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COMPUTING THE DISTANCE FROM A POINT TO AN
ALGEBRAIC HYPERSURFACE

J.P. DEDIEU, X. GOURDON AND J.C. YAKOUBSOHN

ABSTRACT. We generalize the Dandelin-Graeffés method to the multivariate
case and apply it to compute the distance from a point to an algebraic surface.
For that we introduce the positive root of a certain concave which is a good
lower bound of this distance. We also illustrate this theoretical fact by a
numerical example.

1. INTRODUCTION

This paper is devoted to the problem of computing the distance in C" from a
point u to an algebraic hypersurface Z = {z € C* : P(z) = 0} where P(2) is a

polynomial in C[z1,. .. , 2], the distance in C" corresponding to the norm
2]l = max |2

By shifting the variable z, we can restrict in the case u = 0. In fact we compute
a sequence of lower bounds converging to d(0, Z). Such lower bounds for the the
distance from u to Z are particulary useful to give an approximation of Z via
an exclusion-bisection algorithm. In the univariate case such lower bounds, also
called proximity tests, are given by Weyl (8], Henrici-Gargantini [4], Schonhage [6],
Turan [7]. One may consult about this subject the recent survey writen by Pan [5].
In the multivariate case a proximity test based on Taylor’s formula is studied by
Dedieu-Yakoubsohn [2].

The test presented here is based on both Taylor’s formula and a generalization of
Dandelin-Graeffe’s process to the multivariate case (see [1] or [6] for the univariate
case). It consists essentially in computing the N-th Graeffe iterate of P(2) (see
Definition 1), which has the form

PNI(z) =) B;(2)

520

where the B;(z) are homogeneous polynomials of degree 2V, and then computing
the non negative root py of the equation in p

1Boll =Y _ 1Bl ¢,

j21
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the norms || B;|| being the sum of the absolute values of coefficients of B;. Then

ry =p% " tends rapidly to d(0, Z).
More precisely the following theorem is proved :

Theorem 1. Let pn be ihe unique nonnegative solution of
d
(1) PM©) =181
j=1
The distance from 0 to Z satisfies
(2) N S d(O, Z) _<_ KNTN,

172N
o—N 1 2N+’I’L—1
TN = PN and Ky = CYVZ ) ne1l .

Moreover lim ky =1, which implies lim rn = d(0, Z).
N—o0 N—oo

where

2. THE GRAEFFE PROCESS.

The purpose of this part is to generalize the classical univariate Graeffe process
to the multivariate case. In the univariate case, the Graeffe iterate of polynomial

P(z) is defined as the unique polynomial Q(z) such that Q(z?) = P(z )P( z). In
the multivariate case, the polynomial P(z)P(—z) can not be written as Q(2?) where
Q(2) is a polynomial, thus we need to slightly modify the definition.

Deﬁmtlon 1. We call the N-th Graeffe iterate of P(z) € Clz1,..., 2| the poly-
nomial PIVl(z) defined by

2V -1 .
: H ; 2im .
(3) P[N](z) — P(w]z), w = exp (5]7) R 12 = —1'
=0

When P(z) is a univariate polynomial, we have Plll(z) = P(z)P(—z) = P (2?)
where P{1)(2) is the classical Graeffe iterate of P(z). More generally, the N-th clas-

sical univariate Graeffe iterate satisfy P (z) = PV](22") for all N. Remember
that P{N)(z) has the same degree as P(z) and its roots are the 2V powers of roots

of P(z) (see [Ba)).
Graeffe iterates satisfy several properties which make them easy to compute.

Proposition 1. For all non negative integer N, the N-th Graeffe iterate of P(2)
writes as
N
PN(z) = 3~ BV (2),
3>0

where the B[ Vs are homogeneous polynomials of degree 2Nj. The (N+1)-st Graeffe
iterate can be computed from the N-th thanks to the formula

(@) PV =P - AMe = Y BV

j=k(mod2)




j- Then

fe process
olynomial
?(—2). In
2?) where

the poly-

= p{1)(22)
N-th clas-
Remember
s of roots

mpute.

te of P(z)

-st Graeffe

(2).

COMPUTING THE DISTANCE FROM A POINT 287

Proof. Since the degrees of all the monomials in PN (2)? and P! (z)? are multiples

of 2N+, we need only to prove formula (2). For this, we notice that
2im
P[N+1](z) — P[N](Z)P[N] (wz), w = exp <-2—1\7ﬁ) )

and since P(EN] (w2) = P(EN] (2) and Pl[N] (wz) = —PI[N] (2), this implies

PN () = (P(EN] (2) + P (z)) (P(EN] (2) — P! (Z)) = PIN(2)2 = PMI(2)2,

proving the result. O

3. THE UNIVARIATE CASE

In the univariate case, the distance d(0, Z) from 0 to the set Z of zeros of P(2)
is also the smallest modulus of the roots of P(z). Computing this distance is a
classical task. It usually consists in using the Graeffe process together with a result
giving an upper and a lower bound for d(0, Z). Classical bounds are given in the
following theorem, which can be found in [3] Theorems 6.4.d and 6.4.i.

Theorem 2. Let P(z) = Zizo by2* be a univariate complex polynomial, and p(P)
the monnegative root of the equation

d

Jbol = > _ 1bsle’.

=1

Then
1
p(P) <d(0,2) < W—_—IP(P)-

The value p(P) is easily computable. When we apply this result to the N-th
classical Graeffe iterate of P(z), we obtain

1
p(PN)) < d(0,2y) < 2TN_—_1P(P(N>)’

where Zy is the set of roots of PN (z). Since the roots of P{N)(2) are the 2V-th
powers of the roots of P(z), we have d(0, Zn) = d(0, Z)zN, thus

2—N

1 2
© <0< (gEmg) e PO

The upper bound tends rapidly to the lower bound as N increases, thus we have
obtained an effective process to compute d(0, Z).
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4. THE MULTIVARIATE CASE
Thanks to the multivariate Graeffe process, we easily generalize the univariate
algorithm to compute d(0, Z) to the multivariate case.

Theorem 3. Let P(z) be a polynomial in Clz1, ... , 2] of total degree d. Let
PWI(z) =550 B}N] (z) be its N-th Graeffe iterate and Ry the non-negative solu-
tion R of the equation

N .
(6) PN =3 1B oo B,

i1

where HB}N] lloo = SUP|z|=1 |B;(2)|l. Then we have

_N
1 2 -
(7) ry < d(0, 2) < (m) TN, TN = R%\J N

ce ry = 0. Otherwise, we have
b

Proof. 1f P(0) = 0, there is nothing to prove sin
C™, |zl <N =

PIN1(0) # 0. We prove first the left part of the inequality. Let z €
R ". We have

PV(2)] > [P0 = S 1B o 122 > [PM(0)] = S I1BY oo Ry =0,

gzl jz1

thus PWV!(z) does not vanish in the open ball centered in zero with radius 7, and
since P(z) is a factor of PIV](z), this is also the case for P(z). Thus ry < d(0, 2).

Now we prove the right inequality of 7. For all y € C™ such that llyll = 1, we @

define the univariate polynomial P,(t) = P(ty). We have

d
®) PO =Y B W)Y

Let Zy(y) denotes the set of zeros of PéN) (t). Since
40, Zx () = 0, Zo(@)*" 2 d(0,2)"",

formula 8 together with Lemma 1 below yield for all j

©) 1< PO () g5z

The right side of the inequality is independant of y such that llyll
ity 9 remains valid with |BJ[-N] (y)| replaced by HB;N] |loo- Plugging this information
into equation 6 defining Ry, we obtain

= 1, thus inequal-

o) < S PM0(]) 75 2

Ry \°
1< |1+ —7 -1
—< - d(O,zw”) !
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leading to

d(0, 2)2" 1
: Ry —2Yd-7’
proving the right inequality of 7. [

The following lemma was needed in the proof of Theorem 3. Its proof can be found
in [3] chap. 6, 6.4-8.

Lemma 1. Let P(z) = ijo bz’ be a univariate complez polynomial, Z(P) the
set of its roots, by # 0. Then

d 1
1251 < fbol (]) a0, Z(P))y

Theorem 3 can not be applied directly to approach d(0, Z) in the practice, since
the norms || - || are difficult to compute. Instead, we make use of the norm

Zaaz"‘ = Z laal,

easy to compute. Our main result is stated using this norm. We now shall prove
the theorem 1.

5. PROOF OF THE THEOREM 1

For the left part of inequality 2, we proceed as in the proof of Theorem 3 replacing
the norm || - ||co With || - ||. We can do that because || - ||oo < || - || (see Lemma 2
below).

Now we prove the right part of 2. Lemma 2 and Lemma 3 below give for all j,

N < j2N +n—1 NI < o3| _ 2N +n—1
B < (7T e < 1B, e ()

thus

d d
PO =3 1B oy < 3185 oo (apn) -
j=1 j=1
This implies
Ry < apn,
where Ry satisfies equation 6. The inequality 7 satified by Ry now entails

2—N
N

-N
1 2 2—N « 2~
d(O,Z)S (21/(1_1) RN < (21/d_1> PN

proving the result.

In order to prove Theorem 1, we needed a lemma comparing the norm || - || on
polynomials with the intrinsec norm || - ||co-
Lemma 2. Let A € Clz,...,2,] be an homogeneous polynomial of degree k, z €
C™. Then

n—1

k+n-1
max |4(2)| = Al < 4] < ( ) Al
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Proof. The left inequality is trivial. Let us show the right inequality. Let A(z) =
> |a|=k 8o 2% and | All2 = (EIaI—J |aq| ) . The Parseval identity

1\" ) )
2 = o 1’ sy 1°°° n
113 ( ) [ 1A e, s
2w [0,27]™

implies ||A||2 < ||A]|. To conclude, we use Cauchy-Schwarz inequality
4]l < VK || All2,

where K is the total number of a € N® such that |a| = k, that is K = (*}""). O

n—1

The following combinatorial lemma was also needed in the proof of Theorem 1.

Lemma 3. For all positive integer j, K and p, we have
JK+p _ (K + p)j
p ~\ P '
Proof. The inequality

. -3J p j—1
JK+p> K+p) H GE+OL— <1,
P P o (K+ey
holds because each term in the product is < 1, this being true because (jK +

009~ = 9 4 jK" represents the first two terms in the binomial expansion of
(K+¢7 O

6. CONVERGENCE OF THE PROCESS

The sharpness of inequality 2 depends essentially of the rate of convergence of
kN to 1. In fact, this convergence appears to be fast. As an illustration, Table 1
shows, for different values of n and d , 1 <n <10 and 2 < d < 10, the minimal
value of N such that

pn <d(0,2) < 2pN.

d\" 1{2]3|4[(5|6|7(8]9]10
2 (21213333444 4
3 [2]3[(3|3|3[4|4|4(4]| 4
4 [2]3(3[3|3(4|4(|4|4]| 4
5 233344444 4
6 [3]/3(3|3|4(4|4(4|4]| 4
7 3133344444 4
8 [3[3(3|4|4(4|4(4|4]| 4
9 [3[3[3|4|4(4|4|4|4]| 4
10 |3]3(3[4|4|4(|4]|4(4)| 4

Table 1.

The following result also gives an idea of how fast does xn tend to 1.
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Proposition 2. The error coefficient ky satisfies, for N > 1,
1< Ky < (2d)1/27 gN(n-1)/2N
Proof. The inequality 1 < kp is trivial. For the other, we first write

V4n—-1\ _2¥+41 2V42 N4
n-1 ) 1 2 n—-1 "

thus

2V +n—1 N 1 1
= 9N(n=1)(9~N -N Y. . [o-N
( n1 ) 2™V +1)(2 +3 2 +t—)

and since NV > 1, this implies

N
(2 +n— 1) < 2N(n-—1)(2—-N n 1)<15. gN(n—1)
n—1
Now, we have 21/¢ — 1 = €!°62/4 _ 1 > Jog 2/d, thus

1 d
—_ <
21/d —1 = log?2
This finally gives
N

d N(n-1)/2 12 N(n—1)/2 1/2%
kv < [ —— V15 . 2Nm=1)/ g((zd)z n )

)

log 2

yielding the result. [

In the practice, when n is large, computation of 75 becomes very expensive when

N gets large. The following result gives a bound on sy for a reasonable value of
N.

Proposition 3. Let N be such that 2V < n < 2N*1. Then the error coefficient
KN satisfies

1 < ky < 4(1.45d)%/™.

Proof. We need to prove the second inequality. First, we notice that

N _ _
2% +n-1 < 2n—1 < 2n <o
n—1 n—1 n

and since 21/¢ — 1 > log2/d and 1/2V < 2/n, we obtain

log 2 ~ \log2

d 172N d 2/n
Ky < ( \/227») < (—— \/22n> < 4(1.45d)%/™,

proving the result. O
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7. EXAMPLES

Theorem 1 provides an efficient way of computing the distance from a point to
an algebraic hypersurface. We illustrate this result by computing the distance from
0 to a family of algebraic hypersuface Z, 4 for positive integer n and d, defined by

n

Zna=1{2€C" : Pp4(2) =0}, where P a(z) = Z(l —z)4 -1
j=1

The set Z, 4 is a sphere associated to the d-norm centered in (1,...,1), and its
distance from 0 is found to be

(10) d(0, Zp4) =1 —n"4

Let us prove this formula. If ||z|| <1 — n~1/4 then we have for all j the inequality
;| < 1—n~Y/4, thus

n n " q
d d _
an,d(Z)lzzlll—Zjl ‘12;(1—1%0 —1>;;—1——0,
J: = =

which proves that P, 4(z) does not vanish in the open ball centred in zero of radius
1 —n-1/4, Thus d(0,Z,4) > 1 —n~/%. Since the point z = (1 —n
n~1/4) belongs to Z, 4, we have finally proved formula 10.

Below are tables giving for several values of n the value of the ratio rn/d(0, Zr.4)
of Theorem t.principal for several values of d and N. The computations were made

in Maple.

-vd 01—

ro/d | ri/d | ro/d | r3/d | r4/d
0.7673 | 0.9725 | 0.9996 | 1.0000 | 1.0000
0.6525 | 0.9479 [ 0.9973 | 1.0000 | 1.0000
0.6325 | 0.9400 | 0.9960 | 0.9999 | 1.0000
0.6067 | 0.9271 | 0.9938 | 0.9999 | 1.0000

| O DO Q.

—
ot

Table 2. Some values of ry/d(0, Z,,q4) for n = 2.

’l"()/d T‘1/d T'Q/d ’I‘3/d 7"4/d
0.6885 | 0.9386 | 0.9752 | 0.9785 | 0.9910
0.5453 | 0.6859 | 0.8546 | 0.9357 | 0.9610
0.5212 | 0.6475 | 0.8307 | 0.9270 | 0.9535

| oY o

Table 3. Some values of ry/d(0, Z,,4) for n = 3.

’I"o/d Tl/d Tz/d 1"3/d
0.6457 | 0.7847 | 0.8759 | 0.9326
0.4891 | 0.5612 | 0.7640 | 0.8311
0.4632 | 0.5268 | 0.7437 | 0.8117

| O DN &

Table 4. Some values of 7 /d(0, Z,,4) for n = 4.
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d| ro/d | m/d | ro/d | r3/d |
21 0.6180 | 0.7101 | 0.8384 | 0.8831 i
5| 0.4533 | 0.4970 | 0.7031 | 0.7661 %
|
?,

Table 5. Some values of ry /d(0, Z, 4) for n = 5.

d| ro/d | m/d | ro/d | r3/d
2 10.5832 | 0.6338 | 0.8108 | 0.8224
3 10.4802 | 0.5108 | 0.6478 | 0.7561

Table 6. Some values of rn /d(0, Z, 4) for n =T7.

d To/d Tl/d Tg/d 7‘3/d
2 10.5534 | 0.5796 | 0.6779 | 0.7561

i
i
|
|

Table 7. Some values of ry/d(0, Z, 4) for n =10 and d = 2.

These examples show that the bound is quite good for a small value N of Graeffe
iterates.
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