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Abstract

We state precise results on the complexity of a classical bisection-exclusion method to locate zeros
of univariate analytic functions contained in a square. The output of this algorithm is a list of squares
containing all the zeros. It is also a robust method to locate clusters of zeros. We show that the global
complexity depends on the following quantities: the size of the square, the desired precision, the
number of clusters of zeros in the square, the distance between the clusters and the global behavior of
the analytic function and its derivatives. We also prove that, closed to a cluster of zeros, the complexity
depends only on the number of zeros inside the cluster. In particular, for a polynomial whidh has
simple roots separated by a distance greatersbprwe will prove the bisection-exclusion algorithm
needsO (d3log(d/sep)) tests to isolate the roots and the number of squares suspected to contain a
zero is bounded by# Moreover, always in the polynomial case, we will see the arithmetic complexity
can be reduced to (dz(log d)? log(d/sep)) using[log d steps of the Graeffe iteration.
© 2005 Elsevier Inc. All rights reserved.
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1. Bisection-exclusion method and main results

The goal of the bisection-exclusion method which is studied in this paper is to locate
and to approximate the zeros of an analytic functjoim a specified bounded domain.
In all the paperf will be an analytic function defined o6 and the domain will be the
squareSy introduced below. The set of zerosfafiside S is denoted byZ. The principle
of this method is to remove from this domain subsets which do not contain any zero and
to return arbitrary small subsets containing the zeros. Such a method mainly depends on
two ingredients: the choice of an exclusion test and a strategy to remove subsets of a initial
domain. The subsets here considered will be squares. We will dendstiecby) the closed
square centered ate C with side length 2. The setS will be the set of closed squares
contained in the squai® := S(xo, so).

The exclusion testd et us consider a functiok defined fromsS into {True, False}
satisfying the following property& (S) = True implies the squarg C Sp does not contain
any zero off. Such a functiork is an exclusion test associatedft&VhenE(S) = False
nothing can be deduced and the squaneay contain a zero.
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The exclusion test used heket us consider the following functidvl defined ovefC x R:

|0 (0] *

M@0 =Ifl= Y =

k=1

We will prove in Section 3 that the functidexclusiondefined by
ExclusionS(x, s)) = True & M(x, s+/2) > 0,

is an exclusion test.

The Algorithm. We start with the initial squargy, the analytic functiori and a precision

¢. The result of the algorithm is a set of squaigscontainingZ N So. Each square of the
output has a size less than or equad.tbet us describe the first step of the algorithm. We
consider a set of squar&s initialized to Z, = {Sp}. If Exclusion{Sp) = Truethen we stop
andZ, = ¢. In the contrary caseésxclusionSp) = False we divide Sy into four closed
squares with sizep/2 and we replace the squasg by these four new squares in the set
Z.. At stepk >0 of the algorithm, the sef; is constituted of squares with the same size
s0/2k. Then we comput&xclusion(S) for each squar& of Z,. If ExclusionS) = True,

we remove this square of the sét. In the contrary case Exclusion(S) is Falseand the
size of the squar8is greater tham, we divideSin four squares with sizey/2¢+1 and we
replace the squargby these four new squares into the ggt The algorithm stops when
Z. = ¥ or if the size of each square &f, is less than or equal to

We will denote
divide(S(x, 25)) :== {S(x — ws, s), S(x + ws, s), S(x — ws, s), S(x + ws, 5)}

with w = 1+ +/—1. Introducing an intermediate SBtyse, this algorithm is written in a
pseudo-code language like:
Inputs: f a polynomial,So = S(xg, so) a squareg > 0 a precision.

Z; = {So}
Repeat
Zfaise =¥
For each squaré(x, s) € Z, do
If Exclusion(S(x, s)) = Falsethen
Ztalse := Ztalse U divide(S(x, 5)).
end if
end for
Z; = Zialse
Until Z, = @ or the size of each square Bf is less than or equal to

Output: The set of squareg,.
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Fig. 1.

Fig. 1 illustrates how the algorithm works with functions likx) = gi(x)e’* +
go(x)e™12D% \wheregq (x) andga(x) are univariate complex polynomials given in Section
10.2. This function has four clusters of zeros: a simple zés6-Q, a cluster of two zeros
in the diskD(—1 + 0.6i, 10~3), a cluster of three zeros iR (0.8 + 0.5i, 10~%), a cluster
of four zeros inD(—1 — 0.8i, 10~4). The algorithm is initialized with the initial square
S(0, 1.5) and the precision = 0.03. Fig. 1 shows the steps from 1 to 7 skipping the step
3: at steps 1-3 all the squares are retained. Some squares begin to be excluded at steps 4
and 5. The four clusters of zeros are separated at step 6. At this step the radius of squares is
equal toe. Hence, the step 7 is the last and the squares not excluded after the exclusion test
are in the output sef.. We see the clusters which appear with a black dot on the figures
are contained in the sé&t..

For smallest values of 0.02<¢<0.0002, the numerical results show that the number
of retained squares around of each zero does not change. For these valthes fifures
representingZ, are similar that of the figure of step 7. If we continue this process in the
squareS(—1 — 0.8i, 10~%) with the precision 4< 108, Fig. 2 below shows the three last
steps where the four zeros of the cluster are located. These results have been obtained with
a precision of 30 digits under thdaple software.

These numerical experiments illustrate a property of the bisection-exclusion algorithm:
the number of retained squares around each zero mainly depends on the multiplicity of the
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Fig. 2.

zero. This paper will prove this fact. In particular we will show that the number of retained
squares around a simple zero is bounded by 4.

The analysis of this algorithm depends on three quantities: the nupléisquares of
the output seZ,, the total numbeQ, of exclusion tests, and finally the numerical quality
of the obtained approximation.

Before stating a theoretical result which explains the experiments above, we need to
introduce some notations and to precise the context. We will suppose that the analytic

d

function f hasd zeroszy, ..., zg in the squaresy. Letg(z) = n(z — zx) andh(z) be the

k=1
analytic function, such that(z) = g(z)h(z). The global behavior gi(z) and its derivatives
in the squareSy is described by the quantitiésandr defined by

RO s

A4 So, < s
TEN e S

k>1. 1)

In all the paperg andt are chosen in order to verify
2ts0v/2< % (2)

The background of the analysis is done with respect to the following quantitie gee

1
o m!f O [m*
Putf:0 = max |Tmmel
1
o ml £ ) [
0= max |

U ([0 = B (f3 Oy (f: ).

These quantities have been introduced in the ease 1 by Smale [4] and we will de-
note (£, O), v(f, ) andu(f, {). We also need several auxiliary functions. First, we let for
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u € [0,1/2[ ands € {0, 1}:

2n=15y 2—u)™ oy u
1—u | (A—um*t (1— u)’”+1(1 —u)

Lm,é(u) =

Inthe casen = 1,6 = O we haveLi(u) := Ly o(u) = 1= 2 . Next

1 .
14+ if m>1,

1
_ 2 Ly1)n —1
b () = ( 1 ’1(u))2(1 )

1oL 1-6u
Let p,, be such that

whereg(b) is the number of squares of sizancluded in a disk of radiusr+/2 ( see
Lemmad4.2). We then define,, (1) as the first positive zero of the equation

m .
Liu) = 7 if m = 1.

if m=1

whereu > 0. It is equivalent to

b (1) = by (0) + p.

By cluster ofm zeros off around{ € Sp and of radiusp, we mean a closed disk of
radiusr centered in a zerd of f. We will suppose that the clusters of zeros centered in a
zero off to simplify the technical computations. This does not remove anything with the
generality of the results obtained. We gather the zerésngb clusters of zeros denoted by
D := Dy, ({;, p;), 1<i < p, such thatf ({;) = 0 and the two following requirements:

. ﬁm,-(f; Cl)
i = (Vm,-(f; a»)) | )

4\/§bp<r— min M

4
1<i<p ym (f Cl ( )

hold withp = max p;, b = Max_ by, (0)+4,,, andb = max(bd(O) 43 ) Evidently
\l P

a regrouping of the zeros according to the criteria above is always possible. For example,
we can consider the regrouping of distinct zero$. o this case, all the;’s are equal to
zero..We will also consideb which satisfied <1 + 51/[1,—_1 In this paper log will be the
logarithm to the base 2. We then can state

Theorem 1.1. Let us consider an analytic function f defined©nvhich has p clusters of
zeros in a squars§p described as previous. Let us suppose that the requirenig&pasnd(2),

(3) and(4) are satisfied. Lejp = {Iog f”‘o_l and j; = Llog %’J.Then we havegg < j1.
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Lete verifying ;—9 <e < % Then the output sef, of the bisection-exclusion algorithm
is a union of p pairwise disjoint setg, ; such thatD; c Z.i C D(,r). Letg,,; be the

number of retained squares iy, ;. We then have

1. Forallx € Zy;, d(x,()< (2mi + p,,) V2, 1<i<p.
2. qe.i <4m,'2, 1<i<p.

14
3. 0.<1+ 16<jop02 +G =0 Y. m?) :
i=1

Let us comment the two terms which contribute to the upper bound of the number of tests
0.. We will see the first count the number of steps to isolate the cluster of roots while the
second gives the number of tests when the algorithm works closed to the clusters of roots.

In the simple roots case the radipss are zero. We can state

Theorem 1.2. Let us consider an analytic function f defined ©mwhich has only simple
zeroszy, . .., zq in So. We denote by(f) = max y(f, z;). Let us supposgl) and(2). Let

3! - L :
jo = [Iog <23\/§(2d + )L—)y(f)s())—‘ and a precisiore sausfymg% Le< % with

T
Jjo < j. Then the output sef;, of the bisection-exclusion algorithm is a union of d pairwise
disjoint setsZ, ; with {; € Z. ;. We then have

1. Forallx € Z,;, d(x,()<3v2, 1<i<d.
2. Each setZ,.; contains at most four squares
3. 0:<1+16dD%jo+ 16d(j — jo).

This paper is organized as follows: in Section 3, we introduce the notion of exclusion
function on which is based the complexity of the bisection-exclusion algorithm. In Section
4, we put this problem in a more general setting to understand the notions on which this
analysis is founded. To do that we develop a theoretical way to study the complexity of the
bisection-exclusion method in the general case where the zeros of the analytic function are
gathered in clusters. The main Theordni of this section shows that the complexity mainly
depends on the distance between the clusters of zeros and on the behavior of the exclusion
function in the squaré&y. Always in this section we show how this exclusion function is
related to the number of squares that is possible to include in a disk: Lemma 4.2 states a
precise result in this way. In Section 5, we introduce the notion of separation number and
give a lower bound of the minimal distance between the clusters of zeros. In Section 6, we
study the behavior of this exclusion function. This section is the technical background of our
paper. Two new results will be given. The first concerns the local behavior of the exclusion
function. The second generalizes in the analytic case a classical result concerning the global
behavior of the exclusion function associated to a polynomial. The proofs of Theorems 1.1
and 1.2 are done in Section 7. To do that we verify the assumptions of Theorem 4.1
combining the results obtained in Sections 5 and 6. In Section 8, we will specialize the
previous results of complexity to only find the nearly real zeros in a given interval. We
will also discuss the localization of real roots of a polynomial. Section 9 is devoted to
the polynomial case. We will give a synthesis of the previous results. We also discuss the
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guestion of rounding error for the computation of the exclusion polynomial. Moreover, in
the case of simple roots we will give a result of bit complexity. Finally, we will also show that
a number o0 (d2(log d)? log(dy( f)so)) of arithmetic operations is sufficient to isolate the
roots of a polynomial usinglogd] steps of the Graeffe iteration. This bound of arithmetic
complexity is closed to that of P428] which is O (d? log d log(dso/r)) with our notations.
Finally, Section 10 is devoted to practical comments and numerical experiments.

2. Context and links with related works

This type of bisection-exclusion algorithm appears for the firsttime in a paper of Weyl [33]
without study of the cost of this algorithm. This task is realized by Gargantini and Henrici
in [15], where the authors study four different exclusion tests only in the polynomial case.
We focus on their test&, andTy. The testT» corresponds to the test studied here. In our
context of notations, the te$t asserts that iff (x)| > d(1++/2)?1so+/2s then the square
S(x, s) included inSy does not contain any root of the polynomialhe testT; requires

2512, 2d-2
tests to isolate thp roots contained in a disk of radius

no more than 16r
sep

one, [15, p. 92, formula (3)—(11)], whesepis the minimal separation distance of zeros.
Concerning the tedf,, these authors show that the t&sfs at least as effective that teft,
[15, p. 95]: “Although the convergence estimates do not show it, th&iésasymptotically
likely to be much more effective thah . ..”. Although, the case of exact multiple roots is
considered for the tedf;, the global behavior of testg and T is only studied without
estimates of the local behavior of these tests.

Thereafter, several authors gave modifications and improvements by combining it with
other method like Newton method or other exclusion tests like Schur—Cohn test and Turan’s
test: see [27,28] for a precise review on this subject. In this vein, the report of Schénhage [30]
is certainly the first significant paper which deals with the splitting circle method. The
previous papers are devoted to polynomials. In [38,39], the authors propose to count the
number of zeros of an analytic function thanks to a reliable test based on the argument
principle, see also [34,35]. Butthe algorithms are given without precise study of complexity.

From a point of view of some practitioners in the scientific and engineering communities,
these bisection-exclusion-type methods are frequently used when the number of variables is
small. For example to draw implicit curves or surfaces, these methods are easy to implement,
see [32]. They are also used in many areas: in dynamical systems [13,14], inthe localization
of solutions of systems of equations [9,19-21] and in optimization [1,22].

Our aim in this paper was to study more precisely the complexity of the bisection-
exclusion algorithm using an exclusion test based on the Taylor formula without seeking to
optimize or to link with other methods. The analysis we proposeasiesory of Smale [31]
and its generalization for multiple roots [36]. This technical background permits to obtain
precise results in an efficient way since the complexity is described with respect to invariant
quantities which depend only on the zeros. Indeed, we have focused our study on the link
between this algorithm and the geometry of zeros and this paper is the theoretical answer
to a unpublished report [11], see also [10]. A more recent study to fast compute clusters
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of zeros has been done by the author in collaboration with otfi#8} The results of this
previous paper can be used to link in a robust manner a method of global localization of
zeros like bisection-exclusion with Newton generalized method.

3. The exclusion function

The study of the complexity depends on the existence of an exclusion function defined
in the following statement (see [9]).

Theorem and Definition 3.1. The following implicit functionx € C — m(x) € R4
defined by

M(x,m(x)) =0

exists. Moreover (x) is a continuous function. I/ (x, ~/2s) > Othen f has no zero in the
squareS(x, s). MoreoverM (x, v/2s) > 0 < /25 < m(x). Itis why we will sayn(x) is
the exclusion function associated to f at x

d_ypk
Proof. Letd be an integer. Then we havé(x, /) <|f(x)| — Y w t*. Since the
k=1 |
analytic functionf is defined orC it follows that[ lim M(x,t) = —oo. The real function
— 00

t € Ry — M(x,t) €] — oo, |f(x)]] is strictly decreasing. There is only one positive
zero and the existence aif(x) is established. The continuity ef(x) can be proved in the
following way (see[9]). Fore > 0 andx, y € C, the decreasing o¥/ (x, t) with respect
timplies: M (x, m(x) +¢) < M(x,m(x)) = M(y,m(y)) =0 < M(x, m(x) — &). From
the continuity ofM (x, t) with respect, there exits a neighborhood »fsuch that for all
y lying in this neighborhood we hav# (y, m(x) + &) < M(x,m(x)) = M(y, m(y)) =
0 < M(y,m(x) — ¢). Always from the decreasing ¥ (x, t) with respectt it follows
m(x) —e < m(y) < m(x)+¢&. The continuity ofn(x) is established. Let € S(x, s). From
Taylor’s formula and the triangle inequality we ¢¢tz)| > M (x, |z—x|). Since the function
M(x, t) decreases and — x| <+/2s we have alsd £ (z)|>M(x, |z — x|) =M (x, v/25).
Hence ifM (x, v/25) > 0 thenf has no zero in the squaséx, s).

Finally sinceM (x, r) decreases, it implies (x, v/25) > M(x,m(x)) = 0 < /25 <
m(x). O

This previous result shows that the complexity of the bisection-exclusion algorithm de-
pends on the behavior of the exclusion functiofx). In the polynomial case this exclusion
function is equivalent to the distance function in the following sense, see [17, p. 457]:

m) g 5)

d(x. Z)

whered(x, Z) is the distance function fromto Z. Hence, the question to know a lower
bound of the exclusion function is fundamental to analyze the complexity of the bisection-
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exclusion algorithm. Indeed this complexity is less than that of the algorithm which uses
this lower bound as exclusion test. Our analysis is based on this property.

In the analytic case, it seems that there is not any reference for such a lower bound. This
is why in Section 6 we will perform a general analysis on the behavior(of.

4. Theoretical complexity of the bisection-exclusion algorithm

We will suppose that the analytic function defined®hasp clustersD; := D,,. ((;, p;)
inside the squarég with p; > 0, {; € So, 1<i < p. As in the introduction thé;’s are
zeros off. Let p = max p;. Intuitively p;’s are small with respect to the precisierThe
results will specify this fact. We recall thZis the zeros’ set df Evidently, we have always
m(x)<d(x, Z) for all x € Sp. In this section, we will suppose that the exclusion function
m(x) associated tbsatisfies the four following assumptiohld —H4 below.

The global behavior ofz(x) in the initial square is described by the following: there
existsa > 0, such that

(H1) Vx € So, ad(x,Z)<m(x).

The local behavior of exclusion closed to a cluster of zé&ros described in the following
way: we will assume for all, 1<i < p, there exists; > 0,r > p;, such that

(H2) Vx € D r)\D;, aid(x, () <m(x).
(H3) Vi £k, D, r)ND,r)=20.
It is a natural way to suppose that
(H4) a<a;, 1<i<p.
We will denote
1
1L.hb=1+—.
a
1 .
2.bi=1+—, 1<i<p.
a;

From(H4) it follows b > b;.

The setZ, is a set of squareS(x, s) for which Exclusion(S) = False or equivalently
m(x)<s+/2. Such squares are called retained squares. We say that an exclusion test has
level k >0 when the size of the squaresig/2*. We define the integers, andg; as the
numbers offrueandFalse respectively, at levek. We have clearly

1. po=0,90=1.

2. px+qk = 4qk-1, k=>1.

Finally, we need to introducg(b) as the number of squares with sistrictly included in
a disk of radiusy/2bs. This numbeg (b) is independent o, see Lemma.2.

The bounds on the distance of retained squares tbhe numbeg, of retained squares
and the total numbep. of exclusion tests are given by the following:

Theorem 4.1. Using the previous notationtet us suppose théH1)—(H4)hold. Moreover
ﬂbso—‘ and

r

let us also requireb/2bp < r. Let us consider the two integejs = ’7Iog
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S0
——, where
2i-1

Jo < j < j1. ThenZ, is a union of p pairwise disjoint setg; ;, such thatD; ¢ Zsi C
D((;.r). Letg.; be the number of retained squaresdp;. We then have

1. Forall x € Z;;, d(x, C,-)gﬁb,-s, 1<i<p.

1= {Iog S—OJ .We then havégp < j1. Lete be a precision satisfyiné% <e <
p

TC .
2. qx,igq(bi)%b?, 1<i<p.

14
3. Q<1+ 4jopq(b) +4(j — jo) Y q(bi).
i=1

Proof. Let us recall that log is the logarithm to base 2. From2sp < r, it follows
V2bso n

r

log (
bisection-exclusion algorithm is a unionpairwise disjoint setg,. ; each one containing
a cluster of zeros. We first prove we neggdsteps in the algorithm for that the distance
from all point belonging to a retained square at theZit less thamr. Lets;, = % and

S := S (x, sx) be a non-excluded square at a lekel jo. From(H1), we have

2 < log oy Hencejo < ji1. Let us show that the output s&t of the
p

ad(x, Z) <m(x) <spv/2.
Sincee < s, we getforallz € S,

d(z, Z)<d(z,x) +d(x, Z) <bsV2. (6)

14
Letus considef | D (Ci, b\/ﬁsk) .We know from Lemmd.2 below, the number of squares
i—1

with sizes; in each diskD((;, b+/2sy) is bounded by (b) < g b. Hence, the numbey;
of retained squares at leviels bounded by

gk <pq(b)< g pk?. @)

The indexjg has been selected so that foradelonging to a retained squadthe inequality

V250
2Jo ST ®)
holds. From (H3) it follows that thp clusters of roots are containedprpairwise disjoint
sets. Let us makgy = k in (6). We obtaind(z, Z) <r. Hence, at leve], jo < j < j1, we
have alsal(z, Z) <r. Since theD({;, r)’s are pairwise disjoint disks, the s&t will be an
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union of p pairwise disjoint setZ.; C D({;, r), 1<i< p. Moreover, from construction
of the bisection-exclusion algorithm, one hdsY D; C Z; ;. From definition of j; the

inequalities 2 < % <eimply D; C Zg;
Let us now prove the 1. We boundz, {;) for anyzin a retained squarg(x, s;) at level
jincluded inZ. ;. For that there are two cases. FirstxIfes in D({;, r)\D; it follows:

d(z, () <d(z,x) +d(x, Z).
Sincea;d(x, {;) <m(x) <s;v/2 we get
d(z, Cz)<b,~sj\/§.
Next, if x € D; then sincep; < s; itimplies{; € S(x, s;). Hence
d(z, () <d(z, x) +d(x, () <582+ p;.
It follows d(z, {;) < max(b;sj~/2, s;+/2 + p;). But, by definitiona; <1 andb; = 1+
1/a;>2. The inequalitiess'/ﬁ > pﬁ)'f)iﬂ > p; imply s;v/2 + p; < bisjv/2.

ai ai ai

Finally d (x, {;) <bisj~/2.
Let us prove the 2. We havgs;v/2<b+/2s;,<r. HenceZ,; c D (Ci, b[\/éSj) -

D({;, r). Using Lemma4.2 below, we then can bound the numbgr of retained squares
at levelj contained inD((;, b; ﬁsj). We obtain

T
qe,i <q(bi) < zbiz- 9

To prove the 3, let us remember we hgue+ go = 1 andp; + g = 4qi—1 for k> 1.
Then using the bound3) and (9) on they's, we find a bound for the total numbéx, of
exclusion tests is

J J Jjo J
Q:=> mt+ax=1+) 4 1<1+) g1+ Y Apa

k=0 k=1 k=1 k=jo+1

p
< 1+4jopg(®) +4G — jo) Y, q(bi).
i=1

We are done. O

P
Remark. From Lemma 4.2 we also ha@, <1+ 2rjopb® + 27(j — jo) Z b2,
i=1

We now state the lemma used in the previous result on the number of squares that is
2

. . . . nh< .
possible to include in a closed disk. The bourél) < —— is easy to prove. But we need a
better bound to theoretically explain the numerical results shown in the introduction.
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Lemma 4.2. Letr > 0,b>2, 0<s, t <2 be real numbers. Let us introduce the quantities

V2b% — (2k +1)2 — 5
2
2. k1(b,s,t) = min(go(b. t,s), qo(b, t,2 —s)).
k1(b,s,t)
3.q1b, s, )= Y qi(b, s, 1) +qr(b, =5, 1).
k=1

L gi(b,s,t) =

We then have

1. The number of squares of size r included in a closed disk of radRis- is equal to
qgb) =1+ omax. (k1(b,t,s) +ki(b,t,2—5) + g1(b,s,t) +q1(b,s,2—1)).
IS

b2
2. q(b)<”7.

Proof. The proof is done in the Appendik 1. O

. . . 1
In the sequel, we will be interested to boupt,,) with b,, = 1+ Um 1 For that
we have

Lemma 4.3.

1. For m >4 we haveb,, <2\/2/nm.

2. For m>1we havey,, <2m.

3. For u < +/5— 2~ 0.23607we havey (b1 + p) = g(b1) = 4.
4. Letm >1.Then we have (b,,) <4m?2.

Proof. The derivative of the functionn € [1,+oo[— by, € [2 +oo[ is b),
= (2211//:_'019)(2;12 .Itisastrictly increasing function from 2 168) to 1/ log(2). Since 2/2/n >
1/log(2) the functionn — b,, — 2,/2/n m decreases. Then the inequalittas- 2./2/7 x
4 <0< b3 —22/n x 3imply the part 1.

Sinceb; = 2 and the functiom — b,, — 2m decreases also, the part 2 follows.

Takingu < ~/5 — by, a straightforward numerical computation from Lem#a, part 1
gives the part 3. The valye= /5 — 2 is not convenient becaugéy/5) = 5.

For the part 4 we first prove(b,,) <4m? for m = 1, 2, 3, thanks to Lemma 4.2, part
1. We find, respectivelyy (1) = q(2) = 4, q(b2) = 12<16, gq(b3) = 27<36. Next
for m >4, thanks tab,, <2,/2/nm and Lemma 4.2, part 2, we geth,,) <4m?2. We are
done. O
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5. Geometry of zeros

The complexity of the bisection-exclusion algorithm is related to the geometry of zeros
of the analytic functiorf. By geometry of zeros we mean mainly the separation number
which is the minimum distance between two distinct zeros. Since this algorithm isolates
the zeros, it is a natural way to describe the complexity in terms of a lower bound of the
separation number. For polynomials, a result establish36] states:

Theorem 5.1. Let { be a simple root of a polynomial f. We have

min | —w| > .
f)=0, (#w 2)(f: 0

But this result holds in the analytic case. Here, it is more convenient to reformulate the
notion of separation number from the point of view of clusters of zeros.

Definition 5.2. Let D;, 1<i < p, the clusters of zeros 0[ an analytic functiodefined on
C. We denote byep(f, {;,m;) = min{|{; —w| : w ¢ D;, f(w) = 0}. The separation
number is defined byep(f) = 1Lni2 sep(f, (i, m;).

IIXP

Evidently, we need a lower bound of this separation number to quantify the step of the
bisection-exclusion algorithm from which all the clusters are contained in pairwise disjoint
subsets of squares. Such a bound has been giv§ai7ihin the polynomial case. We will
give the proof of this result in the analytic case.

Theorem 5.3. Let D({, p) be an open disk. We nofe, := ,,(f; O, 7 := 7, (f3 O and
om = o (f; 0). Let us supposg = 3f,, and9u, <1.Then
1. The analytic function f has m zer@sunting multiplicitie¥in D({, p).

1
2. sep(f,{,m) > % —:—;ﬁm.

Proof. The proof is done in the Append&.2. [

6. Behavior of the exclusion function
We now describe the behavior of the exclusion function in the sgfgares we can see it

on the figures of the introduction we will distinguish a global behavior and a local behavior
of the exclusion function.

6.1. Local behavior

The result is the exclusion function closed to a clustanakros has the same behavior
of the exclusion function associated to the polynomfal
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Proposition 6.1. We haveM n (x, 1) = 2|x|™ — (¢t + |x|)" and the exclusion function
associated ta™ is equal to(2Y" — 1) |x|.

Proof. Itis an easy computation.[]

Theorem 6.2. Let D,,({, p) be a cluster of zeros off with f({) = 0 and p

Bu(F:0\Y? - o
= (%) . Letr > p be such that the quantity = y,, (f; Or verifiesL,, s(u) < 1,
wheres = 1if B,,(f; () # 0ands = 0if B,,(f; () = 0.Then
Vi € DG NDu(C )y 2 Ly s — 1< % <1
Y

In particular if m = Landu < %, we have

1—6u P m(x)

1—Liu) = < 0
1) = T S =]

<1

Proof. The proof is done in the Append&.3. [

Proposition 6.3.
1. Thefunctiont — L,, s(u)increasesofi0, 1/2[withL,, s(0) = Oand Iinin/2 Lysu) =
u—

+00.
. Foru € [0, 1/2[ the functiorm: — L,, 5(u) increases
3. Letu,, s the first positive zero of the equatidn, 1(x) = 1. The sequencei,, 5)m >0

decreases t?/._
1 2 1
4. 0411 == ——— =0.14andi1p = =.
UL1=35-7 U0 =g

N

Proof. The proof is easy. [J

6.2. Global behavior

We now generalize the lower bound of the inequality given in Theorems 6.4(d) and 6.4(i)
of [17], in the analytic case.

Proposition 6.4. Let f be an analytic function defined édhwhich has d zeros, ..., z4
d
in the squareSy. Let us consideg (z) = H(z —zi) andh(z) the analytic function such that

k=1
f(2) = g(2)h(z). Let us suppose that the requiremefitsand(2) of the introduction hold.
Then for anyx € Sp the exclusion functiom (x) associated to f satisfies the inequality

2td 1 m(x)
< .
d(x,Z)

377
T(Zl/d -H+1

Proof. The proof is done in the Append& 4. [
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7. Proofs of the main theorems
7.1. Proof of Theorert.1

For that it is sufficient to verify the assumptions of Theorem 4.1. From Proposition 6.4
2ld _ 1 395

— andb>b,(0) + —. We let

FLUd —1) +1 T

ﬁmi = ﬁml(fa Ci)i Vmi = ’yml(fa Ci)! Ofm; == Ole(f, Cz) andumi = ”m,' (,u'ml-)- We then

prove the inequalit)%sep(f, (i, m;) > r which implies theD({;, r)’s are pairwise disjoint
disks. We remarl,,; is less thariiy o = % the zero ofL1(u) = 1, see Proposition 6.3. It

Cea\ 2 _
B (1 80) < rgdm 010 impliesa,,, < i3 .
Vm,- (fv (z) ym,- le- ’
Using both Theorem 5.3 and the 4 of Proposition 6.3, we then get

the assumption (H1) is verified with=

is easy to see the inequality =

1 3
L) — > _Z _
sep(f, (i,my) —2r > 5 Zﬁm" 2r

"/m;
1 3, _ 1
> (5 5o 2m0) ;-
1
> —>0.
8ym,-

Hence the requirement (H3) holds. Let us verify the requirement (H2). For that let us
considerb; := by, (up,). From definition ofu,,, we haveL,,, s(un,;) < 1. From Theorem

6.2 we know the behavior of the functien(x) in D((;, r)\D;. From the definition of it
follows ry,,. (f; {;) <um; and we can write

Vx € D(;,r)\Di, (2— Ly, (Mmi))l/m[ _1< m(xv) ,
d(x, ;)

SiSp.

The requirement H4 holds from the definition lmf The requiremend implies jo < ji.
The definitions ofu,,, andu,,, imply b; = b, (0) + p,,. andq(b;) = q(bm,(0)). Since
Lemma 4.3 establishes bob, (0) <2m; andq (b, (O))<4m[2, the parts 1 and 2 follow
easily.

Finally for the part 3, Theorem 4.1 applies in the right way under these considerations
usingg (b) <4D?. We are done. O]

Remark. The assumptiog (b;) = q(bm; (um,;)) = q(bm, (0)) permits to understand the
local behavior of the bisection-exclusion algorithm closed to a cluster of zero. In fact, for
all ¢ such thatp; < ¢ < 2, the number of retained squares will be constant. On the
other hand, it < p; itis necessary to consider the clusters of zeros inside the initial cluster.
Roughly speaking, the algorithm see the cluster of zeros as a multiple zero until a certain

scale.
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7.2. Proof of Theorert.2

Now the analytic functionf has only simple zerosy, ..., z4. We apply Theorem 1.1
with the following valuesm = 1, p = 0, b1(0) = 2, andq(b1(0)) = 4 (see Lemma 4.2).
The value ofu, is given by a solution of the equatig{2 + 1) = 4. From Lemma 4.3 we
can choose; = 0.236. The zera1(uy) of the equatiorby (1) = b1(0) + w4 is given by

Lyu) = du 1 1
W= 1w T wm+1
We finduq(uq) > - Then we seleat 1 Sinceby (0) >1+ 1 >34
= —. = — > —— 3.4 >
1753 23)(f: &) ‘ 2172 _1
231
b1(0)+pq ~ 2.236, we chooseé = b, (0)+ — andb; = b1(0)+ p1. From Lemmad.3 we
T

237
have successively< 2d + — andb1(0) = 2. We also haveep(f; {;) —2r >
T

2
Then Theorem 1.1 applies under these considerations. It follows the valje of
[Iog <23\/§(2d+ isd)y(f)so)—‘ and the bounds given in the parts 1-3. We are
done. O '

_r
2(f: 0

8. Bisection-exclusion algorithm for nearly real zeros

In the real case the bisection-exclusion algorithm works in the same way but intervals
replace the squares. To study the complexity of the bisection-exclusion algorithm, we must
hold into account the complex zeros closed to the real axis. An intetval) is represented
by its centexand its length 2. Let Iy := I (xg, so). We also suppose that there prusters
of zerosDy,, ((;, p;), 1<i < p, such thatf ((;) = 0 andl; := Dy, ({;, p;) N Io. We will say
the analytic function hagnearly real clusters of zeros in the intervgl The exclusion test
for an intervall (x, s) becomes

Exclusion(I(x,s)) = True & M(x,s) > 0.

In fact, proving TheorerB.1 in the real case, it is easy to see the fac¢f@rdoes not appear.
Let us suppose

(H5) Vx € lp, ad(x,Z)<mx)<d(x, Z).

With the same notations as in Section 4 we can state

Theorem 8.1. Let f be an analytic function defined @hwhich has p nearly real clusters
of zeros in the intervalp. Let us suppose that the assumpti@)—(H5)hold. Let us also

. . b
supposelbp < r. Let us introduce the two integejs = [Iog SO—‘ and j1 = {Iog SOJ.
r P
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We then havg) < jo. Letalsoe be a precision satisfyiné% <e < % with jo < j < j1.
ThenZ, is a union of p pairwise disjoint se, ;, such thatl; ¢ Z.; c 1({;,r). Letg.,;

be the number of retained intervals iy ;. We then have

1. Forallx e Z,; d(x,{)<bie, 1<i<p.
2. qei < |bi], 1<i<p.

14
3. Q<1+ 2jop bl +2( — jo) Y Lbil.
i=1

Proof. See the AppendiA.5. O

To state a more precise result, we proceed as in the introduction. For that we introduce
um (1, the first positive zero of

by (1) = b, (0) + M s
wherey,, satisfies
Yustty, om0 +ul = [bm(0)] .

With this new definition ofy,, andu,,, we now suppose that theclusters of zeros are
gathered such that the above requirements are satisfied.

1/2

R e , 10
Pi <"/m,.(f;éi)) (10)
4bp <r = _min L W) (11)

1<i<p P, (F3 G

_ 3
wherep = maxp;, b = max by, (0) + u,,. andb = max| by (0) + —, b).
i 1<i<p ! T
Let us also suppose that theandr verify (1) and

2ts50< 3. (12)
We have
Theorem 8.2. Let us consider an analytic function f defined@©nvhich has p nearly real
clusters of zeros in the intervd). Let us suppose that the requireme(ity (10),and(11),

. - b
(12) hold. Let us introduce the two following integgis= [Iog ﬂ—‘ andj; = {Iog S—OJ.
r p

We then havgy < ji. Lete be a precision verifyin% <e< % with jo < j < j1. Then

the output se, of the bisection-exclusion algorithm is a union of p pairwise disjoint sets
Z.isuchthatl; ¢ Z,; c I1((;,r). Letg,,; the number of intervals i, ;. We then have

1. FPorallx € Z;, d(x,{)<(2m; + )6 I<i<p.
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2. %,i<2mi, 1<i<p.
3. 0:<1+4jopD +4(j — jo)p,

where D satisfies <1 + SUD 1

Proof. The proof is similar to that of Theorefnl. O
In the particular case where tfigs are simple nearly real zeros we state

Theorem 8.3. Let us consider an analytic function f defined @nwhich has p simple

. . 134
nearly real zerog;, 1<i < p, in the intervally. Let jo = [Iogz (11(2d + . )y(f)so)—‘
T
ande¢ be a precision verifyin% <e < % with jo < j. Then the output sef;, of the
bisection-exclusion algorithm is a union of p pairwise disjoint s&tssuch that; € Z ;,

1<i < p. Moreover the following estimations hoid

1. Porall x € Z,;, d(x,{;)<3e, 1<i<p.

2. EachZ,; contains at most two intervald <i < p.
3. 0:<1+4jopD +4(j — jo)p,
here D satisfies; (0 3di<1

where D satisfied, ( )+T\ +21/D—_1.

Proof. The proof is performed in the same way as the proof of Theorkéh We only
explain the factor 11 in the value g§. We havep = 0,m = 1 andb1(0) = 2. The value
1y is bounded by 1 and the zeng(u) of the equatiord1 (u) = b1(0) + u satisfies

du 1 1
=1- < =.
1-—2u u+1 2

! ie; !
—, lL.e;r = .
10 1y(f)

1
Henceu < 10 We select so thatuq(ug) <

9. The polynomial case

Heref is a polynomial of degreeé.

9.1. Complexity for the localization of complex roots

Theoreml.1 holds with’. = 0 andD = d. In the simple roots case, the termj3@D? €
0(d®log(dy(f)so0)) in Q; gives the number of exclusion tests to isolate the roots. The
next term 1@(; — jo) € O(d logd) in Q. gives the number of tests when the algo-
rithm works closed to the roots. Then the number of arithmetic operations is bounded
by O (d®log (20y( f) dso)) or O(d*log(d) log (20y( f) dso)) according to the generalized
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Horner schemgl7, p. 435] or the fast Fourier transform algorithm [3, p. 36] is used to
numerically evaluate all the quantitigd®’ (x)/k!’s. Note these bounds can be computed
only a posteriori sincg(f) depends on the roots.

9.2. Complexity for the localization of simple real roots

Let us consider a polynomial which hpssimple real roots in the intervdh. We then
havel = 0 andD = d. The real bisection-exclusion algorithm neegsl4og (22y( ) dso)
exclusion tests to isolate the roots. Hence, the number of arithmetic operations is bounded by
O (pd®log (22y(f) dso)) or O(pd?log(d) log (22y(f) dso)) according to the generalized
Horner scheme [17] or fast Fourier transform algorithm [3] is used to numerically evaluate

" f(")( x),
all the quantitie 's. Others methods to isolate simple real roots of polynomials are

based on the Descartes rule of signs. In [6], the authors obtained an arithmetic complexity
when the polynomials are expressed in the monomial basis. Further improvements can be
found in [25, Theorem 2.1], where the Bernstein basis is used to represent polynomials.

More precisely, the number of arithmetic operations iitd(d + 1)r(log (2— -
sep

log(r) + 4) wherer is the number of sign changes of the Bernstein coefficients’ sequence.
The gain of a factod comes from the isolation algorithm does not split the interval when

the number of sign changes of the Bernstein sequence does not exceed 1. Consequently, the
retained intervals are different sizes contrary to those of the bisection-exclusion algorithm
described here. Let us add that in [2] the authors study the bit complexity of these real root
isolation algorithms. Moreover a recent report [24], using ideas developed in [29], gives
an algorithm which improves this bit complexity.

9.3. Rounding error analysis and bit-complexity
In this sectionf is a complex polynomial of degred We let f(x) = kaxk and

(k)
& Z( )|fk+] |x/, 0<k <d.We introduce for a complex numbethe quantity

|x|l =1+ |x|2 where|x|? = xx. We defined a norm on the linear space of the complex

. R AN . .
polynomials of degree by || f||© = Z ) lax|©, see [4, p. 218]. In this section

k=0

only, we will use the notation = %/31‘”, wheref andn are, respectively, the base and
the precision of the floating point number system. We perform a rigorous rounding error
analysis of the evaluation of the exclusion polynomial. To do that, we deal with the standard
arithmetic model for the floating point numbers [18, p. 44]. Let us consider the generalized
Horner scheme to evaluate the derivatives. fiehe floating point number aff © (x)|/k!.

fOw)
A

In this model we know there exisig, such tha{ = fr(1+4 1), 0<k <d. We then
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have
d d
Mx,t)= fo— Y fitk =) &t
k=1 k=0

d d
Consequently iffo — Y _ fir* > > |6x[t* thenM (x, 1) > 0. The question is: what is the

k=1 k=0
d

precisionnin the floating point number system to haE |0¢11* < e wheree is a given real

k=0
number?

Proposition 9.1. Lete > 0andh = max |ag]|.
0<k<d

d
3
Then forn = [Iogﬁ (8—ﬁ(2\/§h2"|x|‘{ +(d— 1)s)>—‘,we haveE |0k |2¥ <. Hence a
&
k=0
h
precision of: on the computation af/ (x, ¢) is performed withD (d log <L|l>> bits of
&

precision
Proof. The proofis done in the Appendx.6. O
9.4. Bit complexity

For sake of simplicity, we will suppose that the polynonfiahly has simple roots. We
introduceX the variety of polynomials of degredwhich have a multiple root andl,
the variety of polynomials of degraebwhich havex as multiple root. We note by( f, X)
(respectivelyd( f, ,)) the distance of to X (respectivelyX,) for the norm|| 1| defined
above. The goal of this section is to link the number of bit we need to isolate the rdots of
with the distancel( f, X). This question to link the bit complexity with the distance to the
ill-posed problems has been studied in a more general setting in [5].

Proposition 9.2. A bound for the number of bits to isolate the roots of the polynomial f is
given by

o 236 max(l, h)d*? so
9 min(1, d(f, X)) '

Proof. The proofis done in the Append&7. O
9.5. Improvement using Graeffe iterates

In this section, we show how to improve the exclusion test given in the introduction.
To do that we use the classical Graeffe process which consists in defining the following
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polynomial sequence from a given polynongal

g<0>(z) =g(2),
gV () = ¢V (Vg™ (=), N0

We callg<"V>(z) theNth Graeffe iterate of (z). This polynomial is also of degree Each
Graeffe iterate can be computed witthogd arithmetic operations using the fast Fourier
transform algorithn{3]. In many papers the Graeffe iterates are a tool for approximating
the distance from a point to the roots, see [26,30,12,27]. In [12] we can find the following:

Proposition 9.3. Let f be a polynomial of degree d. Fare C, let us considern<">(0)
the exclusion function associated to the Nth Graeffe iteragg0f = f(x + z). Namely

d

M0, =1g=" () - )
k>1

|g<N>(ontk
k! ’

1. 1f M=N> (o, (ﬁr)zN) ~ 0thenZ N S(x, r) = .

2. We have
-N <N>
(2 -1) <O
d(x,Z)

Corollary 9.4.

<[logd]>
0.638... = (2¥/3 — 1)13¢ w

d(x, Z)

flogdl g 1/d
m = O > (21/" — 1) . An easy study of
d(x,Z)

1/d
the functiond e N — (2%¢ — 1) shows that the minimum of this function is reached
for d = 3. Since(2'/® — 1)/ >0.638 the corollary follows. We are done

Proof. If we take N = [logd], we have

The quantityb of Section 4 is bounded by 4 (21/® — 1)"Y/3 ~ 257 < 3. Then a
straightforward computation shows thdb) < 6. From Theorem. 1, the number of tests of
the bisection-exclusion algorithm which use the exclusion polynomial associatecith the

3«/§s0
r

Graeffe iterate of (z) = f(x +z) will be bounded byo <24d log ( . Moreover,
each step needs(d(logd)?) + O (d) to compute thelog d |th Graeffe iteratg <[1°941> (7)
and to evaluat@/ <°941> (0, r). In conclusion the number of arithmetic operations is in

3v/2s0
r

0 [ 244?(logd)? log . We obtain a gain of a factat? or d3 compared to the

complexity given in the introduction. Compared to the bound of arithmetic complexity
given in [28], our bound is multiplied by a factor of ldg The modified Weyl's algorithm
of Pan [28] use many ingredients. In particular this algorithm computes Newton sums of
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roots of a Graeffe polynomial in order to perform Turan’s test and combines the iterations
with the generalized Newton method in the case of the multiple roots. All the now classical
but tedious techniques of fast computation are used in this modified Weyl's algorithm.
In the case of real root computation, the arithmetic complexity of the bisection-exclusion
algorithm using Graeffe iterates is <pd(log d)?log <ﬂ>> which is gain of a factor
r

d/(logd)? compared to the result of Mourrain et f25].

10. Practical comments, examples and numerical experiments

10.1. Bounds for roots

d
If we want to locate all the roots of a polynomialz) = Z gxz* we need a bound for

k=0
the roots in order that to determine the initial squ&geln the polynomial case there exits

many bounds for the modulus of roots: Cauchy bound, Knuth bound.en be found in
[23] or [17]. Let us remark each one are greater than the positive root of

d-1
lgalt =Y lgxlt,
k=0
which can be easily approximate by Newton’s method.

10.2. Sums of polynomials and exponentials

n
In the case where the analytic functionfigz) = Zgi (z)e“* we show what kind of
i=1
exclusion test we use in practice. In fact, we need to truncate the polyndhaial). It is
why we will use a new exclusion polynomiad (x, r) whose the exclusion function(x, t)
defined below has a similar local behavior that of the exclusion funetion.

n
Proposition 10.1. Let us consider the analytic function be definedlgy) = Z gi()et,
i=1
where theg; (z)'s are complex polynomials and thgs are complex numbers. We note by
n; = lcil, d; the degree of; (z) and d an integer such that> maxd;. We note by); (x) =
I

5
1 . - .
Zg’ .(x)cd’ /1. Let us introduce
@+1-d! | jr
v P o s ox s d
M(x,t)=|f(x)|—ZTt _Zgi(x),,’i PeCi* it pdFL,

k=1 i=1
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Lets(x, t) the exclusion function associated to f with respeat, r): M (x, m(x)) = O.

1. Letr = /25.1f M(x, r) > Othe function f has not zeros in the squéie, s). Moreover
m(x) > m(x).

2. Let D,, (¢, p) be a cluster of zeros of such that the assumptions of theorér@ be
n

1 .
satisfied and.,,, 5(u) +A(x)d (x, )1 < 1,whereA(x) = ———— " 0;(x)n{ 4
’ O &
e€i¥|eMid(:2) Then
_ 1 m(x)
Vx € D r\Dn(C, p)y (2= Ly s) — Ax)d(x, 2)4Thm — 1< |

7y|<l.

Proof. The proof is done in the Append&.8. [

The figures of the introduction have been obtained with 11 andf (x) = g1(x)e'* +
gz(x)e_1+2ix where
g1(x) = —.86899784722634633841821788850265833480658945418317
+x 4 (—.25533115713777523158507492613419028288941541561861°
—(.002079364167430515907686484077050992078273233349001i61°>
+(.007137587815057250237863542006481250007739470396595780"
+(—.00059274227818398787742656680004622068385670318923574017°,

g2(x) = .86899789895428255320980868850268859278433176318700
+(.754024725682440737271584101602911065699272739657552
+(.1403575042219709729549892 1303398517844059099237185>
+(.001410428191710616485978973024296732209636249192241)4°
—(.0008493897415001390619349884001011132693104024141255355".

10.3. Polynomiak™

We perform the bisection-exclusion algorithm with the polynonfigt) = x™ in the
squareS(0, s), (respectively, interval (0, s) ), s > 0. A numerical experiment shows that
the bound for the number of retained squares is closed to the bound given in Theorem
4.2 computed by Matlab. The Table 1 before gives the number of retained squares (resp.,
intervals).

10.4. Bisection-exclusion linked with Graeffe iteration

To illustrate how works the improvement given in Section 9 we consider a polynomial of
degree 10 which has the same clusters that of the analytic function given in the introduction.
If we perform the bisection-exclusion algorithm with the exclusion test of the introduction,
we obtain same results as in Fig. 1. Now using the exclusion test associated Witlyitigth
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Table 1
m Retained squares q (b (0))
2 12 12
3 24 27
4 44 46
5 76 76
6 112 112
7 148 151
8 192 198
9 248 256
10 308 313
11 376 382
12 448 454
13 532 540
14 608 621
15 708 716
16 812 813
17 912 920
18 1020 1037
19 1124 1152
20 1272 1280
m Retained intervals bm (0)]
2 2 3
3 4 4
4 6 6
5 6 7
6 8 9
7 10 10
8 12 12
9 12 13
10 14 14
11 16 16
12 16 17
13 18 19
14 20 20
15 22 22
16 22 23
17 24 25
18 26 26
19 26 27
20 28 29

Graeffe iterate associated §6z) = f(x + z) at each step of the algorithm, we obtain the
following figure skipping the steps 1 and 2 where all the squares are retaine@)(Fig.

11. Conclusion and further research

In this paper, we have precisely studied how works the bisection-exclusion algorithm
with a test based on the Taylor formula. To do that we have performed-theory of
Smale. Nevertheless some questions have not been here treated.
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‘ : = A+ || H e

Tm B om || B

Step 3 Step 4 Step 5
2] B
m ™
[aicy ®
23] 3
Step 6 Step 7
Fig. 3.

The first question is to quantify the change of local behavior of the exclusion function
near a cluster. This question is related to the behavior of the generalized Newton operator
or Schroeder operator near a cluster of root. A precise study of this fact can be found in
[16].

The second question is the study of the bit complexity of this algorithm. An answer is to
generalize the work of Pardo and its collaborators [5] in the case of clusters of roots. In
fact the authors have linked the notion of approximate zeros [31] with the bit complexity in
the case of simple roots.

The third question is to construct a fast Graeffe process in the analytic case.

Index of symbols
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bivoiiiiiii 10 ki(s,t) oo 13 Um () oo 16
bypo oo 13 M) oo 9 Ui (L) < e 6
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Appendix A. Proofs
A.1. Proof of Theorerd.2

Let us consider a grid of squares contained in the closed Bi€k /2 br) as in Fig.
4, i.e., the center of the disk is not, in general, a vertex of the grid. Each square has a
sizer. Our objective is to count the number of squares of the grid contained in the disk.
Let us consider the grid’s point of coordinate, r2) nearest to the center of the disk
defined by: 6Xr1 < 2r, 0<r2 < 2r. We then introduce = r1/r andt = rp/r. Let us
consider the pointga; (0, 2kr + rp) for 0<k <k1(b, s, t) and Bi(0, —2kr — 2r + rp) for
0<k<ki(b,s,2 —t) as in Fig. 4. It is easy to see the quantityb, s, ) (respectively,
k1(b, s, 2—1))is the largest integdesuch that there exists a squ&with sizer included
in the disk andA; € S (respectively,B; € S). In fact, from an easy geometric argument
based on the Pythagoras formula, we find #hés satisfy the two inequalities

2kr +r2<\/2b%r2 — 12 and  Xr + rp<+/2b2r2 — (2r — )2
2b2 — 52—t J2b2 — (2 —5)2 —

2 ’ 2
A similar way gives the valué; (b, s, 2 — ). Always from the Pythagoras formula, we
deduce the number of squares of side the band defined by the points._; and Ay in-
cludedinthe diskis:  gx (b, s, 1) +qx (b, 2—s,t) = 1+ qix (b, s, 1) + gk (b, —s, 1) — 1 =

qr (b, s, t)+qr (b, —s, t). Inthe same way, the number of squares of sing¢he band defined
by the pointsB;_1 andBy, included in the diskis: ¥ gx (b, s, 2— 1)+ qi(b,2—5,2—1) =
qr(b,s,2—1)+qr (b, —s, 2—t). In the band defined by the pointg and By, the number

. t
Hencek <min . Itfollows the value fok1(b, s, 1).
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_— A T

K 0] T / 2"2pr

Fig. 4.

1+ ki(b,t,s) + ki(b,t, 2 — s). Finally, the maximum number of squares included in the
disk is
q(b) =1+ max (ka(b.1.s) +ku(b. 1.2~ 5) +qu(b. 5.0) +qa(b. 5. 2= 1)).

0<s,r<2

Writing the area of squares is less than the area of the disk wedii# < 2nb%r2. Hence
q(b) <mb?/2. We are done. [

A.2. Proof of TheorerB.3

(k)
f (C)( — k. Using Rouché’s theorem, we show

Let us prove the 1. Leg(x) = Z
k>m
thatf andg have the same number of zeros (counting multiplicityDid, p). Letw be such

that|w — (| = p. Sincea,, = y,,0 B,/ p<1/9a@ndp,,/p = %, it follows ymp<ﬁ—m = %

p
Using both Taylor series expansion/dor f(w) — g(w) andg(w) and triangle inequality,
we obtain

(m)
£ w) — gy < L (C)' (Z(ﬁm P ,,,)

k<m
3 If(’")(é)l m<l_ 1/3 >
m 1-1/3
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(m)
MO () _wp
m! 1—=yup

If(’")(C)I ke
— ( > Cup) )

k>m

< lgw)l.

Hence| f(w) — g(w)| < |g(w)] for all w, such thatw — {| = p and the Rouché theorem
applies. We now provéis the only one zero with multiplicitynof the analytic functiorg (x)
FARI]

in D(, p). Itis clear we haveég(w)| > ol

Henceg(w) # 0 forw # (.
Let us prove the part 2. Lef(w) = 0 andw ¢ D,,({, p). Lets = |[w — {|. If y,,5s>1
1

|lw — ¢ for all w such thatw — {| < p.

. 1 1 1
it follows s > —. Sincey,,, < % we have— >9p,, >3p,, which impliess > — > — —
Tm Vm Ym o 2Vm

3
In the contrary caseg, s < 1, we write

(k)
o= =r0+y w0t

k=1

Sinces > p = 3p,, it follows g,,/s < f,,/p = 1/3. Sincey,,s < 1 andf,, /s < 1, we get
from the previous Taylor’s formula

m—1 (k) (k)
0>1- m!| £ (0)] w — Z m![fO (e

— K Q) L )
m—1 ﬁ m—k
>1—Z(—’”) > Gl =)
k=0 |w - C' k>m
S1- Bul/s — wmS
1_ ﬁm/s 1_ Vms
(1 + 3a)s — 2y,,5° — 2B, 1
> = — " e(y,s),
ST ) L ffs) )

wheree(u) = 2u? — (1 4 3u,)u + 20,,. Hencee(y,,s) >0. Since %,, <1, the poly-
nomiale(u) has two zeros. An easy computation shows #at,,) = e(1/2 — 3v,,/2) =
(92, — 1)o, <0. But we know that(y,,s) >0, y,,s > 3u, and 3, <1/2 — 3, /2 (from
9, <1 ). Henceyy,,s is greater than the largest root of the polynonzal). It follows
that the inequality,,s >1/2 — 3u,,/2 holds. We are done.(J



J.-C. Yakoubsohn / Journal of Complexity 21 (2005) 652—-690 681
A.3. Proof of Theorers.2

SinceL,, s(u) < 1itfollowsu < 1 andf"™ () # 0. The functionm(x) is defined by
M (x, m(x)) = 0. From Taylor’s formula in, we get successively

(k)
O=1f@l-) Uk—,(x”m(x)k

k>1
_ O -0 3 FPOE =0
- m! k!
k#m
(m) _ nym—k
SO D
Pt '(m — k)!
| FEED O (x = 0] (ot
k+j<m, k>1 k!j!
| FEED O (x = 0] o)
k+j>m, k>1 k!j! .

Itis equivalent to

m'f(k)(C) k— m (m)(m(x) >k
021-) |armg |- 07" - mx)
k; K £ (0 kg s
- k+j> M _lim k
k+j<%;k>1< J k+ DLFmO e =" m(x)
- ) |
k+j>%,:k>1< J (k 4+ D) e =P m ()"

We write this previous inequality under the form

0>1-A-B-C-D
and we bound in the sequel the four sum8, C, D with respect tai. For that we will use
the inequalityp,, (f; {) <dul|x — (| which goes fromx ¢ D,,({, p).

1 £
The quantityA = Z m /)

—L__1|x — (/¥ is bounded by
(m) (¢
i | KLF )

m—k
A< Z(ﬁm(f Q) Y G0 -0

k>m+1

:Bm(fv C)/|X_C| + Vm(f; C)|X—§| < 5” + u

S 1B, (f;0/Ix =0 1=9,(f;0Ix=C T 1-u  1-—u’
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& (m (m) \E m(x) \"
The quantityB = ) (k) <m> is equal to(1+ P CI) -1

k=1

We bound C = Z (kJTJ>

k+j<m,k>1 J
m(x) < |x — {| and the definition of,,,(f; {).

m—1m—k—1 . ;
Ty k4 )| mfEDQ)

(k+ NLFQ)

mif D Q)
K+ DO

‘|x — " mx)* using

‘ lx — {7 m(x)k

=1 j=0 J

_ mizlm—k—l <k + J) m!f(k+j)(c) ‘ Ix C|k+j—m
i SR AV (GRS
m—1m—1—k .

< (" * f)aum—k—.f.
=1 j=o > /

. . k+JjY\.
Since the functiory — . increases we deduce

k=1
<@top
i | £k+)) .
Finally, we boundD = Z (k + ]> mf—(C) Ix — {7 " m(x)k. We get
ktjomis1 N (k+ DI

Dgi Z (k‘i.'j>uk+j—m+ Z Z(k'f.'j)ukﬂ—m_
k=1

izmk+1 N kemiljs0 >/
First we have

i 5 (k-;j>uk+j—m<2f:z(ji;’ik>uj.

k=1j>m—k+1

We remarktha(' J+m )

m) (K + / . This follows from the fact that the function
j+m—k k Jj

: k4 i\~ .
j— 1= <J + m)( +J) decreases. Hendg<lp = <’Z> Hence we can write
J

S G RS P e

J
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2 (m 1
s ,;(1«) ((1—u)k+1 - 1)

2—-u)™ u

< o _om
A—uwymtl 1-—y

. k+ 7\ 1
On the other hand ust ( -i._]>uf = m we get
j=0

k—+j ket j—m uk—m 1
Z Z < ] )M S Z (1—u)k*’” (l—u)’"+1
k>=m+1 j>0 k>m+1
u

< .
1 — w)m (1 — 2u)

Finally

2—u)™ u u
D< — - 2" )
A—-wymtl 11—y + A — u)ym+1(1 — 2u)

We now can to collect the previous point estimatesforB, C and D. The inequality
0>1—- A — B —C — D becomes

(64 Du mx) \" @ 1-Dou  2—u)™
0221, _<l |x—£|)  1-u A-wnfl
TR, .
1—u (1 — u)m*+1(1 — 2u)
>2—<1+ mm) — L, 5.
lx — (] ’
Finally
m(x)

1
> (2= L, s — 1.
o 2@ L)

We are done. [J
A.4. Proof of Theorerf.4
Letxbe suchthay (x) # 0.Hencel(x, Z) # 0andn(x) # 0. Remember the quantities

1% ()|
k!lg(x)]

(k)
180 ()] <<d> 1 a3
Klg@| ~\k/) d(x, 2)F

are related to the distance function to the set of the Z2twg see [17, p. 454],
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Applying Leibniz’s rule and bounding frond8), we find easily, for Xk <d,

P05 18V@1 ¢l 1gPw)
KIFOOT 2 Jlg@)l = DIA@T T kg)]
k=1 k—j—1
d\ 7/ d 1
> Dizzr+ (aw 2

. (d)( der. 2)) 7 + (") 1
S 2f )T k) d(x, 2F
From (2) we haved (x, Z) <2+v/2s0t < 3. It follows
(k) d k-1 d—j
[/ (x0)] < 244 Z(d) (}) J N <d> 1 .
K f(x)] ~ w(2d(x, 2)F o\ 2 k)dx, Z)k
Finally

Pl _ @ =277 <d> 1
K fx)| ~ t(2d(x, Z))k k)d(x, Z)k

(14)

In the same way, sincg® (x) = 0 fork >d + 1, we find
d

PRGOS 3 8P )] 4D )
KISl ™ gl (k=)

Jj=0
d k—j—1
<Ay <d> T
j:0 j (.X,Z)-
Jtk—d 4 rd :
< ——— d(x, Z2))47.
wd(x, Z) ;(1)“ 2

Hence we get

Pl 3

KIS )]~ 2dtd(x, Z)T (15)

Dividing the identityM (x, m(x)) = 0 by | f(x)| = |g(x)h(x)| and using the inequalities
(14), (15) we obtain

d k J dr, d k
d\ m((x) 3* — 294 m(x)
0> 1_Z<k)d(x,2)k B T Z(Zd(x,Z))
k=1 k=1
234

k
—a m(x)

—oa 2T 7
2 rk>d+1 d(x,Z)
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Since we have both (x) <d(x, Z) andtd(x, Z) < % the previous inequality becomes

d  ad d d k-1
022—(14— m(x) ) _/L(3 — 29m(x) (})
dx,Z) 2td(x, Z) = 2
B 23%m(x) Z (1. k=d
241d(x, Z) ot 2
d 1 cd d d
22_<1+ m(x) ) _ABT=274(3/2%) m(x)
d(x, Z) T d(x, Z)
d
22_<1+ m(x) ) _ 3 m)
d(x, Z) T d(x. Z)

Finally thanks to Lemmal below the proposition follows. [

Lemma .1. Letc¢>0. The positive solution of the equation
2—cu—1+u)?=0

1/d _
is greater tha 2 =
——s——.
cY —1)+1

Proof. The functionu € [0, +00[— 2— (1+u)¢ € Ris a concave function which is zero
foru = 2'/¢ — 1. The equation of the straight line joining the poinds 1) and(2¥/¢ — 1, 0)

isv= u + 1. Hence, the zero of the equatian = ~ora 1" +1islessthan

S 2ld g 21/d

the zero ofeu = 2 — (14 u)¢. We are done. O

A.5. Proof of Theorer.1

The proof is similar to that of the Theorem 4.1. The inequajify< j1 follows from
4bp < r. We first prove it needgp steps in the algorithm to isolate the nearly real clusters

of zeros in the intervalg. Lets; = ;—2 andl = I (x, s;) be a non-excluded interval at a

level k < jo. We have from (H50d (x, Z) <m(x) <s.

Sincee < s we get for anyz € 1,d(z, Z)<d(z,x) + d(x, Z) <bsi. Let us consider
p

U I ({;, bsg). The number of intervals of length2in 1 ({;, bsy) is bounded byb|. Hence
i=1
the total numbey, of retained intervals at levédis bounded by
gk<plb]. (16)

The indexjo was selected so that for albelonging to a retained interviathe inequality

b . .
sz% <r holds. Hence at levg] jo < j < j1, we haved(z, Z) <r. Since thel ({;, r)'s are
pairwise disjoint intervals, the sé&, will be an union ofp pairwise disjoint setsZ,; C
1, r), 1<i < p. Moreover, for allx € I; we haven(x) <d(x, Z)<p< %0 <e. Hence

- 2j1—1 =
I,' C ZL-J.
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We now prove the part 1. To do that, we boutd, {;) for somezin a retained interval
I(x, s;) atlevelj includedinZ; ;. There are two cases. Firstxifies in7 (;, r)\1; it follows
d(z, {;) <d(z, x)+d(x, ;). Sincen;d (x, {;) <m(x) <s; we getd(z, {;) <b;s;. Next,ifx €
I; then since; < s;itimplies{; e I(x,s;). Henced(z () <d(z, x)+d(x, ) <sj+p;.

Sinceq; <landb; =1+ 1/a; >2, we have— > L >p— > p;. Itfollows
ai  aj  a;

d(z, ()< max(b;s;, sj + p;) = bis;.

The part 1 follows. We now prove the part 2. Hence, at Ipwed haveZ,; C 1({;, b;sj) C
I((;, r). Hence, the numbey;,; of retained intervals at levgl contained inf ({;, b's;)
verifies:

qei < |bil . (17)

To prove the 3, we remark the numbers (respectivelyg;) of excluded (respectively,
retained) intervals are also the number$rok (respectivelyFalse) at levelk. They satisfy
the relations

1. po=0,90=1.
2. px +qx = 2qk—1, k=1.

Using both the bound4.6) and (17), we deduce a bound for the total nunghesf exclusion
tests

Zpk+Qk—1+2261k l<1+ZZQk 1+ Z 2k -1

k=jo+1

< 14 2jop [b] +2(j — jo) Z Lbi] .
i=1

We are done. O
A.6. Proof of Theorem 9.1

We begin the proof with the bound of Lemma 3.1 p. 69 and formula 5.3, p. 105 [18]

F®O(x])
k!

Using Proposition 1 of Blum et a4, p. 267] we have

£ (k)
M\( )Ilflll 4=

0 < (@+ w240 —1)

k!

Usingt < |x|1 and Lemmaz2 below, we find

d d 4
1; 0l < IS Y <k> (<1+ w40 — 1)

k=0
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<A (@+ @+ wd? - 2)
301 f1lx1f 29 u
1— 3(d4—1)u
From Lemma3, we have| || < +/3h. With the definition ofu and the assumption anthe
result follows easily. [

2d4-13,

2vd _ od
Lemma .2. We havgl + (1 + u)9)* — 2°< | 3d—Du-
7

1
d-—1 1/d\\*1?
Proof. From [37, Lemma 2], we know that—— = max | — . Hence for
2 2<k<d \d \k

v = 3u, we havev < 1 and
ez (s B0 <2
k=2 7
Since(1 + u)? < 1+ 3u the lemma follows. O
Lemma .3.
I£1l <~/3h.

d

-1
k) , we prove this previous sum is less théB. In fact

d
Proof. Sincelf[*<h®> (
k=0

d —1 d—1 —1
d d d—1
Y <2 <2+l _3
(k) - <1> T

We are done. [J
A.7. Proof of Theorer.2

From Theorem 1.2, the number of bits of precision to isolate the roots is givegn by
{Iog (46\/§dy(f)soﬂ . A bound fory( f) follows from Lemma .4. We are done]]

V3maxl, h)vd(d - 1)

Lemma .4. y(f) < 2min(L, d(f, %))

Proof. Let x be a root of the polynomidl We first computei( f, ). For two complex
d d

polynomials f(z) = » aiz* andg(z) = Y _ b2k, let us define the hermitian product
k=0 k=0
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oA\t FO )
< f,g >= Z(k) aibr. We then haveT =< f(2), px(z) > with px(z) =
k=0 :

d . .
(k>zk(1 + zX)47*. These useful formulas to represent polynomials can be fourj@]in

In this context the polynomialgo(z) = (1 + zxX)¢ and p1(z) = dz(1 + zx)4~1 are
orthogonal toX, with respect the hermitian produet .,. > above. Consequently the
norm of the projectiom(f) of f on the linear space generated fiy(z) and p1(z) is equal
to d(f, Zy). The projectionz(f) is defined by< n(f), po >=< f,po >= f(x) =0
and < n(f), p1 >=< f,p1 >= f (x). A straightforward computation gives(f) =

(— < p1, po > po+ < po, po > p1) f (x)
< po, po > < p1, p1 > —|p1(x)|?
p1(x) and< p1, p1 >= py(x) = d(1+d|x[A) (L + |x[2)?2 it follows
po()|f (x)[?
< po. po > < p1, p1 > —|p1(x)|?

I ®P
S d(1+ |x[2d2

Let us bound< py, pr >. We have

AN (d—k\2( d 7L
= (3) §,< )
d—k

COECC D

Since (k + j) < (Z) it follows < pi, px > < (Z)Z(l + |x|%?=k. with the notation
x|? = (1i |x|2), we then deduce that
SO@l @I
KIF Ol Vdd(f. 2)lxl¢2
WIF
S Vdd(f. 2ol

. Since< po, po >= po(x), < p1, po >=

d(f, Z)? = |In(f)I? =

[4, Chapter

A\ _Vda -1
k S 2

1
Using || /|| <~/3h proved in Lemma .3 anéﬁ(
14, Lemma 10], we find that

1
- _ V3 maxl, h)d(d — 1)
2min(L, d(f, Zy))

FO)
kU f' (x)

7(f, x) = sup
k>2

Sinced(f, ;) >d(f, ¥) the result follows. We are done.
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A.8. Proof of Theorert0.1

From Leibniz’s rule it follows:

d f(k)(x ‘ ) ki o ‘
f@)= E k' —x) + E E E < )gi] (x)ci ]ngx(Z —X)
k=0 ’

i=1 k>d+1 j=0

d ) di () k—j
:Z f k'(x) _ +Z Z Z 8; (X) C, - ¥ (z — x)k.
k=0 ’ ’

i=1 k>d+1 j=0

We bound the previous quantity using the definitions6g§, 1;’s and the fact that
k—z2k—d-DWk—-d)...(k—dj))z2(k—d—-1!I(d+1—-d;) whenk>d + 1. A
straightforward computation shows successively Witk x| <r, that

r)k—d—l

|f(Z)|>|f(x)|—Z|f .( 4 29() Z (Eji_d_l)y

k=1 i=1 k>d+1
xn?+1_d’ le€i* |r‘]l+1 >M(x,r).

We have also provest/ (x, 1) > M(x, t). Hencem(x) > m(x).
The proof of the part 2 is the same one that of Theorem 6.2. We are dane.
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