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A universal constant for the convergence of Newton's 
method and an application to the classical homotopy 
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We give a new theorem concerning the convergence of Newton's method to compute an 
approximate zero of  a system of equations. In this result, the constant h0 = 0.162434... 
appears, which plays a fundamental role in the localization of  "good" initial points for the 
Newton iteration. We apply it to the determination of  an appropriate discretization of the 
time interval in the classical homotopy method. 
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O. I n t r o d u c t i o n  

In this paper we consider the algebraic system 

P(x) =0  

with x = ( x l , . . . ,  xn) E R n and P(x) = (Pl ( x ) , . . . ,  P,(x)) where the Pi(x) are poly- 
nomials in ~ [ x ]  of  degree di, 1 ~< i ~< n, with d = maxl .< d .<, di. 

We denote by a = ( a ~ , . . . ,  a~) a multi-index and by I~1 = ~ ,  + . . .  + ~n. For  
k E N, we use the classical notation: 

- -- and x ~ = x ~  l . .x~ ~. 
al! an! 

For  x and y in R ~, we write the Taylor  formula 

d 1 k 
P(y)  = P(x) + ~ - ' ~ D  P ( x ) ( y -  x) k, 

k=l  
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where Dkp(x)(y -- x) k is the vector 

(/:/ I:l ) i~l=k gP'(x---~) ( Y -  X)'~' E - - ( Y -  X)'~ Ox ~ " ,  Ox ~ �9 
I~1 = k  

Furthermore,  D~P(x) is the vector 

z~e(~) = (.:el(x) :?.(~)'~ 
\ o :  " "  o :  1 

We also shall denote by DK+Ip(x)(y -- x) k the matrix with the coefficients 

(D~+'e(x)(y- x)~),j 

= z ( k  + l ) ifl'+lPi(x) ( y - x )  '~ 
io, l=k+ 1 Ot Ox ~ yy -- Xj 

a I . . . . .  cq_  1 = 0 , c t j  >~ I 

, 1 ~< i, j ~ n, 

which verifies Dk+lp(x)(y -- x)k(y -- X) = Dk+lp(x)(y - x) k+l. We use the max- 

norm i.e. Ilxll = maxl .<i.<, Ix;I for x ~ R ~ and Illalll = maxl .<i.<,)--]~=t la,:l for a 
matrix A. The open ball centered at x and of  radius r associated to the max- 
norm is Bmax(x, r). 

The max-norm of  the matrix Dk+lp(x)(y -- x) k is bounded by 

( k +  l)lOk+'P~(x) I max ~k+ lY--xlIk" IIIO~+~e(x)(y- x)klll <<" ~<'i<'"l~l= I OXa 

For  this reason we introduce the quantities: 

[[iDkp(x)[[[ def max ~--~. ( k ~ Okpi(x) . 
I <~ i <~ n la~=k \ 

These quantities, different f rom the max-norm of  the operator  Dkp(x), occur 
naturally in the estimations established from the Taylor  formula: see lemma 2.1. 

The main goal of  this paper is to prove the following theorem. 

Main  theorem 
Let us consider an algebraic system P(x)= 0 defined as previously. Let 
h0 = 1.62434...  be the smallest root  of  polynomial  4h 3 -  12h2+ 8 h - 1 .  Let 
x ~ E I~" and h E [0, h0] be such that  the inequalities 

l lllDkp(x~ IIIDP(x~176 <. h k-l,  2 ~ k ~ d, (1) 

are satisfied. 

(1) Then the sequence of  vectors in ]R" defined by 

:+, = x,_ Dp(~,)-~p(:) 
converges to a simple solution x* of  the algebraic system P(x) = O. 
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(2) Let h E [0, h0[. The convergence of  the sequence xp is super-quadratic, i.e. 

ple h'~ 2"-1 
IIx ' + ' -  x'll ~<a t i. ) II x l -  x~ 

where a = 2h 2 - 4h 0 + 1 = 0.403031 . . .  and hla 2 < 1. 
(3) For  x E ~" let us define the polynomial 

L ( x ,  t) = - I I D e ( x )  -I e ( x ) l l  + t Z ( x ,  t) 

where 

1 1 ( ~ l ~ _ k ( k ) )  L(x,t) = 1 -  y ~  IlDP(x)-IDkp(x)ll t k - i .  
k=2 I 

We denote by l + (x) and l- (x) the positive roots (when they exist) of  the polynomial 
s t) and by l(x) the positive root of  the polynomial L(x, t). 

Then the union of  the balls Bmax(X p, l+(xP)) for indicesp such that l(x*) >1 l-(x p) 
contains only one solution of  the algebraic system P(x) = 0 which is x*. 

We now can explain the considerations on which this paper is based. For  this, we 
begin by a short digression. In [2], Dedieu and the author have studied exclusion 
algorithms in view of  localizing all the real solutions of a system of  algebraic equa- 
tions which admits a finite number  of  roots. These algorithms consist in computing 
at a given point x E N n a ball Bmax(X, m(x)) in which there is no solution of the 
system. The radius of  this ball is named the exclusion function at x. The current 
exclusion function for the system P(x )=0  considered here is m(x)= 
maxl <<.i~ ~ mi(x), where each of  mi(x) is the positive root of  a concave polynomial 
in l~[t] defined by: 

 ,ilx  
M i ( x  , t) = IIe,(x)ll  - Ox �9 

k = l  I 

This exclusion function is in some sense equivalent to the distance of  x to the 
solution set. 

An initial ball and an accuracy e being given, an exclusion algorithm consists in 
choosing a point  x in an initial ball in which we want to localize the solutions of  the 
system, to exclude the ball Bmax(X,m(x)) of the initial ball and start again with 
another point  x while the remainder is a non-empty set. This algorithm returns 
all the balls Bmax(x, m(x)) such that m(x) <~ e: these balls are susceptible to contain 
solutions of  the system. The complexity of  this algorithm is the number  of  com- 
putations of  the exclusion function: it is proportional to Log 1/e. 

In these exclusion algorithms, the number  of  exclusion tests is large near a 
solution. It is a natural idea to test if the hypotheses of  the convergence of  the 
Newton method are satisfied as soon as m(x) <~ e. If  that is the case we must 
compute two quantities: an approximation of the solution x* and a ball in which 
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there is only the solution x*. Then we prove in [2] that the complexity of the exclu- 
sion algorithm conjugated with the Newton method is in Log[Log e[ exclusion tests. 
The two parts of this program can be realized with a classic Newton-Kantorovitch 
Theorem, see [3,5] or [6]. For example, the translation in the polynomial case of the 
result which appears in [3, p. 263] gives: 

Newton-Kantorovitch Theorem 
Let x ~ E 1~", P(x) E ]~"[x] and the ball B =/~(x ~ 211DP(xo)- P(xo)ll) be such that 
the condition: 

I 2nlllDP(x~ IIDe(x~176 i,j,mzaEXB~k axjax  1 

is satisfied. 
Then the sequence x p+ l = x p - DP(xP) -1P(x p) converges to the unique solution 

of the system P(x) = 0 in the ball/~(x ~ 2110e(xo)-le(xo)l D. 

In the context of exclusion algorithms there are two reasons for applying the 
main theorem instead of this theorem. The first is that the quantities IIID~(x) lll 
are determined for computing the function m(x).  In other words, this strategy 
avoids the computation of the quantity max~,lO2Pz(z)/cgx/gxkl in the Newton-  
Kantorovitch theorem. 

Next, the radius 21[De(x0)-lP(x0)[I is in general small and the introduction of 
the polynomial s t) in the main theorem improves the radius of the ball of 
unicity of the solution. 

A modern approach of the convergence of the Newton method must be attri- 
buted to Smale in [9] in which the case of roots of a complex polynomial P(z) is 
studied. In this paper the inequalities equivalent to (1) are: 

P(k)(z)P(z)k-I min 1 I 
k!p,(z)k <~ I 0:z(0)=0 P(O) - P(z) 

Shub and Smale in [7] give the historical origin of these ratios which go back to 
Newton and Euler. 

More recently, in [8], these two authors generalize the results concerning 
complex polynomials to systems of analytic equations. The technical background 
and the results developed here are different from this last paper. 

In section 1 we give preliminary lemmas and we introduce polynomials which 
appear in the study of the convergence. The goal of sections 2 (convergence), 3 
(complexity) and 4 (set of unicity) is to prove the main theorem. The stability is 
the object of section 5 and section 6 gives an application to an efficient discretiz- 
ation of the time interval [0, 1] in the classical homotopy method. 

Technical lemmas used in the various sections are collected in section 1 and the 
reader eager for knowledge can start with section 2. 
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1. Pre l iminary  l e m m a s  

In the proof of lemma 2.1 we shall apply the following 

227 

Lemma 1.1 
Let k andj  be two integers. Let a and fl be two multi-indices such that [a I = k and 
[/3[ = j .  Then 

( a l a l  . an  j 

Proof 
By induction on the sum k +j .  The inequality holds trivially for k + j  = 1. Suppose 
the inequality of all a and 13 such that lal + I~1 = k +j .  We have 

( a l h - f l 1 4 - 1 )  ( a E h - / ~ 2 ) a  1 + 1 k a2 """ ( a " + 3 " )  = ( a ~ + 3 ~ )  ( a z + ~ 2 / a n  \ a~ \ a2 / 

an al + 1 a2 \ an 

~< + by the induction hypothesis 
j \ j - l ]  

~< ( k + j + l ) j  

Hence the inequality holds for all a and ~ such that [a[ + [131 = k + j  + 1. And the 
lemma is proved. [] 

We now introduce the following polynomials which play an important part in 
the study of the convergence: 

d - I  

Td(h)= l - E ( / +  1)h i, 
i=1 

S k . ( h )  = h i, 
i=Ok i 

rk~(h) = h k - ~ s ~ . ( h )  - (1 - h) ~-~ :r~(h). 

Concerning these polynomials, we shall use the following 
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Lemma 1.2 
Let k >t 2, d >t 2 and h be in the interval [0, (5 - V:~)/6]. Then 

Before proving this lemma we establish the following: 

Lemma 1.3 
Let d > 2 and h be in the interval [0, (5 - v/~)/6] .  We have 

1 ~< (1 -h)2S2d(h). 

/'roof 
By definition of the polynomial S2d(h) we have S2d(h ) /> 1 +3h.  Hence 
(1-h)2S2d(h) >i (1-h)2(1  +3h).  And it is easy to verify the polynomial 
(1 h ) 2 ( l + 3 h ) = l + h ( 3 h  2 - 5 h + 1 )  is greater than 1 on the interval 
[0, (5 - v/~)/6] .  [] 

Proof  o f  lemma 1.2 
We proceed by induction. The inequality is verified for k = 2. 
inequality holds for k. We have 

d - k - l ( k + i + l ) h i  
: Z 

i = 0  l 

d - k - I  k + i h i h i 

= ~--~ i-I] + ~-~ i = 1  i=0 i 

~ 2 ( k + i + l )  ( d ) 
= h d hi + Skd(h) _ h d-k 

i=0 \ i d - k  

<~ hSk+ld(h) + Skd(h). 

Thus we have the inequality 

1 

And by lemma 1.3 it follows that 

S2+ld(h) <~ S2d(h)S2d(h) 

on the interval [ 0 , ( 5 - v / ~ ) / 6 ] .  By the induction hypothesis 
S2d(h) <~ Sk2d(h). Thus 2 k+1 S:~+la(h) ~ SEa (h) and the lemma holds. 

Suppose the 

we have 
[] 

Lemma 1.4 
(1) The positive roots of polynomials Td(h) form a strictly decreasing sequence of 

real numbers which converges to (2 - v/2)/2. 
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(2) The  polynomials  Ykd have only one positive root  denoted  by Ykd on  the interval 
]0, (2 - x/2)/2[. 

(3) The  sequence of  roots (Y2d)d~>2 of  the polynomials  YEd(h) is a strictly 
decreasing sequence which converges to the smallest root  h0 of  the polynomial  
4h 3 - 1 2 h  2 + 8 h - 1 .  An  approximate  value of  this root  is h 0 =  
0.162434565 . . . .  

(4) Ykd(Y2d) ~ 0 for all k, 3 ~ k ~< d. 
(5) We give a table of  first values of  YEd: 

d Y2d d Y2d 

2 0.228155 5 0.162916 
3 0.173091 6 0.162537 
4 0.164665 

Proof 
(1) By Descartes '  rule the polynomial  Td(h) has only one positive root.  More  

precisely since Td(O) = 1 and Td(1) = 2 -- d - (d(d - 1))/2 < 0 this root  is in the 
interval [0,1]. Fur the rmore ,  Td+l(h)= Td(h)--hd+l< Td(h) on ]0,oo[. We 
deduce  that  the sequence of  the positive roots  of  the polynomials  Td(h) is a strictly 
decreasing sequence. We now prove the convergence of  this sequence. The  poly- 
nomial  1 - Td(h) is the derivative of  the polynomial  ~--~f__-( h ;+ t. We have 

(~-~ ) ' =  \~h21- ha+l"~',] h2 dha+' h,+, --~_~ = 2 h -  - ( d +  1)h d + 
ki=l  (1 - h )  2 

Hence 

2h - h 2 - (d+ 1)h a + dh d+t 
Ta(h) = 1 - (1 - h) 2 

1 - 4h + 2h 2 + hd(d + 1 - dh) 

We now fix h E]0, 1 [. Then  we have 

lim Ta(h)= 
d---* r 

with 

(1 - -  h )  2 

1 - 4h + 2h 2 

( 1  - -  h )  2 ' 

1 - 4h + 2h 2 
rd(h) > ( l - h )  2 ' (2) 

since d + I - d h  > 0. Consequent ly ,  the sequence of  the positive roots  of  poly- 
nomials  Ta(h) converges to the root  of  the polynomia l  1 - 4 h  + 2h 2 which hes 
inside ]0, 1[, i.e. (2 - x/2)/2. 

(2) Let td be the positive root  of  the polynomia l  Ta(h) and 2 ~< k ~< d. We have 
Ykd(O) ----- - -1  and  Ykd(td) = ~ -  ISkd(td) > O. To  prove the unicity of  the root  Ykd on  



230 J.-C. Yakoubsohn / The convergence of Newton's method 

the interval ]0, td[  , w e  claim that Y~d(h) is positive on this interval. In fact, 

Y~a(h) = ( k -  1)hk-2Ska(h) + hk-ls~a(h) + ( k -  1)(1 -h )k -2T~(h)  

- k(1 - h)k-lT~a(h)T~-t(h). 

On the interval ]0, td[ we have T'a(h) < 0 and then by the previous expression 
Y~,d(h) > 0 for all h E]O, td[. 

(3) We have 

Y2d+l(h) -- Y~(h) = h(S2a+l(h) - SEd(h)) + (1 -- h)(T~(h) - T~+l(h)) 

Hence Y2e+l(h) -  Yzd(h) > 0 on the interval ]0, ( 2 -  v'2)/2[. Thus, applying the 
results of part (2) we have YEa+ 1 < Y2d" 

TO prove the convergence of this sequence we shall establish 

Lemma 1.5 
Let h E]0, (2 - v/2)/2[. Then we have 

4h 3 - 12h 2 + 8h - 1 
lim Y ~ ( h ) =  

d- .oo  (1 - h )  2 

with 

Y2~(h) < 
4h 3 -  12h 2 + 8 h -  1 

(1 - h )  2 

Consequently the polynomial 4h 3 -  12h2+ 8 h -  1 is increasing on the interval 
]0 , (2-v / -2) /2[  and h0 =0.162434565 is the root of  this polynomial in this 
interval. Furthermore, limd__, oo Y2d = ho with h0 < Y2d and part (3) of  lemma 1.4 
is proved. [] 

Proof  o f  lemma 1.5 
We observe 

d-2 I tt 

\ i = 1  ,/ 

(h3 + h d + ~ "  
=l+~k f--~ j 
= 1 + 1 (6h - 6 h 2 . +  2h3.'~ 

(1 - h )  3 ,} 

h a- 1 
+ ( 1 - h )  3(-a(a-  1)h2 + 2(d2-  1)h-d(d + t)). 
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We have - d ( d  - 1)h 2 + 2(d  2 - 1)h - d(d + 1) < 0 and  lima__, m h d- 1 
( - d ( d  - 1)h + 2(d - 1 ) h  - d(d  + 1)) = o since h E]0, (2 - x/~)/2[. Hence  

3h - 3h 2 + h 3 
lim S2d(h) = 1 -} 

d--.oo (1 -- h) 3 

with 

S2d(h) < 1 + 

Using  inequal i ty  (2), we obta in  

with 

3h - 3h 2 + h a 

(1 - h) 3 

lim Y 2 d ( h ) = ( 1 4 3 h - 3 h 2 + h 3 . ) - ( 1 - h ) ( ! - 4 h + 2 h 2 . ~ 2  
d--.oo (1 - - - h ?  (1 - h) 2 ,] 

4h 3 - 12h 2 + 8h - 1 

(1 - h )  2 ' 

Hence  l e m m a  1.5 holds.  

r2a(h) < 
4h 3 - 12h 2 + 8 h -  1 

(1 - h) 2 

(4)  The  positive roo t  Y2d of  the po lynomia l  Y2d(h) verifies the re la t ion 

Y2dSEd( YEd) = (1 -- Y2d) T2( YEa). 

[] 

(3) 
On the o ther  hand ,  we have Y2d < . . .  < Y22. As Y22 ~ 0.228 < (5 - x / ~ ) / 6  

0.232 the inequal i ty  o f  l e m m a  1.2, S2a(h) <. S2kd(h), holds  on  the interval  [0,Y22] 
which  conta ins  all the roots  Ykg. By the  ident i ty  (3) and  using Yka < 1 --Yka on  
this interval,  we have  successively 

k - 2  r,2 
Y2d OkdtYEa) ~< (1 --Y2d)k-2Sk(Y2d), 

Y2a2k-2"~2Okd~ Y2a)" ~< (1 -- Y2d)k-2y2aS~a(YEd ) k  k = (1 -- Y2d)2k-2T2k(Y2d), 

Yk2d-lSkd(Y2d ) ~ ( 1 -  Y2d)k-IT~(Y2d). 

This previous inequal i ty  is Ykd(Y2d) ~ O. [] 

The  fol lowing l e m m a  shall be used in the s tudy o f  the complexi ty .  

L e m m a  1.6  
Let  us in t roduce  the real func t ion  

h 
~ b ( h ) - E h  2 _ 4 h + 1  f o r E [ 0 , h 0 ] .  
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Then 

Tk(h) - -  ~< (~(h)2) k- ' ,  2 ~ k ~< d. 

/ ' r oo f  
We remark that the polynomial Skd(h ) is the Taylor series expansion of  order  
d - k + 1 at 0 of  1/(1 - h) k+l. Hence Skd(h) <~ 1/(1 -- h) k+l. From (2) we obtain 

( h 
\ l - h i  Tk(h) <~ ( 2 h 2 - 4 h + l )  k ~<(~b(h)2)k-" 2<~k<.d. 

The last inequality is satisfied since 2h 2 - 4h + 1 ~< 1 for h E [0, ho]. Hence the 
conclusion of  this lemma is proved. [] 

2. Convergence 

To establish the first part  of  the main theorem, we prove the following: 

Lemma 2.1 
Let x E R" be such that DP(x) -~ exists. Let us consider 

y=x-Oe(x)-~P(x).  
We have the following estimations: 
(1) 

IIe(y)l_______~l ~< ~-~ l lllDk P(x)l[ I iiiDe(x)-~ lllklle(x)llk- 
IIP(x)ll r - '~ '= �9 

(2) 

(4) 

d-k k + i )  1 
~'lllOkP(x)lll <~ ~o i (k + i)! IIIDk+ie(x)lll llloe(x)-'lll'llP(x)ll'" 

(3) I f  

d - I  

Z ( i +  1) 1 ,=i ~ IIIo'+'e(x)lll IIIOe(x)-Xll(+'lle(x)ll' < l, 

then DP(y)-I exists and we have 

IIIOe(y)-~lll IIIDp(x)-'lll 
d - 1  

1 -- Z ( i  + 1)~lllOi+~e(x)l]l IllDp(x)-'ltl'+'lle(x)ll i 
i=1 

(5) 

(6) 

(7) 
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Proof 
By definition of  y it follows that P(x) + DP(x)(y - x) = 0. Hence 

a 1 
P(y) = k~2~DkP(x)(-DP(x)-lP(x)) �9 

(1) The estimation on I IP(y)I[ follows easily from the previous formula. 
(2) To prove the estimation on (1/k!)lllDke(x)lll we write for l~<i~< n and 

2<~k<~d, 

OkPi(x) - ~ 1 ~l=j(J ) ~ 
~ J=0~l ~ ~ (-De(x)-lV(x))~" 

Consequently, 

<~ ~_, k J 1 o~+JP,(x) 
o~+a I(De(x)-'~(x))al 

j=0 " (k +J)! i  
[Bi=j 

E k j 1 k j c~+Jp,(x) [ j I j. 
j=0 " ( k + j ) ! N =  J i:gx'r Ill(Oe(x)-iil IlP(x)l 

This previous inequality holds since ~'-~l~l=k.l~l=j ~< ~--~lTl=k+j and by lemma 1.1. 
Thus the estimation (5) follows easily. 
(3) Estimation on I llOP(y)-ll[I. We have successively 

a-l l lllDP(x)-lDi+lp(xl(DP(xl-'P(x))'ll I III1- DP(x)-'DP(Y)III <<. ~ - '~  
i---1 

a-I  1 
<. ~_,~IIIDP(x)-IlII IIID'+Ip(x)(DP(x)-Ip(x))ilII 

i=1 

d - I  
~< E ( i  + 1) 1 

i = 1  ~ IIID'+IP(x)III IIIDP(x)-~lll'+tllP(x)ll'" 

By hypothesis we deduce IIII - DP(x)-~DP(Y)I[I < 1. Then by [3, p. 264], 

DP(y) -l = (DP(x) ( I -  ( I -  De(x)-lDP(y)))) -1 

exists and we have 

IIIOe(x)-llll 
IIIOP(y)-~lll <. ] - IIII -  DP(x)-~DP(y)III" 

Thus the estimation (7) holds. [] 
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We now prove the convergence of  the Newton  sequence where the inequalities 
(1) are satisfied at the point  x ~ In fact, we prove that  we can take h E [0,y2d] 
instead of  h E [0, h0] as we have claimed in the s ta tement  of  the main  theorem 
where Y2d is defined in lemma 1.4. 

Using (1) and lemma 2.1 we have successively 

d h 
IIe(x~)ll ~ Y~hk-~lle(x~ ~ 1 _--s-~lle(x~ 

k=2 

1 ( ~ ( k q - i ) )  h k-I 
k-7. lllOke(xl)ll I <~ h' 

\ i=0  i IIIOe(x~ ~- l  ' 

I I IOP(x~ 
I I IOe(x l ) - l l l  I <. d-I 

1 - Z ( i + l ) h  i 
i=1 

Using the definition of  the polynomials  Skd(h ) and Td(h) we finally obtain 

~11 [iDke(xl)llllllDP(xl)_llllkllP(xl)l(_ l <~ hk_l(~_hh )k-lSkd(h )Tk(h) , 2 <~ k <. d, 

since, by lemma 1.2, T d ( h ) >  0 for h 6 [0,Y2d]. We also have on this interval 
Ykd(h) <~ O. It is equivalent  to 

1 - hJ r~(h)  <~ 1. 

Hence the inequalities (1) hold  at x 1. 
By induct ion we deduce that  the inequalities are satisfied for all points  x p and we 

have 
h P 

[[P(xP)[[ <- (~_ h) [[P(x~ 

Hence limp__.~ IP(xP)[ = 0 since h/(1 - h )  < 1 and by cont inui ty  the sequence 
(xP)p >/0 converges to a solut ion x* of  the algebraic system P(x) = O. 

We now prove that  x* is a simple root. Let us suppose x* is a double  solution.  Fo r  
p sufficiently large we have 

�89 Illoe(x')-llll2lle(x')ll 
~ �89 IIID=P(~)III III(D~(~)(x '  - ~))-llll=ll�89 - ~)=11 

>/ �88 IIIO2e(~)lll I I (O~(~)(x '  - ~ ) ) - ' o 2 e ( x ) ( x  - ~ ) ( x  - ~)11 
I l O e 2 e ( x ) ( x - ~ ) l l  

1 =�88 
/> �88 IIIO=e(~)lll IIDPeP(x)II  I I (x-  ~)1111(x - ~)11 
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Then, if x* is a double solution, the inequalities (1) are not satisfied for k = 2. Hence 
the convergence from a simple root of Newton's method under the hypothesis (1) is 
established. [] 

3. Complexi ty  

We prove the following 

L e m m a  3 . 1  

Let x E 1~" be such that D P ( x ) - '  exists and the inequality (6) holds. Let us consider 

y = x - D P ( x ) - '  P(x) .  

We have the following estimations: 
(1) 

1 
I I IDP(y ) - 'DP(x ) l l l  <<. 

d - I  

(2) 

IIDP(x)-'P(Y)II 
llDP(x)-Ip(x)ll 

1 
1 - ~-'~(i + 1 ) ~  I[IDe+'e(x)lll IIIDe(x)-' IIl '+'lle(x)ll  ' 

i = l  

(8) 

d 1 
< k~__.~=2~.lllDkp(x)lll IIIDP(x)-IIIIklIP(x)II k - '  (9) 

P r o o f  
(1) The estimation (8) results directly from 

IIIDe(y)-llll IIIDe(x)-~lll and from inequality (7). 
(2) Let us prove the estimation (9). We have successively 

IIDP(x)-'P(Y)II 
d l _ _ 

<~ E ~ D P ( x ) - ' D k p ( x ) ( - D P ( x ) - I P ( x ) ) k  ' ( - D e ( x ) ' P ( x ) )  
] s  

a 1 < ~_~IIlDP(x)-'Ill lllDkp(x)(-DP(x)-'P(x))k-alll IIDP(x)-'P(x)ll. 

The reader may easily conclude the proof. 

IIIDV(y)-'Oe(x)lll <~ 

[] 

We now prove part (2) of the main theorem. If the equalities are satisfied at x, 
then from lemma 1.6 we have for y = x - D P ( x ) - l P ( x ) :  

1 
k-fllIDkp(y)lll IlIDP(y)-~lllklIP(y)ll k-~ < (r k-~. 
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We recall r  h/(2h 2 -  4h + 1). Fo r  this reason we in t roduce the sequence 
n 0 = h E  [0,ho[, n , = c ( n . _ l ) 2 .  Let a = 2 h 2 - 4 h o + l = 0 . 4 0 3 0 3 1  We have 
r ~ h/a and nl ~< a2(h/a2) 2 where h/a  2 < ho/(2h 2 - 4 h 0  + 1) 2 - ' i ]  We easily 
prove by induction:  

/7. < a2 (h--'~ 2' (10) 
t, a2/  �9 

We now return to the Newton  sequence (xP). F r o m  inequalities (8) and  (9) we 
have 

lix "+l _ xPil = IIDP(xP) -l P(xp)il 

<~ li iDP(xP)-lDP(x"-l)l[I IIDP(xP-l)-lP(xP)l  [ 

1 n._~llDe(x"-')-~e(x"-~)ll <~ 
r~(n._,) 1-n._, 

F r o m  inequalit ies (2) and (10) we obta in  

II x " + '  - x"l l  < r  - n . - , ) l l x "  - x " - ' l l  < n . - ,  I Ix" - xP-'ll 
a 

( h.~2.-' 
< a t ~  ) I Ix"- x"-'ll. 

Finally, 

. / h \2p IIx"+' -x"ll <a"~,-~) 
and par t  (2) of  the main  theorem follows. 

- 1  

I I x ' - x ~  

[] 

Corollary 3.2 
Let a = 2h 2 - 4 h 0  + 1 and c = �89 1/2. 

(1) Fo r  all p >i 0 we have IIx* - x"ll < c(a/v~)"-l(h/a2)2p-'-lllxl - x~ �9 
(2) I f h  = 0.162 then c = 12.693384. 

Proof  
Using the est imation on I Ix" - x " - l l l  we write 

q - I  

II x"+q - x"ll < ~--~11 x"+k+' - x"+kll 
k = 0  

q -  1 "~2 p+k - 1 

<< ~a"+k( h, IIx'--X011. 
k = 0  \ a 2 ]  

We now give an upper  b o u n d  for the series )--~=, akb 2k - 1, where b = h/a  2. We have 
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successively 

E akb2k--I <~ a2k E b2(2 - ') 

k =p \ k  =p 

(: ): a2Sds b2(2 ' -  l)ds 
-1  -1  

a2Sds 2 p -  1 b2(z ' -  l)ds 
--1 --1 

<I - - ~(logalogah_~log2) 1/2(~22)P 1 ) 

And the corollary follows. 

-1  

[] 

4. Set o f  unici ty  o f  a s o l u t i o n  

Part (3) of the main theorem results from two lemmas 

Lemma 4.1 
Let x E ]R" such that DP(x) -l exists. 

(1) The polynomial L(x, t) is a strictly concave polynomial on the interval [0, +c~[ 
which possesses only one positive root denoted by l(x). 

(2) The polynomial [,(x, t) is a concave polynomial on R which possesses either no 
real root or two nonnegative roots l + (x) and l- (x) such that 0 ~< l- (x) ~< l + (x). 

(3) Let us consider a simple root x* of the algebraic system. 
(3.1) The functions l + (x) and l-(x) are well defined in the neighbourhood of x* 

and are continuous. 
(3.2) limx_.x, l+(x) = l(x) and limx_.~, t-(x) = O. 

Proof 
The first part is left to the reader and the second follows directly from Descartes' 
rule. For the third part we note that limx_~x. /_,(x, t) = tL(x*, t). The roots of this 
polynomial are 0 and l(x). By continuity of the roots of a monic polynomial we 
conclude the proof of this lemma. [] 

We now give a lower bound for the distance between two solutions of the 
algebraic system. 

Lemma 4.2 
Let x* be a simple solution of the 
I l y *  - x*ll i> l(x*) for all solutions y* # x*. 

algebraic system P(x)=0.  Then 
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Proof 
By Taylor 's  formula and the fact that P(x*) = P(y*) = 0 we have 

D P ( x * ) ( y * - x * ) +  Dkp(x* ) ( y* - - x* )k=o .  

Since DP(x*) -l exists, we have 

0 = - x* + DP(x*)-IDkp(x*)(y  * - 

d 1 
=1Y*-x* - I - k~=2-~" I~I=k( : )DP(x*) - 'D~P(x ) (y ' - x* )~ I  

d 1 
) [ 'Y* -X* l l (1 -k~=2~l~ l=k( : ) l lDP(x* ) - 'D~P(x* ) l l l lY* -X* l l  k - ' )  

/> I l y * -  x*ll L(x*, IlY*- x*ll). 

Hence L(x*, Ily* - x*ll) ~< 0, which implies IlY* -x* l l  i> l(x*). [] 

It follows from the two previous lemmas that for each index p such that 
l-(x p) ~ l(x*) the ball Bmax(x p, I+(xP)) contains only the root  x* and the third 
part of  the theorem holds. [] 

Example 4.3 
(1) Let us consider the expression of  the Wilkinson polynomial  of  degree 20: 

P(x) = (x - 1) . . .  (x - 20). The radii l(i), 1 <<. i <~ 20, of  the disk of  unicity 
of  roots are: 

l(1) = 0.206876, 

l(5) = 0.491714, 

l(9) = 0.627686, 

l (13) = 0 .583502,  

l(17) = 0.467892, 

(2) Let us consider 

l(2) =0.320212, 

l(6) = 0.522499, 

l(10) =0.684167, 

l(14) = 0.548625, 

l(18) = 0.398490, 

the system [4]: 

l(3) =0.406108, 

l(7) = 0.549990, 

l(11) = 0.684953, 

l(15) = 0.524204, 

1(19) = 0.312693, 

l(4) =0.467400,  

l(8) = 0.586759, 

l(12) =0.625967,  

l(16) = 0.486883, 

l(20) = 0.203898. 

5x~ - 6x~x2 + Xl x4 + 2XlX3 = 0, 

- 2x~x2 + 2x~x~ + 2x2x3 + O, 

Xl 2 + ~ - 0.265625 = 0. 

There are eight real solutions in the box [-0.6,  0.6] 2 x [-0.02, 0.02]. Table 1 gives 
the solutions with respectively the separation radius and the Jacobian norm. 
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Table 1 

Solution Separation l(x) Jacobian norm 

(-0.515388,0,-0.012445) 
(0.515388,0,-0.012445) 
(0.501577,0.118513,0.012389) 
(-0.501577,0.118513,0.012389) 
(0,0.515388,0) 
(0,-0.515388,0) 
(-0.261936,0.443862 - 0.013194) 
(0.261936,0.443862 - 0.013194) 

0.121872 0.043952 0.000308 
0.121872 0.024878 0.000308 
0.121872 0.0520798 0.000359 
0.121872 0.121496 0.000359 
0.271846 0.027213 0.000237 
0.728974 0.027213 0.000237 
0.271846 0.20187 0.038792 
0.271846 0.119856 0.003879 

5. S t ab i l i t y  

The  study of  the stability is the compu ta t ion  of  a set in which all the elements 
verify the inequalities (1). 

We first in t roduce some notat ion.  Fo r  h > 0 and hw 2 >>. 77 >1 O, we introduce the 
polynomials  in R[t] 

d - I  

Zd(W , t) = w -- ~ t i, 
i=1  

R(h, rl, w , t ) = r l ( 1 - t ) + t - ( ( w +  1)t2 - 2(wq - 1)t + w)2h. 

First  we give a technical lemma. 

L e m m a  5.1 
(1) I f w  ~< 1 then ( w +  1)t 2 - 2 ( w +  1 ) t + w  ~< 1. 

( w +  1 ) / 2 -  2 ( w +  1)t + a ;  
(2) rd( , t) > 

(1 - t) 2 

(3) The  smallest positive root  of  the polynomial  (a ;+  1)t 2 - 2 ( w +  1 ) t + w  is 
1 - ( ~  1 ) / ( a ;+  1). 

(4) The  polynomia l  R(h, rl, w, t) possesses one positive root  denoted  by r(h, rl, w) 
which verifies r(h, r/, w) < 1 - ( ~x/-~--+-T)/(r/+ 1). 

Proo f  
The p roo f  is easy and left to the reader. 

We now give a new set of  stability for the Newton  method .  

[] 

Proposi t ion 5.2 
Let us consider h > 0, P(x)  E Rn[x], and x E JR" such that  II[DP(x)-llll exists. We 
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introduce the quantities: 

1 
~(x)  -~ = max--IIIDke(x) l l l  IIIOe(x)-ll l l ,  +7(x) = IIIOe(x)-~lll IIe(x)ll+o(x) 

k>~l k! 

such that hw(x) 2 >i r/(x). We also suppose 

1 k--+.llloke(x)lll IIIOP(x)-~lllklle(x)ll k-1 <~ h k-l, k >>+ 2. 

Then, for all y E Bm~(X, r(h, rl(x), w(x))) we have 

1 
k-+.lllOke(y)lll IIIDe(y)-~lllklle(y)ll k-~ <~ h k-~, k >1 2. 

Proof 
Let y E N n. In the same way as in lemma 2.1 we prove the following estimations: 

IIP(y)II ~< IlP(x)ll+lllOe(x)llllly-xll+ IIIO'e(x)llllly-xll', 

d-k k + i )  1 
I IIIDkp(Y)III +~o i ~ IIIDk+'P(x)lll l ly-x[li '  

IIIOe(x)-~lll 
IIIDP(Y)-~III <~ d - I  1 

1 - Z ( i  + 1 )~ I I IDI+ 'p (x ) I I I  IIIDP(x)-~III I l Y -  xll; 
i=l 

This last estimation holds if the denominator is positive. Using lemma 5.1, this 
condition is equivalent to 

X,/w(x) + 1 
I IY-xl[  < 1 

w(x) + 1 

Since w(x) ~< 1, we obtain the following estimations from lemma 5.1: 

1 
k--[. IIIok P( Y)III II lOP( y)-I i i ikl ip( Y)llk- t 

~< k/=0 i I l y - / l l ;  IIIDP(x)-'IIIIIP(x)II~(x)+~-'Ily-xII'i=I 

d- 1 / k 
w(x) - E ( i  + 1 ) l l y -  xll' 

i=l 

~< ((~(x) + 1 ) l l y -  xll 2 - 2(~o(x) + 1 ) l l y -  xll + w(x)) 2 

Hence the inequalities of the proposition will be satisfied if R(h, rl(x, )w(x), 
II y - Nil) ~ 0, i.e. if II y - xll < r(h, rl(x), w(x)). And the proposition follows. [] 
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Corollary 5.3 
Let h E]0, h0], where h0 is the smallest root  of  the polynomia l  4h 3 - 12h 2 + 8h - 1. 
Let us consider x satisfying the hypotheses  of  the previous proposi t ion.  

(1) Then,  for all y E/~r,~x(X, r(h, r/(x), w(x)), the Newton  sequence 

x ~ = y, x "+l = x" - DP(xP) - 'P (x  ") 

converges to a root  of  P(x).  
(2) I f  P(x) = 0, w(x) = 1 and h = h0, we have r(ho, 1,0) = 0.07877298446 . . . .  

Proof  
This is a consequence of  the previous propos i t ion  and of  the main  theorem. [] 

6. Application to the classical homotopy method 

We deal with the polynomials  P ( x ) =  (PI(X),... , P , ( x ) ) E  ]R"[x] and Q ( x ) =  
(Q1 ( x ) , . . . ,  Q,(x))  E N"[x]. Let  us consider  the following linear homotopy :  

H(x , t )  = tP(x) + (1 - t)Q(x) 

for t E [0, 1]. Denote  by DH(x ,  t) the Jacobian matr ix  of  the m a p  (x, t) E R "+1 
H(x ,  t) E JR". The  meaning  of  the no ta t ion  DxH(x,  t) and Dil l (x ,  t) is clear. We 
also use the following notat ion:  

,,,o m a x  

Let x ~ E R" be such that  Q(x ~ = 0 and rank(DH(x  ~ 0)) = n. F r o m  [1, l emma 
2.1.3] we know that  there exists a cont inuous ly  differentiable curve t E [--1, 1] ---, 
e(t) E R "+I which verifies for all t E [0, 1] 

(1) c(0) = 0, 
(2) H(c(t))  = O, 
(3) rank(DH(c(t))  = n, 
(4) c'(t) ~ O. 

In this s tudy we shall assume that  

(1) c(t) = (x(t) , t ) ,  
(2) Dxn(x ( t ) ,  t) -l exists for all t E [0, 1]. 

Fo r  to fixed in [0, 1] and  0 < h ~< h0, we apply corollary 5.3 to the m a p  H(x(to),  to). 
We obta in  for all y E B,,,ax(X(to), r(h, O, w(X(to)))) that  the Newton  sequence 

x ~ = y, X p + I  = x p - DxH(x  p, to ) - lH(x  p, to) 

converges to X(to). 



242 J.-C. Yakoubsohn / The convergence of Newton's method 

Let y E R n be given. If  we suppose 

1 k ~. lllDxn(y, to)lll IIIOxn(y, to)-~lllklln(y, to)ll k-~ <<. h k-~, 

the question is now to compute an interval [to, t-] for which 

1 
Vt ~ [to, 7] ~lllOkxn(y,t)llllllD~n(y,t)-~lllklln(y,t)ll k-1 ~ h k-~, 

For this we introduce the polynomial 

U(h, rl, w, t) = rl + t - h(w - t) 2. 

We have 

k~>2, 

k~>2. 

Lemma 6.1 
(1) If  hw 2/> ~7 >/0 and 0 < h ~< h0, the polynomial U(h, rl, w, t) has one positive 

root in the interval ]0, 1 [. Write 

2wh + 1 - x,/ah(w + 77) + 1 
u( h, 77, w) = 2h 

for this root. Furthermore u(h, rl, w) < w. 
(2) u(h0,0, 1) = 0.124504 . . . .  

P r o o f  
A simple computation gives this lemma. 

The interval [to, T] is given by 

[] 

Proposition 6.2 
Let t o E JR, y E R n, 0 < h ~< ho. Let us suppose that the quantities 

w(y, to) -l = max ( m a x  1 IID~n(y,/o)111111Dxn(y, t0) -1 III, \ k ~ l  k! 

max IIIOtO~n(y, to)lll lllOxH(y, to)-llll, 11119,n(y, to)lll lllOxn(y, to)-'lll 
k >>- l -'~. 

7(y,  to) = IIIOxn(y, to) -1 III lIB(y,  to)ll •(Y, to), 
verify hw(y ,  t0) 2 >i r/(y, to). If  

1 
k-7.111Dkxn(y, to)llllllOxn(y, to)-~lllklln(y, to)ll k-~ ~<h k-l,  k~> 2, (11) 

then for all t E [to, to + u(h, r/(y, to) ,w(y ,  to))] we have 

1 
k~l l lDkH(y, t ) l l l  I I ID~H(y , t ) - l l l l k l lH(y , t ) l l  k-~ <~ h k - l ,  k >I 2. 
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/ ' r o o f  
Using Taylor's formula at to, we have the following estimations: 

l iB(  y , / ) l l  ~ l iB(  y, to)ll + It - to)l I IO ,n (y , / o ) l l ,  

1 
I lIID~H(y,t)III <~ ~(IIID~H(y, to)III + I t -  tol IllDtDkxH(y,t)lll), 

DxH( y, to) -1 
[llDxH(y,t)-llll <~ 

1 - It - to[ I I I O x a ( y ,  t o ) - '  III IIIDtGH(y,/o)111 

This previous inequality holds if It - tol < ~ , (y ,  to). We also have w(y,  to) ~< 1. We 
deduce for k/> 2, 

I 
~. lllD~n( y, t)lll [llOxn( y, t)-llllklln( y, t)l[ k-~ 

(1 + [ t -  tol)(rl(y, to) + I t -  tol) k-1 ~< 
(~( y, to) - I t -  to[) k 

<< ( rl(Y, to)+ [ t - /o1  ~k-I 
\ (w(y ,  to) - I t - / o [ ) 2 J  ' 

since 
1 1 

l + l t - t o l ~ <  < 
1 - It - to[ w ( y ,  to) - I t -  tol" 

The inequalities of  the proposition are satisfied if U(h, rl(y, to) ,~(y,  to), 
It - toD ~< 0, i.e. if It - tol ~< u(h, rl(y, to),w(y, to)). And the proposition follows.R 

We now consider the following algorithm. Let h E]0, ho[, a = 2h~ - 4ho + 1 and 
c = 1/2( logalog(h/a 2) log2) -1/2 as in corollary 3.2. Let us denote r/i = rl(xip~,ti) 
and ~i = 0")( Xipi , ti)" 

Inputs:  e > O, Po = O, x ~176 = x(O) ,  to = O. 
i := l  
t, = u(h, ~o, O.,o) 
while t i < 1 do 

b e g i n  
X iO ~ x i - l , p i - I  

x il = x i~ _ DxH(x  i~ t i )- lH(x iO, ti) 
k; = min{k : c (a /x /2 )k - t (h /a2 )e* - ' -~ l l x ' l  -- x'~ ~< d 
k : = l  
while k ~< k; and hw~ < r/; do  

b e g i n  
xi, k+ 1 x ik - DxH(x  ik, t i ) - lH(x  ik, ti) 
k : = k + l  
end 
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Pi  :=k  
ti+ I : min (t i q- u(h,~'h,Wi) , 1) 
i : = i +  1 
end 

X i,O = x i - I , p i - I  

Output x;'~ 

Proposition 6.3 
The sequence (x ik) defined in the previous a lgor i thm converges. More  precisely, 
there exists some index i such that  t~_l < 1 ~< ti and  limk x ik = x(1), i.e. the limit 
o f  the sequence x ik is a zero of  the polynomial  P(x). 

Proof  
The algor i thm starts with a root  x ~176 of  Q(x). The condi t ion  hw 2 > r/0 = 0 is 
satisified and we can compute  tl. F r o m  propos i t ion  6.2, the inequalities (11) 
hold  in (x ~176 and the Newton  sequence x t~ = x  ~176 x l'k+l = x  lk -  
D~H(x  lk, t l ) - l H ( x  lk, tl) converges to x(tl) .  The a lgor i thm consists in comput ing  
x I'p~ such that  II -x(t~)ll ~< c and hw~ >t r/l using the test of  corollary 3.2. At  
this step we can compute  t2 = min  (tl + u(h, rh ,~l) ,  1). The  inequalities (11) are 
satisfied at (x l ' p ' -  t 2 ) =  (x 2~ t2). And  so on in this way: at each step of  the 
a lgor i thm we construct  a point  (x ''pi, t;+l) which verifies the inequalities (11). 
Since the sequence (t;) is increasing, there exists some i such that  t;_ ~ < 1 ~< ti. 
The  a lgor i thm returns the point  x i- l,p,_ ~ = x,,0 and the propos i t ion  follows. [] 
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