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Abstract

We state precise results on the complexity of a classical bisection-exclusion method to locate zeros
of univariate analytic functions contained in a square. The output of this algorithm is a list of squares
containing all the zeros. It is also a robust method to locate clusters of zeros. We show that the global
complexity depends on the following quantities: the size of the square, the desired precision, the
number of clusters of zeros in the square, the distance between the clusters and the global behavior of
the analytic function and its derivatives. We also prove that, closed to a cluster of zeros, the complexity
depends only on the number of zeros inside the cluster. In particular, for a polynomial which hasd
simple roots separated by a distance greater thansep, we will prove the bisection-exclusion algorithm
needsO(d3 log(d/sep)) tests to isolate thed roots and the number of squares suspected to contain a
zero is bounded by 4d. Moreover, always in the polynomial case, we will see the arithmetic complexity
can be reduced toO(d2(log d)2 log(d/sep)) using�log d� steps of the Graeffe iteration.
© 2005 Elsevier Inc. All rights reserved.

MSC:65H05

Keywords:�-Theory; Bisection; Exclusion; Clusters of zeros

Contents

1. Bisection-exclusion method and main results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653
2. Context and links with related works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .659
3. The exclusion function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .660
4. Theoretical complexity of the bisection-exclusion algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .661

E-mail address:yak@mip.ups-tlse.fr.

0885-064X/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jco.2005.06.007

http://www.elsevier.com/locate/jco
mailto:yak@mip.ups-tlse.fr


J.-C. Yakoubsohn / Journal of Complexity 21 (2005) 652–690 653

5. Geometry of zeros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .665
6. Behavior of the exclusion function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .665

6.1. Local behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .665
6.2. Global behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .666

7. Proofs of the main theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .667
7.1. Proof of Theorem 1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .667
7.2. Proof of Theorem 1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .668

8. Bisection-exclusion algorithm for nearly real zeros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .668
9. The polynomial case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .670

9.1. Complexity for the localization of complex roots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .670
9.2. Complexity for the localization of simple real roots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .671
9.3. Rounding error analysis and bit-complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .671
9.4. Bit complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .672
9.5. Improvement using Graeffe iterates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .672

10. Practical comments, examples and numerical experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .674
10.1. Bounds for roots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .674
10.2. Sums of polynomials and exponentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .674
10.3. Polynomialxm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .675
10.4. Bisection-exclusion linked with Graeffe iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .675

11. Conclusion and further research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .676
Index of symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .677

Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .678
Appendix A. Proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .678

A.1. Proof of Theorem 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .678
A.2. Proof of Theorem 5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .679
A.3. Proof of Theorem 6.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .681
A.4. Proof of Theorem 6.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .683
A.5. Proof of Theorem 8.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .685
A.6. Proof of Theorem 9.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .686
A.7. Proof of Theorem 9.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .687
A.8. Proof of Theorem 10.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .689

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .689

1. Bisection-exclusion method and main results

The goal of the bisection-exclusion method which is studied in this paper is to locate
and to approximate the zeros of an analytic functionf in a specified bounded domain.
In all the paper,f will be an analytic function defined onC and the domain will be the
squareS0 introduced below. The set of zeros off insideS0 is denoted byZ. The principle
of this method is to remove from this domain subsets which do not contain any zero and
to return arbitrary small subsets containing the zeros. Such a method mainly depends on
two ingredients: the choice of an exclusion test and a strategy to remove subsets of a initial
domain. The subsets here considered will be squares. We will denote byS(x, s) the closed
square centered atx ∈ C with side length 2s. The setS will be the set of closed squares
contained in the squareS0 := S(x0, s0).
The exclusion tests: Let us consider a functionE defined fromS into {T rue, False}

satisfying the following property:E(S) = T rue implies the squareS ⊂ S0 does not contain
any zero off. Such a functionE is an exclusion test associated tof. WhenE(S) = False
nothing can be deduced and the squareSmay contain a zero.
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The exclusion test used here: Let us consider the following functionM defined overC×R:

M(x, t) = |f (x)| −
∑
k�1

|f (k)(x)|
k! tk.

We will prove in Section 3 that the functionExclusiondefined by

Exclusion(S(x, s)) = True⇔ M(x, s
√

2) > 0,

is an exclusion test.

The Algorithm. We start with the initial squareS0, the analytic functionf and a precision
�. The result of the algorithm is a set of squaresZ� containingZ ∩ S0. Each square of the
output has a size less than or equal to�. Let us describe the first step of the algorithm. We
consider a set of squaresZ� initialized toZ� = {S0}. If Exclusion(S0) = Truethen we stop
andZ� = ∅. In the contrary case,Exclusion(S0) = False, we divideS0 into four closed
squares with sizes0/2 and we replace the squareS0 by these four new squares in the set
Z�. At stepk�0 of the algorithm, the setZ� is constituted of squares with the same size
s0/2k. Then we computeExclusion(S) for each squareSof Z�. If Exclusion(S) = True,
we remove this square of the setZ�. In the contrary case ifExclusion(S) is Falseand the
size of the squareS is greater than�, we divideS in four squares with sizes0/2k+1 and we
replace the squareSby these four new squares into the setZ�. The algorithm stops when
Z� = ∅ or if the size of each square ofZ� is less than or equal to�.

We will denote

divide(S(x,2s)) := {S(x − ws, s), S(x + ws, s), S(x − w̄s, s), S(x + w̄s, s)}
with w = 1 + √−1. Introducing an intermediate setZfalse, this algorithm is written in a
pseudo-code language like:
Inputs: f a polynomial,S0 = S(x0, s0) a square,� > 0 a precision.

Z� = {S0}
Repeat

Zfalse = ∅
For each squareS(x, s) ∈ Z� do

If Exclusion(S(x, s)) = Falsethen

Zfalse := Zfalse∪ divide(S(x, s)).

end if

end for

Z� = Zfalse
Until Z� = ∅ or the size of each square ofZ� is less than or equal to�.

Output: The set of squaresZ�.
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Fig. 1.

Fig. 1 illustrates how the algorithm works with functions likef (x) = g1(x)e
ix +

g2(x)e
(−1+2i)x , whereg1(x) andg2(x) are univariate complex polynomials given in Section

10.2. This function has four clusters of zeros: a simple zero 0.5 − i, a cluster of two zeros
in the diskD(−1 + 0.6i,10−3), a cluster of three zeros inD(0.8 + 0.5i,10−4), a cluster
of four zeros inD(−1 − 0.8i,10−4). The algorithm is initialized with the initial square
S(0,1.5) and the precision� = 0.03. Fig. 1 shows the steps from 1 to 7 skipping the step
3: at steps 1–3 all the squares are retained. Some squares begin to be excluded at steps 4
and 5. The four clusters of zeros are separated at step 6. At this step the radius of squares is
equal to�. Hence, the step 7 is the last and the squares not excluded after the exclusion test
are in the output setZ�. We see the clusters which appear with a black dot on the figures
are contained in the setZ�.

For smallest values of�, 0.02���0.0002, the numerical results show that the number
of retained squares around of each zero does not change. For these values of� the figures
representingZ� are similar that of the figure of step 7. If we continue this process in the
squareS(−1− 0.8i, 10−4) with the precision 4× 10−6, Fig. 2 below shows the three last
steps where the four zeros of the cluster are located. These results have been obtained with
a precision of 30 digits under theMaple software.

These numerical experiments illustrate a property of the bisection-exclusion algorithm:
the number of retained squares around each zero mainly depends on the multiplicity of the
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Fig. 2.

zero. This paper will prove this fact. In particular we will show that the number of retained
squares around a simple zero is bounded by 4.

The analysis of this algorithm depends on three quantities: the numberq� of squares of
the output setZ�, the total numberQ� of exclusion tests, and finally the numerical quality
of the obtained approximation.

Before stating a theoretical result which explains the experiments above, we need to
introduce some notations and to precise the context. We will suppose that the analytic

functionf hasd zerosz1, . . . , zd in the squareS0. Letg(z) =
d∏
k=1

(z− zk) andh(z) be the

analytic function, such thatf (z) = g(z)h(z).The global behavior ofh(z) and its derivatives
in the squareS0 is described by the quantities� and� defined by

∀x ∈ S0,
|h(k)(x)|
k!|h(x)| ���k−1, k�1. (1)

In all the paper,� and� are chosen in order to verify

2�s0
√

2� 1
2. (2)

The background of the analysis is done with respect to the following quantities, see[37]:

�m(f ; �) = max
0�k�m−1

∣∣∣∣∣m!f (k)(�)
k!f (m)(�)

∣∣∣∣∣
1
m−k

,

�m(f ; �) = max
k�m+1

∣∣∣∣∣m!f (k)(�)
k!f (m)(�)

∣∣∣∣∣
1
k−m

,

�m(f ; �) = �m(f ; �)�m(f ; �).
These quantities have been introduced in the casem = 1 by Smale [4] and we will de-
note�(f, �), �(f, �) and�(f, �). We also need several auxiliary functions. First, we let for
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u ∈ [0,1/2[ and� ∈ {0,1}:

Lm,�(u) = 2m−1�u

1− u + (2 − u)m
(1− u)m+1 − 2m + u

(1− u)m+1(1− 2u)
.

In the casem = 1, � = 0 we haveL1(u) := L1,0(u) = 4u
1−2u . Next

bm(u) =




1+ 1

(2 − Lm,1(u)) 1
m − 1

if m > 1,

1+ 1

1− L1(u)
= 2(1− 4u)

1− 6u
if m = 1.

Let 	m be such that

∀	, 	�0, 	�	m, q(bm(0)+ 	) = q(bm(0)),
whereq(b) is the number of squares of sizer included in a disk of radiusbr

√
2 ( see

Lemma4.2). We then defineum(	) as the first positive zero of the equation{
Lm,1(u) = 2 −

(
1+ 1

	+bm(0)−1

)m
if m > 1,

L1(u) = 	
	+1 if m = 1.

where	�0. It is equivalent to

bm(um(	)) = bm(0)+ 	.

By cluster ofm zeros off around� ∈ S0 and of radius
, we mean a closed disk of
radiusr centered in a zero� of f. We will suppose that the clusters of zeros centered in a
zero off to simplify the technical computations. This does not remove anything with the
generality of the results obtained. We gather the zeros off in p clusters of zeros denoted by
D̄i := D̄mi (�i , 
i ), 1� i�p, such thatf (�i ) = 0 and the two following requirements:


i =
(

�mi (f ; �i )
�mi (f ; �i )

)1/2

, (3)

4
√

2b
 < r = min
1� i�p

umi (	mi )

�mi (f ; �i )
(4)

hold with
 = max
i


i , b̄ = max
1� i�p

bmi (0)+	mi andb = max
(
bd(0)+ 3d�

� , b̄
)

. Evidently

a regrouping of the zeros according to the criteria above is always possible. For example,
we can consider the regrouping of distinct zeros off. In this case, all the
i ’s are equal to
zero. We will also considerD which satisfiesb�1 + 1

21/D−1
. In this paper log will be the

logarithm to the base 2. We then can state

Theorem 1.1. Let us consider an analytic function f defined onC which has p clusters of
zeros in a squareS0 described as previous. Let us suppose that the requirements(1)and(2),

(3) and(4) are satisfied. Letj0 =
⌈

log
√

2bs0
r

⌉
andj1 =

⌊
log s0




⌋
. Then we havej0 < j1.
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Let � verifying s0
2j

�� < s0
2j−1 . Then the output setZ� of the bisection-exclusion algorithm

is a union of p pairwise disjoint setsZ�,i such thatD̄i ⊂ Z�,i ⊂ D(�i , r). Let q�,i be the
number of retained squares inZ�,i .We then have

1. For all x ∈ Z�,i , d(x, �i )�
(
2mi + 	mi

)√
2�, 1� i�p.

2. q�,i�4m2
i , 1� i�p.

3. Q� �1+ 16

(
j0pD

2 + (j − j0)

p∑
i=1

m2
i

)
.

Let us comment the two terms which contribute to the upper bound of the number of tests
Q�. We will see the first count the number of steps to isolate the cluster of roots while the
second gives the number of tests when the algorithm works closed to the clusters of roots.

In the simple roots case the radius
i ’s are zero. We can state

Theorem 1.2. Let us consider an analytic function f defined onC which has only simple
zerosz1, . . . , zd in S0.We denote by�(f ) = maxi �(f, zi). Let us suppose(1) and(2).Let

j0 =
⌈

log

(
23

√
2(2d + �

3d

�
)�(f )s0

)⌉
and a precision� satisfying

s0

2j
�� <

s0

2j−1 with

j0 < j .Then the output setZ� of the bisection-exclusion algorithm is a union of d pairwise
disjoint setsZ�,i with �i ∈ Z�,i .We then have

1. For all x ∈ Z�,i , d(x, �i )�3
√

2�, 1� i�d.
2. Each setZ�,i contains at most four squares.
3. Q� �1+ 16dD2j0 + 16d(j − j0).

This paper is organized as follows: in Section 3, we introduce the notion of exclusion
function on which is based the complexity of the bisection-exclusion algorithm. In Section
4, we put this problem in a more general setting to understand the notions on which this
analysis is founded. To do that we develop a theoretical way to study the complexity of the
bisection-exclusion method in the general case where the zeros of the analytic function are
gathered in clusters. The main Theorem4.1 of this section shows that the complexity mainly
depends on the distance between the clusters of zeros and on the behavior of the exclusion
function in the squareS0. Always in this section we show how this exclusion function is
related to the number of squares that is possible to include in a disk: Lemma 4.2 states a
precise result in this way. In Section 5, we introduce the notion of separation number and
give a lower bound of the minimal distance between the clusters of zeros. In Section 6, we
study the behavior of this exclusion function. This section is the technical background of our
paper. Two new results will be given. The first concerns the local behavior of the exclusion
function. The second generalizes in the analytic case a classical result concerning the global
behavior of the exclusion function associated to a polynomial. The proofs of Theorems 1.1
and 1.2 are done in Section 7. To do that we verify the assumptions of Theorem 4.1
combining the results obtained in Sections 5 and 6. In Section 8, we will specialize the
previous results of complexity to only find the nearly real zeros in a given interval. We
will also discuss the localization of real roots of a polynomial. Section 9 is devoted to
the polynomial case. We will give a synthesis of the previous results. We also discuss the
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question of rounding error for the computation of the exclusion polynomial. Moreover, in
the case of simple roots we will give a result of bit complexity. Finally, we will also show that
a number ofO(d2(log d)2 log(d�(f )s0)) of arithmetic operations is sufficient to isolate the
roots of a polynomial using�logd� steps of the Graeffe iteration. This bound of arithmetic
complexity is closed to that of Pan[28] which isO(d2 log d log(ds0/r))with our notations.
Finally, Section 10 is devoted to practical comments and numerical experiments.

2. Context and links with related works

This type of bisection-exclusion algorithm appears for the first time in a paper of Weyl [33]
without study of the cost of this algorithm. This task is realized by Gargantini and Henrici
in [15], where the authors study four different exclusion tests only in the polynomial case.
We focus on their testsT2 andT1. The testT2 corresponds to the test studied here. In our
context of notations, the testT1 asserts that if|f (x)| > d(1+√

2)d−1s0
√

2s then the square
S(x, s) included inS0 does not contain any root of the polynomialf. The testT1 requires

no more than 16d�

(
25/2d

sep

)2d−2

tests to isolate thep roots contained in a disk of radius

one, [15, p. 92, formula (3)–(11)], wheresepis the minimal separation distance of zeros.
Concerning the testT2, these authors show that the testT2 is at least as effective that testT1,
[15, p. 95]: “Although the convergence estimates do not show it, the testT2 is asymptotically
likely to be much more effective thanT1 . . .”. Although, the case of exact multiple roots is
considered for the testT1, the global behavior of testsT1 andT2 is only studied without
estimates of the local behavior of these tests.

Thereafter, several authors gave modifications and improvements by combining it with
other method like Newton method or other exclusion tests like Schur–Cohn test and Turan’s
test: see [27,28] for a precise review on this subject. In this vein, the report of Schönhage [30]
is certainly the first significant paper which deals with the splitting circle method. The
previous papers are devoted to polynomials. In [38,39], the authors propose to count the
number of zeros of an analytic function thanks to a reliable test based on the argument
principle, see also [34,35]. But the algorithms are given without precise study of complexity.

From a point of view of some practitioners in the scientific and engineering communities,
these bisection-exclusion-type methods are frequently used when the number of variables is
small. For example to draw implicit curves or surfaces, these methods are easy to implement,
see [32]. They are also used in many areas: in dynamical systems [13,14], in the localization
of solutions of systems of equations [9,19–21] and in optimization [1,22].

Our aim in this paper was to study more precisely the complexity of the bisection-
exclusion algorithm using an exclusion test based on the Taylor formula without seeking to
optimize or to link with other methods. The analysis we propose uses�-theory of Smale [31]
and its generalization for multiple roots [36]. This technical background permits to obtain
precise results in an efficient way since the complexity is described with respect to invariant
quantities which depend only on the zeros. Indeed, we have focused our study on the link
between this algorithm and the geometry of zeros and this paper is the theoretical answer
to a unpublished report [11], see also [10]. A more recent study to fast compute clusters
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of zeros has been done by the author in collaboration with others[16]. The results of this
previous paper can be used to link in a robust manner a method of global localization of
zeros like bisection-exclusion with Newton generalized method.

3. The exclusion function

The study of the complexity depends on the existence of an exclusion function defined
in the following statement (see [9]).

Theorem and Definition 3.1. The following implicit functionx ∈ C → m(x) ∈ R+
defined by

M(x,m(x)) = 0

exists. Moreoverm(x) is a continuous function. IfM(x,
√

2s) > 0 then f has no zero in the
squareS(x, s). MoreoverM(x,

√
2s) > 0 ⇔ √

2s < m(x). It is why we will saym(x) is
the exclusion function associated to f at x.

Proof. Let d be an integer. Then we haveM(x, t)� |f (x)| −
d∑
k=1

|f (k)(x)|
k! tk. Since the

analytic functionf is defined onC it follows that lim
t→∞ M(x, t) = −∞. The real function

t ∈ R+ → M(x, t) ∈] − ∞, |f (x) |] is strictly decreasing. There is only one positive
zero and the existence ofm(x) is established. The continuity ofm(x) can be proved in the
following way (see [9]). For � > 0 andx, y ∈ C, the decreasing ofM(x, t) with respect
t implies:M(x,m(x) + �) < M(x,m(x)) = M(y,m(y)) = 0 < M(x,m(x) − �). From
the continuity ofM(x, t) with respectx, there exits a neighborhood ofx such that for all
y lying in this neighborhood we haveM(y,m(x) + �) < M(x,m(x)) = M(y,m(y)) =
0 < M(y,m(x) − �). Always from the decreasing ofM(x, t) with respectt it follows
m(x)− � < m(y) < m(x)+ �. The continuity ofm(x) is established. Letz ∈ S(x, s). From
Taylor’s formula and the triangle inequality we get|f (z)|�M(x, |z−x|). Since the function
M(x, t) decreases and|z − x|�√

2s we have also|f (z)|�M(x, |z − x|)�M(x,√2s).
Hence ifM(x,

√
2s) > 0 thenf has no zero in the squareS(x, s).

Finally sinceM(x, t) decreases, it impliesM(x,
√

2s) > M(x,m(x)) = 0 ⇔ √
2s <

m(x). �

This previous result shows that the complexity of the bisection-exclusion algorithm de-
pends on the behavior of the exclusion functionm(x). In the polynomial case this exclusion
function is equivalent to the distance function in the following sense, see [17, p. 457]:

21/d − 1� m(x)

d(x, Z)
�1, (5)

whered(x, Z) is the distance function fromx to Z. Hence, the question to know a lower
bound of the exclusion function is fundamental to analyze the complexity of the bisection-
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exclusion algorithm. Indeed this complexity is less than that of the algorithm which uses
this lower bound as exclusion test. Our analysis is based on this property.

In the analytic case, it seems that there is not any reference for such a lower bound. This
is why in Section 6 we will perform a general analysis on the behavior ofm(x).

4. Theoretical complexity of the bisection-exclusion algorithm

We will suppose that the analytic function defined onC hasp clustersD̄i := Dmi (�i , 
i )
inside the squareS0 with 
i > 0, �i ∈ S0, 1� i�p. As in the introduction the�i ’s are
zeros off. Let 
 = maxi 
i . Intuitively 
i ’s are small with respect to the precision�. The
results will specify this fact. We recall thatZ is the zeros’ set off. Evidently, we have always
m(x)�d(x, Z) for all x ∈ S0. In this section, we will suppose that the exclusion function
m(x) associated tof satisfies the four following assumptionsH1–H4 below.

The global behavior ofm(x) in the initial square is described by the following: there
existsa > 0, such that

(H1) ∀x ∈ S0, ad(x, Z)�m(x).
The local behavior of exclusion closed to a cluster of zerosD̄i is described in the following

way: we will assume for alli, 1� i�p, there existsai > 0, r > 
i , such that
(H2) ∀x ∈ D(�i , r)\D̄i, aid(x, �i )�m(x).
(H3) ∀i �= k, D(�i , r) ∩D(�k, r) = ∅.

It is a natural way to suppose that
(H4) a�ai, 1� i�p.

We will denote

1. b = 1+ 1

a
.

2. bi = 1+ 1

ai
, 1� i�p.

From(H4) it follows b�bi .
The setZ� is a set of squaresS(x, s) for whichExclusion(S) = False or equivalently

m(x)�s
√

2. Such squares are called retained squares. We say that an exclusion test has
level k�0 when the size of the square iss0/2k. We define the integerspk andqk as the
numbers ofTrueandFalse, respectively, at levelk. We have clearly

1. p0 = 0, q0 = 1.
2. pk + qk = 4qk−1, k�1.

Finally, we need to introduceq(b) as the number of squares with sizesstrictly included in
a disk of radius

√
2bs. This numberq(b) is independent ofs, see Lemma4.2.

The bounds on the distance of retained squares toZ, the numberq� of retained squares
and the total numberQ� of exclusion tests are given by the following:

Theorem 4.1. Using the previous notations, let us suppose that(H1)–(H4)hold. Moreover

let us also require4
√

2b
 < r. Let us consider the two integersj0 =
⌈

log

√
2bs0
r

⌉
and
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j1 =
⌊

log
s0




⌋
.We then havej0 < j1. Let� be a precision satisfying

s0

2j
�� <

s0

2j−1 ,where

j0 < j < j1. ThenZ� is a union of p pairwise disjoint setsZ�,i , such thatD̄i ⊂ Z�,i ⊂
D(�i , r). Letq�,i be the number of retained squares inZ�,i .We then have

1. For all x ∈ Z�,i , d(x, �i )�
√

2bi�, 1� i�p.

2. q�,i�q(bi)�
�

2
b2
i , 1� i�p.

3. Q� �1+ 4j0pq(b)+ 4(j − j0)

p∑
i=1

q(bi).

Proof. Let us recall that log is the logarithm to base 2. From 4
√

2b
 < r, it follows

log

(√
2bs0
r

)
+ 2 < log

s0



. Hencej0 < j1. Let us show that the output setZ� of the

bisection-exclusion algorithm is a union ofppairwise disjoint setsZ�,i each one containing
a cluster of zeros. We first prove we needj0 steps in the algorithm for that the distance

from all point belonging to a retained square at the setZ is less thanr. Let sk = s0

2k
and

S := S (x, sk) be a non-excluded square at a levelk�j0. From(H1), we have

ad(x, Z)�m(x)�sk
√

2.

Since� < sk we get for allz ∈ S,

d(z, Z)�d(z, x)+ d(x, Z)�bsk
√

2. (6)

Let us consider
p⋃
i=1

D
(
�i , b

√
2sk
)

. We know from Lemma4.2 below, the number of squares

with sizesk in each diskD(�i , b
√

2sk) is bounded byq(b)� �

2
b2. Hence, the numberqk

of retained squares at levelk is bounded by

qk�pq(b)�
�

2
pb2. (7)

The indexj0 has been selected so that for allzbelonging to a retained squareSthe inequality

√
2s0b

2j0
�r (8)

holds. From (H3) it follows that thep clusters of roots are contained inp pairwise disjoint
sets. Let us makej0 = k in (6). We obtaind(z, Z)�r. Hence, at levelj, j0 < j < j1, we
have alsod(z, Z)�r. Since theD(�i , r)

′s are pairwise disjoint disks, the setZ� will be an
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union ofp pairwise disjoint setsZ�,i ⊂ D(�i , r), 1� i�p. Moreover, from construction
of the bisection-exclusion algorithm, one hasZ ∩ D̄i ⊂ Z�,i . From definition ofj1 the

inequalities 2
 <
s0

2j1−1 �� imply D̄i ⊂ Z�,i ;

Let us now prove the 1. We boundd(z, �i ) for anyz in a retained squareS(x, sj ) at level
j included inZ�,i . For that there are two cases. First, ifx lies inD(�i , r)\D̄i it follows:

d(z, �i )�d(z, x)+ d(x, Z).
Sinceaid(x, �i )�m(x)�sj

√
2 we get

d(z, �i )�bisj
√

2.

Next, if x ∈ D̄i then since
i < sj it implies �i ∈ S(x, sj ). Hence

d(z, �i )�d(z, x)+ d(x, �i )�sj
√

2 + 
i .

It follows d(z, �i )� max(bisj
√

2, sj
√

2 + 
i ). But, by definitionai�1 andbi = 1 +
1/ai�2. The inequalities

sj
√

2

ai
>



√

2

ai
� 
i

√
2

ai
> 
i imply sj

√
2 + 
i < bisj

√
2.

Finally d(x, �i )�bisj
√

2.

Let us prove the 2. We havebisj
√

2�b
√

2sj0 �r. HenceZ�,i ⊂ D
(
�i , bi

√
2sj
)

⊂
D(�i , r). Using Lemma4.2 below, we then can bound the numberq�,i of retained squares
at levelj contained inD(�i , bi

√
2sj ). We obtain

q�,i�q(bi)�
�

2
b2
i . (9)

To prove the 3, let us remember we havep0 + q0 = 1 andpk + qk = 4qk−1 for k�1.
Then using the bounds (7) and (9) on theqk ’s, we find a bound for the total numberQ� of
exclusion tests is

Q� =
j∑
k=0

pk + qk = 1+
j∑
k=1

4qk−1�1+
j0∑
k=1

4qk−1 +
j∑

k=j0+1

4qk−1

� 1+ 4j0pq(b)+ 4(j − j0)

p∑
i=1

q(bi).

We are done. �

Remark. From Lemma 4.2 we also haveQ� �1+ 2�j0pb
2 + 2�(j − j0)

p∑
i=1

b2
i .

We now state the lemma used in the previous result on the number of squares that is

possible to include in a closed disk. The boundq(b)� �b2

2
is easy to prove. But we need a

better bound to theoretically explain the numerical results shown in the introduction.
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Lemma 4.2. Let r > 0,b�2, 0�s, t�2 be real numbers. Let us introduce the quantities:

1. qk(b, s, t) =
⌊√

2b2 − (2k + t)2 − s
2

⌋
.

2. k1(b, s, t) = min(q0(b, t, s), q0(b, t,2 − s)).
3. q̄1(b, s, t) =

k1(b,s,t)∑
k=1

qk(b, s, t)+ qk(b,−s, t).

We then have

1. The number of squares of size r included in a closed disk of radius
√

2br is equal to

q(b) = 1+ max
0� s,t�2

(k1(b, t, s)+ k1(b, t,2 − s)+ q̄1(b, s, t)+ q̄1(b, s,2 − t)) .

2. q(b)� �b2

2
.

Proof. The proof is done in the AppendixA.1. �

In the sequel, we will be interested to boundq(bm) with bm = 1 + 1

21/m − 1
. For that

we have

Lemma 4.3.
1. For m�4we havebm�2

√
2/�m.

2. For m�1we havebm�2m.
3. For 	 <

√
5− 2 ∼ 0.23607we haveq(b1 + 	) = q(b1) = 4.

4. Letm�1.Then we haveq(bm)�4m2.

Proof. The derivative of the functionm ∈ [1,+∞[→ bm ∈ [2,+∞[ is b′m
= 21/m log(2)

(21/m−1)
2
m2

. It is a strictly increasing function from 2 log(2) to 1/ log(2). Since 2
√

2/� >

1/ log(2) the functionm→ bm−2
√

2/�m decreases. Then the inequalitiesb4−2
√

2/�×
4< 0< b3 − 2

√
2/� × 3 imply the part 1.

Sinceb1 = 2 and the functionm→ bm − 2m decreases also, the part 2 follows.
Taking	 <

√
5− b1, a straightforward numerical computation from Lemma4.2, part 1

gives the part 3. The value	 = √
5− 2 is not convenient becauseq(

√
5) = 5.

For the part 4 we first proveq(bm)�4m2 for m = 1,2,3, thanks to Lemma 4.2, part
1. We find, respectively,q(b1) = q(2) = 4, q(b2) = 12�16, q(b3) = 27�36. Next
for m�4, thanks tobm�2

√
2/�m and Lemma 4.2, part 2, we getq(bm)�4m2. We are

done. �
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5. Geometry of zeros

The complexity of the bisection-exclusion algorithm is related to the geometry of zeros
of the analytic functionf. By geometry of zeros we mean mainly the separation number
which is the minimum distance between two distinct zeros. Since this algorithm isolates
the zeros, it is a natural way to describe the complexity in terms of a lower bound of the
separation number. For polynomials, a result established in[7,36] states:

Theorem 5.1. Let � be a simple root of a polynomial f. We have

min
f (w)=0, ��=w

|� − w| > 1

2�(f ; �) .

But this result holds in the analytic case. Here, it is more convenient to reformulate the
notion of separation number from the point of view of clusters of zeros.

Definition 5.2. Let D̄i , 1� i�p, the clusters of zeros of an analytic functionf defined on
C. We denote bysep(f, �i , mi) = min{ |�i − w| : w /∈ D̄i, f (w) = 0}. The separation
number is defined bysep(f ) = min

1� i�p
sep(f, �i , mi).

Evidently, we need a lower bound of this separation number to quantify the step of the
bisection-exclusion algorithm from which all the clusters are contained in pairwise disjoint
subsets of squares. Such a bound has been given in[37] in the polynomial case. We will
give the proof of this result in the analytic case.

Theorem 5.3. LetD(�, 
) be an open disk. We note�m := �m(f ; �), �m := �m(f ; �) and
�m := �m(f ; �). Let us suppose
 = 3�m and9�m�1.Then

1. The analytic function f has m zeros(counting multiplicities) in D(�, 
).

2. sep(f, �,m) >
1

2�m
− 3

2
�m.

Proof. The proof is done in the AppendixA.2. �

6. Behavior of the exclusion function

We now describe the behavior of the exclusion function in the squareS0. As we can see it
on the figures of the introduction we will distinguish a global behavior and a local behavior
of the exclusion function.

6.1. Local behavior

The result is the exclusion function closed to a cluster ofmzeros has the same behavior
of the exclusion function associated to the polynomialxm.
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Proposition 6.1. We haveMxm(x, t) = 2|x|m − (t + |x|)m and the exclusion function
associated toxm is equal to(21/m − 1) |x|.
Proof. It is an easy computation.�

Theorem 6.2. Let D̄m(�, 
) be a cluster of zeros off with f (�) = 0 and 


=
(

�m(f ;�)
�m(f ;�)

)1/2
. Let r > 
 be such that the quantityu = �m(f ; �)r verifiesLm,�(u) < 1,

where� = 1 if �m(f ; �) �= 0 and� = 0 if �m(f ; �) = 0.Then

∀x ∈ D(�, r)\D̄m(�, 
), (2 − Lm,�(u)) 1
m − 1� m(x)

|x − �| �1.

In particular if m = 1 andu� 1
6, we have

1− L1(u) = 1− 6u

1− 2u
� m(x)

|x − �| �1.

Proof. The proof is done in the AppendixA.3. �

Proposition 6.3.
1. The functionu→ Lm,�(u) increaseson[0,1/2[withLm,�(0) = 0and lim

u→1/2
Lm,�(u) =

+∞.
2. For u ∈ [0,1/2[ the functionm→ Lm,�(u) increases.
3. Let ūm,� the first positive zero of the equationLm,1(u) = 1. The sequence(ūm,�)m�0

decreases to0.

4. ū1,1 = 1

2
−

√
2

4
= 0.14andū1,0 = 1

6
.

Proof. The proof is easy. �

6.2. Global behavior

We now generalize the lower bound of the inequality given in Theorems 6.4(d) and 6.4(i)
of [17], in the analytic case.

Proposition 6.4. Let f be an analytic function defined onC which has d zerosz1, . . . , zd

in the squareS0.Let us considerg(z) =
d∏
k=1

(z−zk) andh(z) the analytic function such that
f (z) = g(z)h(z). Let us suppose that the requirements(1)and(2)of the introduction hold.
Then, for anyx ∈ S0 the exclusion functionm(x) associated to f satisfies the inequality

21/d − 1

3d�

�
(21/d − 1)+ 1

� m(x)

d(x, Z)
.

Proof. The proof is done in the AppendixA.4. �
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7. Proofs of the main theorems

7.1. Proof of Theorem1.1

For that it is sufficient to verify the assumptions of Theorem 4.1. From Proposition 6.4

the assumption (H1) is verified witha = 21/d − 1
3d�
� (2

1/d − 1)+ 1
andb�bd(0)+ 3d�

�
. We let

�mi := �mi (f ; �i ), �mi = �mi (f ; �i ), �mi = �mi (f ; �i ) andumi = umi (	mi ). We then
prove the inequality12sep(f, �i , mi) > r which implies theD(�i , r)’s are pairwise disjoint
disks. We remarkumi is less than̄u1,0 = 1

6 the zero ofL1(u) = 1, see Proposition 6.3. It

is easy to see the inequality
i =
(

�mi (f ; �i )
�mi (f ; �i )

)1/2

< r� umi
�mi

� ū1,0

�mi
implies�mi < ū

2
1,0.

Using both Theorem 5.3 and the 4 of Proposition 6.3, we then get

sep(f, �i , mi)− 2r � 1

2�mi
− 3

2
�mi − 2r

�
(

1

2
− 3

2
ū2

1,0 − 2ū1,0

)
1

�mi

� 1

8�mi
> 0.

Hence the requirement (H3) holds. Let us verify the requirement (H2). For that let us
considerbi := bmi (umi ). From definition ofumi we haveLmi,�(umi ) < 1. From Theorem
6.2 we know the behavior of the functionm(x) in D(�i , r)\D̄i . From the definition ofr it
follows r�mi (f ; �i )�umi and we can write

∀x ∈ D(�i , r)\D̄i, (2 − Lmi (umi ))1/mi − 1� m(x)

d(x, �i )
, 1� i�p.

The requirement H4 holds from the definition ofb. The requirement4 impliesj0 < j1.
The definitions of	mi andumi imply bi = bmi (0) + 	mi andq(bi) = q(bmi (0)). Since
Lemma 4.3 establishes bothbmi (0)�2mi andq(bmi (0))�4m2

i , the parts 1 and 2 follow
easily.

Finally for the part 3, Theorem 4.1 applies in the right way under these considerations
usingq (b) �4D2. We are done. �

Remark. The assumptionq(bi) = q(bmi (umi )) = q(bmi (0)) permits to understand the
local behavior of the bisection-exclusion algorithm closed to a cluster of zero. In fact, for
all � such that
i � � < s0

2j0
, the number of retained squares will be constant. On the

other hand, if��
i it is necessary to consider the clusters of zeros inside the initial cluster.
Roughly speaking, the algorithm see the cluster of zeros as a multiple zero until a certain
scale.
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7.2. Proof of Theorem1.2

Now the analytic functionf has only simple zerosz1, . . . , zd . We apply Theorem 1.1
with the following values:m = 1, 
 = 0, b1(0) = 2, andq(b1(0)) = 4 (see Lemma 4.2).
The value of	1 is given by a solution of the equationq(2 + 	) = 4. From Lemma 4.3 we
can choose	1 = 0.236. The zerou1(	1) of the equationb1(u) = b1(0)+ 	1 is given by

L1(u) = 4u

1− 2u
= 1− 1

	1 + 1
.

We findu1(	1)�
1

23
. Then we selectr = 1

23�(f ; �i ) . Sincebd(0)�1+ 1

21/2 − 1
�3.4>

b1(0)+	1 ∼ 2.236, we chooseb = bd(0)+ �3d

�
andbi = b1(0)+	1. From Lemma4.3 we

have successivelyb�2d+ �3d

�
andb1(0) = 2. We also havesep(f ; �i )−2r� 1

2�(f ; �i )−
2

23�(f ; �i ) > 0.

Then Theorem 1.1 applies under these considerations. It follows the value ofj0 =⌈
log

(
23

√
2(2d + �3d

�
)�(f )s0

)⌉
and the bounds given in the parts 1–3. We are

done. �

8. Bisection-exclusion algorithm for nearly real zeros

In the real case the bisection-exclusion algorithm works in the same way but intervals
replace the squares. To study the complexity of the bisection-exclusion algorithm, we must
hold into account the complex zeros closed to the real axis. An intervalI (x, s) is represented
by its centerxand its length 2s. LetI0 := I (x0, s0). We also suppose that there arepclusters
of zerosD̄mi (�i , 
i ), 1� i�p, such thatf (�i ) = 0 andĪi := D̄mi (�i , 
i )∩ I0. We will say
the analytic function hasp nearly real clusters of zeros in the intervalI0. The exclusion test
for an intervalI (x, s) becomes

Exclusion(I (x, s)) = T rue⇔ M(x, s) > 0.

In fact, proving Theorem3.1 in the real case, it is easy to see the factor
√

2 does not appear.
Let us suppose

(H5) ∀x ∈ I0, ad(x, Z)�m(x)�d(x, Z).
With the same notations as in Section 4 we can state

Theorem 8.1. Let f be an analytic function defined onC which has p nearly real clusters
of zeros in the intervalI0. Let us suppose that the assumptions(H2)–(H5)hold. Let us also

suppose4b
 < r. Let us introduce the two integersj0 =
⌈

log
bs0

r

⌉
andj1 =

⌊
log
s0




⌋
.
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We then havej1 < j0. Let also� be a precision satisfying
s0

2j
�� <

s0

2j−1 with j0 < j < j1.

ThenZ� is a union of p pairwise disjoint setsZ�,i , such thatĪi ⊂ Z�,i ⊂ I (�i , r). Let q�,i
be the number of retained intervals inZ�,i .We then have

1. For all x ∈ Z�,i d(x, �i )�bi�, 1� i�p.
2. q�,i� �bi , 1� i�p.

3. Q� �1+ 2j0p �b + 2(j − j0)

p∑
i=1

�bi .

Proof. See the AppendixA.5. �

To state a more precise result, we proceed as in the introduction. For that we introduce
um(	m) the first positive zero of

bm(u) = bm(0)+ 	m,

where	m satisfies

∀	�	m, �bm(0)+ 	 = �bm(0) .
With this new definition of	m andum, we now suppose that thep clusters of zeros are
gathered such that the above requirements are satisfied.


i =
(

�mi (f ; �i )
�mi (f ; �i )

)1/2

, (10)

4b
 < r = min
1� i�p

umi (	mi )

�mi (f ; �i )
, (11)

where
 = max
i


i , b̄ = max
1� i�p

bmi (0)+ 	mi andb = max

(
bd(0)+ 3d�

�
, b̄

)
.

Let us also suppose that the� and� verify (1) and

2�s0� 1
2. (12)

We have

Theorem 8.2. Let us consider an analytic function f defined onC which has p nearly real
clusters of zeros in the intervalI0. Let us suppose that the requirements(1), (10),and(11),

(12)hold. Let us introduce the two following integersj0 =
⌈

log
bs0

r

⌉
andj1 =

⌊
log
s0




⌋
.

We then havej0 < j1. Let� be a precision verifying
s0

2j
�� <

s0

2j−1 with j0 < j < j1.Then

the output setZ� of the bisection-exclusion algorithm is a union of p pairwise disjoint sets
Z�,i such thatĪi ⊂ Z�,i ⊂ I (�i , r). Letq�,i the number of intervals inZ�,i .We then have

1. For all x ∈ Z�,i , d(x, �i )�(2mi + 	mi )�, 1� i�p.
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2. q�,i�2mi , 1� i�p.
3. Q� �1+ 4j0pD + 4(j − j0)p,

where D satisfiesb�1+ 1

21/D − 1
.

Proof. The proof is similar to that of Theorem1.1. �

In the particular case where the�i ’s are simple nearly real zeros we state

Theorem 8.3. Let us consider an analytic function f defined onC which has p simple

nearly real zeros�i , 1� i�p, in the intervalI0. Let j0 =
⌈

log2

(
11(2d + �3d

�
)�(f )s0

)⌉
and � be a precision verifying

s0

2j
�� <

s0

2j−1 with j0 < j . Then the output setZ� of the

bisection-exclusion algorithm is a union of p pairwise disjoint setsZ�,i such that�i ∈ Z�,i ,
1� i�p. Moreover, the following estimations hold:

1. For all x ∈ Z�,i , d(x, �i )�3�, 1� i�p.
2. EachZ�,i contains at most two intervals, 1� i�p.
3. Q� �1+ 4j0pD + 4(j − j0)p,

where D satisfiesbd(0)+ 3d�

�
�1+ 1

21/D − 1
.

Proof. The proof is performed in the same way as the proof of Theorem1.2. We only
explain the factor 11 in the value ofj0. We have
 = 0,m = 1 andb1(0) = 2. The value
	1 is bounded by 1 and the zerou1(	) of the equationb1(u) = b1(0)+ 	 satisfies

4u

1− 2u
= 1− 1

	1 + 1
<

1

2
.

Henceu <
1

10
. We selectr so thatu1(	1) <

1

10
, i.e; r = 1

11�(f )
. �

9. The polynomial case

Heref is a polynomial of degreed.

9.1. Complexity for the localization of complex roots

Theorem1.1 holds with� = 0 andD = d. In the simple roots case, the term 16j0dD
2 ∈

O(d3 log(d�(f )s0)) in Q� gives the number of exclusion tests to isolate the roots. The
next term 16d(j − j0) ∈ O(d logd) in Q� gives the number of tests when the algo-
rithm works closed to the roots. Then the number of arithmetic operations is bounded
byO(d5 log(20�(f ) ds0)) orO(d4 log(d) log(20�(f ) ds0)) according to the generalized
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Horner scheme[17, p. 435] or the fast Fourier transform algorithm [3, p. 36] is used to
numerically evaluate all the quantitiesf (k)(x)/k!’s. Note these bounds can be computed
only a posteriori since�(f ) depends on the roots.

9.2. Complexity for the localization of simple real roots

Let us consider a polynomial which hasp simple real roots in the intervalI0. We then
have� = 0 andD = d. The real bisection-exclusion algorithm needs 4pd log(22�(f ) ds0)
exclusion tests to isolate the roots. Hence, the number of arithmetic operations is bounded by
O(pd3 log(22�(f ) ds0)) orO(pd2 log(d) log(22�(f ) ds0)) according to the generalized
Horner scheme [17] or fast Fourier transform algorithm [3] is used to numerically evaluate

all the quantities
f (k)(x)

k! ’s. Others methods to isolate simple real roots of polynomials are

based on the Descartes rule of signs. In [6], the authors obtained an arithmetic complexity
when the polynomials are expressed in the monomial basis. Further improvements can be
found in [25, Theorem 2.1], where the Bernstein basis is used to represent polynomials.

More precisely, the number of arithmetic operations is inO(d(d + 1)r(log

(
5d

2sep

)
−

log(r)+ 4) wherer is the number of sign changes of the Bernstein coefficients’ sequence.
The gain of a factord comes from the isolation algorithm does not split the interval when
the number of sign changes of the Bernstein sequence does not exceed 1. Consequently, the
retained intervals are different sizes contrary to those of the bisection-exclusion algorithm
described here. Let us add that in [2] the authors study the bit complexity of these real root
isolation algorithms. Moreover a recent report [24], using ideas developed in [29], gives
an algorithm which improves this bit complexity.

9.3. Rounding error analysis and bit-complexity

In this sectionf is a complex polynomial of degreed. We let f (x) =
d∑
k=0

fkx
k and

f̃ (k)(x)

k! =
d−k∑
j=0

(
d

k

)
|fk+j |xj , 0�k�d. We introduce for a complex numberx the quantity

|x|21 = 1 + |x|2 where|x|2 = xx̄. We defined a norm on the linear space of the complex

polynomials of degreed by ‖f ‖2 =
d∑
k=0

(
d

k

)−1

|ak|2, see [4, p. 218]. In this section

only, we will use the notationu = 1
2�1−n, where� andn are, respectively, the base and

the precision of the floating point number system. We perform a rigorous rounding error
analysis of the evaluation of the exclusion polynomial. To do that, we deal with the standard
arithmetic model for the floating point numbers [18, p. 44]. Let us consider the generalized
Horner scheme to evaluate the derivatives. Letfk the floating point number of|f (k)(x)|/k!.
In this model we know there exists�k, such that

∣∣∣∣∣f
(k)(x)

k!

∣∣∣∣∣ = fk(1+�k), 0�k�d. We then
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have

M(x, t) = f0 −
d∑
k=1

fkt
k −

d∑
k=0

�kt
k.

Consequently iff0 −
d∑
k=1

fkt
k >

d∑
k=0

|�k|tk thenM(x, t) > 0. The question is: what is the

precisionn in the floating point number system to have
d∑
k=0

|�k|tk�� where� is a given real

number?

Proposition 9.1. Let � > 0 andh = max
0�k�d

|ak|.

Then forn =
⌈

log�

(
3�

8�
(2
√

3h2d |x|d1 + (d − 1)�)

)⌉
, we have

d∑
k=0

|�k|tk��. Hence a

precision of� on the computation ofM(x, t) is performed withO

(
d log

(
h|x|1

�

))
bits of

precision.

Proof. The proof is done in the AppendixA.6. �

9.4. Bit complexity

For sake of simplicity, we will suppose that the polynomialf only has simple roots. We
introduce� the variety of polynomials of degreed which have a multiple root and�x
the variety of polynomials of degreed which havex as multiple root. We note byd(f,�)
(respectively,d(f,�x)) the distance off to � (respectively,�x) for the norm‖f ‖ defined
above. The goal of this section is to link the number of bit we need to isolate the roots off
with the distanced(f,�). This question to link the bit complexity with the distance to the
ill-posed problems has been studied in a more general setting in [5].

Proposition 9.2. A bound for the number of bits to isolate the roots of the polynomial f is
given by⌈

log

(
23

√
6 max(1, h)d5/2 s0

min(1, d(f,�))

)⌉
.

Proof. The proof is done in the AppendixA.7. �

9.5. Improvement using Graeffe iterates

In this section, we show how to improve the exclusion test given in the introduction.
To do that we use the classical Graeffe process which consists in defining the following
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polynomial sequence from a given polynomialg:

g<0>(z) = g(z),
g<N+1>(z) = g<N>(√z)g<N>(−√

z), N�0.

We callg<N>(z) theNth Graeffe iterate ofg(z). This polynomial is also of degreed. Each
Graeffe iterate can be computed withd logd arithmetic operations using the fast Fourier
transform algorithm[3]. In many papers the Graeffe iterates are a tool for approximating
the distance from a point to the roots, see [26,30,12,27]. In [12] we can find the following:

Proposition 9.3. Let f be a polynomial of degree d. Forx ∈ C, let us considerm<N>(0)
the exclusion function associated to the Nth Graeffe iterate ofg(z) = f (x + z). Namely

M<N>(0, t) = |g<N>(0)| −
d∑
k�1

|g<N>(0)|
k! tk.

1. If M<N>
(

0, (
√

2r)2
N
)
> 0 thenZ ∩ S(x, r) = ∅.

2. We have(
21/d − 1

)2−N
�m

<N>(0)

d(x, Z)
�1.

Corollary 9.4.

0.638· · · = (21/3 − 1)1/3�m
<�logd�>(0)
d(x, Z)

�1.

Proof. If we takeN = �logd�, we have
m�logd�(0)
d(x, Z)

�
(

21/d − 1
)1/d

. An easy study of

the functiond ∈ N →
(

21/d − 1
)1/d

shows that the minimum of this function is reached

for d = 3. Since(21/3 − 1)1/3�0.638 the corollary follows. We are done.�

The quantityb of Section 4 is bounded by 1+ (21/3 − 1)−1/3 ∼ 2.57 < 3. Then a
straightforward computation shows thatq(b)�6. From Theorem4.1, the number of tests of
the bisection-exclusion algorithm which use the exclusion polynomial associated to thedth

Graeffe iterate ofg(z) = f (x+z)will be bounded byO

(
24d log

(
3
√

2s0
r

))
. Moreover,

each step needsO(d(logd)2)+O(d) to compute the�logd th Graeffe iterateg<�logd�>(z)
and to evaluateM<�logd�>(0, t). In conclusion the number of arithmetic operations is in

O

(
24d2(logd)2 log

(
3
√

2s0
r

))
. We obtain a gain of a factord2 or d3 compared to the

complexity given in the introduction. Compared to the bound of arithmetic complexity
given in [28], our bound is multiplied by a factor of logd. The modified Weyl’s algorithm
of Pan [28] use many ingredients. In particular this algorithm computes Newton sums of
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roots of a Graeffe polynomial in order to perform Turan’s test and combines the iterations
with the generalized Newton method in the case of the multiple roots. All the now classical
but tedious techniques of fast computation are used in this modified Weyl’s algorithm.

In the case of real root computation, the arithmetic complexity of the bisection-exclusion

algorithm using Graeffe iterates is inO

(
pd(logd)2 log

(
3s0
r

))
which is gain of a factor

d/(logd)2 compared to the result of Mourrain et al.[25].

10. Practical comments, examples and numerical experiments

10.1. Bounds for roots

If we want to locate all the roots of a polynomialg(z) =
d∑
k=0

gkz
k we need a bound for

the roots in order that to determine the initial squareS0. In the polynomial case there exits
many bounds for the modulus of roots: Cauchy bound, Knuth bound etc. . . can be found in
[23] or [17]. Let us remark each one are greater than the positive root of

|gd |td −
d−1∑
k=0

|gk|tk,

which can be easily approximate by Newton’s method.

10.2. Sums of polynomials and exponentials

In the case where the analytic function isf (z) =
n∑
i=1

gi(z)e
ciz we show what kind of

exclusion test we use in practice. In fact, we need to truncate the polynomialM(x, t). It is
why we will use a new exclusion polynomial̄M(x, t)whose the exclusion function̄m(x, t)
defined below has a similar local behavior that of the exclusion functionm(x).

Proposition 10.1. Let us consider the analytic function be defined byf (z) =
n∑
i=1

gi(z)e
ciz,

where thegi(z)’s are complex polynomials and theci ’s are complex numbers. We note by
�i = |ci |, di the degree ofgi(z) and d an integer such thatd� max

i
di .We note byi (x) =

1

(d + 1− di)!

∣∣∣∣∣∣
di∑
j=0

g
(j)
i (x)

j ! c
di−j
i

∣∣∣∣∣∣. Let us introduce

M̄(x, t) = |f (x)| −
d∑
k=1

|f (k)(x)|
k! tk −

n∑
i=1

i (x)�
d+1−di
i |ecix |e�i t td+1.
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Let m̄(x, t) the exclusion function associated to f with respectM̄(x, t): M̄(x, m̄(x)) = 0.

1. Letr = √
2s. If M̄(x, r) > 0 the function f has not zeros in the squareS(x, s).Moreover

m(x) > m̄(x).
2. Let D̄m(�, 
) be a cluster of zeros off such that the assumptions of theorem6.2 be

satisfied andLm,�(u)+�(x)d(x, Z)d+1 < 1,where�(x) = 1

f (m)(�)

n∑
i=1

i (x)�
d+1−di
i

|ecix |e�i d(x,Z). Then

∀x ∈ D(�, r)\D̄m(�, 
), (2 − Lm,�(u)− �(x)d(x, Z)d+1)
1
m − 1� m̄(x)

|x − �| �1.

Proof. The proof is done in the AppendixA.8. �

The figures of the introduction have been obtained withd = 11 andf (x) = g1(x)e
ix +

g2(x)e
−1+2ix where

g1(x) = −.8689978472263463384182178− .8850265833480658945418317i

+x + (−.2553311571377752315850749+ .2613419028288941541561861i)x2

−(.002079364167430515907686434+ .07705099207827323334900161i)x3

+(.007137587815057250237863542+ .006481250007739470396595780i)x4

+(−.0005927422781839878774265663+.00004622068385670318923574017i)x5,

g2(x) = .8689978989542825532098086+ .8850268859278433176318700i

+(.7540247256824407372715811+ .01602911065699272739657552i)x

+(.1403575042219709729549892− .1303398517844059099237165i)x2

+(.001410428191710616485978973− .02429673220963624919224114i)x3

−(.0008493897415001390619349884+ .001011132693104024141255355i)x4.

10.3. Polynomialxm

We perform the bisection-exclusion algorithm with the polynomialf (x) = xm in the
squareS(0, s), (respectively, intervalI (0, s) ), s > 0. A numerical experiment shows that
the bound for the number of retained squares is closed to the bound given in Theorem
4.2 computed by Matlab. The Table 1 before gives the number of retained squares (resp.,
intervals).

10.4. Bisection-exclusion linked with Graeffe iteration

To illustrate how works the improvement given in Section 9 we consider a polynomial of
degree 10 which has the same clusters that of the analytic function given in the introduction.
If we perform the bisection-exclusion algorithm with the exclusion test of the introduction,
we obtain same results as in Fig. 1. Now using the exclusion test associated with the�logd�th



676 J.-C. Yakoubsohn / Journal of Complexity 21 (2005) 652–690

Table 1

m Retained squares q(bm(0))
2 12 12
3 24 27
4 44 46
5 76 76
6 112 112
7 148 151
8 192 198
9 248 256

10 308 313
11 376 382
12 448 454
13 532 540
14 608 621
15 708 716
16 812 813
17 912 920
18 1020 1037
19 1124 1152
20 1272 1280

m Retained intervals �bm(0) 
2 2 3
3 4 4
4 6 6
5 6 7
6 8 9
7 10 10
8 12 12
9 12 13

10 14 14
11 16 16
12 16 17
13 18 19
14 20 20
15 22 22
16 22 23
17 24 25
18 26 26
19 26 27
20 28 29

Graeffe iterate associated tog(z) = f (x + z) at each step of the algorithm, we obtain the
following figure skipping the steps 1 and 2 where all the squares are retained. (Fig.3).

11. Conclusion and further research

In this paper, we have precisely studied how works the bisection-exclusion algorithm
with a test based on the Taylor formula. To do that we have performed the�-theory of
Smale. Nevertheless some questions have not been here treated.
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Fig. 3.

The first question is to quantify the change of local behavior of the exclusion function
near a cluster. This question is related to the behavior of the generalized Newton operator
or Schroeder operator near a cluster of root. A precise study of this fact can be found in
[16].

The second question is the study of the bit complexity of this algorithm. An answer is to
generalize the work of Pardo and its collaborators [5] in the case of clusters of roots. In
fact the authors have linked the notion of approximate zeros [31] with the bit complexity in
the case of simple roots.

The third question is to construct a fast Graeffe process in the analytic case.
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Appendix A. Proofs

A.1. Proof of Theorem4.2

Let us consider a grid of squares contained in the closed diskD̄(0,
√

2br) as in Fig.
4, i.e., the center of the disk is not, in general, a vertex of the grid. Each square has a
sizer. Our objective is to count the number of squares of the grid contained in the disk.
Let us consider the grid’s point of coordinate(r1, r2) nearest to the center of the disk
defined by: 0�r1 < 2r, 0�r2 < 2r. We then introduces = r1/r and t = r2/r. Let us
consider the pointsAk(0,2kr + r2) for 0�k�k1(b, s, t) andBk(0,−2kr − 2r + r2) for
0�k�k1(b, s,2 − t) as in Fig. 4. It is easy to see the quantityk1(b, s, t) (respectively,
k1(b, s,2− t) ) is the largest integerk such that there exists a squareSwith sizer included
in the disk andAk ∈ S (respectively,Bk ∈ S). In fact, from an easy geometric argument
based on the Pythagoras formula, we find theAk ’s satisfy the two inequalities

2kr + r2�
√

2b2r2 − r2
1 and 2kr + r2�

√
2b2r2 − (2r − r1)2.

Hencek�min

(√
2b2 − s2 − t

2
,

√
2b2 − (2 − s)2 − t

2

)
. It follows the value fork1(b, s, t).

A similar way gives the valuek1(b, s,2 − t). Always from the Pythagoras formula, we
deduce the number of squares of sizer in the band defined by the pointsAk−1 andAk in-
cluded in the disk is: 1+ qk(b, s, t)+ qk(b,2− s, t) = 1+ qk(b, s, t)+ qk(b,−s, t)−1 =
qk(b, s, t)+qk(b,−s, t). In the same way, the number of squares of sizer in the band defined
by the pointsBk−1 andBk included in the disk is: 1+qk(b, s,2− t)+qk(b,2− s,2− t) =
qk(b, s,2− t)+ qk(b,−s,2− t). In the band defined by the pointsA0 andB0, the number
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Fig. 4.

of squares is: 1+min(q0(b, s, t), q0(b, s,2− t))+min(q0(b,2−s, t), q(b,2−s,2− t)) =
1 + k1(b, t, s) + k1(b, t,2 − s). Finally, the maximum number of squares included in the
disk is

q(b) = 1+ max
0� s,t�2

(k1(b, t, s)+ k1(b, t,2 − s)+ q̄1(b, s, t)+ q̄1(b, s,2 − t)) .

Writing the area of squares is less than the area of the disk we find 4q(b)r2�2�b2r2. Hence
q(b)��b2/2. We are done. �

A.2. Proof of Theorem5.3

Let us prove the 1. Letg(x) =
∑
k�m

f (k)(�)

k! (x− �)k. Using Rouché’s theorem, we show

thatf andghave the same number of zeros (counting multiplicity) inD(�, 
). Letw be such

that |w − �| = 
. Since�m = �m
 �m/
�1/9 and�m/
 = 1
3, it follows �m
� �m



= 1

3
.

Using both Taylor series expansion at� for f (w)− g(w) andg(w) and triangle inequality,
we obtain

|f (w)− g(w)| � |f (m)(�)|
m! 
m

(∑
k<m

(�m/
)
k−m

)

<
|f (m)(�)|
m! 
m

(
1− 1/3

1− 1/3

)
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� |f (m)(�)|
m! 
m

(
1− �m


1− �m


)

� |f (m)(�)|
m! 
m

(
1−

∑
k>m

(�m
)k−m
)

� |g(w)|.

Hence|f (w)− g(w)| < |g(w)| for all w, such that|w − �| = 
 and the Rouché theorem
applies. We now prove� is the only one zero with multiplicitymof the analytic functiong(x)

inD(�, 
). It is clear we have|g(w)| > |f (m)(�)|
2m! |w− �|m for all w such that|w− �| < 
.

Henceg(w) �= 0 forw �= �.
Let us prove the part 2. Letf (w) = 0 andw /∈ Dm(�, 
). Let s = |w − �|. If �ms�1

it follows s� 1

�m
. Since�m� 1

9 we have
1

�m
�9�m�3�m which impliess� 1

�m
>

1

2�m
−

3

2
�m�0.

In the contrary case�ms < 1, we write

0 = f (w) = f (�)+
∑
k�1

f (k)(�)

k! (w − �)k.

Sinces > 
 = 3�m it follows �m/s < �m/
 = 1/3. Since�ms < 1 and�m/s < 1, we get
from the previous Taylor’s formula

0 � 1−
m−1∑
k=0

m!|f (k)(�)|
k!|f (m)(�)| |w − �|k−m −

∑
k>m

m!|f (k)(�)|
k!|f (m)(�)| |w − �|k−m

� 1−
m−1∑
k=0

(
�m

|w − �|
)m−k

−
∑
k>m

(
�m|w − �|)k−m

� 1− �m/s

1− �m/s
− �ms

1− �ms

� (1+ 3�m)s − 2�ms
2 − 2�m

s(1− �ms)(1− �m/s)
= − 1

�m
e(�ms),

wheree(u) = 2u2 − (1 + 3�m)u + 2�m. Hencee(�ms)�0. Since 9�m�1, the poly-
nomiale(u) has two zeros. An easy computation shows thate(3�m) = e(1/2 − 3�m/2) =
(9�m − 1)�m�0. But we know thate(�ms)�0, �ms > 3�m and 3�m�1/2− 3�m/2 (from
9�m�1 ). Hence,�ms is greater than the largest root of the polynomiale(u). It follows
that the inequality�ms�1/2 − 3�m/2 holds. We are done.�
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A.3. Proof of Theorem6.2

SinceLm,�(u) < 1 it follows u < 1 andf (m)(�) �= 0. The functionm(x) is defined by
M(x,m(x)) = 0. From Taylor’s formula in�, we get successively

0 = |f (x)| −
∑
k�1

∣∣f (k)(x)∣∣
k! m(x)k

�
∣∣f (m)(�)(x − �)m

∣∣
m! −

∑
k �=m

∣∣f (k)(�)(x − �)k
∣∣

k!

−
m∑
k=1

∣∣f (m)(�)(x − �)m−k∣∣
k!(m− k)! m(x)k

−
∑

k+j<m, k�1

∣∣f (k+j)(�)(x − �)j
∣∣

k!j ! m(x)k

−
∑

k+j>m, k�1

∣∣f (k+j)(�)(x − �)j
∣∣

k!j ! m(x)k.

It is equivalent to

0 � 1−
∑
k �=m

∣∣∣∣∣m!f (k)(�)
k!f (m)(�)

∣∣∣∣∣ |x − �|k−m −
m∑
k=1

(
m

k

)(
m(x)

|x − �|
)k

−
∑

k+j<m, k�1

(
k + j
j

) ∣∣∣∣∣ m!f (k+j)(�)
(k + j)!f (m)(�)

∣∣∣∣∣ |x − �|j−mm(x)k

−
∑

k+j>m, k�1

(
k + j
j

) ∣∣∣∣∣ m!f (k+j)(�)
(k + j)!f (m)(�)

∣∣∣∣∣ |x − �|j−mm(x)k.

We write this previous inequality under the form

0�1− A− B − C −D

and we bound in the sequel the four sumsA, B, C, D with respect tou. For that we will use
the inequality�m(f ; �)��u|x − �| which goes fromx /∈ D̄m(�, 
).

The quantityA =
∑
k �=m

∣∣∣∣∣m!f (k)(�)
k!f (m)(�)

∣∣∣∣∣ |x − �|k−m is bounded by

A �
m−1∑
k=0

(
�m(f ; �)
|x − �|

)m−k
+

∑
k�m+1

(
�m(f ; �)|x − �|)k−m

� �m(f ; �)/|x − �|
1− �m(f ; �)/|x − �| +

�m(f ; �)|x − �|
1− �m(f ; �)|x − �| �

�u

1− u + u

1− u.
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The quantityB =
m∑
k=1

(
m

k

)(
m(x)

|x − �|
)k

is equal to

(
1+ m(x)

|x − �|
)m

− 1.

We bound C =
∑

k+j<m, k�1

(
k + j
j

) ∣∣∣∣∣ m!f (k+j)(�)
(k + j)!f (m)(�)

∣∣∣∣∣ |x − �|j−mm(x)k using

m(x)� |x − �| and the definition of�m(f ; �).

C =
m−1∑
k=1

m−k−1∑
j=0

(
k + j
j

) ∣∣∣∣∣ m!f (k+j)(�)
(k + j)!f (m)(�)

∣∣∣∣∣ |x − �|j−mm(x)k

�
m−1∑
k=1

m−k−1∑
j=0

(
k + j
j

) ∣∣∣∣∣ m!f (k+j)(�)
(k + j)!f (m)(�)

∣∣∣∣∣ |x − �|k+j−m

�
m−1∑
k=1

m−1−k∑
j=0

(
k + j
j

)
�um−k−j .

Since the functionj →
(
k + j
j

)
increases we deduce

C � �
m−1∑
k=1

(
m− 1

m− k − 1

)m−k−1∑
j=0

um−k−j

� �
m−1∑
k=1

(
m− 1

m− k − 1

)
u

1− u

� (2m−1 − 1)
�u

1− u.

Finally, we boundD =
∑

k+j>m, k�1

(
k + j
j

) ∣∣∣∣∣ m!f (k+j)(�)
(k + j)!f (m)(�)

∣∣∣∣∣ |x − �|j−mm(x)k. We get

D �
m∑
k=1

∑
j�m−k+1

(
k + j
j

)
uk+j−m +

∑
k�m+1

∑
j�0

(
k + j
j

)
uk+j−m.

First we have
m∑
k=1

∑
j�m−k+1

(
k + j
j

)
uk+j−m�

m∑
k=1

∑
j�1

(
j +m

j +m− k
)
uj .

We remark that

(
j +m

j +m− k
)

�
(
m

k

)(
k + j
j

)
. This follows from the fact that the function

j → lj =
(
j +m
k

)(
k + j
j

)−1

decreases. Hencelj � l0 =
(
m

k

)
. Hence we can write

m∑
k=1

∑
j�m−k+1

(
k + j
j

)
uk+j−m �

m∑
k=1

(
m

k

)∑
j�1

(
k + j
j

)
uj
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�
m∑
k=1

(
m

k

)(
1

(1− u)k+1 − 1

)

� (2 − u)m
(1− u)m+1 − u

1− u − 2m.

On the other hand using
∑
j�0

(
k + j
j

)
uj = 1

(1− u)k+1 , we get

∑
k�m+1

∑
j�0

(
k + j
j

)
uk+j−m �

∑
k�m+1

uk−m

(1− u)k−m
1

(1− u)m+1

� u

(1− u)m+1(1− 2u)
.

Finally

D� (2 − u)m
(1− u)m+1 − u

1− u − 2m + u

(1− u)m+1(1− 2u)
.

We now can to collect the previous point estimates onA, B, C andD. The inequality
0�1− A− B − C −D becomes

0 � 2 − (� + 1)u

1− u −
(

1+ m(x)

|x − �|
)m

− (2
m−1 − 1)�u

1− u − (2 − u)m
(1− u)m+1

+ u

1− u + 2m − u

(1− u)m+1(1− 2u)

� 2 −
(

1+ m(x)

|x − �|
)m

− Lm,�(u).

Finally

m(x)

|x − �| �(2 − Lm,�(u)) 1
m − 1.

We are done. �

A.4. Proof of Theorem6.4

Letxbe such thatf (x) �= 0. Henced(x, Z) �= 0 andm(x) �= 0. Remember the quantities
|g(k)(x)|
k!|g(x)| are related to the distance function to the set of the zerosZ by, see [17, p. 454],

|g(k)(x)|
k!|g(x)| �

(
d

k

)
1

d(x, Z)k
. (13)
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Applying Leibniz’s rule and bounding from (13), we find easily, for 1�k�d,

|f (k)(x)|
k!|f (x)| �

k−1∑
j=0

|g(j)(x)|
j !|g(x)|

|h(k−j)(x)|
(k − j)!|h(x)| +

|g(k)(x)|
k!|g(x)|

� �
k−1∑
j=0

(
d

j

)
�k−j−1

d(x, Z)j
+
(
d

k

)
1

d(x, Z)k

� �

�d(x, Z)k

k−1∑
j=0

(
d

j

)
(�d(x, Z))k−j +

(
d

k

)
1

d(x, Z)k
.

From (2) we have�d(x, Z)�2
√

2s0�� 1
2. It follows

|f (k)(x)|
k!|f (x)| � 2d�

�(2d(x, Z))k

k−1∑
j=0

(
d

j

)(
1

2

)d−j
+
(
d

k

)
1

d(x, Z)k
.

Finally

|f (k)(x)|
k!|f (x)| � (3d − 2d)�

�(2d(x, Z))k
+
(
d

k

)
1

d(x, Z)k
. (14)

In the same way, sinceg(k)(x) = 0 for k�d + 1, we find

|f (k)(x)|
k!|f (x)| �

d∑
j=0

|g(j)(x)|
j !|g(x)|

|h(k−j)(x)|
(k − j)!

� �
d∑
j=0

(
d

j

)
�k−j−1

d(x, Z)j

� ��k−d

�d(x, Z)d

d∑
j=0

(
d

j

)
(�d(x, Z))d−j .

Hence we get

|f (k)(x)|
k!|f (x)| � 3d�k−d�

2d�d(x, Z)d
. (15)

Dividing the identityM(x,m(x)) = 0 by |f (x)| = |g(x)h(x)| and using the inequalities
(14), (15) we obtain

0 � 1−
d∑
k=1

(
d

k

)
m(x)k

d(x, Z)k
− (3

d − 2d)�

�

d∑
k=1

(
m(x)

2d(x, Z)

)k

− �3d

2d�

∑
k�d+1

�k−d m(x)
k

d(x, Z)d
.



J.-C. Yakoubsohn / Journal of Complexity 21 (2005) 652–690 685

Since we have bothm(x)�d(x, Z) and�d(x, Z)� 1
2, the previous inequality becomes

0 � 2 −
(

1+ m(x)

d(x, Z)

)d
− �(3d − 2d)m(x)

2�d(x, Z)

d∑
k=1

(
1

2

)k−1

− �3dm(x)

2d�d(x, Z)

∑
k�d+1

(
1

2

)k−d

� 2 −
(

1+ m(x)

d(x, Z)

)d
− �(3d − 2d + (3/2)d)

�

m(x)

d(x, Z)

� 2 −
(

1+ m(x)

d(x, Z)

)d
− �3d

�

m(x)

d(x, Z)
.

Finally thanks to Lemma.1 below the proposition follows. �

Lemma .1. Let c�0.The positive solution of the equation

2 − cu− (1+ u)d = 0

is greater than
21/d − 1

c(21/d − 1)+ 1
.

Proof. The functionu ∈ [0,+∞[→ 2− (1+ u)d ∈ R is a concave function which is zero
for u = 21/d −1. The equation of the straight line joining the points(0,1) and(21/d −1,0)

is v = − 1

21/d − 1
u+ 1. Hence, the zero of the equationcu = − 1

21/d − 1
u+ 1 is less than

the zero ofcu = 2 − (1+ u)d . We are done. �

A.5. Proof of Theorem8.1

The proof is similar to that of the Theorem 4.1. The inequalityj0 < j1 follows from
4b
 < r. We first prove it needsj0 steps in the algorithm to isolate the nearly real clusters

of zeros in the intervalI0. Let sk = s0

2k
andI = I (x, sk) be a non-excluded interval at a

levelk�j0. We have from (H5)ad(x, Z)�m(x)�sk.
Since� < sk we get for anyz ∈ I , d(z, Z)�d(z, x) + d(x, Z)�bsk. Let us consider
p⋃
i=1

I (�i , bsk). The number of intervals of length 2sk in I (�i , bsk) is bounded by�b . Hence

the total numberqk of retained intervals at levelk is bounded by

qk�p �b . (16)

The indexj0 was selected so that for allzbelonging to a retained intervalI the inequality
s0b

2j0
�r holds. Hence at levelj, j0 < j < j1, we haved(z, Z)�r. Since theI (�i , r)

′s are

pairwise disjoint intervals, the setZ� will be an union ofp pairwise disjoint sets:Z�,i ⊂
I (�i , r), 1� i�p. Moreover, for allx ∈ Īi we havem(x)�d(x, Z)�
� s0

2j1−1 ��. Hence

Īi ⊂ Z�,i .
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We now prove the part 1. To do that, we boundd(z, �i ) for somez in a retained interval
I (x, sj ) at levelj included inZ�,i . There are two cases. First, ifx lies inI (�i , r)\Īi it follows
d(z, �i )�d(z, x)+d(x, �i ). Sinceaid(x, �i )�m(x)�sj we getd(z, �i )�bisj . Next, ifx ∈
Īi then since
i < sj it implies�i ∈ I (x, sj ). Hence,d(z, �i )�d(z, x)+d(x, �i )�sj +
i .

Sinceai�1 andbi = 1+ 1/ai�2, we have
sj

ai
>




ai
� 
i
ai
> 
i . It follows

d(z, �i )� max(bisj , sj + 
i ) = bisj .
The part 1 follows. We now prove the part 2. Hence, at levelj we haveZ�,i ⊂ I (�i , bisj ) ⊂
I (�i , r). Hence, the numberq�,i of retained intervals at levelj contained inI (�i , b

′
i sj )

verifies:

q�,i� �bi . (17)

To prove the 3, we remark the numberspk (respectively,qk) of excluded (respectively,
retained) intervals are also the numbers ofTrue (respectively,False) at levelk. They satisfy
the relations

1. p0 = 0, q0 = 1.
2. pk + qk = 2qk−1, k�1.

Using both the bounds (16) and (17), we deduce a bound for the total numberQ� of exclusion
tests

Q� =
j∑
k=0

pk + qk = 1+
j∑
k=1

2qk−1�1+
j0∑
k=1

2qk−1 +
j∑

k=j0+1

2qk−1

� 1+ 2j0p �b + 2(j − j0)

p∑
i=1

�bi .

We are done. �

A.6. Proof of Theorem 9.1

We begin the proof with the bound of Lemma 3.1 p. 69 and formula 5.3, p. 105 [18]

|�k|�
(
(1+ u)2(d−k) − 1

) f̃ (k)(|x|)
k!

Using Proposition 1 of Blum et al.[4, p. 267] we have

f̃ (k)(|x|)
k! �

(
d

k

)
‖f ‖ |x|d−k1 .

Usingt� |x|1 and Lemma.2 below, we find
d∑
k=0

|�k|tk � ‖f ‖ |x|d1
d∑
k=0

(
d

k

)(
(1+ u)2(d−k) − 1

)
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� ‖f ‖ |x|d1
(
(1+ (1+ u)2)d − 2d

)
� 3‖f ‖ |x|d1 2d−1u

1− 3(d−1)
4 u

.

From Lemma.3, we have‖f ‖�
√

3h. With the definition ofu and the assumption onn the
result follows easily. �

Lemma .2. We have(1+ (1+ u)2)d − 2d� 2d−13u

1− 3(d−1)u
4

.

Proof. From [37, Lemma 2], we know that
d − 1

2
= max

2�k�d

(
1

d

(
d

k

)) 1
k−1

. Hence for

v = 3u, we havev < 1 and

(2 + v)d − 2d = 2d−1dv

(
1+

d∑
k=2

1

d

(
d

k

)(v
2

)k−1
� 2d−1dv

1− d−1
4 v

)
.

Since(1+ u)2 < 1+ 3u the lemma follows. �

Lemma .3.

‖f ‖�
√

3h.

Proof. Since‖f ‖2�h2
d∑
k=0

(
d

k

)−1

, we prove this previous sum is less than
√

3. In fact

d∑
k=0

(
d

k

)−1

�2 +
d−1∑
k=1

(
d

1

)−1

�2 + d − 1

d
< 3.

We are done. �

A.7. Proof of Theorem9.2

From Theorem 1.2, the number of bits of precision to isolate the roots is given byj0 =⌈
log
(

46
√

2d�(f )s0
)⌉

. A bound for�(f ) follows from Lemma .4. We are done.�

Lemma .4. �(f )�
√

3 max(1, h)
√
d(d − 1)

2min(1, d(f,�))
.

Proof. Let x be a root of the polynomialf. We first computed(f,�x). For two complex

polynomialsf (z) =
d∑
k=0

akz
k andg(z) =

d∑
k=0

bkz
k, let us define the hermitian product
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< f, g >=
d∑
k=0

(
d

k

)−1

akb̄k. We then have
f (k)(x)

k! =< f (z), pk(z) > with pk(z) =
(
d

k

)
zk(1 + zx̄)d−k. These useful formulas to represent polynomials can be found in[8].

In this context the polynomialsp0(z) = (1 + zx̄)d and p1(z) = dz(1 + zx̄)d−1 are
orthogonal to�x with respect the hermitian product< ., . > above. Consequently the
norm of the projection�(f ) of f on the linear space generated byp0(z) andp1(z) is equal
to d(f,�x). The projection�(f ) is defined by< �(f ), p0 >=< f, p0 >= f (x) = 0
and< �(f ), p1 >=< f, p1 >= f

′
(x). A straightforward computation gives�(f ) =

(− < p1, p0 > p0+ < p0, p0 > p1) f
′
(x)

< p0, p0 >< p1, p1 > −|p1(x)|2 . Since< p0, p0 >= p0(x), < p1, p0 >=
p1(x) and< p1, p1 >= p′

1(x) = d(1+ d|x|2)(1+ |x|2)d−2 it follows

d(f,�x)
2 = ‖�(f )‖2 = p0(x)|f ′

(x)|2
< p0, p0 >< p1, p1 > −|p1(x)|2

= |f ′
(x)|2

d(1+ |x|2)d−2 .

Let us bound< pk, pk >. We have

〈pk, pk〉 =
(
d

k

)2 d−k∑
j=0

(
d − k
j

)2(
d

k + j
)−1

|x|2j

=
(
d

k

) d−k∑
j=0

(
d − k
j

)(
k + j
k

)
|x|2j .

Since

(
k + j
j

)
�
(
d

k

)
it follows < pk, pk > �

(
d

k

)2

(1 + |x|2)d−k. With the notation

|x|21 = (1+ |x|2), we then deduce that

|f (k)(x)|
k!|f ′

(x)| �
(
d
k

)‖f ‖ ||pk||√
d d(f,�x)|x|d−2

1

�
(
d
k

)‖f ‖√
d d(f,�x)|x|k−2

1

.

Using‖f ‖�
√

3h proved in Lemma .3 and

(
1√
d

(
d

k

))1/(k−1)

�
√
d(d − 1)

2
[4, Chapter

14, Lemma 10], we find that

�(f, x) = sup
k�2

∣∣∣∣∣f
(k)(x)

k!f ′
(x)

∣∣∣∣∣
1
k−1

�
√

3 max(1, h)
√
d(d − 1)

2 min(1, d(f,�x))
.

Sinced(f,�x)�d(f,�) the result follows. We are done.�
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A.8. Proof of Theorem10.1

From Leibniz’s rule it follows:

f (z)=
d∑
k=0

f (k)(x)

k! (z− x)k +
n∑
i=1

∑
k�d+1

1

k!
di∑
j=0

(
k

j

)
g
(j)
i (x)c

k−j
i ecix(z− x)k

=
d∑
k=0

f (k)(x)

k! (z− x)k +
n∑
i=1

∑
k�d+1

di∑
j=0

g
(j)
i (x)

j !
c
k−j
i

(k − j)!e
cix(z− x)k.

We bound the previous quantity using the definitions ofi ’s, �i ’s and the fact that
(k − j)!�(k − d − 1)!(k − d) . . . (k − di)�(k − d − 1)!(d + 1− di)! whenk�d + 1. A
straightforward computation shows successively with|z− x|�r, that

|f (z)| � |f (x)| −
d∑
k=1

|f (k)(x)|
k! rk −

n∑
i=1

i (x)


 ∑
k�d+1

(�i r)
k−d−1

(k − d − 1)!




×�d+1−di
i |ecix |rd+1�M̄(x, r).

We have also provedM(x, t) > M̄(x, t). Hencem(x) > m̄(x).
The proof of the part 2 is the same one that of Theorem 6.2. We are done.�
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