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HIGH ORDER NUMERICAL METHODS TO APPROXIMATE THE
SINGULAR VALUE DECOMPOSITION*

DIEGO ARMENTANO ' AND JEAN-CLAUDE YAKOUBSOHN #

Abstract. In this paper, we present a class of high order methods to approximate the singular
value decomposition of a given complex matrix (SVD). To the best of our knowledge, only methods
up to order three appear in the the literature. A first part is dedicated to defline and analyse this class
of method in the regular case, i.e., when the singular values are pairwise distinct. The construction is
based on a perturbation analysis of a suitable system of associated to the SVD (SVD system). More
precisely, for an integer p be given, we define a sequence which converges with an order p+ 1 towards
the left-right singular vectors and the singular values if the initial approximation of the SVD system
satisfies a condition which depends on three quantities : the norm of initial approximation of the SVD
system, the greatest singular value and the greatest inverse of the modulus of the difference between
the singular values. From a numerical computational point of view, this furnishes a very efficient
simple test to prove and certifiy the existence of a SVD in neighborhood of the initial approximation.
We generalize these result in the case of clusters of singular values. We show also how to use the
result of regular case to detect the clusters of singular values and to define a notion of deflation of
the SVD. Moreover numerical experiments confirm the theoretical results.

Key words. singular value decomposition,

MSC codes. 65F99,68W25

1. Introduction.

1.1. Notations and main goal. Let us consider an m x n complex matrix
M € C™*™ where we can assume m > n without loss of generalty. The terminology
diag(o1,...,04) )

0

and design by D™ the set of such type matrices and also Enmxxf = Cm*l x C"*9 x
D4, For ¢ > 1, we denote the identity matrix in C**¢ by I, and for W € C™*¢ we
define Ep(W) = W*W — I,. The variety of Stiefel matrices is St,, o = {W € CcmxL
E W) =0}. Foreach ¢, 1 < ¢ < m and ¢q, 1 < g < n, we know that there exists two

Stiefel matrices U € St,, ¢, V € St 4, and a diagonal matrix ¥ € ]D)éﬁ)q be such that

“diagonal” for a matrix of C"™*" is understood if it is of the form (

Ey(U)
(1.1) fU,V,x) = Ey(V) = 0.
UMV - %

When ¢ = m and g = n, the triplet (U, V, X) is the classical singular value decompsition
(SVD) of the matrix M. If £ < m or ¢ < n this abbreviated version of the SVD
is referred as the thin SVD. The problem of computing a numerical thin SVD of
M is to approximate the triplet (U,V,%) by a sequence (U;, Vi, %;,)i>0 such that
the quantities f(U;, Vi, %;)i>0 converge to 0. We name SVD sequence a such type
sequence (Uy, X;, V;)iso-

In the context of this paper we will say that a sequence (T;);>0 of a normed space
with a norm ||.|| converges to T, with an order p 4+ 1 > 2 if there exists a positive
constant ¢ be such that ||T; — Tao|| < ¢2=@+D'*+1 We then say that the numerical
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2 DIEGO ARMENTANO AND JEAN-CLAUDE YAKOUBSOHN

method which defines the sequence (7});>o is of order p 4+ 1. If p = 1 (respectively
p = 2) we say that the method is quadratic (respectively cubic). Finally we say that a
method associated to a map H is of order p if there exists a sequence zy1 = H(xy),
k > 0, which converges at the order p. Moreover we shall consider the matrix norm
[ All = max([|All1, [[A*[|1) where

n
Ally = ZM
Al max 1| il
]:

Fundamental quantities occur throughout this study. From a triplet (U, V,X) € Enmquz
we introduce :

1. A=U*MV - %, . . .

2. k(X) = max (1,max1<l<q ol mMax;£; <|0i - + o7 T Uj|> > where the

o;’s constitute the diagonal of X.

3. K(¥) = max (1, max; 0; ).
Throughout the text p is a given integer greater or equal to one. The goal of this
paper is the construction and the convergence analysis of a class of methods of order
p+ 1. The classical methods to compute the SVD are linear or quadratic : to best of
our knowledge, there is no mention of any study in the literature on this subject of
a method of order greater than three. These methods only use matrix addition and
multiplication : there is no linear system to solve nor matrix to invert.

1.2. Construction of a quadratic method. We begin by explain how to
construct a quadratic method to approximate the SVD. Let us given U, V.Y and
denote A = U*MV — X. The first step is to consider multiplicative perturbations
such type UQ), VA and S of U, V, ¥ respectively and also U = U;(Iy + X) and
Vo = Vi(I, +Y) multiplicative perturbations of Uy = U(I; + Q) and V4 = V(I, + A)
respectively. Expanding the quantities Ey(Ur), Eq(V1) and Ay := Us MV, — X — S,
we get

(1.2) Ey(U) =E(U)+Q+ Q" + Q' Ey(U) + E(U)Q+ Q" Q4+ QE,(U)Q,
idem for E4(V1)

(1.3) A=A, —S+X*THIY + XA+ ALY + X' (A + D).

where Ay = U MV; — X. Denoting ¢ = max(||E¢(U)|, [|Eq(V)I|, |A]]), the second

step is to determine two Hermitian matrices €2, A, a diagonal matrix .S, and two skew
Hermitian matrices X, Y in order to get

(1.4) max(|| Ee(U2)|l, [1E(V2)l], [ Az]]) < O(e?).

This occurs with Q = —Ey(U)/2, A = —E4(V)/2 and (X,Y,S) a solution of the
equation A; — S+ X*X + XY = 0. We will give in section 4 explicit formulas to solve
this the linear equation where a solution is given by S = diag(A;) and X, Y that are
two skew Hermitian matrices. In fact a straighforward calculation shows that

(1.5) Ey(Uy) = —(31; + 2Q)Q?
idem for E,(V1)
(1.6) A =A+QA+3)+(A+E5)Q+QA+X)Q
. Ay =—-XA1+AY — X (A1 +2)Y since X* = —X
(1.8) E(Uz) = (Ie = X)Eq(Ur)(Ie + X) + (I = X)(Ie + X) — I

idem for E4(V2).

This manuscript is for review purposes only.
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HIGEH ORDER NUMERICAL METHODS 3

The formula (1.5-1.6) imply [|[E,(U1)|| < O(e?) and ||A1]] < O(g). Similarly we
have [|[E,(V1)|| < O(e?). Moreover we will prove that || X|,[|Y ]| < O(e) in section
4. Plugging these estimates in the formulas (1.7-1.8) we find that the inequality
(1.4) holds. From the point of view of the complexity this step is the key point of the
methods presented here since this requires no matrix inversion. These ingredients pave
the way for the construction of a quadradic method. The third step is to introduce
the map

Ul +Q)(I + X)
Hi(U,V.5) = | V(I +M)(;+Y)
Y+ S

1 1
where Q = —§E4(U)7 A= —§Eq(V), S € D™*™ is a diagonal matrix and X, Yare

skew Hermitian matrices be such that A1 —S—X>X+YY = 0. The behaviour of the
sequence (U;, Vi, X;),5, defined by (Uit1, Vi1, Xit1) = Hi(U;, Vi, 35), i > 0 is given
by Theorem 1.2.

Remark 1.1. The Newton’s method is based on the cancellation of the affine part
of a Taylor expansion closed to a root of the function. Here we remark that only
the cancellation of a part of the affine part is enough to build a numerical quadratic
method. For instance in the expression (1.2), we cancel Ey(U) + 2 + Q* rather than
E/(U)+ Q4+ Q"+ Q*Ey(U) + E¢(U)Q. In the same way A; — S + X*E + XY is
cancelled rather than Ay — S+ X*Y + XY + X*A; + A1Y in the expression (1.3).

1.3. Construction of a method of order p + 1. We explain the main ideas
that allow to generalize the previous method with the care to improve the condition of
convergence. Taking in account the formulas (1.5-1.8) we notice that to generalize the
previous construction we need the following tools. We first require a method of order
p + 1 to approximate the variety of Stiefel matrices. This is realized in considering a
multiplicative perturbation Us,(£2) of U where s,(u) is an univariate polynomial of
degree p in order that Uy = U(I; + 5,(f2)) satisfies E,(U1) = O(E(U)P*!). This is
motivated by (1.5). Next we introduce a multiplicative perturbation U;c,(U;) where
¢p(u) is an univariate polynomial of degree p such that (1 +¢,(—u))(1+cp(u)) —1 =
O(uP™1). This is motivated by (1.8) where appears the expression (I, — X)(I, + X) —
I;. The polynomials s,(u) and c,(u) as well as the matrices Q2 and X are defined
respectively below and their properties will be precisely studied in sections 3 and 5.
Under these previous conditions a we will prove in Section 3 that a perturbation such
type Uz = U(Li+5,(Q)) (Le+c, (X)) satisfies E,(Uz) = O(E,(U)P*1). Finally the third
tool is to determine X, Y, and S in order to get the condition ||A,41|] = O(||A]|PT)
where Ap1 =USMVo —X - S.

To introduce the map on which is based the method of order p + 1 we define the
following quantities:

1. Let sp(u) the truncated polynomial of degree p of the series expansion of
—1+(1+u?)~V2
2. Let c¢p(u) the truncated polynomial of degree p of the series expansion of
(1+u®)/?2 +u—1.
With these preliminaries we introduce the map H), :

Ul + Q) (I +©)
(1.9) (U, V,%) €eE™" —»  H,(U,V,%) = | V(I,+AN)(I,+7¥) | ¢ E™*"
Y+ S

This manuscript is for review purposes only.



4 DIEGO ARMENTANO AND JEAN-CLAUDE YAKOUBSOHN

130 where :

131 1. Q=5,(E(U)) and A = s,(E(V)).

132 2. © =c¢p(X) and ¥ = ¢,(Y) where X and Y are defined below.

133 3. 5=51+-+5eDm" X=X+---+X,and Y =Y, +---+Y, with each

134 X, Y}, are skew Hermitian matrices in C**¢ and C?%9 respectively. Moreover

135 each triplet (Sk, X, Yx) are solutions of the following linear systems :

136 (1.10) A — S — XpX + XY, =0, 1<k<p

138 where the Ay’s for 2 < k < p+ 1, are defined as

139 Ay =L +NA+E)I,+A) -5, S1 = diag(Ay)

140 Ok =cp(X1++Xk), Wp=c(Y1+-+Yy), 1<k<p,
k—1

141 (111)  Ap =T+ 05 (A1 + D)+ 1) = E =D S,
j=1

143 Sy = diag(Ag), 2<k <p.

144 We will see in section 5 that the formulas (1.10) cancel respectively the linear parts
145  of each Ay. We will show that |[Ap41]] = O(||Aq]|PT1).

146 1.4. Main result. Then we state the folowing result which precisely shows the
147 method associated to the map H), is of order p + 1.

148 THEOREM 1.2. Let p > 1. From (Uy, Vi, X0), let us define the sequence

149 (Uig1, Vig1, Bip1) = Hy (Ui, Vi, 85), 020,

150  We denote A = U MVy—3g, K = K(X0) and & = k(Xg). We consider the constants
151 defined in Table 1 :

p=1|p=2|p=3
a 2 4/3 4/3
ug | 0.0289 | 0.046 | 0.0297
7| 6.1 9.41 | 10.2
o | 1.67 | 21 2.62

TABLE 1

152 If
l51 (1.12) max((5K)*||Ee(Uo)ll, (5K)*, || Eq(Vo)ll, s* K[| Aol]) = € < ug

155 then the sequence (U;, Vi, %i)is0 converges to a solution (Us, Voo, Xso) of system
156 (1.1) with an order of convergence equal to p + 1. More precisely we have fori >0 :

157 |U; = Uso|| < V2~ @D +12
158 IV = Fooll < /g2~ ®+0' e
188 IS — Soo|| o x 27 PFD 1,
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HIGEH ORDER NUMERICAL METHODS 5

1.5. Arithmetic Complexity. The computation of H,(U,V,X) only requires
matrix additions and multiplications without resolution of linear systems. This is
possible since there are explicit formulas for the equations (1.10). Table 2 gives the
number of addition and multiplications to evaluate H,(U,V,X) where Ly := Ay —
St — XX + XY;.

Ey(U) | sp(Ee(U)) | cp(X) Ly, Sk Ay
matrix 1 9
additions p p p
matrix 9
multiplications 1 p p 2p+2
additions 10np (m+4n)p
multiplications (m—n+8)np (m + n)mnp
TABLE 2

This implies 2(p + 1)(m? +n?) + (m + 14n)p additions and 2(p+ 1)(m? +n3) +
(m? + mn + m — n + 8)np multiplications.

1.6. Outline of this paper. In section 2 we give a short overview on the com-
putational methods for the SVD and we discuss about the method of Davies-Smith
to update the SVD. We exhibit the links with the method associated to the map Hs.
We also state a result on Davies-Smith method which will be proved in section 10.
In section 3 we study the approximation of the unitary group by high order methods.
We will use the polynomial s,(u) to define the sequence U1 = U;(I; + s,(Ei(U3))),
i > 0, from a matrix Uy closed to the unitary group. The result is that under condi-
tion ||E¢(Up)|| < 1/4 the sequence (U;);>0 converges to the polar projection of Up. In
section 4 we show how to explicitely solve the equation A — S — X3 4+ 3Y = 0. We
also state a condition-like result that shows the quantity s is the condition number
of this resolution. In fact we will prove that : || X|],|Y] < ||A||. This bound plays
a signifiant role in the convergence analysis. The section 5 is devoted to the conver-
gence analysis. We introduce the notion of p-map for the SVD. This is convenient to
states in Theorem 5.2 that the method associated to a p-map is of order p + 1. Then
Theorem 1.2 derives from Theorem 5.2. The proof is done in sections 6, 7 and 8 for
p=1p =2 and p = 3 respectively. In section 11, we study the case of clusters
of singular values and we show how to use the condition (1.12) to separate clusters
of singular values. We introduce a notion of deflation for the SVD : the idea is to
compute a thin SVD with one singular value per cluster. Finally we illustrate this by
numerical experiments in section 12.

2. Related works and discussion.

2.1. Short overview on the SVD and the methods to compute it. “The
practical and theoretical importance of the SVD is hard to overestimate”. This sentence
from Golub and Van Loan [27] perfectly sums up the role of SVD in science and
more particularly in the world of computation. The SVD was discovered by Belrami
in 1873 and Jordan in 1874, see the historical survey of Stewart [43] that traces the
contributions of Sylvester, Schmidt and Weyl, the first precursors of the SVD. A
recent overview of numerical methods for the SVD can be found in the Hanbook
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6 DIEGO ARMENTANO AND JEAN-CLAUDE YAKOUBSOHN

of Linear Algebra [32] mainly in chapters 58 and 59. On the aspects developments
on modern computers, Dongarra and all [14] give a survey of algorithms and their
implementations for dense and tall matrices with comparison of performances of most
bidiagonalization and Jacobi type methods. From a numerical linear algebra point
of view, the SVD is at the center of the significant problems. Let us mention a
few : the generalized inverse of a matrix [6], the best subspace problem [28], the
orthogonal Procrustes problem [20], the linear least square problem [27], the low rank
approximation problem[27]. Finally, a very stimulating article of Martin and Porter
[38] describes the vitality of SVD in all areas by showing surprising examples.

There are two classes of methods to compute the SVD : bidiagonalizations meth-
ods and Jacobi methods. Since the time of precursors, Golub and Kahan in 1965 [26]
for bidiagonalization with QR iteration and Kogbeliantz in 1955 [35] for Jacobi two-
sided method, many various evolutions and ameliorations have been proposed. In our
context (m > n), the bidiagonalzation methods reduce first the complex matrix under
the form M = UM'V* where U, Vare unitary and M’ real and upper bidiagonal [15].
Next the SVD is computed roughly by QR iteration with notable improvements as
implicit zero-shift QR [12] and differential qd algorihms [23]. In this vein of bidiago-
nalization methods, other alternatives to QR iteration have been developped. Let us
mention the divide and conquer methods [29], [25], [37], the bisection and inverse iter-
ation methods [34], [32] in chapter 55 and methods based on multiple relatively robust
representation [13], [46]. The Jacobi methods consist to successively apply rotations
now called Givens rotations on the left and right of the original matrix in order to
eliminate a pair of elements at each steps. Wilkinson [45] proves that the method is
ultimately quadratic for the eigenvalue problem. After Kogbetliantz, the properties
of two-sided Jacobi method applying two different rotations has been studied a lot :
global convergence [22], [24], quadratic convergence at the end of the algorithm [42],
[2], behaviour in presence of clusters [8], reliability and accuracy [17], [18], [30], [39],
[40]. Let us also mention main improvements for the one-sided Jacobi method due
to several forms of preconditionning [17], [18] and [16] which uses a preconditionner
QR to get high accuracy for the SVD. Finally the simultaneous use of block Jacobi
methods and preconditionning improve convergence [4], [41] and computing time [14].

Other ways have been investigated related to classical topics studied in the field
of numerical analysis. For instance, Chatelin [9] studies the Newton method for the
eigenproblem. This requires a resolution of a Sylvester equation. Since the resolution
of Sylvester is expensive, several variants of Newton method are proposed but the
quadratic convergence is lost. There is also the purpose of Edelman et al. [19] which
explores the geometry of Grassmann and Stiefel manifolds in the context of numerical
algorithms and propose Newton method in this context. It also requires to solve a
Sylvester equation to get numerical results. These ideas also have been developped by
Absil et al. [1] in the context of the optimization on manifolds. Finally let us mention
differential point of view developped by Chu [10] where an O.D.E. is derived for the
SVD in the context of bidiagonal matrices. The methods mentioned above have a
most quadratic order of convergence.

2.2. The Davies-Smith method. The method of Davies and Smith [11] to
update the singular decomposition of matrices in R”*™ is probably the closest study
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to our. In our framework of notations, it consists to define the map

U+ X+ %X%) = UTy
(2.1) (U,V,2) > DS(U,V,%) = | V(I +Y +3Y?) = VK,
Y+S9=3

with S =514+ 55, X = X7+ Xo, Y =Y + Y5 where the S;’s, i = 1,2, are diagonal
matrices, the X;’s and Y;’s are skew Hermitian matrices that verify
(22) X1272Y1+51:A1:A:U*MV72
1 1

(23) XQZ—E}/Q—FSQ:AQ = —§X1<A+Sl)+§(A+Sl)Y1
This gives an approximation at the order three of the SVD in the regular case under
the condition that the quantity |A + XJ|| is small enough. More precisely Davies
and Smith states that if the condition x3e® < tol where tol is a given tolerance then
UT'1 XK V¥is an approximation of the SVD of M, such that :

L [|[E(UTY)||, |E,(VKy) < 2(ke)® + O(k*e?).

1 28

2. murwwwvm - < g(ms)z)’ + O(K*e?)
where the considered norm is that of Frobenius. Thanks to the map H), defined in the
introduction with p = 2 , we improve the previous method and its analysis on several
points.

1. The norm of Ey(U(Iy+)(I,+©)) is in O(£?), see Theorem 2.1 below, while
the norm of Ey(UT1) depends on the norm of E,(U). In fact

E (UTy) =TiE(U)T1 + E¢(Ty).

For this reason, Davies and Smith suggest to use a Givens type method after
their update of the SVD to iterate the method.

1
2. Note that ©9 = X7+ X5+ §(X1 Jng)2 is computed with the same arithmetic

complexity as I';. There is a gain in the error analysis.

3. The analysis of the map Hs takes in account all the terms of the series expan-
sion of Hs(U,V,X) with respect U, V,X. In this way, the Theorem 2.1 show
that x°/4K?/%¢ (and not we) is the quantity on which the method Davies
Smith rests. This shows that the quantity K is not negligible in the error
analysis.

4. The tolerance tol in the method associated to the map H, is determined by
imposing a condition of contraction which is not the case in the Davies-Smith
method, see the algorithm 2.3 of [11].

We defined a Davies-Smith revisited method introducing the map

o U(I; + ©2)
(2.4) (U,V,2) - DS(U,V, %) = V(I + ¥s)
b)) + S =: 21

with S =51+ 5%, X = X1+ Xo, Y =Y + Y5 where the S;’s, ¢ = 1,2, are diagonal
matrices, the X;’s and Y;’s are skew Hermitian matrices defined by (2.2-2.3). The
following result specifies the behaviour of DS(U, V,X) and DS(U, V, X).

THEOREM 2.1. Let us consider M, U, V, ¥ as in the introduction, A = U*MV —
Y and g1 = ||A|. Let k = k(2) and K = K(X).

This manuscript is for review purposes only.
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1. Let us assume that K°/*K?/5¢; < e < 0.1. Then the triplet (U1,V1,%) =
DS(U,V,%) defined by (2.1) satisfies

(2.5) AL := |UF MV, — 21| < (8 4 18 + 33¢2)e3.

2. Let us assume that KO/PK3/10z < e < 0.1. Then the triplet (U, V1,%1) =
DS(U,V,X) defined by (2.4) satisfies

(2.6) AL = [|[UF MV — 1| < (6 + 21e + 54e?)e3.

Since k8/°K3/10 < x5/4K2/5 the condition to update the singular value decom-
position is better with the Davies Smith method revisited than the Davies Smith
method.

3. Approximation of Stiefel matrices. The Stieffel manifold St,, , general-
izes the Unitary group. An important tool is the polar decomposition Uy = 7(Uy) H
of rectangular matrix Uy where the polar projection 7(Uy) is a Stiefel matrix and H
is Hermitian positive semidefinite [33]. It is also well known that 7(Up) is indeed the
closest element in St,, ; to Uy for every unitarily norm [21, Theorem 1|. Since we are
doing approximate computations, the Stiefel matrices in an SVD are not given ex-
actly, so we may wish to estimate the distance between an approximate Stiefel matrix
and the closest actual Stiefel matrix. This is related to the following problem: given
an approximately Stiefel m x ¢ matrix U, find a good approximation U + U for its
projection on the manifold St,, . We define a class of high order iterative methods for
this problem and provide a detailed analysis of its convergence, see also [36, 7, 31].
The theorem 3.3 establishes that our method converges towards the polar projection
of the matrix Uy € C™** if U is sufficiently close to the Stiefel manifold. In this case
the matrix H is positive definite and can uniquely be written as the exponential of
another Hermitian matrix.

3.1. A class of high order iterative methods. We wish to compute U using
an appropriate Newton iteration. Since the normal space in U of Stiefel manifol
is composed of U’s where ef) is an Hermitian matrix,it turns out that it is more
convenient to write U + U = U (I, + Q). The following lemma gives the expression (2
so that U + U € Sty ¢ it is the polar projection of U.

LEMMA 3.1. Let U € C™*¢ such that the spectral radius of E(U) is strictly less
than 1. Then
(3.1) Q=—I+ (I + E(U))"2 = E(U+UQ) =0.

Hence U(I + Eo(U))™'/2 € Sty,¢ is the polar projection of U.
Proof. If the spectral radius of E,(U) is strictly less than 1 then the matrix
(Ir + Eg(U))'/? exists and Q = —I, + (I + E,(U))~/? is Hermitian positive definite

matrix. With E,(U) = U*U — I, and U = US2, we have

E(U+UQ) = (I + Q%)L + Eo(U))(Le + Q) — L
= Ey(U) + 29+ QFE,(U) + E,(U)Q + Q2 + QE,(U)Q.

A straighforward calculation implies E¢(U+UQ) = 0. Then U = U (L, +Q)(I,+Q)~ L.
Hence U(Iy + E¢(U))~/? € Sty is the polar projection of U. a
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Consequently an high order approximation of Q = —I, + (I, + E,(U))~/? will

permit to define an high order method to numerically compute the polar projection.
Evidently © commutes with U. The approximation of 2 can be obtained as follows.
Let us consider the Taylor serie of —1 4+ (1 +u) "2 at u=0:

P
For p > 1 we introduce s, (u) = Z(fl)ktkuk and rp(u) = s(u)—sp(u). The quantities

(3-2) Qp = sp(Ee(U)),  Rp=rp(Ee(V))

commute with U*U. We have Q, = Q — R, and E,(U + UQ) = 0. A straightforward
calculation shows that

E,U+UQ,) =U"+QU*-R,UNU+UQ,—-UR,) — I,
=EU+UQ) —2(I; + WU*UR, + R2U*U
(3.3) =T+ E/U))Rp(—21; — 2Q+ R)) sinceU*U = Iy + E,(U)
We are thus lead to the iteration that we will further study below:
(3.4) Uit1 = Ui(Le + sp(Ee(Uy)), 12 0.

Theorem 3.3 below shows the convergence of the sequence (3.4) towards the po-
lar projection of Uy with a p order of convergence under the universal condition
[E(Uo) <1/4.

3.2. Error analysis.

PROPOSITION 3.2. Let p > 1. Let U be an m x £ matriz with € := ||E,(U)| < 1
and Q, = s,(Ee(U)). Let Uy = U(I; + ) and write e1 := ||E¢(U1)||. Then ||Q] <
Isp(e)] < =14 (1 —¢)~'/2 and

(3.5) g <Pt
Proof. Let Q, = s,(E;(U)). We have
121 < Is,()
<—14+(1—e)7 2
Since €2 is Hermitian which commutes with U we have
Eg(Ul) = (Ie + QP)U*U(IZ + Qp) -1
= (I + Qp)°E,(U) + Q2 + 29,
= (It + Eo(U)) (2 + 29,) + Eo(U).

Then using Lemma 3.4 below in sub-section, it follows easily that

Ey(Uy) = (Z O‘kEE(U)k> B (U)P*
k=0

P
where E || < 1. Hence g1 < ePtl. O
k=0

This manuscript is for review purposes only.



387
388
389
390
391

392

10 DIEGO ARMENTANO AND JEAN-CLAUDE YAKOUBSOHN

Proposition 3.2 permits to analyse the behaviour of the sequence (U;);>¢ deftined
by (3.4).

THEOREM 3.3. let p = 1. Let Uy € C™** be such that |E(Up)|| < e < 1/2. Then
the sequence defined by

(36) Uiy = Ul(Ig + Sp(E(Ul)) 120,
converges to a Stiefel matriz Us, € Sty . More precisely, for all i > 0, we have
9—(p+1)'+19.
. i —Usl| S Vl——F—
(37) U = Uaoll < VEE——
Moreover if e < 1/4 then this sequence converges to the polar projection w(Up) € Sty ¢
Of Uo.
Proof. The Newton sequence (3.6) defined from Uy = U gives
Uir1 = Uo(Ip + QOJJ) (I + Qi,p)

with ; , = s,(E(U;)). An obvious induction using Proposition 3.2 yields || E¢(U;)|| <
2=+ +1e In fact we have

| Ee(Uir1)|] < ||Ee(Uy)| [P from Proposition 3.2
< 2~ (PHD) T 4+l
< (2e)P2~ (AL,
< 9= (D)1, since &< 1/2.

We are using Lemma 3.6 to conclude. We have ||, || < =1+ (1 — 2=+ +1g)-1/2,
Since £ < 1/2 then —1 + (1 — 2=+ +12)=1/2 < 9=+ "+ Considering ug = ¢,
a1 = 1 and as = 0, the assumptions of Lemma 3.6 below are satisfied. Hence the
sequence (U;);>o converges to a matrix U, which is an unitary matrix since the
sequence (Ep(U;);>0 converges towards 0. We then have

2(ay + ag + ayagup) 9~ (P11,
1-— 2(0{1 + ao + alaguo)uo

9—(p+1)'+19
R ——
1-2¢

We denote Zy = H]->O(Ig +Q;,). We have Uy, = UpZy. From Lemma 3.6 Z is
invertible with || Zp|| < 2e. By induction on 4, it can also be checked that all the ;,,’s
commute. Whence Zj and Z; ! are actually Hermitian matrices. If ¢ < 1/4 we have
1Z5" = Ll < 125 I1Le — Zo|| < 2¢/(1 —2¢) < 1. Then the logarithm log Z; ' is
well defined. We conclude that Z; * is the exponential of a Hermitian matrix, whence
it is positive-definite. Since Uy = UOOZ(;l7 we conclude that Uy, = 7(Up) the polar
projection of Uy from the polar decomposition theorem. 0

Ui = Usell < V2

3.3. Technical Lemmas. This following Lemma is used in the proof of Propo-
sition 3.2.

LEMMA 3.4. Let p > 1. We have

(u+ 1)(sp(u)? + 28, (u) +u = (Z akuk> uP ™t
k=0

This manuscript is for review purposes only.
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where Z lag| < 1.
k=0

.1 ]
Proof. Let t; = (—1)"— < 2; > for ¢ > 0. The convolution of sequence binomial

4i

t; with itself is the sequence with general terms (-1)%. In fact it is sufficient to square
(14 u)~ /2

D DS N I DTS R

k>0 k=20 \it+j=k

We proceed by induction. When p = 1 the lemma holds since

U2
(u+1)(hy(u)? + 2h1(u) + v = (u+1) <4 u) +u

TR

1 3
and 1 + 1= 1. Let us suppose that the lemma holds for an indice p > 1 be given.
We first remark that a9 = —2¢,1.1. In fact since ag is the coefficient of uPtl in

(u+1)(sp(u)? + 2sp(u)) + u. Then

ag= Yttt > ity +2t

itj=p iti=ptl1

1<4,7<p 1<4,5<p
= (=1)P — 2tgt, + (—1)PT! — 2tot, 1 + 2t
= —2tp41.

Next, writing h,41(u) = sp(u) + tp1uP™! we get by straightforward calculations :

(u+1)(sp(u)? + 25y (u) + u

(

p
> “k“k> WP (1) b sp (e 4 82,02 42t 0t

k=0

p
= (01 + 2tpra(ts + D)PP > (o + 2ty (b + b)) uP T

X

follows:
p+1

k=0

k=2

Ftp1 (2t + tpr)uP P 442 2Pt

p+1
E Bkuk up+2
k=0

p+1 P
Let us prove that Z |Bk] < 1. In fact since t; = —1/2 and Z lag| =1 — 2|tp4q] it
k=0 k=1
p p
71660 < S fawl + il + 2ltpal Sl = 1) + It |ltp] — i) + 2.

k=1 k=2

L- 2|tp+1| + |tp+1| + 2|tp+1‘(|t1| - |tp|) + |tp+1‘(2|tp| - |tp+1|) + t;2;+1

1.

<
<

This manuscript is for review purposes only.
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The Lemma is proved. 0

The following Lemma 3.5 is used in the proof of Lemma 3.6.

i 1
LEMMA 3.5. 1. Let 0 <u < 1. We have [[;50(1+u*') = T
2. Letp>1and 0 <e < 1. We have fori >0,
(3.8) [T(1+2- @0 +ley <1 42 FD 19
3=0

3. Letp>1 and 0 < e < 1/2. We have fori >0,

(3.9) [T — 27+ 1) =1/2 < g 4 o= kD g,
Jj=0
j 11—
Proof. For the item 1 we prove by induction that H?zo(l +u?) = 1
—u
This holds when k& = 0. Next, assuming the property for k& be given we have
k+1 gk+1
7 1—u 3
[T0+u?)= ———a+u®")
. 1—u
7=0
1 _ u2k+‘2
Tl
Item 1 is proved. The item 2 follows from
[T +27 00 ) < T+ (2700 22
Jj=0 J=20
<1+ [ JIa+@ @) 1| 2
Jj=0
<1 L 1]2 f item 1
S —+ m — 19 romitem 1.
<1+27 P g,
Since £ < 1/2 we have (1 —u)~/2 < 1+ u, item 3 follows from :
H(1 _ 2—(P+1)"+i+15)—1/2 < H(1 + 2—(;D+1)Hj+1€)
Jj=0 Jj=0
<1427 @H0'*2:  fromitem 2. O

The Lemma 3.6 is used in Theorems 3.3 and 5.2.

LEMMA 3.6. Let €, ug, and «;, i = 1,2, be real numbers such that ¢ < ug and
2(a1 + ag + agasug)ug < 1. Let us consider a sequence of matrices defined by

Uit1 = Ui(Le + ) (I + ©y), 120,
where the norms of the Q;’s and the ©;’s satisfy

1] < a2~V e and (0] < ap2” @D e,
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Then the sequence (U;);>0 converges to a matriz Us. If Us is an unitary matriz
then each U; is invertible and we have

2(041 “+ oo + Oél()é2U0) 27(p+1)i+1€

U — Uso|| < V2
” ” 1-— 2(0(1 + oo + alaguo)uo

Moreover each Ni = [];50(Le + Qiy;)(Le + Oiy;) is invertible and satisfies

||N1 — Ig” g 1 — 2(0[1 + a9 + OQOQUQ)U().

Proof. We remark that U; = Uy H;—;B(Ig +Q;)I; + ©,). Let N; = Hj>0(lg +
Qit+j)(Le + Oiyj). Let us consider Uss = UpNy. From assumption we know that
91| < a2+’ *le and ||O] < a2~ P+l Taking in account that e < uo, it

follows

(L 4+ 19251 (L + [1©igsll) < 1+ (@ + az + agagug) x 2~ @+ +1g,

The matrix N; — I, is written an infinite sum of homogeneous polynomials of
degree k > 1:

Ni—Ir = Pu(Q ..., Qigjr ... 01y, Oy )

k>1

Consequently for i > 0 we have :

IN: = Lol < D Pe(lll, - Qs - 183l 1€l -
k>1
< T+ 19051D (1 + 106451) — 1
j=0
< H(l + (a1 + as + ajasug) X 27(”“)””15) -1
>0

2(a1 + g + a1a2u0)2*(p+)i+15 from Lemma 77?7

<
g 2(0&1 “+ oo + a1a2u0)uo since € g U

Since 2(ay + as + ajasug)ug < 1 it follows that each V; is invertible. Since
Us = UgNy it is easy to see

[Uso|| < 1U0]|(1 + 2(e1 + a2 + arazuo)e).
We have U; = UOONi_l. We deduce that

Ui = Usell < Uso N1 (£e = N3) |
1

o= (p+1)"+1,
2(a1 + ag + agasug)ug

< U = 2(an + a2 + anazug)

If U, is an unitary matrix then each U; is invertible and ||Us|| < v/£. The result is
proved. 0

This manuscript is for review purposes only.
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LEMMA 3.7. From Uy

1€ o[l <

—14(1- 5)—1/2)€(p+1)i—1

€ C™*¢ be given, let us define the sequence for i > 0,

Ui+1 = UZ(Ig + Qi,p) with Qi,p = SP(E[(Ui)) Let e = ||EZ(U0)||

Then we have

Proof. From Proposition 3.2 we know that || E¢(U;)|| < e®+D’ " Since sp(u) <

—1 4+ (1 —u)~Y2 we can write

1
—- —(—14(1—
u— —(=1+(

192 51l <

We are done.

”Qi,pH

(-1+(1

—g)T1/2)ele )"

4. SVD for perturbed diagonal matrices.

< -1+ - €(p+1)i)_1/2. The function
u)~1/?) is defined and is increasing on [0,1]. We then find that

4.1. Solving the equation A — S — XY 4+ XY = 0. The following proposition
shows how to explicitly solve this linear equation under these constraints without

inverting a matrix.

PROPOSITION 4.1. Let ¥ = diag(oy, ...

o,) € DX and A =

((Si“j) e C*1. Con-

sider the diagonal matriz S € D% and the two skew Hermitian matrices X = (x; ;) €
C>* and Y = (y; ;) € C9*9 that are dend the tfined by the following formulas :

e Forl <1t <q, we take

(4.1)

(4.2)

e Forl<i<j<q, wetake

(4.3)

(4.4)

o Forq+1<i<fand1<j<

(4.5)

e Forg+1<i<flandqg+1

(4.6)
Then we have

(4.7)

LTig = —Yiji

N = N =

Sii =Red;;

Imém
= —1
2Ui

5J+6]Z ZJ_E
i — 0 aj—l—ai
51]+5J17 ZJ*E
§— 04 o+ 0
q, we take
1

Tij = —0ij-
g3

< j <4, we take

T, = 0.

A-S-XYX+3XY =0

Proof. Since X and Y are skew Hermitian matrices, we have diag(Re(XY —
¥Y)) =0. In view of (4.1), we thus get

diag(Re A)

This manuscript is for review purposes only.
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544 By skew symmetry, for the equation
545 XY -YY =diag(ReA)=A-S

546 holds, it is sufficient to have

547 (48) OiTi4 — OiYii — ilm (52'71‘, 1 <1< q.
v (o) (o o )
—O0ilij 055 —05Y%.5 05Y5.5
ilm (512 (51‘ 7 . .
54 = ’ ’ < <
549 ( 5 iTm’s, ), 1<i<j<q
552 The formulas (4.2) clearly imply (4.8). The x; ; from (4.3) clearly satisfy (4.10) as

well. For 1 <4 < j < g, the formulas (4.9) can be rewritten as

ot

agj —0; Re:z:z-j Re§ij
54 > — )
—0; gj Re Yi,j Re 5j,i
g; —0; Ima:w- o Iméw
g; —0y Imym- - Im5j,i ’

ot Ot
S S

ot
S Ot

557 Since o; > 0, the formulas (4.3-4.4) indeed provide us with a solution. The entries
558 ;5 with ¢ +1 < 4,7 < £ do not affect the product XX, so they can be chosen as
559 in (4.6). In view of the skew symmetry constraints z;; = —%;; and y,; = —7;,, we
560 notice that the matrices X and Y are completely defined. ]
561 DEFINITION 4.2. Let ¥ = diag(o1,...04) € D9 and A € C™*9. We name
562 condition number of equation X% — XY = A — S the quantity

1 1 1
563 (4.11) k=k(X) =max [ 1, max —, max +
564 1<i<q 0 1<i<j<q 04 — 0 0;+0j
565 4.2. Error analysis.
566 PROPOSITION 4.3. Under the notations and assumptions of Proposition 4.1, as-

567  sume that X,Y and S are computed using (4.1-4.4). Given ¢ with ||A|| < e, the
568 matrices X, Y and S solutions of A — S — XX + XY = 0 satisfy

569 (4.12) ISl <e

0 (413) XL 1Y ) < re

572 Proof. From the formula (4.1) we clearly have ||S] < ||A]| <e.
573 Since ¥ € D**9 we know that o; > oj for i < j. It follows

. 19,41 1 1 19 1 1
574 \I”| < + i +
2 0;—0; 0;+0] 2 0, —0; O0;+0j

5% < kldig)  since  |0i4] =101,
- (%] : , 104,4]
577 We also have |z;;] < —— and for g+ 1< i< fand 1 <j<gq |z < .

a; gj
578 Combined with the fact that ||Al < e, we get || X|| < ke. In the same way we also
579 have ||Y|| < ke. d
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16 DIEGO ARMENTANO AND JEAN-CLAUDE YAKOUBSOHN

5. Convergence analysis : a general result.

DEFINITION 5.1. Let an integer p > 1. Let 6 = 1 if p is odd and § = 2 if p is
even. Let us consider the map

U+ Q)1+ 0)

(5.1)  UV.D)eENS—  HUV.E)=| VI + NI +¥) | €ERLY
Y+ S
where Q, A are Hermitian matrices, S a diagonal matriz and ©,V are skew Her-

mitian matrices. Let A = UMV — % and Ay = (I + %) (I, + QU*MV (I, +
NI, +0)—X - S. We said that H is a p-map if there exists quantities a >
1, b 20,7, (1, {, ar, as, ag, a, € be such that for all (U,V,X) satisfying
max (kKA s* K" Eo(U)|, k° K Eg(V)|]) < e we have :

(52)  EUUL+ I < B (V)P and || Eq(V (Ig + M) < B, (V)[PH
(53)  &KAL] < T]A|PT and kK°|S|| < o Al

e+ 0117, I+ ¥l < G

(5.4)

I(Ze+ )T +©) — Ill, (I, + U )L, + %) — L] < e

ra [b+1

(5:5) 120 [[Al < ea[|All and [[O], [|¥]] < azexe.

We are proving that the theorems cited in the introduction result from the fol-
lowing
satement.

THEOREM 5.2. Let an integer p > 1 and three reals a > 1, bje > 0. Let § = 1
if p is odd and 6 = 2 if p is even. Let us consider a p-map H as in (5.1). Let us
consider a triplet (Uy, Vo, X0) and define the sequence for i = 0, (Uiy1, Vig1, Dit1) =
HU;, Vi, %;). Let A, =U MV, — %, K, .= K(%;) and k; = k(%;) with K = K¢ and
Kk = Kkgo. Let us suppose

6:6)  max (5K Aol kKT EU)], KB, (V)] < <
(5.7) M(Qe)% <L
b+1
68 el G as < L
(5.9) 1—8ae >0

where the quantities «, T, (1 and (o are as in Definition 5.1. Then the sequence
(Ui, Vi, 2i)is0 converge to an SVD of M and we have

(5.10)  max (R RYA|FE B (U] kEETHE (V)]) < e < 27FF0 e
(511) 1% — Dol < (2 - 2270 e
R
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where ¢(1 — 4ae) = 1. The inequality (5.11) implies K — 2ace < K; < K + 2ace and
il < K < % Morever if there exist positive constant ug such that & < ug
c — 4dace

and 2(o; + a2 + arasug)ug < 1, then by denoting v = 2(a1 + az + a1agug) and
o = 0.82 x a we have

(5.12) |U; = Usel] < 27 @+ ¢
1 —~yup
(5.13) Vi = Vao| < 270D LT
1 —~yug
. P — <27 ' o€
(5.14) 2 — oo < 27 FDH1
Proof. Let us denote for each i > 0, U; 1 = U;(Le + ;) and Ujy1 = U, 1 (I + ©;)

with similar notations for V; ; and Viyi. Let Ay +3; = U MV;, ¥4 =3%;+5; and
also

€0 = ¢ gi = max(kIKP|A |, kKT E(Us)||, k8K Eg(V)])
ko = kK ki = k(%)
K, = K K = K(%)

We proceed by induction to prove (5.10-5.11). The property evidently hold for ¢ = 0.

By assuming this for a given i, let us prove it for ¢ + 1. We first prove that ||X; 11 —

i i QacC

Yol € (2 — 22~ P+ +1)%5 under the assumption ||X; — X < (2 — 22~ (P+D") —¢
K

with ¢ = 1 + 4ace. From Lemma 5.3 we have K — 2ace < K; < K + 2ace and

1—-4
K <k £ 7 Z =1 8a5 k. Using these bounds and assumption (5.3)it follows
c — 4ace — 8ase
that
[Zi11 — il = ISl < /@ZTKZ?’O@
(5.15) < o=+ ae  sincea >1 K>1andk; > &
K c

By applying the bound (5.15) we get

[1Zi41 — ol < [IS:ll + 1% — Xol|

< 21+’ lozca +(2- 22_(p+1)i)laca
K K
<(2- 21D (2 - 1) %,
K
<(2- 2—(p+1)i)%5.
K

But it is easy to see that p > 1 implies 1=(p+1)" > 22+ lence
i1 — Dol < (2 - 22 @+)TH
K

Then inequality (5.11) holds for all i. From (5.3) we have ||X; 11 —%;|| = [|Si]] < gsi.
Rs
We then deduce
« «
(516) Ki — ;61‘ g Ki+1 < HEZ” + Hzi-‘rl — ElH < Kl + ;Ei-

7 7
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18 DIEGO ARMENTANO AND JEAN-CLAUDE YAKOUBSOHN

As in the proof of Lemma 5.3 we can obtain

Kq Ky
5.17 ,
( ) 14 2ae ST 2 2ae
We now prove that x%  K? ;|| Ai1] < 2-2"" 41z Using both the assumption (5.3)

and (5.16-5.17) it follows

a (1+ae) ,
R KLl Aia ) < (1= 202) " 7] AP
(14 ae)® 1
I
(1 + OéE)b —(p+1)t1 41
RS m(QE)pTQ p g
— 20e)?
(1+ ae)®

—(p+1)iT 41 e
<270 e since (1= 2ac)

(26’7 <1 from (5.7).

We now can bound ||E;(U;+1)||. We have

IE«(Uip)|| < [|(e + ©7) Ui "Uia (Ie + ©3) |
<N (e +O7)Ee(Uia) (e + ©i) + (Ie + 07) (e + ©i) — L
(5.18) <@+ 6?1 EeUs)ll + 1(Ze + OF)(Le + ©:) = L]l
1
From assumption (5.2)we know || Ex(U;1)| < || Ee(Us) [P < W5f+l~ It follows
R 8

using both assumption (5.4), (5.22-5.16) that

KBl < T et + et
b (<11+_C§2:;1 (26)7(G1 + Goe® )2 FD I
< o= (p+1)"H 141,
since M(Qe)p(cl + 6% <1 from (5.8).

Hence w¢, KUH Eo(Uir)|| < 27 @D e, In the same way ¢, KU Ey(Viga)|
< 2-2""'+12 Hence we have shown that €it1 & 22" +1c This completes the proof
of (5.10-5.11).

By applying Lemma 3.6 we conclude that the sequences (U;)i>o and (V;)i>o0
converges respectively towards U, and Vo, which are two unitary matrices since

| Ee(U)|, | E4(Vi) < 272 e, Hence the bounds (5.12-5.13) hold. Finally the bound
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itj—1
[Zigs = Zall < D 1%k — il
o

=1
k
< Z o= (P+1)"+1 o
k>i

< ZQ—(pH)’“ o= (P+1)'+1

<2~ 5 0.82ae  since 22_(”"’1)]9 < ZQ_Qk < 0.82.

k>0

k>0 k>3

19

Hence the sequence (X;);>0 admits a limit X,. The triplet (Us, Voo, Yoo ) is a solution
of SVD system (1.1). The theorem is proved.

|

LEMMA 5.3. Using the notations and asumptions of the proof of Theorem 5.2 we
have with ¢ = 1 + 4ace :

K —2ace < K; < K 4+ 2ace
Ko o K
Y —
¢ T 1 — dace

Proof. Let us prove that K; < K + 2ae. We have

In the same way K; > K — 2ace. We have also k; <

K= |Z] < [[Zoll + (1% — Zo|
<K+(2- 2*(p+1)i+1)%5
K

< K+ 2ace since k> 1.

— 4dace

the diagonal values of 3;, the Weyl’s bound [44] implies that

(5.19)

and

(& .
|0i,5 — 00,4 < [|2i — ol < 2—e 1<j<n

(0%

ac ac .
K—-2—e<o0; <K+2—¢ 1<j<n.
K K

Hence, since k, K > 1 we get

(5.20)

K 4 K
1+ 2ace tJ 1 —2ace

Moreover for 1 < j < k < n, we have :

(5.21)

|loik £ 05 ]

doace from

1 — 8ae
2 |oo,k £ 00,5](1 — dace) = |oo k. £ 00,j|17

>
> ook £ 00,4 (1 - m
, J

—4ae
since k|og £ 00 ;] = 1 and (5.9)
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Taking in account the definition of x and the inequalities (5.20), (5.21), we then get

1 1 1
K; = max (1, max , max +
i 0y k25 \|oik —oijl  |oik + ol

1 1
< )
A (1 —2ace’ 1 — 4a05>
K ~ 1—4dae
S 1—4dacs  1-8ae’

In the same way we have

ik £ 003 < |ook £ 00,5 + |05k — Tok] + |05, — 00,5
< ‘UO,k + Uo’j|(1 + 4acs) = |00,k + 00’j|c.
We deduce that
(5.22) S
c
The Lemma, is proved. 0

6. Proof of Theorem 1.2 : case p = 1. Let

1)\? 1
s:<1+25) +1+16, T = (34 s¢)s?, a=2, b=1, wuy=0.0289.

It consists to verify the assumptions of Theorem 5.2. Remember that (5.6) is satisfied
from assumption since

max (k*K T Ey(U)|], s* K" | E,(V), kK[| Al]) < e
where U, V', A stand for Uy, Vp, Ag respectively. The item (5.2) follows of Proposition

1 1
3.2 since Q) = _iEe(U) and A = —iEq(V). Let us prove the item (5.3). To do that
we denote Agq = (g + Q) (A+2)(I, +A) — X and €01 = ||Ag,1||. From Proposition

3.2 and |[[E((U)||, [[E4(V)] < we know that [|Q], [All < 3

Wf. We

g
K/aKbJrl

1
then apply Proposition 6.1 with w = 3 to get

1\? 1 €
€01 < <<1+ 25) +1+ 45> Kb
< 5
= gaKbT
From Lemma 4.3 we have || X||, [|Y]| < xeo,1. We deduce that the quantity
A= (I — X)(Dos +5)I,+Y) —S—§
=—-XAp1+801Y —XAp1Y —X3Y since Ap; —5—-XE+3XY =0,

(6.1)

can be bounded by

AL < 2/{53,1 + Hzeal + /<;2K5(2)’1

k3K?2  gAK3  K2K
1 2
k2K

2 1
< ( + e + > s%e? since K, K >1 and €01 < % from (6.1) .
K

(3 + se)s%e? =

<
S R2K
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On the other hand S = diag(Ap,1). It follows ||S]| < €1 < 2—; The quantity o of
K
Definition 5.1 is equal to s. This allows to prove the assumption (5.7) that is

1+ se 1+ se 9
26(1 - 235)2T S 2(1 — 2s¢g)? (34 s5¢)s7

<1 since e < ug=0.0289.

We now prove the item (5.4). We have
1Ze + O] < (1+[1X]])?
I(Ze = X)(Ie + X) = Il = [1X]1*.

Using Lemma 9.4 we know that || X || < keg1 < o 1Kb We deduce that

L+ X1 < (1 +52)* =G
Coc®

K20— 2K2b

2

(I — X))+ X) — I]| < where (o = s°.

< aKb—H ——(2¢? sincea=2and b= 1.
K

This allows to prove the assumption (5.8) that is

(25)((11_+2‘%))(<1 + Gt
<2((11_+ 25;)) (14 52)* + s*)e since p= limplies 6 = 1

<0443 <1 since u < up.

Finally 1 — 8se > 0.46 > 0. This proves the item (5.9).

1
We now verify the assumption (5.5). We have seen that [|Q]], ||A] < 3¢ Hence

1
a =g On the other hand one has © = X and ¥; =Y. From || X]|, |V < se <

2.042¢ since u < ug, we can take ap = 2.042. Since yug = 2(a1 + ag + a1azug)ug <
0.15 then the bounds (5.12-5.14) of Theorem 5.2 hold with

v=5.14
T <61
1 —yug

o = 0.82s < 1.67.

The Theorem 1.2 is proved in the case p = 1.0J
PROPOSITION 6.1. Lete > 0 and a,b > 0. Let Ay = (I; + Q)(A+3)(I, +A) —
s € .
with Q* = Q. Let us suppose |A| < T and ||, Al < T with & = k(X)
and K = K(X). We have

Al < ((1 249 20 &
1A < (4 we)? 4 20+ 0%) —
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Proof. We have Q* = Q. A straightforward calculation shows that
A=+ DA +AN) + L+ QI+ A) —
=L+ QAI;+A) + QX + ZA + QXA

Bounding ||A1|| we get
A< (14— ) = Lo we v VK
A < ( +K:aKb+1) /{aKb—*— HaKb+(naKb+1)

< ((1 + we)2 + 2w + w2<€) since K, K >1

€
koKD
The proposition is proved. ]

7. Proof of Theorem 1.2 : case p = 2. Let us introduce some constants and
quantities.

(7.1)

We also introduce

5 1
T1:2+2€+Z€2+Z€3

1 1
(7:2) Ty =3+ 2(11 +27m1)e + 5 (8 +77m1)e? + 2(24— 7T+ 77)ed

1 1
+ 5(3 +27)met + 71e® + 1 2eb

(7.3) T =TTy
a=(14+m7(se)se)s

Let us verify the assumptions of Theorem 5.2. The item (5.2) follows of Proposition
3.2 since Q = s9(Ey(U)) and A = s9(Ey(V)). Let us prove the item (5.3). We first
bound [|A;|| where A; = UMV — %;. We use the Ag,;, 1 < i < 3, the quantities
defined by the formulas (1.10-1.11). By definition of the map Hs, we have Ay = A 3.
We introduce the quantities g ; = ||A0 i||. From Proposition 3.2 in the case p = 2 and

w
assumption ||Ep(U)|l, [|E,(V)] < we know that ||Q]], ||A] < bt with

aKb+1 aKbJrl

1 3
w= = (1 + 6). We then apply Proposition 6.1 to get

2 4
15
g0.1 < (1 +we)? + 2w + w?e)—— T
(7.4) < % from (7.1).
From Proposition 7.1 we can write
1 3.3
”AlH = ||AO,3|| < WT(S&)S g,
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We now bound the norm of S = 57 +.55. We have always from Proposition 7.1

1 1

(75) HSH g HAOJH + ||A072 W(l + 7'1(86)88)86 = W(X&‘.

| <

5 (1+ae)t/?

3 .
WT(SE)S < 1is

A numerical computation shows that the inequality (2¢)

verified for all u < ug. Then the assumption (5.7) holds.

We now prove the item (5.4). We have

e + O] < (1 + [le2(X)1])?
[(Ze + ©%)(Le + ©) = L|| < (1 + co (= X)) (1 + e2(1 X)) — 1

KT x
WABKL/3 T l/3K1/3
1 4
with © = ae. On the other hand c2(u) = u+ §u2 and (14ca(—u))(14co(u))—1 = uz
It follows :

From the bound (7.5) we deduce that | X|| < || X1]| + [| X2 <

1 2
IZe +@\|2 < (1 +x+ 2x2) =0

1

I(Te + ©*)(Le +©) — Ifl| < Ve aYEIC

1
(ae)t = where (o = 1a454.

1
A4/3 K4/3
5 (1+ae)?/?

We now prove a part of assumption (5.8) that is (2¢) (1= 202)i7
—2ae

(<1 +<2€) < 1. We

have

ERTALERLS uis
(1 —2ae)4/3

This proves the item (5.8). The item 5.9 holds since 1 —8ae > 0.05 > 0 when ¢ < up.
Let us prove the assumption (5.5). Using € < ug we have [|Q], ||Al] < we < aje
with @y = 0.52 and ||O||, ||¥]| < (1 + x/2)ae < aze with as = 2.7 Moreover

(14 ee) < 0.025 since  u < ug.

2(0[1 “+ oo + ozlozguo)uo <0304 <1
Then the bounds (5.12-5.14) of Theorem 5.2 hold with
v = 6.56
<o
1 —yug
c=0.82a < 2.1.

The Theorem 1.2 is proved for p=2. O
PROPOSITION 7.1. Letp =2, € > 0. Let us consider Ay = Uy MVy —X such that

A1l =e1 < 4/%[(1/3 where k = k(X) and K = K(X). Let us consider 1 := 11(¢)
K
and 7 :=7(g) as in (7.3) Then we have
1
Az < Wﬁ527
1
T3 ‘— HA:}H < WTE?)’

where Ay = (I + O71) (A1 +X)(I; + ¥1) — X — 51 and Az = (I, + 03)(A + X) (I, +
Uy) — X — 51 — Sy with Oy and ¥y are defined by the formulas (1.11) for p = 2.
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850 Proof. We denote ex(X) = X2/2, ©1 = X; + e2(X;) and ¥y = Y7 + ea(Y7).

851 Remember A1 +% = U*EV and Ay = ([, +07)(A1+X)([4+¥1)—X—S5;. Expanding
852  Ag we find

1 1 1
853 A=A =5 — X1+ 32V — X413V + §X122 + zgyf + Zszyf

854 + %XfZYl — %Xlef — X1 + A Y — XA Y+ %XfAl + %AlYf
855 + inzAlYf + %XfAlYl - %XlAlYf

856 = %(Xl(—zy1 + X1 3) + (- X1+ XY))N) + ixfzyf

857 + %Xl(XlE — YY)V - XA+ ALY, - XA Y+ %XfAl + %AlYf
858 e+ %X%AlYf + %X%Am + %XlAlYf

850 (7.6) = %(Xl(fAl —S1) + (S1+A)Yy) + ixfzyf + %Xl(fAl - S,

860 + %XfAl + %AlYf + inAlYf + %X%Am - %XlAlYf.

862 We know that [|A;|| < &1. From the formula (7.6) we deduce

1 1
863 | Az < 2kef + Z/#Ka‘f + 2K%e% + 1/#5‘;’ + K¢t
5 1
864 (7.7) <qed  with ¢ = 2k + 2x%e; + ZH4K€% + 1546?
r QG € : . _ 5.2, 1.3
866 Since g1 < BRI it follows g1 < 716 with 74 = 2 + 2¢ + 7e° + z¢°. Hence we
. 5

867 have obtained ||As| < EawverSyEL
868 From definition ©2 = ¢3(X; + X2). Hence we can write O3 = 01 + X5 + Ay with
869 A2 = A2<X1,X2> = C2 (X1+X2) —CQ(Xl) — X5

1
870 = 5((X1+X2)2*Xf)

1
871 = 5(Xz? + X1 X5 + X0 X))
S(4

873 In the same way Wy = Wy +Y5+4 By where By = Ao(Y7,Y3). Expanding (I,4+03) (A1 +
874 X)(I; + Uy) we get

875 As = (Ig + @;)(Al + 2)(1(1 + \112) —X-5-5

876 = (I[ + @)lk — Xo + AQ)(Al + E)(Iq + W, +Ys + BQ) —X -5 -25
877 = (I[ + GT)(AI + E)(Iq + \Ijl) X - Sl - SQ + (Iz + @T)(Al + E)(YQ + Bg)
878 + (—Xo+ A2) (A1 + 2)I; + 1) + (— X2 + A2) (A1 + ) (Y2 + Bs)

880  We know that

881 (I/ + @T)(Al + E)(Iq + \Ifl) - - Sl — S2 = AQ — SQ — XQE + EY& =0.
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Expanding more Ag, we then can write by grouping the terms appropriately :

(7.8) Az = —XoA1Yo + A1 By + Ao A1 — XoA1By 4+ AsA1Ys + As A1 By
(7.9) L OIALYs — Xo ATy + OF AL By + AyA T,
+ G,

where G = —XoA1 + A1Ys — XoXYs + X By + A + @TEYQ — XU, + @TZBQ +
AoX Wy — XoX By 4+ A3XYs + AsYXBs. The Lemma 7.2 modifies the quantity as sum
of the following G;’s :

1

(710) 1= 5 Xa(Aa = S2) 4 5(S2 — AoV

1
2
1 1
(T11) o= 5(Xi(Bo— 52) + (82— A)Vi) + 3 (Xa(~ A1 = 51) + (51 + A))Ya)
1
(1.12) Gy =5 (Xi(B = S2)Yi + Xa(Ay — $1)Yz + X1 (B — 52) ¥2)
1
+ §(X2(A1 — Sl)Yl + Xl(Al — Sl)YQ + XQ(AQ — SQ)Yl)

1
(T.13)  Gi=5Xa(S2 — Ao)Y2
(714) Gs = 62(X1)2R2’1 + Qg’lzeg(yl) + 62(X1)Z€2(Y2) + eg(XQ)Eeg(Yl)

where Q21 = %(Xng + X2X;) and Roq = %(Yl}/g + Y2Y7). We are going to prove
|As]| < q1q263 where g2 is defined below in (7.16). To do that we will use the bounds
L[ X3 Vil < men, |A2]] < quef and

(7.15) 1Xall, [Y2]] < rgied.

1
2W@NW%H<Q+2MQKQ

3. Q2,1 |1 R2,1] ; 1
4 4], 1Ball < (a3t + 2mn2ed) = L (mer + 2aw’ed.
Considering the bounds of the norms of matrices given in (7.8-7.14), we get

1
aes Al

< qir2e}.

1
< Zqi’n‘laﬁ + @R + (k4 ) rPe] + 263qued + 2k2qre? 4+ 262, from (7.8)

1
+ §n4q15% + K13 (k + q1)es + 3k33 + 2k%e; from (7.9)

3 3 1
+ Kkqie1 + 3K + inqusf + 5:%281 + 552q%5§’ from (7.10-7.13)

1
+ §R4Kq16§ + K*Kel.  from (7.14)
Collecting the previous bound we get ||As|| < g2q163 where
1 1
(7.16) g2 = 3K+ 5(11& +2q1)ker + 5(2/<52K + 65 + Tq1)K%eT
1 1
+ (@R K + 257 + 6rqy + qi)w%e] + S (3k + 20 a1 57y

1
+ q%n‘le‘;’ + 1(]?/145?.
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Now we are bounding goe1. We remark that the monomials which appears in ¢g2¢1 are
of the form qanK’C 1 for some (i,4,k,1) € N* such that i > 0, 3j < 4l and 3k < L.

Since g1 < and gie; < 7€ the we have :

K4/3K1/3

7 _1+1

quijEil—s-l < (rie) o —AL/3 frk—1/3 L
< TiE sincek, K > 1

From the expression of ¢y it follows after straightforward calculation that gse1 < e
where
1
Ty =3+ =(114+2m)e+ = (8 +711)e? + 2(712 + 71 + 2)e8

1
(3+271)71€ +7'1€ +4Tf’56

BD\PA 53\**

Since we also have g1 < 11¢ it follows

(717) HA3|| 7'17'28 81 S TQT1€3.

1
K4/3K1/3
The Proposition is proved. 0

LEMMA 7.2. Let us consider

G =—XoA1 + A1Ys — Xo¥Yo + As¥ + By + O7XYs — XX,
+ O1XBy + A3X ¥y — XoX By + AsXYs.

Then G = Gy + -+ + G5 with

G = 5 Xo(Bo = 52) + 5(S2 — Ao)Ys
G %(Xl(AQ ~ 85) + (s — A)Vi) + %(Xg(fAl —81) 4 (S1 4+ A)Ya)
Gs = ; (X1(Az — S2)Y1 + Xo(A1p — S1)Yo + X1 (A — S2) Ys)
+ %(XQ(Al —S51)Y1 + X1(A1 — 51)Ys + Xo(Ag — S2)Y1)
Gy = % Xo(82 — Ag)Ys
Gs = e2(X1)ERa 1 + Q2,18e2(Y1) + ea(X1)Zea(Ya) + e2(X2)Xea (Y1)

where 622’122 %()(1)(2 +—)(2)(1) a7uil%2J_:: %(Yﬁ)& +-}§)ﬁ).
Proof. Let ea(X) = X?/2. We have Ay = e3(X2) + Q2.1 with

1
Q2,1 = §(X1X2 + X0 X7).

Moreover ©1 = X7 + e2(X7). In the same way By = e3(Y2) + Roq with Ry =
1
%(YlYg + YoYy)and ¥y = Y] + ex(Y1). We also remark es(Xs) = §X22 Expanding G
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we can write G as the sum of the following quantities :
1 1

G = —XoXYs + 5X§2 + 521/22

Go=—XoA1 + A1Yo + Q21X + YRy 1 — X1 XY, — Xo¥Y

Gz = —X1XRp1 + Q2131 — XoXRo 1 + Q2,125

— Xlzeg(}/g) —+ 62(X2)ZY1 —+ GQ(Xl)E}/Q — XQZGQ(H)

G4 = —XQZGQ(YVQ) —|— BQ(XQ)ZYQ

Gs = e2(X1)ERa1 + Q2,13e2(Y1) + ea(X1)Zea(Ya) + e2(X2)Xea (Y1)
We are going to transform the quantities G;’s. We first remark using Ay — Sy — XoX +
3Ys =0 that

1

1 1 1
—Xo5Y, + 5X§E + 5EY;‘ = 5 X2(=3Y2 + Xo¥) + (- X232 + TY2)Y

1 1
= §X2(A2 —S9) + 5(52 — Ag)Ys.
Hence

1 1
Gy = §X2(A2 —S9) + 5(52 — Ag)Ys.

1 1
Next we remember that Q271 = §(X1X2 + XQXl) and R271 = 5(}/1)/2 + YQYl). On
the other hand we have : A; — S; — X;X + XY; = 0 for 7 = 1,2. Hence we can write
Gy as

Go = —Xo A1+ A1Yo + Q21X + YRy 1 — X XY, — Xo¥Y

1
—XoAi 4 ArYs + S (X1 (XaX — TY)) + (X2 + D))
1
+ 3 (Xa(~Z¥ + X1Z) + (X1 2 + £1)Ya)

1
= —XoA; +A1Ys + §(X1(A2 —S2) + (S2 — A)Y7)
1
2
1 1
= 5(X1(Az = 52) + (52 = Aa)V1) + S (X2(=A1 = 51) + (S1 + Ar)Y2)

+ o (X2(A1 = S1) + (S1— A)Y?)

Next, by proceeding as above we see that

G3 = —X1XRo1 + Q213Y1 — XoXRo 1 + Q2 1XY>
— X1Zea(Y2) + e2(X2)XY7 + e2(X71)2Y2 — XoXes (Y1)

= %(—X&EYQY1 + X1 Xo2Y) — XoXY1Ys + Xo X1 5Y5)
+ %(Xlxzzyz + X0 X12Y) — X1 V1Y, — XoXNYoYr)
+ %(—X@Yf — XoXVP + XY, + X23%Y7)

= % (X1(Ag = S2)Y1 + Xo(A1 — 51)Ya+ X1 (Ag — S2) Y3)

1
+ §(X2(A1 - S)Y1 + X1 (A — 51)Ya + Xo(Ag — S2)Y71)
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28 DIEGO ARMENTANO AND JEAN-CLAUDE YAKOUBSOHN

We now see that

G4 = —XgE&g(Yé) + eQ(XQ)ZYQ

1

5
1

= §X2(52 —Ay)Y;

—XoXYE + X2%Y5)

Finally

G5 = 62(X1)2R2)1 + Q2,12€2(Y1) + eQ(Xl)EGQ(YQ) + GQ(XQ)ZGQ(Yl). O

8. Proof of Theorem 1.2 : case p > 3.

1. Notations. Let us introduce some quantities to simplify the reading of
expressions. We introduce the constants

1
(8.1) 6=0351, = —p a=g b=z up=00207

and the quantities :

w=21(-1+(1-¢)712), s=(1+we)?+2w+w?=21-¢)"1,
(@) = 1+ VIZE)™, aae) = () ~1/2)

52 b(e):M-i-Qa(e) b(e)—M—FQa()
' VI—e2  THEh Vi-e2
a=1s,

For ¢ = 1,2 we introduce
zi=a;(ne), yi =bi(ne), zi=ai(fe), 1 =6024ny, ti=1+nzie.

and

3 1 1
(8.3) T(e)=2(14+n) + <2r1 + 0242t + 5772 + 77792 + 94> €1
+ ( Zl + 229) 6% + 2y1310 + (27"1 + 29:1217] + T] )02)
+ (2 (y2 + z1y1) 0° + 21ty €3
+ (2220° + 22006° + (2421” + 17)60% + 2(22 + y2)1*)ed

The following lemma justifies these notations and will be use in the sequel.

1 b/3
LEMMA 8.1. We have 7(se)se — 0 < 0 and 2%34/37(55) < 1 and for
— 2
all € € 0, ug).
Proof. From straighforward computations. ]

8.2. Proof. It consists to verify the assumptions of Theorem 5.2. Remember
that

max (k" K" B (U], kK" By (V)| kK| Al) <€
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where U, V', A stand for Uy, Vp, Ag respectively. The item (5.2) follows of Proposition
3.2 since Q = s,(E¢(U)) and A = s,(E4(V)). Let us prove the item (5.3). To do that
we denote Ao 1 = (I;+Q)(A+X)(I;+A)—X and g91 = ||Ap,1]|. From Proposition 3.2
€

and assumption ||E¢(U)|], ||Eq(V)| < ey

We then apply Proposition 6.1 to get

we know that [|Q]], [|A]l < RAROLC

€
<((1 249 20—
€01 < (T +we)* +2w+w g)m“Kb
se

(84) Py

N

from (8.2) .

In view to use the Propositon 8.2, let us prove that 7(gq1)ep,1 < 6. Using Lemma
8.1 we have

(se)se since €91 < se

’
0 from Lemma 8.1 sincee < ug.
From formulas (1.11) we have
P
Ay =Dopr1 =T +0;) (D01 +3) I+ Tp) =T =) Sk
k=1

The quantity 7 which appears in (5.7) is equal to 7(sg)PsPT1. Using Propositon 8.2
with 7 := 7(s¢)PsPT1, we then get

Al = 1A0p+1]]

< aKb(T(sa)spr#)pspH since go,1 < se.
K

On the other hand from definition S = 51 +- - - +.5, where Sj, = diag(Ag x). It follows
[1S:]l < €0,k = ||Ao,k||- From Proposition 8.2 one has

€0k < 7(35)k715§,1
se
< 9’“‘150’1 since 7(se)se < 6 and g1 < A b
We deduce
P 1 ae
(5.5) R

The assumption (5.7) is satisfied. In fact we have

1 b 1 b/3 p
(25)”((1_—i_;éoig))aT(ss)ps”Jrl < <2((1_—’_;;2)a/37(55)s4/35> sincep > 3 and s > 1
(8.6) <1 from Lemma 8.1 sincee < ug.

We now prove the item (5.4). We have

1Ze + ©1* < (1 + [[ep(X)]])?
[(e +©%)(Le + 0) = L]l < (1 + ¢ (=[[ X)) (1 + e (1 X])) =1
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€ x x
Using Lemma 9.4 and ¢ 1 < siaKb we know that || X|| < nrep1 < =
K

Ka—1Rb — b
with x = ae. We deduce both from Lemma 9.4 that

(8.7) (1 +lep(X))? < M+ 2+ 22a1(2))* = G
and from Lemma 9.9 that

®8) (14 (=X + X)) -1

1 p+d
< (2\/ 1—a2+ al(x):rpH) a1 (z) <Wa6)
1 p+6
< (2\/ 1—22+a (x)x3> ay(x)aPto ( ) gPtt

Kb Kb
G2

~ KaKbJrl

where § =1 if pis odd and § = 2 if p is even from Lemma 9.9. We then remark that

ePTlsince p > 3implies (p+ )b > b+ 1

(8.9) (2€)PaPT0e57 < (20°/%€)P  since pto < g
p
(1+ ag)’*!

m@l + C25671) <1

This allows to prove the assumption (5.8) that is (2¢)?
We first have since b+ 1 =a

(2¢)7 ( Lt ac )a<l < (2 ( L+oac )a/g (L+z+ anl(x))W%)p

1 —2ae 1 —2ae

< (0.037)P < 0.00005 since € < ug and p > 3.
We now remark that
G = (2@4— al(m)x?’) a1(z) < 0.998 sincee < ugpimpliesz < 0.098.
Taking in account (8.8-8.9) we get :
o[ 1tae ¢ s 14 ae \*? 5/3
(2¢) (1—2045) Gae S <2<1—2a€> « 6)

< (0.24)P £ 0.013 since e < ug and p > 3.

p

(14 ae)”
(1—2ag)e
The assumption (5.9) holds since 1 — 8ae > 0.25 > 0 when € < uyp.

We now verify the assumption (5.5). From above we know that ||, [|A]] <

Consequently (2¢)? (C1 + ¢2e°1) < 0.015 < 1. This proves the item (5.8).

w . 1 ~1/2 .
A gchTIC with w = g(—l + (1 —¢)~/2). We can take w < a; = 0.52 since £ < ug.

On the other hand one has © = ¢,(X) and ¥ = ¢,(Y). From above we know
that

lep (X e < (T4 zar(z)) 2 with 2= ae

<
< ase with a9 = 3.35 sincee < uyg.
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Since yug = 2(a1 + az + agagug)ug < 0.233 < 1 then the bounds (5.12-5.14) of
Theorem 5.2 hold with

v=17.82
Y
1 —~yuo
o =0.82a < 2.62

< 10.2

The Theorem 1.2 is proved for p > 3. O
PROPOSITION 8.2. Letp > 2, € > 0. Let us consider Ay = Uy MV, — X such that

€ .
[A1]] =e1 < Ve e where k = k(X) and K = K(X). Let us consider 7 := 7(¢) as
in (8.3) and suppose Te < 0. Then we have
1
— +1
Tp+1 = HAP"rln < K4/3K1/3T(6)p5p

P

where Apy1 = (Ip +0,) (A1 + X)(I; + ¥),) — X — Z Sy, with ©, and U, are defined
=1

by the formulas (1.11).

Proof. Since the X}’s and Y},’s are skew Hermitian matrices, we have ©, = ©,_1+
Xp + A, with

Ay =A4,(X1+..  + X1, Xp) =p(Xa+ -+ X)) —p(Xn+ -+ Xp1) — X,

In the same way ¥, = ¥,,_; +Y,+ B, where B, = A,(Y1+---+Y,_1,Y,). Weremark
that A, and B, are Hermitian matrices. Expanding (I, + ©5)(A; + X) (I, + ¥)) we
get

p
Api1 = I+ 0)) (A1 +5) (I + T,) =S =Y S,
=1
p
= e+ 9271 —Xp+ A) (A1 +5)(Ig +Vp 1 +Y, + By) =X — ZSl
=1

p—1
= (I + 6 (A1 + )T, +Wpo1) ~ 8= 38— 5, — X, 5+ %Y,
=1

(L4 05 ) (A1 + 2)(Yy + By) + (—Xp + A (A1 + 5) (I + Upy)

+ (_Xp + Ap)(Al + Z)(Y;v + Bp) + XpX = XY,

From definition we know that

p—1
(I+0;_ ) (A +E) I+ Tp1)—E=> 8= 8~ X, T+XY, = Ap—S,— X, L+3Y, = 0.
=1

Expanding more A,11, we then can write by grouping the terms appropriately :

(8.10) Ap-~—1 = _XpAl + A1Yp - XpAiY, + A1Bp + A;DAI — XpA1B, + ApArY,

(8.11) + ApA1B, + 0, 1 A1Y, — XAV, 1+ 0, (AB, + AA T,
+ G,
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where G'= —X3Y, +¥B, +A4,X+0; XY, - XXV, 1+0; Y8, +A,X¥, 1 —
XpXB,+A,YY,+A,XB,. From the Lemma 8.3 the quantity G is sum of the following
(;fSZ

(8.12) G1 =dp(Xp)X + Xd, (Y, )
1
(8.13) Go = Qp2X+EXRp2+ pr,l(Ap —Sp) — §(AP — Sp)Dp—1
1. <& 1<
+ 52X D (Ak = S) + 5 D (Sk = Aw)Y,
k=1 k=1
1 1.
(8.14) G3 = icpfl(Ap = 5p)Dp1 — 2Xp (Ak = Sk)Yy
k=1
1 p
- X,,Z (Ak = SK)Dp1 + 5Cp > (k= AR,
k=1 k=1
1
(8.15) Ga = 5X5(Sp = Ap)Yy = X, 5dy(Vy) + dp(X,)5Y,.
(8.16) Gs = ep(Cp—1)ERp1 + Qp13ep(Dp—1) + €, (Cp1)Xep(Yy)
(8.17) + ep(Xp)Xep(Dp—1) + Qp1XRp 1 + Qp1Xep(Y))
(8.18) + e, (Xp)ERp 1 + ep(X,) Xep (V).
(8.19) Go=—Cp_1XRpo+ Qpa¥D, 1 — X,SRy5 + Q,2%Y,

— Cp1Xdy(Yp) + dp(Xp)EDp—1
+ dp(cpfl)zyp - szdp(Dpfl)‘

where the quantities @), ; and R, ; are defined at Lemma 7??. We now can bound
[IAp+1]]- To do that introduce the quantities where i =1,2:

wi=a;(ne), yi=bi(ne), zi=ai(Be), r =62 + ny, t1=1+z0e

and the polynomial ¢ := ¢q(k, K, 1)
2 39,1 o 14\ o
g=21+n)k+(2r1+06 +2t117+§77 +7770 +§9 K g1
+ ((27 + 220)0° + 27)3:12194) Kr'e
+ ((2r1 + 2z121m% + 0°y3) 6 + 2 (yg + z1y1) n® + 2nrity) Krk'el
+ (22260% 4 220m0° + (2021 + r3)0% + 2(x3 + y2)n*) K KOES.

The inequality 7(¢)e < 6 implies ge1 < 6. In fact it is easy to see that the assumption
€

. . . 2 2 2
g1 < W implies ge1 < 7(¢)e since we simultaneously have ke < e, k%e] < &7,

Kr*e$ < &% and Kk°e} < €. We know that ||A;|| < e1. Let us suppose [|Ag| <

¢* ek for 1 < k < p and, prove that ||A, 1| < ¢?e?™'. We remark ¢ > 2(6 4 7) in

order that the Lemmas 9.4-9.8 apply. To bound ||Ap41]| we use the following bounds
1. We have fori=1,2, a;(0ke1) <z bi(nker) < ;.

2. For 1 < k < p, we know that || X[, ||Yz] < xg* e} from Proposition 4.3.
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p—1
3. |Ckll, IDk|l € nrer from Lemma 9.4 and also ZAk — Sk|| < ney from
k=1
Lemma 9.1.

4 1@pall, 1Ryl < n*~

5. [lep(X, S
and [le,(Cp—1)]l; lep(Dp—1)|I< 1%k

6. [|dp(Xp)Il; |dp(Yp)]I< 22"?4q4(p71)
from Lemma 9.5 and ge < 6.

7 Al || Bl < 762 gp el

Rp,l-
8. 10p-1ll 1¥p—1ll < tamre

9. H - szdp(yp) + dp(Xp)ZY:DH

since 4, = ep(X,

P e 2i—1
Lyi?igP= 1?21 from Lemma 9.7.

DI ep(Vp)lI< 21622 P~ Vet < 022, 52qP el
2 from Lemma 9.4, gg; < 0 and p > 3

" and ||dp(Cp—1)l|, dp(Dp-1)[I< z2n" ke

)+ Qp1 and B, = e,(Y,) +

from Lemma 9.6.

< 2K22/<55q5(p*1)5‘;’p from Lemma 9.8.

Using the bounds above we then get [|A, 1] < apr1¢? e where

Qpy1 =

2K + qup_laf—l—%m?’qp_lsIfH+2r1n251 from (8.10)

+r2R4gP L TR0t k2 e 42ty e €2 from (8.11)

—|—222K/<;4q3(p*1) ‘I’p71 + 2n3ya Kke? + 20k from (8.12 + 8.13)
+3n2k%e1 + dnkqP1el from (8.14)

+1K2¢2P 1)52p L 22 KrPgr-Degipt from (8.15)

+Kr* (2:1:1y177 e 4 2z P el from (8.16)

+ KR (202 et 4 220912 D 4 230 D31y from (8.17 — 8.18)

+ Kk (277 (w2 +y2)€1 + 22003~V 4 2P ePt?) from (8.19)

Since p >
in op41, we then get

Olerl
+r] 25402 ¢
+222K,‘€496

3 1
+ R + ont0%e
1
+ 5#;20451 + 222K/€50853

3 and 0 < 1 it follows (ge1)*®~1) < (gey)?*

< (1¢)?* < 6%F. Plugging this

< 2K + K20%e1 421 K362 51+2T1/<; €1
—|—2t177/1 51—&—27"125177/{
+ 203y Kk1e? + 217,%

+ Kkt (2x1y177 61 +221x117 62 51)

+ Kr*(yin*0%e
+ Kr°(2n

Collecting the expression above following ¢; and using that x, K >

+ 2z1y1m0%e? + 2260%:7)
(l’g + yg)ei’ + 2zz779 51 + 2y2773925?).

1, we finally find
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that a1 < ¢. We then have proved that [|A, 1] < ¢Pe?*". We finally get

[Aptall < 7(e)PePer

1
< SRR T(e)PePtt.

The theorem is proved. 0
LEMMA 8.3. Let us consider
G=-X,2Y,+A,X+XB,+ @;_12Yp — XX,
+ @;71231, +AXY, 1 — X, XB, + AXY, + A XD,

Leth_1:X1+~-+Xp_1 ande_1:Y1+~~~+Yp_1. Then G =G1+ -+ Gg
with

Gy = dp(Xp) X + Zdp(Y))

1 1
Gy = Qp,QZ +XRp2 + §Cp—1(AP - Sp) - i(Ap - Sp)Dp—l

1. <& 1<
+ 52X D (A = S) + 5 D (5K~ Aw)Y,
k=1 lc:l
1 1. 24
Gs = icp—l(AP — Sp)Dp1 — §Xp (Ap — Sk)Yp
k=1
1 p
+§sz (Ag — Sk)Dp_1 + Cp 12 Sk — AR)Y,
k=1 k=1
1
Gy = §Xp(Sp = Ap)Yy — Xp¥dy(Yy) + dp(Xp) XY,

Gs = ep(Cp-1)XRp1 + QprXep(Dp-1) + €p(Cp_1)e,(Y)y) + €, (Xp)Xey(Dp—1)
+ QpaXRy 1 + QpiXep(Yy) +ep(Xp) R0 + ep(Xp) Xep(Yy).
Ge=—Cp_1XRp o+ Qp2XDp 1 — XpXR, 0 + Q) 22,
= Cp1Xdy(Yp) + dp(Xp)EDp 1 + dp(Cp1)EY, — XpXdy(Dp1)-5

1
Proof. We have A, = e,(X,) + Qp1 = X2+d (Xp) + Qp,1 with

max(k:2k<p)

Q;mi = Z Ck Z Li1,i2 (CP*DXP)'

k=i i1+ iz = 2k
41,7 >0

where the coeflicients ¢; and the polynomials L;, ;, are defined at the beginning of

the section 9. Moreover ©,_1 = Cp_1 + €,(Cp—1). In the same way B, = ep(Y,) +
1

R,1 = §Yp2 +dy(Y,) + Rpy and ¥,y = Dy1 + e,(Dp—1). We also know that

51 =—Cp_1+¢e,(Cp_1) since Cp,_; is a skew Hermitian matrix. Expanding

G =—X,3Y, + 4,5 + B, + 0;_;3Y, — X,5¥, ,
+ 05 _15B, + ASV, | — X, 5B, + A,3Y, + A,5B,,
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1219  a straightforward calculation shows that we can write G as the sum of the following
1220 quantities :

1221 G = dp(Xp)E + 3dp(Yy)
1 1
1222 Go=Qp1X+3R,1 — Cp XY, — X, XD, 1 — X, XY, + 5ng + 521@3
1223 Gg + GG = — pflsz,l + Qp,lZDpfl — XPZRPJ + QPJZYP
1224 = Cp1Xep(Vy) + ep(Xp)EDp 1 + €p(Cp1) Yy, — XpXep (Dp1)
1225 Gy = —XpXep(Yy) + ep(Xp)XY),
1226 Gs = €p(Cp1)XRp1 + QpaXep(Dp-1) + ep(Cp1)Tep(Yy) + €p(Xp)Eep(Dp-1)
{338 + Qp1 YRy + QpaXep (V) 4 p(Xp)ERp 1 + €5(Xp) Xep (V).

1229  We are going to transform some quantities G;’s. We first remark using A, — S, —
1230 XX + XY, = 0 that

1 1 1 1
1231 - X, XY, + §X§E + 52)@? 3 Xp(=ZY, + Xp%) 4 S (=X, 4 BY,)Y,
1 1
15 gXp(A;D —5p) — §(Ap = 5)Yp.
1 1
1231 Next we remark that @1 = i(Cp,lXp +X,Cp 1)+ Qpo and Ry = §(Dp,1Yp +
p—1
1235 Y,Dp_1) + Ry2. On the other hand we have : » (A — Sg) — Cp_1% + S0, 1 = 0.
k=1
1236 Hence we can write G5 as
1 1
1237 Go=Qp1X+3Ry1 — Cp1XY, — X, 5D, 1 — XXV, + 5ng + 521@3
1 1
1238 =Qp2X+ YRy + iCp,l(XpE -XY,) + 5(—Xp2 +XY,)Dp1
1 1
1239 + §Xp(—ZDp,1 +Cp1X) + 5(—0,,,12 +3XD,1)Y,
1 1
1240 + §Xp(Ap - Sp) — §(Ap - Sp,)Y,
1 1
1241 = Qp,22 + ERP,Q + §Cp_1(Ap — Sp) — i(Ap — Sp)Dp_l
1« 1o
1242 + §Xp Z(Ak — Sk) + 5 Z(Sk — Ak)Yp.

1243 k=1 k=1
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1
1244 Next, by proceeding as above and using e, = ~u? + d,,(u), we see that

2
1245 Gg + G6 = — p—lZRp,l + Qp,lZDp—l — szRp,l + Qp,lz}/p
1246 — Cp-18ep(Yp) + €5(Xp)EDp—1 + €p(Cp—1)2Y, — X e, (Dp-1)
1

1247 = 5(7Cp_1EYpr_1 + Cp—lXpEDp—l — XpEDp—lyp + XpCp_lEYp)
1

1248 + §(Cp,1XpEYp + chpflszfl — Cpflszflyvp — XpEYprfl)
1

1249 +5(=Cpa XY = X, BD} 4 Cp_ 3V, + X72Dy 1)

1250 —Cp_1XRpo+ QpoXD, 1 — Xp,XRy 0 + Q) 2XY,

1385 = Cp1Xdy(Yp) + dp(Xp)EDp 1 + dyp(Cp1)EY, — XpXd,y (Dp1).

1253 We group some terms of the previous expression :
group p p

1254 —Cp_lEY;,Dp_l + Cp—lXpZDp—l = Op—l(Ap — Sp)Dp—l
p—1
1255 —Xp3XDp 1Y, + X, Cp XY, = =X, Y (A — Sk)Y,
k=1
1256 Cp1XpSY, — Cp1 XY = Cpoi (A — Sp)Y,
p—1
1257 X,Cp1EDp 1 = Xp5D) 1 =X, Y (Ax — Sk)Dp s
k=1
p—1
‘ 2 _
1258 ~Cpo1 XDy 1Y, + C2 2V, = Cpy Y (Ag — Sp)Y),
k=1
1389 —XpXY,Dp1 + XDy 1 = Xp(Ap — Sp)Dpy

1261 In this way we get

1 bt

1 1
1262 Gyt Go = 5Cp1(B = Sp)Dpr = 5X, ) (Ak = S)Y, + 5Cp1 (B, = )Y,
k=1
1 p—1 1 p—1
1263 + EXP Z(Ak - Sk)Dp_l + ECp_l Z(Ak - Sk)Yp
k=1 k=1
1
1264 + §XP(AP —Sp)Dp_1 + Gg
1 1. 2
1265 =3 p—1(Ap —Sp)Dp_1 — ikaZ:l(Ak - Sp)Yy
1 p
1266 +§XPZA;€—S;€ Dp_1 + Cplek—Ak)Y + Gg
1267 k=1 k=1
1268 with
1269 G6 = —Cp— 1ERP 9 + Qp QEDp 1 — X ERP 2+ Qp,QEYp

1379 p—12dp v )er (X, )EDP 1+ dp (Cp—l)EYP*Xpde(Dp—l)-
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We now see that

G = —XpZep(Yy) + €p(Xp)XY,
1

= 5(_XPEY132 + X;?EYIJ) - szdp(yp) + dp(Xp)EYp
1
= §Xp(sp - Ap)Yp - szdp(yp) + dp(Xp)ZYp-
Finally G5 remains unchanged. ]

9. Useful Lemmas and Propositions. The notations are those of the intro-

duction and sections 6, 7 and 8. We also denote :
max{k:2k<p}

_ 2k _ k41 (2k)!
1. ep(u) = ; cru  where ¢, = (—1) k=1
1 max{k:2k<p}
2. cp(u) =u+ep(u) =u+ Euz +dp(u) with dp(u) = Z cpu?t
k=2

3. L;, i, (X,Y) is the sum of monomials which the degree of each monomial with
respect X is iy (respectively with respect Y is iy ).

LEMMA 9.1. Let for 1 < k < i, |Ag|l < ¢" e} with ge1 < 0 < 1. Then

- 1
| < ; = _—
Il ZAZH < ney with n T3
k=1
Proof. The proof is obvious. ]
1 —1/2
LEMMA 9.2. Let us denote aq(u) = R g and as(u) = al(uL2 / . We
have
mazx{k:2k<p}
L. Jep(u)| = Z ek u®® < u?aq(u).
k=1
mazx{k : 2k<p} 1
2. ldp(u)| = Y leklu® <ulag(u) = u? (al(u) - 2).
k=2
Proof. Tt follows from classical Taylor series expansion. 0
u?ay(u)? a (u)?
LEMMA 9.3. Let by(u) = Nin=srd + 2a1(u) and ba(u) = Wi + 2as(u). We
have
(x +y)*ai(z +y) — 2% ai(z) — y*ai(y) < bi(x + y)ry(z +y)* %

Proof. To prove the case i = 1 we write

(z+y)ai(z +y) — 2*ai (2) - y*ai(y)
=2%(a1(z+y) — a1(2)) + y*(a1(z + y) — a1(y)) + 2zyai (z + y)

_ ( (22 + y)zay () (2y + @)y (y)

VI—a?+/1- (2 +y)? ! VI-y2+/1—(z+y)? +2> et y)

This manuscript is for review purposes only.



1399
1311

1312

1314
1315
1316
1317
1318

1319

1329
1339

1332

38

DIEGO ARMENTANO AND JEAN-CLAUDE YAKOUBSOHN

Using y < 7, a1(y) < a1 () and V1 — 22, /1 — 32 < /1 — (v + y)? we get

(z +y)%a1(z +y) — 2%a1(2) — y%a1(y) < (

(z +y)*a1(z +y)
1—(z+y)?
— bi(z +y)ay.

To prove the case i = 2 we write from definition of as(u) :

4 2

+ 2) xyay(z +y)

(z +y) az(z +y) — ztaz(z) — ylaz(y) = (v +y)’ar(z +y) — %01 (2) — y?ar(y) — 2y

We are done.
LEMMA 9.4. Let Cp—l = X1+ + Xp—l-
ge1 <0 <1, n=

< ((I +y)%a1 (x4 y)?
1—(z+y)?

< ( al(x+y)2

+2a1(x+y) — 1> zy

\/ﬁ + 2az(x + y)) zy(z +y)?

< ba(z + y)ay(z + y)°.

1—

L [|Cposll < e,

€

2,.2.2

2. |lep(Cpa)ll < ar(nrer)nrer.

3. |lep(X,

Il <ar (0/{51)52(12(19—1)5?'

Proof. We have

From Lemma 9.2 we know that |e,(u)| < u?a;(u).

0 no
1 < — it follows that nke; < = )
LSy TEUS 901 0) T 21+ 60— 602)
0
a1 (nke1) is well defined when nke; < 1. That is to say 201 0-67

p—1 1

p—1
1Cp1ll < kz_l (RGN kz_lfiqk_1€’f <7

KE] < MKET.
—v

the case since 6 < 1. It follows

Hep(cpfl)n < ay(nker) (77"%1)2~

We now bound |le,(X,)||. Always from Lemma 9.2 we have

We are done.

a1 (k"™ el) (kgP~'el)?

llep (Xp)I <
< a1(0ke)) 2PV since e <0 < 1.
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Let us suppose q > 2(60 +n)k, v =
7 and || Xg| < Evk, 1<k<p-—1. Then we have
q

Since ¢ > 2(6 + n)x and

we can see the quantity

< 1. This is
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1333 LEMMA 9.5. Let us suppose 2(0 + n)k < q, v = qe1 < 0 and || X| < Ev’“,
q

1334 1< k<p-—1. Then we have

1335 dp(Cp—1)|l < az(nrer)n*sel

1336 and

1332 1dp(Xp)|| < az(Brer)rtq P~ Ve?.

1339 Proof. The proof is like to that of Lemma 9.4. O

1340 LEMMA 9.6. Let us suppose 2(0 + n)k < ¢q, v = ge1 < 0 and || Xk||, || Y| < Evk,
q

1341 1 < k <p. Then we have

1342 1©p—1ll < (1 + nrerar(nrer))nker.

1343 Proof. We have ||O,_1] < ||Cp1]l + |lep(Cp=1)||- Using [|Cp_1]] << nre; and

1344  Lemma 9.4 the conclusion follows. |

1345 LEMMA 9.7. Let us suppose 2(0 + )k < q, v = ¢ge1 < 0 and || Xi| < Evk,
q

1346 1<k <p. Let

max(k:2k<p)

1347 Qp,i = Z Ck Z Li1,i2 (Cp—17 Xp)7 1= 1, 2.
k=1 i1 + 12 = 2k
1348 t,i>0

1349  We have

1350 1Qp.ill < bi(nrer)n? ~Lr2igP~ el T2~ =12,
1351 Proof. Let ||Cp—1|| <  and || X, || < y. We have using Lemma 9.2 :

max(k:2k<p)

(2k)! .
15 Qi< Y lal Y Py
k=i i1+ig=2k 1=b2
i1>0,i9>0

1353 < Z x| ((z 4 y)?F — 227 — y2F)

k>i
1354 < (@ +y)%a(r +y) —aai(@) -y ai(y).

K
1356 We apply the Lemma 9.3 with the bounds y < gvp < kP lel and v < 2+ y <

1357 AL < nkeyp . We then get :

ql—v
1358 1Qpall < bilnrer)n® = K> g~ e
1389
1361 The result follows. O
1362 LEMMA 9.8. Let || Xp|l, |Ypll < kg?P~1e}, 2(0 +n)k < q and ge; <0 < 1. Then
1364 || = XpEdy(Yp) + dp(Xp)ZY3|| < 2Ka2(0’151))"55q5(p71)5?p-
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Proof. Let Z, := —X,Xd,(Y},) + dp(X,)XY,. Then from Lemma 9.5 we deduce

1Z,]] < 2K ag(frer)stq® P~V

We are done.

LEMMA 9.9. For |u| < 1 we have

[(1+cp(—u)) 1+ cp(u)) — 1] < (2\/1—|—u2—|—a1 up'H) ay (w)uP+e

where § = 1 if p is odd and § = 2 if p is even.

=v1+u?+u—1ande(u) = cp(u) + rp(u). Since
(14 e(w)(l+e(—u)) =1 and rp(u) = rp(—u) it follows

Proof. Remember that e(u)

(14 cp(—u) 1+ cp(u) —1= (1 +e(—u) —rp(—u))(1 +e(u) —ryp(u) — 1
=(1+e(—u))(l+e(u) -1

— (1t e(=w))rp(u) — (1 + e(u))ry(u) +rp(u)?

—(2+e(u) +e(—u) = rp(u)) rp(u)
- (2 1+u?— rp(u)) rp(u)

We have

< Y lepalu® =

i>max{k:2k<p}
1

< J
1+ v1—u?
where § = 1 if p is odd and § = 2 if p is even. We deduce that

Pt = ay (u)uPt?

(1 + ep(—u)) (1 + cp(u) — 1] < (2\/1+u2+a1 up+5) ax (w)uPte.

We are done.
LEMMA 9.10. For i > 0, we have
i—1

8; 1= Z o—(p+1)*+1 <2— 92— (p+1)"
k=0

Proof. We proceed by induction. The assertion holds for ¢ = 0. By assuming for
i let us prove it for i + 1. We have

Si+1

NN

2
2 — 22- P+ gince (p+1)+1<2(p+1)" < (p+1)Th

We are done.
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10. Proof of Davies-Smith Theorem 2.1. Let us denote A; =U*YXV — %
and AQ = (I[ + @T)(Al + E)(Iq + \Ijl) - — Sl with @1 = X1 + X12/2 and \Ifl =
Y7 + Y2 /2. From the definition of the map DS we have Uy = U(I; + X1 + X2 + X37/2),
Vi =V (I, +Y1+Y2+Y?/2), 81 = X451 +S; where for i = 1,2, one has S; = diag(A;)
and the X;’s are skew Hermitian matrices be such that A; —S; — X; X+ XY; = 0. The
goal is to bound the norm of Ag :=UfMV; — %1 = (I; + O] — Xo)(A1 + )1, +
U +Ys) — X — 5 — Sy We first expand Ay and as in the proof of Proposition 7.1
we have ||Az|| < ¢1e3 where

5 1
(10.1) q1 = 2K + 2K%e; + ZK4KE% + Z/{‘ls:f,

and qie1 < 7€ with 7y =24 26 + 262 + is?’. We now expand Ajz to get :

Az =(I;+07 - Xo) (A1 + X)L, + V1 +Y2) =X — 51 — Sy
= (Ig + @T)(Al + Z)(In + \I/1> - X -5 -5
(10.2) b (L4 07)(AL + D)z — Xa(Ar + 2)(In +T1) — Xa(Ar + T)Ys

We know that
L+ 0 (A1 + ), +P1) =X =51 — S5 =Ag — 55 = Xp¥ — XY
Plugging the previous relation in (10.2) we find

(10.3)
A3 = —X2A1 + A1Y,2 — X2A1)/2 + @T(Al + Z)YQ - XQ(Al + E)\Ill - XQE)/VQ

We are going to prove ||As| < q1g267 where go is defined below in (7.16). To do that
we will use the bounds
L [ Az]| < qref and [|X||, Y2l < rgaed.

1
2. 100,101 < (1 i 2)

Considering the bounds of the norms of matrices given in (10.3), we get ||As]| <
q3q1€5 where

g3 =26(Kk+ 1) + (Kr + 2+ Kq1)k%e1 + (k + q1)K%€3.

A straighforward calculation shows that if £; < m then
(10.4) 1As]] < gsque?} < 3me®
where

T3 = 4 + (3 + Tl)E + (]. + T1)62.
A straightforward computation shows that for all € < 0.1 we have
371 < 8 + 182 + 2827

We finally get
KK As| < (8 + 18 + 33¢2)e.

Then the part 1 of Theorem 2.1 is proved.

This manuscript is for review purposes only.



1437

1438
1440
1441

1443
1444
1445
1446
1447
1448
1449

1458
1459
1460
1461
1463
1464
1465
1466

1467
1468
1469
1470
1471
1472
1473

42 DIEGO ARMENTANO AND JEAN-CLAUDE YAKOUBSOHN

We use the proof of Proposition 7.1 to proof the part 2 of Theorem. We have
U3 MV — 24| € qoque’
where ¢ is defined in (7.7) and g2 in (7.16). A straightforward calculation shows that

. 3
if €1 < W then

(10.5) |UFMVy — 51| € qaquel < mome®

where 7 = 7175 given in (7.3). Moreover 1971 < < 6+21e 4 54¢2 for € < 0.1. This proves
te part 2. The Theorem holds. ([l

11. Application in the clusters case.

11.1. Definiton of Clusters and first properies. We use the Fortran or
Matlab notation for submatrices, i.e., A;.;j .y is the submatrix of A with lines and
columns between the subscripts ¢, j and k, lrespectively. We consider e integers g¢;’s

such that Z% = q. We also associate the integers ¢;, 1 < ¢ < e, defined by
i=1
i—1

=1+ Z g; The first goal is to precise the notion of cluster of singular values.
j=1

e
DEFINITION 11.1. Let e integers q;’s such that Zqi = q. We associate the inte-

i=1
i—1
gers U;, 1 < i < e, defined by {; = 1+qu. From A € C*™9 with { > q, we consider
j=1
its sub-matrices Ag:= ANy, 1,020, —1 € CH*E4 1 < i <e. We define the matriz
Ay 0 0
Diag, .., (A) = 0o 0
q1-Qe 0 0 Ae
0

X q
We name by D <4

DEFINITION 11.2. Let integers q;’s and ¢;’s be as in Definition 11.1. Let§ > 0 and
define the set ]D)gf‘{qe (8) of the matrices whose diagonal ¥ = diag(oy,--- ,0,) € D4
satisfies
(11.1)  |op—oj| <6 4 <J,
(11.2)  |oj — o] >0, l; <5

the set of these matrices.

e

<lipr—1, 1<
12 £k+1_17 1<i1<k<e

<
it1— 1, L <1<

k
| <
We name D“qq (6) the set of clusters of size § relatively to integers qi,--- ,qe. We
also name by u = (q1,-..,qe) the multiplicity of cluster associated to X.

We have

PRrROPOSITION 11.3. Let § > 0 and A € ]D)qu .(0). The tuple (q1,--- ,qe) where
each integer q; > 1 is the only one such that the mequalities (11.1-11.2) hold.

Proof. Let us suppose there exists two tuples (mq, -+ ,mq) and (g1, - ,ge) such
that the inequalities (11.1-11.2) hold for the diagonal matrix ¥ = diag(oy,...,0q).
Let us suppose for instance m; < ¢;. Then we first have from the inequality (11.2) :
|0y — Omy+1] > d. In the other hand, since my < ¢1 we can write from the inequality
(11.1) |om, — Omy+1] < 9. This is not possible and the proposition holds. d
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11.2. Solving A — S — X3¥+3Y =0 in the clusters case. We state without
proof the result that is generalizes the Proposition 4.1.

PROPOSITION 11.4. Let ¥ € DX, (8) and A = (6;;) € C™*9.  Consider the
matriz S € ]D)f;xqqp and the two skew Hermitian matrices X = (x;;) € C™* and

Y = (yi,;) € CI*9 that are defined by the following formulas:
1. The matriz S is defined by

(11.3) S =Diag,,..,. (A) e DX,
2.

(11.4 Diag,,...,.(X) =0

(11.5 Diag,, .., (Y)=0

3. For1<i<k<e, 1<j<qg—1, and 1 <I<qy—1 we take

1 (Stitjtntt + O00pti et | Otitjbrtl — Otptl ity
(11'6) Llit+jle+l = 5 +
Oty+1 — Oti+j Ot+1 T 0445

[\

L (et F O it4d Ot bl — Ol bt
AL7) Yo = 5 -
Ot+l = Oti+j Otp4l + 0pi1j

4. Forq+1<i</land1 < j<q, we take
(118) xi,j = —61-’]-.

5. Forq+1<i<fand q+1<j<{, we take
(11.9) ;5 =0.
Then we have
(11.10) A-S-XY+3Y =0.

DEFINITION 11.5. Under the previous framework, we name condition number of
equation A — S — X3 + XY = 0 the quantity

1 1 1
(11.11) k(X) = max | 1, max — max
i<i<e |oy| 1<i<k<e |og—oi |ok+ ol
|a‘;C _Uil >

The analysis of error is given by the following result.

PROPOSITION 11.6. Under the notations and assumptions of Proposition 11.4,
assume that S, X andY are computed using (11.3-11.9). Given e with |A| < €, the
matrices X, Y and S solutions of A — S — X% 4+ XY = 0 satisfy

(11.12) I1S|| < e
| < ke

(11.13) X1 1Y)
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11.3. Method of order p+1 in the clusters case. Let p > 2 and meegexq

Cmxt x € x DX We denote Ey(U) = U*U — Iy, Eg(V) = V*V — I, A
U*MV — % and we define the map H), by

(11.14)
U+ (I, +09)
(UV,E) € Eptnst = Hy(U,V,5) = | V(I +A) I, +¥) | € Bpxinxd
X4+ S
where :

1. Q=5,(E(U)) and A = s,(Ey(V)).
2.8 =8 4 +8, €D X =X, +-+ X, and ¥ = Y; +--- + Y, with

-qu?
each Xy, Y}, are skew Hermltlan matrices. Moreover each triplet (Sk, X, Yx)

are solutions of the following linear systems :
Ap =S — XpX + XY, =0, 1<k<p
where the Ay’s for 2 < k < p+ 1, are defined as
Ay = (L +Q)(A+E)I;+A)—X,e S; =Diag, . (A1)

ek:Cp(X1+"’+Xk)7 \Illc:Cp(le+ +Yk) 1<kgpa

11.15
(ILI5) N, = (L 4+ 01 ) (A1 + D) (I, + Tp1) Zsl,

Sk = Diagq1,---,qe(Ak)’ 2 < k < p.

11.4. Result of convergence in the clusters case.

THEOREM 11.7. If the sequence define by
(Uit1, Vit1, Ziv1) = Hp(U;, Vi, ), 020

from (Ug, Vi, Xo) € E;’;fﬁgﬁxqveriﬁes the asumptions of Theorem 1.2 then it converges
at the order p+1 to (Uss, Voos Xoo) € Stine X Sty ¢ xDii*"  such that Ul MV —
Yoo = 0.
Proof. The proof is similar to that of Theorem 1.2. ]
11.5. Deflation method for the SVD. The sequence (U;, Vi, %;);>0 of The-
orem 11.7 is not a SVD sequence since the 3;’s belong to Di}*" . We can use the

Theorem 1.2 to detect the presence of clusters of singular values.
To simplify the presentation we suppose m = n in order that

1 1
k(¥) =max (1, max + .
1<i<j<n |0 — 0] o + o]
To do that we introduce an index of deflation whose the existence is given by the
following proposition.

PROPOSITION 11.8. Let us consider (Ug, Vo, o) € EMX™ and Ag = UF MVy—3X.
Let

€ = Inax

K@ 1 AO K@ K 1/a
e LG EAGT)
0
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Let us suppose e < 1. Then there exists an index g < m be such that we can rewrite
the diagonal matriz Xy under the form ( 0. S0 ) where k(Zgq4)e < 1. Let
us consider Uy q and Vo 4 the sub matrices of Uy and Vi respectively corresponding to
Yo,q- Then Theorem 1.2 applies for the sequence define from (Uo g, Vo, X0,q) € B ke
by (Ui-i-l,qa Viti,gs Ei—i—l,q) = Hp(Ui,q’ Vig, Ei,q): i = 0.

Proof. The existence of the index ¢ is obvious since ¢ is at least equal at 1. In
this case k(2o,1) = 1. O

DEFINITION 11.9. Let us consider the notations and the assumption of Proposi-
tion 11.8.We name indice of deflation of (Uy, Vo, Xo) the maximum of indices q such
that K(Zo4)e < 1. If q is the index of deflation we name (Up,q, Vo4, X0,q) @ deflation
of (Uo, Vo, %)

To determine the index of deflation and a deflation of (Up, Vo, X¢), we propose the

1 1
oi —ojl - loi+ g
matlab notation if A is a matrix and k a vector of indices A(:, k) means the matrix
composed by the columns indexed by the vector k. Moreover #k is the size of k.

following algorithm. We denote x; ; = max (1 . Following the

(11.16) Algorithm to determine the index of deflation

Input (Uy, Vo, Xo) such that e < 1
Ouput (U()7q, Vv()7q7 Eo,q) a deflation of (Uo, %, 20)

1. Let Eo = diag(ao,l, ey UO,n) where 00,1 =2 00,n
2. k=1 i=1
3. while 1 < m do
4 j=1
5. while i +j <n and K; ;456 >1do j=j+1 end while
6. ifi+j<nandk;;+; <1lthen k=I[k,i+j] endif
7 t=14+7J
8. end while
9. q = #k
10. Xo,4 = 3o (k) Uo,g = Uo(k) Vo.g = Vo(k)

THEOREM 11.10. Let (Uy, Vo, X0) that satisfies the Proposition 11.8. The algo-
rithm 11.16 computes a deflation of (Up, Vo, Xo).

Proof. When k = 1 we have k(Xo(:,1)) = 1 and k(Zo(:,1))e < 1 from assumption.
The loop 3-8 of the algorithm consists to determine an ordered list of indices k such
that for all ¢ € k such that i+ 1 € k we have x; ;41e < 1. Hence (X 4)e < 1 and the
Theorem follows. ]

12. Numerical Experiments. Our numerical experiments are done with the
Julia Programming Language [3] coupled with the library ArbNumerics of Jeffrey
Sarnoff. To intialize our method we proceed in two steps

1. The triplet (Uy, Vo, Xp) is given by the function svd of Julia with 64-bit of
precision unless otherwise stated.
2. From this (Uy, Vp, Xo) we determine (Up 4, Vo4, Xo0,4) by the Algorithm 11.16.
We consider for i > 0 the quantities

e = max((ri K;) | Be(U, )|, (i 5) | B (Vi)ll, w3 K| Al)

where a, ug are defined in Theorem 1.2. All the Tables below show the behaviour of
e; = —[logy(ei/uo)]-
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The strategy of practical computations is to initialize the method with ¢ bits of
precision. Next the iteration i is done with ¢(p + 1)* bits of precision. This setting of
precision is done efficiently thanks to the library ArbNumerics at each iteration.

12.1. Random matrices. Table 3 confirms the behaviour of iterates expected
by the convergence analysis.

Iterations / Order | 2 3 4 5 6 7
0 7 8 9 8 8 8
1 18 35 47 59 69 85
2 44 112 194 311 427 604
3 92 346 787 1571 2580 4353

TABLE 3

12.2. Cauchy matrices. The classical Cauchy matrix is defined by

1
we()
v+ 7/ 1<ii<n

2 —2k
Its singular values satisfy the inequalities o1 > 4 | exp S — o1 where
2 Log(4n)

o1 is the greatest singular values [5]. There is a strong decrease of singular values to
0. The computation of a deflation by the Algorithm 11.16 gives different values of ¢
for ¥y 4 following the value of p . For instance with 64-bit of precision and n = 200, if
p=1then ¢ =11: Xy 4 is constituted of the first ten singular values and one among
the other 190’s. If p > 2 then ¢ = 15 : 3¢ 4 is constituted of the first fourteen singular
values and one among the other 185’s. Table 4 gives the behaviour of iterates from a
computation of a deflation.

Iterations / Order | 2 3 4 5 6 7
0 1 1 1 1 1 1
1 9 19 19 35 36 51
2 31 67 116 196 277 389
3 74 214 503 1003 1724 2757

TABLE 4

Table 5 gives the necessary precision that we need to get the size of Cauchy
matrices as index of deflation.

n n<7/8<n<14| 15<n
bits precision | 64 128 > 256

TABLE 5
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12.3. Matrices with prescribed singular values. Let us define M = UXV
where U and V are two unitary matrices of size 4n x 4n and ¥ = diag(o1,...,04n)
where

O3(i—1)+j = 2' 1<i<n, 1<j<3,
O3n+i :2_i 1 gzgn

4 x 2"

The condition e < 1 of the Proposition 11.8 holds if ( > o < ug where g5 =

3a
max (|| Ao ], | Em (Uo)|l, | Em (Vo)||). Table 6 gives the quantity — {logQ Y0 | with

4a2na
respect n. For instance a C matrix of size 100 x 100, Proposition 11.8 applies if
g0 < 27139 for p > 2 and for p = 1, it is necessary to have gy < 272°6. Hence the
precision required on gg to get

p/4n |4 | 20|40 |60 |80 | 100 | 120 | 140 | 160 | 180
p=1|14 |46 | 86 | 126 | 166 | 206 | 246 | 286 | 326 | 366
p=22|11(33|59 |86 |113| 139 | 166 | 193 | 219 | 246

TABLE 6

a deflation is greater in the case p = 1 than for p > 2. This is confirmed by
numerical experimentation. If p = 1 then n < 26 (respectively if p > 2 then n < 41)
a 64-bits precision is enough so that Proposition 11.8 holds. Table 7 shows for p =1
(respectively p > 2) the quantities ¢y = #{o > 1} and q_#{o > 1} from a ¢ , given
by the initialization. In each case of Table 7 the first number matches for ¢, and the
second for g_. The 64-bit precision used for p = 1 (respectively p > 2) until the size
100 (respectively 140). For larger sizes, 128-bits precision are used. The quantity ¢4
is always equal to n which is the number of multiple singular values.

q+,q-/4n | 4 | 20 40 60 80 100 120 140 160

p=1 |1,1]5,5]10,10] 15,10 20,5 | 25,1 | 30,26 | 35,21 | 40, 16
p>2 |1,1]5,510,10] 15,15 | 20,18 | 25,13 | 30,8 | 35,3 | 40,40
TABLE 7
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