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A universal constant for the convergence of Newton’s
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We give a new theorem concerning the convergence of Newton’s method to compute an
approximate zero of a system of equations. In this result, the constant Ay = 0.162434 ...
appears, which plays a fundamental role in the localization of “good™ initial points for the
Newton iteration. We apply it to the determination of an appropriate discretization of the
time interval in the classical homotopy method.
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0. Introduction

In this paper we consider the algebraic system
P(x)=0

with x = (x,,...,x,) € R"and P(x) = (P;(x),..., P,(x)) where the P;(x) are poly-
nomials in R"[x] of degree d;, 1 <i < n, with d = max, ¢ 4 < , 4

We denote by a = (a,...,q®,) a multi-index and by |a| =a; +...+ a,. For
k € N, we use the classical notation:
k k!
< >=—— and x*=x{"...x3".
a ol ol

For x and y in R", we write the Taylor formula

d
P(y) = P() + Y1 PGy = 2,
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where D*P(x)(y — x)* is the vector
kY 8 P,(x) o k\ 8P,(x) o
(,};k(a)ﬁr(%") o X (o) T )
Furthermore, D% P(x) is the vector
(3" Py(x) & Pn(x)>
x> T axx )7
We also shall denote by D**' P(x)(y — x)* the matrix with the coefficients

(D' P(x)(y — x)F),

DiP(x) =

k+1 +ip — )\
= ( )yap‘(x)(y S i<ijsn,
la|=k+1 o x* Yi =%
a|=...=aj_1=0,aj>1
which verifies D**! P(x)(y — x)*(y — x) = D**'P(x)(y — x)**!. We use the max-
norm i.e. ||x|| = max, ¢;<.|x;| for x € R" and |||4[|| = max, ¢;¢, D j-1 |4, fora

matrix A. The open ball centered at x and of radius r associated to the max-
norm is B,,.(x,r).
The max-norm of the matrix D**' P(x)(y — x)* is bounded by

k+1\ |8 Py(x)
k+1 Y i . k
ot P -l < max 3 (F01)| T -

laj=k+1

For this reason we introduce the quantities:

k def k|8 Pi(x)
D PCoI mlgljk( )17

These quantities, different from the max-norm of the operator DkP(x), occur
naturally in the estimations established from the Taylor formula: see lemma 2.1.
The main goal of this paper is to prove the following theorem.

Main theorem

Let us consider an algebraic system P(x)=0 defined as previously. Let
hy = 1.62434 ... be the smallest root of polynomial 44* — 12h* +8h — 1. Let
x° € R" and h € [0, ko] be such that the inequalities

1 _ _ _
I PEONNIDPE) PG < #7Y 2<k <4, (1)

are satisfied.
(1) Then the sequence of vectors in R" defined by
xP*! = x? — DP(xP)"' P(xP)

converges to a simple sotution x* of the algebraic system P(x) = 0.
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(2) Let h € [0, ho[. The convergence of the sequence x, is super-quadratic, i.e.

h 27 -1
et =< ()l - 2L

where a = 2k} — 4hy + 1 = 0.403031 ... and h/d* < 1.
(3) For x € R" let us define the polynomial

L(x,1) = ~||DP(x)™"P(x)|| + tL(x, )

where

L(x,f)=1- Z% (Z (z>I|DP(x)—1D’;P(x)||) #1

k=2 la|=k

We denote by /*(x) and I~ (x) the positive roots (when they exist) of the polynomial
L(x,t) and by /(x) the positive root of the polynomial L(x, ¢).

Then the union of the balls B,,,.(x”, I (x?)) for indices p such that I(x*) > I”(x?)
contains only one solution of the algebraic system P(x) = 0 which is x*.

We now can explain the considerations on which this paper is based. For this, we
begin by a short digression. In [2], Dedieu and the author have studied exclusion
algorithms in view of localizing all the real solutions of a system of algebraic equa-
tions which admits a finite number of roots. These algorithms consist in computing
at a given point x € R" a ball B, (x,m(x)) in which there is no solution of the
system. The radius of this ball is named the exclusion function at x. The current
exclusion function for the system P(x)=0 considered here is m(x) =
max, ¢; <, M;(x), where each of m;(x) is the positive root of a concave polynomial
in R[¢] defined by:

M = e =30 3 (5)| 27

le|=k

This exclusion function is in some sense equivalent to the distance of x to the
solution set.

An initial ball and an accuracy e being given, an exclusion algorithm consists in
choosing a point x in an initial ball in which we want to localize the solutions of the
system, to exclude the ball B, (x,m(x)) of the initial ball and start again with
another point x while the remainder is a non-empty set. This algorithm returns
all the balls B,,,.(x, m(x)) such that m(x) < e: these balls are susceptible to contain
solutions of the system. The complexity of this algorithm is the number of com-
putations of the exclusion function: it is proportional to Log1/e.

In these exclusion algorithms, the number of exclusion tests is large near a
solution. It is a natural idea to test if the hypotheses of the convergence of the
Newton method are satisfied as soon as m(x) < e. If that is the case we must
compute two quantities: an approximation of the solution x* and a ball in which
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there is only the solution x*. Then we prove in [2] that the complexity of the exclu-
sion algorithm conjugated with the Newton method is in Log|Log €| exclusion tests.
The two parts of this program can be realized with a classic Newton—Kantorovitch
Theorem, see [3,5] or [6]. For example, the translation in the polynomial case of the
result which appears in [3, p. 263] gives:

Newton—-Kantorovitch Theorem _
Let x" € R", P(x) € R"[x] and the ball B = B(x’,2||DP(x,)”"' P(xy)||) be such that
the condition:

&P, (z)
0x;0x,

2n([[DP() " IIDP(") ™ P(x")]| max

j,z€B

is satisfied.
Then the sequence x? 7! = x? — DP(x” ) P(xP) converges to the unique solution
of the system P(x) = 0 in the ball B(x°, 2||DP(x,) ™" P(x0)])-

In the context of exclusion algorithms there are two reasons for applying the
main theorem instead of this theorem. The first is that the quantities |||DP*(x)|||
are determined for computing the function m(x). In other words, this strategy
avoids the computation of the quantity max Zl(?zP,-(z) /0x;0x;| in the Newton—
Kantorovitch theorem.

Next, the radius 2||DP(x,) ™' P(x,)|| is in general small and the introduction of
the polynomial L(x,?) in the main theorem improves the radius of the ball of
unicity of the solution.

A modern approach of the convergence of the Newton method must be attri-
buted to Smale in [9] in which the case of roots of a complex polynomial P(z) is
studied. In this paper the inequalities equivalent to (1) are:

;
P(0) - P(z)|

Shub and Smale in [7] give the historical origin of these ratios which go back to
Newton and Euler.

More recently, in [§], these two authors generalize the results concerning
complex polynomials to systems of analytic equations. The technical background
and the results developed here are different from this last paper.

In section 1 we give preliminary lemmas and we introduce polynomials which
appear in the study of the convergence. The goal of sections 2 (convergence), 3
(complexity) and 4 (set of unicity) is to prove the main theorem. The stability is
the object of section 5 and section 6 gives an application to an efficient discretiz-
ation of the time interval [0, 1] in the classical homotopy method.

Technical lemmas used in the various sections are collected in section 1 and the
reader eager for knowledge can start with section 2.

PY(z)P(2)*"!
KIP'(z)*

3 1
g:P(6)=
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1. Preliminary lemmas

In the proof of lemma 2.1 we shall apply the following

Lemma 1.1
Let k and j be two integers. Let a and 3 be two multi-indices such that || = k and
|8 =Jj. Then
(al +ﬂ1) (an+ﬂ,,> - (k+j>
o . ., <{ ;)
Proof

By induction on the sum k + j. The inequality holds trivially for k + j = 1. Suppose
the inequality of all & and S such that || + |8| = k +j. We have

a+ 6 +1 a; + 5 a, + B, _ a; + B a; + 5
a +1 a; o ap, oy a

CL/n'i_:Bn + al+ﬂl CVZ'*"ﬂZ an+ﬁn
B Oy o) + 1 Q; . Qy

k+j k+j . . .
< . +| by the induction hypothesis

J j—1
(k+j+1)
< .
J

Hence the inequality holds for all & and § such that |a| + |3| =k +j + 1. And the
lemma is proved. O

We now introduce the following polynomials which play an important part in
the study of the convergence:

Yia(h) = K Spa(h) = (1= h)* ™' T (h).

Concerning these polynomials, we shall use the following
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Lemma 1.2
Let k > 2, d > 2 and h be in the interval [0, (5 — v/13)/6]. Then

Ska(h) < S3a(h).
Before proving this lemma we establish the following:

Lemma 1.3
Let d > 2 and 4 be in the interval [0, (5 — v/13)/6]. We have

1 < (1—h)2S,(h).

Proof

By definition of the polynomial S,;(A) we have S,;(h) > 14 3h. Hence
(1 — h)*Sy(h) = (1 —h)*(1 +3h). And it is easy to verify the polynomial
(1—h?(1+3h)=1+h(3K* —5h+1) is greater than 1 on the interval
[0, (5 = V13)/6]. O

Proof of lemma 1.2
We proceed by induction. The inequality is verified for k = 2. Suppose the
inequality holds for k. We have

dk 1 (k+i+1Y |
Secta(h) = ( )h’

i=0

Thus we have the inequality

1
1-h

Sk+1a(h) < Ska(h).

And by lemma 1.3 it follows that

Sk+1a(h) < Sia(h)Saa(h)
on the interval [0,(5—+/13)/6]. By the induction hypothesis we have
S2,(h) < S%,(h). Thus SZ,,,(k) < S5}'(h) and the lemma holds. a

Lemma 1.4
(1) The positive roots of polynomials T,(k) form a strictly decreasing sequence of
real numbers which converges to (2 — v/2)/2.
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(2) The polynomials Y, have only one positive root denoted by y,,; on the interval
0,(2~v2)/2].

(3) The sequence of roots (3,4)s52 of the polynomials Y,,(h) is a strictly
decreasing sequence which converges to the smallest root 4, of the polynomial
4k’ — 12k +8h—1. An approximate value of this root is hy=
0.162434565.. ..

(4) Yia(y) <Oforallk,3<k<d.

(5) We give a table of first values of y,;:

d Y2 d Y

2 0.228155 5 0.162916
3 0.173091 6 0.162537
4 0.164665

Proof

(1) By Descartes’ rule the polynomial T,(h) has only one positive root. More
precisely since T,(0) =1 and T,(1) =2 —d — (d(d — 1))/2 < 0 this root is in the
interval [0,1]. Furthermore, T,.,(h) = T (h) — h**' < Ty(h) on ]0,00[. We
deduce that the sequence of the positive roots of the polynomials T,(4) is a strictly
decreasing sequence. We now prove the convergence of this sequence. The poly-
nomial 1 — T,(h) is the derivative of the polynomial Z?;ll K+ We have

Shi“ - (hz—h"“)'_ 2h — B — (d+ 1)K + dn?*"
“\1-h )7 (1—h)? '

i=1

Hence
W d d+1
Td(k)=l—2h h (d+1)2h +dh
(1-h)
1 —4h+ 21 + h*(d + 1 — dh)
- (1 hy ‘
We now fix A €]0, 1[. Then we have
. 1—4h+ 24
dll_{rgon(h)—W,
with
1 — 4h + 2K
T,(h) > ———mF—, 2
> = @

since d + 1 — dh > 0. Consequently, the sequence of the positive roots of poly-
nomials T,;(k) converges to the root of the polynomial 1 — 44 + 24> which lies
inside 10, 1], i.e. (2 — v/2)/2.

(2) Let t; be the positive root of the polynomial T,(k) and 2 < k < d. We have
Y,2(0) = —1 and Yi,(t;) = £57'S,4(t;) > 0. To prove the unicity of the root y,; on
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the interval ]0, z;[, we claim that Y,(k) is positive on this interval. In fact,
Yiglh) = (k — DR 7 2844(h) + K Spa(h) + (k — 1)(1 — b)Y 2T (k)
— k(1 = B Ty(W) TG (h).

On the interval ]0,t,[ we have T;(h) <0 and then by the previous expression
Yia(h) > 0 for all & €]0,1,].
{3) We have

Yaa1(h) = Yoa(h) = h(Spq41(h) = S2a(h)) + (1 = B)(T3(h) = T3, (k)
d+1
= (d ~ l)hd + (1 = A (Ty(h) + Ty (R)(d + 1A

Hence Y,;,(h) — Y,4(h) > 0 on the interval ]0, (2 — v/2)/2[. Thus, applying the
results of part (2) we have y,y,. 1 < ¥a4-
To prove the convergence of this sequence we shall establish

Lemma 1.5

Let 4 €]0, (2 — v2)/2[. Then we have

an® — 121" + 8h — 1
(1-h)? ’

dlim Yy (h) =
with
4 — 12K + 8h — 1

Y2d(h) < (1 _ h)z

Consequently the polynomial 4#® — 12h*> + 8h — 1 is increasing on the interval
10,(2 —v2)/2[ and hy = 0.162434565 is the root of this polynomial in this
interval. Furthermore, lim,_, . ¥,y = A4y With 4y < y,, and part (3) of lemma 1.4
is proved. d

Proof of lemma 1.5
We observe

6h — 6h* + 2h3)
(1-h)’

T (=d(d = 1)K +2(d* — )h —d(d +1)).
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We have —d(d— 1R +2d*~1)h—dd+1)<0 and lim,_ A%""
(—d(d — )R+ 2(d* — 1)h— d(d + 1)) = 0 since h €]0, (2 — v2)/2[. Hence

2 3
Jim Sy(h) = 1 +3h—(_13:hh)+Th,
with
Shalh) <1+ 3h—3K 1K t i
(1—h)

Using inequality (2), we obtain

a2 3 _ 2\2
dlingode(h)=(1+3h 3h +h)_( —h)(l 4h+2h)

(1—hy (1—h)
_ 4k — 12K 4+ 8h — 1
(1—h)? ’
with
3 2 .
Youlh) < 4h° — 12h +28h 1
(1-h)

Hence lemma 1.5 holds. O

(4) The positive root y,; of the polynomial Y,;(h) verifies the relation

Y24824(¥2a) = (1 —J’2d)T3(J’2d)- (3)

On the other hand, we have y,; < ... < yy. AS yy ~ 0228 < (5 —/13)/6 ~
0.232 the inequality of lemma 1.2, S7,(h) < S3;(h), holds on the interval [0, yy,]
which contains all the roots y,,;. By the identity (3) and using y,; < 1 — yxs On
this interval, we have successively

7 7Sk(72a) < (1= y22)* 2 854( y2a),
Y27 2804( 12a) < (1 = p2a)* ™ 2W5uS54( y20) = (1 — y22)* 72T (324),
YA Ska(320) < (1= y20) ' Th(32).
This previous inequality is Yi,( y.4) < 0. O

The following lemma shall be used in the study of the complexity.

Lemma 1.6
Let us introduce the real function
h

¢(h) = m for € [O, ho]
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Then

ket B N Swa(h) 2k-1
h <l—h) T SO 2<k<d

Proof
We remark that the polynomial S;,(#) is the Taylor series expansion of order
d—k+1at0of 1/(1 —h)**'. Hence S,y (k) < 1/(1 — h)**'. From (2) we obtain

h k—lS (h) h2k—2
hk—l( ) kd < < h2k—l, 2<k<d
1—h) TEh) ~ 2K —4h+ 1) (@(h))

The last inequality is satisfied since 2> —4h+ 1 < 1 for h € [0, k). Hence the
conclusion of this lemma is proved. O

2. Convergence

To establish the first part of the main theorem, we prove the following:

Lemma 2.1
Let x € R" be such that DP(x)™" exists. Let us consider

y = x — DP(x) ' P(x).

We have the following estimations:

)
PO _ <1 y .
TP < 2ol POl HIDPG I IPGAIE @
@
dkik+4i : . :
e < S () g o PN DR PG (5)
3) If
d-1
> G+ Dz D™ PN IR I P <1 (6)

then DP(y)~! exists and we have
I1DPEx) |

IDP(y) "Il < (7)

d-1 1

L= 3 D gyl P IPRG) I PG
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Proof
By definition of y it follows that P(x) + DP(x)(y — x) = 0. Hence

d
= Z%D"P(x)(—DP(xPP(x))"-
k=2"""

(1) The estimation on ||P( y)|| follows easily from the previous formula.

(2) To prove the estimation on (1/k!)|||D*P(x)||| we write for 1 <i<n and
2<k<d,

6"P( S| F**P(x) _
=355 (o) T 0P Y.
Consequently,

.;;%(D
(k;”> (k+J)! |a‘|2k(0‘><ﬁ>}ak‘;’:i(ﬂx)

1Bl=Jj

d=k (k4] k+7\|5+p.
< ( -J)k1‘|z( J)ékaP;(x)
AN A AU N/ WY x

This previous inequality holds since 34—k, 15=; < 2_jyj=k+; and by lemma 1.1.
Thus the estimation (5) follows easily.

(3) Estimation on |||DP(y)™'|||. We have successively

)

Ox“

T’L

|(DP(x) ™ P(x))"|

P IIPE)I.

d-1
111 = DP(x)" DP(y)ll| < Z%|||DP(X)"D"+'P(X)(DP(x)“P(x))"III

i=1""

&.

-1

= I1DPG) I} 1D P(x) (DP(x) ™ P(x))

1
l

h_ —

<
,=1 (i+ 1)'

By hypothesis we deduce |||/ — DP(x)"'DP(y)||| < 1. Then by [3, p. 264],

DP(y)™' = (DP(x)(I — (I - DP(x)"'DP())))™
exists and we have

1720 2 €111 N1[720 €90l [ g1V €018

I12P(x)~"I
— Il = DP(x)"' DP(y)|Il
Thus the estimation (7) holds. a

HIIDP(»)~'lll <
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We now prove the convergence of the Newton sequence where the inequalities
(1) are satisfied at the point x°. In fact, we prove that we can take & € [0, y,,]
instead of 4 € [0, b} as we have claimed in the statement of the main theorem
where y,, is defined in lemma 1.4.

Using (1) and lemma 2.1 we have successively

d
_ h
PG < D AP < 75 IPEOI,
k=2

1-—
1 d—k k+l ) hk—l
el < (" )H) g -
k! ; i IDPE) I (x|~
HlDP(xl)—-l”' < |||DP(x0)_l”| .

d—1

1= i+ 1)

i=1
Using the definition of the polynomials S,(#) and T,(h) we finally obtain

l K 1 IN=111k k-1 k—1 h k—lSkd(h)
gl PP T IFIPCI " < # (7 25) s,

since, by lemma 1.2, T;(h) > 0 for h € [0,y,,;]. We also have on this interval
Ya(h) < 0. It is equivalent to
B\ S <1
1—h Tk(h)

Hence the inequalities (1) hold at x'.
By induction we deduce that the inequalities are satisfied for all points x? and we
have

2<k<d,

126 < (125) 126

Hence lim,_,,, |P(x”)| =0 since h/(1 —h) < 1 and by continuity the sequence
(x”),» o converges to a solution x* of the algebraic system P(x) = 0.

We now prove that x* is a simple root. Let us suppose x” is a double solution. For
p sufficiently large we have

D> PG PP IPIPGe)|
~ IID*P()|I| II(DP (@) (x” ~ @))™![|I*[13 D*P(x) (x = a)’l|

DP(a)(x” — o)) D2P(x)(x — a)(x — o]
DR P(x)(x — o]
l 1

N oPPmEI —ay 1~ 2l =4

> 1)1?P(a)] I

> {ID*P(e)
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Then, if x* is a double solution, the inequalities (1) are not satisfied for £ = 2. Hence
the convergence from a simple root of Newton’s method under the hypothesis (1) is
established. 0O

3. Complexity
We prove the following

Lemma 3.1
Let x € R” be such that DP(x) ™" exists and the inequality (6) holds. Let us consider
y = x — DP(x)™' P(x).

We have the following estimations:

(D

IDP() PPl < — : 1 . ;
L= >0+ ) gy 10 PINIDP I PG
®
®
IDP(x)""P(y : kp 1 k-1
e < LA PIIDPC PG ©)
Proof

(1) The estimation (8) results directly from |||DP(y)"'DP(x)||| <
IPP(») [ |11DP(x)~"||| and from inequality (7).
(2) Let us prove the estimation (9). We have successively

IDP(x)~ P(y)

i%” (x)™' D*P(x)(~DP(x) "' P(x))*~'(~DP(x)"' P(x))
k=2""

d
Z IIDPCx) ™I [I1D*P(x)(=DP(x) ™ P(x))*~ ||| 1DP(x) " P(x)]]-

k=2

The reader may easily conclude the proof. a

We now prove part (2) of the main theorem. If the equalities are satisfied at x,
then from lemma 1.6 we have for y = x — DP(x)™" P(x):

HIIID"P(y)III IIDP(y) NP < (SR
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We recall ¢(h) = h/(2h* —4h+1). For this reason we introduce the sequence
Bo=h€[0,h|, B,=(B,_,)*. Let a=2h5—4h,+1=0403031.... We have
#(h) < h/a and B, < d*(h/a*)* where h/d* < hy/(2h5 — 4hy + 1)* = 1. We easily
prove by induction:

a

B, <d (—hi)zp. (10)

We now return to the Newton sequence (x”). From inequalities (8) and (9) we
have

[lx"*! — x?|| = ||DP(x") ™ P(x")|
< IDP(x")"'DP(x* DI IDP(x"~") " P(x)|]

1 BollPPP )T PP
= Td(ﬂp—l) l_ﬂp—l .

From inequalities (2) and (10) we obtain

_ By _
17! = xP|| < (B, )1 = Bpoy)llx? — x| < ”TIIIX”—X” gl
A )
<a(z) I-wlL

Finally,

1 A

et -l < () Ik -2

and part (2) of the main theorem follows. O
Corollary 3.2

Let a = 2k} — 4hy + 1 and ¢ =} (logalog(h/a*)log2)"/>.

(1) For all p > 0 we have ||x" — x?|| < c(a/\/f)”'l(h/az)zp_l_1||xl -x).
(2) If h =0.162 then ¢ = 12.693384.

Proof
Using the estimation on ||x” — x?~!|| we write

q—1
[P+ = xP|| < Y P — x|

k=0
g-1 h 2Ptk _y

< k(—) 5 = 2]l
k=0

We now give an upper bound for the series ) -, db* =1, where b = h /a*. We have
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successively

R

00 1/2 o0 1/2
/ dS) ( b2(2"—1)dg)
p—1 p-1
ooal‘ 1/2 0 9 2 -1) 172
< - —
[Lea) (=)

—-1/2 p—1 27—
< <loga10g%log2) (\—‘/1_5) (%) .

And the corollary follows. a

4, Set of unicity of a solution

Part (3) of the main theorem results from two lemmas

Lemma 4.1
Let x € R” such that DP(x)™" exists.

(1) The polynomial L(x, ¢) is a strictly concave polynomial on the interval [0, +o0[
which possesses only one positive root denoted by /(x).
(2) The polynomial L(x, ¢) is a concave polynomial on R which possesses either no
real root or two nonnegative roots /*(x) and /™ (x) such that 0 < /™ (x) < I'(x).
(3) Let us consider a simple root x* of the algebraic system.
(3.1) The functions /*(x) and /~(x) are well defined in the neighbourhood of x*
and are continuous.
(3.2) lim,_, .. I"(x) = I(x) and lim,_, .. I"(x) =0.

Proof

The first part is left to the reader and the second follows directly from Descartes’
rule. For the third part we note that lim, _, .. L(x,) = tL(x", ). The roots of this
polynomial are 0 and /(x). By continuity of the roots of a monic polynomial we
conclude the proof of this lemma. O

We now give a lower bound for the distance between two solutions of the
algebraic system.

Lemma 4.2
Let x* be a simple solution of the algebraic system P(x)=0. Then
||y* = x*|| = I(x*) for all solutions y* # x".
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Proof
By Taylor’s formula and the fact that P(x*) = P(y") = 0 we have

DP(x")(y" —x )+Zk,D" x) (¥ = x) =0
Since DP(x*)™" exists, we have

0=|[y" —x"+) = DP(x")"'D*P(x")(y" — x*)*

L. & k . s ma
=y -x+) = o PP 'DLP(x)(y - x)
! o=k

d
* * l k *\ — * * * —
>y —x ||(1—Z—, (a>||DP<x) DOyt = x| ‘)
' k

Z [y =X L [y = X))
Hence L(x*,||y" — x*||) <0, which implies || y* — x*|| = I(x"). O

It follows from the two previous lemmas that for each index p such that
I7(x?) < I(x*) the ball B, (x?,I*(x?)) contains only the root x* and the third
part of the theorem holds. O

Example 4.3
(1) Let us consider the expression of the Wilkinson polynomial of degree 20:
P(x) = (x—1)...(x —20). The radii /(i), 1 < i< 20, of the disk of unicity
of roots are:
I(1) =0.206876, [(2) =0.320212, [(3) =0.406108, [(4) = 0.467400,
[(5) =0.491714, 1(6) =0.522499, I(7) = 0.549990, /(8) = 0.586759,
1(9) = 0.627686, [(10) =0.684167, [(11) =0.684953, [(12) =0.625967,
[(13) = 0.583502, I(14) =0.548625, I(15) = 0.524204, [(16) = 0.486883,
[(17) = 0.467892, I(18) =0.398490, /(19) =0.312693, [(20) = 0.203898.

(2) Let us consider the system [4]:
5x] — 6x3x + x,%5 + 2x;x3 = 0,
—2x8x, + 2x2x3 + 2x,%3 + 0,
X2 + x5 — 0.265625 = 0.

There are eight real solutions in the box [—0.6,0.6]* x [-0.02,0.02]. Table 1 gives
the solutions with respectively the separation radius and the Jacobian norm.
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Table 1
Solution Separation I(x) Jacobian norm
(—0.515388,0, —0.012445) 0.121872 0.043952 0.000308
(0.515388,0,—0.012445) 0.121872 0.024878 0.000308
(0.501577,0.118513,0.012389) 0.121872 0.0520798 0.000359
(—0.501577,0.118513,0.012389) 0.121872 0.121496 0.000359
(0,0.515388,0) 0.271846 0.027213 0.000237
(0,—0.515388,0) 0.728974 0.027213 0.000237
(—0.261936,0.443862 — 0.013194) 0.271846 0.20187 0.038792
(0.261936,0.443862 — 0.013194) 0.271846 0.119856 0.003879

5. Stability

The study of the stability is the computation of a set in which all the elements

verify the inequalities (1).

We first introduce some notation. For & > 0 and hw? > 5 > 0, we introduce the

polynomials in R[¢]

2
|
-

Ti(w,t) =w— t

i=1

Rhgwty=n(1—1t)+1t— (w+ 1) —2(w+ 1)t + w)’h.

First we give a technical lemma.

Lemma 5.1

(1) fw< 1then (w4 1) = 2w+ Dt+w< 1.

W+ 1) = 2w+ Dt +w

(2) Ti(w, ) > (1=

(3) The smallest positive root of the polynomial (w+ 1) —2(w+ 1)t +w is

- (Vw+1)/(w+1).

(4) The polynomial R(h,n,w,t) possesses one positive root denoted by r(h,n,w)

which verifies r(h,n,w) < 1 — (vVn+1)/(n+1).

Proof
The proof is easy and left to the reader.

We now give a new set of stability for the Newton method.

Proposition 5.2

Let us consider 4 > 0, P(x) € R"[x], and x € R” such that |||DP(x)™"||| exists. We
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introduce the quantities:
w(x)” _max—|||Dk EIIDPE) I, nlx) = IDPEx) ™I 1P| |w(x)
such that Aw(x)? > n(x). We also suppose
%llleP(x)lﬂ NIDP)FIPEN ! < !, k=2
Then, for all y € B,,..(x, r(h,n(x),w(x))) we have

1 _ , i,
I POMIDE) TP < K7 k2 2.

Proof
Let y € R". In the same way as in lemma 2.1 we prove the following estimations:

d
1P < PG+ [IDPEIH]y — i +Z%IIID‘P(X)III lly ==l

L k+i ;
it e () o ey -

i=0

IIDP(y) 7'l < [[12P() ]|

d-1

L= 3+ D) g 10 PO IDPG Iy = =1

i=1

This last estimation holds if the denominator is positive. Using lemma 5.1, this

condition is equivalent to
Vw(x)+1
wx)+1 °

Since w(x) < 1, we obtain the following estimations from lemma 5.1:

%IIID"P(y)III HIDP(y) MR

) (g(kji)lly—xlli)<lllDP(x ) IHIPEe)w(x +Z|Iy xll) )
) (w(x dzl DIty - xll>k

i=1

Iy =l <1-

\( n(x)(1 — Iy —xll) + ||y — x|| )k_l.

(@(x) + DIy = I = 2(w(x) + D]y = *]] + w(x)

Hence the inequalities of the proposition will be satisfied if R(h,n(x,)w(x),
lly —x||) <0,ie.if ||y — x|| < r(h,n(x),w(x)). And the proposition follows. O
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Corollary 5.3
Let h €]0, by}, where h, is the smallest root of the polynomial 44* — 124> + 84 — 1.
Let us consider x satisfying the hypotheses of the previous proposition.

(1) Then, for all y € B,,,.(x,r(h,n(x),w(x)), the Newton sequence
X =y, xP*!=xf — DP(x")"' P(x")
converges to a root of P(x).

@) If P(x) = 0, w(x) = 1 and h = hy, we have r(hy, 1,0) = 0.07877298446 ..

Proof
This is a consequence of the previous proposition and of the main theorem. [

6. Application to the classical homotopy method

We deal with the polynomials P(x) = (P,(x),...,P,(x)) € R"[x] and Q(x) =
(Q1(x),---,0,(x)) € R"[x]. Let us consider the following linear homotopy:
H(x,1) = tP(x) + (1 - )Q(x)

for ¢ € [0, 1). Denote by DH(x, t) the Jacobian matrix of the map (x,f) € R"*! —
H(x,t) € R". The meaning of the notation D, H(x,t) and D, H(x,?) is clear. We
also use the following notation:

IDDHII= max (ii)

ol =k

OP(x) Qix)
ax* x> |

Let x° € R” be such that Q(x°) =0 and rank(DH(x’,0)) = n. From [l, lemma
2.1.3] we know that there exists a continuously differentiable curve ¢ € [-1,1] —
¢(t) € R"*! which verifies for all ¢ € [0, 1]

(1) ¢(0) =0,
(2) H(c(r)) =0,
(3) rank(DH(c(t)) =

@) (1) #0.

In this study we shall assume that

(1) (1) = (x(1), 1),
(2) D H(x(t),t)”" exists for all t € [0, 1].

For ¢, fixed in [0, 1] and 0 < & < Ay, we apply corollary 5.3 to the map H(x(%), t).
We obtain for all y € B,,,.(x(¢),r(h,0,w(x(2,)))) that the Newton sequence

xO =), xp+1 ___xp _DxH(xpatO)_lH(xpatO)

converges to x(f).
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Let y € R” be given. If we suppose
1 _ _ _
E|”D§H(}’ato)”||||DxH(y,to) HNINHp ) <K k22,

the question is now to compute an interval [¢,, 7| for which

o1 _ i, .
Vi€ lt,1) IIDZH ONDH Gy, ) WHNH G I < Y k=2,

For this we introduce the polynomial
Uh,m,w,t) =+t —h(w—1).
We have

Lemma 6.1

(1) If hw® 27 >0 and 0 < h < hy, the polynomial U(h,7,w,?) has one positive

root in the interval |0, 1[. Write

2wh+1— \/Ah(w + 1) + 1
2h

u(h,n,w) =

for this root. Furthermore u(h,n,w) < w.
(2) u(hy,0,1) =0.124504.. ..

Proof
A simple computation gives this lemma.

The interval [#y, 7] is given by

Proposition 6.2
Let 7, € R, y € R", 0 < h < hy. Let us suppose that the quantities

- 1 -
(7, 10)™ = max (‘max o [IDEH (5, W) IDLH (v, o) Il

1 - -
max 2 1D, DEH (3, )| IIDLH (3, 0)7ll, - IDH, )DL, ) I)

(3, t0) = IIDH(y, 80) |1 H (2, o)l (3, t0),
verify hw(p, ,)* = n(y, t). If

\Y

1 _ _ -
EIIID'EH(% INIDH () NH )l <K, k=2,
then for all 1 € [t,, 2y, + u(h, n(y, t),w(y, t,))] we have

1 i} _ .
allDHOINIDHy, 7 IFNH (Ol <K k=2,

(11)
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Proof
Using Taylor’s formula at #,, we have the following estimations:

||H(y7t)” < ”H(yatO)”+|t—t0)|||D1H(y1t0)||’
| 1
HIIIDﬁH(y, Nl < E(IIIDﬁH(y, to)|ll + 1 — to| |D.DLH (3, DII]),
DxH(y’tO)_l

L~ |t = tol [IIDH(y, 2) " Il II1DDH(p, 1)l

This previous inequality holds if |t — #)| < w(y, t,). We also have w(y, ) < 1. We
deduce for k > 2,

1 . .
wlIIDEH ( OlNIDH (O IF1H s )l

< (14|t = to])(n(y, ) + |t - t0|)k“1
(W(p, ) — |t — to])*

< ( n(y, to) + |t — to] )k_l
(W(p, 1) — |t — to)°
1 1

< .
1=[t=to| ~ w(y, tp) — |t — 1]

The inequalities of the proposition are satisfied if U(h,n(y, 1), w(y, 1),
[t —t]) <O, ie. if |t — 2| < u(h,n(y, 1), w(y,t)). And the proposition follows.

I1DH(p, )~ |l <

bl

since

L+t -1 <

We now consider the following algorithm. Let & €]0, ko[, a = 2k — 4y + 1 and
¢ = 1/2(logalog(h/a®) log2)™"/* as in corollary 3.2. Let us denote 7; = n(x'”, 1,)
and w; = w(x'#, 1;).

Inputs: € > 0, po = 0,x* = x(0),, = 0.
i=1

ty = u(h, mo, wo)

while ¢; < 1 do

xil — xiO _ DxH(xiO’ ti)_lH(xioakti2
ks = mingk : c(a/v2)*~ (/) 'l - x| < ¢}

k=1

while k < k; and hw? < 7; do
begin
xi, +1 — xik _ DxH(xik’ t,.)_lH(x“‘, ti)
ki=k+1

end
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pii=k

tipy = min (t; + u(h,n;, w;), 1)

ii=i+1

end
0 — o
Output x"°

-1,pi—)

Proposition 6.3

The sequence (x'*) defined in the previous algorithm converges. More precisely,
there exists some index i such that #,_; < 1 < ¢; and lim; x™* = x(1), i.e. the limit
of the sequence x'* is a zero of the polynomial P(x).

Proof

The algorithm starts with a root x* of Q(x). The condition huwj > 7, =0 is
satisified and we can compute ¢;. From proposition 6.2, the inequalities (11)
hold in (x®,7,) and the Newton sequence x'0=x", xMF+l—
D H(x"%, 1) " H(x",1,) converges to x(¢,). The algorithm consists in computing
x""?' such that ||x"? — x(¢,)|| < € and hw? > 7, using the test of corollary 3.2. At
this step we can compute #, = min (¢, + u(h,7,w,), 1). The inequalities (11) are
satisfied at (x"” —¢,) = (x°,1,). And so on in this way: at each step of the
algorithm we construct a point (x"”, ¢, ,) which verifies the inequalities (11).
Since the sequence (¢;) is increasing, there exists some i such that ¢,_, < 1 < ¢,
The algorithm returns the point x'~"7-' = x*® and the proposition follows. O

00
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