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We give a practical version of the exclusion algorithm for localizing the zeros of an analytic 
function and in particular of a polynomial in a compact of C. We extend the real exclusion algo- 
rithm to a Jordan curve and give a method which excludes discs without any zero. The result 
of this algorithm is a set of discs arbitrarily small which contains the zeros of the analytic func- 
tion. 
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O. In t ro d u c t i o n  

L e t f  be a function analytic at a point a ~ C, the set of complex numbers, such 
tha t f (a )  ~ 0. The purpose of this study is the localization of the zeros o f f  in a com- 
pact set E: this paper is the announced continuation of [5] where we only approxi- 
mate the real roots of a polynomial. The boundary of E is supposed to be a Jordan 
curve. We know that the set Z of the zeros o f f  is a finite set inside E. In order to 
localize Z, we define in section 2 an exclusion function m(z) which verifies the fol- 
lowing properties: 

(1)z~Ziffm(z) = O. 
(2) Iff(z0) ~ 0 thenf(z)  ~: 0for eachz ~ B(zo,m(zo)). 
Furthermore, this function verifies Lipschitz and Lojasiewicz conditions: this 

study, similar to [5] with specific differences for the analytic case, is the purpose of 
section 2. The existence of such an exclusion function permits us to give in section 
1 the general algorithm: the fundamental difference with [5] is the strategy used to 
exclude the open disc B(zo, m(zo)) of the compact set E since we cannot use a nat- 
ural order as in the real exclusion algorithm. Because of this, we introduce the 
exclusion along a path in section 1.1. In section 3 we deal with the multiplicity of the 
zeros and separation of two zeros: the idea is to find another exclusion function 
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associated w i t h f  when m(z) is small enough. Sections 4 and 5 are devoted to the 
practical computation of m(z) and to the estimation of the remainder set Z, which 
approximates the zeros with a given accuracy e. We show in section 6 that this set 
Z, is obtained with a number O(Log(1 /e)) of steps (i.e. number of computations of 
the exclusion function). We illustrate this study with numerical examples in section 
7. The method presented here is different from those of [2] or [6] in two points: 
(1) The definition of the Weyl exclusion function: unfortunately, as is shown in 

[5], the numerical behavior of the Weyl function is bad near the zeros. 
(2) The Weyl algorithm is based on dichotomy. 

1. Description of the exclusion algorithm 

Our aim is to localize the roots of an analytic each o n e f  in a compact set E. We 
suppose that the set E is a given union of sets Ai the boundary of which is a Jordan 
curve. We first give the general form of this algorithm, each point will be discussed 
in more detail afterwards. 

Inputs :  E > O, Z, = 0, E = tA~.= IAi, n is the number of connected components of E. 
Whi le  n > 0 do 

begin 
Choose z0 e boundary of E 
Compute m(zo), the exclusion function o f f  at z0 
I fm(zo) > e thenro := m(zo) elser0 := e,Z,  := Z,(Zo, ro) 
Compute the connected components of the set E - B(zo, ro), and hence a new 
value for n. 

end 

PROPOSITION 1.1. 
This algorithm stops in a finite number of steps. 

Proof  
In other words, this algorithm consists in constructing a strictly decreasing 

sequence of compact sets Eo = E, Ei+l = Ei - B(zi, ri) where zi lies on the boundary 
of Ei. Since the radii ri >1 e and the zi lie on the boundaries of the sets El, we have 
AiEi = 0. Hence for some index p, the set Ep has only one connected component 
which is included in the disc B(z, e) for every z belonging to the boundary of Ep. 
Consequently Ep+l = 0 and the conclusion of this proposition follows. [] 

1.1. EXCLUSION ALONG A PATH 

We now describe how we compute the connected components of the set 
E - B(zo, to). In other words, how to obtain fig. 2 from fig. 1. 
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Fig. 1. 

We first m a k e  precise the no ta t ion  and hypotheses.  Wi thou t  loss of  generali ty 
we can suppose  tha t  E is a connected  compac t  subset of  C the b o u n d a r y  of  which is 
a given pa th  7. By path ,  we m e a n  a finite sequence of  curves 7 = {71 , . . . ,  7t}. Each 
curve 7i is defined on an interval [ai, bi] c ~--+ C and is assumed to be class C 1. 
Fu r the rmore ,  we have 7i(bi) = " ) ' i+ l (a i+ l ) ,  1 <<.i<~l - 1. All the paths  considered 
here  will be closed, i.e. 71(bt) = 71(al) and  simple, i.e. 7i(r) = 7j(s) r i = j  and 
r = s. By the Jo rdan  theorem [1] a simple closed pa th  7 separates C into two con- 
nected  componen t s  and  we denote  by 2nt7 the compac t  one. We define an  order ing 
on the pa th  7. Let  y and  z belonging to 7 so tha t  y = 7i(r), z = 7j (s). We say 

i < j  } i f i ~ j ,  

y -<T z r ~, r<<.s if ai<bi i f i = j .  

r>~s if ai>bi 

Also, if y ---7 z, 7Iv,z] is the pa th  included in 7, where y is the initial po in t  and  z 
the end point .  The  mean ing  of  no ta t ions  such as 3qy,z[ �9 �9 -, is clear. We use the nota-  
t ion (see [1]) W(z,  7) for the winding number  of  the pa th  7 with respect to z. The  
un ion  of  two paths  7[x,yl and  w[r,z ] is denoted  by 7Ix,y] tO w[r,z 1. The  complemen t  of  the 
sub-pa th  7Ix,y] in 7 wi th  the initial po in t  x and the end poin t  y is deno ted  by 

7 - 7[x,y]. 
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Fig. 2. 

Let Bo be the open disc of radius r0 > 0 centered at z0 = 71 (al), Co the circle asso- 
ciated with Bo. Assume E is not included in B0 and the number of intersection 
points of Co with the curves 7/is  finite. This is the case when the curves 7i are 
rational. We consider the points zi ~'y f"l Co, 1 <~ i <~ 2p, verifying: 
(1) i fx  E 7 is such that x -.% zi and,.~x,z,[ c Bo (resp. 3qx,z,[ n B0 = ~), then there exists 

Y ~ 7 such that zi -<7 Y and 3%,y[ n B0 = 0 (resp. 3qz,,y[ c B0); 
(2) zl -<~ z2 -<'r . . .  -<'r zzp. We shall use the convention zi = zi=_,(2p+l). 
Observe that the number of such points in the intersection of 3' N Co is even since 
the path 7 is simple and closed. We only take into consideration the intersection 
points of  this class: see remark 1.6. Furthermore, by the definition of the points zi 
we have 3qz~_~,z~[ N B0 = 0 and 7[z~,z2,+~] ~ B0, 1 <~i<~p. Finally we give the follow- 
ing 

D E F I N I T I O N  1.2 

The arc of circle sub-tended by the sub-path 7[z,,z,+d is the arc of the circle 
denoted by o~[z,,z,+l] included in Co which verifies: 
(1)ifT[z,,z,+d N Bo = 0then: 

O 

IV(x,  7[z,,z,+~] O W[z,+~,z,]) = 0, for every x ~ Bo. 
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(2) if~z,,z,+t [ c B0 there are two cases: 
(2.1) ifzi+l r W[z,_t,z,] then 

W(x ,  3'lz,,z,+d U w[~,+~,z,]) = - IV(y, 7[z,_~,z,l U Wlz,,z,-d), 

for every x ~ 7nt (Tlz,,z,+,] U Wl~,+ ~,~,]) and y e :]nt (Tlz,_, ,z,l U w[~,,~,_,]); 
(2.2) ifzi+x e OJlz,_ ,,z~]) then 

u = w ( y ,  u 

for every x e ::Int(fflz,,z,+d U Wiz,+t,z,]) a n d y  �9 ~nt (7[z,_ ,,z,] U Wlz,,~,_,] ). 

This formal  definition corresponds to figs. 3, 4 and 5 where 7[z,,z,§ is denoted by 3'/. 
In the next theorem we characterize the sets E - B0 which are connected. 

THEOREM 1.3 
Let E be a compact  connected set whose boundary  is a simple closed path  % 

Let B0, Co and the points zi, 1 <<.i<~2p, be defined as previously. The set E - B0 is 
connected if and only if for all i, 1 ~< i ~< 2p we have 

3'iz,,z~+d rq B0 = 0 or Wl~,,z,+ d c E .  (1) 

To prove this theorem, we first give two lemmas. 

L E M M A  1.4 
Let p > 1 and E be a connected set. I f  W]z,,z,+~[ f-1 w]r162 [ = 0 for every i ~ j then 

the set E - B0 is not  connected. 

eroof 
Suppose ~z~,~[ N E = 0 holds. We deduce from this that  W]z2,_~,z~[ c E and  

W]z~,z~t+~ I r E = 0. In particular,  the arcs of circle Wlzt,z2[ and ~z~,_t ,z~,[ are separated 
,2p -2  b)~ the arcs of  circle ~zu,zd and wi= 2 W[z,,z~+~[. Consequently the two sets 

2nt(7[z,,z2] U W[z2,zd) and 2nt(7[zu_~,~u] U w[zu_t,zu]) containing a part  of  the set E - B0 

Fig. 3. 
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Fig. 4. 

are separa ted  by the disc B0 conta in ing itself the set E n B0. This fact proves tha t  

E - B0 is not  connected.  
To  prove tha t  wlzu,~,[ n E = 0, let us assume the converse. By the hypothes is  

there is no  po in t  zi lying in ~zu,~ I" Hence w]~u,~, I c E. Let  y e ~zu,~, [ and  consider  
the ha l f  line D = {y + r(y - zo) : r >~ 0): since E is a compac t  set, we have D n ~ r 0. 

Hence  there exists z ~ D  n 7 such tha t  Ilz - Yl[ < IIx - yll f o r  every x e D  and  x r  
We can now consider  the index i such that  zi - ~  z - ~  zi+l. We have 7[zi,z,+L] N Bo = 0 
since by def ini t ion of  the points  zi, the only points  of  intersect ion of  Co and  7[~,,z,+d 

are zi and  zi+l and  since x r B0. 
Hence  the segment  [y, z] is conta ined in the set 3nt(Tiz,,z,+~] U w[zi+l,z,]). By defini- 

t ion 1.2 we conclude  tha t  W[z2p,zl] ~ Wtz,+,,z,l, which gives a cont rad ic t ion  to the 
hypothesis .  This proves the lemma.  [] 

z 

Yi-1 

Fig. 5. 
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L E M M A  1.5 

Let p > 1 and  assume the assert ion (1) of  the theorem.  I f  E is a connected  set 
O 

there exists some index i such that  E - Bo = Jnt(7[z,,z,§ t_J tO[z,+ t,z,]). 

P r o o f  
Define i=min{k:wIzk.Zk+,lAWlZk_,.zkl r  We are going to show tha t  

~OIZk,Zk+,l = WIz,z~+,I for every k r i. Wi th  this in view, let us suppose  tha t  Co - w[~.~+~l 
conta ins  some poin t  zj. In part icular ,  we consider the two points  Zk and zt lying in 
Co - to[~,,z,+,l which are respectively the "neares t"  zi and z,+l. Suppose tha t  zk ___~ zt. 
The  arc of  circle 6[z,~kl (respectively 6[z,~,+,l) conta ined  in Co - WIz,,z,+,l with initial 
po in t  zi (resp. zt) and  end point  zk (resp. Zi+l) has an empty  intersect ion with E. 
Since the points  Zk-1 or Zl+l belong to W[z,,z,+,l, the arcs of  circle tOIzk_,,z,l or wi~j,z~+~ 1 
sub- tended  by the respective sub-paths  7[zk-~,~kl or 7{z,zs+,l conta ined  in the disc B0 do 
no t  verify the assert ion (1). Consequent ly  Co - to[zi, zi+l] A E = 0 and the l emma 
is proved.  [] 

P r o o f  o f  the theorem 
In the case p = 1 it is easy to see that  E -  B0 is connected  and fo rmula  (1) 

holds.  Let  p >  1. We first show tha t  if there exists some i which verifies 
7[z,,zi+~] A B0 = E and W%,z,-+d) r E, then  the set E - B0 is not  connected.o There  can 
be two cases. In  the case where W[z,,z,§ N E = 0, the two sets Jnt(7[z,-1,z,l U w[z,,,,_d) 
and  2nt(7[z~§ ,z,§ U aJ[z,§247 containing par t  of  the set E - B0 are separated by the 
disc B0 conta in ing  itself the set E N B0. Hence  E - B0 is not  connected.  In the case 
where  W[z,,z,§ N E r 0 there are two consecutive points,  say Zk and  Zk+1, on 7 such 
that O.)[Zk,Zk+, ] f"l E = 0 and (d.)[Zk,Zk+l ] ~ ~.}[Zi,Zi+l I. Subst i tut ing i by k, we then come back  
to the previous  case. 

We proceed by induct ion  to prove  the converse. Deno te  by Ep a connected  set 
which has p points  of  intersection with B0 and  suppose  that  if fo rmula  (1) holds  for 
1 <<.i<<.p - 1 then  Ep_l - B0 is connected.  Apply ing  l emma 1.5 to a set Ep, we con- 
sider the index i such tha t  a)Izk,Zk+l ] C O)[Zi,Zi+l ] for all k 7~ i. We have W[z,_,,zd = Bo. We 
can now  const ruc t  a simple pa th  6 which separates the set Ep into two sets E2 and  
Ep-1 so that:  

(1) bo th  the ~oints  Zo/_ 1 and zi belong to E2 and no t  toO Ep_ x, 
(2) the sets E2 and Ep-1 fo rm a par t i t ion  of  the set Ep - 6. 

By the induc t ion  hypothesis ,  the set Ep-1 - B0 is connected  as well as E2 - B0 since 
E2 f'l Bo = {zi, Zi+l }. Hence  Ep - B0 is connected  and the theo rem is proved.  [] 

We now  describe the bounda ry  of  the set E - B0 between two consecut ive points  
zi and  Zi+l in 7. F o r  this purpose  we in t roduce the pe rmu ta t i on  cr and  its inverse 
cr -1 which is defined by 

z~(~) ---Co z~(2) ---Co -.- ---co z~(2p) �9 
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We adopt the following convention: 

{ ~r(i - 2p) if 2p<i ,  

a(i) = a(2p + i) if i <  1, 

~(i) otherwise. 

Under these conditions we have 

Za(e'-l(i)--l) "<Co Zi "<Co Z~r(~-I(i)+l), for all 1 <<.i<~2p. 

The boundary o f E  - B0 is composed successively of: 
(1) a sub-path 7[z2,_,,z,..], 1 ~< i<~p. 
(2) an arc of circle Wiz~,z ] where ze{z~(~-l(O_1),z~(~-~(O+l } such that w[~2,,z ] ,-- E, 

for 1 ~i<~p. 
We now describe in pseudo language code the algorithm of exclusion along a 

path which computes the boundary o fE  - B0: 

Inputs:  71 = {0tl  1, . . .  ")t l l} simply closed path such that 3nt 7 := E 
z0 := 71 (al), Co arc of circle of radius r0 > 0 centered at z0. 

Begin 
Compute {zl, . . . ,  z2p} = 7 n Co 
ffp = 0 t h e n n  := 0 E c B0 
else 

begin 
Compute a and a - l ,  n := 0 
Whi lep  > 0 do 

begin 
i := 1,j :=p,n := n +  1 the number of connected components 

increases by one. 
W h i l e j  ~ 1 do 

begin 

%i = 7[z~,z,§ 
Compute j~  { a ( a - l ( i ) -  1), a ( a - l ( i ) +  1)} so that w[z2;,zl c E 

~/ni+l = W[zt+l,zj] 
z = { z l , . . .  , z u )  - 

p : = p - 2  
i : = j  
end  

end  
end  

end  

we exclude the points zi and zi+1 from the 
list. 

we continue with the point zj whilej  ~ 1. 



J.-C. Yakoubsohn/ Approximating zeros of analytic functions 71 

Remark 1.6 
If there are double points in the intersection of 3' N Co it is sufficient to divide 

the boundaries of the connected components o f E  - B0 correctly in order to obtain 
Jordan curves. 

Remark 1.7 
In practice, if we take circle arcs for the 71i's, 1 <~ i ~< l which initialize the pre- 

vious algorithm, we proceed in the following way. Such a circle arc, say "/[a,,b,], is 
represented by six parameters: center a, radius r, argument (ai- a), argument 
(hi - a), W(a, C(a, r)) and position of E with regard to the disc B(a, r). To compute 
the intersection 7 N B0, we first test whether Bo n C(a, r) ~ 0. In the affirmative, 
we compute this intersection, say {x, y}. We next determine whether or not these 
points belong to "Y[a,b,] and we order the points x and y in 7. In view of that, we have 
the following: 

LEMMA 1.8 
Introduce the notation: n(u ,v )=  ( u -  v ) / l l u -v i i .  Also define u x v = UlV2 

-u2vl a n d u .  v = ulvl + u2v2. We have 
(1) x ~ 7[ai, bi] iff (n(ai, bi) • n(ai, x)) W(a, C(a, r)) < O. 
(2) Let x and y by in 7[a,,b,] : x ~'r Y iffn(ai, bi) " n(ai, x) < n(ai, bi) " n(ai, y). 

The proof of this elementary lemma is left to the reader. 

2. The  exclusion funct ion 

Denote [[zl[ the Euclidian norm in C and B(z, r) the associated open disc of 
radius r centered at z. L e t f  be an analytic function and Ra the radius of conver- 
gence of the power series ~_,~ a) k. Let E be a compact set con- 
tained in B(a, Ra) and z0 an element of E and consider the power series in t defined 
by 

oo itf(k)(z0)ll 
n(zo, t) ----Itf(z0)ll- k! 

k=l 

We deduce from [1, p. 410] that a lower bound of the radius of convergence of 
the power series M(z0, t) is R a -  IIz0- all. Further, M(zo, t) is concave, strictly 
decreasing with respect to t e [0, R a  - IIz0 - all]. This fact leads to the following defi- 
nition for the exclusion function: 

DEFINITION 2.1 
L e t f  be an analytic function and a, Ra, E defined as previously. The exclusion 

function associated with an analytic funct ionf  is the function from E to R + defined 
by 
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- _  ~ R a -  IIz- all, if  M( z ,R~-  l ie-  all)~>0, 
/~/(z) [ the positive root of M(z, t) otherwise. 

We then have 

PROPOSITION 2.2 
The exclusion function verifies on the compact set E the following properties: 
(1)m(z0) = 0ifff(z0) = 0; 
(2)iff(z0) # 0 thenf(z)  # Oforal lzeB(zo ,  m(zo)); 
(3) re(z) is continuous. 

P r o o f  
Using successively Taylor's formula at the point z and the triangle inequality 

we obtainf(z)  >>.M(zo, IIz - z011), and assertions 1 and 2 follow easily. To prove the 
continuity, we first suppose that M(zo, Ra - IIz0 - all)  >0.  Since M(z,  t) is continu- 
ous at z, for every c > 0  there exists 7 such that z~B(zo ,7)  implies 
M(z, ~ - lie0 - all) > 0. So, we can choose 7 such that M(z, R a - IIz0 - all + '7) > 0 
by continuity of M(z, t) in t. Further, we have 

Ra - [Iz0 - all - 7 < Ra  - Ilz - all < R~ - Ilz0 - all + 7 .  

The strictly decreasing nature of M(z, t) implies that 

O<M(z, Ra -IIz0 - a l l  + 7) < M ( z ,  R~ - I I z - a l l ) < M ( z ,  Ra -IIz0 - a l l -  7)- 

C o n s e q u e n t l y  for every E>0 there exists 7 so that re(z) = Ra - IIz - all for all 
z e B(zo, 7). The continuity ofRa - IIz - all f o l l o w s .  

We now study the case M(z0, R a -  I I z 0 -  a l l )~<0.  The arguments used for the 
continuity and strictly decreasing nature of M(z,  t) allow us to say: for every E > 0, 
there exists 7 such that z e B(zo, 7) implies 

M(z,m(zo)  + e) <M(zo,m(zo)  ) = O<M(z ,m(zo)  - e) . 

I fz  e B(zo, 7) there are two cases. First, ifM(z, Ra - I Iz - all)  > 0 then we have 

M(z,m(zo) + ~) <O<M(z,  Ro - IIz - a l l )<M(z ,m(zo)  - ~)  , 

by definition of the radius of convergence of M(z,  t). Next, if M(z ,  Ra - IIz - al l )  
~< 0 then we have 

M(z,m(zo)  + e) <0  -- M(z ,m(z )  ) <M(z ,m(zo)  - , ) .  

Applying the strictly decreasing nature of M(z,  t), we conclude that re(z) in both 
cases is continuous. This proves the proposition. [] 

In fact the exclusion function m (z) satisfies a Lipschitz condition: 
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PROPOS I TI O N  2.3 

Let zl and zz in E be such that M(zl ,  m(zl))M(z2, m(z2)) i> 0. We have 

[m(zl) - m(zz)l ~<llzl - z211. 

73 

Proof 
If  m(z i )=  R a -  I I z , - a [ [  for i =  1, 2, it is obvious. In the case where 

M(zi, Ra - [[zi - al l)  ~ 0 for i = 1,2, the proof is based on the following lemma: 

L E M M A  2.4 

Let z in E be such that M(z,  Ra - IIz - a l l )  ~< 0. 
(1) If there exists k such t h a t f  (k) (z) = 0, then for each direction w e C, the exclusion 

function admits a right and left directional derivative in the direction w satis- 
fying 

f(k)(z) mk-l(z) WOft ( Z) 
k=2 m', (z; w) : 

o~ iLf(k)(z)ll k- I  
( k -  1)! m (z) 

k=l 

where 

f(k)(z) if f(k)(z) r 0 
wk = ILf(k/(z)ll for each k~>0. 

w 

+ Ilwll else, 

(2) I f f  (k) (z) r 0 for each k, then the exclusion function is differentiable. The expres- 
sion for m'(z) is deduced from the previous expression. 

Suppose that this lemma holds. The mean value theorem applied to the direc- 
tional derivative of m(z) in the direction Z l - z 2  implies that there exists 
z = Ozl + (1 - O)z2withO<<.O<<. 1 suchthat  

m(zl) - re(z2) = <m~(z;zl - z2), zl - z2>. 

Since by the previous lemma I Im" (z; Z l - z2)ll < 1 we conclude that I m(zl) - m(z2)[ 
Ilzl - z2 II and proposition 2.3 is proved. [] 

Proof  o f  lemma 2.4 
We deal with the identity M(z,  m(z)) = 0 and proceed as in [5] but with direc- 

tional derivatives and analytic functions. [] 

We now prove a Lojasiewicz inequality. 
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P R O P O S I T I O N  2.5 

Let E be a compact set contained in B(a, Ra) of the analytic function f .  Then 
there exists t~ > 0 such that 

c~d(z, Z) <~ m(z) <~ d(z, Z) , 

for each z ~ E. 

The background of this proposition is 

L E M M A  2.6 

Let zo be a zero o f f  with multiplicityp. We have 

lim m(z_____~) _ 21/P _ 1. 
 --zo IIz - zo l l  

On the other hand, m(z) possesses right and left directional derivatives at zo in the 
direction w, which are equal to 

W 
mr, (Z0; w) ---- -t-(2 I/p - -  1)I lwll  " 

Proof 
This lemma is established in the same way as in [5]. [] 

Proof of proposition 2.5 
Let us consider the function ~b(z) defined by 

m(z)/d(z,Z) i f x e E - Z ,  

~b(z) = 2 l / p -  1 if x~Z. 

As this function is continuous and never vanishes on the compact set E, we deduce 
the assertion of the proposition easily. [] 

Remark 2.7 
I f f  is a polynomial of degree d we can replace the compact set E by C. In this 

case, Ra = oo  and 

li~. f(z) 
z o o  ---z-l[ = 2 1 / d - 1 '  

as is shown in [5]. Since limd~oo 21/d -- 1 = 0, we justify a posteriori the fact that 
the exclusion function vanishes on the boundary of the disk of convergence. 

An example of the exclusion function is the following: P(z) = z 2 "1- Z -~- 1 with 
roots ( -  1 + v/3I)/2, ( -  1 - x/r3I)/2. Then 
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M ( x , y , t )  = ((x 2 - y2 + x + 1) 2 + (2xy + y)2)1/2 _ ((2x + 1) 2 + y2)I/2t - t a , 

where  we have subst i tu ted z by x + yI .  We obtain the surface as shown in fig. 6. 

75 

3. Separation and multiplicity of  zeros 

We can define the exclusion funct ion  mp (z) associated to f(r)(z) by in t roduc ing  
the power  series 

Ilf<k§ k gp(z,t) = Ibe )(z)ll- kt t 
k=l  

Fur ther ,  if we are sufficiently near  to a zero, we can determine the mult ipl ici ty p 
numer ica l ly  by compu t ing  the successive exclusion funct ion  mk(z) while mk(z) is 
small  enough.  More  precisely we have 

"-2 

Fig. 6. 
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PROPOSITION 3.1 

Let  c > 0 and  z0 be a zero wi th  mult ipl ici ty p. There  exists r /> 0 such tha t  for  all 
z ~ B(zo, 77) we have 

mi(z) ,~ 2 l/(p-i) -- 1 1 <~i<~p -- 1 
re(z) -- 21/P--1 ' 

Proo f  
This is a direct consequence o f l e m m a  2.6. [] 

Consequent ly ,  we can determine  numerical ly  the mult ipl ici ty o f  a zero. Since 
the appl ica t ion  i--+ [21/(p-i) - 1]/[2 1/p - 1] is strictly decreasing we compu te  

m l ( z )  21/(i-1) -- 1} 
p = max  i :  re(z) <~ ~77----~ ' 

when  m(z) is "sufficiently small" .  
We n o w  deal wi th  the separat ion of  zeros. Let  z0 be a given zero, the p rob lem is 

to f ind a disc centered at z0 which does no t  conta in  ano the r  zero o f f .  To  this end, 
we in t roduce  the power  series 

Lp(z,t)  -It f@)(z)ll  ~ Itf@+k)(z)ll ? 
p! (p +k)! ' k=l 

and  we denote  by lp (z) the associated exclusion funct ion.  This is just i f ied by the fol- 
lowing: 

PROPOSITION 3.2 

Let z0 be a zero o f f  o fmul t ip l ic i typ .  We have 

Ilza - z011 >lp(Z0) for every zero Z 1 # Z 0 . 

Proo f  
I f  I lz l  - z0l l  >Ra - -  l ie0 - a l l ,  it is obvious.  Let  zx # z0 be some zero o f f  such 

tha t  Zl e B(zo, Ra - IIz0 - a l l ) ,  By Taylor ' s  formula ,  we have 

f@)(zo) ~;--,f@+k_~)(zo) Zo)V+k 
0 = f ( z l ) - -  P----T--" (zO--Zl)V + ~=1 ( p + k ) !  ( Z l -  �9 

Hence,  

o) 4- ~ Go + k)!  (zx - zo) k �9 Ilz, - zoll ~ = o .  

Since zo # z,, we can write 
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ItfC~)(z~ - p ~  ~---'f0~+k)(z~ (p + k)! (z~ - zo) k ~ ~k=~ ItfC~+k)(z0)ll(p + k)! Ilzl z01] k . 

This  implies tha t  Lp(zo, lie, - z011) ~<0. We conclude tha t  Ilzx - z011 >>.tp(Zo) and the 
p ropos i t ion  is proved.  [] 

In  the par t icular  case of  the localization of  real roots  of  a po lynomia l  of  degree 
d, it is easy to see tha t  lp (z0) > mp (z0). 

We give the fol lowing example: P(z) = z 2 - 1, M(z,  t) = ]z 2 - 11 - 21zl  - f ,  

M~(z, t) = 21el - 2 t  and  Ll(z, t) = 21zl - t. W e  have m l ( + l )  = 1 and  11(+1) = 2. 
See also numer ica l  example  1. 

4. Practical computation of  the exclusion function and of  Z, 

W h e n  we deal with  a power  series, the coefficients are often the result  of  ano the r  
compu ta t i on .  We have the fol lowing proper ty  concerning the stability: 

P R O P O S I T I O N  4.1 

Let  Mr(x,  t) and Ms(Y, t) be the exclusion polynomials  associated respectively 
w i t h f  and  g at points  x and  y and my(x) and ms(Y ) their respective exclusion func- 
tions. Let  e > 0 be given. Then  we have 

I[Y - xll-<< emz/x)+l maxk Ilglk)(x)ll ~ IMg(y,  my(x) ) l  <<. E. 

Proof  
We only s tudy the case where Mf(x,  Ra - IIx - a l l )  < 0. We first write 

IIg(k)(Y)ll 
Ms(Y , t )  = I Ig(Y)l l  - k! t 

k=l  

~176 1 ~ g(k+i)(Y) x)illtk. , 

We collect the terms with index i = 0 and use the tr iangle inequality.  We obtain:  

Ms(x  , t) - IlY - xllR(x) <~ Ms(Y, t) <~ Ms(x,  t) + IlY - xllR(x),  

where  

R,x,=l gi'x cyx il  all II i=1 i=1 i! (Y - x ) / - 1  

Let  us consider  G(x) = max/g(O (x). We write: 
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R(x) <~ G(x)e Ily-xll -t- G(x)e Ily-xll (e t - 1) = G(x)elly-xlle t . 

F o r  0 ~< s ~< 1, we have 0 ~< se s ~< se. We subst i tute  t by my(x) in the previous  inequal-  
ity and  we obta in  the inequali ty of  the p ropos i t ion  for every y such tha t  

E 
Ily - xll < era: (x)+ 1 G(x) " [] 

Let  us suppose  tha t  the calculat ion o f f  (k) (z)/k! is a solved problem.  We  have to 
calculate M(z,  t). F or  e > 0 we deal with  

 rn(z, t) - - I b e ( z ) l l -  Ibe(k)(z)ll 
k! 

k=0 

ins tead of  M(z,  t) such tha t  [Mn+l (z, t) - Mn (z, t)[ < e. To  compu te  m(z), we a d o p t  
the fol lowing m e t h o d  when  M(z,  R~ - [[z - a[[) < 0: 
(1) A d i cho tomy  m e t h o d  is first used unti l  we find a value 7 which verifies 

M(z,  7) < 0. This  m e t h o d  is initialized with t = min(1,  (Ra - [[z - all)/2).  
(2) Nex t  we use the N e w t o n  m e t h o d  fol lowing the process described in [5]. 

The  principal  reason  of  this is tha t  the intersect ion of  the t angen t  to  the curve 
of  the equa t ion  s(t) = M(z,  t) at the point  (t, M(z,  t)) with the x axis can be greater  
t han  R~ - []z - all when  the N e w t o n  m e t h o d  is initialized with a value o f  t such 
tha t  M(z,  t) > O. 

The  set Z ,  is a un ion  of  discs B(z, re(z)) with re(z) <~ e. Each disc can con ta in  a 
roo t  o f f .  We first discuss the theoret ical  es t imat ion  of  Z~. We have the fol lowing 
es t imat ion:  

P R O P O S I T I O N  4.2 

Z c Z,  c Z + B ( O , 2 e / a ) .  

Proof  
Let  y e Z,.  Then  there exists z0 such  tha t  m(zo) < e and  y ~ B(zo, e). The  Lojasie- 

wicz inequal i ty  and  the fact  tha t  m(z) is Lipschitz  imply 

o~d(y,Z) <<.m(y) <<.m(z) + Ily - z0ll < 2 e .  

The  p ropos i t ion  follows easily. [] 

But  this local izat ion requires a great  n u m b e r  o f  discs to describe only one roo t  
o f f :  it is bet ter  to have a small n u m b e r  o f  discs for each root .  In  view of  this, we 
p roceed  in the fol lowing way. Suppose  tha t  Z ,  = UP=IB(Zi, ri) at one step of  the 
a lgor i thm.  Let  z be such tha t  re(z) <<. ~. We collect the disc B(z, re(z)) with any disc o f  
the previous  un ion  if for  some i we have ri - e < d(z, zi) <~ ri: then  we replace in Z ,  
the disc B(zi, ri) by the disc 
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where 

B('r(zi- z),r) 

ri + d ( z .  z) + e r 
r = and T -- - -  

2 d(z, zi) " 

Obviously we do not  count the disc B(z, m(z) if B(z, re(z)) c B(zi, ri). If  for every 
1 ~< i ~<p we have d(B(zi, ri), B(z, e)) > e, then we define B(Zp+l, rp+l) = B(z, e). 

5. Complexity 

The complexity of  this algorithm is the estimation of  the number  of  steps neces- 
sary to exclude entirely the initial set E. In other words, each calculation of  the 
exclusion function represents one elementary step of  the algorithm. But the direct 
study of  the complexity with the exclusion function seems to be difficult. Since we 
have the inequality 

ad(z,Z)<~m(z), 

we deal with the function ad(z, Z) instead of  m(z). Further,  the function re(z) is 
equivalent to (21/p - 1)d(z, Z) in a neighborhood of  a zero z0 with multiplicity p. 
Consequently,  the complexity of the exclusion algorithm using re(z) and that  using 
ad(z, Z) is the same size. 

THEOREM 5.1 
Let -B(a, p) be a disc containing d roots of  the analytic function f .  An upper  

bound  for the number  of  steps in the exclusion algorithm is equal to 

/ +1 \kl- g J +1 +o(1) ,  
arctan ~ .  

with 

V~ O~2 V/3 
8 = T 

To prove this theorem, we first establish 

LEMMA 5.2 
Let a be a root  o f f  and fl be defined as in the previous theorem. 
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C(z 2,ar) 

C(a,r) 

7- 2 

y 
/ z l  

C(z l,ar) 

Fig.  7. 

(1) An upper bound for the number of discs which cover the circle C(a, r) in the ex- 
clusion algorithm using ~d(z, Z) is equal to 

a s =  ~ ] + 1 .  
arctan 

m 

s Z (2) The circle C(a,/3r) is included in the set Ui=IB ( i, c~r), where 

zl ~ C(a, r), zi~ C(a, r) fq C(zi-1, ar), zi-l -'<C(a,r) Zi" 

(3) Let W[x,yl be an arc of circle of the boundary of B(a, r) - US=lB(Zi, oLr). Then we 
have 

I I x -  yll = c~3r. 

Proof  
Let C(Zl,ar) and C(z2,c~r) be two circles such that z leC(a, t~r)  

z2 ~ C(zl , ow) A C(a, r). By considerations of elementary geometry we have 
and 
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(1) I l a -  zll 2 = I l a -  zl II 2 - I I z -  zl II 2, since the triangle azz l  is right-angled. Thus 
I l a -  ell = r ~ l  - ~ 2 / 4 ,  s ince I l a -  zll = r and I I z -  zl II = ~r/2. 

( 2 )  IIz - xll = x/3ar/2, since the triangle zlz2x is equilateral. 
(3)lla - xll = II a - zll - IIz - xll = r(x/1 - a2/4  - v ~ / 2 ) .  
Then we have 

0 IIz,   
tan - Wa _ 

where 0/2 is the angle zazl. 
Consequent ly an upper bound for the number  s of  discs B(zi, at) which cover 

the circle C(a, r) where the zi are defined as previously, verifies 27r<~sO, i.e. 

a 
arctan 

Since rl = Ilax[I is the max imum of the distance between the center a and the bound-  
ary of  the set -B(a, r) - -B(a, r) N U~=lB(Zi, o~r), it follows that the circle C(a, r) 
c UiS=l-B(zi, o~r). To prove the last point  of  the lemma, we write 
II (x  - y)/2112 = I[Zl - xll 2 - Ilzl - hi[ 2, where h is the middle of  the segment xy. An 
easy computation shows  that  Ilzl - hll --  �89 (~2 + 1 - ~2)r. Hence 

'l-T-x-Y 112 _-- (~ (O~2 -t- 1--  fl2)2) r2 = -/~4 - O~4 1 + 2Ot2 + 2~2 -at- 2Ot2/~2 r 2 -  4 " 

But by definition, /3 is the solution of  the equation /34 + a4_t_ 1 -  2or 2 -  2/~ 2 

--O~2fl 2 = O. So, [I X - yll = aflr and this lemma is proved. [] 

LEMMA 5.3 
Let s be as before. An upper found for the number  of discs which cover the set 

B(a, r) - B(a, e) is given by 

[log~] 

~L~J + 1 .  

Proof  
The consequence of  point  3 of lemma 5.2 is that  we can replace the boundary  of  

B(a, r) - U~i=l-B(zi, at) by the circle C(a, ~r) in the following step of th~ exclusion 

algori thm. Then we define the sequence of  circles C(a, ri) 

ro ---- r~ ri = ~r i -1  �9 

An index i such that  r i <~ e verifies 
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[log ] 
i~> Li--O--~j + 1 .  

Applying part 1 of lemma 5.2, we find the desired upper bound. [] 

Proo f  o f  the theorem 
Denote by ai, 1 ~< i ~< d, the zeros of the analytic function in the disc B(a, p). There 

exists a finite number N which does not depend on ~ ("sufficiently small") such 
that the set E - t3~lB(zi, ad(zi, Z))  has d connected components Ai with the prop- 
erty that d(z, Z) = I[z - ai[[ for every z ~Ai, 1 <<. i <<.d. We claim that the number of 
steps needed to exclude all the Ai's is less than the number of steps needed to 
exclude separately the discs B(ai,2p) with the exclusion function ad(ai, Z) ,  
1 ~< i <~ d. We multiply the upper bound of the lemma by d and we substitute r by 2p 
to obtain the desired result. [] 

Remark  5.4 
The complexity of the computation of the exclusion function m(x) has been stu- 

died in [5]. We recall that this complexity is O (log log 1/e). 

We conclude this section by giving the evolution of the exclusion algorithm of 
the set Z = { 1 + I, - 1 + I, - I )  with the exclusion function d(z, Z)/2  and the initial 
set E = B(0, 2). For each figure we show the set E - B0 and the disc which will be 
excluded at the following step (see fig. 8). 

6. Numer i ca l  examples 

We give for each of the examples the number of steps nit, the ratio ml (z ) /m(z)  
which permits to determine the multiplicity (proposition 3.1) and the positive root 
lp (z) as in proposition 3.2 which is called "separation" in the tables. 

EXAMPLE I 
f ( z )  = z: -- 1, E = B(O, 1.5), c = 0.1 We obtain nit = 37 (see table 1). 

EXAMPLE 2 
f ( z )  = z 1~ -- 1, E = B(0, 1.5), e -- 0.1. We obtain nit = 665 (see table 2). 

Table 1 
Results for example 1. 

Root Disc rnl/m Multiplicity Separation 

- 1 [-0.999, 0.0320, O100] 31.72 1 1.999 
1 [0.989, 0.008, O. 150] 77.45 1 1.97 9 
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�9 2 ~ 1 

) 
2 -2 

0 

-2 

s tep  97 s tep  98 

Fig. 8. Continued. 

EXAMPLE 3 
L e t P ( z )  = z s - 5/2(1 + I)z 7 + (1 + 2I)z  6 + 3 / 4 ( - 9  + I)z 5 + ( 2 1 / 4 I  + 103/16)z  4 

+ ( - 1 / 3 2 1 -  25 /32)z  3 + ( 2 1 / 4 -  13/16I)z 2 + ( - 2 9 / 1 6 - 4 3 / 1 6 I ) z  + 1 / 2 1 -  3/8,  
whe re  the  roo ts  are  1 + I, I /2,  - 1 / 2  - I ,  1/2 + I /2  with  respect ive  mult ipl ic i t ies  
3, 2, 2, 1. We  take  e = 0.01, E = B(0, 1.5). We  ob ta in  nit = 707 (see table  3). 

EXAMPLE 4: ZEROS OF THE RIEMANN ZETA FUNCTION 
W e  deal  with the  func t ion  ((s)  = ~ ~  0 a2k (s -- 1/2) 2k [3], whe re  

1 foo d[x3/2~(x)] x-1/4(logx) 2kdX 
a2k = 22k_ 2 (2k)! J1 dx 

Table 2 
Results for example 2. 

Root Disc m]/m Multiplicity Separation 

[ 1 , 0 ]  [1.0040,0.0025,0.0164] 17.5 1 0.1475 
[0.809,0.587] [0.8119,0.5916,0.0194] 17.4 I 0.1475 
[0.3090,0.9510] [0.3073,0.9562,0.0172] 15.5 I 0.1475 
[-0.3090,0.9510] [-0.3098,0.9553,0.0171] 19.2 1 0.1475 
[-0.8090,0.5877] [-0.8120,0.5890,0.0192] 25.0 1 0.1473 
[-1,0] [-1.0024,0.0003,0.0205] 33.2 1 0.1472 
[-0.8090,-0.5877] [-0.8148,-0.5908,0.0168] 12.8 1 0.1478 
[-0.3090,-0.9510] [-0.3120,-0.9573,0.0169] 12.3 1 0.1479 
[-0.3090,-0.9510] [0.3120,-0.9551,0.0194] 16.5 1 0.1476 
[0.8090,-0.5877] [0.8125,-0.5882,0.0190] 23.2 1 0.1473 
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Table 3 
Results for example 3. 

85 

Root Disc ml/m Multiplicity Separation 

1 + ! [1.0133,1.010,0.062~ 1.54 3 0.2141 
-1/2 - I [-.5042,-1.0077,0.0380] 2.28 2 0.2538 
1/2 + I/2 [0.5005,0.4966,0.0149] 34.72 1 0.2064 
1/2 [.0054,.5006,.04020] 2.38 2 0.1827 

The zeros of  the function ~ are the zeros of  the Riemann zeta function. The first 
zeros are 14.1, 21.0, 25.0, 30.4, 32.9, 37.5, 40.0. We search for the zeros on the line 
s = 1 /2  + Iu. In this case, the a2k are the result of  a computation�9 This has a great 
influence on the computa t ion  of  re(u). We give the evolution of  the exclusion algo- 

oo 1 r i thm on the real axis with the function ~(u) )--~k=0(-- )ka2kU2k as described in 
[5] (see table 4). A for thcoming paper will be devoted especially to computa t ion  of  
the zeros of  the zeta function by this algorithm. 
The zeros 14.135 and 21.002 are localized. 

EXAMPLE 5: ZEROS OF THE BERNOULLI POLYNOMIALS 
We compute those polynomials by the formula 

. k Bk(x)=nx  "-1 

We deal with n = 30, i.e. 

Table 4 
Evolution of the exclusion algorithm in example 4. 

u re(u) u m(u) u re(u) 

0 5.541094925 14.13473433 0.0000082519 1 4.67546328 0.540734211 
5.541094925 2.961907860 14.13474258 0.0000163520 15.21619749 1.081354598 
8.503002785 1.725121011 14.13475893 0.0000329140 16.29755209 1.487160247 
10.22812380 1.250354000 14.13479184 0.0000664007 17.78471234 1.182604074 
11.47847780 0.962713885 14.13485824 0.0001327270 18.96731641 0.793887543 
12.44119169 0.732775727 14.13499097 0.000263 8764 19.76120395 0.568611853 
13.17396742 0.519239632 14.13525485 0.0005274647 20.32981580 0.388665300 
13.69320705 0.306589983 14.13578232 0.001055 6782 20.71848110 0.215699989 
13.99979703 0.117538907 14.13683800 0.0021124943 20.93418109 0.078586404 
14.11733594 0.017048375 14.13895049 0.0042245799 21.01276750 0.007327349 
14.13438432 0.000341435 14.14317507 0.0084493859 21.02009485 0.003309674 
14.13472576 0.000000658 14.15162446 0.016897 8044 21.02340453 0.011928911 
14.13472642 0.000000137 14.16852226 0.0337959 889 21.03533344 0.017290093 
14.13472656 0.000002104 14.20231825 0.0675919288 21.05262353 0.032761343 
14.13472867 0.000001670 14.26991018 0.1351844911 21.08538487 0.064820241 
14.13473034 0.000003984 14.40509467 0.270368 6046 21.15020511 0.132753562 
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S 3 o ( x )  - 
8615841276005 23749461029X 2 78132595905X 4 

+ 
14322 2 2 

102818379585X 6 72484065225X a 31795091601X I~ 
- 

2 2 2 
9509268925X 12 2062720845X 14 339319575X 16 

+ - 
2 2 2 

43785215x is 4552275x 2~ 390195x 22 
- -  - [ -  - -  

2 2 2 
1 8 2 7 x  26 1 4 5 x  2s 
- -  -+ 15x 29 + x 3~ . 

2 2 

Figure  9 gives the zeros with the separat ion balls. 

28275x 24 
-+ 

2 

E X A M P L E  6: Z E R O S  O F  T H E  C U R T Z  P O L Y N O M I A L S  

These polynomia ls  are studied in [7] and are defined by  

n-1 i 

Po(x) = O, P,,(x) = ~x-" (-1)---n- ( ) "  + ( -1)~  x.,__r i +  r ~ _ ; _ l X  n + l  

E] 

[Z] 

f T 1  1 

[E] 

E~ 

2 

['7"] -2  

I-7"-] - 8  

t-7 

F'l 

1-7.1 

r ~  

r-q 

r-7 

c2  

E~ 

Fig. 9. 



J.-C. Yakoubsohn/ Approximating zeros of analytic functions 87 

IS3 

17-1 

-0.2 

I-:q 

I-r l  

I-:-I 

0.8 

U3 
0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

I-r-I 
I-:-I i-:-I i=1 

U 3  
I-:-I 

I-:-I 

IS3 

0.2 0.4 0.6 0.8 1 

IS3 
IS3 777 E3  [$3 

7=-1 

I---7 

t-cq 

t=3 

I--:-1 

I--:-1 

7--1 

[$3 

Fig. 10. 

T h e  z e r o s  o f  

P a o ( x )  = 0 . 0 3 2 2 5 8  - 0 . 2 5 7 7 4 1 x  + 1 . 3 8 8 4 9 4 x  2 - 6 . 0 4 4 0 2 1 x  3 + 2 2 . 5 8 7 7 4 7 x  4 

_ 7 4 . 5 9 3 2 0 9 x  5 + 2 2 1 . 2 2 4 2 3 3 x  6 - 5 9 5 . 1 0 4 9 0 1 x  7 + 1 4 6 1 . 3 7 3 2 9 9 x  8 

- 3 2 8 9 . 5 7 7 0 2 9 x  9 + 6 8 0 5 . 5 4 0 7 7 6 x  1~ - 1 2 9 5 8 . 7 1 9 7 5 0 x  l l  

+ 2 2 7 2 3 . 4 4 0 4 5 8 x  12 - 3 6 6 8 5 . 6 3 8 5 3 6 x  13 + 5 4 4 7 7 . 7 3 8 9 1 6 x  14 

- 7 4 2 9 1 . 5 1 0 3 3 0 x  15 + 9 2 8 2 2 . 4 0 9 1 5 2 x  16 - 1 0 5 9 3 4 . 2 3 6 1 9 8 x  17 

+ 1 1 0 0 0 4 . 0 8 7 8 5 6 x  18 - 1 0 3 4 3 6 . 7 6 9 9 3 7 x  19 + 8 7 5 4 6 . 9 6 0 6 8 2 x  2~ 

- 6 6 2 0 5 . 4 8 5 4 7 5 x  21 + 4 4 3 2 2 . 4 5 3 9 9 2 x  22 - 2 5 9 6 3 . 2 6 8 8 4 9 x  23 

+ 1 3 1 0 8 . 6 5 2 4 4 7 x  24 - 5 5 9 1 . 6 2 5 x  25 + 1 9 6 0 . 2 7 5 x  26 - 5 4 2 . 5 x  27 

+ 1 1 1 . 1 6 6 6 6 7 x  28 - 1 5 x  29 + x 3~ 

are  g i v e n  w i t h  t h e i r  s e p a r a t i o n  b a i l s  i n  f ig .  10.  
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