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Secant type methods are useful for finding zeros of analytic equations that
include polynomial systems. This paper proves new results concerning contraction
and robustness theorems for secant maps. It is also shown that numerical path-
following using secant maps has the same order of complexity that numerical path-
following using Newton’s map to approximate a zero. Such an algorithm was
implemented and some numerical experiments are displayed.  © 2000 Academic Press
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1. INTRODUCTION
Let f be an analytic function
ffE->F

with E and F two real or complex Banach spaces. In the recent book
“Complexity and Real Computation” [ 1, Chap. 8] the authors investigate
the Newton method in a modern exposition: they give conditions of con-
vergence to a root of f on a fixed input. This analysis is done with the
quantities

Bf. x)=Df(x) " f(x)l,

D —le 1/(k—1)
20 = sup (L2 DL
k=2 .
a f, x) = (f. x) y(f, x),
286

0885-064X/00 $35.00
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.



SECANT MAPS 287

with x € E such that Df(x) ! exists. The Newton map is denoted by

Ny(x)=x—Df(x)~" f(x).

the way proposed in [ 1] consists of three points.

(1) The computation of a ball centered in a root { of f which only
contains approximate zeros. More precisely

N-GaMMA THEOREM [ 1, p. 156]. Suppose that f({) =0 and that Df({) "
exists. If

\

lx =l < (f C)

then x is an approximate zero of f with associated zero {, i.e., the sequence
Xo =X, Xpei1=Np(xp), k=0,

is well defined and satisfies
lee—Cl <(* " Ix =Ll k>0

(2) The computation of a ball in which N,is a contraction map.

N-CoNTRACTION THEOREM [ 1, Corollary 2, p. 164]. Let xe E and u>0
such that the two conditions hold.
(1) c=2(al f, x) +u)Y(u)* <1, with Yy(u) =1 —4u+ 2u*
(2) alf,x)+cu<u.
Then Ny is a contraction map of the ball B(x, ;) into itself with contrac-

tion constant c. Hence there is a unique root { of f in B(x, ;7~;) and for all
Y€ B(X, 5/~) tend to { under iteration of Ny.

(3) The computation of a neighborhood of a fixed input x which
is contained in the ball of the N-Gamma Theorem. So

N-ROBUST o THEOREM [ 1, Theorem 4, p. 164]. Let uy and o, be two real
positive numbers such that

;g tup) 1
(1) co:= (1) <2.

(2) ag+ coup<uy.
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) <1ico+ “) <w<a0/(1 —co)xll o/l —c0>)> < _2ﬁ'

1 1
@ o — el —ag/(1—co)) < 2¢y"

If a( f, x) <ay then there is a root { of f such that

i <x’ y(?x)) =7 <§’ ;f@)

and N, maps B(x, %) into B((, %) with contraction constant less than
or equal to 1/2.

The first goal of this paper is to give a contraction theorem and a robust
o theorem for secant type maps. The secant type methods to solve numeri-
cally analytic equations have been studied in [3]. In this paper the author
defines the divided difference operator for analytic functions

[y, x]f= Z ) (y—x)<!

k=1

which satisfies the functional equation

S()=f(x)=(Ly, x]1 /)y —x).

Moreover [ x, x] f = Df(x).
If ([ y, x]/) " makes sense we introduce the secant map

Sp(y, x) =y = ([, x1) 7 f(y)=x— [y, x1/)"" f(x)
We also will denote for x fixed
Ry (y) =Sy, x).
Then we can define two sequences: the Regula Falsi sequence
Xg, X1 given in E, Xier1 =Ry 5, (x0), k=1, (RF)
and the secant sequence

Xg, X; given in E, Xpp1=Sp(Xp, X 1), k=1 (S)
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Using a-theory we will given new conditions so that these two maps are
contraction maps.

THEOREM 1.1 (RF-Contraction). Let x€ E and u>0 such that

1—u

l—u
<u, d , 1.
[ XS XIsuand e e Ty AU X <
Then
(1) Ry maps B(x, ;) into itself.
(2) Ry, is a contraction map in that ball with contraction constant
(1 —=u)/(1=2u)* (1—=3u)) o f, x).
(3) There is a unique root { of f such that
u
[x =l <——F—.
2/ x)

With restrictions on a(f, x) and u, the ball B(x, ;) is composed of
approximate zeros. More precisely

THEOREM 1.2 (RF-Robust « Theorem). Let u,, o be two real positive
numbers such that:

o 1 —u, 1
D 0= T 20 (1 3ug) =2

1 —u,
(2) l_zuoaoguo.

%o 1 > 3—\ﬁ

3 < .
) <”°+1—c0><w<ao/(1—co))<1—ao/<1—con <
(4) 1 :

o (1= o)) (1 — (/{1 — o)) ~ 265"

If o f, x) <y then there is a root { of f such that

(s sim)=a( 35)

Moreover Ry . maps B(x, %) into B(C, %) with contraction constant
less than or equal to 1/2.
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This previous result is a better criterion than one given in the N-robust
o theorem since we can have simultaneously ((1 —u)/(1 —2u)* (1 —3u))
o £, x) <1 and 2(a( £, x) 4+ u)/p(u)* > 1.

We now state a contraction theorem for the S, map.

THEOREM 1.3 (S-Contraction). Let x, € E and uy>0 such that

WY(up)(1 —uy) —4uy > 0.

Suppose
2ol f, x0) + t10)(1 — 11y)? 2o
1 1= 1.
= o) (1 — o) —duo)® T W)L —ttg) — g~
by UmmP ol 3G 2u) _
Vo)
Then

U U . U
(1) S;maps B(x,, —y(ﬁ"m) x B(x,, 7y(ﬁ°xU)) into B(x,, 7y(ﬁ°xU)).
Is a contraction map with contraction constant c.
2) S, tract p with contract tant
(3) There is a unique root { of f such that

Up

(fs xo)

2o = LIl <

As corollary, we have a robust result for the S, map.

THEOREM 1.4 (S-Robust o« Theorem). Let u,, oy be two real positive
numbers such that:

2otg + 11g)(1 — t1g)? 2, 1

(D) o = o) (T — o) — o) T Plutg) (1 —ug) g~ 2

(1 —uo)® otg + g (3 — 2uy)

‘p(uo) < tho.

X | )57
Hao/ (eI —ag/(l—cg)) S 2
1 <L

o (1 — el (1 —ao /(1 —co)) ~ 260

(3) <u0+ o
1—cq
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If o( f, xo) <oag then there is a root { of f such that

Uy 3—\ﬁ
BG“wﬁmQ BGHMﬁQ>

U, 20 o MO .
Moreover Sy maps B(Xo, 5755) X B(Xos 5c750y) into B((, 577) with contrac-
tion constant less than or equal to 1/2.

The second part of this paper is devoted to studying the complexity of
finding one zero of f with numerical path-following using the secant type
method. For that consider the homotopy

Ji(x)=f(x)=1f(xo),  1€[0,1].
Suppose also there is a regular curve {, € E, i.e.,
Ve [0, 1], f.(L,)=0, and Df,(¢,) ! exists.
Consider the sequences t,=1>1¢,> --- >, and
Vo € B(x¢, 1), y; € B(x;, r), Xip1=38z, (Vi x), 0<i<k—1,

with r>0 and f;= f,. Denote {;=(, and define the following quantities:

1) y=maxo<, <17/, (o),

2) B=max(maxo<, <[ D) fzo)ll, 1), a=py,

3) let uy>0 be such that M :=1—uy(1 —2uy)/a(1 —uy) >0,
4) foru=0and r>=0, let

Py

Tl r) = (1 =3ufp(u)(1 —u))? ( yr 3u >

G (T —w) Gl —w) =y pla)(l —w)—3u
Y(u)(1 —u) —yr
Y(u)(1—u) —2pr

The interest to deal with this homotopy is that D*f,(x)= D*f(x) and
W f,, x)=7p(f, x). This property does not hold for linear homotopy
hi(x)=(1—=1) ho+ thy(x).

The complexity of this numerical path following is given by

THEOREM 1.5. Let 23>0, r;=2XA+/7)/2+/7—1) and uy=0 be
such that:

I

(1) < ="

4
(2) T(ugy,ry) <

SR,
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For t;=M' the sequence x,-+,~=Sfi+l(y,-,x,-), with y; € B(x;, r,/y), i<k, is
well defined and satisfies

(1) Forall i<k, x; is an approximate zero of f with associated zero {;.
(2) Bfix)<2pM', 0<i<k.
(3) Moreover for

o1 —ug) >< 1 >
k l+——— (1 In —+1
>< +u0(1—2u0) nf+ln s+
where ¢ >0, one has

B(Jf. xi) <e.

Hence one can find a subdivision of the interval [0, 1] such that ¢,= M’
and each point x;, 0 <i<k, is closed of the curve {,. On the other hand,
for =0 and y,=x, we get as a limit case, the complexity of numerical
path following using the Newton map.

Theorem 1.5 is more precise than the one stated in the unidimensional
case [1, Theorem 2, p.174] which does not state that the x;’s are
approximate zeros of f with associated zero as {;’s.

As application of this result, we suggest a practical algorithm to
approximate one zero of a polynomial or analytic system in C™:

SNPF ArGorIiTHM (Secant Numerical Path Following).

Inputs: u>0,e>0,r>0, f be an analytic system in C”".
X, €C".
to=1; ti=1—u
while 7, >0 do
k=1; x;=x,; y; € C" be such that ||y, — x| <r
while £ <[nIn(10)7 and [[([y;, x;1/,) " £, (x1)] e do
x1=sfll(y1,x1)
y, € C” be such that ||y, — x| <r
k=k+1
end
I [([yi, i 1/,) " £, (x)I <& then
If t;, =0 then return
else r=1¢,; t,=max(t;—2(to—1,),0); to=1t xo=x,;; end
t0+t1
else 1, ="5—"; end
end
Output: x,.
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This algorithm constructs the following subdivision of the intervall
[0,1]
max(t;—2(t;_,—1;), 0)
i (I[yiz1s xi21] fti)_lfti(xi—l)H <e

i1+
2

t0=1, ll=1—u, [i+l=

else.

We nest compute for any value of 7, at most nIn(10)+ 1 iterates
x1:=8,(y1,x;) and we choose a new y, in the open ball B(x,,r) if the
condition ||([ y;, x1]ft1)_1 S, (x1)] <e is not satisfied.

The real numbers M :=1—u and r are not calculated as it is defined in
Theorem 1.5. Using this result we will prove that the previous algorithm
produces an approximate zero x; of f with associated zero (.

We will illustrate this algorithm with some examples of classical systems.

2. POINT ESTIMATES

To read ecasily this paper we first remember some technical lemmas.

SUMMATION LEMMA [1, LEMMA 3, p. 161]. For all 0<t<1, and k=0,
we have ;- o (KT t'=1)(1 — 1)1,

From [2, p. 196, Theorem 1.16] we derive the following

VON NEUMAN PERTURBATION LEMMA. Let A be a bounded linear map
from E into F. If |I—A| <1 then A is invertible and

AN <———.
4= T A|

From [ 1, Proposition 5, p. 163] we can state the following

Fixep PoINT LEMMA 1. Let F a contraction map defined from a open
ball B(x,r) into itself with contraction constant ¢<1. Then there exists
(e B(x, r) such that F({)={ and

1
I¢=xl < 7 IFx) =],

We finally remember
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LemMmA 2.1 [1, Proposition 3, p.160]. Let x, ye E and u<1 —ﬂ/Z.
For all y such that u= |y — x| y(f, x), we have

() B y) 1(—(<1—u B ) + = x|

)
_hx)
(2) y(fiy)< b1 —a)

) (1—u)of, x)+u
(3) alfy <=0

Lemma 2.2. Let x, y, X1, y1 €E and u=y(f, x) |x—y|, u;=y(f, x)

Ix—x1ll, vi=2(f; %) |y —=will, v=2(f, x) |x = 1. Let us suppose that the
previous quantities are strictly less than 1. We have

uy + vy —uy(vy +u)
(1) 1D Ly ] £ = D] )] € SRt

—1 Mtv—imy
(2) IDf(x) ([yl,xl]f—Df(X))HS(l_ul)(l_v)-

Moreover if 2(1 —u;)(1 —v)—1>0 then

(I—u)(1—v)

() M1/ DO <300 o

Proof. (1) We have successively
[yix /=0 x1f
1
= |, DAty (1= 1) x) = Dftty +(1 =) x)) s

—f S (k+1) DEHf(ty +(1—1) x)

k
0 ¥ k+1) (t(y1 =)+ (1 =1)(x; —x))* dt
[ kit 1\ D ()
_jokgl(kJrl)(Eo( i >(k+i+1)!

x1'(y—x)" (((yy—y)+ (1 =1)(x, —X))k> d.
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Consequently using the summation lemma, we obtain
IDf(x) = (L ye, xi 1/ = [y, X1
<jl ¥ e (3 (1

i>0 !

) (m)") (toy 4+ (1 —1t)uy)* dt

> (k—l—l)tlu)m(tvl—i-(l—t)ul)kdt

1 ] I
gL <(1 “—m,—(1 —Z)u1)2_(1—tu)2> i

- u;+v,—uy (v, +u)
S (l—u)(1—v,—u)(1—u)’

(2) This part follows (1) with x = y.

Part (3) follows from the Von Neuman perturbation lemma. ||

3. CONTRACTION AND ROBUSTNESS THEOREMS WITH R,

In this section we prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. From Lemma 2.2, part (3) with u; =v=u, we
have

HRf,x(y)—XH=H([y,XJf)‘lf(X)\
Ly, x1/)7 DA IDf ()~ f(x)]

1—u

mﬂ(ﬁ X).

X

Since 1= B(f, x) < <5f=> We have proved R, . (B(x,r))=B(x,r) with

==
705
We now prove that R, , is a contraction map with contraction constant

(1 —u) a(f, x)/(1 —2u)? (1 —3u). We have
IR, (y) =Ry ()| <[z x1/ " Df(x)|
IDfF(x) = ([, x1f =Lz X101 1Ly, x1f 7P DA IDF(x) =" f()]l.

From Lemma 22 with z:=y,, u;=0, y(f,x)|y—x[|<u and y(f, x)
|z — x| <u, each term of the previous inequality is bounded by
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I A XJf LDf (%)) < 755
 |Df(x [y,X]f [Z x]1 O <oy /(1 —vy—u)(1 —u).
* H[y,x]f ' Df(x 1 2

Finally,

L—u p(fix)llz—yl 1—u
1—-2u (1—=vy—u) 1-2u

IRy, (¥) = Ry (2) Il < B(f. x)

1—u
<
(1—=2u)*(1-3u)

o f,x) llz—=l,

since v, =y(f, x)|y — z|| <2u. We are done. ||

Proof of Theorem 1.2. From Theorem 1.1 and assumptions (1) and (2)
of Theorem 1.2, there is a root { of f'in B(x, ;7 x)) From the point fixed
lemma, the inequality

B(f. x)

—{I<
¢l -

I = Ry, (x)] =

I—co

holds. By the triangle inequality, for any y in the ball B(x, 575;), it follows

Ug (S, x)
ly =i <lly —xll+ x =< <SSTa T 1o
Hence
W(fox) Iy =Ll < 0+°;(f’ x),
e

On the other hand by Lemma 2.1, part (2) we have

WED _ !
200 W0 x) =D = (/) =<l

1
S Voo /(1 — o)1 —og/(1 o))

Hence by assumption (3)

_ %o 1 > 3—ﬁ
0 =01 (o 120 ) (e e <
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Then ye B({, (3 —\ﬁ)/2y(f, {)). The point y is an approximate zero of f
and B(x. uo/y(f. x)) = B(C, (3—1/T)/2)(f. {)). Moreover if y e B(x. uo/y(: x))

then ||y — || <2uy/y(f, x). From assumption (4) we get
PO IRy, o (3) = LI <p(f. 8 co |y =L

< 2¢qugy(f, )
(/s X)

< 2¢coUy 1 % N\ _
\wo/(l—c()))( _1—c0>\”"‘

Hence R/ , maps B(x, %) into B({, %) with contraction constant less
than or equal to 1/2. |

4. CONTRACTION AND ROBUSTNESS THEOREMS
FOR THE MAP S,

We first state a point fixed lemma concerning the contraction map
defined from B(x,, r) X B(x,, r) into B(x,, I).

FIxep POINT LEMMA 2. Let a contraction map G be defined from
B(xq4, 1) X B(xy, r) into B(x,, r) with contraction constant ¢ <1, i.e.,

1G(y1> x1) = G(x, p)| < cmax([lyy — pll, 12y —x]).

Then there exist { such that G({, {)={ and

1
€=l < 7 1G(x0, Xo) —Xoll.

Proof. Let the sequence be defined by
X1 = G(xg, Xo), Xp1=G(x,, X, 1)
Since G is a contraction map, it is easy to prove by induction
X254 1= X5 | S €? [X1 — X0
and szp*xzp—lugcp [x1—xol, p=L
Consequently
2p+2q

c?
Hx2p+2q+l_x2qH< Z Hxi+1_xi‘|<EHxl_x0H-
i=2q
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A similar inequality holds for |x,, 5, —X,,[. Hence the sequence (x,) is
convergent and

1
[{— ol <17_C [x1—xoll. §

To prove the map S, is a contraction, we estimate the norm of
its derivative DS,(y, x). Remember the norm of a linear operator 4 onto
E is |Al =sup,_yy [[4x[|. The proofs of Theorems 1.3 and 1.4 need the
following

Lemma 4.1. Let xo and uy as be defined in Theorem 1.3. In particular we
have

(1) (1 —ugy) —4uy > 0.

Let us consider x, y, xy, y1 € B(x,, %) and u=y(f,x) |x—yl, u; =
Yo x) Ix = x1ll, vy =p(f, %) |y = y1ll and v=p(f, x) [lx — y4ll.

(1) 1S (y1> x1) = Sp(y, Xl

(I —u)(1—v) < 2a( f, x)
T2(1—u))(1—v) =1\ (1 —u)(1 — v, —u)(1 —2u)
Uy +0v—uv U
g L (=l 1y~ )
20( f, x) u
@) IDS, (5.3 < s T
2(al f; xo) + uo)(1 —p)* 2u,

(3) IDSA(y, x)lI <

(Pl1to) (1 —11g) —ttg)?  (utg) (1 — 10g) — A’

Proof. (1) Expanding f(y,) we have

Sf(yla xl)_Sf(y’ X)
=x1—([y1, 1 107 fx) =x+ ([, x1/) 7 flx)

=y, x, 1) (([yl,xl]f—[y,X]f)([y,XJf)_lf(X)

k
1S = DA —x) — X Df(x)(xl—x)k)

!
is. K
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Multiplying judiciously by Df(x)~! Df(x), we get from the triangle
inequality

ISr(y1, x1) = Sp(3, X)|
<ILyesxi1/) 7 DA ()

X<|Df(X)1([y,XJf'—[y1,x1]f) Iy, x1/) 71 f()

+ IDf(x) TH(Df(x) = [y, X1 1 /)y — x)|

vy RO e,

k=2

Using Lemma 2.2, we bound each term in the previous inequality
(1 —uy)(d—0)

2(1 —uy)(1—v)—17

o |Df(x)" MLy, x1f = [yis x1 1)l

U+ v, —uy (v, +u)
S (—uy)(1—vy—u)(1—u)’

o [([y, 1)~ SOl <Ly, x1/) 7" DI 1Df () " f(x)l
1—u
1—2u

© Iy x 107" D) <

<

B(f, x), from Lemma 2.2, part (3) with u; =0 and v=u,

Uy +v—uv

¢ 1DAC) ! (DF) = Ly sy LN < s =l
| kéz ‘|Df(X)7/€l!Dkf(X)H ‘|X1—X\|k<1ilu1 x; — x|

Since u; + vy < 2p(f, x) max(||x — x|, |y — y:|) we obtain

HSf(yls xl)_Sf(y» x)|l

< (I—u)(1—v)
2(1 —uy)(1—v)—1

<( uy+v,—uy (v +u) l—u B )

l—u)(l—v,—u)(1l—u) 1-2u
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Uy +v—uv Uy
4y = o)
(1)1 ) 22,
T2(1—u)(1—v)—1 <(1 —uy)(l —v;,—u)(1—2u)

piateome )ma (lx —x1ll 1y — 1)
X(|x = x4, ly— .
I—up(l—0v) 1—u, il =01

(2) When (x4, y;)— (x, y) we have u; —» 0, v; >0 and v - u. From
(1) we have

Sf(ylaxl)_Sf(yax)

- 20 f, x) N u
G y1) = (6 ) Max( || x —xq, [y — )

S(1=2u)? 12

IDS;(y, x)Il =

(3) From (2) and Lemma 2.1, part (2) we have

' 2uy
w=s0) =Xl AUy = %ol = ) < o

using Lemma 2.1, part (3) we bound a( £, x) by (a( f; xo) + t4g)/W(1)* Then
we get part (3) of this lemma. |

Proof of Theorem 1.3. (1) We first prove S, (y, x)e B(x,,r) for x,
yEB(XOa }"),

Sp(y,x) —xg=x—xo— ([ 1, x]1f) 7" f(x)

T (([y, ¥/ = Df (o)) (x — o) — f(xo)

_y Dkf(x")(xo—x)k>.

!
is2 K

Since p(f, xo) | x —xol <uo and y(f, xo) [y — Xol <uy, it follows

o Iy, x1f 7" Df(xo)l <(1—up)*/p(uo (Lemma 22, part (3) with
u; =v<uy and the function u — (1 —u)?/jy(u) is an increasing function for
O<u<1—/2/2).

o IDf(x0) “H(Ly, X1 f — Df (xo)) || < (2 —up) tp/(1 — 1), Lemma 2.2,
part (2) with u; = v <u,.



SECANT MAPS 301
Hence
I1S£(y, x) = Xo
<Ly, x1/ 7" Df(x0)| <|Df(x0)1([y,x]f

= Df(xo))ll x = xoll + [1Df (o) =" f(xo)
—1 nk
Ly 1Df(xo) " D7 (xo)ll |x0—x|k>

k!
k>2
(1 —uo)? ((2—uo) ug "y
S Y(uo) < (1 —u,)? Ix = xoll + A/, x0)+1—u0 |X—x0>
<(1 —ug)? B(f; xo) + 1o (3 —2up) Hx_xOH.
Y(uo)

By assumption (2) this previous quantity is less than uy/y( f, x,). In conclu-
Sion Sf(y7 -x) € B(x05 uO/y(f; xO))'
(2) Prove now the contraction constant is ¢. We have

HSf(J’bxl)*Sf(y;x)H
< max [ DSp(y,, x5 [[max({lx — x|, [y — y4ll).

X, Vo € B(xo, r)

Applying Lemma 4.1, part (3) we are done.
(3) From Fixed Point Lemma 2 there exists (€ B(xq, uo/y(f, Xo))
such that S,({, ()={ |1

The proof of Theorem 1.4 uses Theorem 1.3 and Fixed Point Lemma 2.
It is similar to the one of Theorem 1.2 and left to the reader.

5. NUMERICAL PATH-FOLLOWING USING THE SECANT MAP

Consider the notations given in the Introduction. We need some lemmas.
The first is a consequence of [ 3, Theorem 7].

Lemma 5.1 [3]. Let A=0and u=(3—./7)/4—2/2>0. Let { be a zero

of f and r,=20(A+/1)(2A+/T—1). For all xeB( u/y(f,{)) and
yeB(x,r,/y(f,0)), the point z=S;(y, x) is well defined and verifies

Iz =l <zlx =]
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Remember y =max,, < y(f. {,).

LemMa 5.2. Suppose the assumptions of Theorem 1.5 hold. Let i be
given and y; € B(x;,r;/y), x,-+1=Sﬁ+l(yi, x;) be well defined such that
Y X=Xl <3ug and y ||x;— ;|| <ug. Then

B(Sfiv1s Xiv1) < T(ug, ;) B(fir1, X; ﬁ(f1+1=x)

Proof.  We have

Bfists Xiet) = IDfii(xi1) ™! i1 (xig 1)l
<IDf i1 (i) T Dt () DS ig 1 (x0) 7" fi 1 (xag )|l
We first bound [ Df;,;(x; 1) ™" Dfi1(x)[l. We know y(fipy, x)=y(f, X).
Remember {, ={;. Since p(f,{;) <y and ylIx;— |l <uy, we have from

Lemma 2.1, part (2), y(f, x;) < p/¥(uy)(1 —uy). Using Lemma 2.2, part (3)
with y, =x; :=x;,, and x :=x; we get

(1 =p(f x) x40 —x,)?
(s x) x40 —x:0) )

IDfie1(Xi41) ™ sz+1 I <

The function wu— (1—u)*y(u) is an increasing function when
O<u<l1 —ﬁ/z. Since y ||x; — x; 1]l <3u, we have

P(fs &) X — x|l
p(y(fs &) Ix =G =p(f &) llx =D
3u,

ST
W (uo)(1 —u)

P X)X — x| <

Hence

(1= 3up /P (uo)(1 —up))?
W (Buo (o) (1 — o))

IDfi 1 (xi00) 7" Dfia (x)] <

We now bound ||Df;, ;(x;) ™" f;41(x;41)|. From Taylor’s formula and the
definition of x;,; we have

IDfs (0™ fros (e )l < (wﬁﬁ(x,-)—l[yi, 5 S~

+ 2 ((fix) lx,-+1—x,-|)"_1> Iy X1 fis ) ™t figa ()1

k=2
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We bound each term of the previous inequality with |y, —x;| <r,.

i

1D () fror o) <L a2, part (2),

=y r,
o ) s — et LX) I

k>2 \1*)’(](, X;) ”xi+17-xi”.
* H([yiﬁxi]fi+l)7lfi+l(xi)‘|
<[y %1 fie) 7 DI DS (x) ™ fioa (x0)]

<L XD
1=2)(f.x)r,

B(fir1,Xx:),  Lemma 2.2, part (3).

We then get

X))
L—y(f, x) r;

I P(fs X)) X 00— x|l > L—y(f, x))r,
L—p(fo x) X0 =01/ T =29(f, x) 75

B R S —
Y(u) (1 —ug) —yr,  Ylug)(l —uy) —3u,
Yluo)(1 —up) —yry

’ Wuo)(1 —uo) —2yr; B(fix1sxi)

IDf (60 S (i \<

ﬁ(fi+ls xi)

Consequently B(f;, 1, X;41) < T(ug, 73) B(fir1, x)- |
LEMMA 5.3. If o<1 —1/2/2 then y |{;—ourll Sug for all i.

Proof.  We have f;({;) = f;41({;4+1) =0. By definition of f,(x), it follows

SUE) =t f(xo) = f(Liy1) —tig1 f(xo). Hence f({)—f(Civ1)=(ti—1i41)
(o).
Then
k
Gt = o) L g

=(t;—1;11) Df(Ci)_lf(xo)‘
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From the triangle inequality we obtain

1o =Gl = 2 Y I = Gl < (=t ) 1DAC) ~ fxo)-

k=2

With u=y [[{; =i p1ll, f=max(maxo<, <1 [DA(L) 7" f(xo)ll, 1) and =y,
it follows

M—Z 1/1 < 1+1)

k=2

Butt,—t, . <to—t;=1—M=uy(1 —2uy)/a(l —u,). Hence

u? :u(172u)<(1_M)a:u0(1 72u0).
1—u 1—u

The function u— (1—2u)/(1 —u) is an increasing function for ue
[0,1 —ﬁ/2]. Consequently u <u, and, we are done. ||

Proof of Theorem 1.5. (1) Prove by induction the x,’s are
approximate zeros of f; with associated zero ;. It is obvious for i=0.
Suppose y || x;— ;|| <uy and prove now that y ||x;,; — {11l <uy. By the
triangle inequality, the inductive assumption, and Lemma 5.3 we have

PIxXi =Gl <y Ix; =Gl +y 16— Egall

<ug+ug=2uy.

We know 2u0<(3—\ﬁ)/2—/1 and y; € B(x;, r;/y). From Lemma 5.1 the
point x;_; is well defined with

4

Y Ixir =Gl =y HSf,.H(yn x) =gl <5 ;=i ll <o

(2) We first establish by induction the statement

Bfi x) <(t;—t;41) P.

Since f( fy, xo) =0, the previous statement holds for i=0. For i given, we
know that the point x; is an approximate zero of f; with associated zero (.
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Then [|x;—x; | <X, =Gl +H1G=Gaall 1800 — X541 [l < 3ue. We apply
Lemma 5.2 and we get

M
Pfiv1s Xiv1) S+

2 ﬂ(f;‘+17 xi)‘

On the other hand f;, (x;) = f;(x;) + (t;—t;,1) f(xo). From the inductive
assumption we get

PSfi1s x) <SPS x)+ (ti—ti1) 1Df(x) 7" flxo)| <26, —1:41) B-

Hence

B(fivrs Xi1) < /f(f,+1, DSM(t,—t,0) B=(t; 11— 1;42) P
We prove now that
B(fis x0) < (t;—t;41) f=B(f, x;) <2MB.
One has f,(x;) = f(x;) — ; f(xo). Hence
BUfx) — 6B <B(fi, x)) <(t,—1;01) B.
So, B(f, X)) < (2t;— t141) B<2M'B. Part (2) is proved.
(3) The inequality f(f, x;) <e holds if 2M*f <e, ie.,

1 1
kIn M>1nﬁ+ln g—i-l.

From the inequality 55 <1+ for s>0, we get

(1 —ug) 1
k><1+u0(1_2u0)> <ll’lﬂ+ll’l 8+1>

We are done. ||

6. NUMERICAL EXPERIMENTS

THEOREM 6.1. The SNPF algorithm stops. A lower bound for the number
of steps is In(1+ L). The number of computation of iterates x, is bounded by
the number of steps times [ nIn(10)7.
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Proof. If the sequence (¢;) is strictly decreasing then t;=1—(2"—1) u.
For i>In(1+1) we have ¢,=0 and the algorithm stops.

In the other case, there is an index j such that [[([y,_,,x;_,]1/) "
fi(x,_DlIl<eand ([, x;1/41) " f;41(x))| > & By definition of ¢,’s and
Theorem 1.5, there exists i;,> j with ¢, < tij< t;,1 and H([J/ij_u x,},_l]f,})_1
fij(xij —1)| <& Consequently there is a strictly decreasing sequence 1>7; >
S>> and the algorithm stops. ||

The SNPF algorithm has been implemented with MATLAB. The com-
putations work with the complex numbers. A lot of examples given on the
Web site www.inria.fr/SAGA/POL have been tested. We only present
numerical experiments with random quadratic systems and a symmetric

system.
We first show an easy example how the algorithm works in practice.

ExaMPLE 6.1. Two ellipses,

3z3+223-5=0
2z2+322-5=0.
The inputs are x,=(1+2i,2+1i), u=0.1, r=0, and £¢=0.05. Here we

replace 2 log(10) by 2 in the SNPF algorithm. We give the values of 7, ¢,
and B=|([yy, x;1f) " f(x,)| before to test if f<e.

5 to B 51 to B
0.9 1 4x1073 0.225 0.3 I1x101
0.7 0.9 2x1072 0.2625 0.3 2x 1072
0.3 0.7 1x10~2 0.1875 0.2625 2x1072
0 0.3 9x 1072 0.0375 0.1875 1x1072
0.15 0.3 3x1071 0 0.0375 7x1073

We obtain x;=(0.99998 +i7 x 107, 0.999997 —i4 x 10~%) as appro-
Ximate zero.

The following table shows that the iteration number increases with the
radius of the ball B(x,, r).

r 0 01 02 03 04 05 06
nit 10 10 15 17 17 37 52

EXAMPLE 6.2. Quadratic polynomials systems,

fixeC'>f(x)=xTAx+Bx+ CeC",
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where 4 =(A4,, .., 4,) is a vector of n matrix nx n, B is a matrix n x n, and
C is a vector in C" with the convention (x7A4x);= x"4,x. The numerical
experiments consist of choosing randomly A4, B, and C and to count with
respect to n the number of variables, the following quantities:

(1) the cpu-time.
(2) the number N, of computations of iterates x,.

In each case the initial point x, is chosen randomly. For ¢=0.01 and
u=0.1, we get Figs. 1 and 2.

EXAMPLE 6.3.  Symmetric systems. Let us consider o, =3, - .

X X;, 1 <k <n for x=(xy, .., x,) and

e <ip<n

Jx)=(a,(x), ... 0, 1(x), 0,(x) = 1).

The roots of f'are the n-uplets constituted of roots of the univariate polyno-
mial z" — 1.

As in a previous example when the number n increases we get Figs. 3 and
4 with £=0.01 and u=0.1.

451

251
cpu

FIGURE 1
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The numerical experiments show the growth of cpu time is due to the
evaluation of the system at each step of the method. The number of steps
seems a linear increase in the number of steps due to the hard-coded
n log(10) bound (Theorem 6.1).

APPENDIX: MATLAB CODE

function x1=SNPF (systeme,n,u,r,eps)
xO=randn(1l,n)+1i * randn(l,n);
S=feval(systeme,xO,r); FO=S(1:1,1:n);
t0=1;tl=1-u;
while £1>=0
k=0;x1=x0;beta=2 * eps;
F=S(1:1,1:n)-t1 *F0;J=S(2:n+1,1:n);
while k<=floor(nx*1log(10)) & beta>eps
k=k+1;
correction=(J\F.’).";
xl=xl-correction; beta=norm(correction);
S=feval(systeme,xl,r); F=S(1:1,1:n)-tl1 * FO;
J=S(2:n+1,1:n);
end
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[t1,t0,beta]; %print if you want to see how the
algorithm works
if beta< =eps
if £1==0 tl:fl;
else
t=tl; tl=max(3*t1-2*t0,0);t0=t; x0=x1;
S=feval(systeme,xO,r);
end
else t1=(t0+t1)/2;
end
end
function S=two_ellipses(x,r)
S=[3*x(1)**2+2xx(2)**x2-50 2*x(1)**2+3*x(2)**x2-5];
y=x-T;
S=[8;3* (x(1)+y(1)) 2 (x(2)+y(2)
S=[S;2 % (x(1L)+y (1)) 3x* (x(2)+y(2)

]

)
)]

’
’
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