3.
In order to prove part (2), we verify now the assumptions of the RF-:-
Theorem 3.1 with A=[x1 , x0] f.

We first prove that the operator [x1 , x0] f verifies the condition (1).
According to Proposition 3.2, it is sufficient to prove &x1&x0& #0 t1�
;0&;1 . Since #0t1<1&- 2�2 we show *;(1&- 2�2)+;1�;0 . In fact
using Lemma 8.1 and *;#0�- 2�(4+- 2), we have

*; \1&
- 2

2 ++;1�* \1&
- 2

2 + 1&*;#0

1&2*;#0

;0+(1&*) ;0+
*2;#0

1&2*;#0

;0

�\1+
*((4+- 2) *;#0&- 2)

2(1&2*;#0) + ;0�;0 .

Hence *;(1&- 2�2)+;1�;0 , and the operator [x1 , x0] f verifies the
condition (1).

From Proposition 8.1, the condition *;#0�- 2�(4+- 2)<1�3 ensures
;1�;0 , and ;0&;1�*;�(1�#0)(1&- 2�2).

On the other hand, since (;0&;1) #0�*;#0�- 2�(4+- 2), we have

h( ;0&;1)=
;1(1&2(;0&;1) #0)

1&(;0&;1) #0

�;1 \1&
- 2

4 +>0.

From Lemma 1.4, we obtain ;0&;1<t1 .
Finally, since b#0<3&2 - 2, all the assumptions of the RF-:-Theorem

are satisfied.
Let us show part (3). Let *=1. In order that b#0<3&2 - 2, it is suf-

ficient to have

;#0

1&2;#0

(1&;#0)2<3<2 - 2 and 2;#0�1&- ;#0 .

A straightforward computation gives the result announced. The corollary is
proved. K

8.2. Case of Polynomial Systems of Degree Two. Many applications
need to solve polynomial systems of degree two. We make precise
:-theorems and #-theorems for these systems. The universal function is in
this case

h(t)=
;0

1&(;0&;1)
&t+ gt2
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with g=#( f, [x1 , x0] f, x0) or g=#( f, Df (x0), x0). We obtain the three
following theorems.

Theorem 8.1. The N alpha theorem holds with :< 1
4 . Moreover t1� 1

3 .

Theorem 8.2. The RF alpha Theorem 0.1 holds with 0�;0&;1�t1 and
b#0� 2

9 . Moreover t1� 1
3 .

Theorem 8.3. The S alpha Theorem 0.2 holds with 0�;0&;1�t1 and
b#� 2

9 . Moreover t1� 1
3 .

Let ` be a zero of the polynomial system f of degree two. The #-theorems
become

Theorem 8.4. The N-#-theorem holds for all x0 such that #( f, Df (`), `)
&x0&`&� 1

4 . Moreover, the Newton sequence N verifies

&`&xk&�\ u
1&2u+

2 k&1

&`&x0&�\1
2+

2k&1

&`&x0&, k�0.

Theorem 8.5. The RF-#-Theorem 0.3 holds with u�(1&v)� 1
2 .

Theorem 8.6. The RF-#-Theorem 0.4 holds with u�(1&u&v)� 1
2 .

Theorem 8.7. The S-#-Theorem 0.5 holds with u�(1&u&v)� 1
2 and

v�(1&u&v)� 1
2 .

8.3. Computing the Divided Difference Operator. Let us consider x # Cn,
and let f (x)=( f1(x), ..., fn(x))=0 be an analytic system. The computation
of the operator [ y, x] f does not need the knowledge of the derivatives
Dkf (x). In fact, by definition

[ y, x] f =([ y, x]j f i)
1� j�n

1�i�n ,

with the convention

[ y, x]j fi

fi ( y1 , ..., yj&1 , y j , xj+1 , ..., xn)& f i ( y1 , ..., yj&1 , xj , x j+1 , ..., xn)
yj&xj

={ if y j{xj ,

�fi

�xj
( y1 , ..., y j&1 , xj , xj+1 , ..., xn) else.
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The interesting case is when for all j, we have yj{xj . In fact, each iteration
of the secant type method requires the evaluation of the functions fi's at the
points

(x1 , ..., xn), ( y1 , x2 , ..., xn), ( y1 , y2 , x3 , ..., xn), ..., ( y1 , ..., yn).

But, if we consider that the functions fi's have been evaluated in (x1 , ..., xn)
at the step k&1 of the iteration, then the step k needs exactly n2 evalua-
tions at the points

( y1 , x2 , ..., xn), ( y1 , y2 , x3 , ..., xn), ..., ( y1 , ..., yn),

to get the operator [ y, x] f.
Comparatively the Newton method requires the evaluation of n functions

and of n2 partial derivatives at each step. In conclusion the secant type
methods may be used when the evaluation of the derivative is difficult, or
when the functions are not known explicitly, but are, for example,
evaluated by straight line programs.
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