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A method to compute an accurate approximation for a zero cluster of a complex
univariate polynomial is presented. The theoretical background on which this
method is based deals with homotopy, Newton's method, and Rouche� 's theorem.
First the homotopy method provides a point close to the zero cluster. Next the
analysis of the behaviour of the Newton method in the neighbourhood of a zero
cluster gives the number of zeros in this cluster. In this case, it is sufficient to know
three points of the Newton sequence in order to generate an open disk susceptible
to contain all the zeros of the cluster. Finally, an inclusion test based on a punctual
version of the Rouche� theorem validates the previous step. A specific implementa-
tion of this algorithm is given. Numerical experiments illustrate how this method
works and some figures are displayed. � 2000 Academic Press

Contents.

1. Introduction.
2. Theoretical background and main results.
3. Algorithms and numerical experiments.
4. Proofs.

1. INTRODUCTION

Let f be a univariate complex polynomial of degree d. The purpose of
this paper is to detect numerically the existence of a zero cluster of f and
to compute an open disk containing all the zeros of this cluster. When the
computations are performed numerically, the coefficients of the polynomial
are perturbed. Then, it is well known [26] that the roots are very sensitive
to perturbations. Especially, the roots of multiplicity, say m, are decom-
posed into m roots. Therefore, in numerical analysis, it is more convenient
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to speak of clusters of zeros rather than multiple zeros. Obviously, the
problem of computation of clusters is a particular case of more general root
finding algorithms and many authors have investigated it. V. Pan's survey
[19] summarizes the history of the algorithmic approach. We will describe
a new algorithm which uses multiplicity to provide accurate outputs. This
algorithm combines Newton's method and Rouche� 's theorem. The idea to
combine Newton's method with another algorithm is not new and the
present paper can be directly connected to Ostrowski [17], Renegar [22],
Smale [24], Kim and Sutherland [14], Katz and Ying [13], Morgan et al.
[16], and Dedieu and Shub [6]. In a more general context, other authors
such as Reddien [21], Decker and Kelley [2, 3], Griewank [8], and
Griewank and Osborne [9] have analyzed Newton's method in the
neighborhood of singularities under certain conditions of regularity. For
univariate polynomials, Theorem 3 below explains why it is difficult to
obtain an accurate approximation of a cluster of m zeros. In fact, if the
Newton method is convergent, the rate of convergence is geometric with
limit ratio m&1

m . Therefore this ratio is known after many steps of the
Newton method. We will say how fast we can compute this quantity. The
knowledge of this value of m also permits modification of the Newton
method. Schro� der in [23] gives an analog of the Newton�Raphson method
for multiple roots: Ostrowski in [17, Chap. 8] (see also Rall [20]) studies
this process and the asymptotic behaviour close to a multiple root. But the
Schro� der iteration assumes knowledge of the multiplicity of the zero. For
this reason in [17], the author also determines a suitable value of the
multiplicity from numerical computations and only mentions the applica-
tion in the case of cluster of zeros. Ostrowski next performs the numerical
computations near the multiple root with an acceleration convergence rule
based on the nonmodified Newton method. But this way does not prove
the existence of a multiple root. This problem of finding numerically the
number of zeros, counting multiplicities, has been studied by Renegar
[22], who builds a hybrid algorithm around Newton's method and the
Schur�Cohn algorithm. The idea of Renegar is to note there is exactly one
zero of the derivative f (m&1) near a cluster of m zeros. Consequently the
knowledge of an approximation of this zero will give a good approxima-
tion of a cluster. This is done via Newton's method and an approximate
zero like Smale [24]. At this step, since the Schur�Cohn algorithm does
not solve the problem of the number of zeros, counting multiplicities,
Renegar approximates the winding number around the perimeter of a disk
computed previously. The use of the argument principle is a natural way
to determine the number of zeros of an analytic function, counting multi-
plicities, in a bounded domain. The difficulty is to control the discretization
of closed contour. Authors such as Katz and Ying [13] propose a reliable
numerical algorithm to do this. Morgan et al. [16] also deal with
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computations of the winding number in the context of path following methods
to solve numerically nonlinear systems of equations. The method of these
authors consists in numerically tracking a homotopy path near the singularity.
Next, a contour is generated which permits computation of the winding
number. These authors also mention the homotopy which will be used in
this paper. More recently, Dedieu and Shub [6] deal with simple double
zeros of an analytic function f of n variables. The situation of simple double
zeros can appear when the rank of the derivative is equal to n&1. The idea
of these authors is to say that the zeros of another analytic function g
sufficiently close to f are badly conditioned. When there is a simple double
zero x, this implies the existence of a certain inversible linear operator
A( f, x) associated with f and x. Then Dedieu and Shub estimate in terms
of A( f, x) the radius of a ball centered in x in which a small perturbation
g of f has two zeros, counting multiplicities.

At the moment, the general problem of describing the clusters of m zeros
of systems seems difficult and this paper will only investigate the univariate
case. This paper will give a numerical answer to the existence of a cluster.
For that, we will combine a property of the Newton sequence and a
punctual version of Rouche� 's criterion. This will avoid the computation of
the winding number by discretization of a closed contour.

On the other hand, experimental results show that the generic case for
zero clusters allows us to consider mainly full zero m-clusters which are
open disks containing m zeros of f and m&1 zeros of the derivative f $. We
will state the convergence results for this class of zero clusters.

The main items which are exploited in this paper are the following:

v The use of a certain homotopy map to compute a point close to the
cluster. This is explained in the next section.

v The behaviour of the Newton sequence at the neighbourhood of a
zero cluster. As a matter of fact, Theorem 4 will show that the Newton
sequence is close to a certain straight line. This provides an open disk
susceptible to containing the cluster.

v A new punctual version of Rouche� 's theorem, see Theorem 2. This
result will confirm if the previous disk does or does not contain the number
of zeros of f previously predicted.

We have chosen to state the theoretical results using the technical back-
ground of the :-theory of Smale, see the book of Blum et al. [1]. Particularly,
we will extend this theory to clusters of roots of univariate polynomials.
We end this introduction by a remark of Renegar [22, p. 98]:

we remark that terms like ``far,'' ``close,'' and ``cluster'' are
relative to the unit of measurement... . Then the algorithm needs
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to be able to determine the unit of measurement at which a
``cluster'' it has approximated begins ``breaking up'' into small
``clusters,'' and then approximate those smaller ``clusters.''

Our algorithm realizes this task. We also can be interested in the
simultaneous computation of all clusters. This problem is studied in
another paper by the author in [28].

2. THEORETICAL BACKGROUND AND MAIN RESULTS

In this section we only state the main theorems. The proofs will be given
in Section 4. Denote by

Nf (x)=x&
f (x)
f $(x)

the Newton map. Throughout this paper the sequence (xk)k�0 is the
Newton sequence starting at a point x0 # C.

Let m�1 be an integer and z # C. Define the two following quantities

;m( f, z)= max
0�k�m&1 }

m! f (k)(z)
k! f (m)(z) }

1�(m&k)

,

#m( f, z)= max
m+1�k�d }

m! f (k)(z)
k! f (m)(z) }

1�(k&m)

,

which extend the quantities given in [1, p. 156, 159]. Instead of ;1( f, z)
and #1( f, z) we use the notations ;( f, z) and #( f, z). We will also use the
polynomial

�(u)=1&4u+2u2,

which appears both in the notion of approximate zero and in the point
estimates of the :-theory. We give the following definition of an approximate
zero of f; see [1, p. 155].

Definition 1. Let w be a sample zero of f. A point x0 is an approximate
zero of f associated with w, if the Newton sequence (xk) starting at x0

converges towards w and satisfies

|xk&w|�( 1
2)2k&1 |x0&w| , k�0.
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Actually, the background of the previous definition is the following
#-theorem; see [1, p. 156]:

Theorem 1. Let x0 # C and u=#( f, w) |x0&w|. Suppose that u
�(u)<1.

Then the Newton sequence (xk) starting at x0 converges towards w and
satisfies

|xk&w|�\ u
�(u)+

2k&1

|x0&w|, k�0.

Moreover, if u�(3&- 7)�2 then x0 is an approximate zero of f associated
with w.

We now define the notion of m-cluster.

Definition 2. 1. An m-cluster of f is an open disk D(z, r) which
contains in zeros of f, counting multiplicities.

2. A full m-cluster of f is an m-cluster which contains m&1 zeros
of f $, counting multiplicities.

In the next lines, we generalize to the case of zero cluster the notion of
approximate zero given above for a simple zero.

Definition 3. Let D(z, r) be an m-cluster of f. For x0 # C, define um=
#m( f, z) |x0&z|. A point x0 is an approximate m-cluster of f associated
with D(z, r) if

1. there exists a real positive function .(u) such that limu � 0 .(u)
= m&1

m .

2. .(um)<1.

3. the Newton sequence (xk)k�0 satisfies

{ |xk&z|�.(um)k |x0&z|
|xk&z|�.(um)2 k&1 |x0&z|

if m>1,
if m=1,

for all k�0 such that xk � D(z, r).

The first result that we will state is a punctual version of Rouche� 's
theorem. Many authors have proposed inclusion tests for zero clusters; see
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Petkovic� [18, p. 14]. These tests exploit the results given by Marden in
[15] or compute the winding number; see Katz�Ying [13], for example.
The test given here only uses the evaluation of the polynomial Rm( f, z, r)
defined by

Rm( f, z, r)=
| f (m)(z)|

m!
rm& :

m&1

k=0

| f (k)(z)|
k!

rk& :
d

k=m+1

| f (k)(z)|
k!

rk,

with z # C and r>0. We have:

Theorem 2. Let z # C and 0<r< 1
2#m ( f, z) for some m�1. Assume that

the inequality

Rm( f, z, r)>0

holds. Then D(z, r) is an m-cluster of f.

In the case m=0, this test, is an exclusion test, i.e., the disk D(z, r) does
not contain any zero of f. It has been used in the localization of an
algebraic hypersurface; see Dedieu et al. [5] and Dedieu and Yakoubsohn [7].

In terms of the quantities ;m( f, z) and #m( f, z), Theorem 2 becomes:

Corollary 1. Let D(z, r) be an open disk such that f (m)(z){0. Assume
that the radius r satisfies 0<r<1�2#m( f, z) and that the following inequality

;m( f, z)<
1&2#m( f, z) r
2&3#m( f, z) r

holds. Then D(z, r) is an m-cluster of f.

In the following, we are mainly interested in the full m-clusters. This is
reached by the following:

Corollary 2. Let D(z, r) be an m-cluster of f such that Rm( f, z, r)>0
and 0<r<1�2#m( f, z). Denote um=#m( f, z) r and consider x such that
|x&z|=r. Suppose

;m( f, z)�
�(um)

(1&um)2+�(um)
r, (1)

then D(z, r) is a full zero m-cluster.
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We now state a #-theorem for a full zero cluster. For that purpose, we
introduce the function

{
.m(u)=

m&1+$u
m�(u)(1&(m&1)�mu)

.1(u)=
($+1) u

�(u)
,

if m�2

if m=1

with $=0 if f (z)=0 and $=1 if f (z){0.

Theorem 3. Let D(z, r) be an m-cluster of f with f (m)(z){0. Let um and
R be two positive real numbers such that:

1. um=#m( f, z) R.

2. r�umR.

3. .m(um)<1.

4. ;m( f, z)��(um)�((1&um)2+�(um)) r.

Suppose also that the set D0=[x # D(z, R) : r�um |x&z|] is nonempty.
Let x0 # D0 . Then x0 is an approximate m-cluster of f associated with
D(z, r). More precisely for all k�0 such that xk # D0 , we have

{ |xk&z|�.m(um)k |x0&z|
|xk&z|�.(u1)2k&1 |x0&z|

if m>1,
if m=1.

In Theorem 1, the quadratic convergence holds in the disk of center the
root and of radius R= u

#( f, w). In Theorem 3, the radius R of the con-
vergence disk is given by the condition .m(um)<1. If m=1, Theorem 3
generalizes Theorem 1 since z is not a zero of f. Notice that the condition
|xk&z|�( 1

2)2 k
|x0&z| holds with u1�1�2$+3�2&1�2 - $2+6$+7.

Under the assumptions of Theorem 3, we now describe the behaviour of
the Newton method. We state that the Newton sequence starting at x0 in
the neighborhood of an m-cluster D(z, r) is close to the straight line [x0 , z].

Theorem 4. Suppose that the assumptions of Theorem 3 hold with m>1.
Let (xk) be the Newton sequence starting at x0 # D0 . Introduce the sequence
( yk) defined by:

y0=x0 , yk+1&z=
m&1

m
( yk&z), k�0.
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Then, for all k�0 such that xk # D0 , we have

|xk+1& yk+1|�
(m+$) um

m2�(um) \1&
m&1

m
um+ (1&.m(um))

.m(um)k R.

In Section 3, we describe a practical algorithm for approximating an
m-cluster of f. This algorithm will use both Theorem 2 and Theorem 4.

Now the problem is to find an approximate m-cluster. This is reached
with the homotopy map defined in Blum et al. [1]. This homotopy is first
introduced in Smale [25] as global Newton, see also Hirsch and Smale
[11]. Authors such as Morgan et al. [16] use it for practical computations
of the singular solutions of nonlinear systems. Theoretical aspects of this
global Newton homotopy can be found in Guillemin and Pollack [10]. In
this paper, we will state a result of complexity to find an approximate
m-cluster. This result generalizes the theorem given in [1, p. 156]. The
global Newton homotopy is defined by

ft(x)= f (x)&tf (x0),

where x0 # C is given and t # [0, 1].
We will suppose that there exists a smooth solution curve wt on the

interval ]0, 1], i.e.,

\t # ]0, 1], ft(wt)=0, and f $t(wt){0.

The curve wt continues at t=0. We will assume w0 is contained in an
m-cluster D(z, r) of f which satisfies the assumptions of Theorem 3. If m=1
then wt is a smooth curve on [0, 1] and we will denote z=w0 . Remember
that

um=#m( f, z) R.

Given x0 # C, let us now introduce the sequences t0=1>t1> } } } >tk

> } } } >0 and

z0=x0 # C, zk+1=Nfk+1
(zk), k�0,

with fk= ftk
. Denote also wk=wtk

. We are estimating an index k0 which
provides zk0

as an approximate m-cluster of f associated with D(z, r). To
state the main result, define the following quantities for some u>0:
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1. t+ # ]0, 1] such that |z&wt+ |=R& 2u
g .

2. g=maxt+�t�1 #( f, wt).

3. b=max(maxt+�t�1|
f (x0)
f $(wt)

|, 1), a=bg.

4. M=1& u(1&2u)
a(1&u) >0.

5. T(u)=3u(�(u)(1&u)&3u)��(u)2 (1&u)2 �(3u��(u)(1&u)).

Then we have:

Theorem 5. Under the assumptions of Theorem 3 and the notations
above, suppose that u satisfies:

1. 0<u�(3&- 7)�4.

2. T(u)� M
2 .

3. r�(r& 4u
g ) um .

Let us consider the sequence (tk) defined by tk=M k, k�0. Let k0 be such
that tk0&1�t+>tk0

.
Then the following assertions hold :

1. The sequence zk=Nfk
(zk&1), 1�k�k0 , is well defined and each zk

is an approximate zero of fk associated with wk .

2. ;( f, zk)� 2(1&u) 2 b
�(u) Mk, 0�k�k0&1.

3. The point zk0
is an approximate m-cluster of f associated with

D(z, r). Obviously

k0�
log t+

log M
+1.

4. The value t+ is bounded by:

�(um)
(1&um)2

| f (m)(z)|
m! | f (x0)| \R&

2u
g +

m

�t+�
1

(1&um)2

| f (m)(z)|
m! | f (x0)| \R&

2u
g +

m

.

In the case m=1 the curve wt is a smooth curve on the interval [0, 1],
Theorem 5 becomes

Theorem 6. Let us now define g=max0�t�1 #( f, wt), b=max(max0�t�1

| f (x0)� f $(wt)|, 1), and a=bg. Suppose that:

1. 0�u�(3&- 7)�6.

2. T(u)� M
2 .

Let us consider the sequence tk=Mk, k�0 and define t+ such that |z&wt+ |
�(3&- 7)�6. Let k0 be such that tk0&1�t+>tk0

.
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Then the following assertions hold :

1. The sequence zk=Nfk
(zk&1), 1�k, is well defined and each zk is an

approximate zero of fk associated with wk .

2. ;( f, zk)�(2(1&u)2 b��(u)) Mk, 0�k.

3. The point zk0
is an approximate zero of f associated with z.

Obviously

k0�
log t+

log M
+1.

4. The value t+ is bounded by:

2 - 7&21
3

| f $(z)|
g | f (x0)|

�t+�(8&3 - 7)
| f $(z)|

g | f (x0)|
.

3. ALGORITHMS AND NUMERICAL EXPERIMENTS

3.1. Practical Fast Computation of m-Clusters

We are combining three results.

1. From Theorem 3, we know that the behaviour of the Newton
sequence in the neighbourhood of a zero cluster gives the number of zeros
of this cluster, counting multiplicities. More precisely from x0 , we compute
the Newton iterates x1 and x2 . Next we determine the integer m which
minimizes the quantity

} |x2&x1|
|x1&x0 |

&
m&1

m } .
2. From Theorem 4, we know that the direction of the zero cluster

can be found from some point by the Newton method. We are then able
to predict the existence of an m-cluster. More precisely, we compute the
point z be such that z&x2= m&1

m (z&x1), i.e., z=mx2&(m&1) x1 , and
the value r=1�2#m( f, z). The disk D(z, r) provides a probable m-cluster D(z, r).

3. Finally, Theorem 2 can be used to decide if the open disk
calculated previously in an m-cluster. that is described in the algorithm
below.
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m-cluster Algorithm.
Inputs: a polynomial f, a point x0 # C, an integer n it�2.
Compute x1=Nf (x0), k=1.
while k�nit do

Compute x2=Nf (x1)
Determine the integer m which minimizes the quantity | |x2&x1 |

|x1&x0 |&
m&1

m |.
Compute z=mx2&(m&1) x1 , r= 1

2#m( f, z) ,
x0=x1 , x1=x2 ,
k=k+1

end
if Rm(z, r)>0 then Output ``D(z, r) is an m-cluster'' else Output ``D(z, r) is
not an m-cluster''.

In the case where D(z, r) is an m-cluster, we will say point x0 provides
an m-cluster.

3.2. Numerical Experiments of m-cluster Algorithm

The numerical experiments are performed with Matlab. We first show
how the m-cluster algorithm works numerically. Let us consider the poly-
nomial of degree 24:

f (x)=(&0.0043+0.0095i) x24+(&0.0771+00092i) x23

+(&0.1022&0.2038i) x22+(0.1469+0.0528i) x21

+(&0.12760+0.850i) x20

+(&0.1038&2.3716i) x19+(1.5977+0.1609i) x18

+(&0.6833+0.0160i) x17+(&1.2528&1.2595i) x16

+(1.3196+0.3469i) x15

+(&1.4812+0.0969i) x14+(&1.2981&0.6038i) x13

+(&0.5567+0.5488i) x12+(&0.7638&0.6068i) x11

+(&0.5337&0.4766i) x10

+(&0.4883+0.4865i) x9+(&1.2791&1.3822i) x8

+(0.7608+1.1392i) x7+(&2.6292&1.1942i) x6

+(1.801&0.1687i) x5

+(&0.0016&0.0005i) x4+(0.0000136+0.0000045i) x3

+(0.0000000056&0.00000000108i) x2

+(1.3_10&11&2.9_10&11i) x

&4.0_10&14+1.0_10&14i.
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This polynomial has a 5-cluster D(0.3_10&3). The five roots given by
Matlab are

(1.48&2.11i) ', (&1.67&0.88) ', (&1.22+1.74i) ',

(1.54+0.44i) ', (0.73+1.16i) ',

with '=10&3.
The m-cluster algorithm is initialized at x0=&0.6+0.5i. Figure 1 shows

the Newton sequence (xk). We see that the xk 's are close to a straight line.
When k=10, we find that the value m=5 minimizes the quantity
| |xk+1&xk |�|xk&xk&1|&m&1�m|. Moreover, R5((&3+5i) ', 0.322)>0.
Consequently the point x10 provides an 5-cluster of f. Figure 2 shows the
points x5 , ..., x10 and the m-cluster D(&3+5i) ', 0.322). Table 1 gives the
corresponding numerical results.

Remark 1. When the m-cluster algorithm finds a cluster of zeros, we
know the number of zeros in the cluster. The radius given in this algorithm
is equal to r=1�2#m( f, z). If we are interested in the knowledge of all roots
of the cluster with a precision = it is sufficient to replace rk=1�2#m( f, zk)
by rk== in the m-cluster algorithm.

For example, if the m-cluster algorithm works with r=3_10&3 with the
same inputs as in Table 1, we find D(&3_10&7+3_10&4 i, 0.003) to be
a 5-cluster at the iteration 17.

FIG. 1. Behaviour of the Newton method at the neighborhood of the 5-cluster. Roots, +;
Newton's iterates, *.
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FIG. 2. Enlargement of the Fig. 1 with the 5-cluster. Roots, +; Newton's iterates, *.

On the other hand, if we restart the m-cluster algorithm with the previous
point z=&3_10&7+3_10&4i, the process converges towards a simple root
of f. The value after five iterations is 0.00073309350863+0.00116487319846i
to compare with 0.00073309350870+0.00116487319850i, the value given
by Matlab.

TABLE 1

Numerical Behaviour of the Newton Sequence near a 5-Cluster

k m xk zk rk Rm(zk , rk)

1 &0.600+0.500i
1 &0.512+0.430i
2 23 &0.427+0.365i 1.462&1.058i 21.672 &3e30
3 9 &0.351+0.306i 0.255&0.163i 0.133 &0.013
4 7 &0.287+0.255i 0.097&0.055i 0.151 &0.001
5 6 &0.234+0.210i 0.032&0.012i 0.667 &0.205
6 6 &0.190+0.173i 0.029&0.016i 0.663 &0.198
7 6 &0.154+0.141i 0.026&0.017i 0.673 &0.223
8 6 &0.124+0.115i 0.023&0.016i 0.675 &0.228
9 6 &0.100+0.093i 0.020&0.015i 0.663 &0.198

10 5 &0.081+0.075i &0.003+0.005i 0.322 0.002
11 5 &0.065+0.061i &0.002+0.003i 0.319 0.002
12 5 &0.052+0.049i &0.001+0.002i 0.317 0.002
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3.3. Computing m-cluster using Global Newton Path Following Algorithm

Obviously, any x0 does not permit the computation of an approximate
zero if f associated with a cluster. Here, we adapt the SNPF algorithm
studied in Yakoubsohn [27]. This algorithm is a predictor�corrector
method. For that, we need three ingredients:

1. The global Newton homotopy ft(x)= f (x)&tf (x0) where x0 # C is
given.

2. The Newton method which is used to correct numerically the
point computed at the previous step. More precisely, if zk&1 is the point at
the step k&1 corresponding to the value tk&1 , the point zk is obtained
after nit iterations of the Newton method starting at zk&1 applied to fk :

z0=x0 , y0=zk&1 , y i=Nfk
( yi&1),

1�i�nit , zk= ynit
, k�0.

Let us denote ;k=| fk(zk)�f $(zk)|.

3. The subdivision of the interval [0, 1] in connection with the value
of ; and the m-cluster algorithm:

3.1. If ;k>= then perform the m-cluster algorithm described above.
If zk is an approximate m-cluster then the algorithm stops and we have
computed an m-cluster D(z, r). Otherwise, the value of tk+1 is given by
tk+1=(tk+tk&1)�2.

3.2. If ;k�=, and tk>0 then tk+1=max(tk&2(tk&1&tk), 0).

3.3. If ;k�=, tk=0 and R1( f, zk , 1�2#1( f, zk)>0 then the disk
D(zk , 1�2#1( f, zk)) contains only one root and the algorithm stops. Other-
wise, the value of tk+1 is given by tk+1=(tk+tk&1)�2.

The result of the algorithm is an m-cluster D(z, r). A formal description
of this algorithm is given below.

Global newton Path Following Algorithm.

Inputs: f a polynomial of degree d, x0 # C, = a positive real number, nit�2
an integer.
;=2=, t0=1, t1=1&=, z0=x0

while ;>= or t0�0
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Compute the points y0=z0 , yi=Nft1
( yi&1), 1�i�n it , z1= ynit

.

;=| ft1
(z1)� f $(z1)|

if ;>=
Compute D(z, r)=m-cluster( f, z1 , nit)
if Rm( f, z, r)>0 return the m-cluster D(z, r) and stop
else replace t1 by (t1+t0)�2.

If ;�= and t1=0
r=1�2#( f, z1).
if R1( f, z1 , r)>0 then z=z1 , return the 1-cluster D(z, r) and stop
else replace t1 by (t1+t0)�2.

If ;�= and t1>0 replace t0 by t1 , t1 by max(3t1&2t0 , 0) and z0 by z1 .
end
Output: m-cluster D(z, r)

We then have the following

Proposition 1. Let f be a polynomial which has p clusters of zeros. For
all m-cluster D(z, r), m�1, let us define R such that for all y # D(z, R), y
provides an m-cluster containing the zeros of D(z, r). For all k�0, suppose
the inequality ;k�= implies the existence of a unique root wk of fk such that
#( fk , wk) |wk&zk |<1. If =�(1&- 6�3) R�2 then the global Newton Path
Following algorithm stops.

The proof of this proposition is given in Section 4.6.
Consider one more the polynomial of the numerical example given in 3.2.

We start the algorithm with x0=&3.5&3.1i and nit=3. There are 106
iterations in the algorithm. We find five zeros counting multiplicities in the
disk D(0.0107&0.013i, 0.2828) provided by the point &0.1701&0.2331i.
Figure 3 shows the numerical path-following by the iterates and the disk
D(z, r).

An application of this algorithm is to determine the basins of attraction
of each root or zero-cluster relative to the global Newton homotopy. For
each point

xjk=&5+hj+(&5.5+hk) i, 0� j, k�160, h=1�20

which belongs to the square [&5, 3]_[&5.5, 2.5], we determine the zero
provided by this initial point.

We next attribute different colors at each point following the result
obtained. For example, we decide the red color when the initial point goes
back to the 5-cluster. Each root of the polynomial is displayed in Fig. 4
with an ``*''.
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FIG. 3. Global Newton path following, nit=3. Roots of f, +; roots of f $, b ; Newton's
iterates, *.

FIG. 4. Dynamic of the Newton homotopy.
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4. PROOFS

4.1. Proof of Theorem 2

First, we state a result of separation of roots which extends those given
by Dedieu in [4] and Dedieu and Shub in [6].

Lemma 1. Let z be a zero of f of multiplicities m exactly. For another
zero w{z we have:

|w&z|�
1

2#m( f, z)
.

Proof. From Taylor's formula it follows:

0= f (w)=
f (m)(z)

m!
(w&z)m+ :

k�m+1

f (k)(z)
k!

(w&z)k.

By the triangle inequality, we get:

0�|w&z| m \ | f (m)(z)|
m!

& :
k�m+1

| f (k)(z)|
k!

|w&z|k&m+ .

Hence, using the definition of #m( f, z), it follows

0�1& :
k�m+1

(#m( f, z) |w&z| )k&m

0�
1&2#m( f, z) |w&z|
1&#m( f, z) |w&z|

.

The lemma follows. K

Proof of Theorem 2. Let us consider the polynomial g(x)=(x&z)m_
(�k�m

f (k)(z)
k! (w&z)k&m). If w{z is another zero if g, we have from

Lemma 1

|w&z|�
1

2#m(g, z)
=

1
2#m( f, z)

.

On the other hand, if the inequality

| f (x)& g(x)|<| g(x)|
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holds for all x such that |x&z|=r, Rouche� 's theorem asserts that the poly-
nomials f and g have the same the number of zeros in the disk D(z, r),
counting multiplicities. Therefore, if r<1�2#m( f, z) then the polynomial f
has m roots in D(z, r), counting multiplicities.

Now, it is easy to show for |x&z|=r:

| f (x)& g(x)|� :
m&1

k=0

| f (k)(z)|
k!

rk,

and

\ | f (m)(z)|
m!

& :
d

k=m+1

| f (k)(z)|
k!

rk&m+ rm�| g(x)|.

Therefore, the inequality Rm( f, z, r)>0 implies Rouche� 's theorem and the
disk D(z, r) is an m-cluster. K

Proof of Corollary 1. We prove ;m ( f, s ) < ( ( 1 & 2#m ( f, z ) r ) �
(2&3#m( f, z) r)) r implies Rm( f, z, r)>0. Let |x&z|=r. Using the defini-
tion of ;m( f, z), we bound the following sum:

:
m&1

k=0

| f (k)(z)|
k!

rk� :
m&1

k=0
\;m( f, z)

r +
m&k | f (m)(z)|

m!
rm

�

;m( f, z)
r

1&
;m( f, z)

r

| f (m)(z)|
m!

rm.

The inequality ;m( f, z)<(1&2#m( f, z) r�2&3#m( f, z) r) r implies

;m( f, z)
r

1&
;m( f, z)

r

<
1&2#m( f, z) r
1&#m( f, z) r

.

Hence

:
m&1

k=0

| f (k)(z)|
k!

rk<
1&2#m( f, z) r
1&#m( f, z) r

| f (m)(z)|
m!

rm.
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On the other hand we have:

:
d

k=m+1

| f (k)(z)|
k!

rk� :
d

k=m+1

(#m( f, z) r)k&m | f (m)(z)|
m!

rm

�
#m( f, z) r

1&#m( f, z) r
| f (m)(z)|

m!
rm.

Moreover, f (m)(z){0. Then we have

Rm( f, z, r)> \1&
1&2#m( f, z) r
1&#m( f, z) r

&
#m( f, z) r

1&#m( f, z) r+
| f (m)(z)|

m!
rm=0.

We are done. K

Proof of Corollary 2. Since Rm( f, z, r)>0, we have f (m)(z){0. We first
observe that

#m( f, z)< max
m�k�d&1 \

k+1
m

m! f (k+1)(z)
(k+1)! f (m)(z)+

1�(k&m+1)

=#m&1( f $, z).

Hence r<1�2#m( f, z)<1�2#m&1( f $, z).
The proof consists to show that ;m( f, z)��(um)�((1&um)2+�(um)) r

implies Rm&1( f $, z, r)>0. Remember um=#m( f, z) |x&z| with |x&z|=r.
We have

Rm&1( f $, z, r)=
m | f (m)(z)|

m!
|x&z|m&1& :

m&1

k=1

k
| f (k)(z)|

k!
|x&z|k&1

& :
d

k=m+1

k
| f (k)(z)|

k!
|x&z| k&1.

First, we bound

:
m&1

k=1

k
| f (k)(z)|

k!
|x&z|k&1� :

m&1

k=1

k \;m( f, z)
|x&z| +

m&k | f (m)(z)|
m!

|x&z|m&1

�(m&1)

;m( f, z)
|x&z|

1&
;m( f, z)
|x&z|

| f (m)(z)|
m!

|x&z| m&1.
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Condition (1) implies

;m( f, z)
|x&z|

1&
;m( f, z)
|x&z|

�
�(um)

(1&um)2 .

Therefore

:
m&1

k=1

k
| f (k)(z)|

k!
|x&z|k&1�(m&1)

�(um)
(1&um)2

| f (m)(z)|
m!

|x&z| m&1.

We now find an upper bound for the quantity

:
d

k=m+1

k
| f (k)(z)|

k!
|x&z| k&1

� :
d

k=m+1

k(#m( f, z) |x&z| )k&m | f (m)(z)|
m!

|x&z|m&1

�\ :
k�1

(k+m) uk
m + | f (m)(z)|

m!
|x&z|m&1

�\ um

(1&um)2+
mum

1&um+
| f (m)(z)|

m!
|x&z|m&1.

Therefore

Rm&1( f $, z, r)

�\m&(m&1)
�(um)

(1&um)2&
um

(1&um)2&
mum

1&um+
| f (m)(z)|

m!
|x&z|m&1

�
(m&1) um+�(um)

(1&um)2

| f (m)(z)|
m!

|x&z|m&1.

For um<1&- 2�2 we have �(um)<0. Hence, Rm&1( f $, z, |x&z| )>0. We
are done. K

4.2. Proof of Theorem 3

We first need to state the following point estimate. Denote by D(z, r) an
m-cluster of f.
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Lemma 2. Denote um=#m( f, z) |x&z|. Suppose um<1&- 2�2 and
;m( f, z)��(um)�((1&um)2+�(um)) r. Consider x such that r�um |x&z|.

1. Then the derivative f $(x) is nonzero. More precisely:

m! | f $(x)|
| f m(z)| |x&z| m&1�

m�(um)
(1&um)2 \1&

m&1
m

um+ .

2. Hence Nf (x) is well defined and satisfies:

|Nf (x)&z|�{
m&1+$um

m�(um)(1&(m&1�m) um)
|x&z|

($+1) um

�(um)
|x&z|

if m>1

if m=1,

with $=0 if f (z)=0 and $=1 if f (z){0.

Proof. From Corollary 2 the polynomial f $ has m&1 zeros in the disk
D(z, r). Moreover, for x # D0=[ y # D(z, R) : r�um | y&z|], we get from
Taylor's formula and triangle inequality:

m! | f $(x)|
| f m(z)| |x&z|m&1

�m& :
k�m+1

k }m! f (k)(z)
k! f (m)(z) } |x&z| k&m& :

m&1

k=1

k }m! f (k)(z)
k! f (m)(z) } |x&z|k&m

�m& :
k�m+1

k(#m( f, z) |x&z| )k&m& :
m&1

k=1

k \;m( f, z)
|x&z| +

m&k

.

According to

;m( f, z)�
�(um)

(1&um)2+�(um)
r

and r�um |x&z|, we bound the previous sums as in the proof of Corollary 2.
We obtain:

m! | f $(x)|
| f m(z)| |x&z|m&1�m&

um

(1&um)2&
mum

1&um
&

(m&1) um�(um)
(1&um)2

�
m&(3m+1) um+2mu2

m

(1&um)2 &
(m&1) um�(um)

(1&um)2 .
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Using the inequality m&(3m+1) um+2mu2
m>m�(um), we can bound:

m! | f $(x)|
| f m(z)| |x&z| m&1�

m�(um)
(1&um)2 \1&

m&1
m

um+ .

Part 1 of the lemma holds. We now prove part 2. the assumptions of
Corollary 2 are satisfied. We can bound

;m( f, z)
|x&z|

1&
;m( f, z)
|x&z|

by �(um) u�(1&um)2. Then, we have

}m!( f $(x)(x&z)& f (x))
f (m)(z)(x&z)m }� } m! f (z)

f (m)(z)(x&z)m }
+ :

m&1

k=2

(k&1) \;m( f, z)
|x&z| +

m&k

+m&1

+ :
k�m+1

(k&1)(#m( f, z) |x&z| )k&m

� } m! f (z)
f (m)(z)(x&z)m }+(m&2)+

;m( f, z)
|x&z|

1&
;m( f, z)
|x&z|

+m&1+
um

(1&um)2+
(m&1) um

1&um

� } m! f (z)
f (m)(z)(x&z)m }+(m&2)+�(um) um

(1&um)2

+m&1+
um

(1&um)2+
(m&1) um

1&um
,

with (m&2)+=0 if m�2 and (m&2)+=m&2 if m�2. If f (z)=0 and
m>1, a straightforward computation gives
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}m!( f $(x)(x&z)& f (x))
f (m)(z)(x&z)m }�m&1&2u 2

m(m&2)(2&um)
(1&um)2

�
m&1

(1&um)2 .

If f (z)=0 and m=1, it is obvious that |m!( f $(x)(x&z)& f(x))�f (m)(z)(x&z)m|
�um �(1&um)2. Hence

}m!( f $(x)(x&z)& f (x))
f (m)(z)(x&z)m }�{

m&1
(1&um)2 ,

um

(1&um)2 ,

if m>1,

if m=1.

On the other hand, if f(z){0 and m>1, we have in a similar way with
|m! f (z)� f (m)(z)(x&z)m|��(um) um�(1&um)2:

}m!( f $(x)(x&z)& f (x))
f (m)(z)(x&z)m }��(um) um

(1&um)2+
(m&2) �(um) um

(1&um)2 +m&1

+
um

(1&um)2+
(m&1) um

1&um

�
m&1+um(1&4(m&1) um+2(m&1) u2

m)
(1&um)2

�
m&1+um�(um)

(1&um)2 �
m&1+um

(1&um)2 .

The previous inequality holds because 1&4(m&1) um+2(m&1) u2
m�

�(um)<1. The case f (z){0 and m=1 is easily bounded. Summarizing the
case f (z){0, we get

}m!( f $(x)(x&z)& f (x))
f (m)(z)(x&z)m }�{

m&1+um

(1&um)2 ,

2um

(1&um)2 ,

if m>1,

if m=1.
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Now using part 1 of this lemma, we obtain:

|Nf (x)&z|=
| f $(x)(x&z)& f (x)|

| f $(x)|

� }m!( f $(x)(x&z)& f (x))
f (m)(z)(x&z)m } } f (m)(z)(x&z)m&1

f $(z) } |x&z|

�{
m&1+$um

m�(um)(1&(m&1)�mum)
|x&z|,

($+1) um

�(um)
|x&z|,

if m<1,

if m=1,

with $=0 if f (z)=0 and $=1 if f (z){0. The lemma is proved. K

Proof of Theorem 3. Using Lemma 2, we prove it by induction for all
xk # D0 . The case k=0 is obvious. Suppose xk # D0 is well defined and
satisfies

{ |xk&z|�.m(um)k |x0&z|
|xk&z|�.(u1)2k&1 |x0&z|

if m>1,
if m=1.

The assumptions of Lemma 2 are satisfied. Consequently xk+1 is well
defined and verifies the inequalities

|xk+1&z|�{
m&1+$umk

m�(umk) \1&
m&1

m
umk+

|xk&z|, if m>1,

($+1) umk

�(umk)
|xk&z|, if m=1,

�{
m&1+$um

m�(um) \1&
m&1

m
um+

|xk&z|, if m>1,

($+1) #m( f, z)
�(um)

|xk&z|2, if m=1,
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with umk=#m( f, z) |xk&z|<um . Applying the inductive hypothesis we get

|xk+1&z|�{\
m&1+$um

m�(um) \1&
m&1

m
um++

k+1

|x0&z|, if m>1,

($+1) #m( f, z)
�(um) \($+1) um

�(um) +
2k+1&2

|x0&z|2, if m=1,

�{\
m&1+$um

m�(um) \1&
m&1

m
um++ |xk&z|, if m>1,

\($+1) um

�(um) +
2k+1&1

|x0&z|, if m=1.

This proves the theorem. K

4.3. Proof of Theorem 4

We need the following lemma

Lemma 3. let x� =z+ m&1
m (x&z). Under the assumptions of Lemma 2

with m>1, we have

|Nf (x)&x� |�
(m+$) um

m2�(um) \1&
m&1

m
um+

|x&z| ,

where um=#m( f, z) |x&z|.

Proof. A straightforward computation shows that

Nf (x)&x� =
f $(x)(x&z)&mf (x)

mf $(x)
.

From Taylor's formula we have:

| f $(x)(x&z)&mf (x)|

= } :
m&1

k=0

(k&m)
f (k)(z)

k !
(x&z)k+ :

k�m+1

(k&m)
f (k)(z)

k !
(x&z)k } .
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As in the proof of Lemma 2, we bound the quantity

:
m&1

k=0

(m&k) }m! f (k)(z)
k ! f (m)(z) } |x&z|k

�m }m ! f (z)
f (m)(z) }+ :

m&1

k=1

(m&k) }m ! f (k)(z)
k ! f (m)(z) } |x&z|k

�m$ \;m( f, z)
|x&z| +

m

|x&z|m+ :
m&1

k=1

(m&k) \;m( f, z)
|x&z| +

m&k

|x&z| m

�(m&1+$)

;m( f, z)
|x&z|

1&
;m( f, z)
|x&z|

|x&z|m

�(m&1+$)
um�(um)
(1&um)2 |x&z| m,

with $=0 if f (z)=0 and $=1 if f (z){0. The sum �k�m+1 (k&m)
|(m ! f (k)(z)�k ! f (m)(z))(x&z)k| is bounded by um �((1&um)2)|x&z|m.

Using the estimates of part 1 of Lemma 2 for f $(x), we get finally:

|Nf (x)&x� |�

(m&1+$) um �(um)
(1&um)2 +

um

(1&um)2

m2�(um) \1&
m&1

m
um+

|x&z|,

(1&um)2

�
(m+$) um

m2�(um) \1&
m&1

m
um+

|x&z|.

The lemma follows. K

We state the following easy lemma:

Lemma 4. Let a, b, t be three positive real numbers. Let the sequence
(sk) be defined by

s0=0, sk+1=atk+bsk , k�0.

Then sk+1=a �k
i=0 bitk&i.
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Proof of Theorem 4. We first introduce the intermediate sequence
x� k+1=z+ m&1

m (xk&z), k�0. We also denote ukm=#m( f, z) |xk&z|�
#m( f, z) |x0&z|�um=#m( f, z) R. To estimate the quantity |xk+1& yk+1|,
we write

xk+1& yk+1=xk+1&x� k+1+x� k+1& yk+1 .

Using Lemma 3, we bound |xk+1&x� k+1| by

|xk+1&x� k+1|�
(m+$) ukm

m2�(ukm) \1&
m&1

m
ukm+

|xk&z|.

On the other hand, we have x� k+1& yk+1= m&1
m (xk& yk). From Theorem

3 we have |xk&z|�.m(um)k R. then we can estimate |xk+1& yk+1| using
ukm�um . We find:

|xk+1& yk+1|�
(m+$) #m( f, z)

m2�(ukm) \1&
m&1

m
ukm+

|xk&z|2+
m&1

m
|xk& yk |,

�
(m+$) um

m2�(um) \1&
m&1

m
um+

.m(um)2k R+
m&1

m
|xk&zk |.

From Lemma 4, we get using the inequality m&1
m �.m(um):

|xk+1& yk+1|�
(m+$) um

m2�(um) \1&
m&1

m
um+

R :
k

i=0

.m(um)2(k&i) \m&1
m +

i

�
(m+$) um

m2�(um) \1&
m&1

m
um+

R :
k

i=0

.m(um)2k&i

�
(m+$) um

m2�(um) \1&
m&1

m
um+

.m(um)k

1&.m(um)
R.

The theorem follows. K
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4.4. Proof of Theorem 5

We need some lemmas to prove this theorem. First, say that the
derivatives of the global Newton homotopy ft are those of the polynomial
f. This is fundamental in the proof and in the practical experiments. We
rewrite Lemma 2 in the particular case m=1:

Lemma 5. Let u�(3&- 7)�2 and w be a simple root of f. For all
x # D(w, u

#( f, w)) the point Nf (x) is well defined and satisfies

|Nf (x)&w|� 1
2 |x&w|.

We have the classical point estimates [1, p. 160]:

Lemma 6. Let y=Nf (x) # C be such that u=#( f, x) | y&x|<1&- 2�2.
Then f $( y){0 and the point estimates hold:

1. ;( f, y)�(u(1&u))��(u) ;( f, x),

2. #( f, y)�#( f, x)�(�(u)(1&u)).

Remember g=maxt+�t�1 #( f, wt).

Lemma 7. Let k�0. Under the assumptions of Theorem 5, suppose
zk+1=Nfk+1

(zk) is well defined with g |zk&zk+1|�3u and g |zk&wk |�u.
Then

;( fk+1 , zk+1)�T(u) ;( fk+1 , zk)�
M
2

;( fk+1 , zk).

Proof. From Lemma 6 we have respectively

;( fk+1 , zk+1)

�
(1&#( fk+1 , zk) |zk+1&zk | ) #( fk+1 , zk) |zk+1&zk |

�(#( fk+1 , zk) |zk+1&zk | )
;( fk+1 , zk)

and

#( fk+1 , zk)=#( f, zk)

�
#( f, wk)

�(#( f, wk) |wk&zk | )(1&#( f, wk) |wk&zk | )
.
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We use both the inequalities #( f, zk)�g, g |zk&zk+1|�3u and g |zk&wk |
�u to obtain

;( fk+1 , zk+1)�
3u(�(u)(1&u)&3u)

�(u)2(1&u)2 � \ 3u
�(u)(1&u)+

;( fk+1 , zk)

=T(u) ;( fk+1 , zk).

Since by Hypothesis 2 of Theorem 5, T(u)� M
2 , we are done. K

Remember k0 is the index verifying Mk0&1�t+>Mk0.

Lemma 8. Consider s, t belonging to the interval [tk+1 , tk], 0�k�
k0&1, with t�t+. Then we have g |ws&wt |�u.

Proof. It is fundamental here that t�t+ in order to use the quantity g
in the estimates below. From the definition of the global Newton
homotopy, we have f (ws)& f (wt)=(s&t) f (x0). Hence

:
k�1

f (k)(ws)
k !

(ws&wt)
k=(s&t) f (x0).

Multiplying the previous equality by the inverse of f $(wt), using the triangle
inequality and the definition of g, we get

g |ws&wt |& :
k�2

(g |ws&wt | )k�|s&t| bg.

Since s and t belong to the interval [tk+1 , tk], we have |s&t|�tk&tk+1=
Mk(1&M)�1&M. From the definition of m, it follows that

g |ws&wt |&
(g |ws&wt | )2

1& g |ws&wt |
=

g |ws&wt |(1&2g |ws&wt | )
1& g |ws&wt |

�(1&M) a=
u(1&2u)

1&u
.

The function u � u(1&2u)
1&u is an increasing function in the interval for

u # [0, 1&- 2�2]. Hence g |ws&wt |�u. We are done. K
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We now estimate a value of t in order that r
um

�|wt&z|�R. For this
value of t, wt is an approximate m-cluster of f associated with D(z, r) as in
Theorem 3.

Lemma 9. Under the assumptions of Theorem 5, let t be such that
r�um�|wt&z|�R. We have

�(um)
(1&um)2

| f (m)(z)|
m ! | f (x0)|

|wt&z|m�t+�
1

(1&um)2

| f (m)(z)|
m! | f (x0)|

|wt&z|m.

Proof. We have 0= ft(wt)= f (wt)&tf (x0). Remember um=#m( f, z) R.
We have

tf (x0)= f (wt)

=\1+ :
m&1

k=0

m ! f (k)(z)
k ! f (m)(z)

(wt&z)k&m+ :
k�m+1

m ! f (k)(z)
k ! f (m)(z)

(wt&z)k&m+
_

f (m)(z)
m !

(wt&z)m.

Since r�um�|wt&z|�R, we can bound the two sums of the previous
expression as in the proof of Theorem 3. More precisely

:
m&1

k=0
}m ! f (k)(z)
k ! f (m)(z) } |wt&z|k&m� :

m&1

k=0
\;m( f, z)

|wt&z| +
m&k

�

;m( f, z)
|wt&z|

1&
;m( f, z)
|wt&z|

�
�(um) um

(1&um)2 ,

and

:
k�m+1

}m ! f (k)(z)
k ! f (m)(z) } |wt&z|k&m�

um

1&um
.
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Using Hypothesis 4 of Theorem 3 we get

\1&
�(um) um

(1&um)2&
um

1&um+
| f (m)(z)|

m !
|wt&z|m

�t | f (x0)|�\1+
�(um) um

(1&um)2+
um

1&um +
| f (m)(z)|

m !
|wt&z|m

�(um)
(1&um)2

| f (m)(z)|
m !

|wt&z| m

�t | f (x0)|�
1

(1&um)2

| f (m)(z)|
m !

|wt&z| m.

We are done. K

Proof of Theorem 5. Let t+ be such that |z&wt+ |=R& 2u
g . The

fundamental property to begin the proof is that f $(wt){0 for all
t # [t+, 1]. Therefore the quantity g=maxt+�t�1 #( f, wt) is bounded. Let
k0 be such that tk0&1�t+>tk0

.

1. We first prove by induction that the zk 's are approximate zeros of
fk associated with wk for 0�k�k0 . It is obvious for k=0. Prove the
inequality g |zk&wk |�u implies g |zk+1&wk+1|�u. Successively, by
triangle inequality, inductive hypothesis, and Lemma 8, we have for
0�k�k0&1:

g |zk&wk+1|�g |zk&wk |+ g |wk&wk+1|

�u+u=2u.

Since 2u�(3&- 7)�2 we know from Lemma 5 that the point zk+1 is well
defined with

g|zk+1&wk+1|�
g
2

|zk&wk+1|�u, 0�k�k0&1.

2. We next prove by induction the inequality

;( fk , zk)�
(1&u)2 b

�(u)
(tk&tk+1), 0�k�k0&1.
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Since ;( ft0
, x0)=0, the previous condition obviously holds for k=0. If for

k<k0&1, the point zk is an approximate zero of fk associated with wk

then zk+1 is well defined and satisfies

g |zk+1&zk |�g |zk+1&wk+1|+ g |wk+1&wk |+ g |wk&zk |

�u+u+u=3u.

From Lemma 7, it follows for k�k0&1:

;( fk+1 , zk+1)�
M
2

;( fk+1 , zk).

On the other hand fk+1(zk)= fk(zk)+(tk&tk+1) f (x0). From the induction
hypothesis, we get:

;( fk+1 , zk)�;( fk , zk)+(tk&tk+1)
| f (x0)|
| f $(zk)|

.

Classical point estimate on f $(zk) gives | f $(zk)|�(�(u)�(1&u)2) | f $(wk)|.
Using inductive assumption, and the definition of b, it follows that

;( fk+1 , zk)�
2(1&u)2 b

�(u)
(tk&tk+1), 0�k�k0&1.

Hence,

;( fk+1 , zk+1)�
M
2

;( fk+1 , zk)�M(tk&tk+1)
(1&u)2 b

�(u)

=(tk+1&tk+2)
(1&u)2 b

�(u)
, 0�k�k0&1.

For 0�k�k0&1, let us now prove

;( fk , zk)�
(1&u)2 b

�(u)
(tk&tk+1) O ;( f, zk)�

2(1&u)2 b
�(u)

Mk.
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We have fk(zk)= f (zk)&tk f (x0). Remember f $(zk)= f $k(zk) and | f $(zk)|�
(�(u)�(1&u)2) | f $(wk)|. then, using the definition of b, we get

;( f, zk)&
(1&u)2 b

�(u)
tk�;( fk , zk).

Since ;( fk , zk)�((1&u)2 b��(u))(tk&tk+1) we get with 2(tk&tk+1)�
2Mk(1&M)<2Mk,

;( f, zk)�
(1&u)2 b

�(u)
(2tk&tk+1)<

2(1&u)2 b
�(u)

Mk.

Part 2 of the theorem follows.

3. Finally, we prove the point zk0
is an approximate m-cluster of f

associated with D(z, r). for that it is sufficient from Theorem 3 to show that
the inequalities r�um�|z&zk0

|�R hold.

We know that |z&wt+ |=R& 2u
g . From Lemma 8, with s=tk0

and
t=t+, we have g |wk0

&wt+ |�u. On the other hand, from part 1 of this
theorem, we also have g |zk0

&wk0
|�u. Therefore,

|z&zk0
|� |z&wt+ |+|wt+wk0

|+|wk0
&zk0

|=R&
2u
g

+
u
g

+
u
g

=R.

From assumption, we know R=4u�g�r�um . Hence,

|z&zk0
|� |z&wt+ |&|wt+&wk0

|&|wk0
&zk0

|�R&
4u
g

�
r

um
. K

4.5. Proof of Theorem 6

To prove Theorem 6, we replace Lemma 9 by the following.

Lemma 10. under the assumptions of Theorem 6, let t+ be such that
|z&wt+ |=(3&- 7)�6g. We have

8- 7&21
3g

| f $(z)|
| f (x0)|

�t+�(8&3- 7)
| f $(z)|
| f (x0)|

.
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Proof. We have 0= f (wt)& f (z)=t(x0). A point estimate, as in the
proof of Lemma 9, shows that:

|wt&z| (1&2g |wt&z| )
1& g |wt&z|

| f $(z)|�t�
|wt&z|

1& g |wt&z|
| f $(z)|.

Hence, if |wt&z|=(3&- 7)�6g, a straightforward computation gives the
results. K

Using Lemma 10 instead of Lemma 9, the proof of Theorem 6 is made
in the same way as in Theorem 5.

4.6. Proof of Proposition 1

Let us consider the notations of Section 3. We first prove the following
estimate

Lemma 11. For some k�0, let us suppose there exists a root wk

of fk such that #( fk , wk) |wk&zk |<1. If ;( fk , zk)�= then |zk&wk |�
=�(1&- 6�3).

Proof. Remember that for all j�1, we have f ( j)
k (zk)= f ( j)(zk). From

Taylor's formula, a classical estimate gives under the assumption #( fk , wk)
|wk&zk |<1:

;( fk , zk)= } fk(zk)
f $(zk) }�

1&�k�2 (#( f, wk) |wk&zk | )k&1

1+�k�1 k(#( f, wk) |wk&zk | )k&1 |wk&zk |

�(1&2#( f, wk) |wk&zk | )(1&#( f, wk) |wk&zk | )|wk&zk |.

We verify easily the inequality (1&2t)(1&t) t(1&- 6�3) t. Hence the inequal-
ity (1&2#( f, wk) |wk&zk | )(1&#( f, wk) |wk&zk | ) |wk&zk |�;( fk , zk)�=
implies |zk&wk |�=�(1&- 6�3). K

Proof of Proposition 1. The global Newton Path Following algorithm
computes a sequence (tk) such that tk+1=max(tk&2(tk&1&tk), 0) if
;k�= and tk+1=(tk&1+tk)�2 otherwise. Denote rk=1�(2#m( f, zk)) where
(zk) is the sequence introduced in Section 3.3. Let wk be the root of fk

nearest zk when ;k�=. The algorithm stops in the two following cases:
either there exists k such that tk=0, ;k�=, and R1( f, zk , rk)>0 or there
exists k such that ;k>= and such that zk provides an m-cluster. For t0=1,
we have ;0=0. Let tk0

>0 be such that ;k0
�= and ;k0+1>=. If zk0+1

provides an m-cluster, the algorithm stops. Otherwise, for all i>1 such that
;k0+i>=, we have tk0+1<tk0+2< } } } <tk0+i< } } } <tk0

. The same conclu-
sion holds when we have tk0+1=0, ;k0+1�=, and R1( f, zk0+1 , rk0+1)�0.
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By continuity of ;( ft , z) at (t, z)=(tk0
, zk0

), there is an index j such that
;k0+ j�=. Consequently, we have constructed a strictly decreasing
subsequence (tkj

) which verifies tkj
>0 and ;kj

�=. At each point zkj
is

associated a root wk , which verifies #( fk , wk) |wkj
&zkj

|<1. Since the
subsequence (tkj

) converges to 0, the subsequence (wk) converges towards
either an m-cluster or a simple root. Denote it by D(z, r). This is provided
respectively by the signs of the polynomials Rm and R1 in the algorithm.

Finally, to prove there is a finite number of steps, let us introduce the
value: t+=sup[t : wt provides an m-cluster and |wt&z|�R�2]. Since
t+>0, there is an index k such that |wk&z|�R�2 and ;( fk , zk)�=. From
assumption #( fk , wk) |wk&zk |<1. Since =�(1&- 6�3) R

2 , Lemma 11 gives

|zk&z|�|zk&wk |+|wk&z|�R�2+R�2=R.

Hence zk # D(z, R) and provides an m-cluster containing all the zeros of
D(z, r). We are done. K

ACKNOWLEDGMENTS

Part of this research was done while visiting Laboratoire GAGE at the E� cole Polytechnique,
Palaiseau, France. The author thanks Marc Guisti for this invitation and for helpful
discussions. I am also thankful to Luis Miguel Pardo for several suggestions and valuable
remarks.

REFERENCES

1. L. Blum, F. Cucker, M. Shub, and S. Smale, ``Complexity and Real Computation,''
Springer-Verlag, Berlin�New York, 1998.

2. D. W. Decker and C. T. Kelley, Newton's method at singular points 1, SIAM J. Numer.
Anal. 17 (1980), 66�70.

3. D. W. Decker and C. T. Kelley, Newton's method at singular points 2, SIAM J. Numer.
Anal. 17 (1980), 465�471.

4. J. P. Dedieu, Condition number analysis for sparse polynomial systems, in ``Foundations
of Computational Mathematics'' (F. Cucker and M. Shub, Eds.), Springer-Verlag, Berlin�
New York, 1997.

5. J. P. Dedieu, X. Gourdon, and J. C. Yakoubsohn, ``Computing the Distance from a Point
to an Algebraic Hypersurface,'' Lectures in Applied Mathematics, Vol. 32, Amer. Math.
Soc., Providence, RI, 1996.

6. J. P. Dedieu and M. Shub, On simple double zeros and badly conditioned zeros of
analytic functions of n variables, Math. Comput., in press.

7. J. P. Dedieu and J. C. Yakoubsohn, Localization of an algebraic hypersurface by the
exclusion algorithm, Appl. Algebra Eng. Commun. Comput. 2 (1992), 239�256.

637ZEROS OF UNIVARIATE POLYNOMIALS



8. A. Griewank, On solving nonlinear equations with simple singularities or nearly singular
solutions, SIAM Rev. 27 (1985), 537�563.

9. A. Griewank and M. R. Osborne, Analysis of Newton's method at irregular singularities,
SIAM J. Numer. Anal. 20 (1983), 747�773.

10. V. Guillemin and A. Pollack, ``Differential Topology,'' 1st ed., Prentice�Hall, Englewood
Cliffs, NJ, 1981.

11. M. Hirsch and S. Smale, On algorithms for solving f (x)=0, Comm. Pure Appl. Math. 32
(1979), 281�312.

12. J. Hubbard, D. Schleicher, and S. Sutherland, How to really find roots of polynomials by
Newton's method, preprint (1998).

13. I. N. Katz and X. Ying, A reliable principle algorithm to find the number of zeros of an
analytic function in a bounded domain, Numer. Math. 53 (1988), 143�163.

14. M.-H. Kim and S. Sutherland, Polynomial root-finding algorithms and branched covers,
SIAM J. Comput. 23 (1994), 415�436.

15. M. Marden, ``Geometry of Polynomials,'' Amer. Math. Soc., Providence, RI, 1966.

16. A. P. Morgan, A. J. Sommese, and C. W. Wampler, Computing singular solutions to
nonlinear systems, Numer. Math. 58 (1991), 669�684.

17. A. M. Ostrowski, ``Solutions of Equations in Euclidean and Banach Spaces,'' 3rd ed.
Academic Press, San Diego, 1973.

18. M. Petkovic� , ``Iterative Methods for Simultaneous Inclusion of Polynomial Zeros,''
Lecture Notes in Mathematics, Vol. 1387, Springer-Verlag, Berlin�New York, 1989.

19. V. Pan, solving a polynomial equation: Some history and recent progress, SIAM Rev. 39
(1997), 187�220.

20. L. B. Rall, Convergence of the Newton process to multiple solutions, Numerische
Mathematik 9 (1966), 23�37.

21. C. W. Reddien, On Newton method for singular problem, SIAM J. Numer. Anal. 15
(1980), 993�986.

22. J. Renegar, On the worst case arithmetic complexity of approximating zeros of polyno-
mials, J. Complexity 3 (1987), 90�113.

23. E. Schro� der, U� ber unendlich viele Algorithmen zur Auflo� sung der Gleichungen, Math.
Ann. 2 (1870), 317�365.

24. S. Smale, Newton's estimate from data at one point, in ``the Merging of Disciplines: New
Directions in Pure, Applied and Computational Mathematics'' (R. Ewing, K. Goss, and
G. Martin, Eds.), pp. 185�196, Springer-Verlag, New York, 1986.

25. S. Smale, A convergent process of price adjustment and global Newton methods, J. Math.
Econ. 3 (1976), 107�120.

26. J. H. Wilkinson, The perfidious polynomial in Studies in numerical analysis, MAA Studies
Mathematics, Vol. 24, pp. 1�28, Math. Assoc. America, Washington DC, 1984.

27. J. C. Yakoubsohn, Contraction, robustness and numerical path-following using secant
maps, J. Complexity 16 (2000), 206�310.

28. J. C. Yakoubsohn, ``Simultaneous Computation of All Zeros Clusters of A Univariate
Polynomial,'' Tech. Report Laboratoire MIP, Universite� Paul Sabatier, Toulouse, France,
1999.

Printed in Belgium

638 JEAN-CLAUDE YAKOUBSOHN


	1. INTRODUCTION 
	2. THEORETICAL BACKGROUND AND MAIN RESULTS 
	3. ALGORITHMS AND NUMERICAL EXPERIMENTS 
	FIG. 1 
	FIG. 2 
	TABLE 1 
	FIG. 3 
	FIG. 4 

	4. PROOFS 
	ACKNOWLEDGMENTS 
	REFERENCES 

