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Abstract. In this paper, we present a class of high order methods to approximate the singular4
value decomposition of a given complex matrix (SVD). To the best of our knowledge, only methods5
up to order three appear in the the literature. A first part is dedicated to defline and analyse this class6
of method in the regular case, i.e., when the singular values are pairwise distinct. The construction is7
based on a perturbation analysis of a suitable system of associated to the SVD (SVD system). More8
precisely, for an integer p be given, we define a sequence which converges with an order p+1 towards9
the left-right singular vectors and the singular values if the initial approximation of the SVD system10
satisfies a condition which depends on three quantities : the norm of initial approximation of the SVD11
system, the greatest singular value and the greatest inverse of the modulus of the difference between12
the singular values. From a numerical computational point of view, this furnishes a very efficient13
simple test to prove and certifiy the existence of a SVD in neighborhood of the initial approximation.14
We generalize these result in the case of clusters of singular values. We show also how to use the15
result of regular case to detect the clusters of singular values and to define a notion of deflation of16
the SVD. Moreover numerical experiments confirm the theoretical results.17
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1. Introduction.20

1.1. Notations and main goal. Let us consider an m × n complex matrix21
M ∈ Cm×n where we can assume m ⩾ n without loss of generalty. The terminology22

“diagonal” for a matrix of Cm×n is understood if it is of the form
(

diag(σ1, . . . , σn)
0

)
23

and design by Dm×n the set of such type matrices and also Em×ℓ
n×q = Cm×ℓ × Cn×q ×24

Dℓ×q. For ℓ ⩾ 1, we denote the identity matrix in Cℓ×ℓ by Iℓ and for W ∈ Cm×ℓ we25
define Eℓ(W ) = W ∗W − Iℓ. The variety of Stiefel matrices is Stm,ℓ = {W ∈ Cm×ℓ :26
Eℓ(W ) = 0}. For each ℓ, 1 ⩽ ℓ ⩽ m and q, 1 ⩽ q ⩽ n, we know that there exists two27

Stiefel matrices U ∈ Stm,ℓ, V ∈ Stn,q, and a diagonal matrix Σ ∈ Dℓ×q
⩾0 be such that28

f(U, V,Σ) =

 Eℓ(U)
Eq(V )

U∗MV − Σ

 = 0.(1.1)29

30

When ℓ = m and q = n, the triplet (U, V,Σ) is the classical singular value decompsition31
(SVD) of the matrix M . If ℓ < m or q < n this abbreviated version of the SVD32
is referred as the thin SVD. The problem of computing a numerical thin SVD of33
M is to approximate the triplet (U, V,Σ) by a sequence (Ui, Vi,Σi, )i⩾0 such that34
the quantities f(Ui, Vi,Σi)i⩾0 converge to 0. We name SVD sequence a such type35
sequence (Ui,Σi, Vi)i⩾0.36

In the context of this paper we will say that a sequence (Ti)i⩾0 of a normed space37
with a norm ∥.∥ converges to T∞ with an order p + 1 ⩾ 2 if there exists a positive38

constant c be such that ∥Ti − T∞∥ ⩽ c2−(p+1)i+1. We then say that the numerical39
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2 DIEGO ARMENTANO AND JEAN-CLAUDE YAKOUBSOHN

method which defines the sequence (Ti)i⩾0 is of order p + 1. If p = 1 (respectively40
p = 2) we say that the method is quadratic (respectively cubic). Finally we say that a41
method associated to a map H is of order p if there exists a sequence xk+1 = H(xk),42
k ⩾ 0, which converges at the order p. Moreover we shall consider the matrix norm43
∥A∥ = max(∥A∥1, ∥A∗∥1) where44

∥A∥1 := max
1⩽i⩽m

n∑
j=1

|Mi,j |.45

46

Fundamental quantities occur throughout this study. From a triplet (U, V,Σ) ∈ Em×ℓ
n×q47

we introduce :48
1. ∆ = U∗MV − Σ.49

2. κ(Σ) = max

(
1,max1⩽i⩽q

1

|σi|
, maxi̸=j

(
1

|σi − σj |
+

1

|σi + σj |

))
where the50

σi’s constitute the diagonal of Σ.51
3. K(Σ) = max (1, maxi σi ).52

Throughout the text p is a given integer greater or equal to one. The goal of this53
paper is the construction and the convergence analysis of a class of methods of order54
p+1. The classical methods to compute the SVD are linear or quadratic : to best of55
our knowledge, there is no mention of any study in the literature on this subject of56
a method of order greater than three. These methods only use matrix addition and57
multiplication : there is no linear system to solve nor matrix to invert.58

1.2. Construction of a quadratic method. We begin by explain how to59
construct a quadratic method to approximate the SVD. Let us given U, V,Σ and60
denote ∆ = U∗MV − Σ. The first step is to consider multiplicative perturbations61
such type UΩ, V Λ and S of U , V , Σ respectively and also U2 = U1(Iℓ + X) and62
V2 = V1(Iq + Y ) multiplicative perturbations of U1 = U(Iℓ +Ω) and V1 = V (Iq + Λ)63
respectively. Expanding the quantities Eℓ(U1), Eq(V1) and ∆2 := U∗

2MV2 − Σ − S,64
we get65

Eℓ(U1) = Eℓ(U) + Ω + Ω∗ +Ω∗Eℓ(U) + Eℓ(U)Ω + Ω∗Ω+ Ω∗Eℓ(U)Ω,(1.2)66

idem forEq(V1)67

∆2 = ∆1 − S +X∗Σ+ ΣY +X∗∆1 +∆1Y +X ∗(∆1 +Σ)Y.(1.3)6869

where ∆1 = U∗
1MV1 − Σ. Denoting ε = max(∥Eℓ(U)∥, ||Eq(V )||, ∥∆∥), the second70

step is to determine two Hermitian matrices Ω, Λ, a diagonal matrix S, and two skew71
Hermitian matrices X, Y in order to get72

max(||Eℓ(U2)||, ||Eq(V2)||, ||∆2||) ⩽ O(ε2).(1.4)7374

This occurs with Ω = −Eℓ(U)/2, Λ = −Eq(V )/2 and (X,Y, S) a solution of the75
equation ∆1−S+X∗Σ+ΣY = 0. We will give in section 4 explicit formulas to solve76
this the linear equation where a solution is given by S = diag(∆1) and X, Y that are77
two skew Hermitian matrices. In fact a straighforward calculation shows that78

Eℓ(U1) = −(3Iℓ + 2Ω)Ω2(1.5)79

idem forEq(V1)80

∆1 = ∆+Ω(∆+ Σ) + (∆ + Σ)Ω + Ω(∆ + Σ)Ω(1.6)81

∆2 = −X∆1 +∆1Y −X (∆1 +Σ)Y sinceX∗ = −X(1.7)82

Eℓ(U2) = (Iℓ −X)Eℓ(U1)(Iℓ +X) + (Iℓ −X)(Iℓ +X)− Iℓ(1.8)83

idem forEq(V2).8485
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HIGEH ORDER NUMERICAL METHODS 3

The formula (1.5-1.6) imply ∥Eℓ(U1)∥ ⩽ O(ε2) and ∥∆1∥ ⩽ O(ε). Similarly we86
have ∥Eq(V1)∥ ⩽ O(ε2). Moreover we will prove that ∥X∥, ∥Y ∥ ⩽ O(ε) in section87
4. Plugging these estimates in the formulas (1.7-1.8) we find that the inequality88
(1.4) holds. From the point of view of the complexity this step is the key point of the89
methods presented here since this requires no matrix inversion. These ingredients pave90
the way for the construction of a quadradic method. The third step is to introduce91
the map92

H1(U, V,Σ) =

 U(Iℓ +Ω)(Iℓ +X)
V (Iq + Λ)(Iq + Y )

Σ + S

93

94

where Ω = −1

2
Eℓ(U), Λ = −1

2
Eq(V ), S ∈ Dm×n is a diagonal matrix and X, Y are95

skew Hermitian matrices be such that ∆1−S−XΣ+ΣY = 0. The behaviour of the96
sequence (Ui, Vi,Σi)i⩾0 defined by (Ui+1, Vi+1,Σi+1) = H1(Ui, Vi,Σi), i ⩾ 0 is given97
by Theorem 1.2.98

Remark 1.1. The Newton’s method is based on the cancellation of the affine part99
of a Taylor expansion closed to a root of the function. Here we remark that only100
the cancellation of a part of the affine part is enough to build a numerical quadratic101
method. For instance in the expression (1.2), we cancel Eℓ(U) + Ω + Ω∗ rather than102
Eℓ(U) + Ω + Ω∗ + Ω∗Eℓ(U) + Eℓ(U)Ω. In the same way ∆1 − S + X∗Σ + ΣY is103
cancelled rather than ∆1 − S +X∗Σ+ ΣY +X∗∆1 +∆1Y in the expression (1.3).104

1.3. Construction of a method of order p + 1. We explain the main ideas105
that allow to generalize the previous method with the care to improve the condition of106
convergence. Taking in account the formulas (1.5 -1.8) we notice that to generalize the107
previous construction we need the following tools. We first require a method of order108
p+ 1 to approximate the variety of Stiefel matrices. This is realized in considering a109
multiplicative perturbation Usp(Ω) of U where sp(u) is an univariate polynomial of110
degree p in order that U1 = U(Iℓ + sp(Ω)) satisfies Eℓ(U1) = O(Eℓ(U)p+1). This is111
motivated by (1.5). Next we introduce a multiplicative perturbation U1cp(U1) where112
cp(u) is an univariate polynomial of degree p such that (1 + cp(−u))(1 + cp(u))− 1 =113
O(up+1). This is motivated by (1.8) where appears the expression (Iℓ−X)(Iℓ+X)−114
Iℓ. The polynomials sp(u) and cp(u) as well as the matrices Ω and X are defined115
respectively below and their properties will be precisely studied in sections 3 and 5.116
Under these previous conditions a we will prove in Section 3 that a perturbation such117
type U2 = U(Iℓ+sp(Ω))(Iℓ+cp(X)) satisfies Eℓ(U2) = O(Eℓ(U)p+1). Finally the third118
tool is to determine X, Y , and S in order to get the condition ||∆p+1|| = O(||∆||p+1)119
where ∆p+1 = U∗

2MV2 − Σ− S.120
To introduce the map on which is based the method of order p+ 1 we define the121

following quantities:122
1. Let sp(u) the truncated polynomial of degree p of the series expansion of123

−1 + (1 + u2)−1/2.124
2. Let cp(u) the truncated polynomial of degree p of the series expansion of125

(1 + u2)1/2 + u− 1.126
With these preliminaries we introduce the map Hp :127

(U, V,Σ) ∈ Em×n → Hp(U, V,Σ) =

 U(Iℓ +Ω)(Iℓ +Θ)
V (Iq + Λ)(Iq +Ψ)

Σ + S

 ∈ Em×n(1.9)128

129
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4 DIEGO ARMENTANO AND JEAN-CLAUDE YAKOUBSOHN

where :130
1. Ω = sp(Eℓ(U)) and Λ = sp(Eq(V )).131
2. Θ = cp(X) and Ψ = cp(Y ) where X and Y are defined below.132
3. S = S1+ · · ·+Sp ∈ Dm×n, X = X1+ · · ·+Xp and Y = Y1+ · · ·+Yp with each133

Xk, Yk are skew Hermitian matrices in Cℓ×ℓ and Cq×q respectively. Moreover134
each triplet (Sk, Xk, Yk) are solutions of the following linear systems :135

∆k − Sk −XkΣ+ ΣYk = 0, 1 ⩽ k ⩽ p(1.10)136137

where the ∆k’s for 2 ⩽ k ⩽ p+ 1, are defined as138

∆1 = (Iℓ +Ω)(∆ + Σ)(Iq + Λ)− Σ, S1 = diag(∆1)139

Θk = cp(X1 + · · ·+Xk), Ψk = cp(Y1 + · · ·+ Yk), 1 ⩽ k ⩽ p,140

∆k = (Iℓ +Θ∗
k−1)(∆1 +Σ)(Iq +Ψk−1)− Σ−

k−1∑
j=1

Sj ,(1.11)141

Sk = diag(∆k), 2 ⩽ k ⩽ p.142143

We will see in section 5 that the formulas (1.10) cancel respectively the linear parts144
of each ∆k. We will show that ||∆p+1|| = O(||∆1||p+1).145

1.4. Main result. Then we state the folowing result which precisely shows the146
method associated to the map Hp is of order p+ 1.147

Theorem 1.2. Let p ⩾ 1. From (U0, V0,Σ0), let us define the sequence148

(Ui+1, Vi+1,Σi+1) = Hp(Ui, Vi,Σi), i ⩾ 0.149

We denote ∆ = U∗
0MV0−Σ0, K = K(Σ0) and κ = κ(Σ0). We consider the constants150

defined in Table 1 :151

p = 1 p = 2 p ⩾ 3
a 2 4/3 4/3
u0 0.0289 0.046 0.0297
γ1 6.1 9.41 10.2
σ 1.67 2.1 2.62

Table 1

If152

max((κK)a||Eℓ(U0)||, (κK)a, ||Eq(V0)||, κaKa−1||∆0||) = ε ⩽ u0(1.12)153154

then the sequence (Ui, Vi,Σi)i⩾0 converges to a solution (U∞, V∞,Σ∞) of system155
(1.1) with an order of convergence equal to p+ 1. More precisely we have for i ⩾ 0 :156

∥Ui − U∞∥ ⩽ γ1
√
ℓ2−(p+1)i+1ε157

∥Vi − F∞∥ ⩽ γ1
√
q2−(p+1)i+1ε158

∥Σi − Σ∞∥ ⩽ σ × 2−(p+1)i+1ε.159160
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HIGEH ORDER NUMERICAL METHODS 5

1.5. Arithmetic Complexity. The computation of Hp(U, V,Σ) only requires161
matrix additions and multiplications without resolution of linear systems. This is162
possible since there are explicit formulas for the equations (1.10). Table 2 gives the163
number of addition and multiplications to evaluate Hp(U, V,Σ) where Lk := ∆k −164
Sk −XkΣ+ ΣYk.165

Eℓ(U) sp(Eℓ(U)) cp(X) Lk Sk ∆k

matrix
additions

1 p p2 p

matrix
multiplications

1 p p2 2p+ 2

additions 10np (m+ 4n)p
multiplications (m− n+ 8)np (m+ n)mnp

Table 2

This implies 2(p+1)(m2 + n2) + (m+14n)p additions and 2(p+1)(m3 + n3) +166
(m2 +mn+m− n+ 8)np multiplications.167

1.6. Outline of this paper. In section 2 we give a short overview on the com-168
putational methods for the SVD and we discuss about the method of Davies-Smith169
to update the SVD. We exhibit the links with the method associated to the map H2.170
We also state a result on Davies-Smith method which will be proved in section 10.171
In section 3 we study the approximation of the unitary group by high order methods.172
We will use the polynomial sp(u) to define the sequence Ui+1 = Ui(Iℓ + sp(Eℓ(Ui))),173
i ⩾ 0, from a matrix U0 closed to the unitary group. The result is that under condi-174
tion ∥Eℓ(U0)|| < 1/4 the sequence (Ui)i⩾0 converges to the polar projection of U0. In175
section 4 we show how to explicitely solve the equation ∆− S −XΣ + ΣY = 0. We176
also state a condition-like result that shows the quantity κ is the condition number177
of this resolution. In fact we will prove that : ∥X∥, ∥Y ∥ ⩽ κ∥∆∥. This bound plays178
a signifiant role in the convergence analysis. The section 5 is devoted to the conver-179
gence analysis. We introduce the notion of p-map for the SVD. This is convenient to180
states in Theorem 5.2 that the method associated to a p-map is of order p+ 1. Then181
Theorem 1.2 derives from Theorem 5.2. The proof is done in sections 6, 7 and 8 for182
p = 1, p = 2, and p = 3 respectively. In section 11, we study the case of clusters183
of singular values and we show how to use the condition (1.12) to separate clusters184
of singular values. We introduce a notion of deflation for the SVD : the idea is to185
compute a thin SVD with one singular value per cluster. Finally we illustrate this by186
numerical experiments in section 12.187

2. Related works and discussion.188

2.1. Short overview on the SVD and the methods to compute it. “The189
practical and theoretical importance of the SVD is hard to overestimate”.This sentence190
from Golub and Van Loan [27] perfectly sums up the role of SVD in science and191
more particularly in the world of computation. The SVD was discovered by Belrami192
in 1873 and Jordan in 1874, see the historical survey of Stewart [43] that traces the193
contributions of Sylvester, Schmidt and Weyl, the first precursors of the SVD. A194
recent overview of numerical methods for the SVD can be found in the Hanbook195
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6 DIEGO ARMENTANO AND JEAN-CLAUDE YAKOUBSOHN

of Linear Algebra [32] mainly in chapters 58 and 59. On the aspects developments196
on modern computers, Dongarra and all [14] give a survey of algorithms and their197
implementations for dense and tall matrices with comparison of performances of most198
bidiagonalization and Jacobi type methods. From a numerical linear algebra point199
of view, the SVD is at the center of the significant problems. Let us mention a200
few : the generalized inverse of a matrix [6], the best subspace problem [28], the201
orthogonal Procrustes problem [20], the linear least square problem [27], the low rank202
approximation problem[27]. Finally, a very stimulating article of Martin and Porter203
[38] describes the vitality of SVD in all areas by showing surprising examples.204

There are two classes of methods to compute the SVD : bidiagonalizations meth-205
ods and Jacobi methods. Since the time of precursors, Golub and Kahan in 1965 [26]206
for bidiagonalization with QR iteration and Kogbeliantz in 1955 [35] for Jacobi two-207
sided method, many various evolutions and ameliorations have been proposed. In our208
context (m ⩾ n), the bidiagonalzation methods reduce first the complex matrix under209
the form M = UM ′V ∗ where U , V are unitary and M ′ real and upper bidiagonal [15].210
Next the SVD is computed roughly by QR iteration with notable improvements as211
implicit zero-shift QR [12] and differential qd algorihms [23]. In this vein of bidiago-212
nalization methods, other alternatives to QR iteration have been developped. Let us213
mention the divide and conquer methods [29], [25], [37], the bisection and inverse iter-214
ation methods [34], [32] in chapter 55 and methods based on multiple relatively robust215
representation [13], [46]. The Jacobi methods consist to successively apply rotations216
now called Givens rotations on the left and right of the original matrix in order to217
eliminate a pair of elements at each steps. Wilkinson [45] proves that the method is218
ultimately quadratic for the eigenvalue problem. After Kogbetliantz, the properties219
of two-sided Jacobi method applying two different rotations has been studied a lot :220
global convergence [22], [24], quadratic convergence at the end of the algorithm [42],221
[2], behaviour in presence of clusters [8], reliability and accuracy [17], [18], [30], [39],222
[40]. Let us also mention main improvements for the one-sided Jacobi method due223
to several forms of preconditionning [17], [18] and [16] which uses a preconditionner224
QR to get high accuracy for the SVD. Finally the simultaneous use of block Jacobi225
methods and preconditionning improve convergence [4], [41] and computing time [14].226

Other ways have been investigated related to classical topics studied in the field227
of numerical analysis. For instance, Chatelin [9] studies the Newton method for the228
eigenproblem. This requires a resolution of a Sylvester equation. Since the resolution229
of Sylvester is expensive, several variants of Newton method are proposed but the230
quadratic convergence is lost. There is also the purpose of Edelman et al. [19] which231
explores the geometry of Grassmann and Stiefel manifolds in the context of numerical232
algorithms and propose Newton method in this context. It also requires to solve a233
Sylvester equation to get numerical results. These ideas also have been developped by234
Absil et al. [1] in the context of the optimization on manifolds. Finally let us mention235
differential point of view developped by Chu [10] where an O.D.E. is derived for the236
SVD in the context of bidiagonal matrices. The methods mentioned above have a237
most quadratic order of convergence.238

2.2. The Davies-Smith method. The method of Davies and Smith [11] to239
update the singular decomposition of matrices in Rm×n is probably the closest study240
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to our. In our framework of notations, it consists to define the map241

(U, V,Σ) → DS(U, V,Σ) =

 U
(
Iℓ +X + 1

2X
2
1

)
=: UΓ1

V
(
Iq + Y + 1

2Y
2
1

)
=: VK1

Σ+ S =: Σ1

(2.1)242

243

with S = S1 +S2, X = X1 +X2, Y = Y1 + Y2 where the Si’s, i = 1, 2, are diagonal244
matrices, the Xi’s and Yi’s are skew Hermitian matrices that verify245

X1Σ− ΣY1 + S1 = ∆1 := ∆ = U∗MV − Σ(2.2)246

X2Σ− ΣY2 + S2 = ∆2 := −1

2
X1(∆ + S1) +

1

2
(∆ + S1)Y1.(2.3)247

248

This gives an approximation at the order three of the SVD in the regular case under249
the condition that the quantity ∥∆ + Σ∥ is small enough. More precisely Davies250
and Smith states that if the condition κ3ε3 ⩽ tol where tol is a given tolerance then251
UΓ1ΣK

∗
1V

∗
1 is an approximation of the SVD of M , such that :252

1. ∥Eℓ(UΓ1)∥, ∥Eq(V K1) ⩽ 2(κε)3 +O(κ4ε4).253

2.
1

∥M∥
∥Γ∗

1U
∗MVK1 − Σ1∥ ⩽

28

3
(κε)3 +O(κ4ε4)254

where the considered norm is that of Frobenius. Thanks to the map Hp defined in the255
introduction with p = 2 , we improve the previous method and its analysis on several256
points.257

1. The norm of Eℓ(U(Iℓ+Ω)(Iq +Θ)) is in O(ε3), see Theorem 2.1 below, while258
the norm of Eℓ(UΓ1) depends on the norm of Eℓ(U). In fact259

Eℓ(UΓ1) = Γ∗
1Eℓ(U)Γ1 + Eℓ(Γ1).260261

For this reason, Davies and Smith suggest to use a Givens type method after262
their update of the SVD to iterate the method.263

2. Note that Θ2 = X1+X2+
1

2
(X1+X2)

2 is computed with the same arithmetic264

complexity as Γ1. There is a gain in the error analysis.265
3. The analysis of the map H2 takes in account all the terms of the series expan-266

sion of H2(U, V,Σ) with respect U, V,Σ. In this way, the Theorem 2.1 show267
that κ5/4K2/5ε (and not κε) is the quantity on which the method Davies268
Smith rests. This shows that the quantity K is not negligible in the error269
analysis.270

4. The tolerance tol in the method associated to the map Hp is determined by271
imposing a condition of contraction which is not the case in the Davies-Smith272
method, see the algorithm 2.3 of [11].273

We defined a Davies-Smith revisited method introducing the map274

(U, V,Σ) → DS(U, V,Σ) =

 U(Iℓ +Θ2)
V (Iq +Ψ2)
Σ + S =: Σ1

(2.4)275

276

with S = S1 +S2, X = X1 +X2, Y = Y1 + Y2 where the Si’s, i = 1, 2, are diagonal277
matrices, the Xi’s and Yi’s are skew Hermitian matrices defined by (2.2 -2.3). The278
following result specifies the behaviour of DS(U, V,Σ) and DS(U, V,Σ).279

Theorem 2.1. Let us consider M , U , V , Σ as in the introduction, ∆ = U∗MV −280
Σ and ε1 = ∥∆∥. Let κ = κ(Σ) and K = K(Σ).281
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8 DIEGO ARMENTANO AND JEAN-CLAUDE YAKOUBSOHN

1. Let us assume that κ5/4K2/5ε1 ⩽ ε ⩽ 0.1. Then the triplet (U1, V1,Σ1) =282
DS(U, V,Σ) defined by (2.1) satisfies283

∥∆1∥ := ∥U∗
1MV1 − Σ1∥ ⩽ (8 + 18ε+ 33ε2)ε3.(2.5)284285

2. Let us assume that κ6/5K3/10ε1 ⩽ ε ⩽ 0.1. Then the triplet (Ū1, V̄1, Σ̄1) =286
DS(U, V,Σ) defined by (2.4) satisfies287

∥∆̄1∥ := ∥Ū∗
1MV̄1 − Σ̄1∥ ⩽ (6 + 21ε+ 54ε2)ε3.(2.6)288289

Since κ6/5K3/10 < κ5/4K2/5, the condition to update the singular value decom-290
position is better with the Davies Smith method revisited than the Davies Smith291
method.292

3. Approximation of Stiefel matrices. The Stieffel manifold Stm,ℓ general-293
izes the Unitary group. An important tool is the polar decomposition U0 = π(U0)H294
of rectangular matrix U0 where the polar projection π(U0) is a Stiefel matrix and H295
is Hermitian positive semidefinite [33]. It is also well known that π(U0) is indeed the296
closest element in Stm,l to U0 for every unitarily norm [21, Theorem 1]. Since we are297
doing approximate computations, the Stiefel matrices in an SVD are not given ex-298
actly, so we may wish to estimate the distance between an approximate Stiefel matrix299
and the closest actual Stiefel matrix. This is related to the following problem: given300
an approximately Stiefel m × ℓ matrix U , find a good approximation U + U̇ for its301
projection on the manifold Stm,ℓ. We define a class of high order iterative methods for302
this problem and provide a detailed analysis of its convergence, see also [36, 7, 31].303
The theorem 3.3 establishes that our method converges towards the polar projection304
of the matrix U0 ∈ Cm×ℓ if U0 is sufficiently close to the Stiefel manifold. In this case305
the matrix H is positive definite and can uniquely be written as the exponential of306
another Hermitian matrix.307

3.1. A class of high order iterative methods. We wish to compute U̇ using308
an appropriate Newton iteration. Since the normal space in U of Stiefel manifol309
is composed of UΩ’s where eΩ is an Hermitian matrix,it turns out that it is more310
convenient to write U + U̇ = U(Iℓ +Ω). The following lemma gives the expression Ω311
so that U + U̇ ∈ Stm,ℓ it is the polar projection of U .312

Lemma 3.1. Let U ∈ Cm×ℓ such that the spectral radius of Eℓ(U) is strictly less313
than 1. Then314

Ω = −Iℓ + (Iℓ + Eℓ(U))−1/2 ⇒ Eℓ(U + UΩ) = 0.(3.1)315316

Hence U(Iℓ + Eℓ(U))−1/2 ∈ Stm,ℓ is the polar projection of U .317

Proof. If the spectral radius of Eℓ(U) is strictly less than 1 then the matrix318
(Iℓ +Eℓ(U))1/2 exists and Ω = −Iℓ + (Iℓ +Eℓ(U))−1/2 is Hermitian positive definite319
matrix. With Eℓ(U) = U∗U − Iℓ and U̇ = UΩ, we have320

Eℓ(U + UΩ) = (Iℓ +Ω∗)(Iℓ + Eℓ(U))(Iℓ +Ω)− Iℓ321

= Eℓ(U) + 2Ω + ΩEℓ(U) + Eℓ(U)Ω + Ω2 +ΩEℓ(U)Ω.322323

A straighforward calculation implies Eℓ(U+UΩ) = 0. Then U = U(Iℓ+Ω)(Iℓ+Ω)−1.324
Hence U(Iℓ + Eℓ(U))−1/2 ∈ Stm,ℓ is the polar projection of U .325

This manuscript is for review purposes only.



HIGEH ORDER NUMERICAL METHODS 9

Consequently an high order approximation of Ω = −Iℓ + (Iℓ + Eℓ(U))−1/2 will326
permit to define an high order method to numerically compute the polar projection.327
Evidently Ω commutes with U . The approximation of Ω can be obtained as follows.328
Let us consider the Taylor serie of −1 + (1 + u)−1/2 at u = 0 :329

s(u) =
∑
k⩾1

(−1)k
1

4k

(
2k
k

)
uk = −1

2
u+

3

8
u2 − 5

16
u3 + · · ·330

331

For p ⩾ 1 we introduce sp(u) =
p∑

k=1

(−1)ktku
k and rp(u) = s(u)−sp(u). The quantities332

Ωp = sp(Eℓ(U)), Rp = rp(Eℓ(U))(3.2)333334

commute with U∗U . We have Ωp = Ω−Rp and Eℓ(U + UΩ) = 0. A straightforward335
calculation shows that336

Eℓ(U + UΩp) = (U∗ +ΩpU
∗ −RpU

∗)(U + UΩp − URp)− Iℓ337

= E(U + UΩ)− 2(Iℓ +Ω)U∗URp +R2
pU

∗U338

= (Iℓ + Eℓ(U))Rp(−2Iℓ − 2Ω +Rp) sinceU∗U = Iℓ + Eℓ(U)(3.3)339340

We are thus lead to the iteration that we will further study below:341

Ui+1 = Ui(Iℓ + sp(Eℓ(Ui)), i ⩾ 0.(3.4)342343

Theorem 3.3 below shows the convergence of the sequence (3.4) towards the po-344
lar projection of U0 with a p order of convergence under the universal condition345
∥E(U0)∥ < 1/4.346

3.2. Error analysis.347

Proposition 3.2. Let p ⩾ 1. Let U be an m × ℓ matrix with ε := ∥Eℓ(U)∥ < 1348
and Ωp = sp(Eℓ(U)). Let U1 = U(Iℓ + Ω) and write ε1 := ∥Eℓ(U1)∥. Then ∥Ωp∥ ⩽349
|sp(ε)| ⩽ −1 + (1− ε)−1/2 and350

ε1 ⩽ εp+1.(3.5)351352

Proof. Let Ωp = sp(Eℓ(U)). We have353

∥Ωp∥ ⩽ |sp(ε)|354

⩽ −1 + (1− ε)−1/2.355356

Since Ω is Hermitian which commutes with U we have357

Eℓ(U1) = (Iℓ +Ωp)U
∗U(Iℓ +Ωp)− Iℓ358

= (Iℓ +Ωp)
2Eℓ(U) + Ω2

p + 2Ωp359

= (Iℓ + Eℓ(U))(Ω2
p + 2Ωp) + Eℓ(U).360361

Then using Lemma 3.4 below in sub-section, it follows easily that362

Eℓ(U1) =

(
p∑

k=0

αkEℓ(U)k

)
Eℓ(U)p+1363

364

where
p∑

k=0

|αk| ⩽ 1. Hence ε1 ⩽ εp+1.365
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Proposition 3.2 permits to analyse the behaviour of the sequence (Ui)i⩾0 deftined366
by (3.4).367

Theorem 3.3. let p ⩾ 1. Let U0 ∈ Cm×ℓ be such that ∥E(U0)∥ ⩽ ε < 1/2. Then368
the sequence defined by369

Ui+1 = Ui(Iℓ + sp(E(Ui)) i ⩾ 0,(3.6)370371

converges to a Stiefel matrix U∞ ∈ Stm,ℓ. More precisely, for all i ⩾ 0, we have372

∥Ui − U∞∥ ⩽
√
ℓ
2−(p+1)i+12ε

1− 2ε
.(3.7)373

374

Moreover if ε < 1/4 then this sequence converges to the polar projection π(U0) ∈ Stm,ℓ375
of U0.376

Proof. The Newton sequence (3.6) defined from U0 = U gives377

Ui+1 = U0(Iℓ +Ω0,p) · · · (Iℓ +Ωi,p)378379

with Ωi,p = sp(Eℓ(Ui)). An obvious induction using Proposition 3.2 yields ∥Eℓ(Ui)∥ ⩽380

2−(p+1)i+1ε. In fact we have381

||Eℓ(Ui+1)|| ⩽ ||Eℓ(Ui)||p+1 fromProposition 3.2382

⩽ 2−(p+1)i+1+p+1εp+1383

⩽ (2ε)p2−(p+1)i+1+1ε384

⩽ 2−(p+1)i+1+1ε since ε < 1/2.385386

We are using Lemma 3.6 to conclude. We have ∥Ωk,p∥ ⩽ −1+ (1− 2−(p+1)k+1ε)−1/2.387

Since ε ⩽ 1/2 then −1 + (1 − 2−(p+1)k+1ε)−1/2 ⩽ 2−(p+1)k+1ε. Considering u0 = ε,388
α1 = 1 and α2 = 0, the assumptions of Lemma 3.6 below are satisfied. Hence the389
sequence (Ui)i⩾0 converges to a matrix U∞ which is an unitary matrix since the390
sequence (Eℓ(Ui)i⩾0 converges towards 0. We then have391

∥Ui − U∞∥ ⩽
√
ℓ

2(α1 + α2 + α1α2u0)

1− 2(α1 + α2 + α1α2u0)u0
2−(p+1)i+1α

0
ε392

⩽
√
ℓ
2−(p+1)i+12ε

1− 2ε
.393

394

We denote Z0 =
∏

j⩾0(Iℓ + Ωj,p). We have U∞ = U0Z0. From Lemma 3.6 Z0 is395
invertible with ∥Z0∥ ⩽ 2ε. By induction on i, it can also be checked that all the Ωi,p’s396
commute. Whence Z0 and Z−1

0 are actually Hermitian matrices. If ε < 1/4 we have397
∥Z−1

0 − Iℓ∥ ⩽ ∥Z−1
0 ∥∥Iℓ − Z0∥ ⩽ 2ε/(1 − 2ε) < 1. Then the logarithm logZ−1

0 is398
well defined. We conclude that Z−1

0 is the exponential of a Hermitian matrix, whence399
it is positive-definite. Since U0 = U∞Z−1

0 , we conclude that U∞ = π(U0) the polar400
projection of U0 from the polar decomposition theorem.401

3.3. Technical Lemmas. This following Lemma is used in the proof of Propo-402
sition 3.2.403

Lemma 3.4. Let p ⩾ 1. We have404

(u+ 1)(sp(u)
2 + 2sp(u)) + u =

(
p∑

k=0

αku
k

)
up+1405

406
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where
p∑

k=0

|αk| ⩽ 1.407

Proof. Let ti = (−1)i
1

4i

(
2i
i

)
for i ⩾ 0. The convolution of sequence binomial408

ti with itself is the sequence with general terms (-1)i. In fact it is sufficient to square409
(1 + u)−1/2:410

1

1 + u
=
∑
k⩾0

(−1)kuk =
∑
k⩾0

 ∑
i+j=k

titj

uk.411

412

We proceed by induction. When p = 1 the lemma holds since413

(u+ 1)(h1(u)
2 + 2h1(u)) + u = (u+ 1)

(
u2

4
− u

)
+ u414

=

(
−3

4
+

1

4
u

)
u2415

416

and
1

4
+

3

4
= 1. Let us suppose that the lemma holds for an indice p ⩾ 1 be given.417

We first remark that α0 = −2tp+1. In fact since α0 is the coefficient of up+1 in418
(u+ 1)(sp(u)

2 + 2sp(u)) + u. Then419

α0 =
∑

i + j = p
1 ⩽ i, j ⩽ p

titj +
∑

i + j = p + 1
1 ⩽ i, j ⩽ p

titj + 2tp420

= (−1)p − 2t0tp + (−1)p+1 − 2t0tp+1 + 2tp421

= −2tp+1.422423

Next, writing hp+1(u) = sp(u) + tp+1u
p+1 we get by straightforward calculations :424

(u+ 1)(sp(u)
2 + 2sp(u)) + u425

=

(
p∑

k=0

αku
k

)
up+1 + (u+ 1)(2tp+1sp(u)u

p+1 + t2p+1u
2(p+1) + 2tp+1u

p+1)426

= (α1 + 2tp+1(t1 + 1))up+2 +

p∑
k=2

(αk + 2tp+1(tk + tk−1))u
p+k+1427

+ tp+1(2tp + tp+1)u
2(p+1) + t2p+1u

2p+3428

:=

(
p+1∑
k=0

βku
k

)
up+2429

430

Let us prove that
p+1∑
k=0

|βk| ⩽ 1. In fact since t1 = −1/2 and
p∑

k=1

|αk| = 1 − 2|tp+1| it431

follows:432
p+1∑
k=0

|βk| ⩽
p∑

k=1

|αk|+ |tp+1|+ 2|tp+1|
p∑

k=2

(|tk−1| − |tk|) + |tp+1|(2|tp| − |tp+1|) + t2p+1433

⩽ 1− 2|tp+1|+ |tp+1|+ 2|tp+1|(|t1| − |tp|) + |tp+1|(2|tp| − |tp+1|) + t2p+1434

⩽ 1.435436
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12 DIEGO ARMENTANO AND JEAN-CLAUDE YAKOUBSOHN

The Lemma is proved.437

The following Lemma 3.5 is used in the proof of Lemma 3.6.438

Lemma 3.5. 1. Let 0 ⩽ u < 1. We have
∏

j⩾0(1 + u2j ) =
1

1− u
.439

2. Let p ⩾ 1 and 0 ⩽ ε < 1. We have for i ⩾ 0,440 ∏
j⩾0

(1 + 2−(p+1)j+i+1ε) ⩽ 1 + 2−(p+1)i+12ε(3.8)441

442

3. Let p ⩾ 1 and 0 ⩽ ε ⩽ 1/2. We have for i ⩾ 0,443 ∏
j⩾0

(1− 2−(p+1)j+i+1ε)−1/2 ⩽ 1 + 2−(p+1)i+12ε(3.9)444

445

Proof. For the item 1 we prove by induction that
∏k

j=0(1 + u2j ) =
1− u2k+1

1− u
.446

This holds when k = 0. Next, assuming the property for k be given we have447

k+1∏
j=0

(1 + u2j ) =
1− u2k+1

1− u
(1 + u2k+1

)448

=
1− u2k+2

1− u
.449

450

Item 1 is proved. The item 2 follows from451 ∏
j⩾0

(1 + 2−(p+1)j+i+1ε) ⩽
∏
j⩾0

(1 + (2−(p+1)i)2
j

2ε)452

⩽ 1 +

∏
j⩾0

(1 + (2−(p+1)i)2
j

)− 1

 2ε453

⩽ 1 +

(
1

1− 2−(p+1)i
− 1

)
2ε from item1.454

⩽ 1 + 2−(p+1)i4ε.455456

Since ε ⩽ 1/2 we have (1− u)−1/2 ⩽ 1 + u, item 3 follows from :457 ∏
j⩾0

(1− 2−(p+1)j+i+1ε)−1/2 ⩽
∏
j⩾0

(1 + 2−(p+1)i+j+1ε)458

⩽ 1 + 2−(p+1)i+12ε from item2.459460

The Lemma 3.6 is used in Theorems 3.3 and 5.2.461

Lemma 3.6. Let ε, u0, and αi, i = 1, 2, be real numbers such that ε ⩽ u0 and462
2(α1 + α2 + α1α2u0)u0 < 1. Let us consider a sequence of matrices defined by463

Ui+1 = Ui(Iℓ +Ωi)(Il +Θi), i ⩾ 0,464465

where the norms of the Ωi’s and the Θi’s satisfy466

∥Ωi∥ ⩽ α12
−(p+1)i+1ε and ∥Θi∥ ⩽ α22

−(p+1)i+1ε.467468
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Then the sequence (Ui)i⩾0 converges to a matrix U∞. If U∞ is an unitary matrix469
then each Ui is invertible and we have470

∥Ui − U∞∥ ⩽
√
ℓ

2(α1 + α2 + α1α2u0)

1− 2(α1 + α2 + α1α2u0)u0
2−(p+1)i+1ε.471

472

Moreover each Ni =
∏

j⩾0(Iℓ +Ωi+j)(Iℓ +Θi+j) is invertible and satisfies473

∥Ni − Iℓ∥ ⩽ 1− 2(α1 + α2 + α1α2u0)u0.474475
476

477478

Proof. We remark that Ui = U0

∏i−1
j=0(Iℓ + Ωj)(Iℓ + Θj). Let Ni =

∏
j⩾0(Iℓ +479

Ωi+j)(Iℓ + Θi+j). Let us consider U∞ = U0N0. From assumption we know that480

∥Ωj∥ ⩽ α12
−(p+1)j+1ε and ∥Θk∥ ⩽ α22

−(p+1)j+1ε. Taking in account that ε ⩽ u0, it481
follows482

(1 + ∥Ωi+j∥)(1 + ∥Θi+j∥) ⩽ 1 + (α1 + α2 + α1α2u0)× 2−(p+1)i+j+1ε.483484

The matrix Ni − Iℓ is written an infinite sum of homogeneous polynomials of485
degree k ⩾ 1:486

Ni − Iℓ =
∑
k⩾1

Pk(Ωi, . . . ,Ωi+j , . . .Θi, . . . ,Θi+j , . . .)487

488

Consequently for i ⩾ 0 we have :489

∥Ni − Iℓ∥ ⩽
∑
k⩾1

Pk(∥Ωi∥, . . . ∥Ωi+j∥, . . . , ∥Θi∥, . . . , ∥Θi+J∥, . . .)490

⩽
∏
j⩾0

(1 + ∥Ωi+j∥)(1 + ∥Θi+j∥)− 1491

⩽
∏
j⩾0

(1 + (α1 + α2 + α1α2u0)× 2−(p+1)i+j+1ε)− 1492

⩽ 2(α1 + α2 + α1α2u0)2
−(p+)i+1ε fromLemma ??493

⩽ 2(α1 + α2 + α1α2u0)u0 since ε ⩽ u0494495

Since 2(α1 + α2 + α1α2u0)u0 < 1 it follows that each Ni is invertible. Since496
U∞ = U0N0 it is easy to see497

∥U∞∥ ⩽ ∥U0∥(1 + 2(α1 + α2 + α1α2u0)ε).498499

We have Ui = U∞N−1
i . We deduce that500

∥Ui − U∞∥ ⩽ ∥U∞N−1
i (Iℓ −Ni)∥501

⩽ ∥U∞∥ 1

1− 2(α1 + α2 + α1α2u0)u0
2(α1 + α2 + α1α2u0)2

−(p+1)i+1ε.502
503

If U∞ is an unitary matrix then each Ui is invertible and ∥U∞∥ ⩽
√
ℓ. The result is504

proved.505
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Lemma 3.7. From U0 ∈ Cm×ℓ be given, let us define the sequence for i ⩾ 0,506
Ui+1 = Ui(Iℓ +Ωi,p) with Ωi,p = sp(Eℓ(Ui)). Let ε = ∥Eℓ(U0)∥. Then we have507

∥Ωi,p∥ ⩽ (−1 + (1− ε)−1/2)ε(p+1)i−1508509

Proof. From Proposition 3.2 we know that ∥Eℓ(Ui)∥ ⩽ ε(p+1)i . Since sp(u) ⩽510

−1 + (1 − u)−1/2 we can write ∥Ωi,p∥ ⩽ −1 + (1 − ε(p+1)i)−1/2. The function511

u → 1

u
(−1 + (1− u)−1/2) is defined and is increasing on [0, 1]. We then find that512

∥Ωi,p∥ ⩽
1

ε
(−1 + (1− ε)−1/2)ε(p+1)i .513

514

We are done.515

4. SVD for perturbed diagonal matrices.516

4.1. Solving the equation ∆− S −XΣ+ΣY = 0. The following proposition517
shows how to explicitly solve this linear equation under these constraints without518
inverting a matrix.519

Proposition 4.1. Let Σ = diag(σ1, . . . σq) ∈ Dℓ×q and ∆ = (δi,j) ∈ Cℓ×q. Con-520
sider the diagonal matrix S ∈ Dℓ×q and the two skew Hermitian matrices X = (xi,j) ∈521
Cℓ×ℓ and Y = (yi,j) ∈ Cq×q that are dend the tfined by the following formulas :522

• For 1 ⩽ i ⩽ q, we take523

Si,i = Re δi,i(4.1)524

xi,i = −yi,i =
Im δi,i
2σi

i(4.2)525
526

• For 1 ⩽ i < j ⩽ q, we take527

xi,j =
1

2

(
δi,j + δj,i
σj − σi

+
δi,j − δj,i
σj + σi

)
(4.3)528

yi,j =
1

2

(
δi,j + δj,i
σj − σi

− δi,j − δj,i
σj + σi

)
(4.4)529

530

• For q + 1 ⩽ i ⩽ ℓ and 1 ⩽ j ⩽ q, we take531

xi,j =
1

σj
δi,j .(4.5)532

533

• For q + 1 ⩽ i ⩽ ℓ and q + 1 ⩽ j ⩽ ℓ, we take534

xi,j = 0.(4.6)535536

Then we have537

∆− S −XΣ+ ΣY = 0(4.7)538539

Proof. Since X and Y are skew Hermitian matrices, we have diag(Re(XΣ −540
ΣY )) = 0. In view of (4.1), we thus get541

diag(Re∆) = diagRe(XΣ− ΣY + S).542543
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By skew symmetry, for the equation544

XΣ− ΣY = diag(Re∆) = ∆− S545

holds, it is sufficient to have546

σixi,i − σiyi,i = i Im δi,i, 1 ⩽ i ⩽ q.(4.8)547 (
σixi,i σjxi,j

−σixi,j σjxj,j

)
−
(

σiyi,i σiyi,j
−σjyi,j σjyj,j

)
(4.9)548

=

(
i Im δi,i δi,j
δj,i i Im δj,j

)
, 1 ⩽ i < j ⩽ q549

σjxi,j = δi,j , q + 1 ⩽ i ⩽ ℓ, 1 ⩽ j ⩽ q.(4.10)550551

The formulas (4.2) clearly imply (4.8). The xi,j from (4.3) clearly satisfy (4.10) as552
well. For 1 ⩽ i < j ⩽ q, the formulas (4.9) can be rewritten as553 (

σj −σi

−σi σj

)(
Rexi,j

Re yi,j

)
=

(
Re δi,j
Re δj,i

)
554 (

σj −σi

σi −σj

)(
Imxi,j

Im yi,j

)
=

(
Im δi,j
Im δj,i

)
.555

556

Since σi > σj , the formulas (4.3–4.4) indeed provide us with a solution. The entries557
xi,j with q + 1 ⩽ i, j ⩽ ℓ do not affect the product XΣ, so they can be chosen as558
in (4.6). In view of the skew symmetry constraints xj,i = −xi,j and yj,i = −yi,j , we559
notice that the matrices X and Y are completely defined.560

Definition 4.2. Let Σ = diag(σ1, . . . σq) ∈ Dℓ×q and ∆ ∈ Cℓ×q. We name561
condition number of equation XΣ− ΣY = ∆− S the quantity562

κ = κ(Σ) = max

(
1, max

1⩽i⩽q

1

σi
, max
1⩽i<j⩽q

1

σi − σj
+

1

σi + σj

)
(4.11)563

564

4.2. Error analysis.565

Proposition 4.3. Under the notations and assumptions of Proposition 4.1, as-566
sume that X,Y and S are computed using (4.1–4.4). Given ε with ∥∆∥ ⩽ ε, the567
matrices X, Y and S solutions of ∆− S −XΣ+ ΣY = 0 satisfy568

∥S∥ ⩽ ε(4.12)569

∥X∥, ∥Y ∥ ⩽ κε(4.13)570571

Proof. From the formula (4.1) we clearly have ∥S∥ ⩽ ∥∆∥ ⩽ ε.572
Since Σ ∈ Dℓ×q we know that σi > σj for i < j. It follows573

|xi,j | ⩽
|δi,j |
2

(
1

σi − σj
+

1

σi + σj

)
+

|δi,j |
2

(
1

σi − σj
+

1

σi + σj

)
574

⩽ κ|δi,j | since |δi,j | = |δi,j |.575576

We also have |xi,i| ⩽
|δi,i|
σi

and for q + 1 ⩽ i ⩽ ℓ and 1 ⩽ j ⩽ q, |xi,i| ⩽
|δi,i|
σj

.577

Combined with the fact that ∥∆∥ ⩽ ε, we get ∥X∥ ⩽ κε. In the same way we also578
have ∥Y ∥ ⩽ κε.579
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5. Convergence analysis : a general result.580

Definition 5.1. Let an integer p ⩾ 1. Let δ = 1 if p is odd and δ = 2 if p is581
even. Let us consider the map582

(U, V,Σ) ∈ Em×ℓ
n×q → H(U, V,Σ) =

 U(Iℓ +Ω)(Iℓ +Θ)
V (Iq + Λ)(Iq +Ψ)

Σ + S

 ∈ Em×ℓ
n×q(5.1)583

584

where Ω,Λ are Hermitian matrices, S a diagonal matrix and Θ,Ψ are skew Her-585
mitian matrices. Let ∆ = U∗MV − Σ and ∆1 = (Iℓ + Θ∗)(Iℓ + Ω)U∗MV (Iq +586
Λ)(Iq + Ψ) − Σ − S. We said that H is a p-map if there exists quantities a ⩾587
1, b ⩾ 0, τ , ζ1, ζ2, α1, α2, α0, α, ε be such that for all (U, V,Σ) satisfying588
max

(
κaKb∥∆∥, κaKb+1∥Eℓ(U)∥, κaKb+1∥Eq(V )∥

)
⩽ ε we have :589

||Eℓ(U(Iℓ +Ω))|| ⩽ ∥Eℓ(U)∥p+1 and ∥Eq(V (Iq + Λ))∥ ⩽ ∥Eq(V )∥p+1(5.2)590

591

κaKb∥∆1∥ ⩽ τ∥∆∥p+1 and κaKb∥S∥ ⩽ α∥∆∥(5.3)592

593

∥Iℓ +Θ∥2, ∥Iq +Ψ∥2 ⩽ ζ1

∥(Iℓ +Θ∗)(Iℓ +Θ)− Iℓ∥, ∥(Iq +Ψ∗)(Iq +Ψ)− Iq∥ ⩽
1

κaKb+1
ζ2ε

p+δ
(5.4)594

595

∥Ω∥, ∥Λ∥ ⩽ α1∥∆∥ and ∥Θ∥, ∥Ψ∥ ⩽ α2α0ε.(5.5)596597

We are proving that the theorems cited in the introduction result from the fol-598
lowing599

satement.600

Theorem 5.2. Let an integer p ⩾ 1 and three reals a ⩾ 1, b, ε ⩾ 0. Let δ = 1601
if p is odd and δ = 2 if p is even. Let us consider a p-map H as in (5.1). Let us602
consider a triplet (U0, V0,Σ0) and define the sequence for i ⩾ 0, (Ui+1, Vi+1,Σi+1) =603
H(Ui, Vi,Σi). Let ∆i = U∗

i MVi − Σ, Ki := K(Σi) and κi = κ(Σi) with K = K0 and604
κ = κ0. Let us suppose605

max
(
κaKb∥∆0∥, κaKb+1∥Eℓ(U0)∥, κaKb+1∥Eq(V0)∥

)
⩽ ε(5.6)606

(1 + αε)b

(1− 2αε)a
(2ε)pτ ⩽ 1.(5.7)607

(2ε)p
(1 + αε)b+1

(1− 2αε)a
(ζ1 + ζ2ε

δ−1) ⩽ 1.(5.8)608

1− 8αε > 0(5.9)609610

where the quantities α, τ , ζ1 and ζ2 are as in Definition 5.1. Then the sequence611
(Ui, Vi,Σi)i⩾0 converge to an SVD of M and we have612

max
(
κa
iK

b
i ∥∆i∥,κa

iK
b+1
i ∥Eℓ(Ui)∥, κa

iK
b+1
i ∥Eq(Vi)∥

)
⩽ εi ⩽ 2−(p+1)i+1ε(5.10)613

∥Σi − Σ0∥ ⩽ (2− 22−(p+1)i)
αc

κ
ε(5.11)614

615
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where c(1− 4αε) = 1. The inequality (5.11) implies K − 2αcε ⩽ Ki ⩽ K + 2αcε and616
κ

c
⩽ κi ⩽

κ

1− 4αcε
. Morever if there exist positive constant u0 such that ε ⩽ u0617

and 2(α1 + α2 + α1α2u0)u0 < 1, then by denoting γ = 2(α1 + α2 + α1α2u0) and618
σ = 0.82× α we have619

∥Ui − U∞∥ ⩽ 2−(p+1)i+1
√
m

γ

1− γu0
ε(5.12)620

∥Vi − V∞∥ ⩽ 2−(p+1)i+1
√
n

γ

1− γu0
ε(5.13)621

∥Σi − Σ∞∥ ⩽ 2−(p+1)i+1σε(5.14)622623

Proof. Let us denote for each i ⩾ 0, Ui,1 = Ui(Iℓ + Ωi) and Ui+1 = Ui,1(Iℓ +Θi)624
with similar notations for Vi,1 and Vi+1. Let ∆i +Σi = U∗

i MVi, Σi+1 = Σi + Si and625
also626

ε0 = ε εi = max(κa
iK

b
i ∥∆i∥, κa

iK
b+1
i ∥Eℓ(Ui)∥, κa

iK
b+1
i ∥Eq(Vi)∥)

κ0 = κ κi = κ(Σi)
K0 = K Ki = K(Σi)

627

We proceed by induction to prove (5.10 -5.11). The property evidently hold for i = 0.628
By assuming this for a given i, let us prove it for i+ 1. We first prove that ∥Σi+1 −629

Σ0∥ ⩽ (2 − 22−(p+1)i+1

)
αc

κ
ε under the assumption ∥Σi − Σ0∥ ⩽ (2 − 22−(p+1)i)

αc

κ
ε630

with c = 1 + 4αcε. From Lemma 5.3 we have K − 2αcε ⩽ Ki ⩽ K + 2αcε and631
κ

c
⩽ κi ⩽

κ

1− 4αcε
=

1− 4αε

1− 8αε
κ. Using these bounds and assumption (5.3)it follows632

that633

∥Σi+1 − Σi∥ = ∥Si∥ ⩽
1

κa
iK

b
i

αεi634

⩽
c

κ
2−(p+1)i+1αε since a ⩾ 1 K ⩾ 1 and κi ⩾

κ

c
.(5.15)635

636

By applying the bound (5.15) we get637

∥Σi+1 − Σ0∥ ⩽ ∥Si∥+ ∥Σi − Σ0∥638

⩽ 21−(p+1)i 1

κ
αcε+ (2− 22−(p+1)i)

1

κ
αcε639

⩽ (2− 21−(p+1)i(2− 1))
αc

κ
ε640

⩽ (2− 2−(p+1)i)
αc

κ
ε.641

642

But it is easy to see that p ⩾ 1 implies 21−(p+1)i ⩾ 22−(p+1)i+1

. Hence643

∥Σi+1 − Σ0∥ ⩽ (2− 22−(p+1)i+1

)
αc

κ
ε.644

645

Then inequality (5.11) holds for all i. From (5.3) we have ∥Σi+1−Σi∥ = ∥Si∥ ⩽
α

κi
εi.646

We then deduce647

Ki −
α

κi
εi ⩽ Ki+1 ⩽ ∥Σi∥+ ∥Σi+1 − Σi∥ ⩽ Ki +

α

κi
εi.(5.16)648

649
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As in the proof of Lemma 5.3 we can obtain650

κi

1 + 2αε
⩽ κi+1 ⩽

κi

1− 2αε
(5.17)651

652

We now prove that κa
i+1K

b
i+1∥∆i+1∥ ⩽ 2−2i+1+1ε. Using both the assumption (5.3)653

and (5.16 -5.17) it follows654

κa
i+1K

b
i+1∥∆i+1∥ ⩽

(1 + αε)b

(1− 2αε)a
κa
iK

b
i τ∥∆i∥p+1655

⩽
(1 + αε)b

(1− 2αε)a
τεp+1

i656

⩽
(1 + αε)b

(1− 2αε)a
(2ε)pτ2−(p+1)i+1+1ε657

⩽ 2−(p+1)i+1+1ε since
(1 + αε)b

(1− 2αε)a
(2ε)pτ ⩽ 1 from (5.7) .658

659

We now can bound ∥Eℓ(Ui+1)∥. We have660

∥Eℓ(Ui+1)∥ ⩽ ∥(Iℓ +Θ∗
i )Ui,1

∗Ui,1(Iℓ +Θi)∥661

⩽ ∥(Iℓ +Θ∗
i )Eℓ(Ui,1)(Iℓ +Θi) + (Iℓ +Θ∗

i )(Iℓ +Θi)− Iℓ∥662

⩽ (1 + ∥Θi∥)2∥Eℓ(Ui,1)∥+ ∥(Iℓ +Θ∗
i )(Iℓ +Θi)− Iℓ∥.(5.18)663664

From assumption (5.2)we know ∥Eℓ(Ui,1)∥ ⩽ ∥Eℓ(Ui)∥p+1 ⩽
1

κa
iK

b+1
i

εp+1
i . It follows665

using both assumption (5.4), (5.22 -5.16) that666

κa
i+1K

b+1
i+1 ∥Eℓ(Ui+1)∥ ⩽

(1 + αε)b+1

(1− 2αε)a
(ζ1ε

p+1
i + ζ2ε

p+δ
i )667

⩽
(1 + αε)b+1

(1− 2αε)a
(2ε)p(ζ1 + ζ2ε

δ−1)2−(p+1)i+1+1ε668

⩽ 2−(p+1)i+1+1ε669

since
(1 + αε)b+1

(1− 2αε)a
(2ε)p(ζ1 + ζ2ε

δ−1) ⩽ 1 from (5.8) .670
671

Hence κa
i+1K

b+1
i+1 ∥Eℓ(Ui+1)∥ ⩽ 2−(p+1)i+1+1ε. In the same way κa

i+1K
b+1
i+1 ∥Eq(Vi+1)∥672

≤ 2−2i+1+1ε. Hence we have shown that εi+1 ⩽ 2−2i+1+1ε. This completes the proof673
of (5.10–5.11).674

By applying Lemma 3.6 we conclude that the sequences (Ui)i⩾0 and (Vi)i⩾0675
converges respectively towards U∞ and V∞ which are two unitary matrices since676
∥Eℓ(Ui)∥, ∥Eq(Vi) ⩽ 2−2i+1ε. Hence the bounds (5.12 -5.13) hold. Finally the bound677
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(5.14) follows from678

∥Σi+j − Σi∥ ⩽
i+j−1∑
k=i

∥Σk+1 − Σk∥679

⩽
∑
k⩾i

2−(p+1)k+1αε680

⩽

∑
k⩾0

2−(p+1)k

 2−(p+1)i+1αε681

⩽ 2−(p+1)i+1 × 0.82αε since
∑
k⩾0

2−(p+1)k ⩽
∑
k⩾3

2−2k ⩽ 0.82.682

683

Hence the sequence (Σi)i⩾0 admits a limit Σ∞. The triplet (U∞, V∞,Σ∞) is a solution684
of SVD system (1.1). The theorem is proved.685

Lemma 5.3. Using the notations and asumptions of the proof of Theorem 5.2 we686
have with c = 1 + 4αcε :687

K − 2αcε ⩽ Ki ⩽ K + 2αcε688
κ

c
⩽ κi ⩽

κ

1− 4αcε
689
690

Proof. Let us prove that Ki ⩽ K + 2αε. We have691

Ki := ∥Σi∥ ⩽ ∥Σ0∥+ ∥Σi − Σ0∥692

⩽ K + (2− 2−(p+1)i+1)
αc

κ
ε693

⩽ K + 2αcε since κ ⩾ 1.694695

In the same way Ki ⩾ K − 2αcε. We have also κi ⩽
κ

1− 4αcε
. In fact, if σi,j ’s be696

the diagonal values of Σi, the Weyl’s bound [44] implies that697

|σi,j − σ0,j | ⩽ ∥Σi − Σ0∥ ⩽ 2
αc

κ
ε 1 ⩽ j ⩽ n,(5.19)698

699

and700

K − 2
αc

κ
ε ⩽ σi,j ⩽ K + 2

αc

κ
ε 1 ⩽ j ⩽ n.701

702

Hence, since κ,K ⩾ 1 we get703

κ

1 + 2αcε
⩽ σ−1

i,j ⩽
κ

1− 2αcε
(5.20)704

705

Moreover for 1 ⩽ j < k ⩽ n, we have :706

|σi,k ± σi,j | ⩾ |σ0,k ± σ0,j | − |σi,k − σ0,k| − |σi,j − σ0,j |

⩾ |σ0,k ± σ0,j |
(
1− 1

κ|σ0,k ± σ0,j |
4αcε

)
from (5.19)

⩾ |σ0,k ± σ0,j |(1− 4αcε) = |σ0,k ± σ0,j |
1− 8αε

1− 4αε
> 0

sinceκ|σ0,k ± σ0,j | ⩾ 1 and (5.9)

(5.21)707

708
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Taking in account the definition of κ and the inequalities (5.20) , (5.21), we then get709

κi = max

(
1,max

j

1

σi,j
, max

k ̸=j

(
1

|σi,k − σi,j |
+

1

|σi,k + σi,j |

))
710

⩽ κmax

(
1

1− 2αcε
,

1

1− 4αcε

)
711

⩽
κ

1− 4αcε
=

1− 4αε

1− 8αε
.712

713

In the same way we have714

|σi,k ± σi,j | ⩽ |σ0,k ± σ0,j |+ |σi,k − σ0,k|+ |σi,j − σ0,j |715

⩽ |σ0,k ± σ0,j |(1 + 4αcε) = |σ0,k ± σ0,j |c.716717

We deduce that718

κi ⩾
κ

c
= (1− 4αε)κ.(5.22)719

720

The Lemma is proved.721

6. Proof of Theorem 1.2 : case p = 1. Let722

s =

(
1 +

1

2
ε

)2

+ 1 +
1

4
ε, τ = (3 + sε)s2, a = 2, b = 1, u0 = 0.0289.723

724

It consists to verify the assumptions of Theorem 5.2. Remember that (5.6) is satisfied725
from assumption since726

max
(
κaKb+1∥Eℓ(U)∥, κaKb+1

∥∥Eq(V )||, κaKb
∥∥∆||

)
⩽ ε727728

where U , V , ∆ stand for U0, V0, ∆0 respectively. The item (5.2) follows of Proposition729

3.2 since Ω = −1

2
Eℓ(U) and Λ = −1

2
Eq(V ). Let us prove the item (5.3). To do that730

we denote ∆0,1 = (Iℓ +Ω)(∆ + Σ)(Iq + Λ)− Σ and ε0,1 = ∥∆0,1∥. From Proposition731

3.2 and ||Eℓ(U)||, ∥Eq(V )∥ ⩽
ε

κaKb+1
we know that ∥Ω∥, ∥Λ∥ ⩽

1

2κaKb+1
ε . We732

then apply Proposition 6.1 with w =
1

2
to get733

ε0,1 ⩽

((
1 +

1

2
ε

)2

+ 1 +
1

4
ε

)
ε

κaKb
734

⩽
sε

κaKb
.(6.1)735

736

From Lemma 4.3 we have ∥X∥, ∥Y ∥ ⩽ κε0,1. We deduce that the quantity737

∆1 = (Iℓ −X)(∆0,1 +Σ)(Iq + Y )− Σ− S738

= −X∆0,1 +∆0,1Y −X∆0,1Y −XΣY since ∆0,1 − S −XΣ+ ΣY = 0,739740

can be bounded by741

∥∆1∥ ⩽ 2κε20,1 + κ2ε30,1 + κ2Kε20,1742

⩽

(
2

κ3K2
+

sε

κ4K3
+

1

κ2K

)
s2ε2 since κ,K ⩾ 1 and ε0,1 ⩽

sε

κ2K
from (6.1) .743

⩽
1

κ2K
(3 + sε)s2ε2 =

1

κ2K
τε2744

745
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On the other hand S = diag(∆0,1). It follows ∥S∥ ⩽ ε0,1 ⩽
sε

κ2K
. The quantity α of746

Definition 5.1 is equal to s. This allows to prove the assumption (5.7) that is747

2ε
1 + sε

(1− 2sε)2
τ ⩽ 2

1 + sε

(1− 2sε)2
(3 + sε)s2ε748

⩽ 1 since ε ⩽ u0 = 0.0289.749750

We now prove the item (5.4). We have751

∥Iℓ +Θ∥2 ⩽ (1 + ∥X∥)2752

∥(Iℓ −X)(Iℓ +X)− Iℓ∥ = ∥X∥2.753754

Using Lemma 9.4 we know that ∥X∥ ⩽ κε0,1 ⩽
sε

κa−1Kb
. We deduce that755

(1 + ∥X∥)2 ⩽ (1 + sε)2 = ζ1756

∥(Iℓ −X)(Iℓ +X)− Iℓ∥ ⩽
ζ2ε

2

κ2a−2K2b
where ζ2 = s2.757

⩽
1

κaKb+1
ζ2ε

2 since a = 2 and b = 1.758
759

This allows to prove the assumption (5.8) that is760

(2ε)
(1 + sε)2

(1− 2sε)2
(ζ1 + ζ2ε

δ−1)761

⩽ 2
(1 + sε)2

(1− 2sε)2
((1 + sε)2 + s2)ε since p = 1 implies δ = 1762

⩽ 0.443 ⩽ 1 since u ⩽ u0.763764

Finally 1− 8sε ⩾ 0.46 > 0. This proves the item (5.9).765

We now verify the assumption (5.5). We have seen that ∥Ω∥, ∥Λ∥ ⩽
1

2
ε. Hence766

α1 =
1

2
. On the other hand one has Θ = X and Ψi = Y . From ∥X∥, ∥Y ∥ ⩽ sε ⩽767

2.042ε since u ⩽ u0, we can take α2 = 2.042. Since γu0 = 2(α1 + α2 + α1α2u0)u0 <768
0.15 then the bounds (5.12 -5.14) of Theorem 5.2 hold with769

γ = 5.14770
γ

1− γu0
⩽ 6.1771

σ = 0.82s ⩽ 1.67.772773

The Theorem 1.2 is proved in the case p = 1.□774

Proposition 6.1. Let ε ⩾ 0 and a, b > 0. Let ∆1 = (Iℓ +Ω)(∆+Σ)(Iq +Λ)−Σ775

with Ω∗ = Ω. Let us suppose ∥∆∥ ⩽
ε

κaKb
and ∥Ω∥, ∥Λ∥ ⩽

wε

κaKb+1
with κ = κ(Σ)776

and K = K(Σ). We have777

∥∆1∥ ⩽
(
(1 + wε)2 + 2w + w2ε

) ε

κaKb
.778
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Proof. We have Ω∗ = Ω. A straightforward calculation shows that779

∆1 = (Iℓ +Ω)∆(Iq + Λ) + (Iℓ +Ω)Σ(Iq + Λ)− Σ780

= (Iℓ +Ω)∆(Iq + Λ) + ΩΣ+ ΣΛ+ ΩΣΛ.781782

Bounding ∥∆1∥ we get783

∥∆1∥ ⩽
(
1 +

wε

κaKb+1

)2 ε

κaKb
+ 2

wε

κaKb
+
( wε

κaKb+1

)2
K784

⩽
(
(1 + wε)2 + 2w + w2ε

) ε

κaKb
since κ,K ⩾ 1.785

786

The proposition is proved.787

7. Proof of Theorem 1.2 : case p = 2. Let us introduce some constants and788
quantities.789

w =
1

2

(
1 +

3

4
ε

)
, s = (1 + wε)2 + 2w + w2ε,

a =
4

3
, b =

1

3
, u0 = 0.046.

(7.1)790

791

We also introduce792

τ1 = 2 + 2ε+
5

4
ε2 +

1

4
ε3793

τ2 = 3 +
1

2
(11 + 2τ1)ε+

1

2
(8 + 7τ1)ε

2 +
1

2
(2 + 7τ1 + τ21 )ε

3(7.2)794

+
1

2
(3 + 2τ1)τ1ε

4 + τ21 ε
5 +

1

4
τ31 ε

6795

τ = τ1τ2(7.3)796

α = (1 + τ1(sε)sε)s797798

Let us verify the assumptions of Theorem 5.2. The item (5.2) follows of Proposition799
3.2 since Ω = s2(Eℓ(U)) and Λ = s2(Eq(V )). Let us prove the item (5.3). We first800
bound ∥∆1∥ where ∆1 = U∗

1MV − Σ1. We use the ∆0,i, 1 ⩽ i ⩽ 3, the quantities801
defined by the formulas (1.10-1.11). By definition of the map H2, we have ∆1 = ∆0,3.802
We introduce the quantities ε0,i = ∥∆0,i∥. From Proposition 3.2 in the case p = 2 and803

assumption ||Eℓ(U)||, ∥Eq(V )∥ ⩽
ε

κaKb+1
we know that ∥Ω∥, ∥Λ∥ ⩽

w

κaKb+1
ε with804

w =
1

2

(
1 +

3

4
ε

)
. We then apply Proposition 6.1 to get805

ε0,1 ⩽ ((1 + wε)2 + 2w + w2ε)
ε

κaKb
806

⩽
sε

κaKb
from (7.1) .(7.4)807

808

From Proposition 7.1 we can write809

∥∆1∥ = ∥∆0,3∥ ⩽
1

κ4/3K1/3
τ(sε)s3ε3.810

811
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We now bound the norm of S = S1 + S2. We have always from Proposition 7.1812

∥S∥ ⩽ ∥∆0,1∥+ ∥∆0,2∥ ⩽
1

κ4/3K1/3
(1 + τ1(sε)sε)sε =

1

κ4/3K1/3
αε.(7.5)813

814

A numerical computation shows that the inequality (2ε)2
(1 + αε)1/3

(1− 2αε)4/3
τ(sε)s3 ⩽ 1 is815

verified for all u ⩽ u0. Then the assumption (5.7) holds.816
We now prove the item (5.4). We have817

∥Iℓ +Θ∥2 ⩽ (1 + ||c2(X)||)2818

∥(Iℓ +Θ∗)(Iℓ +Θ)− Iℓ∥ ⩽ (1 + c2(−∥X∥))(1 + c2(∥X∥))− 1819820

From the bound (7.5) we deduce that ∥X∥ ⩽ ∥X1∥+ ∥X2∥ ⩽
κx

κ4/3K1/3
=

x

κ1/3K1/3
821

with x = αε. On the other hand c2(u) = u+
1

2
u2 and (1+c2(−u))(1+c2(u))−1 =

u4

4
.822

It follows :823

∥Iℓ +Θ∥2 ⩽

(
1 + x+

1

2
x2

)2

= ζ1824

∥(Iℓ +Θ∗)(Iℓ +Θ)− Iℓ∥ ⩽
1

4κ4/3K4/3
(αε)4 =

1

κ4/3K4/3
ζ2ε

4 where ζ2 =
1

4
α4ε4.825

826

We now prove a part of assumption (5.8) that is (2ε)2
(1 + αε)4/3

(1− 2αε)4/3
(ζ1 + ζ2ε) ⩽ 1. We827

have828

(2ε)2
(1 + αε)4/3

(1− 2αε)4/3
(ζ1 + ζ2ε) ⩽ 0.025 since u ⩽ u0.829

830

This proves the item (5.8). The item 5.9 holds since 1− 8αε ⩾ 0.05 > 0 when ε ⩽ u0.831
Let us prove the assumption (5.5). Using ε ⩽ u0 we have ∥Ω∥, ∥Λ∥ ⩽ wε ⩽ α1ε832

with α1 = 0.52 and ∥Θ∥, ∥Ψ∥ ⩽ (1 + x/2)αε ⩽ α2ε with α2 = 2.7 Moreover833

2(α1 + α2 + α1α2u0)u0 ⩽ 0.304 < 1834835

Then the bounds (5.12 -5.14) of Theorem 5.2 hold with836

γ = 6.56837
γ

1− γu0
⩽ 9.41838

σ = 0.82α ⩽ 2.1.839840

The Theorem 1.2 is proved for p = 2. □841

Proposition 7.1. Let p = 2, ε ⩾ 0. Let us consider ∆1 = U∗
1MV1−Σ such that842

∥∆1∥ = ε1 ⩽
ε

κ4/3K1/3
where κ = κ(Σ) and K = K(Σ). Let us consider τ1 := τ1(ε)843

and τ := τ(ε) as in (7.3) Then we have844

∥∆2∥ ⩽
1

κ4/3K1/3
τ1ε

2,845

τ3 := ∥∆3∥ ⩽
1

κ4/3K1/3
τε3,846

847

where ∆2 = (Iℓ +Θ∗
1)(∆1 +Σ)(Iq +Ψ1)− Σ− S1 and ∆3 = (Iℓ +Θ∗

2)(∆1 +Σ)(Iq +848
Ψ2)− Σ− S1 − S2 with Θ2 and Ψ2 are defined by the formulas (1.11) for p = 2.849
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Proof. We denote e2(X) = X2/2, Θ1 = X1 + e2(X1) and Ψ1 = Y1 + e2(Y1).850
Remember ∆1+Σ = U∗ΣV and ∆2 = (Iℓ+Θ∗

1)(∆1+Σ)(Iq+Ψ1)−Σ−S1. Expanding851
∆2 we find852

∆2 = ∆1 − S1 −X1Σ+ ΣY1 −X1ΣY1 +
1

2
X2

1Σ+ Σ
1

2
Y 2
1 +

1

4
X2

1ΣY
2
1853

+
1

2
X2

1ΣY1 −
1

2
X1ΣY

2
1 −X1∆1 +∆1Y1 −X1∆1Y1 +

1

2
X2

1∆1 +
1

2
∆1Y

2
1854

+
1

4
X2

1∆1Y
2
1 +

1

2
X2

1∆1Y1 −
1

2
X1∆1Y

2
1855

=
1

2
(X1(−ΣY1 +X1Σ) + (−X1Σ+ ΣY1)Y1) +

1

4
X2

1ΣY
2
1856

+
1

2
X1(X1Σ− ΣY1)Y1 −X1∆1 +∆1Y1 −X1∆1Y1 +

1

2
X2

1∆1 +
1

2
∆1Y

2
1857

e+
1

4
X2

1∆1Y
2
1 +

1

2
X2

1∆1Y1 +
1

2
X1∆1Y

2
1858

=
1

2
(X1(−∆1 − S1) + (S1 +∆1)Y1) +

1

4
X2

1ΣY
2
1 +

1

2
X1(−∆1 − S1)Y1(7.6)859

+
1

2
X2

1∆1 +
1

2
∆1Y

2
1 +

1

4
X2

1∆1Y
2
1 +

1

2
X2

1∆1Y1 −
1

2
X1∆1Y

2
1 .860

861

We know that ∥∆1∥ ⩽ ε1. From the formula (7.6) we deduce862

∥∆2∥ ⩽ 2κε21 +
1

4
κ4Kε41 + 2κ2ε31 +

1

4
κ4ε51 + κ3ε41863

⩽ q1ε
2
1 with q1 = 2κ+ 2κ2ε1 +

5

4
κ4Kε21 +

1

4
κ4ε31(7.7)864

865

Since ε1 ⩽
ε

κ4/3K1/3
it follows q1ε1 ⩽ τ1ε with τ1 = 2 + 2ε + 5

4ε
2 + 1

4ε
3. Hence we866

have obtained ∥∆2∥ ⩽ τ1
ε2

κ4/3K1/3
.867

From definition Θ2 = c2(X1 +X2). Hence we can write Θ2 = Θ1 +X2 +A2 with868

A2 := A2(X1, X2) = c2 (X1+X2)− c2(X1)−X2869

=
1

2
((X1 +X2)

2 −X2
1 )870

=
1

2
(X2

2 +X1X2 +X2X1)871
872

In the same way Ψ2 = Ψ1+Y2+B2 where B2 = A2(Y1, Y2). Expanding (Iℓ+Θ∗
2)(∆1+873

Σ)(Iq +Ψ2) we get874

∆3 = (Iℓ +Θ∗
2)(∆1 +Σ)(Iq +Ψ2)− Σ− S1 − S2875

= (Iℓ +Θ∗
1 −X2 +A2)(∆1 +Σ)(Iq +Ψ1 + Y2 +B2)− Σ− S1 − S2876

= (Iℓ +Θ∗
1)(∆1 +Σ)(Iq +Ψ1)− Σ− S1 − S2 + (Iℓ +Θ∗

1)(∆1 +Σ)(Y2 +B2)877

+ (−X2 +A2)(∆1 +Σ)(Iq +Ψ1) + (−X2 +A2)(∆1 +Σ)(Y2 +B2)878879

We know that880

(Iℓ +Θ∗
1)(∆1 +Σ)(Iq +Ψ1)− Σ− S1 − S2 = ∆2 − S2 −X2Σ+ ΣY2 = 0.881
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Expanding more ∆3, we then can write by grouping the terms appropriately :882

∆3 = −X2∆1Y2 +∆1B2 +A2∆1 −X2∆1B2 +A2∆1Y2 +A2∆1B2(7.8)883

+Θ∗
1∆1Y2 −X2∆1Ψ1 +Θ∗

1∆1B2 +A2∆1Ψ1(7.9)884

+G,885886

where G = −X2∆1 + ∆1Y2 −X2ΣY2 + ΣB2 + A2Σ + Θ∗
1ΣY2 −X2ΣΨ1 + Θ∗

1ΣB2 +887
A2ΣΨ1 −X2ΣB2 + A2ΣY2 + A2ΣB2. The Lemma 7.2 modifies the quantity as sum888
of the following Gi’s :889

G1 =
1

2
X2(∆2 − S2) +

1

2
(S2 −∆2)Y2(7.10)890

G2 =
1

2
(X1(∆2 − S2) + (S2 −∆2)Y1) +

1

2
(X2(−∆1 − S1) + (S1 +∆1)Y2)(7.11)891

G3 =
1

2
(X1(∆2 − S2)Y1 +X2(∆1 − S1)Y2 +X1 (∆2 − S2)Y2)(7.12)892

+
1

2
(X2(∆1 − S1)Y1 +X1(∆1 − S1)Y2 +X2(∆2 − S2)Y1)893

G4 =
1

2
X2(S2 −∆2)Y2(7.13)894

G5 = e2(X1)ΣR2,1 +Q2,1Σe2(Y1) + e2(X1)Σe2(Y2) + e2(X2)Σe2(Y1)(7.14)895896

where Q2,1 = 1
2 (X1X2 +X2X1) and R2,1 = 1

2 (Y1Y2 + Y2Y1). We are going to prove897
∥∆3∥ ⩽ q1q2ε

3
1 where q2 is defined below in (7.16). To do that we will use the bounds898

1. ∥X1∥, ∥Y1∥ ⩽ κε1, ∥∆2∥ ⩽ q1ε
2
1 and899

∥X2∥, ∥Y2∥ ⩽ κq1ε
2
1.(7.15)900901

2. ∥Θ1∥, ∥Ψ1∥ ⩽

(
1 +

1

2
κε1

)
κε1.902

3. ∥Q2,1∥, ∥R2,1∥ ⩽ q1κ
2ε31.903

4. ∥A2∥, ∥B2∥ ⩽
1

2
(q21κ

2ε41 + 2q1κ
2ε31) =

1

2
(q1ε1 + 2)q1κ

2ε31.904

Considering the bounds of the norms of matrices given in (7.8-7.14), we get905

1

q1ε31
∥∆3∥906

⩽
1

4
q31κ

4ε61 + q21κ
4ε51 + (κ+ q1)q1κ

3ε41 + 2κ3q1ε
3
1 + 2κ2q1ε

2
1 + 2κ2ε1 from (7.8)907

+
1

2
κ4q1ε

4
1 + κ3(κ+ q1)ε

3
1 + 3κ3ε21 + 2κ2ε1 from (7.9)908

+ κq1ε1 + 3κ+
3

2
κ2q1ε

2
1 +

3

2
κ2ε1 +

1

2
κ2q21ε

3
1 from (7.10-7.13)909

+
1

2
κ4Kq1ε

3
1 + κ4Kε21. from (7.14)910

911

Collecting the previous bound we get ||∆3|| ⩽ q2q1ε
3
1 where912

q2 = 3κ+
1

2
(11κ+ 2q1)κε1 +

1

2
(2κ2K + 6κ+ 7q1)κ

2ε21(7.16)913

+
1

2
(q1κ

2K + 2κ2 + 6κq1 + q21)κ
2ε31 +

1

2
(3κ+ 2q1)q1κ

3ε41914

+ q21κ
4ε51 +

1

4
q31κ

4ε61.915
916
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Now we are bounding q2ε1. We remark that the monomials which appears in q2ε1 are917
of the form qi1κ

jKkεi+l
1 for some (i, j, k, l) ∈ N4 such that i ⩾ 0, 3j ⩽ 4l and 3k ⩽ l.918

Since ε1 ⩽
ε

κ4/3K1/3
and q1ε1 ⩽ τ1ε the we have :919

qi1κ
jKkεi+l

1 ⩽ (τ1ε)
iκj−4l/3Kk−l/3εl920

⩽ τ i1ε
i+l sinceκ,K ⩾ 1.921922

From the expression of q2 it follows after straightforward calculation that q2ε1 ⩽ τ2ε923
where924

τ2 = 3 +
1

2
(11 + 2τ1)ε+

1

2
(8 + 7τ1)ε

2 +
1

2
(τ21 + 7τ1 + 2)ε3925

+
1

2
(3 + 2τ1)τ1ε

4 + τ21 ε
5 +

1

4
τ31 ε

6.926
927

Since we also have q1ε1 ⩽ τ1ε it follows928

||∆3|| ⩽ τ1τ2ε
2ε1 ⩽

1

κ4/3K1/3
τ2τ1ε

3.(7.17)929
930

The Proposition is proved.931

Lemma 7.2. Let us consider932

G = −X2∆1 +∆1Y2 −X2ΣY2 +A2Σ+ ΣB2 +Θ∗
1ΣY2 −X2ΣΨ1933

+Θ∗
1ΣB2 +A2ΣΨ1 −X2ΣB2 +A2ΣY2.934935

Then G = G1 + · · ·+G5 with936

G1 =
1

2
X2(∆2 − S2) +

1

2
(S2 −∆2)Y2937

G2 =
1

2
(X1(∆2 − S2) + (S2 −∆2)Y1) +

1

2
(X2(−∆1 − S1) + (S1 +∆1)Y2)938

G3 =
1

2
(X1(∆2 − S2)Y1 +X2(∆1 − S1)Y2 +X1 (∆2 − S2)Y2)939

+
1

2
(X2(∆1 − S1)Y1 +X1(∆1 − S1)Y2 +X2(∆2 − S2)Y1)940

G4 =
1

2
X2(S2 −∆2)Y2941

G5 = e2(X1)ΣR2,1 +Q2,1Σe2(Y1) + e2(X1)Σe2(Y2) + e2(X2)Σe2(Y1)942943

where Q2,1 = 1
2 (X1X2 +X2X1) and R2,1 = 1

2 (Y1Y2 + Y2Y1).944

Proof. Let e2(X) = X2/2. We have A2 = e2(X2) +Q2,1 with945

Q2,1 =
1

2
(X1X2 +X2X1).946

947

Moreover Θ1 = X1 + e2(X1). In the same way B2 = e2(Y2) + R2,1 with R2,1 =948

1
2 (Y1Y2 + Y2Y1)and Ψ1 = Y1 + e2(Y1). We also remark e2(X2) =

1

2
X2

2 . Expanding G949
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we can write G as the sum of the following quantities :950

G1 = −X2ΣY2 +
1

2
X2

2Σ+
1

2
ΣY 2

2951

G2 = −X2∆1 +∆1Y2 +Q2,1Σ+ ΣR2,1 −X1ΣY2 −X2ΣY1952

G3 = −X1ΣR2,1 +Q2,1ΣY1 −X2ΣR2,1 +Q2,1ΣY2953

−X1Σe2(Y2) + e2(X2)ΣY1 + e2(X1)ΣY2 −X2Σe2(Y1)954

G4 = −X2Σe2(Y2) + e2(X2)ΣY2955

G5 = e2(X1)ΣR2,1 +Q2,1Σe2(Y1) + e2(X1)Σe2(Y2) + e2(X2)Σe2(Y1)956957

We are going to transform the quantities Gi’s. We first remark using ∆2−S2−X2Σ+958
ΣY2 = 0 that959

−X2ΣY2 +
1

2
X2

2Σ+
1

2
ΣY 2

2 =
1

2
X2(−ΣY2 +X2Σ) +

1

2
(−X2Σ+ ΣY2)Y2960

=
1

2
X2(∆2 − S2) +

1

2
(S2 −∆2)Y2.961

962

Hence963

G1 =
1

2
X2(∆2 − S2) +

1

2
(S2 −∆2)Y2.964

965

Next we remember that Q2,1 =
1

2
(X1X2 + X2X1) and R2,1 =

1

2
(Y1Y2 + Y2Y1). On966

the other hand we have : ∆i − Si −XiΣ + ΣYi = 0 for i = 1, 2. Hence we can write967
G2 as968

G2 = −X2∆1 +∆1Y2 +Q2,1Σ+ ΣR2,1 −X1ΣY2 −X2ΣY1969

= −X2∆1 +∆1Y2 +
1

2
(X1(X2Σ− ΣY2) + (−X2Σ+ ΣY2)Y1)970

+
1

2
(X2(−ΣY1 +X1Σ) + (−X1Σ+ ΣY1)Y2)971

= −X2∆1 +∆1Y2 +
1

2
(X1(∆2 − S2) + (S2 −∆2)Y1)972

+
1

2
(X2(∆1 − S1) + (S1 −∆1)Y2)973

=
1

2
(X1(∆2 − S2) + (S2 −∆2)Y1) +

1

2
(X2(−∆1 − S1) + (S1 +∆1)Y2)974

975

Next, by proceeding as above we see that976

G3 = −X1ΣR2,1 +Q2,1ΣY1 −X2ΣR2,1 +Q2,1ΣY2977

−X1Σe2(Y2) + e2(X2)ΣY1 + e2(X1)ΣY2 −X2Σe2(Y1)978

=
1

2
(−X1ΣY2Y1 +X1X2ΣY1 −X2ΣY1Y2 +X2X1ΣY2)979

+
1

2
(X1X2ΣY2 +X2X1ΣY1 −X1ΣY1Y2 −X2ΣY2Y1)980

+
1

2
(−X1ΣY

2
2 −X2ΣY

2
1 +X2

1ΣY2 +X2
2ΣY1)981

=
1

2
(X1(∆2 − S2)Y1 +X2(∆1 − S1)Y2 +X1 (∆2 − S2)Y2)982

+
1

2
(X2(∆1 − S1)Y1 +X1(∆1 − S1)Y2 +X2(∆2 − S2)Y1)983

984
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We now see that985

G4 = −X2Σe2(Y2) + e2(X2)ΣY2986

=
1

2
(−X2ΣY

2
2 +X2

2ΣY2)987

=
1

2
X2(S2 −∆2)Y2.988

989

Finally990

G5 = e2(X1)ΣR2,1 +Q2,1Σe2(Y1) + e2(X1)Σe2(Y2) + e2(X2)Σe2(Y1).991992

8. Proof of Theorem 1.2 : case p ⩾ 3.993

8.1. Notations. Let us introduce some quantities to simplify the reading of994
expressions. We introduce the constants995

θ = 0.354, η =
1

1− θ
, a =

4

3
, b =

1

3
, u0 = 0.0297.(8.1)996

997

and the quantities :998

w = 1
ε (−1 + (1− ε)−1/2), s = (1 + wε)2 + 2w + w2ε = 2(1− ε)−1,

a1(ε) = (1 +
√
1− ε2)−1, a2(ε) =

1

ε2
(a1(ε)− 1/2)

b1(ε) =
ε2a1(ε)

2

√
1− ε2

+ 2a1(ε), b2(ε) =
a1(ε)

2

√
1− ε2

+ 2a2(ε)

α = ηs,

(8.2)999

1000

For i = 1, 2 we introduce1001

xi = ai(ηε), yi = bi(ηε), zi = ai(θε), r1 = θ2z1+ηy1, t1= 1 + ηx1ε.10021003

and1004

τ(ε) = 2(1 + η) +

(
2r1 + θ2+2t1η +

3

2
η2 +

1

2
ηθ2 +

1

2
θ4
)
ε1(8.3)1005

+
(
(z21 + 2z2)θ

6 + 2y1z1θ
4 +

(
2r1 + 2x1z1η

2 + η2y21
)
θ2
)
ε211006

+
(
2 (y2 + x1y1) η

3 + 2ηr1t1
)
ε211007

+ (2z2θ
8 + 2z2ηθ

6 + (2y2η
3 + r21)θ

2 + 2(x2 + y2)η
4)ε31.10081009

The following lemma justifies these notations and will be use in the sequel.1010

Lemma 8.1. We have τ(sε)sε − θ ⩽ 0 and 2
(1 + αε)b/3

(1− 2αε)a/3
s4/3τ(sε) ⩽ 1 and for1011

all ε ∈ [0, u0].1012

Proof. From straighforward computations.1013

8.2. Proof. It consists to verify the assumptions of Theorem 5.2. Remember1014
that1015

max(κaKb+1∥Eℓ(U)∥, κaKb+1∥Eq(V )||, κaKb∥∆||) ⩽ ε10161017
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where U , V , ∆ stand for U0, V0, ∆0 respectively. The item (5.2) follows of Proposition1018
3.2 since Ω = sp(Eℓ(U)) and Λ = sp(Eq(V )). Let us prove the item (5.3). To do that1019
we denote ∆0,1 = (Iℓ+Ω)(∆+Σ)(Iq+Λ)−Σ and ε0,1 = ∥∆0,1∥. From Proposition 3.21020

and assumption ||Eℓ(U)||, ∥Eq(V )∥ ⩽
ε

κaKb+1
we know that ∥Ω∥, ∥Λ∥ ⩽

w

κaKb+1
ε .1021

We then apply Proposition 6.1 to get1022

ε0,1 ⩽ ((1 + wε)2 + 2w + w2ε)
ε

κaKb
1023

⩽
sε

κaKb
from (8.2) .(8.4)1024

1025

In view to use the Propositon 8.2, let us prove that τ(ε0,1)ε0,1 ≤ θ. Using Lemma1026
8.1 we have1027

τ(ε0,1)ε0,1 ⩽ τ(sε)sε since ε0,1 ⩽ sε1028

⩽ θ from Lemma 8.1 since ε ⩽ u0.10291030

From formulas (1.11) we have1031

∆1 = ∆0,p+1 = (Iℓ +Θ∗
p)(∆0,1 +Σ)(Iq +Ψp)− Σ−

p∑
k=1

Sk.1032

1033

The quantity τ which appears in (5.7) is equal to τ(sε)psp+1. Using Propositon 8.21034
with τ := τ(sε)psp+1, we then get1035

∥∆1∥ = ∥∆0,p+1∥1036

⩽
1

κaKb
(τ(sε)s

p+1
p )pεp+1 since ε0,1 ⩽ sε.1037

1038

On the other hand from definition S = S1+ · · ·+Sp where Sk = diag(∆0,k). It follows1039
∥Si∥ ⩽ ε0,k = ∥∆0,k∥. From Proposition 8.2 one has1040

ε0,k ⩽ τ(sε)k−1εk0,11041

⩽ θk−1ε0,1 since τ(sε)sε ⩽ θ and ε0,1 ⩽
sε

κaKb
1042
1043

We deduce1044

∥S∥ ⩽
p∑

k=1

ε0,k ⩽
1

1− θ
ε0,1 ⩽

αε

κaKb
.(8.5)1045

1046

The assumption (5.7) is satisfied. In fact we have1047

(2ε)p
(1 + αε)b

(1− 2αε)a
τ(sε)psp+1 ⩽

(
2
(1 + αε)b/3

(1− 2αε)a/3
τ(sε)s4/3ε

)p

since p ⩾ 3 and s ⩾ 11048

⩽ 1 from Lemma 8.1 since ε ⩽ u0.(8.6)10491050

We now prove the item (5.4). We have1051

∥Iℓ +Θ∥2 ⩽ (1 + ||cp(X)||)21052

∥(Iℓ +Θ∗)(Iℓ +Θ)− Iℓ∥ ⩽ (1 + cp(−∥X∥))(1 + cp(∥X∥))− 110531054
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Using Lemma 9.4 and ε0,1 ⩽ s
ε

κaKb
we know that ∥X∥ ⩽ ηκε0,1 ⩽

x

κa−1Kb
=

x

κbKb
1055

with x = αε. We deduce both from Lemma 9.4 that1056

(1 + ||cp(X)|)2 ⩽ (1 + x+ x2a1(x))
2 = ζ1(8.7)10571058

and from Lemma 9.9 that1059

(1 + cp(−∥X∥))(1 + cp(∥X∥))− 1(8.8)1060

⩽
(
2
√

1− x2 + a1(x)x
p+1
)
a1(x)

(
1

κa−1Kb
αε

)p+δ

1061

⩽
(
2
√

1− x2 + a1(x)x
3
)
a1(x)α

p+δ

(
1

κbKb

)p+δ

εp+11062

⩽
ζ2

κaKb+1
εp+1 since p ⩾ 3 implies (p+ δ)b ⩾ b+ 11063

1064

where δ = 1 if p is odd and δ = 2 if p is even from Lemma 9.9. We then remark that1065

(2ϵ)pαp+δεδ−1 ⩽ (2α5/3ε)p since
p+ δ

p
⩽

5

3
(8.9)1066

1067

This allows to prove the assumption (5.8) that is (2ε)p
(1 + αε)b+1

(1− 2αε)a
(ζ1 + ζ2ε

δ−1) ⩽ 1.1068

We first have since b+ 1 = a1069

(2ε)p
(

1 + αε

1− 2αε

)a

ζ1 ⩽

(
2

(
1 + αε

1− 2αε

)a/3

(1 + x+ x2a1(x))
2/3ε

)p

1070

⩽ (0.037)p ⩽ 0.00005 since ε ⩽ u0 and p ⩾ 3.10711072

We now remark that1073

ζ2 =
(
2
√

1− x2 + a1(x)x
3
)
a1(x) ⩽ 0.998 since ε ⩽ u0 impliesx ⩽ 0.098.1074

1075

Taking in account (8.8 -8.9) we get :1076

(2ε)p
(

1 + αε

1− 2αε

)a

ζ2ε
δ−1 ⩽

(
2

(
1 + αε

1− 2αε

)a/3

α5/3ε

)p

1077

⩽ (0.24)p ⩽ 0.013 since ε ⩽ u0 and p ⩾ 3.10781079

Consequently (2ε)p
(1 + αε)a

(1− 2αε)a
(ζ1 + ζ2ε

δ−1) ⩽ 0.015 < 1. This proves the item (5.8).1080

The assumption (5.9) holds since 1− 8αε ⩾ 0.25 > 0 when ε < u0.1081
We now verify the assumption (5.5). From above we know that ∥Ω∥, ∥Λ∥ ⩽1082
w

κaKb+1
ε with w =

1

ε
(−1 + (1− ε)−1/2). We can take w ⩽ α1 = 0.52 since ε ⩽ u0.1083

On the other hand one has Θ = cp(X) and Ψ = cp(Y ). From above we know1084
that1085

∥cp(X)∥, ∥cp(Y )∥ ⩽ (1 + xa1(x))x with x = αε1086

⩽ α2ε with α2 = 3.35 since ε ⩽ u0.10871088
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Since γu0 = 2(α1 + α2 + α1α2u0)u0 < 0.233 < 1 then the bounds (5.12 -5.14) of1089
Theorem 5.2 hold with1090

γ = 7.821091
γ

1− γu0
⩽ 10.21092

σ = 0.82α ⩽ 2.6210931094

The Theorem 1.2 is proved for p ⩾ 3. □1095

Proposition 8.2. Let p > 2, ε ⩾ 0. Let us consider ∆1 = U∗
1MV1−Σ such that1096

∥∆1∥ = ε1 ⩽
ε

κ4/3K1/3
where κ = κ(Σ) and K = K(Σ). Let us consider τ := τ(ε) as1097

in (8.3) and suppose τε ≤ θ. Then we have1098

τp+1 := ∥∆p+1∥ ⩽
1

κ4/3K1/3
τ(ε)pεp+11099

where ∆p+1 = (Iℓ +Θ∗
p)(∆1 +Σ)(Iq +Ψp)− Σ−

p∑
l=1

Sl, with Θp and Ψp are defined1100

by the formulas (1.11).1101

Proof. Since the Xk’s and Yk’s are skew Hermitian matrices, we have Θp = Θp−1+1102
Xp +Ap with1103

Ap := Ap(X1 + . . .+Xp−1, Xp) = cp(X1 + · · ·+Xp)− cp(X1 + · · ·+Xp−1)−Xp1104

In the same way Ψp = Ψp−1+Yp+Bp where Bp = Ap(Y1+ · · ·+Yp−1, Yp). We remark1105
that Ap and Bp are Hermitian matrices. Expanding (Iℓ +Θ∗

p)(∆1 +Σ)(Iq +Ψp) we1106
get1107

∆p+1 = (Iℓ +Θ∗
p)(∆1 +Σ)(Iq +Ψp)− Σ−

p∑
l=1

Sl1108

= (Iℓ +Θ∗
p−1 −Xp +Ap)(∆1 +Σ)(Iq +Ψp−1 + Yp +Bp)− Σ−

p∑
l=1

Sl1109

= (Iℓ +Θ∗
p−1)(∆1 +Σ)(Iq +Ψp−1)− Σ−

p−1∑
l=1

Sl − Sp −XpΣ+ ΣYp1110

+ (Iℓ +Θ∗
p−1)(∆1 +Σ)(Yp +Bp) + (−Xp +Ap)(∆1 +Σ)(Iq +Ψp−1)1111

1112

+ (−Xp +Ap)(∆1 +Σ)(Yp +Bp) +XpΣ− ΣYp.11131114

From definition we know that1115

(Iℓ+Θ∗
p−1)(∆1+Σ)(Iq+Ψp−1)−Σ−

p−1∑
l=1

Sl−Sp−XpΣ+ΣYp = ∆p−Sp−XpΣ+ΣYp = 0.1116

Expanding more ∆p+1, we then can write by grouping the terms appropriately :1117

∆p+1 = −Xp∆1 +∆1Yp −Xp∆1Yp +∆1Bp +Ap∆1 −Xp∆1Bp +Ap∆1Yp(8.10)1118

+Ap∆1Bp +Θ∗
p−1∆1Yp −Xp∆1Ψp−1 +Θ∗

p−1∆1Bp +Ap∆1Ψp−1(8.11)1119

+G,11201121
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where G = −XpΣYp+ΣBp+ApΣ+Θ∗
p−1ΣYp−XpΣΨp−1+Θ∗

p−1ΣBp+ApΣΨp−1−1122
XpΣBp+ApΣYp+ApΣBp. From the Lemma 8.3 the quantity G is sum of the following1123
Gi’s :1124

G1 = dp(Xp)Σ + Σdp(Yp)(8.12)1125

G2 = Qp,2Σ+ ΣRp,2 +
1

2
Cp−1(∆p − Sp)−

1

2
(∆p − Sp)Dp−1(8.13)1126

+
1

2
Xp

p∑
k=1

(∆k − Sk) +
1

2

p∑
k=1

(Sk −∆k)Yp1127

G3 =
1

2
Cp−1(∆p − Sp)Dp−1 −

1

2
Xp

p−1∑
k=1

(∆k − Sk)Yp(8.14)1128

+
1

2
Xp

p∑
k=1

(∆k − Sk)Dp−1 +
1

2
Cp−1

p∑
k=1

(Sk −∆k)Yp1129

G4 =
1

2
Xp(Sp −∆p)Yp −XpΣdp(Yp) + dp(Xp)ΣYp.(8.15)1130

G5 = ep(Cp−1)ΣRp,1 +Qp,1Σep(Dp−1) + ep(Cp−1)Σep(Yp)(8.16)1131

+ ep(Xp)Σep(Dp−1) +Qp,1ΣRp,1 +Qp,1Σep(Yp)(8.17)1132

+ ep(Xp)ΣRp,1 + ep(Xp)Σep(Yp).(8.18)1133

G6 = −Cp−1ΣRp,2 +Qp,2ΣDp−1 −XpΣRp,2 +Qp,2ΣYp(8.19)1134

− Cp−1Σdp(Yp) + dp(Xp)ΣDp−11135

+ dp(Cp−1)ΣYp −XpΣdp(Dp−1).11361137

where the quantities Qp,i and Rp,i are defined at Lemma ??. We now can bound1138
∥∆p+1∥. To do that introduce the quantities where i = 1, 2 :1139

xi = ai(ηε), yi = bi(ηε), zi = ai(θε), r1 = θ2z1 + ηy1, t1 = 1 + x1ηε11401141

and the polynomial q := q(κ,K, ε1)1142

q = 2(1 + η)κ+

(
2r1 + θ2+2t1η +

3

2
η2 +

1

2
ηθ2 +

1

2
θ4
)
κ2ε11143

+
(
(z21 + 2z2)θ

6 + 2ηx1z1θ
4
)
Kκ4ε211144

+
((
2r1 + 2x1z1η

2 + η2y21
)
θ2 + 2 (y2 + x1y1) η

3 + 2ηr1t1
)
Kκ4ε211145

+ (2z2θ
8 + 2z2ηθ

6 + (2y2η
3 + r21)θ

2 + 2(x2 + y2)η
4)Kκ5ε31.11461147

The inequality τ(ε)ε ⩽ θ implies qε1 ⩽ θ. In fact it is easy to see that the assumption1148

ε1 ⩽
ε

κ4/3K1/3
implies qε1 ⩽ τ(ε)ε since we simultaneously have κε1 ⩽ ε, κ2ε21 ⩽ ε2,1149

Kκ4ε31 ⩽ ε3 and Kκ5ε41 ⩽ ε4. We know that ∥∆1∥ ⩽ ε1. Let us suppose ∥∆k∥ ⩽1150
qk−1εk1 for 1 ⩽ k ⩽ p and, prove that ∥∆p+1∥ ⩽ qpεp+1

1 . We remark q ⩾ 2(θ + η) in1151
order that the Lemmas 9.4-9.8 apply. To bound ∥∆p+1∥ we use the following bounds1152
:1153

1. We have for i = 1, 2, ai(θκε1) ⩽ xi bi(ηκε1) ⩽ yi.1154
1155

2. For 1 ⩽ k ⩽ p, we know that ∥Xk∥, ∥Yk∥ ⩽ κqk−1εk1 from Proposition 4.3.1156
1157
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3. ∥Ck∥, ∥Dk∥ ⩽ ηκε1 from Lemma 9.4 and also

∥∥∥∥∥
p−1∑
k=1

∆k − Sk

∥∥∥∥∥ ⩽ ηε1 from1158

Lemma 9.1.1159
1160

4. ∥Qp,i∥, ∥Rp,i∥ ⩽ η2i−1yiκ
2iqp−1εp+2i−1

1 from Lemma 9.7.1161
1162

5. ∥ep(Xp)||, ∥ep(Yp)||⩽ z1κ
2q2(p−1)ε2p1 ⩽ θ2z1κ

2qp−1εp+1
11163

and ∥ep(Cp−1)||, ∥ep(Dp−1)||⩽ x1η
2κ2ε21 from Lemma 9.4, qε1 ⩽ θ and p ⩾ 3.1164

1165
6. ∥dp(Xp)||, ∥dp(Yp)||⩽ z2κ

4q4(p−1)ε4p1 and ∥dp(Cp−1)||, ∥dp(Dp−1)||⩽ x2η
4κ4ε411166

from Lemma 9.5 and qε ⩽ θ.1167
1168

7. ∥Ap∥, ∥Bp∥≤ r1κ
2 qp−1εp+1

1 since Ap = ep(Xp) + Qp,1 and Bp = ep(Yp) +1169
Rp,1.1170

1171
8. ∥Θp−1∥, ∥Ψp−1∥ ≤ t1ηκε1 from Lemma 9.6.1172

1173
9. || −XpΣdp(Yp) + dp(Xp)ΣYp|| ⩽ 2Kz2κ

5q5(p−1)ε5p1 from Lemma 9.8.1174

Using the bounds above we then get ∥∆p+1∥ ⩽ αp+1q
p−1εp+1

1 where

αp+1 =

2κ+ κ2qp−1εp1+2r1κ
3qp−1εp+1

1 +2r1κ
2ε1 from (8.10)

+r21κ
4qp−1 εp+2

1 +2t1ηκ
2 ε1+2r1t1ηκ

3 ε21 from (8.11)

+2z2Kκ4q3(p−1)ε3p−1
1 + 2η3y2Kκ4ε21 + 2ηκ from (8.12 + 8.13)

+ 3
2η

2κ2ε1 +
1
2ηκ

2qp−1εp1 from (8.14)

+ 1
2κ

2q2(p−1)ε2p−1
1 + 2z2Kκ5q4(p−1)ε4p−1

1 from (8.15)

+Kκ4(2x1y1η
3ε21 + 2z1x1η

2qp−1εp+1
1 ) from (8.16)

+Kκ4(y21η
2qp−1εp+1

1 + 2z1y1ηq
2(p−1)ε2p1 + z21q

3(p−1)ε3p−1) from (8.17− 8.18)

+Kκ5(2η4(x2 + y2)ε
3
1 + 2z2ηq

3(p−1)ε3p1 + 2y2η
3qp−1εp+2

1 ) from (8.19)

Since p ⩾ 3 and θ < 1 it follows (qε1)
k(p−1) ⩽ (qε1)

2k ⩽ (τε)2k ⩽ θ2k. Plugging this1175
in αp+1, we then get1176

αp+1 ⩽ 2κ+ κ2θ2ε1+2r1κ
3θ2ε21+2r1κ

2 ε11177

+r21κ
4θ2 ε31+2t1ηκ

2ε1+2r1t1ηκ
3 ε211178

+2z2Kκ4θ6ε21 + 2η3y2Kκ4ε21 + 2ηκ1179

+
3

2
η2κ2ε1 +

1

2
ηκ2θ2ε11180

+
1

2
κ2θ4ε1 + 2z2Kκ5θ8ε311181

+Kκ4(2x1y1η
3ε21 + 2z1x1η

2θ2ε21)1182

+Kκ4(y21η
2θ2ε21 + 2z1y1ηθ

4ε21 + z21θ
6ε21)1183

+Kκ5(2η4(x2 + y2)ε
3
1 + 2z2ηθ

6ε31 + 2y2η
3θ2ε31).11841185

Collecting the expression above following ε1 and using that κ,K ⩾ 1, we finally find1186
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that αp+1 ⩽ q. We then have proved that ∥∆p+1∥ ⩽ qpεp+1
1 . We finally get1187

∥∆p+1∥ ⩽ τ(ε)pεpε11188

⩽
1

κ4/3K1/3
τ(ε)pεp+1.1189

1190

The theorem is proved.1191

Lemma 8.3. Let us consider1192

G = −XpΣYp +ApΣ+ ΣBp +Θ∗
p−1ΣYp −XpΣΨp−11193

+Θ∗
p−1ΣBp +ApΣΨp−1 −XpΣBp +ApΣYp +ApΣBp.11941195

Let Cp−1 = X1 + · · ·+Xp−1 and Dp−1 = Y1 + · · ·+ Yp−1. Then G = G1 + · · ·+G61196
with1197

G1 = dp(Xp)Σ + Σdp(Yp)1198

G2 = Qp,2Σ+ ΣRp,2 +
1

2
Cp−1(∆p − Sp)−

1

2
(∆p − Sp)Dp−11199

+
1

2
Xp

p∑
k=1

(∆k − Sk) +
1

2

p∑
k=1

(Sk −∆k)Yp.1200

G3 =
1

2
Cp−1(∆p − Sp)Dp−1 −

1

2
Xp

p−1∑
k=1

(∆k − Sk)Yp1201

+
1

2
Xp

p∑
k=1

(∆k − Sk)Dp−1 +
1

2
Cp−1

p∑
k=1

(Sk −∆k)Yp1202

G4 =
1

2
Xp(Sp −∆p)Yp −XpΣdp(Yp) + dp(Xp)ΣYp.1203

G5 = ep(Cp−1)ΣRp,1 +Qp,1Σep(Dp−1) + ep(Cp−1)Σep(Yp) + ep(Xp)Σep(Dp−1)1204

+Qp,1ΣRp,1 +Qp,1Σep(Yp) + ep(Xp)ΣRp,1 + ep(Xp)Σep(Yp).1205

G6 = −Cp−1ΣRp,2 +Qp,2ΣDp−1 −XpΣRp,2 +Qp,2ΣYp1206

− Cp−1Σdp(Yp) + dp(Xp)ΣDp−1 + dp(Cp−1)ΣYp −XpΣdp(Dp−1).s12071208

Proof. We have Ap = ep(Xp) +Qp,1 =
1

2
X2

p + dp(Xp) +Qp,1 with1209

Qp,i =

max(k:2k⩽p)∑
k=i

ck
∑

i1 + i2 = 2k
i1, i > 0

Li1,i2(Cp−1, Xp).1210

1211

where the coefficients ck and the polynomials Li1,i2 are defined at the beginning of1212
the section 9. Moreover Θp−1 = Cp−1 + ep(Cp−1). In the same way Bp = ep(Yp) +1213

Rp,1 =
1

2
Y 2
p + dp(Yp) + Rp,1 and Ψp−1 = Dp−1 + ep(Dp−1). We also know that1214

Θ∗
p−1 = −Cp−1 + ep(Cp−1) since Cp−1 is a skew Hermitian matrix. Expanding1215

G = −XpΣYp +ApΣ+ ΣBp +Θ∗
p−1ΣYp −XpΣΨp−11216

+Θ∗
p−1ΣBp +ApΣΨp−1 −XpΣBp +ApΣYp +ApΣBp,12171218
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a straightforward calculation shows that we can write G as the sum of the following1219
quantities :1220

G1 = dp(Xp)Σ + Σdp(Yp)1221

G2 = Qp,1Σ+ ΣRp,1 − Cp−1ΣYp −XpΣDp−1 −XpΣYp +
1

2
X2

pΣ+
1

2
ΣY 2

p1222

G3 +G6 = −Cp−1ΣRp,1 +Qp,1ΣDp−1 −XpΣRp,1 +Qp,1ΣYp1223

− Cp−1Σep(Yp) + ep(Xp)ΣDp−1 + ep(Cp−1)ΣYp −XpΣep(Dp−1)1224

G4 = −XpΣep(Yp) + ep(Xp)ΣYp1225

G5 = ep(Cp−1)ΣRp,1 +Qp,1Σep(Dp−1) + ep(Cp−1)Σep(Yp) + ep(Xp)Σep(Dp−1)1226

+Qp,1ΣRp,1 +Qp,1Σep(Yp) + ep(Xp)ΣRp,1 + ep(Xp)Σep(Yp).12271228

We are going to transform some quantities Gi’s. We first remark using ∆p − Sp −1229
XpΣ+ ΣYp = 0 that1230

−XpΣYp +
1

2
X2

pΣ+
1

2
ΣY 2

p =
1

2
Xp(−ΣYp +XpΣ) +

1

2
(−XpΣ+ ΣYp)Yp1231

=
1

2
Xp(∆p − Sp)−

1

2
(∆p − Sp)Yp.1232

1233

Next we remark that Qp,1 =
1

2
(Cp−1Xp +XpCp−1) + Qp,2 and Rp,1 =

1

2
(Dp−1Yp +1234

YpDp−1) +Rp,2. On the other hand we have :
p−1∑
k=1

(∆k − Sk)− Cp−1Σ+ ΣDp−1 = 0.1235

Hence we can write G2 as1236

G2 = Qp,1Σ+ ΣRp,1 − Cp−1ΣYp −XpΣDp−1 −XpΣYp +
1

2
X2

pΣ+
1

2
ΣY 2

p1237

= Qp,2Σ+ ΣRp,2 +
1

2
Cp−1(XpΣ− ΣYp) +

1

2
(−XpΣ+ ΣYp)Dp−11238

+
1

2
Xp(−ΣDp−1 + Cp−1Σ) +

1

2
(−Cp−1Σ+ ΣDp−1)Yp1239

+
1

2
Xp(∆p − Sp)−

1

2
(∆p − Sp)Yp1240

= Qp,2Σ+ ΣRp,2 +
1

2
Cp−1(∆p − Sp)−

1

2
(∆p − Sp)Dp−11241

+
1

2
Xp

p∑
k=1

(∆k − Sk) +
1

2

p∑
k=1

(Sk −∆k)Yp.1242

1243
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Next, by proceeding as above and using ep =
1

2
u2 + dp(u), we see that1244

G3 +G6 = −Cp−1ΣRp,1 +Qp,1ΣDp−1 −XpΣRp,1 +Qp,1ΣYp1245

− Cp−1Σep(Yp) + ep(Xp)ΣDp−1 + ep(Cp−1)ΣYp −XpΣep(Dp−1)1246

=
1

2
(−Cp−1ΣYpDp−1 + Cp−1XpΣDp−1 −XpΣDp−1Yp +XpCp−1ΣYp)1247

+
1

2
(Cp−1XpΣYp +XpCp−1ΣDp−1 − Cp−1ΣDp−1Yp −XpΣYpDp−1)1248

+
1

2
(−Cp−1ΣY

2
p −XpΣD

2
p−1 + C2

p−1ΣYp +X2
pΣDp−1)1249

− Cp−1ΣRp,2 +Qp,2ΣDp−1 −XpΣRp,2 +Qp,2ΣYp1250

− Cp−1Σdp(Yp) + dp(Xp)ΣDp−1 + dp(Cp−1)ΣYp −XpΣdp(Dp−1).12511252

We group some terms of the previous expression :1253

−Cp−1ΣYpDp−1 + Cp−1XpΣDp−1 = Cp−1(∆p − Sp)Dp−11254

−XpΣDp−1Yp +XpCp−1ΣYp = −Xp

p−1∑
k=1

(∆k − Sk)Yp1255

Cp−1XpΣYp − Cp−1ΣY
2
p = Cp−1(∆p − Sp)Yp1256

XpCp−1ΣDp−1 −XpΣD
2
p−1 = Xp

p−1∑
k=1

(∆k − Sk)Dp−11257

−Cp−1ΣDp−1Yp + C2
p−1ΣYp = Cp−1

p−1∑
k=1

(∆k − Sk)Yp1258

−XpΣYpDp−1 +X2
pΣDp−1 = Xp(∆p − Sp)Dp−112591260

In this way we get1261

G3 +G6 =
1

2
Cp−1(∆p − Sp)Dp−1 −

1

2
Xp

p−1∑
k=1

(∆k − Sk)Yp +
1

2
Cp−1(∆p − Sp)Yp1262

+
1

2
Xp

p−1∑
k=1

(∆k − Sk)Dp−1 +
1

2
Cp−1

p−1∑
k=1

(∆k − Sk)Yp1263

+
1

2
Xp(∆p − Sp)Dp−1 +G61264

=
1

2
Cp−1(∆p − Sp)Dp−1 −

1

2
Xp

p−1∑
k=1

(∆k − Sk)Yp1265

+
1

2
Xp

p∑
k=1

(∆k − Sk)Dp−1 +
1

2
Cp−1

p∑
k=1

(Sk −∆k)Yp +G61266

1267

with1268

G6 = −Cp−1ΣRp,2 +Qp,2ΣDp−1 −XpΣRp,2 +Qp,2ΣYp1269

− Cp−1Σdp(Yp) + dp(Xp)ΣDp−1 + dp(Cp−1)ΣYp −XpΣdp(Dp−1).12701271
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We now see that1272

G4 = −XpΣep(Yp) + ep(Xp)ΣYp1273

=
1

2
(−XpΣY

2
p +X2

pΣYp)−XpΣdp(Yp) + dp(Xp)ΣYp1274

=
1

2
Xp(Sp −∆p)Yp −XpΣdp(Yp) + dp(Xp)ΣYp.1275

1276

Finally G5 remains unchanged.1277

9. Useful Lemmas and Propositions. The notations are those of the intro-1278
duction and sections 6, 7 and 8. We also denote :1279

1. ep(u) =

max{k : 2k⩽p}∑
k=1

cku
2k where ck = (−1)k+1 (2k)!

4k(k!)2(2k − 1)
.1280

2. cp(u) = u+ ep(u) = u+
1

2
u2 + dp(u) with dp(u) =

max{k : 2k⩽p}∑
k=2

cku
2k .1281

3. Li1,i2(X,Y ) is the sum of monomials which the degree of each monomial with1282
respect X is i1 (respectively with respect Y is i2 ).1283

Lemma 9.1. Let for 1 ⩽ k ⩽ i, ∥∆k∥ ⩽ qk−1εk1 with qε1 ⩽ θ < 1. Then1284

||
i∑

k=1

∆i|| ⩽ ηε1 with η =
1

1− θ
.1285

Proof. The proof is obvious.1286

Lemma 9.2. Let us denote a1(u) =
1

1 +
√
1− u2

and a2(u) =
a1(u)− 1/2

u2
. We1287

have1288

1. |ep(u)| =
max{k : 2k⩽p}∑

k=1

|ck|u2k ⩽ u2a1(u).1289

2. |dp(u)| =
max{k : 2k⩽p}∑

k=2

|ck|u2k ⩽ u4a2(u) = u2

(
a1(u)−

1

2

)
.1290

Proof. It follows from classical Taylor series expansion.1291

Lemma 9.3. Let b1(u) =
u2a1(u)

2

√
1− u2

+ 2a1(u) and b2(u) =
a1(u)

2

√
1− u2

+ 2a2(u). We1292

have1293

(x+ y)2iai(x+ y)− x2iai(x)− y2iai(y) ⩽ bi(x+ y)xy(x+ y)2i−2.12941295

Proof. To prove the case i = 1 we write1296

(x+ y)2a1(x+ y)− x2a1(x)− y2a1(y)1297

= x2(a1(x+ y)− a1(x)) + y2(a1(x+ y)− a1(y)) + 2xya1(x+ y)1298

=

(
(2x+ y)xa1(x)√

1− x2 +
√
1− (x+ y)2

+
(2y + x)ya1(y)√

1− y2 +
√

1− (x+ y)2
+ 2

)
xya1(x+ y)1299

1300
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Using y ⩽ x, a1(y) ⩽ a1(x) and
√
1− x2,

√
1− y2 ⩽

√
1− (x+ y)2 we get1301

(x+ y)2a1(x+ y)− x2a1(x)− y2a1(y) ⩽

(
(x+ y)2a1(x+ y)√

1− (x+ y)2
+ 2

)
xya1(x+ y)1302

= b1(x+ y)xy.13031304

To prove the case i = 2 we write from definition of a2(u) :1305

(x+ y)4a2(x+ y)− x4a2(x)− y4a2(y) = (x+ y)2a1(x+ y)− x2a1(x)− y2a1(y)− xy1306

⩽

(
(x+ y)2a1(x+ y)2√

1− (x+ y)2
+ 2a1(x+ y)− 1

)
xy1307

⩽

(
a1(x+ y)2√
1− (x+ y)2

+ 2a2(x+ y)

)
xy(x+ y)21308

⩽ b2(x+ y)xy(x+ y)2.13091310

We are done.1311

Lemma 9.4. Let Cp−1 = X1 + · · · + Xp−1. Let us suppose q ⩾ 2(θ + η)κ, v =1312

qε1 ≤ θ < 1, η =
1

1− θ
and ∥Xk∥ ⩽

κ

q
vk, 1 ≤ k ≤ p− 1. Then we have1313

1. ∥Cp−1∥ ⩽ ηκε1.1314
€1315

2. ∥ep(Cp−1)∥ ⩽ a1(ηκε1)η
2κ2ε21.1316

1317
3. ||ep(Xp)|| ⩽ a1(θκε1)κ

2q2(p−1)ε2p1 .1318

Proof. We have1319

∥Cp−1∥ ⩽
p−1∑
k=1

∥Xk∥ ⩽
p−1∑
k=1

κqk−1εk1 ⩽
1

1− v
κε1 ⩽ ηκε1.1320

1321

From Lemma 9.2 we know that |ep(u)| ⩽ u2a1(u). Since q ⩾ 2(θ + η)κ and1322

ε1 ⩽
θ

q
it follows that ηκε1 ⩽

ηθ

2(η + θ)
=

θ

2(1 + θ − θ2)
, we can see the quantity1323

a1(ηκε1) is well defined when ηκε1 ⩽ 1. That is to say
θ

2(1 + θ − θ2)
⩽ 1. This is1324

the case since θ < 1. It follows1325

∥ep(Cp−1)∥ ⩽ a1(ηκε1) (ηκε1)
2.13261327

We now bound ∥ep(Xp)∥. Always from Lemma 9.2 we have1328

∥ep(Xp)∥ ⩽ a1(κq
p−1εp1)(κq

p−1εp1)
21329

⩽ a1(θκε1)κ
2q2(p−1)ε2p1 since qε1 ⩽ θ < 1.13301331

We are done.1332
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Lemma 9.5. Let us suppose 2(θ + η)κ ≤ q, v = qε1 ≤ θ and ∥Xk∥ ⩽
κ

q
vk,1333

1 ≤ k ≤ p− 1. Then we have1334

∥dp(Cp−1)∥ ⩽ a2(ηκε1)η
4κ4ε411335

and1336

||dp(Xp)|| ⩽ a2(θκε1)κ
4q4(p−1)ε4p1 .13371338

Proof. The proof is like to that of Lemma 9.4.1339

Lemma 9.6. Let us suppose 2(θ + η)κ ≤ q, v = qε1 ≤ θ and ∥Xk∥, ∥Yk∥ ⩽
κ

q
vk,1340

1 ≤ k ≤ p. Then we have1341

∥Θp−1∥ ⩽ (1 + ηκε1a1(ηκε1))ηκε1.1342

Proof. We have ∥Θp−1∥ ⩽ ∥Cp−1∥ + ∥ep(Cp−1)∥. Using ∥Cp−1∥ ⩽≤ ηκε1 and1343
Lemma 9.4 the conclusion follows.1344

Lemma 9.7. Let us suppose 2(θ + η)κ ≤ q, v = qε1 ≤ θ and ∥Xk∥ ⩽
κ

q
vk,1345

1 ≤ k ≤ p. Let1346

Qp,i =

max(k:2k⩽p)∑
k=i

ck
∑

i1 + i2 = 2k
i1, i > 0

Li1,i2(Cp−1, Xp), i = 1, 2.1347

1348

We have1349

∥Qp,i∥ ⩽ bi(ηκε1)η
2i−1κ2iqp−1εp+2i−1

1 i = 1, 2.1350

Proof. Let ∥Cp−1∥ ⩽ x and ∥Xp∥ ⩽ y. We have using Lemma 9.2 :1351

∥Qp,i∥ ⩽
max(k:2k⩽p)∑

k=i

|ck|
∑

i1+i2=2k
i1>0,i2>0

(2k)!

i1!i2!
xi1yi21352

⩽
∑
k⩾i

|ck|((x+ y)2k − x2k − y2k)1353

⩽ (x+ y)2iai(x+ y)− x2iai(x)− y2iai(y).13541355

We apply the Lemma 9.3 with the bounds y ⩽
κ

q
vp ⩽ κqp−1εp1 and x ⩽ x + y ⩽1356

κ

q

v

1− v
⩽ ηκε1 . We then get :1357

∥Qp,1∥ ⩽ bi(ηκε1)η
2i−1κ2iqp−1εp+2i−1

1 .1358

13591360

The result follows.1361

Lemma 9.8. Let ∥Xp∥, ∥Yp∥ ⩽ κqp−1εp1, 2(θ + η)κ ≤ q and qε1 ⩽ θ < 1. Then1362

|| −XpΣdp(Yp) + dp(Xp)ΣYp|| ⩽ 2Ka2(θκε1))κ
5q5(p−1)ε5p1 .13631364
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Proof. Let Zp := −XpΣdp(Yp) + dp(Xp)ΣYp. Then from Lemma 9.5 we deduce1365

∥Zp|| ⩽ 2Ka2(θκε1)κ
4q5(p−1)ε5p1 .13661367

We are done.1368

Lemma 9.9. For |u| < 1 we have1369

|(1 + cp(−u))(1 + cp(u))− 1| ⩽
(
2
√
1 + u2 + a1(u)u

p+1
)
a1(u)u

p+δ1370

where δ = 1 if p is odd and δ = 2 if p is even.1371

Proof. Remember that e(u) =
√
1 + u2 + u − 1 and e(u) = cp(u) + rp(u). Since1372

(1 + e(u))(1 + e(−u)) = 1 and rp(u) = rp(−u) it follows1373

(1 + cp(−u))(1 + cp(u))− 1 = (1 + e(−u)− rp(−u))(1 + e(u)− rp(u))− 11374

= (1 + e(−u))(1 + e(u))− 11375

− (1 + e(−u))rp(u)− (1 + e(u))rp(u) + rp(u)
21376

= −(2 + e(u) + e(−u)− rp(u)) rp(u)1377

= −
(
2
√
1 + u2 − rp(u)

)
rp(u)1378

1379

We have1380

|rp(u)| ⩽
∑

i>max{k:2k⩽p}

|cp,i|u2i =1381

⩽
1

1 +
√
1− u2

up+δ = a1(u)u
p+δ1382

1383

where δ = 1 if p is odd and δ = 2 if p is even. We deduce that1384

|(1 + cp(−u))(1 + cp(u))− 1| ⩽
(
2
√
1 + u2 + a1(u)u

p+δ
)
a1(u)u

p+δ.1385
1386

We are done.1387

Lemma 9.10. For i ⩾ 0, we have1388

si :=

i−1∑
k=0

2−(p+1)k+1 ⩽ 2− 22−(p+1)i .1389

1390

Proof. We proceed by induction. The assertion holds for i = 0. By assuming for1391
i let us prove it for i+ 1. We have1392

si+1 ⩽ 2− 22−(p+1)i + 2−(p+1)i+1 ⩽ 2− 22−(p+1)i(1− 2−1) = 2− 22−(p+1)i−11393

⩽ 2− 22−(p+1)i+1

since (p+ 1)i + 1 ⩽ 2(p+ 1)i ⩽ (p+ 1)i+1.13941395

We are done.1396
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10. Proof of Davies-Smith Theorem 2.1. Let us denote ∆1 = U∗ΣV − Σ1397
and ∆2 = (Iℓ + Θ∗

1)(∆1 + Σ)(Iq + Ψ1) − Σ − S1 with Θ1 = X1 + X2
1/2 and Ψ1 =1398

Y1+Y 2
1 /2. From the definition of the map DS we have U1 = U(Iℓ+X1+X2+X2

1/2),1399
V1 = V (Iq+Y1+Y2+Y 2

1 /2), Σ1 = Σ+S1+S2 where for i = 1, 2, one has Si = diag(∆i)1400
and the Xi’s are skew Hermitian matrices be such that ∆i−Si−XiΣ+ΣYi = 0. The1401
goal is to bound the norm of ∆3 := U∗

1MV1 − Σ1 = (Iℓ + Θ∗
1 −X2)(∆1 + Σ)(Iq +1402

Ψ1 + Y2) − Σ − S1 − S2. We first expand ∆2 and as in the proof of Proposition 7.11403
we have ∥∆2∥ ⩽ q1ε

2
1 where1404

q1 = 2κ+ 2κ2ε1 +
5

4
κ4Kε21 +

1

4
κ4ε31,(10.1)1405

1406

and q1ε1 ⩽ τ1ε with τ1 = 2 + 2ε+ 5
4ε

2 + 1
4ε

3. We now expand ∆3 to get :1407

∆3 = (Iℓ +Θ∗
1 −X2)(∆1 +Σ)(In +Ψ1 + Y2)− Σ− S1 − S21408

= (Iℓ +Θ∗
1)(∆1 +Σ)(In +Ψ1)− Σ− S1 − S21409

+ (Iℓ +Θ∗
1)(∆1 +Σ)Y2 −X2(∆1 +Σ)(In +Ψ1)−X2(∆1 +Σ)Y2(10.2)14101411

We know that1412

(Iℓ +Θ∗
1)(∆1 +Σ)(In +Ψ1)− Σ− S1 − S2 = ∆2 − S2 = X2Σ− ΣY2.1413

Plugging the previous relation in (10.2) we find1414

∆3 = −X2∆1 +∆1Y2 −X2∆1Y2 +Θ∗
1(∆1 +Σ)Y2 −X2(∆1 +Σ)Ψ1 −X2ΣY2

(10.3)
14151416

We are going to prove ∥∆3∥ ⩽ q1q2ε
3
1 where q2 is defined below in (7.16). To do that1417

we will use the bounds1418
1. ∥∆2∥ ⩽ q1ε

2
1 and ∥X2∥, ∥Y2∥ ⩽ κq1ε

2
1.1419

2. ∥Θ1∥, ∥Ψ1∥ ⩽

(
1 +

1

2
κε1

)
κε1.1420

Considering the bounds of the norms of matrices given in (10.3), we get ||∆3|| ⩽1421
q3q1ε

3
1 where1422

q3 = 2κ(Kκ+ 1) + (Kκ+ 2 +Kq1)κ
2ε1 + (κ+ q1)κ

2ε21.14231424

A straighforward calculation shows that if ε1 ⩽
ε

κ5/4K2/5
then1425

||∆3|| ⩽ q3q1ε
3
1 ⩽ τ3τ1ε

3(10.4)14261427

where1428

τ3 = 4 + (3 + τ1)ε+ (1 + τ1)ε
2.14291430

A straightforward computation shows that for all ε ⩽ 0.1 we have1431

τ3τ1 ⩽ 8 + 18ε+ 28ε2.14321433

We finally get1434
κ5/4K2/5∥∆3∥ ⩽ (8 + 18ε+ 33ε2)ε3.1435

Then the part 1 of Theorem 2.1 is proved.1436
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We use the proof of Proposition 7.1 to proof the part 2 of Theorem. We have1437

∥Ū∗
1MV̄1 − Σ̄1∥ ⩽ q2q1ε

3
114381439

where q1 is defined in (7.7) and q2 in (7.16). A straightforward calculation shows that1440

if ε1 ⩽
ε

κ6/5K3/10
then1441

∥Ū∗
1MV̄1 − Σ̄1∥ ⩽ q2q1ε

3
1 ⩽ τ2τ1ε

3(10.5)14421443

where τ = τ1τ2 given in (7.3). Moreover τ2τ1 ⩽ 6+21ε+54ε2 for ε ⩽ 0.1. This proves1444
te part 2. The Theorem holds. □1445

11. Application in the clusters case.1446

11.1. Definiton of Clusters and first properies. We use the Fortran or1447
Matlab notation for submatrices, i.e., Ai:j,k:l is the submatrix of A with lines and1448
columns between the subscripts i, j and k, lrespectively. We consider e integers qi’s1449

such that
e∑

i=1

qi = q. We also associate the integers ℓi, 1 ⩽ i ⩽ e, defined by1450

ℓi = 1 +

i−1∑
j=1

qj The first goal is to precise the notion of cluster of singular values.1451

Definition 11.1. Let e integers qi’s such that
e∑

i=1

qi = q. We associate the inte-1452

gers ℓi, 1 ⩽ i ⩽ e, defined by ℓi = 1+

i−1∑
j=1

qj. From ∆ ∈ Cℓ×q with ℓ ⩾ q, we consider1453

its sub-matrices ∆i:= ∆ℓi:ℓi+1−1,ℓi:ℓi+1−1 ∈ Cqi×qi , 1 ⩽ i ⩽ e. We define the matrix1454

Diagq1···qe(∆) =


∆1 0 0

0
. . . 0

0 0 ∆e

0

1455

1456

We name by Dℓ×q
q1,...,qe the set of these matrices.1457

Definition 11.2. Let integers qi’s and ℓi’s be as in Definition 11.1. Let δ ⩾ 0 and1458
define the set Dℓ×q

q1...qe(δ) of the matrices whose diagonal Σ = diag(σ1, · · · , σq) ∈ Dℓ×q1459
satisfies1460

|σk − σj | ⩽ δ ℓi ⩽ j, k ⩽ ℓi+1 − 1, 1 ⩽ i ⩽ e(11.1)1461

|σj − σl| > δ, ℓi ⩽ j ⩽ ℓi+1 − 1, ℓk ⩽ l ⩽ ℓk+1 − 1, 1 ⩽ i < k ⩽ e(11.2)14621463

We name Dℓ×q
q1...qe

(δ) the set of clusters of size δ relatively to integers q1, · · · , qe. We1464
also name by µ = (q1, . . . , qe) the multiplicity of cluster associated to Σ.1465

We have1466

Proposition 11.3. Let δ ⩾ 0 and ∆ ∈ Dℓ×q
q1···qe(δ). The tuple (q1, · · · , qe) where1467

each integer qi ⩾ 1 is the only one such that the inequalities (11.1-11.2) hold.1468

Proof. Let us suppose there exists two tuples (m1, · · · ,md) and (q1, · · · , qe) such1469
that the inequalities (11.1-11.2) hold for the diagonal matrix Σ = diag(σ1, . . . , σq).1470
Let us suppose for instance m1 < q1. Then we first have from the inequality (11.2) :1471
|σm1

−σm1+1| > δ. In the other hand, since m1 < q1 we can write from the inequality1472
(11.1) |σm1 − σm1+1| ⩽ δ. This is not possible and the proposition holds.1473
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11.2. Solving ∆− S −XΣ+ΣY = 0 in the clusters case. We state without1474
proof the result that is generalizes the Proposition 4.1.1475

Proposition 11.4. Let Σ ∈ Dℓ×q
q1...qe(δ) and ∆ = (δi,j) ∈ Cℓ×q. Consider the1476

matrix S ∈ Dℓ×q
q1...qe and the two skew Hermitian matrices X = (xi,j) ∈ Cℓ×ℓ and1477

Y = (yi,j) ∈ Cq×q that are defined by the following formulas:1478
1. The matrix S is defined by1479

S = Diagq1···qe(∆) ∈ Dℓ×q
q1...qe(11.3)14801481

2.

Diagq1···qe(X) = 0(11.4)1482

Diagq1···qe(Y ) = 0(11.5)14831484

3. For 1 ⩽ i < k ⩽ e, 1 ⩽ j ⩽ qi − 1, and 1 ⩽ l ⩽ qk − 1 we take1485

xℓi+j,ℓk+l =
1

2

(
δℓi+j,ℓk+l + δℓk+l,ℓi+j

σℓk+l − σℓi+j
+

δℓi+j,ℓk+l − δℓk+l,ℓi+j

σℓk+l + σℓi+j

)
(11.6)1486

yℓi+j,ℓk+l =
1

2

(
δℓi+j,ℓk+l + δℓk+l,ℓi+j

σℓk+l − σℓi+j
− δℓi+j,ℓk+l − δℓk+l,ℓi+j

σℓk+l + σℓi+j

)
(11.7)1487

1488

4. For q + 1 ⩽ i ⩽ ℓ and 1 ⩽ j ⩽ q, we take1489

xi,j =
1

σj
δi,j .(11.8)1490

1491

5. For q + 1 ⩽ i ⩽ ℓ and q + 1 ⩽ j ⩽ ℓ, we take1492

xi,j = 0.(11.9)14931494

Then we have1495

∆− S −XΣ+ ΣY = 0.(11.10)14961497

Definition 11.5. Under the previous framework, we name condition number of1498
equation ∆− S −XΣ+ ΣY = 0 the quantity1499

κ(Σ) = max

1, max
1⩽i⩽e

1

|σi|
, max

1 ⩽ i < k ⩽ e
|σk − σi| > δ

1

|σk − σi|
+

1

|σk + σi|

∣∣∣∣
(11.11)1500

1501

The analysis of error is given by the following result.1502

Proposition 11.6. Under the notations and assumptions of Proposition 11.4,1503
assume that S, X and Y are computed using (11.3–11.9). Given ε with ∥∆∥ ⩽ ε, the1504
matrices X, Y and S solutions of ∆− S −XΣ+ ΣY = 0 satisfy1505

∥S∥ ⩽ ε(11.12)1506

∥X∥, ∥Y ∥ ⩽ κε(11.13)15071508
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11.3. Method of order p+1 in the clusters case. Let p ⩾ 2 and Em×ℓ,n×q
q1,...,qe =1509

Cm×ℓ × Cn×q × Dm×n
q1,...,qe .We denote Eℓ(U) = U∗U − Iℓ, Eq(V ) = V ∗V − Iq, ∆ =1510

U∗MV − Σ and we define the map Hp by1511

(U, V,Σ) ∈ Em×ℓ,n×q
q1,...,qe → Hp(U, V,Σ) =

 U(Iℓ +Ω)(Iℓ +Θ)
V (Iq + Λ)(Iq +Ψ)

Σ + S

 ∈ Em×ℓ,n×q
q1,...,qe

(11.14)

1512

1513

where :1514
1. Ω = sp(Eℓ(U)) and Λ = sp(Eq(V )).1515
2. S = S1 + · · ·+ Sp ∈ Dm×n

q1...ql
, X = X1 + · · ·+Xp and Y = Y1 + · · ·+ Yp with1516

each Xk, Yk are skew Hermitian matrices. Moreover each triplet (Sk, Xk, Yk)1517
are solutions of the following linear systems :1518

∆k − Sk −XkΣ+ ΣYk = 0, 1 ⩽ k ⩽ p15191520

where the ∆k’s for 2 ⩽ k ⩽ p+ 1, are defined as1521

∆1 = (Iℓ +Ω)(∆ + Σ)(Iq + Λ)− Σ, e S1 = Diagq1,...,qe(∆1)
Θk = cp(X1 + · · ·+Xk), Ψk = cp(Y1 + · · ·+ Yk), 1 ⩽ k ⩽ p,

∆k = (Iℓ +Θ∗
k−1)(∆1 +Σ)(Iq +Ψk−1)− Σ−

k−1∑
l=1

Sl,

Sk = Diagq1,...,qe(∆k), 2 ⩽ k ⩽ p.

(11.15)1522

1523

11.4. Result of convergence in the clusters case.1524

Theorem 11.7. If the sequence define by1525

(Ui+1, Vi+1,Σi+1) = Hp(Ui, Vi,Σi), i ⩾ 01526

from (U0, V0,Σ0) ∈ Em×ℓ,n×q
q1,...,qe verifies the asumptions of Theorem 1.2 then it converges1527

at the order p + 1 to (U∞, V∞,Σ∞) ∈ Stm,ℓ ×Stn,q ×Dm×n
q1,...,qesuch that U∗

∞MV∞ −1528
Σ∞ = 0.1529

Proof. The proof is similar to that of Theorem 1.2.1530

11.5. Deflation method for the SVD. The sequence (Ui, Vi,Σi)i⩾0 of The-1531
orem 11.7 is not a SVD sequence since the Σi’s belong to Dm×n

q1,...,qe . We can use the1532
Theorem 1.2 to detect the presence of clusters of singular values.1533

To simplify the presentation we suppose m = n in order that1534

κ(Σ) = max

(
1, max

1⩽i<j⩽n

1

|σi − σj |
+

1

|σi + σj |

)
.1535

1536

To do that we introduce an index of deflation whose the existence is given by the1537
following proposition.1538

Proposition 11.8. Let us consider (U0, V0,Σ0) ∈ Em×m
m×m and ∆0 = U∗

0MV0−Σ0.1539
Let1540

e = max

(
Ka−1∥∆0∥

u0
,
Ka

u0
∥Em(U)∥, K

a

u0
∥Em(V )∥

)1/a

1541
1542
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Let us suppose e ⩽ 1. Then there exists an index q ⩽ m be such that we can rewrite1543

the diagonal matrix Σ0 under the form
(

Σ0,q

Σ0,n−q

)
where κ(Σ0,q)e ⩽ 1. Let1544

us consider U0,q and V0,q the sub matrices of U0 and V0 respectively corresponding to1545
Σ0,q. Then Theorem 1.2 applies for the sequence define from (U0,q, V0,q,Σ0,q) ∈ Em×q

m×q1546
by (Ui+1,q, Vi+1,q,Σi+1,q) = Hp(Ui,q, Vi,q,Σi,q), i ⩾ 0.1547

Proof. The existence of the index q is obvious since q is at least equal at 1. In1548
this case κ(Σ0,1) = 1.1549

Definition 11.9. Let us consider the notations and the assumption of Proposi-1550
tion 11.8.We name indice of deflation of (U0, V0,Σ0) the maximum of indices q such1551
that κ(Σ0,q)e ⩽ 1. If q is the index of deflation we name (U0,q, V0,q,Σ0,q) a deflation1552
of (U0, V0,Σ0)1553

To determine the index of deflation and a deflation of (U0, V0,Σ0), we propose the1554

following algorithm. We denote κi,j = max

(
1,

1

|σi − σj |
+

1

|σi + σj |

)
. Following the1555

matlab notation if A is a matrix and k a vector of indices A(:, k) means the matrix1556
composed by the columns indexed by the vector k. Moreover #k is the size of k.1557

Algorithm to determine the index of deflation(11.16)15581559

Input (U0, V0,Σ0) such that e ⩽ 11560
Ouput (U0,q, V0,q,Σ0,q) a deflation of (U0, V0,Σ0)1561
1. Let Σ0 = diag(σ0,1, . . . , σ0,n) where σ0,1 ⩾ · · · ⩾ σ0,n1562
2. k = 1 i = 11563
3. while i ⩽ m do1564
4. j = 11565
5. while i+ j ⩽ n and κi,i+je > 1 do j = j + 1 end while1566
6. if i+ j ⩽ n and κi,i+j ⩽ 1 then k = [k, i+ j] end if1567
7. i = i+ j1568
8. end while1569
9. q = #k1570

10. Σ0,q = Σ0(k) U0,q = U0(k) V0,q = V0(k)1571

Theorem 11.10. Let (U0, V0,Σ0) that satisfies the Proposition 11.8. The algo-1572
rithm 11.16 computes a deflation of (U0, V0,Σ0).1573

Proof. When k = 1 we have κ(Σ0(:, 1)) = 1 and κ(Σ0(:, 1))e ⩽ 1 from assumption.1574
The loop 3-8 of the algorithm consists to determine an ordered list of indices k such1575
that for all i ∈ k such that i+1 ∈ k we have κi,i+1e ⩽ 1. Hence κ(Σ0,q)e ⩽ 1 and the1576
Theorem follows.1577

12. Numerical Experiments. Our numerical experiments are done with the1578
Julia Programming Language [3] coupled with the library ArbNumerics of Jeffrey1579
Sarnoff. To intialize our method we proceed in two steps1580

1. The triplet (U0, V0,Σ0) is given by the function svd of Julia with 64-bit of1581
precision unless otherwise stated.1582

2. From this (U0, V0,Σ0) we determine (U0,q, V0,q,Σ0,q) by the Algorithm 11.16.1583
We consider for i ⩾ 0 the quantities

εi = max((κiKi)
a∥Eℓ(Ui)∥, (κiKi)

a∥Eq(Vi)∥, κa
iK

a−1
i ∥∆i∥)

where a, u0 are defined in Theorem 1.2. All the Tables below show the behaviour of1584
ei = −⌊log2(εi/u0)⌋.1585
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The strategy of practical computations is to initialize the method with q bits of1586
precision. Next the iteration i is done with q(p+1)i bits of precision. This setting of1587
precision is done efficiently thanks to the library ArbNumerics at each iteration.1588

12.1. Random matrices. Table 3 confirms the behaviour of iterates expected1589
by the convergence analysis.1590

Iterations /Order 2 3 4 5 6 7
0
1
2
3

7
18
44
92

8
35
112
346

9
47
194
787

8
59
311
1571

8
69
427
2580

8
85
604
4353

Table 3

1591

12.2. Cauchy matrices. The classical Cauchy matrix is defined by

M =

(
1

i+ j

)
1⩽i,j⩽n

.

Its singular values satisfy the inequalities σ1+k ⩾ 4

(
exp

(
π2

2Log(4n)

))−2k

σ1 where1592

σ1 is the greatest singular values [5]. There is a strong decrease of singular values to1593
0. The computation of a deflation by the Algorithm 11.16 gives different values of q1594
for Σ0,q following the value of p . For instance with 64-bit of precision and n = 200, if1595
p = 1 then q = 11 : Σ0,q is constituted of the first ten singular values and one among1596
the other 190’s. If p ⩾ 2 then q = 15 : Σ0,q is constituted of the first fourteen singular1597
values and one among the other 185’s. Table 4 gives the behaviour of iterates from a1598
computation of a deflation.1599

Iterations /Order 2 3 4 5 6 7
0
1
2
3

1
9
31
74

1
19
67
214

1
19
116
503

1
35
196
1003

1
36
277
1724

1
51
389
2757

Table 4

Table 5 gives the necessary precision that we need to get the size of Cauchy1600
matrices as index of deflation.1601

n n ⩽ 7 8 ⩽ n ⩽ 14 15 ⩽ n

bits precision 64 128 ⩾ 256

Table 5
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12.3. Matrices with prescribed singular values. Let us define M = UΣV1602
where U and V are two unitary matrices of size 4n × 4n and Σ = diag(σ1, . . . , σ4n)1603
where1604

σ3(i−1)+j = 2i 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ 3,1605

σ3n+i = 2−i 1 ⩽ i ⩽ n.16061607

The condition e ⩽ 1 of the Proposition 11.8 holds if
(
4× 2n

3

)a

ε0 ⩽ u0 where ε0 =1608

max(∥∆0∥, ∥Em(U0)∥, ∥Em(V0)∥). Table 6 gives the quantity −
⌊
log2

3au0

4a2na

⌋
with1609

respect n. For instance a C matrix of size 100 × 100, Proposition 11.8 applies if1610
ε0 ⩽ 2−139 for p ⩾ 2 and for p = 1, it is necessary to have ε0 ⩽ 2−206. Hence the1611
precision required on ε0 to get1612

p/4n 4 20 40 60 80 100 120 140 160 180
p = 1 14 46 86 126 166 206 246 286 326 366
p ⩾ 2 11 33 59 86 113 139 166 193 219 246

Table 6

a deflation is greater in the case p = 1 than for p ⩾ 2. This is confirmed by1613
numerical experimentation. If p = 1 then n ⩽ 26 (respectively if p ⩾ 2 then n ⩽ 41)1614
a 64-bits precision is enough so that Proposition 11.8 holds. Table 7 shows for p = 11615
(respectively p ⩾ 2) the quantities q+ = #{σ > 1} and q−#{σ > 1} from a Σ0,q given1616
by the initialization. In each case of Table 7 the first number matches for q+ and the1617
second for q−. The 64-bit precision used for p = 1 (respectively p ⩾ 2) until the size1618
100 (respectively 140). For larger sizes, 128-bits precision are used. The quantity q+1619
is always equal to n which is the number of multiple singular values.1620

q+, q−/4n 4 20 40 60 80 100 120 140 160
p = 1 1, 1 5, 5 10, 10 15, 10 20, 5 25, 1 30, 26 35, 21 40, 16
p ⩾ 2 1, 1 5, 5 10, 10 15, 15 20, 18 25, 13 30, 8 35, 3 40, 40

Table 7
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