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We give a practical version of the exclusion algorithm for localizing the zeros of an analytic
function and in particular of a polynomial in a compact of C. We extend the real exclusion algo-
rithm to a Jordan curve and give a method which excludes discs without any zero. The result
of this algorithm is a set of discs arbitrarily small which contains the zeros of the analytic func-
tion.
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0. Introduction

Let f be a function analytic at a point aeC, the set of complex numbers, such
that f(a) # 0. The purpose of this study is the localization of the zeros of f ina com-
pact set E: this paper is the announced continuation of [5] where we only approxi-
mate the real roots of a polynomial. The boundary of E is supposed to be a Jordan
curve. We know that the set Z of the zeros of f is a finite set inside E. In order to
localize Z, we define in section 2 an exclusion function m(z) which verifies the fol-
lowing properties:

() zeZiffm(z) =0.

(2)Iff(zo) # Othenf(z) # Oforeach z € B(zg, m(z)).

Furthermore, this function verifies Lipschitz and E.ojasiewicz conditions: this
study, similar to [5] with specific differences for the analytic case, is the purpose of
section 2. The existence of such an exclusion function permits us to give in section
1 the general algorithm: the fundamental difference with [5] is the strategy used to
exclude the open disc B(zg, m(zy)) of the compact set E since we cannot use a nat-
ural order as in the real exclusion algorithm. Because of this, we introduce the
exclusion along a path in section 1.1. In section 3 we deal with the multiplicity of the
zeros and separation of two zeros: the idea is to find another exclusion function
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associated with f when m(z) is small enough. Sections 4 and 5 are devoted to the
practical computation of m(z) and to the estimation of the remainder set Z, which
approximates the zeros with a given accuracy e. We show in section 6 that this set
Z. is obtained with a number O(Log(1/¢)) of steps (i.e. number of computations of
the exclusion function). We illustrate this study with numerical examples in section
7. The method presented here is different from those of [2] or [6] in two points:

(1) The definition of the Weyl exclusion function: unfortunately, as is shown in

[5], the numerical behavior of the Weyl function is bad near the zeros.
(2) The Weyl algorithm is based on dichotomy.

1. Description of the exclusion algorithm

Qur aim is to localize the roots of an analytic each one f in a compact set E. We
suppose that the set E is a given union of sets 4; the boundary of which is a Jordan
curve. We first give the general form of this algorithm, each point will be discussed
inmore detail afterwards.

Inputs: >0, Z, = §, E = UL, 4;, nis the number of connected components of E.
Whilern>0do
begin
Choose zp € boundary of E
Compute m(zp), the exclusion function of f at zg
If m(zo) > ethenrg := m(zy) elsery := €, Z, := Z(Zy, ro)
Compute the connected components of the set E — B(zg,r9), and hence a new
value for n.
end

PROPOSITION 1.1.
This algorithm stops in a finite number of steps.

Proof

In other words, this algorithm consists in constructing a strictly decreasing
sequence of compact sets Eg = E, E;;| = E; — B(z;, r;) where z; lies on the boundary
of E;. Since the radii r; >¢ and the z; lie on the boundaries of the sets E;, we have
N;E; = 0. Hence for some index p, the set E, has only one connected component
which is included in the disc B(z, ¢) for every z belonging to the boundary of E,.
Consequently E,;; = ( and the conclusion of this proposition follows. O

1.1.EXCLUSION ALONG APATH

We now describe how we compute the connected components of the set
E — B(zg, rp). In other words, how to obtain fig. 2 from fig. 1.
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Fig. 1.

We first make precise the notation and hypotheses. Without loss of generality
we can suppose that E is a connected compact subset of C the boundary of which is
a given path v. By path, we mean a finite sequence of curves vy = {71, ...,v}. Each
curve +; is defined on an interval [a;, ;] = R—C and is assumed to be class C'.
Furthermore, we have v;(b;) = ¥i+1(@i+1), 1 <i</—1. All the paths considered
here will be closed, i.e. v(d;) = vi(a1) and simple, i.e. v(r) = ;(s) & i=j and
r = 5. By the Jordan theorem [1] a simple closed path «y separates C into two con-
nected components and we denote by Jnty the compact one. We define an ordering
on the path+y. Let y and z belonging to y so that y = ~;(r), z = 7;(s). We say

i<j ifi],
yj7z<:> r<s ifa,-<b,-} 1fl=j
r=s if a;>b;

Also, if y <, z, ;4 is the path included in +, where y is the initial point and z
the end point. The meaning of notations such as ), . - . ., is clear. We use the nota-
tion (see [1]) W(z,~) for the winding number of the path - with respect to z. The
union of two paths |, ; and wy, ;) is denoted by x,,) U wpy 2. The complement of the
sub-path <, in v with the initial point x and the end point y is denoted by

Y= ’y[x!y]'
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Fig. 2.

Let By be the open disc of radius ro >0 centered at zg = v;(a;), Cp the circle asso-
ciated with By. Assume E is not included in By and the number of intersection
points of Cy with the curves +; is finite. This is the case when the curves +; are
rational. We consider the points z; e y N Cp, 1 <i<2p, verifying:

(1) if xe~yissuch that x <, z;and x5 = Bo (r€Sp. Vxz{ N Bo = 0), then there exists

yevsuchthatz <, yandy,, ,( N By = B (resp. v, < Bo);

(2) z1 <y 22 <y ... <y 22p. Weshall use the convention z; = zj=g(3p11)-

Observe that the number of such points in the intersection of «y N Cy is even since
the path v is simple and closed. We only take into consideration the intersection
points of this class: see remark 1.6. Furthermore, by the definition of the points z;
we have 7, , 2,; N Bo = 0 and <y, ,..,] = Bo, 1<i<p. Finally we give the follow-
ing

DEFINITION 1.2

The arc of circle sub-tended by the sub-path v, ;. is the arc of the circle
denoted by wy, -,,, included in Cp which verifies:
(1)if v, z,,,) N Bo = @ then:

W(x, Viznzia1) Y w[z,ﬂ,z,]) = 0, for every xe By .
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(2)if 9, z,,,| = Bo there are two cases:
(2.1)if z;y1 ¢ wyg,_, 5 then

W (X, Yz zia1) Y Wizian,z) = =W 0 Vg 2 Y Wizzia))»
foreveryxe Jr?t('y[,,,z”l] Uwyg,,z)) andye thl’t('y[z,_1 2] Y Wizz)s
(2.2)if 241 €Wy, ) then
W (X, Vziziet] Y Wizas,z)) = WO Yoz Y Wiznzi)) »
foreveryxe Jr;t('ylz,,zm] Uwy,,z)) andye Jr;t('y[,,_, 2] Y Wizz])-

This formal definition corresponds to figs. 3, 4 and 5 where 7, ,,,,) is denoted by ;.
In the next theorem we characterize the sets E — By which are connected.

THEOREM 1.3

Let E be a compact connected set whose boundary is a simple closed path .
Let By, Cp and the points z;, 1 <i<2p, be defined as previously. The set E — By is
connected if and onlyif for alli, 1 <i<2pwehave

’Y[Z],Z,.H] ﬂ BO = 0 or w[l,‘,ZH.l] c E . (1)

To prove this theorem, we first give two lemmas.

LEMMA 1.4
Let p>1 and E be a connected set. If w);, ;.. N W)z 5,y = @ for every i # j then
the set E — By is not connected.

Proof

Suppose w,, (N E = @ holds. We deduce from this that wy,, , ., < E and
Wiy, 2| N E = 0. In particular, the arcs of circle wy, 5, and wy,, , z,,( are separated
by the arcs of circle Wz 21| and Ufﬁ gzw[z,.,m[. Consequently the two sets
Int (Y, z) U Wiz, ) and Int(Yizyoy 201 U ""IZzp-nzzp]) containing a part of the set E — By
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Fig. 4.

are separated by the disc By containing itself the set E N By. This fact proves that
E — Bjisnot connected.

To prove that wy,, ,,(NE =0, let us assume the converse. By the hypothesis
there is no point z; lying in w, ,,|. Hence wy,,, ;,| = E. Let y€wy,, ., and consider
the halfline D = {y + r(y — zo) : r>0}: since E is a compact set, we have D Ny # 0.
Hence there exists ze D N such that ||z — y||<[lx — y|| for every xe D and x¢ E.
We can now consider the index 7 such that z; <, z <, z;y1. Wehaveyy, .., N Bo =0
since by definition of the points z;, the only points of intersection of Cy and 7, ,,,]
arez;and z;,; and since x ¢ By.

Hence the segment [y, z] is contained in the set Jr(z)t(fy[z,.,,m] U Wp,,,,z))- By defini-
tion 1.2 we conclude that wy, . < wy,,, -}, Which gives a contradiction to the
hypothesis. This proves the lemma. O

Fig. 5.
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LEMMA 1.5

Let p>1 and assume the assertion (1) of the theorem. If E is a connected set
there exists some index isuch that E — By Jnt(y[zhz,“] U Wzipr,z) -

Proof

Define i=min{k : w5, W,z 7 0}. We are going to show that
Wiagzin] S Wizizian] for every k # i. With this in view, let us suppose that Cy — Wizy 2]
contains some point z;. In particular, we consider the two points z; and z; lying in
Co — Wz, z,,,) Which are respectively the “nearest” z; and z;,1. Suppose that z; <, z;.
The arc of circle 8, ) (respectively &, ,,,)) contained in Cp — wy, z,,,) With initial
point z; (resp. z;) and end point z (resp. z;+1) has an empty intersection with E.
Since the points zx_; or z;4; belong to wy, |, the arcs of circle wy,_, 5] OF Wi 4,
sub-tended by the respective sub-paths vy, | 7] 01 7z, 5, contained in the disc By do
not verify the assertion (1). Consequently Cyp — wlz;,zi+1) N E = @ and the lemma
is proved. O

Proofof the theorem

In the case p =1 it is easy to see that E — By is connected and formula (1)
holds. Let p>1. We first show that if there exists some i which verifies
Vizizer) N Bo © E and wyy, -,,,) ¢ E, then the set E — By is not connected. There can
be two cases. In the case where Wiz zia] O E = (), the two sets Jnt(y[z 1,7 Y Wizz])
and Jnt('y[z,H zava) Y Weziea, z,1]) containing part of the set E — By are separated by the
disc By containing itself the set £ N By. Hence E — By is not connected. In the case
where wy, ;,,,) N E # 0 there are two consecutive points, say z; and zi41, on <y such
thatwy, ,,,,) N E = 0 and wy, ,,,,] € W, z,,,)- Substituting i by k, we then come back
to the previous case.

We proceed by induction to prove the converse. Denote by E, a connected set
which has p points of intersection with By and suppose that if formula (1) holds for
1<i<p— 1then E,_; — By is connected. Applying lemma 1.5 to a set E,, we con-
sider the index i such that wy, ;,.,| < Wy, 7, for allk # i. We have wy,_, -3 < Bo. We
can now construct a simple path § which separates the set E, into two sets E; and
E,_isothat:

(1) both the Pomts z;_y and z; belong to E, and not to E, i,

(2) the sets E; and E, i forma partition of the set E — 4.

By the induction hypothesis, the set E,_; — By is connected as well as E, — By since
E, N By = {z;, zi+1}. Hence E, — By is connected and the theorem is proved. O

We now describe the boundary of the set E — By between two consecutive points
z; and z;;1 in . For this purpose we introduce the permutation ¢ and its inverse
o~ ! which is defined by

Z5(1) 3G Z6(2) 2Co - - 3G Za(2p) -
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We adopt the following convention:
o(i=2p) if 2p<i,
o(i)=< o(2p+1i) ifi<l,
o(i) otherwise.
Under these conditions we have

za(r'(i)—l) jco Z;i -—<Co Za.(g-l(i)+1), for all 1<l<2p .

The boundary of E — By is composed successively of’
(1) asub-pathvy,, , -, 1 <i<p.
(2) an arc of circle wy,, ;) where z€{Z,(;-1(1)—1), Zo(o-1 () +1} Such that wy,, 4 < E,
for1<i<p.
We now describe in pseudo language code the algorithm of exclusion along a
path which computes the boundary of E — By:

Inputs: y1 = {y11, - . . 711} sSimply closed path such that Inty := E
zg := y1(a1), Cp arc of circle of radius ro >0 centered at z.

Begin
Compute {zy,...,25} =yN Gy
ifp =0thenn:=0 Ec By
else
begin
Computecando™!,n:=0
Whilep>0do
begin
i=1j:=pni=n+1 the number of connected components
increases by one.
Whilej # 1do
begin
Yni = Vzi,zi01]

Computeje{o(c~' (i) — 1),0(c7'(i) + 1)} sothatwy,, ; < E

Tni+1 = w[ZH.l ,Zj]

z={z1,...,2} — {zi,zit1}, Wwe exclude the points z; and z;;; from the
list.
p:=p—2
i:=j we continue with the point z; whilej # 1.
end
end
end

end
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Remark 1.6

If there are double points in the intersection of ¥ N Cy it is sufficient to divide
the boundaries of the connected components of E — By correctly in order to obtain
Jordan curves.

Remark 1.7

In practice, if we take circle arcs for the +;’s, 1 <i</ which initialize the pre-
vious algorithm, we proceed in the following way. Such a circle arc, say Vianbi]> 18
represented by six parameters: center g, radius r, argument (g; — ), argument
(bi — a), W(a, C(a, r)) and position of E with regard to the disc B(a, r). To compute
the intersection N By, we first test whether By N C(a, r) # 0. In the affirmative,
we compute this intersection, say {x,y}. We next determine whether or not these
points belong to vy, 5, and we order the points x and y in . In view of that, we have
the following:

LEMMA 1.8

Introduce the notation: n(u,v) = (u —v)/||u — v||. Also define u x v = ujv;
—uyvy and u - v = uyv; + uv2. We have

(1) xe~la;, b)) iff (n(a;, b;) % n(a;, x))W(a, C(a,r)) <0.

(2) Letxand ybyinyy, s, : x X, yiffn(a;, b;) - n(a;, x) <n(a;, b;) - n(a;, y).

The proof of this elementary lemma is left to the reader.

2. The exclusion function

Denote ||z|| the Euclidian norm in C and B(z,r) the associated open disc of
radius r centered at z. Let f be an analytic functlon and R, the radius of conver-
gence of the power series $°5° (f® (a)/k!)(z — a)*. Let E be a compact set con-
tained in B(a, R,) and z; an element of E and consider the power series in ¢ defined
by

®)(
M(z, 1) = If @)l - lef el

We deduce from [1, p. 410] that a lower bound of the radius of convergence of
the power series M(zg,t) is R, — ||zo — a||. Further, M(z,?) is concave, strictly
decreasing with respectto ze [0, R, — ||zo — a||]. This fact leads to the following defi-
nition for the exclusion function:

DEFINITION 2.1
Let f be an analytic function and a, R,, E defined as previously. The exclusion

function associated with an analytic function f is the function from E to R defined
by
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= [ Ramle—al if M(z, Ra - |}z — al]) 0,
m(z) =
the positive root of M(z,7) otherwise.
We then have
PROPOSITION 2.2

The exclusion function verifies on the compact set E the following properties:
(1ym(zo) = 0ifff(z0) = 0;

(2)if f(zo) # Othenf(z) # Oforallze B(zg,m(zo));

(3) m(z) is continuous.

Proof

Using successively Taylor’s formula at the point z and the triangle inequality
we obtain f(z) > M(zy, ||z — zo||), and assertions 1 and 2 follow easily. To prove the
continuity, we first suppose that M(zy, R, — ||z0 — a||) >0. Since M(z, ¢) is continu-
ous at z, for every €>0 there exists n such that zeB(zy,n) implies
M(z,R, — ||z0 — a||} >0. So, we can choose 7 such that M (z, R, — ||zo — a|| + ) >0
by continuity of M(z, t) in t. Further, we have

Ri—lzo—all - n<Rs—|z—al|<Ra - ||z0 — al| + 7.
The strictly decreasing nature of M(z, ¢) implies that
0<M(z,Rs — ||z0 — al| + 1) <M(z,Rs — ||z — al|) <M (z, Ry — ||z0 — a| — 7).

Consequently for every e>0 there exists n so that m(z) = R, — ||z — a|| for all
z€ B(zq,n). The continuity of R, — ||z — a|| follows.

We now study the case M(zy, R, — ||zo — a||) <0. The arguments used for the
continuity and strictly decreasing nature of M(z, t) allow us to say: for every € >0,
there exists 7 such that z € B(zq, n) implies

M(z,m(zq) + €) <M (z9,m(z)) = 0<M(z,m(z) — €).
If ze B(zp, 1) there are two cases. First, if M(z, R, — ||z — a||) >0 then we have
M(z,m(z0) + €)<0<M(z,R, — ||z — a||) < M(z,m(z0) — €),

by definition of the radius of convergence of M(z,t). Next, if M(z, R, — ||z — a|)
< 0then we have

M(z,m(zg) + €) <0 = M(z,m(z)) <M (z,m(zp) — €) .

Applying the strictly decreasing nature of M(z, t), we conclude that m(z) in both
cases is continuous. This proves the proposition. O

In fact the exclusion function m(z) satisfies a Lipschitz condition:
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PROPOSITION 2.3
Let zy and z; in E be such that M(z;, m(z;)) M (z;,m(z;)) >0. We have

Im(z1) —m(z)|<|lz1 — 2] -

Proof
If m(z;j) =R,—|zi—a| for i=1, 2, it is obvious. In the case where
M(z;, R, — ||z — a||) <Ofor i = 1, 2, the proof is based on the following lemma:

LEMMA2.4
Let zin E be such that M(z, R, — ||z — a|) <O0.

(1) If there exists k such that f¥)(z) = 0, then for each direction w e C, the exclusion
function admits a right and left directional derivative in the direction w satis-
fying

£

V() - zwkl ) ml(2)
m;(Z;W)= ,
Ilf") @l -1 (
Z(k_1 @)
where
)
L i fB(z) £0
Wy = reOEI for each k=0.
:I:l else,
[[wll

(2)Iff®)(z) # 0for each k, then the exclusion function is differentiable. The expres-
sion for m'(z) is deduced from the previous expression.

Suppose that this lemma holds. The mean value theorem applied to the direc-
tional derivative of m(z) in the direction z; —z; implies that there exists
z=0z; + (1 — 0)z, with0 <6< 1 such that

m(z1) — m(z;) = {m.(z;21 — 22), 21 — 2) .

Since by the previous lemma ||m(z; z; — z3)|| <1 we conclude that |m(z1) — m(z3)|

<||z1 — z2|| and proposition 2.3 is proved. ]
Proof oflemma 2.4

We deal with the identity M(z,m(z)) = 0 and proceed as in [S] but with direc-
tional derivatives and analytic functions. )

We now prove a Lojasiewicz inequality.
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PROPOSITION2.5
Let E be a compact set contained in B(a, R,) of the analytic function f. Then
there exists >0 such that

ad(z,Z)<m(z)<d(z2,2),
foreachzekE.

The background of this proposition is

LEMMA 2.6
Let z; be a zero of f with multiplicity p. We have

fim %)

=2/r_1.
22 ||z — zo|

On the other hand, m(z) possesses right and left directional derivatives at z; in the
direction w, which are equal to

w
ml (z0;w) = £(2'7 — 1) Wl
Proof
This lemma is established in the same way as in [5]. O
Proofof proposition 2.5

Let us consider the function ¢(z) defined by

m(z)/d(z,Z) if xeE—~Z,
9@ =\ qur 1 if xeZ.

As this function is continuous and never vanishes on the compact set E, we deduce
the assertion of the proposition easily. O

Remark 2.7
If f is a polynomial of degree d we can replace the compact set E by C. In this

case, R; = oo and

12

z

lim =2l/d _

)
izl o0

as is shown in [5]. Since limy-, o, 21/4 — 1 = 0, we justify a posteriori the fact that
the exclusion function vanishes on the boundary of the disk of convergence.

An example of the exclusion function is the following: P(z) = z2 +z + 1 with
roots (—1 +/31)/2, (=1 — v/3I)/2. Then
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M(x,y,1) = (¢ = P +x+1)*+ Qxy + )2 = (2x +1)* +7) 2 - 2,

where we have substituted z by x + yI. We obtain the surface as shown in fig. 6.

3. Separation and multiplicity of zeros

We can define the exclusion function m,(z) associated to f?)(z) by introducing

the power series

o |1 £(k+p) 5
My(z,t) = IV(P)(Z)” _ Zwtk
k=1 :

Further, if we are sufficiently near to a zero, we can determine the multiplicity p
numerically by computing the successive exclusion function my(z) while my(z) is

small enough. More precisely we have

et
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0.4

Fig. 6.
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PROPOSITION 3.1
Let e>0 and 2y be a zero with multiplicity p. There exists >0 such that for all
z € B(zp,n) wehave

mi(z) 2= _ 1 ,
~ I<igp-1.
m(z) 21/p-1 , Isisp -l
Proof
This is a direct consequence of lemma 2.6. a

Consequently, we can determine numerically the multiplicity of a zero. Since
the application i = [2/¢—1) — 1]/[21/P — 1]is strictly decreasing we compute

= max{i: (2) < 2670 — 1
P= l'm(z)\ 21 [

when m(z) is “sufficiently small”.

We now deal with the separation of zeros. Let z be a given zero, the problem is
to find a disc centered at zy which does not contain another zero of f. To this end,
we introduce the power series

(pz e+ (7
O va(p+k)||,k

and we denote by /,(z) the associated exclusion function. This is justified by the fol-
lowing:

PROPOSITION 3.2
Let zo be a zero of f of multiplicity p. We have

lz1 — zo||>1,(zo) for every zero z; # z.

Proof
If ||z; — zo|| > Ra — ||z0 — al, it is obvious. Let z; # z be some zero of f such
that z; € B(z9, R, — ||z0 — a||). By Taylor’s formula, we have

) (o+) (7
0=7ie) =+ p(!ZO) —a)f+ Zf(p++ko — 2.

Hence,

“|lz1 — 2|’ = 0

?)(z0) | =fEHH(z0) k
‘/ At R @

Since 2z # z;, we can write
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1P )l _ i) Z [aalc) P
p!  (p+RY w+it T
This implies that L,(zy, ||z1 — zo||) <0. We conclude that ||z; — zp|| >,(z0) and the
proposition is proved. O

In the particular case of the localization of real roots of a polynomial of degree
d, itis easy to see that [,(zo) >m,(zo).

We give the following example: P(z) =z% —1, M(z,t) = |22 — 1| — 2|z| —
M (z,t) = 2|z| — 2t and Li(z,t) = 2|z| — t. We have m;(+1) =1 and 4 (£1) =2.
See also numerical example 1.

4. Practical computation of the exclusion function and of Z,

When we deal with a power series, the coefficients are often the result of another
computation. We have the following property concerning the stability:

PROPOSITION 4.1

Let My(x,t) and M,(y, ) be the exclusion polynomials associated respectively
with f and g at points x and y and my(x) and m,(y) their respective exclusion func-
tions. Let e >0 be given. Then we have
€

max, [|g® ()]

ly = *lI< = |M,(y, ms(x))| <e.

Proof
We only study the case where My(x, R; — ||x — a||) <0. We first write

®
My(y,t) = |lg(y) Z llg ()’)” p

g x)
[0 -0)- 55
=0 1l
We collect the terms with index i = 0 and use the triangle inequality. We obtain:

Mg(xa t) - ”y - x”R(x) <Mg(y7 t) <]‘f[g(-x’ t) + ”y - x||R(x) )

Zg( +) ()’) x)i

i=0

‘tk.

where

S0l

;&Elﬁ(” % +Zk‘

Let us consider G(x) = max; g (x). We write:
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R(x) < G(x)e ™ + G(x)el? (e — 1) = G(x)el*lef,

For 0 <s<1, we have 0 <sef <se. We substitute ¢ by my(x) in the previous inequal-
ity and we obtain the inequality of the proposition for every y such that

€
||y—x||<mx—)- -

Let us suppose that the calculation of £*)(z) /k! is a solved problem. We have to
calculate M (z, t). For e >0 we deal with

_ n ®)(,
Ma(z,1) = |If (2)]| - Zwtk
k=0 :

instead of M(z, t) such that [M,,(z, t) — M,(z, t)| <e. To compute m(z), we adopt

the following method when M (z, R, — ||z — a|) <O0:

(1) A dichotomy method is first used until we find a value 7 which verifies
M(z,7) <0. This method is initialized with ¢ = min(1, (R, — ||z — 4])/2).

(2) Next we use the Newton method following the process described in [5].

The principal reason of this is that the intersection of the tangent to the curve
of the equation s(¢f) = M(z, t) at the point (¢, M(z, t)) with the x axis can be greater
than R, — ||z — a|| when the Newton method is initialized with a value of ¢ such
that M(z,t)>0.

The set Z, is a union of discs B(z,m(z)) with m(z) <e. Each disc can contain a
root of f. We first discuss the theoretical estimation of Z.. We have the following
estimation:

PROPOSITION 4.2
ZcZ.cZ+ B(0,2¢/a).

Proof
Let ye Z,. Then there exists zy such that m(zg) <e and y € B(zp, €). The Lojasie-
wicz inequality and the fact that m(z) is Lipschitz imply

ad(y,ZY<m(y)<m(z) + ||y — zo|| <2e.

The proposition follows easily. O

But this localization requires a great number of discs to describe only one root
of f: it is better to have a small number of discs for each root. In view of this, we
proceed in the following way. Suppose that Z. = UL_ B(z;,r;) at one step of the
algorithm. Let z be such that m(z) <e. We collect the disc B(z, m(z)) with any disc of
the previous union if for some i we have r; — e <d(z, z;) <r;: then we replace in Z,
the disc B(z;, r;) by the disc
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B(r(z; — 2),7)

where

_rit+d(z;,2) +e o
r= > and T_d(z,z,-)'

Obviously we do not count the disc B(z, m(z) if B(z,m(z)) = B(z;,r;). If for every
1 <i<pwehaved(B(z;,r;), B(z,€)) >¢, then we define B(zp41,7p41) = B(z,€).

5. Complexity

The complexity of this algorithm is the estimation of the number of steps neces-
sary to exclude entirely the initial set E. In other words, each calculation of the
exclusion function represents one elementary step of the algorithm. But the direct
study of the complexity with the exclusion function seems to be difficult. Since we
have the inequality

ad(z,Z)<m(z),
we deal with the function ad(z, Z) instead of m(z). Further, the function m(z) is
equivalent to (21/7 — 1)d(z, Z) in a neighborhood of a zero zp with multiplicity p.

Consequently, the complexity of the exclusion algorithm using m(z) and that using
ad(z, Z) is the same size.

THEOREM .1
Let B(a, p) be a disc containing d roots of the analytic function f. An upper
bound for the number of steps in the exclusion algorithm is equal to

log=

d T | +1 ([ 2”]+1>+0(1),
arctan log 8

V4 =al

with

To prove this theorem, we first establish

LEMMAS.2
Let abearoot of f and 3 be defined as in the previous theorem.
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C(zz,ar)

C(z,,ar)

Fig. 7.

(1) An upper bound for the number of discs which cover the circle C(a, r) in the ex-
clusion algorithm using ad(z, Z) is equal to

s = il a +1.

arctan ——
V4 — o?

(2) Thecircle C(a, fr) is included in the set U_, B(z;, ar), where
71€C(a,r), zeCla,r)NC(zimi,ar), zi1 =<c(ay) Zi-

(3) Let wi, be an arc of circle of the boundary of B(a,r) — U{_, B(z;, ar). Then we
have

I =yl = aBr.

Proof
Let C(zi,ar) and C(z3,ar) be two circles such that z;eC(a,ar) and

zy€ C(z1, ar) N C(a,r). By considerations of elementary geometry we have
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(Dlla = z)|* = la = z1|* — ||z — z1||*, since the triangle azz, is right-angled. Thus
la —z|| = ry/1 — &?/4,since ||a — z|| = rand ||z — z1|| = ar/2.

(2)||z = x|| = V/3ar/2, since the triangle z; 2, x is equilateral.
BG)la—x| =lla~zl - llz - x|l = r(v/1 - o?/4 = V30/2).
Then we have
tan = 121 =2l L
2 " fa—z2l " Va-a

where 0/2 is the angle zaz;.
Consequently an upper bound for the number s of discs B(z;, ar) which cover
the circle C(a, r) where the z; are defined as previously, verifies 27 < 56, i.e.

o — |1

arctan
V4 - a?

Since r; = ||ax|| is the maximum of the distance between the center a and the bound-
ary of the set B(a,r) — B(a,r) NU_,B(z;, ar), it follows that the circle C(a,r)
c UL, B(zi,ar). To prove the last point of the lemma, we write
(= »)/211* = ||l21 — x||* — ||z1 — hl|*, where k is the middle of the segment xy. An
easy computation shows that ||z; — k|| =1 (a? + 1 — 8%)r. Hence

- — A%)2 A A 2
”xzy“z=<az_(a2+14 ﬂ)),zz gt — o 1+24a +26°+22°6°

But by definition, 3 is the solution of the equation §*+ o* +1 —2a% —24?
—a?B? = 0. 80, ||x — y|| = ofrand this lemma is proved. O

LEMMAS.3
Let 5 be as before. An upper found for the number of discs which cover the set

B(a,r) — B(a, €)is given by
loge
e

log ’

Proof
The consequence of point 3 of lemma 5.2 is that we can replace the boundary of
B(a,r) — U_B(z;, ar) by the circle C(a, fr) in the following step of the exclusion
algorithm. Then we define the sequence of circles C(a, r;)
ro=r, ri=pr..

Anindexisuchthat r; < e verifies
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loge
> |Lo8, .
l [logﬂ] 1

Applying part 1 of lemma 5.2, we find the desired upper bound. O

Proofof the theorem

Denote by a;, 1 <i<d, the zeros of the analytic function in the disc B(a, p). There
exists a finite number N which does not depend on ¢ (“sufficiently small”’) such
that the set E — UY | B(z;, ad(z;, Z)) has d connected components 4; with the prop-
erty that d(z, Z) = ||z — ;|| for every ze 4;, 1 <i<d. We claim that the number of
steps needed to exclude all the 4;’s is less than the number of steps needed to
exclude separately the discs B(a;,2p) with the exclusion function ad(a;,Z),
1 <i<d. We multiply the upper bound of the lemma by 4 and we substitute r by 2p

to obtain the desired result. O

Remark 5.4
The complexity of the computation of the exclusion function m(x) has been stu-
died in [5]. We recall that this complexity is O (loglog 1 /¢).

We conclude this section by giving the evolution of the exclusion algorithm of
theset Z = {1 + I, —1 + I, —I'} with the exclusion function d(z, Z) /2 and the initial
set E = B(0,2). For each figure we show the set E — By and the disc which will be
excluded at the following step (see fig. 8).

6. Numerical examples
We give for each of the examples the number of steps nit, the ratio m(z)/m(z)
which permits to determine the multiplicity (proposition 3.1) and the positive root

I,(z) as in proposition 3.2 which is called “separation” in the tables.

EXAMPLE 1
f(z) =2 = 1,E = B(0,1.5),e = 0.1 We obtainnit = 37 (see table 1).

EXAMPLE2
f(z) =2'° — 1, E = B(0, 1.5),¢ = 0.1. We obtain nit = 665 (see table 2).

Table 1

Results for example 1.

Root Disc my/m Multiplicity Separation
-1 [—0.999,0.0320,0100] 31.72 1 1.999

1 {0.989,0.008,0.150] 77.45 1 1.979
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step 97 step 98

Fig. 8. Continued.

EXAMPLE3

Let P(z) = z8 — 5/2(1 + 2" + (1 + 2I)26 +3/4(=9 + I)2°> +(21/41 + 103/16)z*
F(=1/321 — 25/32)2% + (21/4 — 13/161)22 + (~29/16 — 43/161)z + 1/2I — 3/8,
where the roots are 1 +1,1/2,—1/2—I,1/2 + I/2 with respective multiplicities
3,2,2,1. Wetakee = 0.01, E = B(0,1.5). We obtain nit = 707 (see table 3).

EXAMPLE 4: ZEROS OF THERIEMANN ZETA FUNCTION
We deal with the function &(s) = 3 72y an(s — 1/ 2)% 3], where

1 © d[x* 2y (x)] -1/4 2%
/1 x~*(logx)“dx.

2% = 722 k)] dx
Table 2
Results for example 2.
Root Disc my/m Multiplicity Separation
[1,0] [1.0040,0.0025,0.0164] 17.5 1 0.1475
[0.809,0.587] [0.8119,0.5916,0.0194] 17.4 1 0.1475
[0.3090,0.9510] [0.3073,0.9562,0.0172] 15.5 1 0.1475
[—0.3090,0.9510] (—0.3098,0.9553,0.0171] 19.2 1 0.1475
[—0.8090,0.5877] [—0.8120,0.5890,0.0192] 25.0 1 0.1473
[-1,0] [—1.0024, 0.0003, 0.0205] 33.2 1 0.1472
[—0.8090, —0.5877] [—0.8148, —0.5908, 0.0168] 12.8 1 0.1478
[—0.3090, —0.9510] [—0.3120, —0.9573,0.0169] 12.3 1 0.1479
[—0.3090, -0.9510] [0.3120,—0.9551,0.0194] 16.5 1 0.1476
[0.8090, —0.5877] [0.8125, —0.5882,0.0190] 23.2 1 0.1473
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Table 3

Results for example 3.

Root Disc my/m Muitiplicity Separation
1+171 [1.0133,1.010,0.0627] 1.54 3 0.2141
-1/2-1 [-.5042, -1.0077,0.0380) 2.28 2 0.2538
1/2+1/2 [0.5005,0.4966,0.0149] 34.72 1 0.2064

1/2 [.0054,.5006,.04020] 2.38 2 0.1827

The zeros of the function £ are the zeros of the Riemann zeta function. The first
zeros are 14.1, 21.0, 25.0, 30.4, 32.9, 37.5, 40.0. We search for the zeros on the line
s = 1/2 4 Iu. In this case, the ay are the result of a computation. This has a great
influence on the computation of m(u). We give the evolution of the exclusion algo-
rithm on the real axis with the function £(u) = Z,;";O(—l)kazkuz" as described in
[5] (see table 4). A forthcoming paper will be devoted especially to computation of
the zeros of the zeta function by this algorithm.

The zeros 14.135 and 21.002 are localized.

EXAMPLE 5: ZEROS OF THE BERNOULLI POLYNOMIALS
We compute those polynomials by the formula

We deal withn = 30, 1.e.

k=0

i(Z)Bk(x) =l

Table 4

Evolution of the exclusion algorithm in example 4.

u m(u) u m(u) u m(u)

0 5.541094925 14.13473433 0.0000082519 14.67546328 0.540734211
5.541094925  2.961907860 14.13474258 0.000016 3520 15.21619749 1.081354598
8.503002785  1.725121011 14.13475893 0.0000329140 16.29755209 1.487160247
10.22812380  1.250354000 14.13479184 0.000066 4007 17.78471234 1.182604074
11.47847780  0.962713885 14.13485824 0.0001327270 18.96731641 0.793887543
12.44119169  0.732775727 14.13499097 0.000263 8764 19.76120395 0.568611853
13.17396742  0.519239632 14.13525485 0.000527 4647 20.32981580 0.388665300
13.69320705  0.306589983 14.13578232 0.0010556782  20.71848110 0.215699989
13.99979703  0.117538907 14.13683800 0.0021124943 20.93418109 0.078586404
14.11733594  0.017048375 14.13895049 0.004224 5799 21.01276750 0.007327349
14.13438432  0.000341435 14.14317507 0.008449 3859 21.02009485 0.003309674
14.13472576  0.000000658 14.15162446 0.0168978044  21.02340453 0.011928911
14.13472642  0.000000137 14.16852226 0.0337959 889 21.03533344 0.017290093
14.13472656  0.000002104 14.20231825 0.0675919288 21.05262353 0.032761343
14.13472867  0.000001670 14.26991018 0.135184 4911 21.08538487 0.064820241
14.13473034  0.000003984 14.40509467 0.270368 6046 21.15020511 0.132753562




86 J.-C. Yakoubsohn/ Approximating zeros of analytic functions

8615841276005 23749461029x? + 78132595905x*

B3o (x) =

14322 2 2
102818379585x5  72484065225x% 31795091601x1°
- 2 + 2 - 2
9509268925x!2  2062720845x4 33931957516
2 - 2 + 2
43785215x18  4552275x2° 390195x2% 28275x%*
- + — +
2 2 2 2
6 8
_182;x2 +1452x2 —15x% + X0,

Figure 9 gives the zeros with the separation balls.

EXAMPLE 6: ZEROS OF THE CURTZ POLYNOMIALS
These polynomials are studied in [7] and are defined by
n—1 i n
(=1) (=1)
Py(x) =0, Py(x)= x;mﬂ._i_l(x) L

3
= O
2
J
= . eS|
3 =
(] (um}
= 2 —
2 o o
=] (xn]
-1
(| (]
| 2
3 3 =3

Fig.9.
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Fig. 10.
The zeros of

Pso(x) =0.032258 — 0.257741x + 1.388494x> — 6.044021x° + 22.587747x"
— 74.593209x° + 221.224233x5 — 595.104901x7 + 1461.373299x®
— 3289.577029x° + 6805.540776x'° — 12958.719750x"!
+22723.440458x'2 — 36685.638536x'% + 54477.738916x"
— 74291.510330x'5 + 92822.409152x'6 — 105934.236198x"7
+ 110004.087856x'% — 103436.769937x"° + 87546.960682x%°
— 66205.485475x2" + 44322.453992x% — 25963.268849x%
+ 13108.652447x2* — 5591.625x%° + 1960.275x%° — 542.5x*
+111.166667x% — 15x*° + x*°

are given with their separation balls in fig. 10.
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