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Abstract
This paper proposes a Newton-type method to solve numerically the eigenprob-
lem of several diagonalizable matrices, which pairwise commute. A classical result 
states that these matrices are simultaneously diagonalizable. From a suitable sys-
tem of equations associated to this problem, we construct a sequence that converges 
quadratically towards the solution. This construction is not based on the resolu-
tion of a linear system as is the case in the classical Newton method. Moreover, we 
provide a theoretical analysis of this construction and exhibit a condition to get a 
quadratic convergence. We also propose numerical experiments, which illustrate the 
theoretical results.
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1 Introduction

1.1  Our study

Let us consider p diagonalizable matrices M1,… ,Mp in ℂn×n which pairwise 
commute. A classical result states that these matrices are simultaneously diag-
onalizable, i.e., there exists an invertible matrix E and diagonal matrices Σi , 
1 ⩽ i ⩽ p , such that EMiE

−1 = Σi , 1 ⩽ i ⩽ p , see e.g. [24]. The aim of this paper is 
to compute numerically a solution (E,F,Σ) of the system of equations

where Σ = (Σ1,… ,Σp) and FME − Σ ∶= (FM1E − Σ1,… ,FMpE − Σp) = 0 . 
Notice that this system is multi-linear in the unknowns E,F,Σ . We verify that 
when p = 1 and M1 is a generic matrix, this system has a solution set of dimension 
2 n2 + n − 2n2 = n ( n2 + n2 + n unknowns for E,F,Σ and 2 matrix equations corre-
sponding to n2 + n2 equations). However, for p > 1 and generic matrices Mi , there is 
no solution. To have a solution, the pencil M must be on the manifold Dp of p-tuples 
of simultaneously diagonalizable matrices.

The system (1) can be generalized to the following system:

where Σ� = (Σ0,Σ1,… ,Σp) , M0 ∈ ℂn×n is replacing In and Σ0 is a diagonal matrix 
replacing In in the first equation of (1). When the pencil M� = (M0,M1,… ,Mp) con-
tains an invertible matrix, the solutions of the two systems are closely related. If M0 
is invertible, a solution (E,F,Σ�) of (2) for M� = (M0,M1,… ,Mp) gives the solution 
(FM0,EΣ

−1
0
,ΣΣ−1

0
) of (1) for M = (M−1

0
M1,… ,M−1

0
Mp) . A similar correspondence 

between the solution sets can be obtained if a linear combination M�
0
=
∑p

i=1
�iMi is 

invertible.
As (2) can be seen as an homogeneisation of (1) and appears in several con-

texts and applications, we will also study Newton-type methods for this homog-
enized system.

To solve the system of equations (1), we propose to apply a Newton-like 
method and to analyze the Newton map associated to an iteration. These ideas 
have also been developed for instance in [32] where a Newton method is used 
for the symmetric eigenvalue problem. A Simultaneous Newton’s iteration for 
ill-conditioned eigenproblem has been introduced in [21]. For more recent refer-
ences using the Newton-type approach for eigenproblem see for instance [27, 28, 
38]. Moreover, similar approach for the fast computation of the singular value 
decomposition has been presented in a technical report [45].

We say that we have a quadratic sequence associated to a system of equations 
if the sequence converges quadratically towards a solution.

(1)f (E,F,Σ) ∶=

(
FE − In
FME − Σ

)
=0

(2)f �
(
E,F,Σ�

)
∶=

(
FM0E − Σ0

FME − Σ

)
=0
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The classical Newton map defines (E + X,F + Y ,Σ + S) from (E,F,Σ) in order 
to cancel the linear part in the Taylor expansion of f (E + X,F + Y ,Σ + S) . An easy 
computation shows that the perturbations X, Y and S are solutions of such a Syl-
vester-type linear system

A straight-forward way to solve this linear system is via Kronecker product, see 
[23]. This leads to a linear system of size 2n2 , which can be solved in O(n6) arithme-
tic operations.

The construction of the methods studied here is based on perturbations of such 
type (E(In + X), (In + Y)F,Σ + S) rather than (E + X,F + Y ,Σ + S) . More precisely 
the perturbations X, Y and S that we consider are perturbations which cancel the 
linear part of the Taylor expansion of f (E(In + X), (In + Y)F,Σ + S) . In this case, we 
can produce explicit solutions for the linear system in X, Y and S given by:

where Z = FE − In and Δ = FME − Σ . We will see that the linear system (4) admits 
an explicit solution (X,  Y,  S) with respect to Z and Δ for p = 1, 2 in (1). This is 
because Σ is a diagonal matrix. From these considerations, we define and analyze a 
sequence that converges quadratically towards a solution of the system (1) without 
inverting a linear system at each step of this Newton-like method.

1.2  Related works

Simultaneous matrix diagonalization is required by many algorithms as it was 
pointed out in [7, 19, 25, 30, 46]. A numerical analysis for two normal commut-
ing matrices is proposed in [8] using Jacobi-like methods. Their method adjusts 
the classical Jacobi method in successively solving n(n−1)

2
 two-real-variables opti-

mization problems at each sweep of the algorithm. Their main result states a 
local quadratic convergence and can be summarized in the following way. Let 
off2(A,B)

2 =
∑

i≠j �Ai,j�2 + �Bi,j�2 . Let {�1,… , �n} (resp. {�1,… , �n} ) be the set of 
the eigenvalues of A (resp. B). Let Ak and Bk the matrices obtained at the step k of 
the Jacobi-like method and �k = off2(A

k,Bk) . If

then

(3)
(

FE − In + FX + YE

FME − Σ − S + XMF + EMY

)
=0.

(4)
(

Z + X + Y

Δ − S + ΣX + YΣ

)
=0.

𝜌0 <
1

2
𝛿 ∶=

1

4
min
i≠j

(|𝛼i − 𝛼j|, |𝛽i − 𝛽j|
)
,

𝜌k+1 < 2n(9n − 13)
𝜌2
k

𝛿
.
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We will see in Theorems 3 and 5 that the local conditions of the quadratic conver-
gence do not depend on n. Many other papers studied the so-called Jacobi-like meth-
ods (see e.g. [31, 33] and references therein).

In [22] a sequence with proof of its convergence towards a numerical solu-
tion of the system (1) when p = 1 , i.e., for M1 , with the assumption of M1 being 
a diagonalizable matrix, is presented. It requires matrix inversion. Furthermore, 
under some extra assumptions, its quadratic convergence is established.

For a pencil of real symmetric matrices C = (C1,… ,Cs) , several algorithms 
based on Riemannian optimization methods (see [2]) have been developed in 
order to find an approximate joint diagonalizer (see e.g. [1, 5, 26, 36]). The idea 
is to find a local minimizer B ∈ ℝn×n of an objective function f which measures 
the degree of non-diagonality of the pencil (BC1B

T ,… ,BCsB
T ) over a Riemann-

ian manifold (see [3, 5, 47] for some examples of objective functions). This Rie-
mannian manifold is defined according to the geometric constraints considered on 
B. For instance, the diagonalizer is supposed to be orthogonal in some of these 
algorithms after a pre-whitening step (see e.g. [10, 11, 17, 20, 26, 34–36]). Due 
to inaccuracies in the computation of the diagonalizer with orthogonality con-
straints (see. [49]), oblique constraints, i.e., all the rows of the diagonalizer have 
unit Euclidean norm, have also been considered instead of the former constraints 
in more recent works (see e.g. [1, 5]). These algorithms can be used when the 
pencil of symmetric matrices is simultaneously diagonalizable. In this case, we 
aim to find a zero of the objective function f. However, these algorithms have a 
computation complexity higher than the Newton-type algorithm that we propose 
(see Proposition 4). For instance, most of them combine line search [2, Ch4] or 
trust region [2, Ch7] methods, and matrix inversions at each iteration (see the 
exact Riemannian Newton iteration in [1]). Moreover, the points on the Riemann-
ian manifold are updated using a retraction operator (see [2, Ch4] or [5] for an 
example of a retraction operator on the oblique manifold). In the Newton-type 
method described in Sects. 3 and 4 the points are updated by using direct and 
explicit formulas. They have lower complexity than the Riemannian optimization-
based algorithms and they are well-adapted to computation with high precision.

Simultaneous matrix diagonalization appears in many applications. For instance, 
in the solution of multivariate polynomial equations by algebraic methods, the iso-
lated roots of the system are obtained from the computation of common eigenvec-
tors of commuting operators of multiplication in the quotient ring and from their 
eigenvalues [15, 18]. In the case of simple roots, this reduces to simultaneous diago-
nalization of a pencil of matrices.

The approach of approximate joint diagonalizer for a pencil of real symmetric 
matrices is used to solve Blind Source Separation (BSS) problem, with potential 
applications in wide domains of engineering (see e.g. [14]).

Simultaneous matrix diagonalization of pencils of general matrices also appears 
in the rank (or canonical) decomposition of tensors [16]. Under certain condi-
tions this rank decomposition is unique [39]. In this case simultaneous matrix 
diagonalization allows to compute this rank decomposition which plays a crucial 
role in numerous applications such that Psychometric [12], Signal Processing and 
Machine Learning [13, 40], Sensor array processing [43], Arithmetic Complexity 
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[9], wireless communications [44], multidimensional harmonic retrieval [41, 42], 
Chemometrics [6], and Principal components analysis [29].

1.3  Outline

Our contributions are a new iteration for the simultaneous diagonalization of matri-
ces, with a local quadratic convergence and its analysis. The iteration is different 
from a Newton iteration. It does not require to invert a large linear system, but per-
forms simple matrix operations. We analyse the numerical behavior of the method 
and provide a certification test for the convergence. Sections  2, 3, 4, and 5 are 
devoted to respectively constructing a sequence to solve numerically:

• FE − In = 0,
• the system (1) when p = 1,
• the system (2) when p = 1,
• the system (1) for any p.

Moreover, we provide for these cases, a certification that the sequence converges to 
a nearby solution, and a test to detect when this convergence is quadratic from an 
initial point. More precisely, in Sect. 3 we show that a triplet (E0,F0,Σ0) must sat-
isfy a property depending on the quantity �0 ∶= max(�2

0
K2
0
‖Z0‖, �2

0
K0‖Δ0‖) to get a 

quadratic convergence where 

1. Z0 = F0E0 − In,
2. Δ0 = F0ME0 − Σ0,

3. 𝜅0 = max

(
1, max

1⩽j<k⩽n

1

|𝜎
0,k

− 𝜎
0,j
|

)
,

4. K0 = maxk

(
1, |�

0,k
|
)
,

where �
0,1
,… , �

0,n
 denote the diagonal entries of Σ

0
 . The quantity � is the condition 

number of the studied methods. Based on the same methodology as in Sect. 3, Sec-
tions 4 and 5 exhibit a certification of the convergence of the sequence constructed 
to the studied case towards the solution with a sufficient condition on the initial 
point.

In Sect.  6 we perform numerical experimentation. The final section is for our 
conclusions and future works.

1.4  Notation and preliminaries

Throughout this work, we will use the infinity vector norm and the corresponding 
matrix norm. For a given vector v ∈ ℂn and matrix M ∈ ℂn×n , they are respectively 
given by:
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Explicitly, ‖M‖ = max{�mi,1� +…+ �mi,n� ∶ 1 ≤ i ≤ n}.

For a second matrix N ∈ ℂn×n, we have

Moreover, for a given matrix M ∈ ℂn×n , we denote by ‖M‖L,Tri and ‖M‖Frob the 
following:

i.e the max matrix norm of the lower triangular part of M, 

i.e., the Frobenius norm of M.
Furthermore, we consider in this paper the regular case of diagonalizable matri-

ces, that is, the matrices are diagonalizable with simple eigenvalues. Thus we will 
use the following notation

It is well-known that Wn is dense in ℂn×n.
The Lie group of n × n invertible matrices, denoted by GLn , is the so-called gen-

eral linear group [4]. We denote by Dn the vector space of diagonal matrices of size 
n and D′

n
 denotes the subset of Dn in which the diagonal matrices are of n distinct 

diagonal entries. Let E,F ∈ GLn and Σ ∈ D
�
n
 . The tangent space of GLn at E (resp. 

F) is denoted by TEGLn (resp. TFGLn ) and the tangent space of D′
n
 at Σ is denoted by 

TΣD
�
n
 . The perturbation of respectively E, F and Σ that we consider in this paper are 

of the following form: E + Ė , F + Ḟ and Σ + Σ̇ , where Ė and Ḟ are respectively in 
TEGLn and TFGLn and Σ̇ is in TΣD

�
n
.

As GLn is a Lie group, Ė and Ḟ can be written as EX and YF such that X, Y are in 
the Lie algebra of GLn which is equal to ℂn×n (since this Lie algebra is TInGLn and 
GLn is an open subset in ℂn×n).

As D′
n
 is open in Dn then TΣD

�
n
= Dn , herein Σ̇ = S ∈ Dn.

Finally, the perturbations of E, F and Σ that we consider are as follows:
E + EX , F + YF and Σ + S , such that X and Y are in ℂn×n and S is a diagonal 

matrix in ℂn×n.

‖v‖ =max
��v1�,… , �vn�

�

‖M‖ = max‖v‖=1 ‖Mv‖.

‖M + N‖ ⩽‖M‖ + ‖N‖ (sub-additivity)

‖MN‖ ⩽‖M‖‖N‖ (sub-multiplicativity).

‖M‖L,Tri ∶= max
1 ≤ i ≤ n

1 ≤ j ≤ i − 1

�mi,j�,

‖M‖Frob ∶=
���� n�

i=1

n�
j=1

�mi,j�2,

Wn ∶=
{
M ∈ ℂn×n ∣ Mwith pairwise distinct eigenvalues

}
.
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For a matrix M ∈ ℂn×n , let diag(M) be the diagonal matrix with the same diago-
nal as M and let off(M) be the matrix where the diagonal term of M are replaced by 
0. We have M = diag(M) + off(M) . We say that M is an off-matrix if M = off(M) . 
In addition, let (�1,… , �n) ∈ ℂn , diag(�1,… , �n) is the diagonal matrix in ℂn×n of 
diagonal entries �1,… , �n.

The superscripts .t , .∗ and .−1 are used respectively for the transpose, Hermitian 
conjugate, and the inverse matrix.

We state the following lemma which will be used in some of the proofs.

Lemma 1 Let �(�, u) =
∏

j⩾0(1+u�
2j )−1

�u
 . Given � ⩽

1

2
 , u ⩽ 1 , and i ⩾ 0 , we have

Proof Modulo taking �2i instead of � , it suffices to consider the case when i = 0 . 
Now �(�, u) is an increasing function in � and u, since its power series expansion in 
� and u admits only positive coefficients. Consequently, �(�, u) ⩽ �(

1

2
, 1) = 2 .   ◻

2  Newton‑type method for the system FE − I
n
= 0.

Let f ∶ GLn × GLn → ℂn×n, (E,F) ↦ FE − In . We consider the following perturba-
tions E + EX , F + YF of respectively E and F where X, Y ∈ ℂn×n.

To define the Newton sequence we have to solve the linear system obtained by 
canceling the linear part in the Taylor expansion of f (E + EX,F + YF) . The same 
methodology will be adopted in the next sections for the other considered systems. 
Hereafter, we detail the computation of the Newton sequence associated to the sys-
tem FE − In = 0 . Moreover, a sufficient condition on the initial point for the quad-
ratic convergence of this Newton sequence will be established.

Let Z = FE − In . We observe that

We assume here that Z is of small norm, i.e., we start from an initial point (E0,F0) 
close from the solution of the system FE − In = 0.

Consequently, the linear system of first order terms to solve is

Hence X = Y = −
Z

2
 is a solution of Eq. (8). Moreover we get, by substituting in Eq. 

(7) X and Y by − Z

2
,

(5)
∏
j⩾0

(
1 + u�2

j+i
)
⩽1 + 2u�2

i

(6)f (E + EX,F + YF) =(F + YF)(E + EX) − In

(7)=Z +
(
Z + In

)
X + Y

(
Z + In

)
+ Y

(
Z + In

)
X.

(8)Z + X + Y = 0.
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Proposition 1 Let Z0 = F0E0 − In . Define X0 = −
Z0

2
 , E1 = E0(In + X0) , 

F1 = (In + X0)F0 and Z1 = F1E1 − In . Assume that ‖Z0‖ ⩽ 1 . Then

Proof It follows easily from (9).   ◻

Theorem 2 Let E0 and F0 two complex square matrices of size n. Let Z0 = F0E0 − In 
and assume that 𝜀 = ‖Z0‖ <

1

2
 . The sequences defined for i ⩾ 0

converge quadratically towards the solution of FE − In = 0 . Each Ei , respectively Fi 
are invertible and, if E∞ and F∞ are respectively the limits of sequences (Ei)i⩾0 and 
(Fi)i⩾0 we have for i ⩾ 0,

Proof First, by the assumption ‖F0E0 − In‖ = ‖Z0‖ <
1

2
 , we have E0 and F0 are 

invertible. In fact, E0F0 = In + E0F0 − In = In + Z0 is invertible when ‖Z0‖ < 1 
which is the case since we suppose ‖Z0‖ <

1

2
.

Let us prove by induction that ‖Zk‖ ⩽ 2−2
k+1� . Since 𝜀 <

1

2
 , we have

Consequently Z∞ = 0. Since Xk = −
Zk

2
 we deduce

It follows X∞ = 0 . We have

Denoting Wi =
∏

0⩽k⩽i(In + Xk) , W∞ =
∏

k⩾0(In + Xk) we compute

(9)(F + YF)(E + EX) − In =Z
2
(
−
3

4
In +

Z

4

)
.

(10)‖Z1‖ ⩽‖Z0‖2

Zi =FiEi − In

Xi = −
Zi

2

Ei+1 =Ei

(
In + Xi

)

Fi+1 =
(
In + Xi

)
Fi

‖‖Ei − E∞
‖‖ ⩽(1 + 2�)2−2

i+1+1�‖‖E0
‖‖,

‖‖Fi − F∞
‖‖ ⩽(1 + 2�)2−2

i+1+1�‖‖F0
‖‖.

‖Zk+1‖ ⩽‖Zk‖2 from (10)

⩽�2−2
k+1+2�

⩽2−2
k+1+1�.

‖Xk‖ ⩽2−2
k

�.

Ek =Ek−1

(
In + Xk−1

)

=E0

(
In + X0

)
⋯

(
In + Xk−1

)
.
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Then W∞ is invertible and ‖W−1
∞
‖ ⩽

1

1 − 2�
 . Let E∞ = E0W∞ . Hence E0 = E∞W

−1
∞

 . 
In the same way F0 = W−1

∞
F∞ . Finally, the identity F∞E∞ − In = 0 permits to con-

clude that E0 and F0 are invertible. In the same way we prove easily that 
‖Wi − In‖ ⩽ 2� . It follows that Wi is invertible. Since Ei = E0Wi we deduce that Ei is 
invertible. Moreover

We deduce that

These properties also hold for the Fi’s. The theorem is proved.   ◻

3  Newton‑like method for diagonalizable matrices.

Let M ∈ Wn , Σ ∈ D
�
n
 , E, F ∈ GLn . We aim to construct Newton sequences 

which converge towards the numerical solution of f (E,F,Σ) = 0 where 
f ∶ GLn × GLn ×D

�
n
→ ℂn×n × ℂn×n, (E,F,Σ) ↦ (FE − In,FME − Σ) . We consider 

in the same way as before the perturbations E + EX and F + YF of respectively E 
and F and in addition the perturbation Σ + S of Σ such that S ∈ Dn . We get with 
Z = FE − In and Δ = FME − Σ :

As in the previous section we assume that (E,F,Σ) is sufficiently close to the solu-
tion of f (E,F,Σ) = 0 , thus the linear system that we obtain from (11) and (12) is

‖‖W∞ − In
‖‖ ⩽

∏
k⩾0

(
1 + 2−2

k

�

)
− 1

⩽2� by using Lemma 1.

‖Wi −W∞‖ ⩽‖Wi‖
������
1 −

�
k⩾i+1

�
1 + ‖Xk‖

�������
⩽
�
1 + ‖Wi − In‖

�������
�
k⩾0

�
1 + 2−2

k+i+1

�

�
− 1

������
⩽(1 + 2�)2−2

i+1+1� by using Lemma 1.

‖Ei − E∞‖ ⩽(1 + 2�)2−2
i+1+1�‖E0‖.

(11)
(F + YF)(E + EX) − In

=Z +
(
Z + In

)
X + Y

(
Z + In

)
+ Y

(
Z + In

)
X

(12)
(F + YF)M(E + EX) − Σ − S

=FME − Σ − S + FMEX + YFME + YFMEX

=Δ − S + ΣX + YΣ + ΔX + YΔ + Y(Δ + Σ)X
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The following lemma gives a solution of this linear system.

Lemma 2 Let Σ = diag(�1,… , �n) , Z = (zi,j)1≤i,j≤n and Δ = (�i,j)1≤i,j≤n be given 
matrices in ℂn×n . Assume that �i ≠ �j for i ≠ j . Let S, X and Y be matrices defined by

Then we have

Moreover

where � ⩾ max(‖Z‖, ‖Δ‖) , � = max

(
1,maxi≠j

1

|�i − �j|
)

      and 

K = max(1,maxi |�i|).

Proof It is easy to verify that X + Y + Z = 0. In this way the Eq. (19) is equivalent to

Since diag(Δ − S − ZΣ) = diag(ΣX − XΣ) = 0 the formulas which define X follow 
easily. The bounds (20) also are obvious to establish.   ◻

In the next theorem we introduce the Newton sequences associated to the sys-
tem f (E,F,Σ) = 0 with a sufficient condition on the initial point for its quadratic 
convergence.

Theorem  3 Let E0,F0 ∈ GLn and Σ0 ∈ D
�
n
 be given such that they define the 

sequences for i ⩾ 0,

{
Z + X + Y = 0

Δ − S + ΣX + YΣ = 0

(13)S =diag(Δ − ZΣ)

(14)xi,i =0

(15)xi,j =
−�i,j + zi,j�j

�i − �j
, i ≠ j

(16)yi,i = − zi,i

(17)yi,j =
�i,j − zi,j�i

�i − �j
, i ≠ j.

(18)Z + X + Y =0

(19)Δ − S + ΣX + YΣ =0

(20)‖X‖, ‖Y‖ ⩽��(K + 1)

Δ − S − ZΣ + ΣX − XΣ =0.



1 3

Newton-type methods for simultaneous matrix diagonalization  Page 11 of 31 38

where Si , Xi and Yi are defined by the formulas (13–17). Let us define 

�0 = max

(
1,maxi≠j

1

|�0,i − �0,j|
)

,      K0 = max(1,maxi |�0,i|) and 

�0 = max(�2
0
K2
0
‖Z0‖, �2

0
K0‖Δ0‖) . Assume that

Then the sequences (Σi,Ei,Fi)i⩾0 converge quadratically to the solution of 
(FE − In,FME − Σ) = 0 . More precisely E0 and F0 are invertible and

Proof Let us denote for each i ⩾ 0,

where �
i,1
,… , �

i,n
 denote the diagonal entries of Σ

i
 . Let us show by induction on i 

that

with a =
1

1 − 8�
 . These inequalities clearly hold for i = 0 . Assuming that the induc-

tion hypothesis holds for a given i and let us prove it for i + 1 . We first prove that 
‖Σi+1 − Σ0‖ ⩽ (2 − 22−2

i+1

)
2a

�
� under the assumption ‖Σi − Σ0‖ ⩽ (2 − 22−2

i

)
2a

�
� . 

To do this, at the first step we show that this implies K −
4a

�
� ⩽ Ki ≤ K +

4a

�
� and 

1

1 + 8a�
� ⩽ �i ≤

�

1 − 8a�
 . Let us prove K −

4a

�
� ⩽ Ki ⩽ K +

4a

�
� . We have

Zi =FiEi − In

Δi =FiMEi − Σi

Si =diag
(
Δi − ZiΣi

)

Ei+1 =Ei

(
In + Xi

)

Fi+1 =
(
In + Yi

)
Fi

Σi+1 =Σi + Si,

(21)�0 ⩽0.033.

‖Ei − E∞‖ ⩽8.1 × 21−2
i+1‖E0‖

�0

�K

‖Fi − F∞‖ ⩽8.1 × 21−2
i+1‖F0‖

�0

�K
.

‖Σi − Σ∞‖ ⩽1.85 × 21−2
i �0

�2K
.

𝜀 = 𝜀0 𝜀i = max
�
𝜅2
i
K2
i
‖Zi‖, 𝜅2

i
Ki‖Δi‖

�

𝜅 = 𝜅0 𝜅i = max

�
1, max1⩽j<k⩽n

1

�𝜎
i,k
−𝜎

i,j
�

�

K = K0 Ki = max1≤k≤n

�
1, �𝜎

i,k
�
�
,

(22)�i ⩽2
1−2i�

(23)‖Σi − Σ0‖ ⩽

�
2 − 22−2

i
�
2a

�
�
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This implies simultaneously Ki ⩾ K − |K − Ki| ⩾ K −
4a

�
� and Ki ⩾ K(1 − 4a�) . 

Let us show that �i ≤
�

1 − 8a�
 . In fact, if the �i,j ’s are the diagonal values of Σ

i
 , the 

Weyl’s bound [48] implies that

So that for 1 ⩽ j < k ⩽ n , we obtain using 1 − 8a� ⩾ 0 :

Finally, we get :

On the other hand the inequality

implies in the same way that above

Next we prove (23) for i + 1 . We know Si = diag(Δi − ZiΣi) . Since 

�i = max(�2
i
K2
i
‖Zi‖, �2

i
Ki‖Δi‖) and �i,Ki ⩾ 1 then ‖Si‖ ≤

2

�i
�i ⩽

2(1 + 8a�)

�
21−2

i

�.

It follows :

But it is easy to see that 21−2i ⩾ 22−2
i+1 . Finally we get

Ki ∶= ‖Σi‖ ≤ ‖Σ0‖ + ‖Σi − Σ0‖
⩽ K +

�
2 − 22−2

i
�
2a

�
�

⩽ K +
4a

�
� ⩽ K(1 + 4a�).

��i,j − �0,j� ⩽ ‖Σi − Σ0‖ ⩽
4a

�
�for 1 ⩽ j ⩽ n.

|�i,k − �i,j| ⩾|�0,k − �0,j| − |�i,k − �0,k| − |�i,j − �0,j|
⩾|�0,k − �0,j|(1 − �|�i,k − �0,k| − �|�i,j − �0,j|)
⩾|�0,j − �0,k|(1 − 8a�) ⩾ 0.

�i ⩽
�

1 − 8a�
.

|�i,k − �i,j| ⩽|�0,k − �0,j| + |�i,k − �0,k| + |�i,j − �0,j|

�i ⩾
1

1 + 8a�
�.

‖Σi+1 − Σ0‖ ⩽ ‖Si‖ + ‖Σi − Σ0‖
⩽

2(1 + 8a�)

�
21−2

i

� +
�
2 − 22−2

i
�
2a

�
�

⩽

�
2 − 21−2

i

(2 − 1)
�
2a

�
� since 1 + 8a� = a

⩽

�
2 − 21−2

i
�
2a

�
�
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Hence we can also write

Using more the Weyl’s bound we can easily get that

Now we bound �2
i+1

K2
i+1

‖Zi+1‖ . We have

Since ‖Xi‖, ‖Yi‖ ≤ �i(‖Δi‖ + Ki‖Zi‖) ⩽ 2

�iKi

�i , we can write

On the other hand

Hence

It follows

‖Σi+1 − Σ0‖ ⩽

�
2 − 22−2

i+1
�
2a

�
�.

Ki −
2a

�i
� ⩽ ‖Σi‖ − ‖Σi+1 − Σi‖ ⩽ Ki+1 ⩽ ‖Σi‖ + ‖Σi+1 − Σi‖ ⩽ Ki +

2a

�i
�

�i

1 + 4a�
⩽ �i+1 ⩽

�i

1 − 4a�
.

Zi+1 =ZiXi + YiZi + Yi
(
Zi + In

)
Xi.

�2
i+1

K2
i+1

‖Zi+1‖ ⩽
�2
i+1

K2
i+1

�3
i
K3
i

4�2
i
+

�2
i+1

K2
i+1

�4
i
K4
i

4�3
i
+

�2
i+1

K2
i+1

�2
i
K2
i

4�2
i

⩽4
�
2 + �i

���i+1Ki+1

�iKi

�2

�2
i

⩽4
�
2 + �i

��1 + 2a�

1 − 4a�

�2

�2
i

Δi+1 =ΔiXi + YiΔi + Yi
(
Δi + Σi

)
Xi.

�2
i+1

Ki+1‖Δi+1‖ ⩽
�2
i+1

Ki+1

�3
i
K2
i

4�2
i
+

�2
i+1

Ki+1

�4
i
K3
i

4�3
i
+

�2
i+1

Ki+1

�2
i
Ki

4�2
i

⩽4
�
2 + �i

��2
i+1

Ki+1

�2
i
Ki

�2
i

⩽4
�
2 + �i

� 1 + 2a�

(1 − 4a�)2
�2
i
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This completes the proof of the two induction hypothesis (22–23) at order i + 1 . Let 
Wi =

∏i

k=0
(In + Xk) . Since

Consequently,

Hence W∞ is invertible and E0 = E∞W
−1
∞

 . This implies that E0 is invertible. 
Moreover,

We deduce that

In the same way we show that F0 is invertible and

�i+1 ⩽4(2 + �)
(
1 + 2a�

1 − 4a�

)2

�2
i

⩽8(2 + �)
(
1 − 6�

1 − 12�

)2

� 21−2
i+1

�

⩽21−2
i+1

� since 8(2 + �)
(
1 − 6�

1 − 12�

)2

� ⩽ 1 for � ⩽ 0.033.

‖Xk‖ ⩽
2

�kKk

�k

⩽
2(1 + 8a�)

�K(1 − 4a�)
�21−2

k

⩽
2

�K(1 − 12�)
�21−2

k

‖W∞ − In‖ ⩽
�
i⩾0

�
1 +

2

�K(1 − 12�)
�21−2

i

�
− 1

⩽
4

�K(1 − 12�)
� from Lemma 1

⩽
0.22

�K
since � ⩽ 0.033..

‖Wi −W∞‖ ⩽‖Wi‖
������
1 −

�
k⩾i+1

(1 + ‖Xk‖)
������

⩽
�
1 + ‖Wi − In‖

�������
�
k⩾0

�
1 +

2

�K(1 − 12�)
� × 21−2

k+i+1

�
− 1

������
⩽(1 + 0.22) ×

4

�K(1 − 12�)
× 21−2

i+1

� from Lemma 1

⩽
8.1

�K
× 21−2

i+1

�.

‖Ei − E∞‖ ⩽
8.1

�K
× 21−2

i+1‖E0‖�.
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Finally

The theorem is proved.   ◻

Proposition 4 The complexity of one Newton iteration in Theorem 3 is in O(n3).

Proof The computation of all the entries xi,j , yi,j of Xi and Yi by the formulas (13–17) 
requires in total O(n2) arithmetic operations. The computation of Zi,Δi, Si,Ei+1,Fi+1 , 
which requires 6 backward stable matrix multiplications and diagonal matrix opera-
tions, has a complexity in O(n3) . Consequently, the complexity of each iteration is in 
O(n3) .   ◻

Remark 1 It is possible to generalize this approach to the case where the diagonal 
matrices are replaced by Jordan matrices.

4  Newton‑like method for two simultaneously diagonalizable 
matrices

Let M1,M2 be two commuting matrices in Wn , thus M1 and M2 are simulta-
neously diagonalizable. We aim to find E,F ∈ GLn which diagonalize simul-
taneously M1,M2 so that: FMkE = Σk ∣ k ∈ {1, 2}, and Σ1,Σ2 ∈ D

�
n
 . This 

equivalent to find the numerical solution of f (E,F,Σ1,Σ2) = 0 such that 
f ∶ (E,F,Σ1,Σ2) ↦ (FM1E − Σ1,FM1E − Σ1)

We consider as before the perturbations E + EX , F + YF and Σk + Sk of respec-
tively E, F and Σk for k∈ {1, 2} . Letting Zk = FMkE − Σk for k = 1, 2 , we have:

By assuming Z1, Z2 are of small norm, the linear system to solve from Equation (24) 
is the following

‖Fi − F∞‖ ⩽
8.1

�K
× 21−2

i+1‖F0‖�.

‖Σi − Σ∞‖ ⩽
�
k⩾i

‖Σk+1 − Σk‖

⩽
�
k⩾i

2

�2
k
Kk

�k

⩽

��
k⩾0

2−2
k

�
21−2

i 2

�2K(1 − 12�)(1 − 8�)
�

⩽ 0.82 × 2.25 × 21−2
i �

�K
since

�
k⩾0

2−2
k

⩽ 0.82 and � ⩽ 0.033.

⩽ 1.85 × 21−2
i

�0.

(24)
(F + YF)Mk(E + EX) − (Σk + Sk)

= Zk − Sk + ΣkX + YΣk + ZkX + YZk + Y(Zk + Σk)X
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A solution of (25) is given by the following lemma.

Lemma 3 Let Σk = diag(�k
1
,… , �k

n
) , Zk = (zk

i,j
)1≤i,j≤n be given matrices in ℂn×n for 

k ∈ {1, 2} . Assume that 
|||||
�1
j
�2
j

�1
i
�2
i

|||||
≠ 0 for i ≠ j . Let X, Y, and Sk be the matrices defined 

by

Then we have

Moreover

where � = max(‖Z1‖, ‖Z2‖) , � = max

⎛
⎜⎜⎜⎜⎝
1,maxi≠j

1

�����
�1

i
�1

j

�2

i
�2

j

�����

⎞⎟⎟⎟⎟⎠
 , K = max(1,maxi,k |�k

i
|).

Proof It is easy to verify that the Eq. (31) implies that for i ≠ j,

and that the solution of these equations is given by the formula (27), (29). Choosing 
xi,i = yi,i=0, we take Sk = diag(Zk + ΣkX + YΣk) = diag(Zk) since ΣkX + YΣk is an 

(25)Zk − Sk + ΣkX + YΣk =0, k = 1, 2

(26)xi,i =0

(27)xi,j =

|||||
�1
j
z1
i,j

�2
j
z2
i,j

|||||
|||||
�1
i
�1
j

�2
i
�2
j

|||||

, i ≠ j

(28)yi,i =0

(29)yi,j = −

|||||
�1
i
z1
i,j

�2
i
z2
i,j

|||||
|||||
�1
i
�1
j

�2
i
�2
j

|||||

, i ≠ j

(30)Sk =diag(Zk), k = 1, 2.

(31)Zk − Sk + ΣkX + YΣk =0, k = 1, 2

(32)‖X‖, ‖Y‖ ⩽2��K

�k
i
xi,j + �k

j
yi,j + zk

i,j
=0
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off-matrix, to satisfy the Eq. (31). The bounds (32) follows easily from (27), (29).  
 ◻

Theorem 5 Let E0 , F0 ∈ GLn and Σ0,k = diag(�k
0,1
,… , �k

0,n
) ∈ D

�
n
 , k = 1, 2 , be given 

and let define the sequences for i ⩾ 0 and k = 1, 2 by:

where Xi , Yi are defined by the formulas (26–29). Let �0 = max(‖Z0,1‖, ‖Z0,2‖) , 

�0 = max

⎛
⎜⎜⎜⎜⎝
1,maxi≠j

1

�����
�1

0,i
�1

0,j

�2

0,i
�2

0,j

�����

⎞
⎟⎟⎟⎟⎠
 and K0 = max(1,maxj,k |�k

0,j
|) . Assume that

Then the sequences (Σi,k,Ei,Fi)i⩾0 converge quadratically to the solution of 
FMkE − Σk for k = 1, 2 . More precisely E0 and F0 are invertible and

Proof Let us denote for each i ⩾ 0,

where �k
i,1
,… , �k

i,n
 are the diagonal entries of Σ

i,k
 . Let us show by induction on i that

 These inequalities clearly hold for i = 0 . Assuming that the induction hypothesis 
holds for a given i and let us prove it for i + 1 . We can notice that �i ≤ 1 . In fact by 
induction hypothesis, we have �i ≤ 21−2

i

�0 and from (33) �0 =
u

4�2
0
K3
0

≤ 1 , since u ≤ 1 

Zi,k =FiMkEi − Σi,k

Si,k =diag
(
Zi,k

)

Ei+1 =Ei

(
In + Xi

)

Fi+1 =
(
In + Yi

)
Fi

Σi+1,k =Σi,k + Si,k,

(33)u ∶= 4�0�
2
0
K3
0
⩽0.094.

‖Ei − E∞‖ ⩽1.46 × 21−2
i+1‖E0‖u

‖Fi − F∞‖ ⩽1.46 × 21−2
i+1‖F0‖u.

𝜀 = 𝜀0 𝜀i = max(‖Zi,1‖, ‖Zi,2‖)

𝜅 = 𝜅0 𝜅i = max

⎛⎜⎜⎜⎜⎝
1, max1⩽j<k⩽n

1

�����
𝜎1

i,j
𝜎1

i,k

𝜎2

i,j
𝜎2

i,k

�����

⎞⎟⎟⎟⎟⎠
K = K0 Ki = max

�
1,maxj,k

�
�𝜎k

i,j
�
��

,

(34)�i ⩽2
1−2i�

(35)‖Σi,k − Σ0,k‖ ⩽

�
2 − 22−2

i
�
�
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and �0,K0 ≥ 1 . As 21−2
i

≤ 1, ∀i ≥ 0 , we have �i ≤ 1 . We first prove that 
‖Σi+1,k − Σ0,k‖ ⩽ (2 − 22−2

i+1

)� under the assumption ‖Σi,k − Σ0,k‖ ⩽ (2 − 22−2
i

)� . To 
do this, at the first step we show that this implies Ki ≤ K + 2� and 
�i ≤

�

1 − 8��(K + �)
 . Let us prove Ki ⩽ K + 2� . We have

Let us show that �i ≤
�

1 − 8��(K + �)
 . In fact, if the �i,jk ’s are the diagonal values of 

Σk
i
 , we have ��k

i,j
− �k

0,j
� ⩽ ‖Σi,k − Σ0,k‖ ⩽ 2� for 1 ⩽ j ⩽ n and k = 1, 2 . It follows :

      Now,

Finally, we get :

To prove (35) it is sufficient to write

Let us prove (34). Since we have

we deduce

Ki ∶= ‖Σi‖ ≤ ‖Σ0‖ + ‖Σi − Σ0‖
⩽ K +

�
2 − 22−2

i
�
�

⩽ K + 2�.

|�1
i,j
�2
i,k
− �1

0,j
�2
0,k
| =|�1

i,j
�2
i,k
− �1

0,j
�2
i,k

+ �1
0,j
�2
i,k
− �1

0,j
�2
0,k
|

=|�2
i,k
(�1

i,j
− �1

0,j
) + �1

0,j
(�2

i,k
− �2

0,k
)|

⩽2�|�2
i,k
| + 2�|�1

0,j
|

⩽2�(K + 2�) + 2�K = 4�(K + �).

|�1
i,j
�2
i,k
− �1

i,k
�2
i+1,j

| ⩾
|�1

0,j
�2
0,k

− �1
0,k
�2
0,j
| − |�1

0,j
�2
0,k

− �1
i+1,j

�2
i,k
| − |�1

i,k
�2
i,j
− �1

0,k
�2
0,j
| ⩾

|�1
0,j
�2
0,k

− �1
0,k
�2
0,j
|(1 − 8k�(K + �)).

�i ⩽
�

1 − 8��(K + �)
.

‖Σi+1,k − Σ0,k‖ ⩽ ‖Si,k‖ + ‖Σi+1,k − Σ0,k‖
⩽ �i +

�
2 − 22−2

i
�
�

⩽

�
21−2

i

+ 2 − 22−2
i
�
� ⩽

�
2 − 22−2

i+1
�
�.

Zi+1,k =Zi,kXi + YiZi,k + Yi
(
Zi,k + Σi,k

)
Xi.
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It follows

Let Wi =
∏i

k=0
(In + Xk) . Since

Consequently,

Hence W∞ is invertible and E0 = E∞W
−1
∞

 . This implies that E0 is invertible. 
Moreover,

‖Zi+1,k‖ ⩽2�2
i
�iKi + 2�2

i
�iKi + 4�2

i
�2
i
K2
i

�
�i + Ki

�

⩽4�2
i
�2
i
Ki + 4�2

i
�2
i
K2
i

�
1 + Ki

�
since �i ⩽ 1 and �i ⩾ 1

⩽3 × 4�2
i
�2
i
K3
i
= 12�2

i
�2
i
K3
i

since Ki ⩾ 1.

�i+1 ⩽
12�2(K + 2�)3

(1 − 8��(K + �))2
�2
i

⩽
12��2(K + 2�)3

(1 − 8��(K + �))2
22−2

i+1

�

⩽3

(
1 +

u

2

)3

(
1 − 2u

(
1 +

u

4

))2
u22−2

i+1

� since
�

K
⩽

u

4
, �� ⩽

u

4

⩽21−2
i+1

� since 3

(
1 +

u

2

)3

(
1 − 2u

(
1 +

u

4

))2
⩽ 2−1foru ⩽ 0.094.

‖Xl‖ ⩽2�lKl�l

⩽2
�

1 − 8��(K + �)
(K + 2�)�21−2

l

⩽

�
1 +

u

2

�
u

2
�
1 − 2u

�
1 +

u

4

��21−2l

⩽0.65 × 21−2
l

u sinceu ⩽ 0.094.

‖W∞ − In‖ ⩽
�
i⩾0

(1 + 0.65 × 21−2
i

u) − 1

⩽1.3u from Lemma 1

⩽1.3 × 0.094 = 0.1222
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We deduce that

In the same way we show that F0 is invertible and

The theorem is proved.   ◻

5  Convergence of a pencil of simultaneously diagonalizable 
matrices.

In this section we present two strategies to solve the system (1) of a pencil of 
commuting matrices (Mi)1≤i≤p in Wn . The first strategy is trivial and consists of 
finding the common diagonalizers E and F of the pencil by numerically solving 
one of the systems (FE − In,FM1E − Σ1) = 0 or (FM1E − Σ1,FM2E − Σ1) = 0 
using Theorem 3 or Theorem 5. Next we deduce the remaining diagonal matrices 
Σi using the formulas

where E( : , k) is the k-th column in E.
In this strategy we use that a diagonalizer of one or two matrices of the pen-

cil can diagonalize the other matrices of the pencil. We note that, in general, we 
don’t have this property for simultaneously diagonalizable matrices, where, for 
instance, it is possible to find a diagonalizer of M1 which is not a common diago-
nalizer for the other matrices of the pencil. Nevertheless, this property holds here 
since we suppose that the matrices Mi have simple eigenvalues.

Another strategy is to find a “good” linear combination of the Mi’s. This is 
based on Lemma 4 and Theorem 6.

‖Wi −W∞‖ ⩽‖Wi‖
������
1 −

�
k⩾i+1

�
1 + ‖Xk‖

�������
⩽
�
1 + ‖Wi − In‖

�������
�
k⩾0

�
1 + 0.059 × 21−2

k+i+1
�
− 1

������
⩽(1 + 0.1222) × 1.3 × 21−2

i+1

u

⩽1.46 × 21−2
i+1

u.

‖Ei − E∞‖ ⩽1.46 × 21−2
i+1‖E0‖u.

‖Fi − F∞‖ ⩽1.46 × 21−2
i+1‖F0‖u.

Σi,k =
E(∶, k)∗MiE(∶, k)

E(∶, k)∗E(∶, k)
1 ⩽ k ⩽ n, 2 or 3 ⩽ i ⩽ p,
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Lemma 4 Let us suppose that the Mi commute pairwise and they are linearly inde-
pendent, i.e., 

∑p

i=1
aiMi = 0 ⇒ ai = 0, i = 1 ∶ p . Let E ∈ GLn and Σi ∈ D

�
n
 be such 

that

Let S ∈ ℂn×p and the column i of S is the diagonal of Σi . Let � = (�1, … , �n) and 
Σ = diag(�) . Then the matrix S has a full rank and � = (S∗S)−1S∗� satisfies

Proof Since the matrices Mi are simultaneously diagonalizable there exists E be 
such that E−1MiE − Σi = 0 . The condition

is written as S� = � where S ∈ ℂn×p . The assumption ∑p

i=1
aiMi = 0 ⇒ ai = 0, i = 1 ∶ p implies that the matrix has a full rank. 

Consequently,

The lemma follows.   ◻

Theorem 6 Let M1,… ,Mp ∈ ℂn×n be p simultaneously diagonalizable matrices and 
verify the assumption of linearly independent. Let us consider matrices E0 , F0 and 
Σ0,i = diag(F0ME0) , i = 1 ∶ p . Let us define the matrix S ∈ ℂn×p in which the col-
umn i is the diagonal of Σ0,i . Let � =

(
1, e

2i�

n ,… , e
2i(n−1)�

n

)
 , Σ = diag(�) and 

� = (S∗S)−1S∗� . We consider the system

where M =
∑p

i=1
�iMi . If

then (F0,E0,Σ) satisfies the condition (21) of Theorem 3.

Proof In this case the quantity � defined in the Theorem 3 is equal to

E−1MiE − Σi =0, i = 1 ∶ p.

p∑
i=1

�iE
−1MiE − Σ =0.

p∑
i=1

�iΣi − Σ =0

� =(S∗S)−1S∗�.

(36)
(

EF − In
FME − Σ

)
=0

n2max
�‖Z0‖, ‖Δ0‖

�
⩽16 × 0.033

� =
1

2 | sin
(

�

n

)
|

⩽
n

4
since | sin

(
�

n

)
| ⩾ 2

n
for n ⩾ 2.
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Since K0 = 1 we get

The condition

gives the result.   ◻

6  Numerical illustration

We use a Julia implementation of the Newton sequences in the numerical experi-
ments. The experimentation has been done on a Dell Windows desktop with 8 GB 
memory and Intel 2.3 GHz CPU. We use the Julia package ArbNumerics for the 
computation in high precision.

6.1  Simulation

In this section we apply the Newton iterations presented in Theorem 3 (resp. Theo-
rem 5) on examples of diagonalizable matrices (resp. of two simultaneously diag-
onalizable matrices). We validate experimentally the sufficiency of the condition 
established in Theorem 3 (resp. Theorem 5) to have a quadratic sequence (Tables 1, 
2, 3 and 4). On the other hand, as this condition is sufficient but not necessary, 
we show through some other examples how this Newton sequence starting from 
an initial point which is not verifying this condition could converge quadratically 
(Tables 5, 6, 7 and 8). We note that the the computation in the aforementioned tables 
is done in high precision. Nevertheless, we test also the two Newton-type sequences 
using machine precision (Tables  9 and 10) and this to show that these sequences 
have the same numerical behavior of a classical Newton method, i.e., if the solution 
is in the neighborhood of the initial point the Newton-type iterations will converge 

�0 = max(�2
0
K2
0
‖Z0‖, �2

0
K0‖Δ0‖) ≤ n2

16
max(‖Z0‖, ‖Δ0‖).

max(‖Z0‖, ‖Δ0‖) ≤ 0.033
16

n2
,

Table 1  The computational 
results throughout 7 
iterations of an example of 
implementation of Test-1 with 
𝕂 = ℝ, n = 10 and e = 6 in 
precision 1024

Iteration � ∶= max(�2

0
K2

0
‖Z0‖, �2

0
K0‖Δ0‖) ≤ 0.033 errres

1 0.00131 9.33e–6
2 2.39e–8 1.06e–10
3 1.68e–18 7.49e–21
4 2.93e–38 1.31e–40
5 4.21e–78 1.87e–80
6 1.17e–157 5.24e–160
7 4.16e–288 6.20e–293
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Table 2  The computational 
results throughout 7 
iterations of an example of 
implementation of Test-1 with 
𝕂 = ℂ, n = 10 and e = 6 in 
precision 1024

Iteration � ∶= max(�2

0
K2

0
‖Z0‖, �2

0
K0‖Δ0‖) ≤ 0.033 errres

1 0.02581 2.76e–4
2 3.49e–6 2.33e–8
3 9.51e–14 6.34e–16
4 5.31e–29 3.54e–31
5 1.96e–59 1.31e–61
6 3.02e–120 2.01e–122
7 4.58e–242 3.05e–244

Table 3  The computational 
results throughout 7 
iterations of an example of 
implementation of Test-2 with 
𝕂 = ℝ, n = 10 and e = 6 in 
precision 1024

Iteration 4�2K3� ≤ 0.094 errres

1 7.65e–2 6.72e–6
2 1.73e–7 1.52e–11
3 5.58e–18 4.90e–22
4 5.49e–39 4.82e–43
5 3.10e–81 2.73e–85
6 2.28e–165 2.01e–169
7 2.20e–279 1.94e–283

Table 4  The computational 
results throughout 7 
iterations of an example of 
implementation of Test-2 with 
𝕂 = ℂ, n = 10 and e = 6 in 
precision 1024

Iteration 4�2K3� ≤ 0.094 errres

1 6.86e–3 9.16e–6
2 7.14e–9 9.53e–12
3 9.51e–21 1.26e–23
4 6.69e–44 8.92e–47
5 3.77e–90 5.04e–93
6 2.59e–182 3.45e–185
7 1.65e–281 2.20e–284

Table 5  The residual error 
throughout 7 iterations given 
by the implementation of 
Test-1 with 𝕂 = ℝ, e = 3 and 
n = 10, 50, 100 in precision 
1024

Iteration n = 10 n = 50 n = 100

1 8.57e–3 7.93e–2 3.22e–2
2 1.91e–4 5.76e–2 1.38e–2
3 1.58e–8 6.19e–3 6.12e–4
4 4.79e–16 8.74e–5 5.42e–7
5 3.56e–31 1.31e–8 3.83e–13
6 1.39e–61 2.39e–16 1.80e–25
7 1.91e–122 7.03e–32 3.81e–50
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Table 6  The residual error 
throughout 7 iterations given 
by the implementation of 
Test-1 with 𝕂 = ℂ, e = 3 and 
n = 10, 50, 100 in precision 
1024

Iteration n = 10 n = 50 n = 100

1 8.84e–3 9.75e–2 1.61e–2
2 8.59e–6 6.39e–5 1.03e–4
3 3.91e–11 3.99e–9 4.68e–9
4 9.87e–22 1.87e–17 3.13e–17
5 7.60e–43 4.42e–34 8.84e–34
6 5.14e–85 2.50e–67 9.45e–67
7 2.64e–169 8.28e–134 1.05e–132

Table 7  The residual error 
throughout 7 iterations given 
by the implementation of 
Test-2 with 𝕂 = ℝ, e = 3 and 
n = 10, 50, 100 in precision 
1024

Iteration n = 10 n = 50 n = 100

1 2.91e–2 4.57e–3 1.01e–2
2 7.97e–5 1.03e–6 1.31e–6
3 4.21e–9 1.69e–11 3.71e–11
4 1.07e–16 2.42e–23 1.23e–22
5 3.92e–33 1.18e–44 1.46e–43
6 2.63e–64 1.02e–89 1.67e–86
7 1.71e–128 3.20e–177 9.01e–172

Table 8  The residual error 
throughout 7 iterations given 
by the implementation of 
Test-2 with 𝕂 = ℂ, e = 3 and 
n = 10, 50, 100 in precision 
1024

Iteration n = 10 n = 50 n = 100

1 7.33e–3 3.14e–3 5.52e–3
2 3.49e–6 7.48e–7 1.35e–6
3 2.91e–12 1.11e–13 1.19e–13
4 2.04e–24 2.54e–27 1.68e–27
5 8.23e–49 3.04e–54 2.19e–54
6 1.88e–97 3.41e–108 1.50e–108
7 1.31e–194 1.91e–215 4.53e–216

Table 9  The residual error throughout 5 iterations given by the implementation of Test-1 with 
𝕂 = ℝ, e = 3 and n = 10, 20, 30 , in double precision

Iteration n = 10 n = 20 n = 30

1 4.78e − 3 1.01e − 2 1.01e − 2

2 4.71e − 3 2.55e − 3 1.14e − 3

3 2.29e − 5 1.97e − 5 4.08e − 7

4 1.43e − 9 2.36e − 10 2.26e − 13

5 4.06e − 15 1.23e − 14 5.04e − 14

‖M − E�����Σ�����E
−1
�����

‖Frob 9.49e − 15 2.83e − 14 7.45e − 14

‖M − E������Σ������E
−1
������

‖Frob 2.96e − 15 1.01e − 14 3.42e − 14
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towards this solution with a few number of iterations and the residual error obtained 
at the end is in double precision.

This allows us to have an heuristic estimation on the numerical dependency of 
the Newton sequences from this condition to converge. Furthermore, these examples 
reveal the possibility of achieving computation in such problem with high precision. 
For example, in the case of a diagonalizable matrix of simple eigenvalues, we can 
compute its eigenvalues using one of the solvers which works with a double preci-
sion. Then we take this point as an initial point for the Newton sequence of Theo-
rem 3 in order to increase the precision. Hereafter, we give some details about the 
tests: Test-1 for Theorem 3 and Test-2 for Theorem 5, considered in this section.

Test-1. Let 𝕂 = ℝ or ℂ , M = EΣE−1 + 10−eA , where e ∈ {3, 6} . The matrices E, 
Σ , and A ∈ �n×n are chosen randomly following standard normal distributions such 
that E is invertible, Σ is diagonal with n different diagonal entries and A is a random 
square matrix obeying normal distribution of size n and Frobenius norm equal to 1. 
Since M is a small perturbation of EΣE−1 , more precisely ‖M − EΣE−1‖Frob = 10−e , 
M is a diagonalizable matrix of simple eigenvalues. Herein, we apply the Newton 
iteration of Theorem 3 on M with initial point E0 = E , F0 = E−1 and Σ0 = Σ . The 
residual error reported in this test at iteration k is given by:

Test-2. Let 𝕂 = ℝ or ℂ , M1 = F−1Σ1E
−1, M2 = F−1Σ2E

−1 , where E, F, Σ1 and 
Σ2 ∈ �n×n are randomly sampled according to standard normal distributions, such 
that E and F are invertible, Σ1 and Σ2 are diagonal with n different diagonal entries. 
The Newton iteration in Theorem 5 is applied on M1 and M2 with initial point E0 , F0 , 
Σ0,1 and Σ0,2 , such that these matrices are obtained by applying a small perturbation 
on respectively E, F, Σ1 and Σ2 as follows:

E0 = E + 10−eA , F0 = F + 10−eB , Σ0,1 = Σ1 + 10−eC , Σ0,2 = Σ2 + 10−eD , where 
e ∈ {3, 6} , A and B (resp. C and D) are random square matrices (resp. random diag-
onal matrices with different diagonal entries) of size n and Frobenius norm equal 
to 1, with entries in � following standard normal distributions. The residual error 
reported in this test at iteration k is given by:

errres = max
�‖FkEk − In‖, ‖FkMEk − Σk‖

�
.

errres = max
�‖FkM1Ek − Σk,1‖, ‖FkM2Ek − Σk,2‖

�
.

Table 10  The residual error 
throughout 5 iterations given 
by the implementation of 
Test-2 with 𝕂 = ℝ, e = 3 
and n = 10, 20, 30 , in double 
precision

Iteration n = 10 n = 20 n = 30

1 2.71e–3 1.21e—2 4.64e—3
2 1.36e–6 4.91e—6 2.24e—6
3 1.39e–12 2.57e—11 4.74e—11
4 6.16e–15 8.97e–14 1.55e–13
5 7.04e–15 8.09e–14 1.53e–13
max(‖M1 − EΣ1E

−1‖Frob,‖M
2
− EΣ

2
E−1‖Frob)

3.74e–15 4.13e–14 8.21e–14
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We notice that the condition established in Theorem 3 (resp. Theorem 5) is reached 
in Test-1 (resp. Test-2) for matrices of size 10 with order of perturbation equal to 
10−6 , and we can see in Tables 1, 2, 3 and 4 that the Newton sequences with ini-
tial point verifying the condition in the associated theorem converge quadratically. 
We can notice also that by increasing the perturbation up to 10−3 (the initial point 
does not verify the condition in the associated theorem), the Newton sequences con-
verge quadratically for different sizes of matrices n = 10, 50, 100 (see Tables 5, 6, 7 
and 8). Moreover, we can notice in Table 9 the Newton-type iteration of Theorem 3 
applied in double precision converges with a few number of iterations ∼ 5 and the 
final residual error measured with the Frobenius norm is of order machine precision 
∼ 10−14 and it is of the same order obtained by the standard Julia method eigen to 
compute the eigen decomposition. The same remarks are valid for Table 10 where 
the Newton-type sequence of Theorem 5 needs, in double precision, a few iterations 
to converges towards the solution given by using the Frobenius norm a residual error 
of order machine precision.

6.2  Cauchy matrix

In this section we present an example for a Cauchy matrix of size n = 13 of entries 
ai,j =

1

i+j
, ∀1 ≤ i, j ≤ 13 , that illustrates how the Newton-type iteration can be used 

to increase the accuracy of the eigenvalues. We take the eigen decomposition given 
by the standard Julia method eigen from the package LinearAlgebra as an 
initial point of Newton sequences in Theorem 3 with 5 iterations. The computation 
is done with the precision 1024 using ArbNumerics package. The initial point 
given by eigen is in double precision. It is converted to the precision 1024 using 
ArbNumerics package, in order to apply Newtons iterations with this precision of 
1024 bits. In Table 11 we report the eigenvalues given by eigen ( ������ ) and the 
eigenvalues rounded to the double precision given by Newton-type sequence 
( ������� ) initialized with eigen. We also report the relative error |�������−������|

�������
 in 

order to show the refinement amount realized by the Newton method. As we can see 
the matrix of this example is ill-conditioned (Cauchy matrices are in general ill-con-
ditioned). There is a cluster of eigenvalues nearby zero. The accuracy enhancement 
obtained by applying Newton-type iterations can be clearly seen in Table 11, in par-
ticular for the first four smallest eigenvalues. For instance, the smallest eigenvalue 
returned by eigen is of order 10−17 close to the second smallest eigenvalues of 
order 10−16 . Newton-type method shows that the smallest eigenvalue of the order 
10−19 yields a large relative error ∼ 39.33 . This also shows that all the eigenvalues 
are well-separated.

6.3  Sub‑matrix iterations

It is possible to adapt the proposed method, taking into account the condition of the 
eigenvalue �i given by the quantity
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Theoretical results imply that the computation of clusters of eigenvalues is ill-con-
ditioned. However, one can apply Theorem 3 on sub-matrices to improve the well-
conditioned eigenvalues. We denote

and p the index such that Σ =

(
Σp

Σn−p

)
 , Σp = diag(�1,… , �p) , 

Σn−p = diag(�p+1,… , �n) and |𝜎i − 𝜎j| > 𝛿 for all 1 ⩽ i ≤ p and i < j ⩽ n . We adapt 
Newton iteration to the block associated with the well-conditioned eigenvalues by 
defining the matrices X, Y and S as follows:

Table 12 (resp. Table 13) shows the residual error errres as in Test-1 for the Cauchy 
matrix of size 200 (resp. the Rosser matrix of size 256 [37]) by applying the 

�(�i) = max
i≠j

(
1,

1

|�i − �j|
)

� =

�
K‖Δ0‖
0.033

xi,i =0

xi,j =

⎧⎪⎨⎪⎩

−𝛿i,j + zi,j𝜎j

𝜎i − 𝜎j
if �𝜎i − 𝜎j� > 𝛿

0 otherwise

Y = − Z − X

S =diag(−Δ + ZΣ).

Table 11  The relative error between ������ from the method eigen and ������� from the Newton-type 
method for the Cauchy matrix 

(
1

i+j

)
1≤i,j≤13

Eigenvalue ������ �������
|�������−������|

�������

1 2.4030587641505818e-17 5.958203769841865e-19 39.33
2 1.8824087522342697e-16 1.7156976132548192e-16 0.09716
3 2.3152722725223998e-14 2.3178576801522747e-14 0.00111
4 1.9513972147589434e-12 1.951356013568409e-12 2.11e-5
5 1.1466969172503778e-10 1.1466967568738049e-10 1.39e-7
6 4.991788233415145e-9 4.991788235245136e-9 3.66e-10
7 1.6668681228080362e-7 1.666868122813953e-7 3.54e-12
8 4.360227301207107e-6 4.360227301206033e-6 2.46e-13
9 9.040674871074817e-5 9.040674871075823e-5 1.11e-13
10 0.0014925044272821445 0.0014925044272821172 1.83e-14
11 0.01955788569925287 0.01955788569925287 4.81e-17
12 0.19958813407010345 0.19958813407010337 4.64e-16
13 1.3693334145989837 1.3693334145989824 9.98e-16
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aforementioned sequences, the initial point is given by the Julia method eigen. 
The computation is done in precision 1024.

7  Conclusion

Taking a Newton approach towards systems of equations describing the simultane-
ous diagonalization problem of diagonalizable matrices, leads us to new algorithmic 
insights. We exhibit a Newton-type method without solving a linear system at each step 
as is the case of a classical Newton method. The numerical experiments corroborate the 
quadratic convergence predicted by the theoretical analysis.

We focused on the regular case. Some improvements and extensions can be con-
sidered, such as the treatment of clusters of eigenvalues. Another direction that can be 
explored, is the construction of higher-order methods.
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Table 12  The residual error 
throughout 6 iterations with the 
Cauchy matrix of size 200

Iteration p = 12 , � = 4.51e − 7 p = 5 , � = 4.51e − 7

1 2.45e–15 2.35e–15
2 9.63e–26 3.75e–29
3 1.56e–36 1.21e–53
4 1.54e–45 1.81e–83
5 1.15e–54 3.49e–110
6 5.08e–64 8.67e–137

Table 13  The residual error 
throughout 6 iterations with the 
Rosser matrix of size 256

Iteration p = 11 , � = 1.11e–3 p = 5 , � = 1.11e–3

1 7.15e–12 1.65e–12
2 7.18e–20 7.18e–20
3 1.42e–40 1.81e–41
4 1.73e–53 1.56e–85
5 7.17e–66 1.75e–119
6 8.79e–79 8.11e–153
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