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1. Introduction 

The main goal of this account is to describe and to study a new algorithm for 
finding the real roots of a polynomial: the exclusion algorithm. The localization of 
a general algebraic variety in R n has been studied in [3] by a similar method. We 
study here the case n = 1 where more precise results can be proved. Let us explain 

~]kffi0 ak xk be a polynomial in R[x] with the main idea of this process. Let P(x) = d 
degree(P) = d. We denote by Z = {rER : P(r) = 0} and for any x ~ R  we define 
the following polynomial of the variable t: 

a ip(k)(m) I t k. 
M(x, t) = [P (x ) l -  E k[ 

k=l 

It appears in [ 1 O] with the same expression and in [ 11] with x r R n. The polynomial 
M(x, t) possesses a unique positive root re(x) which satisfies the following 
properties: 

(1) re(x) = 0 if and only i fP(x)  -- 0 (proposition 2.1.1); 
(2) if P(x) ~ 0 the interval ]x - re(x), x + m(x)[ does not contain any root of P(x) 

(proposition 2.1.2); 
(3) m(x) is Lipschitz: Im(x) - m(Y) l ~< Ix - y[ for each x, y r IR (corollary 2.6); 
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(4) if Z # 0 there is a constant a > 0  such that ad(x,  Z)~rn(x)<~d(x ,  Z)  for each 
x e R (proposition 2.8). 

The function re(x) is called the exclusion function associated with P(x).  Let e > 0 be 
given and let p > 0 be any bound for the modulus of the roots of P(x) .  Our aim is to 
compute a set F, satisfying 

Z = F, c Z + [-Ke,  Ke], 

where K is a constant independent of e. This is done via the following algorithm: 

Initialization: xo = - p  and F, = 0. 
At s tepp we compute an approximation #(xp) ofm(x~,) such that 

e 
m(xp) - -~  <<.#(xp) <~m(xp) . 

If  # (xp) I> e, by (2), the interval ]x j, - # (x t, ), xp + # (xp) [ does n o t co ntain any root 
of P(x): we define xp+t := xp + #(xp) and F~ := F~]xp - #(xp), xp + #(xp)[. 

If  #(xp) <e  the interval [xp,xp + e] may contain a root of P(x)  and we define 
xj,+t := xp + eandF~ :=F~U[xj , , x t ,+e  ]. 

This algorithm stops when xp i> p. 
The main properties of this algorithm are the following: 

(5) i f Z  # 0 then Z c F~ c Z + [ -2e /a ,  2e/a], a defined in (4) (proposition 3.2.1.); 
(6) this objective is reached in O([ log e I ) steps of the algorithm (theorem 3.4.1); 
(7) each step of this algorithm requires O(log I log el) multiplications (3.8). 

Moreover this method is stable, easy to implement and computes all the roots of 
P(x)  even if their multiplicities are greater than I. This algorithm has been 
implemented in float arithmetic and has given excellent results even for difficult 

r - T l O  / - 10  ^ examples: the roots of the polynomial lIi=t t x - i) = x - 55x ~+ 1320~ - 18150x v 
+157773x 6 - 902055x 5 + 3416930x 4 - 8409500x 3 + 12753576x a - 10628640x 
+3628800 are computed in less than CPU 0.1 seconds with an accuracy of 10 -6. 

Another process works like the exclusion algorithm: Weyl's method which first 
appeared in [12]. An implementation of this process has been given by Henrici and 
Gargantini in [6]. More recently a parallel algorithm has been studied by Coleman 
in [1]. This method is based on 

row(x) = I P ( x ) l  
dlaal(2p) d-I 

instead of  re(x). We prove, in section 4, that the exclusion algorithm works better 
than Weyl's. 

Another famous algorithm computes the real roots of a polynomial: Sturm's 
method [2,7,8]. This method reaches the accuracy e in O([ logeD steps, like for the 



J.-P. Dediet~ J..-C Yakoubsohn / Computing realroots 3 

exclusion algorithm. Studying numerical examples in float arithmetic shows that 
Sturm's method works faster than exclusion in the case of low degree polynomials 
and does not work for high degrees when the coefficient size is large like in the 
previous example (overflow problems). Moreover, Sturm's algorithm is not stable, 
contrary to the exclusion algorithm. 

The exclusion algorithm can compute the complex roots of P(x)! The definition 
of M(x, t) and re(x) can be extended to x �9 C and the main results of this paper are 
still valid. A complex algorithm can be given which computes the roots of P(x) in 
C. This will be done in another paper. 

2. The exclusion function associated with a polynomial 

Let P(x) = ~d= 0 ak xk be a polynomial in R[x] with degree d. We consider the 
following polynomial in R[t]: 

~-~ le(k)(x)l ? 
n(x, t )  = I e ( x ) l  - k !  " 

k---1 

Note that the degree of M(x, t) is d. This polynomial, as a function of t, is concave 
and decreasing over [0,cc[. Since M(x,O)= Ie(x)l~>0, this polynomial has a 
unique positive root which is denoted by m(x). This root, as a function of x, is 
called the exclusion function associated with P(x). The main properties of m(x) are 
the following: 

P R O P O S I T I O N  2. I 

For each x e R we have: 
(1) m(x) = 0 if and only ifP(x) = O. 
(2) If P(x) # 0 then e(y) # 0 for each y satisfying I x - y[ < m(x). 

Proof 
The first property is easy. Let us prove the second. From Taylor's formula and 

the triangle inequality we get: 

Ie(y)t >/Ie(x)l- ~ Ie<k~ x)l lY - xl k, 
/ ~ , t .  

k=l 

that is, 

Ie(y)l ~ g ( x ,  lY - xl), 
If P(x)#0  we have m(x)>O, so that M(x, ly-xl)>O for each y satisfying 
ly-  xl <m(x) since M(x, t) decreases over [0,cr thus the inequality Ie(y)[>O 
holds and this proves our proposition. [] 

PROPOSITION 2.2 

The exclusion function re(x) associated with P(x) is continuous. 
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Proof 
Let e > 0  be given. Since M(x,m(x)) = 0 and M(x, t) is a strictly decreasing 

function of t we have M(x,m(x) + c) <O<M(x,m(x) - ~). Since M(x, t) is 
continuous we have M(y, re(x) + ~) <0 <M(y,  re(x) - ~) for any y in a neighbour- 
hood of x. Hence re(x) - E<m(y)<re(x)  + ~ since M(x, t) is a strictly decreasing 
function of t. [] 

Let Z be the set of real roots of P(x). W e  denote by d(x, Z) the distance of x 

from Z. 

PROPOSITION 2.3 
For any x ~ R  we have m(x) <.d(x, Z). 

Proof 
When xEZ, that is P(x) = O, we have m(x) = d(x, Z) = O. When x$Z,  that is 

P(x) # O, we apply proposition 2.1. [] 

PROPOSITION 2.4 
For any x ~ R  such that P(k)(x) # 0 for k = 0 , . . .  ,d  - 1, the exclusion function 

re(x) possesses a derivative which is given by 

mr(x) = ~-~f=l P(k)(x)Ek-I (X)m(x)k-1 /  ( k -  1)!, 

~"~d=l Ie(k)(x)lm(x) k - 1 / ( k  -- 1)! 

with E0(x)=sign(P(x))  and ek(X)=--sign(P(k)(x)) for k =  1 , . . . , d .  For any x 
such that P(x) # 0 and P(k)(x) = 0 for some k = 1 , . . . ,  d - 1, re(x) possesses right 
and left derivatives which are the right and left limits of  the previous formula. For 
any x ~ R with P(x) # 0 we have IM+ (x) l and Im~ (x) l ~< 1. 

Proof 
The function re(x) is defined by re(x) >>. 0 and 

d ip(k)(x)[ , ,k 
m(x,m(x))=lP(x)l- mix) =0.  

kffil 

Under the hypotheses we can differentiate this equality: 

~ (x,m(x)) + m'(x)~t (x,m(x)) = 0 .  

Since re(x)# 0 the quantity aM(x,m(x))/Ot is non-zero and we obtain the 
previous formula. The second part of  this proposition is easy: for any x such that 
P(x) # 0  the quantity ~a=l(JP(k)(x)l/(k-1)!)re(x) k-I is non-zero and the 
previous formula possesses right and left limits at such a point. In both cases these 
derivatives are clearly bounded by 1. [] 
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PROPOSITION 2.5 
When  r is a root  of  P(x)  with multiplicity p (P(k)(r) = 0 for k = 0 , . . .  ,p - 1 and  

P(P) (r) ~ O) we have 

so that  re(x) possesses right and left derivatives at r which are given by 

m~Cr) = +(21/p - 1). 

Proof 
We first study the casep = 1. Using proposition 2.4 we obtain: 

l ~  m'(x)= 1ira P'Cx)~o(x) 
x-,.,~ x-,,,~ li~(x)l ' 

and this quantity is equal to +I for x>r and -l for x<r. Suppose nowp> I. For 
any k -- 0,... ,p we have 

(x- ry~-k 
P(k)(x) - -(p----'-~)l. (P(P)(r)+zIk(X)), 

with l imx~r  rlk(x)/(Ix - rl) = O. The equality M(x, m(x)) = 0 becomes: 

I(x- r)" (p~)(r) + ~o(x))l ~-~ ( x -  r)p-k m(x)  k 
P! -- k=l ~I~---~)'1 (P(P)(r) -~- Wk(X)) 

d m(x)k 
- ~ IP*)(x)l  k! = 0 .  

kffip+l 

We divide this equation by 

and obtain 

(mlx)   m x) _ i  011+ *P--~-(~)Cr) k=l pC~)Cr) \ l x - r l )  ~,k!IPCP)Cr)I x - r l  ' - ~  

We now take the limit for x--,-r. Using proposit ion 2.3, since limx-~, re(x) = 0, we 
see that  the second sum tends to zero. Suppose now that  a is a cluster value of  
m ( x ) / ( ] x - r  D when x ~ r :  such values exist since, by proposi t ion 2.3, 
0 <~m(x)/([x - r[) ~< 1. Since limx-~r ~Tk(x)/P 0~) (r) = 0 we obtain 

k--I 
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so that cx = 2 lh' - 1. Consequently limx--,, m(x)/(Ix - rl) always exists and is equal 
to r = 2 I / p  - 1. Notice that r = 21/p - 1 = 1 whenp = 1. [] 

C O R O L L A R Y  2.6 

The exclusion function m(x) is Lipschitz: Ira(x) - m(Y) l ~< Ix - Yl for any x, y e R. 

Proof 
By propositions 2.2, 2.4 and 2.5 re(x) is continuous, possesses fight and left 

derivatives for any x e R  and these derivatives satisfy Im'(x)l ,<1. By the Mean 
Value Theorem, for all x and y ~ R ,  x < y ,  there are real numbers c~]x,y[ and 
0e  [0, 1] such that m(x) - re(y) = (Om~(c) + (1 - O)m'_.(c))(x - y). Thus re(x) is 
Lipschitz with a lipschitz constant equal to 1. [] 

The asymptotic values of re(x) are given by the following: 

P R O P O S I T I O N  2.7 

We have 

lira re(x) = 21/d _ 1. 
x-,~oo Ixl 

PrOof 
We divide the inequality M(x,  re(x)) = 0 by Ix[ d and obtain: 

--k=X ktxd-k \ Ixl ) 0. 

Let/3 be a cluster value ofm(x) / lx l  as x-- ,  + oo. By proposition 2.3 such a value 
always exists. Since for k = 0 , . . . ,  d, 

. P ( k ) ( X )  I 
X ~O0 d ladl, 

we get the following limit equation: 

ladl - ~ laal/r = O. 
k=l 

Since ad # O, this yields/3 = 2 l/a - 1. [] 

P R O P O S I T I O N  2.8 

Suppose that Z = {r ~ R : P(r) = 0} is non-void. There is a constant cz > 0 such 
that for each x ~ R 

aa(x, z )  <.re(x) <. a(x, z )  . 

Proof 
It suffices to prove the first inequality (proposition 2.3). Consider the function 

defined by 
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re(x) 
f ( x )  = d(-'x,Z) if x C Z ,  

2 l/p - 1 if x ~ Z with multiplicity p .  

This function is continuous over R (proposition 2.5) and never vanishes. Since 
limx--,.+oof(x) = 21/a - 1 > 0  (proposition 2.7), we have 0 < a  = infxeRf(x),  and 
this proves our assertion. [] 

EXAMPLES OF EXCLUSION FUNCTIONS 

We give two examples of exclusion functions. 

EXAMPLE 1 

Consider the polynomial P ( x ) =  x 3 - x .  The derivative rd(x) possesses five 
points of discontinuity, the roots of P : - I ,  0, 1 and the roots of  the derivative 
P'  : + l / v ~ .  Since the roots of P are simple, Ird+ (x)l = 1 for x = +1 and x = 0. On 
each interval [ - 1 , - 1 / v ~ ]  and [1/V~, 1], re(x) is a segment. The equations of  the 
asymptotes at +oo and - o o  are respectively y = (2 t/3 - 1)x and y = -(21/3 - 1)x. 
See fig. 1. 

EXAMPLE 2 
Consider the polynomial P(x) = x 5 - 5 0 x  3 + 625x. The derivative m'(x) pos- 

sesses seven points of discontinuity, the roots of P : -5 ,  0, 5 and the roots of the 
derivatives o f P  : • •  Since 0 is a simple root, Im~:(0)l = 1. The roots •  
are of multiplicity two, we have [~+(• = ~ / '2 -1 .  The equations of the 
asymptotes at +er  and - ~  are respectively y = (2 I/5 - 1)x and y = -(21/5 - 1)x. 
See fig. 2. 

3. The exclusion algorithm 

3.1. DESCRIPTION 

Our aim is to localize the set Z of real roots of P(x), i.e. for a given precision e > 0 
to compute a set F~ such that Z c F~ ~- Z + [-Ke,  Ke] with K independent ofe. Let 

0.5" 

Fig. 1. The exclusion function of example 1. 
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-T -s -,/iZ -,/Z ,a v~ s T 

Fig. 2. The exclusion function ofexample 2. 

p > 0 be such that Z ,- [-p, p]. Let e > 0 be given and for each x e R let #(x) be a 
positive real number such that 

re(x)-   m(x) . 

The exclusion algorithm described in the introduction is given here in a pseudo 
program code. Each step will be studied in more detail in the sequel. 

Begin 
Compute a positive real number p > 0 such that Z c I-P, P]; 
Initialization: x0 := -p ,  F, = 0,p := 0; 
While xp < p do 

Begin 
Compute the coefficients of M(xp, t); 
Compute # (Xp); 
If ~(xp)>~e then xp+1 := xp + #(xp) else 

Begin 
x := xp + e; i := 1; 
While #(x) < e d o  i := i +  1 andx := xp + ie; 
kp := i; Xp+t := x; 

: =  U [xp-1 + - 
End; 

End; 
End. 

The following notation will be used in the sequel: in the case ~(xp_l)>>.E and 
#(xp)<e the points xp +ie, O<<.i<<.kp, are denoted by ~ .  We have ~ = xp, 

=xp+l  and ~ + 1 = ~ + ~ .  Since #(xp+l)>>.~ notice that [Xp-l+#(xp-1), 
Xp+l -- . (Xp+l)]  c'- [~0'~k,-ll" See fig. 3. 

3.2. PROPERTIES OF THE EXCLUSION ALGORITHM 

PROPOSITION 3.2.1 
(1) For each p~>O we have xp+l-xp>~e. The algorithm stops after a finite 

number of  steps. 
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~ d ( z ,  Z) / / 

I 3) I 

! /11 i :? 
I I ! 

I I I I 

, , , I : ' ~ Z I ' 

, = -,, ,, = ,0 + ~C,,) ", = y,' u l  = u,' +, i,] = u,' +, = ,, ,, 

Fig. 3. Illustration of notation used. 

(2) One has Z c F~; if F+ = 0 then P(x) has no real root. 
(3) I fZ  # 0, then F+ c Z + [-2e/a,  2e/a], where a is defined in proposition 2.8. 

Proof 
(1) If#(xp) >I e then xp+l - xp = #(xp) >>. ~ else Xp+l - xp = kpe >1 ~. 
(2) Starting from [-p,p] the algorithm removes intervals [xp,xp +/~(xp)[ with 

#(Xp) >i e. Since m(xp) >I #(xp) >>. ~ such an interval does not contain any root of P(x) 
(proposition 2.1). 

(3) Consider xeF+. Thus x is in some interval [Y~'~,~+I] with #0~'~) and 
#(Y~'/+I) <~. In other words, one has I x -  Yl ~<e/2 for some y satisfying #(y)<e. 
From corollary 2.6 we get rn (x )~mO, )+ lx -y l<~#(y )  + ~ / 2 + l x - Y l < ~  
+E/2 + e/2 = 2e. Proposition 2.8 gives ad(x, Z) <~ m(x), thus d(x, Z) <<. 2~/a. [] 

3.3. STABILITY PROPERTIES OF THE EXCLUSION ALGORITHM 

The exclusion algorithm possesses various stability properties: it is stable under 
modifications of the initial value x0 and under rounding errors. These properties 
are established below. 

Modifications of  the initial value. Let x0 and :do be two different initial values 
satisfying x0, ~0 ~< - P where p is any bound for the modulus of the roots. Our 
algorithm, starting from these initial values, gives two sets F~ and F~ which both 
satisfy 

Z = F+,F~ c Z + [-2e/a,E~/a].  

This proves the stability of our algorithm under modifications of the initial value. 
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Rounding errors. In one step, the algorithm needs the computation of m(x) and 
consequently the computation of the considered polynomial M(x ,  t) and all its 
derivatives. Since rounding errors always occur in float arithmetic the exclusion 
algorithm has been described via an approximation #(x) ofm(x). This approxima- 
tion has to satisfy the following inequalities: m(x) - e/2 <~ #(x) <<. re(x), otherwise a 
real root of P(x) can be missing in the remainder set F~. The computation of #(x) is 
done via Newton's algorithm as it will be shown below. Such a computation is 
stable under rounding errors. 

3.4. BOUNDS FOR THE NUMBER OF STEPS IN THE EXCLUSION ALGORITHM 

By the exclusion algorithm, we have constructed sequences (xp) and 0~;). Our 
aim is to give an upper bound for the number of points in these sequences. 

THEOREM 3.4.1 
Let n = card(Z) be the number of real roots of P and p > 0 any number such that 

Z c [-p, p]. Let e be given. Suppose that Z ~ 0. The number of points constructed 
by the exclusion algorithm relative to p and e is bounded by 

( 1 1 ) e2_~n~ n 
n(3 + 4a -1) + log 1 + a /2  log 1 - c~/:2 log , 

where the constant a is defined in 2.8. 

Remark 3.4.2 
This inequality proves that the accuracy 2E/a for the approximation of Z is 

reached in at most O(I log el) steps for the algorithm. 

NOTATIONS 
We denote by zl < ...  <Zn the different real roots of P(x), by Is the interval 

[zl - 2e/a, zi + 2~/c~] and by I the union of/i, 1 <~i<<.n. Let us define by S the set of 
points xe, ~ constructed by the exclusion algorithm. The proof of theorem 3.4.1 is 
divided into the following lemmas. 

LEMMA 3.4.3 
card(S c~ I) <~n(1 + 4a-l) .  

Proof  
Since the distance between two different points in S is always I> e there are at 

most 1 + 4or -1 points of S in each interval [zi-  2e/r zi + 2e/c~] and at most 
n(1 + 4a -1) such points in I. [] 
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We now consider the points appearing in S~I. According to the description of 
the algorithm given in section 3.1 such points are of type xp with #(xp) >~e. Let us 
denote by 

So = {xpeS~I lxp  <z l }  , 

Si = {xp ES\I lz t<x,v  <zt+l}, 1 <~i<~n - 1, 

sn = eS\Ilxp > zn}. 

We will give an estimation for card(&). 

L E M M A  3.4.4 

For each point xp in S~I we have 
(1) d(xp, Z)>~m(xp)>~#(xp)>~e, 
(2) #(xp) >~ad(xp, Z).  

Proof 
For each xp in S\I, we have already noticed that the inequality #(xp) I> e holds: 

this gives the first assertion. By theorem 2.8 we have od(xp, Z)~<m(xp); since 
m(xp) >>. e we get 

1 <<.m(xp) - e , ~d(xp ,  Z)  <~ -~m(xp) -~ <~#(xp) 

and this proves our assertion. [] 

to = Xp, 

where the index s is defined by 

ts-1 ~ Z i + l  --  e < ts <zi+l �9 

Points tl are in ]zi, zi+l [ since 0 < c~/2 < 1. See fig. 4. 

L E M M A  3.4.5 

For each k = 0 , . . . ,  r we have tk <~ Xp+k SO that r < s with r defined above. 

o~ 
ti+l = tt +-~d(ti ,  Z)  , 

N O T A T I O N  

We now consider the points appeanng in Si, 1 ~i<~n - 1. The cases S0 and Sn+l 
are similar. Let us denote them by zi <xp < . . .  <xp+, <zt+l. These points are given 
by the following iteration 

Xp+k+l ---- Xp+k + #(Xp+k), k = 0 , . . . ,  r -  1. 

Let us define the sequence (t/), 0 ~< l ~< s by 
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to g xp qx "-t~ t , - i  t, zi+~ 

Fig. 4. Illustration of notation used. 

P r o o f  
Suppose that  tk <~Xp+k, k = 0 , . .  �9 r. Since d(Xp+k, Z)  >16. (lemma 3.4.4) we have 

e <~ d(xp+,, Z) ~< zi+l - Xp+, <<. zi+l - t , ,  

so that  tr <~ z~+l - E. Since zi+l - ~ < ts we obtain r < s. We now prove the inequality 
tk <~Xp+k. For  k = 0 this inequality holds. Let us suppose that  tk <<.Xp+k. We have: 

Ot 
Xp+k+l -- tk+l = Xp+k +/~(Xp+k) -- tk -- -~d(tk, Z )  

Ot Ot 
= (Xp+k -- tk) + (l~(Xp+k) -- ~a(Xp+k, Z) )  -4- ~ (d(xp+k, Z)  - a(tk, Z ) ) .  

We now consider three different cases. 
(1) Ifzi < tk <~Xp+k <<. (zi+l + Zi)/2, we have 

/ O~\ r 
- tk+, = (,1 + -~) (Xp+k  -- tk) + (#(Xp+k) ~ "2 d (Xp'dl-k ~ Z )  ) ~ O Xp+k+l 

by the recurreney hypothesis and lemma 3.4.4. 
(2) I f  (zi+l + zi) / 2  <<. tk <~ Xp+k < zi+l we have 

/ Oz \ Ot 
- tk+  = (1  -i)CX +k - tk) + CuCx.k) - -2 dlxp.~k~ Z ) )  ~ O Xp+k+l 

by the same argument  as before. 
(3) I f  zi < tk <~ (Zi+l + z i ) /2  <~Xp+k <zl+l we have 

X , + k + l - - t k + l = ( 1 - - 2 ) ( X p + k - - t k ) + a ( Z ' + l ? Z i - - t k  ) 

Ot 
+ U(Xp+k) -- ~ a ( x p + k ,  Z )  ~ 0 ,  

as before. This achieves the p roof  of  the lemma. [] 

LEMMA 3.4.6 
With the same notat ions as in lemma 3.4.5: 
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(.1 1 I ). Z,+I--Z, card(S) <~2 + 
o g l + a / 2  l o g l - a / 2  mg 2e 

i 

13 

Proof  
According to the definition of tt we have 

t/ z i +  (1 a I = + 2 )  (to - zi), 

while tt <<. (zi+l + zi)/2. Let q be the first index such that (zi+l + zi)/2 < tq; we have 

tq+t Zi+l (1 ~ I = - - ~ )  ( z , + l  - t l )  

The index q satisfies the following inequality: 

ct'~ q-I ,  + Zt 
zi + I + 2 )  Lt0 - zi) ~< z"+l 2 , 

so that 
Zi+l - -  Zi 

log 2(t0 - zi) 
q~< l+  

log 1 + a /2  " 

Since to = xp and d(xp, Z)  >I e (lemma 3.4.4) we obtain 
zi+l - zi 

og 2e 
q < ~ l +  

log 1 + a /2  " 

The index s has been defined by &_l <~ zi+l - e ~< & < Zi+l; this gives 

( Zi+l -- 1 -- (Zt+I -- tq) <.Zi+l -- e ,  

so that 

s - q - l < < .  

Since zi+x - tq <~ (Zi+I -- zi)/2 we obtain 

s - q - l < ~  

and consequently: 

log zi+l - tl 

log 1 - a / 2  " 

2~ 
lOgzi+1 --Zi 

l o g  1 - a / 2  " 

I l  1 1 I "  zi+t - zt 
s~<2+ og171-c~/2 l o g l -  a / 2  Jog -2e 

[] 
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LEMMA 3.4.7 

The following inequalities hold: 

( 1  
card(Si) ~< 2 + log 1 + t~/2 

1 "~ , Z i +  1 - -  Z i 

log 1 - a/:2) log. ~ 

card(So) <<. 1 + 
log 

zl + p  
log 1 - ~/2 ' 

card(Sn) <~ 1 + 
log P - z,, 

E 

log 1 + a /2  " 

- - ,  l <<.i<<.n - 1 ,  

Proof 
We have &={xp,...,Xp+r} so that card(Si)=r+l. Since r<s the first 

inequality comes from lemma 3.4.6. The second and the third inequalities have been 
obtained by a similar argument. [] 

Proof of theorem 3.4.1 
Let N = card(UT=o&); by the previous lemma 

) N<<.2n4 l o g l + a / 2  og2+log  +~---~logZi+l-z( 
i=I 2, 

1 ( .-1 �9 zi+l - zi~ 
log l - a / 2  l o g 2 + l o g ~ - ~ + ~ / = l , o g  2, J "  

Since log is concave, we get 

+l (l~ - nl~ + nl~ N~<2n+l.ogl a ' -  

1 (log2 - n log, + nlogP ~-~z") 
log 1 - a /2  

We also use the inequalities p - Zl and p + z. ~ 2p so that 

( 1 1 1  1 ) 2 f  
N ~< 2n + og 1 + a/2 log 1 - c~/2 Iog,nnn 

Theorem 3.4.1 is obtained by adding this result and lemma 3.4.3. [] 
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3.5. COMPUTING AN UPPER BOUND FOR THE MODULUS OF THE ROOTS 

The initialisation of the exclusion algorithm requires the knowledge of an upper 
bound p for the modulus of the roots. Such a bound can be computed directly from 
the coefficients of P(x) like Cauchy's bound 

la~ddl 
PCauehy ----- 1 + max . 

O<~kgd-I 

A better bound is given by the positive root p of the polynomial 
Po(x) ladl t a -  d-I = ~kffi0 lakl tk (see [9]). The derivative of Po(x) also possesses a 
unique positive root d which satisfies 0 <~ d ~< P; the polynomial P0 (x) is convex and 
increasing over Ld, c~[. We compute p by the classical Newton algorithm 
tp+l = tp - Po(x)(tp)/(Po(x)'(tp)) starting at to >~f/. More precisely, we propose the 
following process (we denote by e0 a small positive real number): 

Begin 
t0 := 1; 
WhilePro(tp)<.Odoto := to + 1; 
While I tp -  tp+ll >>-co do tp+l = tp 
End. 

Po(tp). 
.Zo(t,,)' 

3.6. COMPUTING THE COEFFICIENT OF M(x, t) 

At each step of the exclusion algorithm we have to compute the coefficients 
p(k ) ( xp ) / k!, 0 <<. k <<. d of the polynomial M ( xp, t ). These coefficients are computed 
via the complete Homer scheme [5]. This algorithm requires d(d + 1)/2 multi- 
plications. 

3.7. COMPUTING A LOWER BOUND/~(x) OF re(x) 

The exclusion algorithm requires to compute a lower bound #(x) of re(x) which 
satisfies 

E 
re(x)-  <.u(x) <.m(x) . 

In this section we describe an algorithm based on Newton's iteration which solves 
this problem and we compute the complexity of this algorithm (proposition 3.7.1). 
Letf( t )  be a real function defined over the interval [0, +w[  two times continuously 
differentiable, such that f(0) > 0, f~(t) < 0 and f"(t)  < 0 over]0, +o o[. This function 
possesses a unique positive root denoted by m. Let c~,/3 be such that 0 < a <m </3. 
Let us consider the sequence (Sk) given by 

f ( Sk )  
Sl =13,  Sk+l = ak P ( S k )  " 
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Sincef  is concave this sequence is decreasing and converges to the root m. A lower 
bound for m is given by the following algorithm 

�9 Inputs : f  (t), a,  fl, and ~; 
�9 Compute Sk+l = Sk - - f ( sk ) / f ' (Sk)  whilef(sk - f ' ( ~ ) / f " ( t ~ ) )  ~<0; 

Let g be the first integer k such that: f (sk  - f ' ( ~ ) f f " ( a ) )  > 0; 

�9 Compute Sg+k while k ~< v where v is the first integer such that 

1 2f ' (a)  loglog 2' ~ ( l o g l o g ~ -  J v ~  

We have the following result: 

PROPOSITION 3.7.1 

Let ,, v,/z and s~,+~ be defined as before. Then 

m - ~ < ~ s ~ , + ~  - E < m .  

The number of steps to obtain this lower bound for m is in 

O(log 1 logel). 

We first prove the following 

LEMMA 3.7.2 

Let a, b be two real numbers such that a ~ a < m < b ~</~ and 

f " ( f l )  ( b - a ) < l .  
O < C = 2 f , ( a  ) 

Let A be the first index such that s~ ~ b. Then for each k greater than 

b - a  

' - - r  I '  \ l o g ~  / 

we have SX+k -- m < e. 

/'roof 
From the definition of sk+x and the Taylor formula we deduce that Sk+a -- m is 

equal to 
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f ( m )  - - f ( $ k + A - l )  --ft(Sk+X-l)(m -- Sk+~,-l) _ f"(u) 
P(Sk+X-1) 2f'(Sk+X-1) (Sk+,~-I --  m)  2 , 

with u e]m, sk+x-i [. Since the derivatives f '  and f "  are decreasing and negative 
functions over [~,,/3] we have 

f"(/3) , m)2. sk+x - m ~< ~ [sk+x-1 - 

We get successively, 

(f"(/3) ~ 1+2+'"+2+-t f"(/3) 2k-1 2ff(~) 
sk+x-m<<'k2f'(a)J (sx-m)2k<<" 2f-f~ (b-a)2~- C2~ 

The conclusion follows immediately from the assumption C < 1. [] 

Proof of proposition 3.7.1 
Since the sequence (Sk) converges to m, there exists an integer # such that 

0<s~, -f(a)/f"(/3)<m. This integer is determined by the signs of the quantities 
f(sk--f'(/3)/f"(a)). The hypotheses of the previous lemma are satisfied for 
a = sj, -f'(a)/f"(13) and b = s~, since in this case C = 1/2. Thus the proposition is 
established. [] 

Remark 3.7.3 
In the casef( t)  = M(x, t), we can choose 

ijtlP(x) I ~ x/j 
/ 3 - -  ' = 

le(x)l/3 
I e ( x ) l -  n ( x ,  ~)  ' 

whcrej  is the first index such that PfJ) (x) ~ O. 
The bound/3 comes from M(x, re(x)) = O: 

~-~ le(k)(x)l m(x)k >/ re(x) ] IeU)(x)l 
Ie(x) l  = kt jt " 

k=l 

The bound ,', is the value of the abscissa of the intersection point of the x' axis and 
the straight line passing through the points (0, le(x)l) and (/3, M(x,/3)). 

3.8. COMPLEXITY OF THE EXCLUSION ALGORITHM 

According to remark 3.4.2, the exclusion algorithm reaches the accuracy 2e/a in 
O([ loge[) steps of the algorithm; each of them consists in the evaluation of the 
coefficients appearing in M(x, t) and in computing the approximation #(x) of 
m(x). The coefficients in M(x, t) can be evaluated in d(d + 1)/2 multiplications 
(section 3.6). Computing #(x) needs O(logllog el) Newton's iterations of M(x, t) 
(proposition 3.7.1) and such an iteration needs 2 d - 1  multiplications (the 
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evaluations of M(x,  tp) and M'(x, tp)) and one division. Combining these results 
g ives  

O(d2[ log ~l + d] log ~l x log I log el) 

multiplications. 

4. Comparison with Weyl's method 

The Weyl method is based on the following: 

T H E O R E M  4.1 
Let p > 0 be any number which bounds the modulus of the real or complex roots 

of  P(x). Let x and s be such that s > 0 and Ixl < p. If 

Ie(x)l >~sdladl(2p) a-1 

then, for each y satisfying [y - xl < s  and lYl <p,  we have P0 ' )  ~ 0. 

The proof  of this theorem is based on the following: 

L E M M A  4.2 

For each u e I-p,  p] we have 

IP'(u)l <~ d l a d l ( 2 A  -~ �9 

I f r  is a root of  P(x) then 

[P'(r)l ~< [aal ( 2p) a-I �9 

Proof 
Let z l , . . . ,  zd be the roots ofP(x) .  We have: 

d 

P~(u) = ad E H (u -- zj) a n d  P ' ( r )  = ad H ( r  -- zj) . 
i=1 j~i zj~r 

Bounding these formulas gives our lemma since lul, Izjl and Ir[ < p. [] 

Proof of  theorem 4.1 
We have P0 ' )  = P(x) + (y - x) P'(u) for some u = Ox + (1 - O)y, 0 < 0 < 1, so 

that  Ie(y)l >i Ie(x)l - [y - xlle'(u)l. By lemma 4.2 and since [y - xl < s  we have 
d 1 IP(.v) l > IP(x) l - sdladl (2p) - and the conclusion holds. [] 

C O R O L L A R Y  4.3 

Let us define 
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m w ( x )  = Ie(x)l 
dladl(2p)d-1 " 

Ifly I <pand  lY - xl <mw(x) then P(.v) ~ 0. 

The proofis easy and left to the reader. 

19 

R e m a r k  4.4 
This corollary is similar to our proposition 2.1 and we can write easily a "Weyl 

exclusion algorithm" based on the radius row(x )  instead of re(x) .  T h e  asymptotic 
behaviour of re(x) in the neighbourhood of a real root r is (proposition 2.5) 

m ( x )  "~ (2 I/p - 1)Ix - rl, 

wherep is the multiplicity of r. In Weyl's case we have 

m w ( x )  "~ IP~)(r)l I x -  rl p 
ptdladl(2p)d-x 

F o r p  = 1 this gives 

and by lemma 6.2 

instead of 

m w ( x )  ~- I/~(r)l I x - r l  
dlaal(2p) a-l 

I (r)l 1 
dladl(2p)d_  < 1, 

m(x) Ix-  rl. 
Consequently our method is better than Weyrs one; this has been corroborated by 
several numerical examples. 

5. Numerical examples 

In the following examples we compute for a given precision e, the number of 
iterations Nit, the lower and the upper bounds of the intervals which may contain 
the roots. We used float arithmetic on a CDC 4600. The CPU time for the exclusion 
algorithm is always less than 0.1 second. The bound p for the modulus of the roots 
is the bound given in section 3.5. 

EXAMPLE 5.1 
We consider P ( x )  = x 3 - x.  The roots are - 1 ,  0, 1. The upper bound for the 

modulus of  the roots if p = 1.52. The CPU time in Weyrs method is equal to 1.1 
second for an accuracy e - 10 -6. See table 1. 
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Table 1 
Example 5.1. 
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e Exclusion Weyl 

Nit Lower bound Upper bound Nit Lower bound Upper bound 

10 -3 37 

10-4 

10-5 

i0-~ 

-1.0000481 0.9989999 305 -1.0071517 -0.9912501 
-0.0000214 0.0010000 0.0157156 0.0162603 

0.9999638 1.0010114 0.9927865 1.0086665 

49 -1.0000477 -0.9998999 451 -1.0007195 -0.9991301 
-0.0000000 0.0001000 -0.0015733 0.0016243 

0.9999999 1.0001001 0.9992807 1.0008698 

59 -1.0000000 -0.9999899 598 -1.0000731 -0.9999140 
-0.0000000 0.0000100 -0.0001572 0.0001625 

0.9999999 1.0000100 0.9999293 1.0000880 

69 -1.0000000 -0.9999989 744 -1.0000074 -0.9999915 
-0.0000000 0.0000010 -0.0000157 0.0000162 

0.9999999 1.0000010 0.9999920 1.0000080 

EXAMPLE 5.2 
W e  c o n s i d e r  P ( x )  = x 5 - 50x  3 + 625x. T h e  r o o t s  a re  - 5 ,  - 5 ,  0, 5, 5. T h e  u p p e r  

b o u n d  f o r  the  m o d u l u s  o f  the  r o o t s  is p = 7.77. T h e  C P U  t i m e  in W e y r s  m e t h o d  is 
11.2 s e c o n d s  fo r  a n  a c c u r a c y  e = 10 -3. See t ab le  2. 

Table 2 
Example 5.2. 

e Exclusion Weyl 

Nit Lower bound Upper bound Nit Lower bound Upper bound 

10 -3 93 

10 -4 l l8 

10 -5 144 

-5.0024213 -4.9974836 8417 -5.6708516 -4.0658522 
-0.0000001 0.0010000 -0.4743324 0.4756657 

4.9983680 5.0030270 4.0671853 5.6721837 

-5.0001683 -4.9997050 23975 -5.2307093 -4.7457093 
-0.0000031 0.0001000 -0.0466286 0.0466712 

4.9998007 5.0002772 4.7457520 5.2307519 

-5.0000199 -4.9999721 67942 -5.0752038 -4.9224538 
-0.0000001 0.0000100 -0.0046567 0.0046632 

4.9999803 5.0000280 4.9224604 5.0752204 

10 -6 169 -5.0000023 -4.9999974 202169 -5.0240257 -4.9757397 
-0.0000000 0.0000010 -0.0004661 0.0004668 

4.9999984 5.0000024 4.9757403 5.0240273 
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Table 3 
Example 5.3. 

e Exclusion e Exclusion 

Nit Lower bound Upper bound Nit Lower bound Upper bound 

10 -3 223 0.9990523 1.0010005 10 -5 295 0.9999950 1.0000100 
1.9997729 2.0010000 1.9999947 2.0000100 
2.9999217 3.001000 2.9999999 3.0000100 
3.9999949 4.010000 3.9999999 4.0000100 
4.9997263 5.0010000 4.9999999 5.0000100 
5.9996342 6.0010010 5.9999989 6.0000100 
6.9998937 7.0010044 6.9999954 7.0000100 
7.9999692 8.0010088 7.9999920 8.0000100 
8.9995256 9.0010079 8.9999999 9.0000100 
9.9999859 10.0010229 9.9999999 10.0000100 

10 -4 260 0.9999950 1.0001000 10 -6 332 0.9999999 1.0000010 
1.9999612 2.0001000 1.9999999 2.0000010 
2.9999960 3.0001000 2.9999999 3.0000010 
3.9999505 4.0001000 3.9999999 4.0000010 
4.9999910 5.000100 4.9999999 5.0000009 
5.9999999 6.0001000 5.9999999 6.0000010 
6.9999999 7.0001000 6.9999999 7.0000010 
7.9999999 8.0001000 7.9999999 8.0000010 
8.9999999 9.0001001 8.9999999 9.0000010 
9.9999999 10.0001002 9.9999999 10.0000010 

EXAMPLE 5.3 

W e  consider  P ( x )  - -  x 1~ - 55x 9 +1320x 8 - 18150x 7 +157773x 6 - 902055x 5 
+3416930x 4 - 8409500x 3 +12753576x 2 - 10628640x +3628800. The roots  are the 
integers 1, 2, . . . ,  10. The upper  bound  for the modulus  o f  the roots  is p -- 75.92. 
Weyl ' s  m e t h o d  gives the interval [-52.54,  63.50] in 127,538 iterations in C P U  time 1 

Table 4 
Example 5.4. 

e Exclusion Weyl 

Nit Lower bound Upper bound Nit Lower bound Upper bound 

10 -I 25 -1.5117868 -1.0170778 40 -1.9990224 2.0004797 

10 -2 25 noroot 400 -1.9990224 2.0002244 

10 -3 25 noroot 3999  -1.9990224 1.9991968 

10 -4 25 noroot  36879 -1.8221371 1.5790627 
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Table 5 
Example 5.5. 
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e Exclusion e Exclusion 

Nit Lower bound Upper bound Nit Lower bound Upper bound 

10 -l 23 --2.4238712431 --1.6238712431 10 -4 66 --2.0003097695 --1.9996097695 
0.9432167819 1.2423167819 0.99995 1.00025 

10 -2 37 --2.0363554473 --1.9563554473 10 -5 79 --2.0000343029 --1.9999543029 
0.9995 1.0025 0.9999995 1.0000025 

10 -3 52 --2.0028281827 --1.9958281827 10 -4 94 --2.0000027403 --1.9999957403 
0.9995 1.0025 0.9999995 1.0000025 

m i n u t e  f o r  an  a c c u r a c y  e = 10 -3. In  this case m w ( x )  = 2.3 x lO-211P(x)[: this  

expla ins  this  b a d  result .  See tab le  3. 

EXAMPLE 5.4 
W e  n o w  c ons ide r  P ( x )  10 = ~,,k=O Xk which  does  n o t  possess  a n y  real  r o o t .  T h e  

u p p e r  b o u n d  fo r  the  m o d u l u s  o f  the  roo t s  is p = 2. C P U  t ime in W ey l ' s  m e t h o d  is 

m o r e  t h a n  1 m i n u t e  fo r  an  accu racy  c = 10 -4. See table  4. 

W e y l ' s  m e t h o d  fails in the  fo l lowing  examples .  

EXAMPLE 5.5 
W e  cons ide r  P ( x )  = x 5 + x 4 - 4x  3 + 2x  2 + 8x  - 8. T h e  real  r o o t s  are  - 2 ,  1 wi th  

respec t ive  mul t ip l i c i ty  2 and  1. T h e  u p p e r  b o u n d  fo r  the ro o t s  is p = 3.98. See 

tab le  5. 

Table 6 
Example 5.6. 

Exclusion e Exclusion 

Nit Lower bound Upper bound Nit Lower bound Upper bound 

10 -I 54 -2.5058676083 -1.7058676083 10 -4 89 -2.0002864328 -1.9995864328 
-1.7647613648 -1.6647613648 0.9999419351 1.0000173641 

0.8780919064 1.1780919064 2.9994457832 3.0006457832 
2.6596334933 3.8806170428 
3.6675159389 3.8675159389 

10 -2 64 -2.035447372 -1.9553447372 10 -5 101 -2.0000315302 -1.9999615302 
0.9916508417 1.0216508417 0.9999873641 1.0000249911 
2.9501236250 3.0601236250 2.9999480774 3.0000580774 

10 -3 78 -2.0026454369 -1.9956454369 10 -6 157 -2.0000034976 -1.9999954976 
0.9994872893 1.0024872893 0.9999994999 1.0000024929 
2.9951411552 3.0061411552 2.9999808483 3.0000068483 
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Table 7 
Example 5.7. 

Exclusion Exclusion 

e Nit  Lower bound Upper bound Nit Lower bound Upper bound 

105 182 -0.9969224559 -0.9968924559 10 -~ 185 -0.9969179088 -0.996914179088 
-0.9723800487 -0.9723500487 
-0.9238864136 -0.9238564136 
-0.8526453975 -0.8526153975 
-0.7604110412 -0.7603810412 
-0.6494530780 -0.6494230780 
-0.5225035772 -0.5224735772 
-0.3826884374 -0.3826584374 
-0.2334503656 -0.2334203656 
-0.0784640960 -0.0784340960 

0.0784540957 0.0784840957 
0.2334403638 0.2334703638 
0.3826784324 0.3827084324 
0.6494430483 0.6494430483 
0.7604009656 0.7604309656 
0.8526351644 0.8526651644 
0.9238689366 0.9238989366 
0.9723641259 0.9723941259 
0.9969123337 0.9969423337 

-0.9723704209 -0.9723674209 
-0.9238800325 -0.9238770325 
-0.8526408898 -0.8526378898 
-0.7604065379 -0.7604035379 
-0.6494485764 -0.6494455764 
-0.5224990764 -0.5224960764 
-0.3826839370 -0.3826809370 
-0.2334458654 -0.2334428654 
-0.0784595960 -0.0784565960 

0.0784585957 0.0784615987 
0.2334448638 0.2334478638 
0.3826829324 0.3826859324 
0.6494475483 0.6494505483 
0.7604054656 0.7604084656 
0.8526396644 0.8526426644 
0.9238790325 0.9238820325 
0.9723686412 0.9723716412 
0.9969168337 0.9969198337 

Table 8 
Example 5.8. 

Exclusion e Exclusion 

Nit  Lower bound Upper bound Nit Lower bound Upper bound 

10 -I 85 -28.3414702088 -28.0414702088 10 -4 125 -28.22334245460 -28.2231245460 
-1.1638584670 -0.6638584670 10 -4 125 -0.8656279041 -0.8653279041 

4.2680609779 4.6680609779 4.31780724878 4.3183724878 
8.2371332505 8.4921332505 8.2420832505 8.2423832505 

10 -2 98 -28.2303569384 -28.2003569384 10 -5 138 -28.2233794548 -28.2233494548 
0.8754557864 -0.8454557864 10 -5 138 -0.8655885043 -0.8655585043 
4.313124373 4.3431245373 4.3181259427 4.3181559427 
8.2416332505 8.2671332505 8.2421282505 8.2421582505 

10 -3 112 -28.2238756078 -28.2208756078 10 -5 138 -28.2233734762 -28.2233704762 
-0.8661281287 -0.8631281287 -0.8655783006 -0.8655753006 

4.3176318764 4.3206318764 4.3181319412 4.3181349412 
8.2416332505 8.246332505 8.2421327505 8.242135505 
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EXAMPLE 5.6 
W e  cons ider  P(x)  = x s - 8x 7 + 14x 6 + 38x 5 - 145x 4 + 82x3+234x 2 - 432x 

+216.  The real roots  are - 2 ,  - 2 ,  1, 3, 3, 3. The upper  bound  for the modulus  o f  the 
roots  is p -- 10.95. See table 6. 

EXAMPLE 5.7 
W e  consider P(x) = 524288x 2~ - 2621440x ts + 5570560x 16 - 6553600x 14 

+4659200x 12 - 2050048x 1~ + 549120x s - 84480x 6 + 6600x 4 - 200x 2 + 1, the first 
kind Tchebychev  polynomial  o f  degree 20. Its roots  are real and localized in [ -  1, 1]. 
The upper  b o u n d  for the roots  is p = 3.62. See table 7. 

EXAMPLE 5.8 
W e  consider  P(x)  = 0.1495836012x I~ + 0.52152613x 9 - 67.0508637x s 

+851.5688445x 7 - 5094.094050x 6 + 17111.78804x 5 - 32750.95865x 4 
+30269.80956x a + 3027.90601x 2 - 31283.35894x + 19455.89724. This po lynomia l  
appears  in [4]. Its real roots  are approximately -28.22, -0 .86 ,  4.31, 8.24. The upper  
b o u n d  for the modulus  o f  the roots  is p = 29.23. See table 8. 
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