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via l’algèbre supérieure

JURY
Francesco
COSTANTINO
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Résumé
Dans cette thèse, nous étudions les théories des champs quantiques topologiques

(TQFT) construites à partir d’une catégorie enrubannée. Nous sommes particulièrement
intéressés par le cas non-semisimple. Notre angle d’attaque est de faire communiquer la
topologie de basse dimension avec l’algèbre supérieure. Dans un sens, les constructions ex-
plicites basées sur des écheveaux guident l’algèbre supérieure vers les exemples qu’on sait
intéressants. Dans l’autre, l’hypothèse du cobordisme prédit de nouvelles constructions.

Nous construisons des TQFTs de dimension 4 à partir de catégories non-semisimples et
finies qui vérifient des conditions de non-dégénérescence. Cette contruction est un travail
en collaboration avec Costantino, Geer et Patureau-Mirand. À l’inverse de la plupart des
constructions non-semisimples précédentes, notre TQFT est bien définie sur tous les 4-
cobordismes. Cette propriété était en fait prévisible par l’hypothèse du cobordisme. Notre
construction est très explicite et nous étudions quelques exemples. Sous des hypothèses de
non-dégénérescence supplémentaire, nous définissons des invariants de 3-variétés fermées
décorées, qui sont calculés par notre TQFT sur une 4-variété bordante. Nous prouvons
que ces invariants retrouvent les invariants de Lyubashenko renormalisés. Ils fournissent
l’ingrédient de base des 3-TQFTs de DGGPR, qui sont des généralisations non-semisimples
des TQFTs de Witten–Reshetikhin–Turaev.

Nous défendons l’idée que ce point de vue est très fructueux pour étudier ces théories
non-semisimples à la WRT, et qu’il permet de les voir comme des TQFTs pleinement
étendues. Quand la catégorie enrubannée V est modulaire, la (3+1)-TQFT que nous
définissons plus haut est inversible. Il avait déjà été montré par Brochier, Jordan, Snyder
et Safronov que la catégorie V est inversible vue comme un objet d’une 4-catégorie de
catégories tressées. Nous nous attendons naturellement à ce que la TQFT pleinement
étendue Z associée à V par l’hypothèse du cobordisme retrouve celle que nous avons
décrite plus haut. De plus, on devrait pouvoir retrouver les TQFTs de DGGPR en
appliquant les mêmes idées que plus haut. Plus précisément, nous nous attendons à ce
qu’il existe une condition de bord pleinement étendue à Z qui, composée avec la théorie
Z évaluée sur une variété bordante, retrouve DGGPR. Nous montrons que l’inclusion de
l’unité dans V , dont on s’attend à ce qu’elle soit associée à cette condition de bord, est,
en effet, suffisamment dualisable. Nous montrons en fait qu’elle est quasiment, mais pas
entièrement, 3-dualisable. Nous décrivons une version dite non-compacte de l’hypothèse
du cobordisme, et définissons la notion associée d’objet dualisable non-compact. Ces
objets donnent sous l’hypothèse du cobordisme des TQFTs partiellement définies, que
nous appelons non-compactes. Cette dualisabilité partielle explique précisément pourquoi
les TQFTs de DGGPR ne sont pas définies sur tous les 3-cobordismes. Nous conjecturons
que l’hypothèse du cobordisme, appliquée à l’inclusion de l’unité et à V , retrouve, par
une procédure que nous détaillons, les TQFTs de DGGPR.

Sur les surfaces, la 4-TQFT Z est décrite par l’homologie de factorisation, qui est
elle-même décrite par des catégories de modules sur les algèbres d’écheveaux internes
de Brochier, Ben-Zvi et Jordan. Nous donnons une correspondance précise entre ces
algèbres et les algèbres d’écheveaux à états de Lê, montrant en particulier qu’elles en
sont une généralisation raisonnable. Notre preuve est explicite et montre directement que
les algèbres d’écheveaux à états vérifient la propriété universelle qui définit les algèbres
d’écheveaux internes. De plus, nous montrons des propriétés de recollement pour n’importe
quelle catégorie enrubannée, un résultat que n’est pas connu pour d’autres généralisations
des algèbres d’écheveaux à états.
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Abstract
In this manuscript, we study Topological Quantum Field Theories built from a ribbon

tensor category. We are particularly interested in the non-semisimple case. The main
angle of this work is to make low-dimensional topology and higher algebra communicate.
In one direction, explicit constructions from skein theory guide the higher algebra towards
interesting examples. In the other, the cobordism hypothesis predicts new constructions.

We construct 4-dimensional TQFTs from non-semisimple finite tensor categories sat-
isfying some non-degeneracy conditions. This construction is joint work with Costantino,
Geer and Patureau-Mirand. Unlike most other non-semisimple constructions, this TQFT
is defined on every 4-cobordism. This feature was actually predictable from the cobordism
hypothesis. Our construction is very explicit and we study some examples. Under some
extra non-degeneracy conditions, we also provide an invariant of decorated 3-manifolds
which is computed by our TQFT on a bounding 4-manifold. We relate this invariant to
the renormalized Lyubashenko’s invariants. These invariants provide the building block
of DGGPR 3-dimensional TQFTs, which are non-semisimple variants of the well-known
Witten–Reshetikhin–Turaev TQFTs.

We argue that this point of view is very fruitful to understand these non-semisimple
WRT theories and enables one to understand them as fully extended TQFTs. In the case
where the ribbon category V is modular, the (3+1)-TQFT described above is invertible.
It is also shown by Brochier, Jordan, Snyder and Safronov that the category V is invertible
when thought of as an object of a 4-category of braided tensor categories. It is natural
to expect that the TQFT Z associated to V by the cobordism hypothesis coincides with
the one described above. Moreover, one should be able to recover DGGPR theories in a
similar way, in a fully extended setting. More precisely, it is expected that there exists
a fully extended boundary condition to Z which, when composed with Z on a bounding
manifold, recovers DGGPR. We show that the unit inclusion, expected to be associated to
this boundary condition under the cobordism hypothesis, is indeed sufficiently dualizable.
Actually, we show that it is almost, but not entirely, 3-dualizable. We describe a so-called
non-compact version of the cobordism hypothesis, and introduce the associated notion
of non-compact dualizable object. Such objects give a partially defined, which we call
non-compact, TQFT under the cobordism hypothesis. This explains precisely why the
DGGPR theories are not defined on every 3-cobordim. We conjecture that the cobordism
hypothesis applied on the unit inclusion and the modular category recovers, through a
construction we describe, the non-semisimple WRT theories.

On surfaces, the fully extended 4-TQFT is known to give factorization homology,
which is described as modules over the so-called internal skein algebras by Brochier, Ben-
Zvi and Jordan. We relate these internal skein algebras to Lê’s stated skein algebras and
study some of their properties. We give an explicit proof, and show that stated skein
algebras do satisfy the universal property defining internal skein algebras. In particular,
we argue that internal skein algebras are a very reasonable generalization of stated skein
algebras. Moreover, we show gluing properties of internal skein algebras in any ribbon
category, a result which is not known for other generalizations of stated skein algebras.
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Introduction

Quantum topology is a branch of mathematics inspired by modern quantum field the-
ory. No physics will be discussed in this manuscript, but many tools are either motivated
or inspired by physics.

Our main object of study will be Atiyah–Segal’s notion of an n-dimensional Topological
Quantum Field Theory (abbreviated n-TQFT). This notion encodes and formally defines
mathematically the physical notion of a Quantum Field Theory in a very particular case
where the theory is so-called topological, and does not depend on any metric structure.
It contains two kinds of data. The first are vector spaces, called state spaces, associated
to (n−1)-dimensional manifolds M . We think of them as the physical states on the space
M . The second is linear map between these state spaces associated to an n-dimensional
manifold whose boundary is decomposed into an incoming and an outgoing space. We call
such an n-manifold a cobordism. We think of them as space-times, and of the linear map
assigned to them as time evolution operators. This data should satisfy coherence relations
for gluing and disjoint union. Atiyah defines in [Ati88], following Segal’s Conformal Field
Theories [Seg88], an n-TQFT to be a symmetric monoidal functor

Z : Cob⊔n → Vect⊗k

where Cobn is the category of closed oriented smooth (n−1)-manifolds with n cobordisms
between them, and Vectk is the category of vector spaces over some field k with linear
maps between them.

Since Atiyah’s pioneering paper, the construction of Topological Quantum Field The-
ories (TQFTs) of smooth compact oriented manifolds has flourished. Witten predicted
in [Wit89] the existence of a 3-TQFT associated with Chern–Simons gauge theories. It was
constructed mathematically a few years later by Reshetikhin and Turaev [RT91, Tur94].
They developed a theory which we will refer to as skein theory. This is a strong example
of an event where ideas from physics gave birth to new insights in mathematics. These
TQFTs give rise to computable invariants of 3-manifolds and representations of mapping
class groups of surfaces that are very interesting from a purely mathematical perspective.

A skein, named after the English word for a piece of yarn, is a graph embedded in
a 3-manifold. We will furthermore demand that the graph is oriented, framed (it comes
equipped with a normal vector coming out of it at every point, or equivalently that the
graph is actually made of ribbons) and colored. By colored we mean that every edge
should be given a label from a fixed set of labels, and every vertex where edges meet
should be given a label from a label set that depends on the labels of the adjacent edges.
These set of labels actually arrange in a category C: its objects are the labels for edges,
and its morphisms give the labels for vertices. This category should moreover be endowed
with the structure of a ribbon category. The historical example is when C is the category
of representations of a simple algebraic group G, which is the gauge group of the Chern–
Simons theory. In this context, a loop Γ in a 3-manifold M coloured by a G-representation

7
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V corresponds to a function on the moduli space of flat G-principal bundles on M . It is
the function obtained by taking monodromy along Γ and trace in V . Skeins are considered
up to isotopy and skein relations: two skeins are equivalent when they correspond to the
same function.

Witten–Reshetikhin–Turaev (abbreviated WRT) 3-TQFTs take as input some finite
semisimple ribbon category satisfying some non-degeneracy condition, which they call
modular categories. Their TQFTs were generalized to non-semisimple inputs in, for ex-
ample, [KL01,BCGP16,DGG+22]. They also call their input categories modular, and we
will adopt the convention to include both semisimple and non-semisimple categories un-
der the word modular. These non-semisimple TQFTs have new properties, often proving
more powerful than their semisimple analogs. For example, non-semisimple TQFTs have
been shown to distinguish diffeomorphism types of homotopically equivalent lens spaces
which were not distinguished by semisimple TQFTs.

Crane and Yetter defined in [CY93] a 4-TQFT from the same kind of data. It was
noticed by Roberts [Rob95] that Crane–Yetter TQFTs could be described using skein
theory, making the relation between the two theories more obvious, but not very clear
yet. Something we haven’t mentioned yet is that WRT theories are not well-defined on the
usual category of cobordisms, but need some additional structure. The insight discovered
by Walker [Walb] is that this data corresponds to the value of the Crane–Yetter theory
on a bounding manifold. For example, given a closed 3-manifold M , one has to choose
a bounding 4-manifold W . It can be seen as a cobordism W : M → ∅ and via the
4-TQFT gives a linear map Z(W ) : Z(M) → k. Evaluating it on a preferred element
of Z(M) produces a scalar which coincides with the WRT 3-manifold invariant up to a
renormalization scalar. We say that the Crane–Yetter theory describes the anomaly of
WRT. This story is expected to extend in lower-dimensional manifolds. This is the point
of view we will adopt and try to develop in this manuscript.

It is legitimate to ask whether we will forever keep on discovering new interesting
TQFTs, or whether we will eventually have found them all. This raises the question of
classifying TQFTs: finding them all, understanding their properties and their similarities.
This is achieved in low dimensions, 0, 1 and 2, but becomes very hard in higher dimension.
However, for a particular class of TQFTs, called fully extended, or fully local, there is a very
strong classification result, the Cobordism Hypothesis. In these TQFTs cobordisms can
be cut into small pieces and glued back together, and therefore the TQFT is completely
determined by its local behavior. Mathematically, we encode this behavior by demanding
that the TQFT give values to manifolds of dimensions lower that (n− 1) too and can be
cut and paste along them. It was conjectured by Baez and Dolan in [BD95] that such fully
extended TQFTs are classified by their value at the point, and what kind of value at the
point come from a TQFT. Namely, the value at the point has to be a fully-dualizable object
in the target higher category. An object X of a symmetric monoidal higher category C is
said 1-dualizable if it has a dual in the usual sense. In particular there is an evaluation
and a coevaluation 1-morphisms “witnessing” the duality. It is called 2-dualizable if these
evaluation and coevaluation 1-morphisms have all adjoints. In particular they have unit
and counit 2-morphisms witnessing the adjunctions and we can ask for them to have
adjoints and so on. The cobordism hypothesis states that if X is n-dualizable, then there
exists a unique-up-to-isomorphism fully extended framed n-TQFT ZX which assigns the
value X to the point. Making it an oriented n-TQFT corresponds to equipping X with an
SO(n)-homotopy-fixed-point structure. Note that the terminology n-TQFT here is a bit
loose and in general we will ask that C is a reasonable target “nVect” so that in particular

8
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restricting to closed (n − 1)-manifolds and n-cobordisms we recover the usual notion of
n-TQFT with values in Vect.

Despite giving such a satisfactory answer, the cobordism hypothesis has its drawbacks.
It requires the language and techniques of higher category theory, which is a field still
under development. Writing the statement of the cobordism hypothesis is difficult, as
well as giving explicit examples. Given one of the objects that classify TQFTs, it is very
hard to rebuild the associated TQFT. The proof is, of course, harder. A sketch of proof
is given by Hopkins and Lurie in [Lur09b], and there are many proofs in progress or in
review, but to the best of our knowledge this result is still a widely believed conjecture
at this day.

Examples of n-dualizable objects in higher categories nVect have been studied in
[DSS20] and [BJS21,BJSS21] for n = 3 and n = 4. However they seem to recover only the
Turaev–Viro and Crane–Yetter state sum TQFTs. It follows from [DSS20] that Witten–
Reshetikhin–Turaev TQFTs cannot be fully extended with values in the expected higher
category 3Vect. The insight of Walker [Walb], see also [Fre,FT14], is that WRT theories
have an anomaly, described by Crane–Yetter theories, and that they should be considered
as boundary conditions to these. Therefore, WRT theories should be fully extended, but
not with values in the usual 3Vect, rather in an arrow category of 4Vect. They should
have trivial source and target corresponding to Crane–Yetter. The appropriate notion of
arrow categories and “twisted” TQFTs is defined in [JS17].

Goals
This manuscript is motivated by the quest to bridge topological and higher-categorical

constructions of TQFTs. In the first approach one explicitly defines an n-manifold invari-
ant and works their way to a TQFT, adding structure or extra conditions as necessary.
This is the approach behind WRT TQFTs and their non-semisimple variants, as well as
Crane-Yetter TQFTs. The second approach classifies “vanilla” TQFTs (i.e. fully extended
and without the extra structures/conditions of the examples above) using the Cobordism
Hypothesis. To bridge the two approaches, we must answer the questions:
Question : Can the Cobordism Hypothesis recover the interesting, hand-built examples
we know?
Having answered this question, one can ask furthermore:
Question : Can these examples be generalized?
We claim the answer to both questions is yes, though the answer to the first one is still
conjectural.
In different words, we ask whether Crane–Yetter and WRT theories fall into that class
of fully extended TQFTs that are classified by the cobordism hypothesis. Since the
cobordism hypothesis classifies all such TQFTs, it should then be possible to decide
whether we have found all similar TQFTs. The answer is not straightforward, especially
in the case of WRT theories for which will need to use Walker’s insight of seeing WRT
theories as boundary conditions to Crane–Yetter.

The main object of study of this manuscript is a fully extended 4-dimensional TQFT
ZV associated with a possibly non-semisimple ribbon category V . However, this fully
extended 4-TQFT is yet to be defined. It should be described by skein theory, should
be an analogue of Crane–Yetter in the semisimple case and should recover WRT-type
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TQFTs at its boundary in the modular case. There certainly should be constraints on V ,
starting with finiteness, but they are not fully understood. In some sense, the goal of this
manuscript is to present skein theory as a fully extended 4-dimensional TQFT. There are
two ways to approach it.

The “top down” approach is to start from the top, i.e. construct a non-extended
(3+1)-TQFT, and try to extend it down. In the semisimple case, this (3+1)-TQFT is
already known: it is the Crane–Yetter TQFT. It is rather clear how one would extend this
TQFT to lower-dimensional manifolds using skein categories, and is described informally
in [Walb]. However, it is difficult to give formal statements in this context, as higher
category theory is sometimes not well-suited to such hands-on approaches. Nevertheless,
this understanding of what should happen in every dimension provides great guidance. It
also provides many motivations and applications.

The “bottom up” approach is to find the value on the point and use the cobordism
hypothesis. The cobordism hypothesis needs an n-dualizable object to produce a framed
fully extended TQFT, and an SO(n)-homotopy-fixed-point structure to produce a fully
extended TQFT. The name bottom-up refers to the fact that it is easier to show that
an object is 2-dualizable rather than 3 or 4-dualizable, so historically these TQFTs are
first defined in low dimensions, and then extended up. It is shown in [BJS21, BJSS21]
that if V is either fusion (rigid finite semisimple with simple unit) or modular, then it is
indeed 4-dualizable in an appropriate target category BrTens. Therefore ZV is defined,
in those cases, as a framed TQFT. However, little is known about orientation structures.
Moreover, the existence alone is not fully satisfying and one would like to identify the
values of this TQFT and show they agree with the expected ones.

Though none of these approaches has been fully carried out, there are some partial
results and many of the “shadows” of ZV are well-defined and understood. We will focus
on three of these in this manuscript.

The first is the (3+1)-part, i.e. the first step in the top-down approach. It generalizes
Crane–Yetter TQFTs to non-semisimple cases. It does not involve higher category theory
and we construct it using only skein theory in Chapter 3. We check that it does coincide
with Crane–Yetter TQFTs if V is semisimple. We extend it to non-semisimple cases
under some finiteness and non-degeneracy conditions on V . We believe these conditions
are sufficient for the existence of the fully extended ZV , and may provide good guidance.

The second is boundary conditions to ZV . In the case where V is modular, the TQFT
ZV is invertible, and one should be able to extract an anomalous 3-TQFT from a boundary
condition to ZV . These anomalous TQFTs are expected to recover WRT theories and
their non-semisimple variants. We construct the anomalous 3-TQFT in the framed case
using the cobordism hypothesis in Chapter 4. We give conjectures that it can be oriented,
and how. We also give conjectures that it does recover WRT-type TQFTs.

The last is the 0-1-2-part of ZV , i.e. the first step of the bottom-up approach. It has
been described as factorization homology [Sch14a], skein categories [Coo23], and mod-
ules over internal skein algebras [BBJ18a, GJS23]. We compare these last internal skein
algebras with stated skein algebras in Chapter 5.
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Context

Low-Dimensional Topology: an overview on known constructions
of TQFTs

In the 1980’s Jones introduced in [Jon85] an extremely powerful polynomial invariants
of links. It was very mysterious for a long time, and is still not well understood today.
For example, we do not know whether there exists a knot with same Jones polynomial as
the unknot!

Dimension 3
A milestone in quantum topology in dimension 3 is Witten’s understanding that the

Jones polynomial is related to a physical (and topological) Quantum Field Theory: the
Chern–Simons theory with gauge group SU(2). In particular, he predicts that (for any
choice of “level” k, which for us corresponds to evaluating the variable at a k-th root
of unity) the Jones polynomial gives rise to an invariant of closed 3-manifolds. These
3-manifold invariants were constructed by Reshetikhin and Turaev [RT91] using skein
theory, and extended to 3-TQFTs in [BHMV95, Tur94]. They were first defined for cat-
egories of representations of quantum groups associated with the gauge group of the
Chern–Simons theory, and were later extended to arbitrary semisimple modular cate-
gories.

These TQFTs are not plain TQFTs in Atiyah’s sense: they are anomalous. They are
defined on a category C̃ob3 of cobordisms equipped with extra structure, which is usually
described as an integer for 3-cobordisms and a Lagrangian in the first homology group of
surfaces.

WRT TQFTs are known to extend once, and give values to the circle. To make
sense of this statement, one first has to describe a bicategory C̃ob321 of cobordisms of
dimension 1-2-3 with extra structure, whose category of endomorphisms of the empty 1-
manifold is C̃ob3. Then one has to specify a target bicategory 2Vectk, whose category of
endomorphisms of the unit object is Vectk. Finally one has to give a symmetric monoidal
functor WRT : C̃ob321 → 2Vectk whose restriction to endomorphisms of the unit coincides
with the usual WRT theory. This is done, for example, in [De 17, Theorem 1.1.1] with
2Vect := Ĉatk the bicategory of Cauchy-complete k-linear categories.

There have been many generalizations of WRT theories, and we will be interested in
those with non-semisimple input. The first instances of these generalizations are due to
Lyubashenko [Lyu95] and Hennings [Hen96]. They were extended to TQFTs in [KL01],
though in a “connected” setting not fitted for our presentation. The first, and to our
knowledge most powerful, example of non-semisimple analogs of WRT theories that fit in
a more usual framework of TQFTs is due to Blanchet, Costantino, Geer and Patureau-
Mirand [BCGP16]. It is however not perfectly standard either: now one needs a lot of
extra structure on cobordisms, namely a cohomology class and an embedded skein that
have to satisfy an admissibility condition.

In this manuscript, we will be mostly interested in the construction of [DGG+22] which
morally corresponds to the case of cohomology class 0 in [BCGP16]. They take as input a
possibly non-semisimple modular tensor category, and produce a 3-TQFT for cobordisms
equipped with a skein that satisfies an admissibility condition. If we restrict to the empty
skein, which we will, they produce a TQFT defined on cobordisms with the same extra
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structure as WRT theories, but the admissibility condition means that it is not defined
on every 3-cobordism. It is only defined for 3-cobordisms that have non-empty incoming
boundary in every connected component. We call such TQFTs non-compact. Similarly
to WRT theories, BCGP as well as DGGPR theories extend to the circle [De 17,De 21].

These non-semisimple TQFTs are very interesting from a topological point of view.
They give sensitive 3-manifold invariants that distinguish homotopically equivalent lens
spaces, and very interesting (projective) representations of Mapping Class Groups of sur-
faces. Because of the dependence on a cohomology class, BCGP theories naturally only
give rise to a representation of the Torelli subgroup of the mapping class group, which
are believed to be faithful. DGGPR theories (as well as BCGP theories for the null co-
homology class) give rise to projective representations of the whole mapping class group
for which no kernel is known for non-trivial choices of modular category.

Dimension 4
Less research has been done in dimension 4. A notable exception is due to Crane and

Yetter [CY93] who defined invariants of closed smooth compact oriented 4-manifolds as-
sociated to any semisimple modular category. These invariants determine (3+1)-TQFTs,
called Crane–Yetter TQFTs. However, the underlying 4-manifold invariants depends only
on the Euler characteristic of the manifold and its signature (this was first observed for
simply-connected 4-manifolds in [CKY97], and follows in general from work of Schommer-
Pries that we recall below).

This construction was generalized to certain non-modular semisimple categories by
Crane, Kauffman and Yetter [CKY97] (then the underlying 4-manifold invariants depends
only on the Euler characteristic of the manifold and its signature for simply-connected
4-manifolds). In [BB18], Bärentz and Barrett generalize the CKY construction to pairs of
finite semisimple categories C → D (the CKY construction corresponds to the inclusion
of C in its Drinfeld center). The underlying 4-manifold invariants of these TQFTs, at
least in a broad list of cases, are conjecturally related to the Euler characteristic, the
signature and the fundamental group, see [BB18, Conjecture 8.1]. This implies that
the invariant cannot distinguish exotic pairs of 4-manifolds, i.e. pairs of homeomorphic
but non diffeomorphic manifolds. A different kind of quantum topology construction in
dimension 4 has recently been defined by Beliakova and De Renzi in [BD23, BD]. They
consider connected 4-manifolds which admit a handle decomposition without 3 and 4-
handles, in particular with non-empty and connected boundary, and considered up to a
suitable 2-equivalence relations.

Let us discuss what is known about the topological content of these TQFTs.
There is a general obstruction which is that, because of their gluing properties, the

4-manifold invariants obtained from TQFTs are usually multiplicative under connected
sum, see [Reu23] for a discussion. It is shown by Gompf [Gom84], extending a previous
result of Wall, that two compact orientable 4-manifolds (possibly with boundary) which
are homeomorphic, become diffeomorphic after some finite sequence of connected sums
with S2 × S2. Therefore, a (3 + 1)-TQFT which is multiplicative under connected sum
and assigns a non-zero value to S2 × S2 cannot distinguish exotic pairs. Building on
this idea, Reutter shows in [Reu23] that a 4-TQFT which is “semisimple” (for which
Z(S3) and Z(S2 × S1) are semisimple Frobenius algebras, with structure induced by
cobordisms) cannot detect exotic pairs. He shows moreover that once-extended 4-TQFTs
are semisimple.

A similar restriction is that if one stabilizes a closed simply connected 4-manifold by a
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sequence of connected sums with CP2 or CP2 then it can make it diffeomorphic to a con-
nected sum of the form #mCP2#nCP2 for some m,n ∈ N. It follows, see [BB18, Lemma
3.12], that if a 4-TQFT has 1-dimensional state space on S3 and invertible values on CP2

and CP2, its underlying 4-manifold invariant depends only on the Euler characteristic and
signature for simply-connected 4-manifolds.

For modular categories, the Crane–Yetter theories are known to be invertible. Re-
member that TQFTs form a monoid by taking tensor product, and a TQFT is called
invertible if it is in this monoid (equivalently, if it assigns 1-dimensional vector spaces to
3-manifolds and invertible maps to 4-cobordisms). In this case the underlying invariant
of 4-dimensional manifolds only depends on the Euler characteristic and the signature.
It is shown in [Sch14b, Theorem 7.6] that invertible (3+1)-TQFTs are classified by two
scalars, one of which corresponds to the signature σ and one to the half sum χ+σ

2 .

Higher Algebra: classifying fully extended TQFTs

Stating the Cobordism Hypothesis
The Baez–Dolan cobordism hypothesis [BD95] suggests that the correct notion of fully

extended TQFTs will be much easier to study than their non-extended analogs, and be
classified by their value at the point. This notion however is not immediate to pin down:
a fully extended n-TQFT should be a symmetric monoidal (∞, n)-functor

Z : Bordn → nVect

from the (∞, n)-category of cobordisms in dimension less than or equal to n into a pre-
ferred target (∞, n)-category.

There are multiple well-developed notions of (∞, n)-categories and the one usually
used in this context is Barwick’s complete n-fold Segal spaces [Bar05, Lur09b, CS19].
Many notions we will be interested in are not fully developed in the context of (∞, n)-
categories, and it is often sufficient to understand them for (∞, 1)-categories. There
is a well-developed theory of (∞, 1)-categories called ∞-categories or quasi-categories
[Lur09a, Lur]. Model categories also often provide a useful framework [JS17, Appendix
A]. The (∞, n)-category of bordisms Bordn is constructed in [Lur09b,CS19]. Note that
it really is an (∞, n)-category, with (n+ 1)-morphisms corresponding to diffeomorphisms
of n-cobordisms, and higher morphisms to homotopies.

The cobordism hypothesis is stated in [Lur09b, Theorems 2.4.6 and 2.4.26]. Note that
Lurie only claims to give a sketch of proof, and a full proof is still under development. The
first version, the framed cobordism hypothesis, gives an equivalence between framed fully
extended TQFTs with values in a chosen nVect with fully-dualizable objects of nVect.
An object is called m-dualizable if it lies in a sub-(∞, n)-category where every object has
duals and every k-morphism has adjoints for k < m. It is called fully dualizable if it is
n-dualizable. The second version, the oriented cobordism hypothesis, gives an equivalence
between oriented fully extended TQFTs with values in nVect with fully-dualizable objects
of nVect equipped with an SO(n)-homotopy-fixed-point structure.

The cobordism hypothesis provides a new angle to study and construct TQFTs. One
“simply” has to find a fully dualizable object in a higher category, and it induces a (framed)
fully extended TQFT. If one can show we have found all fully dualizable objects, then we
have found all fully extended TQFTs.
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The target category: Even Higher Morita categories
There is still one choice to be made, which is that of the target (∞, n)-category nVect.

As the name suggest, a reasonable choice for n = 1 is Vect. To simplify let us talk about
characteristic 0 below.

For n = 2, it is standard to consider a bicategory of linear categories. There are
multiple choices here, as one could consider linear, Cauchy-complete, finitely cocomplete
or cocomplete categories. We will mostly be interested in the bicategory Pr of cocomplete
presentable linear categories studied in [BCJ15], and in its full subcategory Bimod of
categories with enough compact-projectives (called tiny objects there). Note that there
are completion procedures relating these categories, in particular the free cocompletion
Free : Catk → Pr from linear or Cauchy-complete categories to cocomplete categories, and
the Ind-completion Ind : Rexk → Pr from finitely cocomplete to cocomplete categories.
We will use them implicitly in this introduction. One could also consider the Morita
bicategory of algebras, bimodules and bimodule morphisms. This bicategory is related to
the bicategory of cocomplete categories by the Eilenberg–Watts theorem.

For n = 3, one would expect some 3-category of linear bicategories. This gets difficult
to study, and an easier choice is to consider the subcategory of bicategories with only
one object, which correspond to monoidal categories. TQFTs with this target are called
1-affine in [Joh21]. A standard choice for 3Vect is the 3-category Tens whose objects are
(some kind of) monoidal categories, 1-morphisms are bimodule categories and 2 and 3
morphisms are functors and natural transformations, see [DSS20,BJS21].

For n = 4 one would expect the 4-category of linear 3-categories, but as above we will
restrict to 3-categories with only one object and one 1-morphism. They correspond to
braided categories. A standard choice for 4Vect is the 4-category BrTens whose objects
are (some kind of) braided monoidal categories, 1-morphisms are monoidal-bimodule cat-
egories, 2-morphisms are bimodule categories and 3 and 4 morphisms are functors and
natural transformations, see [BJS21, Joh21]. TQFTs with this target are called 2-affine
in [Joh21].

The two examples above involving bimodule categories are usually called higher Morita
categories. Giving the list of 0–4 morphisms is unfortunately not enough to define an
(∞, 4)-category, but there is a general construction of higher Morita categories. We will
be interested in the even higher Morita category Alg2(Pr) of E2-algebras in the bicategory
Pr of cocomplete presentable categories.

Higher Morita categories were first defined in [Hau17] and [Sch14a]. Haugseng’s
construction takes as input a symmetric monoidal (∞, 1)-category S and produce an
(∞, n + 1)-category of En-algebras and successive bimodules in S. The construction is
rather combinatorial and uses some variants of∞-operads. Scheimbauer’s construction is
more geometric and uses factorization algebras. This is a very handy feature and makes
explicit descriptions of TQFTs in this target easier, see [Sch14a]. However, it produces
pointed bimodules, and as we will see this is going to be problematic.

This is not quite what we described above yet: for E2-algebras in categories it will
only produce an (∞, 3)-category, and we want an (∞, 4)-category. Somehow higher Morita
categories don’t take into account the (non-invertible) 2-morphisms between categories.
We need to go “even higher”.

Even higher Morita categories are defined in [JS17]. There are two constructions, that
extend Haugseng’s and Scheimbauer’s higher Morita categories. They take as input a
symmetric monoidal (∞, k)-category S and produce an (∞, n+ k)-category Algn(S). Its
0 up to n morphisms are En-algebras and successive bimodules in S, and its n+ 1 up to
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n + k morphisms are higher morphisms in S. For S = Pr the bicategory of cocomplete
presentable categories and cocontinuous functors, their construction applies and we can
consider the even higher Morita 4-categories Alg1(Pr) and Alg2(Pr) as a models for
3Vect and 4Vect.

Dualizability in nVect
Dualizability in 2Vect is studied in [BCJ15]. Every object of Bimod is 1-dualizable,

and finite semisimple categories are fully dualizable. They are all the 1- and 2- dualizable
objects for all choices of 2Vect mentioned above [BDSV, Appendix A], except for Pr for
which the answer is not known. It is however conjectured in [BCJ15, Remark 3.6] that
there are no other examples in Pr.

Dualizability in higher Morita categories is studied in [GS] for Scheimbauer’s pointed
model. They show that every object is n-dualizable in Algpointed

n (S). However, the point-
ing prevents any higher dualizability, and the only (n + 1)-dualizable object is the unit.
For this reason, we consider even higher Morita categories built from Haugseng’s model
below.

Dualizability in 3Vect is studied in [DSS20] for 3Vect a 3-category of finite rigid ten-
sor categories. They show (in characteristic 0) that finite rigid tensor categories are
2-dualizable and that the fully dualizable objects are exactly the rigid finite semisimple
categories (though it is enough to study fusion [FT21, Appendix D]). We will be inter-
ested in a larger choice for 3Vect, namely Alg1(Pr). Dualizability in Tens = Alg1(Pr) is
studied in [BJS21]. They show that cp-rigid categories (with enough compact-projectives
and whose compact-projectives have duals) are 2-dualizable and that fusion categories are
3-dualizable. They make no claim that this describes all the fully dualizable objects, and
indeed there are some non-semisimple invariants simply because semisimplicity is not a
Morita invariant notion, see [BJS21, Remark 1.13].

Dualizability in 4Vect is studied in [BJS21,BJSS21]. They show that cp-rigid braided
tensor categories are 3-dualizable and that braided fusion categories are fully dualizable in
BrTens = Alg2(Pr) in [BJS21]. They show that possibly non-semisimple modular tensor
categories are fully dualizable, and actually invertible, in [BJSS21, Theorem 1.1]. This is
the first example of a non-semisimple fully dualizable object, which is rather surprising
as it was expected that semisimplicity would be a necessary condition.

This last dualizability result raises a question:
Question : What is the associated non-semisimple 4-TQFT?
We claim that it corresponds to the (3+1)-TQFT we define in Chapter 3.

From Algebra to Topology: building TQFTs from the cobordism
hypothesis

Using the cobordism hypothesis, every dualizability result mentioned above should
have a topological counterpart, and induce a Topological Quantum Field Theory.

Note that partial dualizability results are still interesting: a k-dualizable object in
nVect for k < n will induce a symmetric monoidal functor Bordfr

k → nVect. However
we would not want to call this a k-TQFT, because it doesn’t have values in kVect. In
particular, closed k-manifolds will not be assigned scalars, but something that looks like
(n − k − 1)-categories (with the convention that 0-categories are vector spaces and (-
1)-categories are scalars). We will adopt the point of view that they are wishing to be
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n-TQFTs, but don’t have all the dualizability required and are only defined on Bordfr
k .

There are many names for this kind of TQFTs. For example if k = 3 and n = 4, such
a functor Bordfr

3 → 4Vect may be called a categorified 3-TQFT in [BJS21], a 3-TQFT
with moduli level 1 in [FV15] or (though this is usually in a non-extended setting) a
(3 + ε)-TQFT.

Let us note too that every TQFT we were interested in in low-dimensional topology is
oriented, and we are so far producing framed TQFTs. The oriented cobordism demands an
SO(n)-homotopy-fixed-point structure, which we will often abbreviate SO(n)-structure.
Very little is known about them.

Dimension 3: Turaev–Viro TQFTs
Fully extended 3-TQFTs obtained from fully dualizable objects of [DSS20] are expected

to be related to Turaev–Viro state sum theories. We talk about tensor categories below,
the general case where the unit is not simple is similar, see [BDSV].

Orientation structures in this context are studied in [DSS20,Sch14c]. They conjecture
that pivotal categories are SO(2)-homotopy-fixed-points and that spherical categories are
SO(3)-homotopy-fixed-points.

For the oriented 2-dualizable objects, so possibly non-semisimple pivotal tensor cat-
egories, it is natural to expect that the categorified 2-TQFT will assign to surfaces the
admissible skein modules of [CGP] (for the ideal of projectives). Note that in the spherical
case these were extended to non-compact (2+1)-TQFTs in [CGPVb] (so, not defined on
all 3-cobordisms, but still much better that only defined on Bord2).

For the oriented 3-dualizable objects, so spherical fusion categories, the associated
3-TQFTs are expected to coincide with Turaev–Viro–Barrett–Westbury TQFTs [TV92,
BW96]. These are already known to be extended TQFTs by [BK].

Dimension 4: Crane–Yetter TQFTs
Fully extended 4-TQFTs obtained from fully dualizable objects of [BJS21] are expected

to be related to Crane–Yetter state sum theories.
Remember that every braided tensor category is 2-dualizable in an even higher Morita

category. It follows from the construction of both framed and oriented TQFTs of [Sch14a]
that an SO(2)-structure on an E2-algebra is a structure of Eor

2 -algebra. Note that the no-
tations for En-algebra are often confusing, and what is usually called a framed E2-algebra
is what gives results on oriented manifolds. We denote E2 the operad associated with
embeddings of framed disk, and Eor

2 the operad associated with embeddings of oriented
disks. For braided tensor categories, this corresponds to the data of a balancing.

Moreover, Scheimbauer computes explicitly the twice-categorified 2-TQFTs associated
with a braided tensor category: it is given by [AFT17]’s factorizarion homology. This
factorization homology has been computed by [Coo23] by skein categories when the input
braided tensor category is the free cocompletion of a ribbon category. We will often call
this case the semisimple case, though at this point this name is a little bit misleading.
Note that these results apply for twice-categorified TQFTs with values in Scheimbauer’s
pointed even higher Morita category. One expects that Scheimbauer’s pointed version
should sit inside Haugseng’s unpointed version, and that the description above holds in
Haugseng’s model too.

For 3-dualizable cp-rigid braided tensor categories, it is expected that a ribbon struc-
ture on the category of dualizable objects induces an SO(3)-structure. In the semisimple
case, it is expected following work of Walker [Walb] that the induced categorified 3-TQFT
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corresponds to skein modules. A 3-cobordism between two surfaces induces a cocontinu-
ous functor between their free cocompletions by considering every skein module in that
3-manifold with boundary conditions prescribed by the objects of the skein categories,
see [Walb, GJS23, Tha21]. It is natural to expect that in the non-semisimple case the
analogous definition with admissible skein modules of [CGP] will give the correct answer.

For 4-dualizable objects of [BJS21], i.e. fusion categories, little is known about ori-
entation structures. However, following the work of Walker, one can conjecture that
they correspond to a choice of trace on the ribbon category, which we do in Chap-
ter 4. The associated fully extended 4-TQFTs are expected to coincide with Crane–
Yetter TQFTs [CY93, CKY97]. They were already expected to be extended TQFTs
in [Walb,Tha21].

For new 4-dualizable objects of [BJSS21], i.e. non-semisimple modular tensor cate-
gories, no low-dimensional topology construction preexisted the result. We propose one
in Chapter 3.

Witten–Reshetikhin–Turaev TQFTs
It seems that we have found the TQFTs associated with every dualizable object men-

tioned, but a key player of low-dimensional topology is still missing.

Question : Can we recover Witten–Reshetikhin–Turaev theories and its non-semisimple
variants from the cobordism hypothesis?

The naive answer appears to be no. Work of Douglas, Schommer-Pries and Snyder [DSS20]
show that WRT theories extend to the point if and only if they are of Turaev–Viro type.
Of course the answer depends on the choice of the target category 3Vect, and this result
holds for finite rigid tensor categories. One approach that we will not pursue it to build
an entirely new target category, see [Hen17,FT21]. Instead, we will use 4Vect.

The complete answer appears to be yes, but it is more complicated. It was never fully
spelled out in written form, but has been communicated in talks and informal notes in the
semisimple case [Fre, Walb]. In the non-semisimple case, this is expectations of Jordan
and Safronov.

An obstacle to obtaining the Witten–Reshetikhin–Turaev theories from the cobordism
hypothesis is that these theories are defined on a category C̃ob3 of cobordisms equipped
with some extra structure. It is well understood that this extra structure is the shadow
of a bounding manifold: the integer is the signature of a bounding 4-manifold, and the
Lagrangian is the kernel of the inclusion in a bounding 3-manifold. It was understood by
Walker [Walb] that the anomaly of WRT theories is described by Crane–Yetter 4-TQFTs.
In other words, this “shadow” of a bounding manifold is the value of Crane–Yetter on
that bounding manifold. We only need to remember the signature of a 4-manifold because
Crane–Yetter only depends on the signature (note that for this to be true one needs to
pick the trace very well) and similarly in lower dimensions.

Freed and Teleman suggest that the WRT theory should be thought of as a boundary
theory for the Crane–Yetter theory. An adequate description of relative field theory was
given by Freed and Teleman [FT14] and formalized by Johnson-Freyd and Scheimbauer
[JS17]. More precisely, consider an (∞, n)-category C and an n-TQFT Z : Bordn → C.
They construct an (∞, n)-category C→ of so-called ”oplax” arrows in C which has source
and a target functors s, t : C→ → C. A relative theory to Z, or a boundary condition to
Z, or an (n − 1)-TQFT with anomaly Z, or again an oplax-Z-twisted (n − 1)-TQFT is
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a symmetric monoidal functor

R : Bordn−1 → C→

whose target coincides with Z restricted to Bordn−1 and whose source coincides with the
trivial TQFT.

Walker’s insight is that composing the arrow R(−) : 1 → Z(−) with the value of Z
on a bounding manifold Z(−)→ 1 recovers WRT theories for Z the Crane–Yetter theory
and R the inclusion of the unit. This also answers [DSS20]’s objection: WRT does not
give a value on the point simply because the point cannot be equipped with a bounding
1-manifold.

Another obstacle to obtaining non-semisimple DGGPR theories from the cobordism
hypothesis is that these TQFTs are non-compact. They are defined on a restricted class
of 3-cobordism that have non-empty incoming boundary in every connected component.
We need to use a non-compact version of the Cobordism Hypothesis to work with this
restricted category of cobordisms. This non-compact version appears as an intermediate
step in the sketch of proof of the Cobordism Hypothesis proposed by Hopkins and Lurie
[Lur09b]. Note that there is independent work in progress of Reutter–Walker in this
direction.

Summing up, one should be able to recover the WRT theories (resp. their non-
semisimple variants) from a 4-TQFT and a (resp. non-compact) boundary theory for this
4-TQFT, both of which are fully extended and obtained from the Cobordism Hypothesis.
The 4-TQFT should be induced by the modular tensor category V and the boundary
theory by the inclusion of the unit in V , see the last slide of [Fre]. Then the WRT
theory is obtained by composing the boundary condition with the 4-TQFT on a bounding
manifold.

Note that this construction using a bounding manifold is what we need to answer
the question above, namely compare with the existing constructions. It is also necessary
to obtain a scalar invariant out of a 3-manifold. However, in some sense, it is not very
fundamental. The “right” Topological Quantum Field Theory is the part which we called
the boundary theory above. It does not assign a scalar to a 3-manifold, but an element
in a one-dimensional vector space, the state space of the invertible Crane–Yetter TQFT,
which is just as sensible from a physical point of view.

Results
Most new results are in Chapters 3, 4 and 5. Let us however mention that Theorem

1.5.10 and the detailed proof of Theorem 2.3.29 are new.

Chapter 3: Non-semisimple skein (3+1)-TQFTs
All results presented in this chapter are based on work in collaboration with Francesco

Costantino, Nathan Geer and Bertrand Patureau-Mirand. They appeared in [CGHP].
We construct (3+1)-TQFTs that take as input a possibly non-semisimple finite ribbon

tensor category C satisfying some non-degeneracy condition. Its state space on a 3-
manifold M is the Proj(C)-admissible skein module SC(M) of M is defined in [CGP]. We
prescribe the TQFT on handle attachments, in a spirit very close to WRT, [DGG+22]
and [CGPVb] theories.
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In the case where C is either modular or fusion, in characteristic 0 in the latter case,
the non-degeneracy conditions are satisfied and we expect to recover the (3+1)-part of
the fully extended 4-TQFT associated with C seen as a fully dualizable object of BrTens.
We show that we recover Crane–Yetter–Kauffman theories in the semisimple case. In
general, we still expect the theory to be fully extended. Our conditions for existence may
serve as a guideline for conditions of full dualizability. Actually, in characteristic 0 it is
expected in [BJSS21] that a finite tensor category with semisimple Müger center is fully
dualizable, and this indeed seems to be related to our non-degeneracy conditions. We
also expect that our construction is an explicit realization of the work of Kevin Walker
and David Reutter announced in [Wala].

The main non-degeneracy conditions we ask is for C to be unimodular and chromatic-
non-degenerate. This is only enough to produce a non-compact TQFT, and for the full
result we must ask C to be moreover chromatic compact. We work over an algebraically
closed field k of any characteristic.

Theorem A (Theorem 3.4.4): Let C be a finite unimodular ribbon tensor category.
If C is chromatic non-degenerate, then the Proj(C)-admissible skein modules extend to a
non-compact (3 + 1)-TQFT

SC : Cobnc
3+1 → Vectk

by explicit handle attachment formulas.
If C is moreover chromatic compact, then this non-compact theory extends to a (3+1)-

TQFT
SC : Cob3+1 → Vectk

We use the work of Juhász [Juh18] to build our TQFT by giving the state spaces and
explicit formulas for every handle attachment. Let us describe the main ingredients in
these formulas.

The 4-handle will be given by the modified trace studied in [GPT09, GKP13, GKP11,
GKP22], which is the usual key ingredient in non-semisimple skein theory. It is
shown to exist and to be unique up scalar in a unimodular ribbon tensor category
in [GKP22, Corollary 5.6]. It is shown to be equivalent to a linear form on the
admissible skein mopdule of S3 in [CGP, Theorem 3.1]. Our TQFT will depend
on a choice of modified trace, but simply by a term depending only on the Euler
characteristic, see Proposition 3.4.7.

The 3-handle will be given by the cutting morphism first introduced in [CGPT20] and
already used in [CGPVb]. It is associated with the copairing of the modified trace
and its existence uses the non-degeneracy of the modified trace provided by [GKP22].

The 2-handle will be given by the chromatic morphism studied in [CGPVa]. It plays the
role of the Kirby color, and in the abelian case is another way to phrase the integral
in the coend used in [DGG+22]. It is shown to exist in a finite unimodular ribbon
tensor category, and actually in suitably finite spherical categories, in [CGPVa]. This
chromatic morphism is not claimed to be unique in any way, but our construction
does not depend on a choice, see Proposition 3.2.1.

The 1-handle will be given by the gluing morphism. This is a new notion which we
introduce. The category C is called chromatic non-degenerate when a gluing mor-
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phism exists. It can indeed be rephrased by asking that a certain morphism involv-
ing the chromatic morphism and the double braiding is non-zero, see Proposition
3.1.8. Again, our construction will not depend on the choice of gluing morphism,
see Proposition 3.4.1.

The 0-handle will be given by the global dimension of C. It is only the choice of a scalar
because the state space of the 3-sphere is one-dimensional. However, for a coherent
choice to exist, it will impose conditions on the gluing morphism, namely that it
is invertible, see Lemma 3.2.6. We call this condition chromatic compact because
it is a strengthening of the above that yields to fully-defined TQFTs instead of
non-compact ones.

C is chromatic
non-degenerate ∃


SC non-compact (3+1)-TQFT
ṠC(W 4) closed 4-manifold invariant
SC(W 4, T ) invariant of pair T ⊂ −∂W 4

C is chromatic compact SC extends to a TQFT
SC(W 4) = ζṠC(W 4)

C is twist
non-degenerate ∃

{
BC(M3) 3-manifold invariant
B′C(M3, T ) invariant of pair T ⊂M3

generalizing Lyubashenko’s invariants

C is modular SC is invertible

C is fusion
dim C ̸= 0 SC is the Crane–Yetter–Kauffman TQFT

C is semi-simple modular SC is the Crane–Yetter TQFT
BC is the WRT 3-manifold invariant

Figure 1: This figure represents different properties on a ribbon chromatic category C and
their relationships and corresponding 3-manifold invariants and TQFTs. A category at
the tail of a double arrow implies the property at the head of the arrow. For example,
chromatic compact implies chromatic non-degenerate. A category at the tail of a single
arrow implies the existence of the invariant at the head of the arrow. For example, a
chromatic non-degenerate category gives rise to a non-compact (3 + 1)-TQFT SC.

A particularity of skein TQFTs is that vectors in the TQFT space are represented by
C-colored links or ribbon graphs in 3-manifolds. Hence the abstract TQFT comes with
an invariant of pair (W,T ) where T is a C-colored links or ribbon graph in the boundary
of W .
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We show in Theorem 3.3.2 that if C is twist non-degenerate, now without the chromatic
non-degenerate assumption, we can define an invariant of 3-manifolds equipped with an
admissible skein using the chromatic morphism on a surgery link. We show in Theorem
3.4.9 that if the category is both twist non-degenerate and chromatic non-degenerate,
this 3-manifold invariant is indeed given by renormalizing the contribution of W in the
invariant of pairs (W,T ) for W a 4-manifold bounding M made of 2-handles. We show
that it also coincides with [DGG+22]’s renormalized Lyubashenko’s 3-manifold invariant.

These invariants might be much stronger than the TQFT itself. Indeed the invertible
CY TQFTs are known to only depend on two complex numbers [Sch14b, Theorem 7.6], but
given the empty skein they recover the WRT invariant of the boundary of a 4-manifold.
This extra data corresponds to a boundary condition for the TQFT. We will conjecture in
Chapter 4 that such a boundary condition (in a fully extended setting) on the invertible
TQFT associated with a non-semisimple modular category will recover the non-semisimple
(2+1)-TQFT from [DGG+22]. Assuming the expectations above, Theorem 3.4.9 can be
seen as a partial confirmation of this conjecture.

We also expect our construction to be related to work of Beliakova and De Renzi
[BD23, BD], though a complete comparison appears to need the fully extended version
of our TQFTs. They only give values to 4-dimensional 2-handlebodies, so it is natural
that their construction is defined for more general input (in particular, they don’t need
our chromatic non-degenerate condition, which we need precisely to define the missing
handles). Our construction would give the extension to every 4-manifolds, when it exists.

One advantage of our construction is that it is elementary. The techniques are based
on algebraic data, e.g. modified traces and chromatic morphisms, which are easy to
formulate with low-level technology using monoidal categories. Their properties are easily
represented graphically and most of our proofs reduce to diagrammatic ones. We can easily
study the TQFTs we produce: we characterize their invertibility, study their behavior
under connected sum and provide some examples.

Figure 1 displays all the different constructions and what condition they impose on
the category C.

Chapter 4: Anomalous theories
The results of this chapter appeared in [Häı].
This chapter is motivated by the quest to obtain non-semisimple WRT theories from

the cobordim hypothesis. We give the first step towards executing the program described
above.

Remember that Walker, Freed and Teleman predict that the inclusion of the unit η in
a semisimple modular tensor category V will induce a 3-dimensional boundary condition
to the 4-TQFT associated with V , and that together they recover WRT TQFTs. In the
non-semisimple case, Jordan and Safronov expect that the same story will apply, except
that the boundary condition will only be partially defined, which we call non-compact.

We first show the relevant dualizability of the unit inclusion, and then, conjecturally,
reconstruct WRT-type TQFTs from the induced relative theory.

Dualizability results
We recall Lurie’s sketch of proof of the non-compact cobordism hypothesis and intro-

duce the corresponding notion of non-compact-n-dualizable object. We use the framework
of [JS17] to prove that the unit inclusion in a semisimple (resp. non-semisimple) modular
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tensor category is 3-dualizable (resp. non-compact-3-dualizable) and therefore induces a
(resp. non-compact) relative 3-TQFT under the Cobordism Hypothesis.

Our main theorem is the following.

Theorem B (Theorems 4.2.12, 4.2.15 and 4.2.14): Let V ∈ BrTens be a braided
tensor category, and A♭

η the object of [JS17]’s oplax arrow category BrTens→ induced
by the inclusion of the unit. Then:

1. A♭
η is always 2-dualizable.

If V has enough compact-projectives, then:

2. A♭
η is non-compact-3-dualizable if and only if V is cp-rigid.

3. A♭
η is 3-dualizable if and only if V is the free cocompletion of a small rigid braided

monoidal category if and only if V is cp-rigid with compact-projective unit.

We give explicitly the dualizability data of A♭
η. For the 1-dualizability data we obtain

mates of the bimodule categoriesMη andMT induced by the unit and the tensor product
of V . For the 2-dualizability data we obtain mates of the functors η, T , and Tbal : V ⊠

V⊠V
V →

V which is induced by T . For the 3-dualizability data, we obtain mates of the unit and
counits of the right adjunctions of these functors.

Our arguments work any braided monoidal functor F : V → W , though we loose that
they are criteria, see Theorem 4.2.22. The object A♭

F ∈ BrTens→ induced by F is always
2-dualizable. It is non-compact-3-dualizable as soon as V and W are cp-rigid. In this
case, it is 3-dualizable if and only if F preserves compact-projectives.

On the examples of interest, the main theorem gives:

Corollary C: Let V be a modular tensor category in the sense of [DGG+22], V :=
Ind(V ) its Ind-completion, and A♭

η induced by the unit inclusion in V. Then:

1. If V is semisimple, A♭
η is 3-dualizable.

2. If V is non-semisimple, A♭
η is not 3-dualizable, but is non-compact-3-dualizable.

Freed and Teleman study the dualizability of the unit inclusion in the 3-category
Alg1(RexC) in [FT21, Theorem B]. They show that V ∈ Alg1(RexC) is finite semisimple
if and only if Mη is 2-dualizable, i.e. lies in a subcategory with duals (the forward
implication is [DSS20]).

We show the analogous statement one categorical number higher in Theorem 4.2.16.
Suppose V ∈ BrTens has enough compact-projectives. Then Aη is 3-dualizable if and
only if V is finite semisimple.

Using this result and to-appear results of Will Stewart, we can show that the free
cocompletion of a non-semisimple rigid braided monoidal category is not 4-dualizable.
One should really take Ind-completions.

Reconstructing WRT-type TQFTs
We explain how one can obtain a theory defined on filled cobordisms from a relative

theory together with its bulk theory. We give conjectures on how these theories can be
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oriented in the case of possibly non-semisimple modular tensor categories. We state the
conjectures that these recover the WRT and [DGG+22] theories.

By Corollary C, we obtain under the Cobordism Hypothesis a framed, possibly non-
compact, 3-TQFT RV : Bordfr

3 → BrTens→ relative to the 4-TQFT ZV associated with
V .

We give conjectures that these theories can be oriented.

Conjecture A (Conjectures 4.3.11 and 4.3.13): Let V be a modular tensor cate-
gory and V = Ind(V ), which is invertible and in particular 5-dualizable by [BJSS21].
Then,

1. The ribbon structure of V induces an SO(3)-homotopy-fixed-point structure on V.

2. The ribbon structure of η induces an SO(3)-homotopy-fixed-point structure on A♭
η.

3. A choice of modified trace t on V induces an SO(4)-homotopy-fixed-point structure
on V.

4. Exactly two modified traces induce an SO(5)-homotopy-fixed-point structure on V,
namely ±D−1t for D a square root of the global dimension of V .

Let us include here a conjecture that reflects the expectations from the previous chap-
ter, which we can state now that we have conjectured orientation structures on V .

Conjecture B: Choose t a modified trace on V and let ZV be the associated oriented
4-TQFT. Then one has a natural isomorphism

SV ≃ h1Ω3ZV

between the (3+1)-TQFT defined in Chapter 3 and the (3+1)-part of ZV .

We construct the “anomalous” theoryAV : Bordfilled
3 → Tens associated withRV and

ZV . It is defined on a 3-category of cobordisms equipped with a filling, i.e. a bounding
higher manifold, which degenerates to the more usual C̃ob. The anomalous theory is
non-compact when RV is.

We can now state the main conjectures.

Conjecture C (Conjecture 4.3.15): Let V be a semisimple modular tensor category
with a chosen square root of its global dimension. The anomalous theory AV induced by
the associated oriented 4-TQFT ZV and oriented oplax-ZV-twisted 3-TQFT RV recovers
the once-extended Witten–Reshetikhin–Turaev theory as its 321-part.

Conjecture D (Conjecture 4.3.16): Let V be a non-semisimple modular tensor cat-
egory with a chosen modified trace t and square root of its global dimension. The anoma-
lous theory AV induced by the associated oriented 4-TQFT ZV and oriented non-compact
oplax-ZV-twisted 3-TQFT RV recovers the once-extended DGGPR theory for cobordisms
with trivial decoration as its 321-part.
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We show that the values on the circle coincide by computing RV explicitly and us-
ing the factorization homology description of ZV . For higher-dimensions, this second
description stops (remember that surfaces are filled) and we need more values of ZV .

An interesting consequence of these conjectures is that since this is the 321-part of
AV , these theories actually extend down. Not to the point, as AV is not defined on the
point which is not bordant, but to the pair of points S0.

Note that we use both the oplax-twisted 3-TQFT and the 4-TQFT in this construction.
Therefore, not every case of 3-oplax-dualizability in Theorem B induces such a theory.
We also need V to be 4-dualizable. The assumption that ZV is invertible however can
be dropped. The anomalous theory would then strongly depend on the filling, and give
interesting invariants of 4-manifolds with boundary.

Chapter 5: Stated versus internal skein algebras
The results of this chapter appeared in [Häı22].
The goal of this chapter is to draw a comprehensive link between stated skein algebras

of [Lê18,CL22] and internal skein algebras of [BBJ18a,GJS23], including their structures
and properties. The interest of such a link is to benefit from the nice features of both
sides. Stated skein algebras are defined very explicitly, and have numerous applications.
Internal skein algebras are much more theoretical, they are defined for all ribbon categories
of coefficients, and their basic (in particular, excision) properties derive formally.

The main result of this chapter is the following:

Theorem D (Theorem 5.2.4 and Proposition 5.3.6): Let V =
Oq2(SL2)–comodfin and Σ a compact oriented surface with a right boundary edge.
Then one has an isomorphism of Oq2(SL2)-comodule-algebras

AΣ ≃ (S (Σ))bop

between [BBJ18a, GJS23] internal skein algebras and braided opposites of stated skein
algebras.

This result was already known as folklore, though the braided opposite was missing.
It is stated in a slightly weaker form (only as algebras in Vectk) in [LY22, Theorem
4.4], [LS, Theorem 9.1] and [GJS23, Remark 2.21]. Both algebras are also known to
be isomorphic to the Alekseev–Grosse–Schomerus moduli algebras. In [Fai, Theorem 5.3]
and [Kora] the authors provide an Oq2(SL2)-comodule algebra isomorphism between these
AGS algebras and stated skein algebras. In [BBJ18a, Section 7] the authors provide an
isomorphism between AGS algebras and internal skein algebras. It is not explicitly given
and might be where the braided opposite hides, i.e. it might be that they deform the
representation variety in the direction of the opposite Poisson structure. We introduce
the relevant notion of left against right internal skein algebras to resolve this issue.

Our proofs are mostly based on skein theory and we do not require the reader to be
familiar with the formalism of higher categories. We give explicitly the natural isomor-
phism exhibiting the stated skein algebra as the left internal skein algebra, and we show
that right internal skein algebras are braided opposites of left internal skein algebras.

Using the well-developed properties of internal skein algebras, we get:
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Corollary E: There is an equivalence of categories

SKV(Σ) ≃ modOq2 (SL2)–comod −S (Σ)

between the free cocompletion (or presheaf category) of the skein category and the category
of right modules over the stated skein algebra, internally to Oq2(SL2)-comodules.

We also extend the definition of internal skein algebras to multiple boundary edges.
We show that they still agree with stated skein algebras with appropriate braided op-
posites inserted in Theorem 5.3.28. In the proof, we use a half-twist on the category
Oq2(SL2)–comodfin.

It follows that stated skein algebras generalize to any ribbon category C, because inter-
nal skein algebras do. Note though they will be algebra-objects in the free cocompletion
of C which is maybe unusual. It becomes more familiar if C is the category of comodules
over a semisimple coribbon Hopf algebra. Then they will be H-comodule algebras.

We prove in Theorem 5.3.32 that multi-edges internal skein algebras always satisfy
excision properties similar to those on stated skein algebras. To fully relate the excision
properties, we need to use the half-twist on Oq2(SL2)–comodfin introduced above. We
argue in particular that there was a non-trivial choice which corresponds to this half-twist
made in the definition of stated skein algebras, actually in the way of expressing their
cutting properties, see Remark 5.3.34.
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Chapter 1

Low-dimensional Topology

In this first preliminary chapter we recall the basics of skein theory and the construc-
tions of skein-theoretic TQFTs.

In Section 1.1, we introduce the central example of skein theory: the Kauffman bracket
skein relations. In Section 1.2, we recall Reshetikhin–Turaev theory of graphical calculus
in ribbon categories [RT91, Tur94]. In Section 1.3, we recall the definition of a TQFT
and Juhasz’s presentation of the cobordism category by generators and relations [Juh18].
These sections can safely be skipped by the expert.

In Section 1.4, we recall the skein-theoretic construction of Crane–Yetter and Witten–
Reshetikhin–Turaev TQFTs associated with semisimple modular tensor categories. We
take a slightly unusual point of view and our exposition serves as an illustration of the
construction of Chapter 3 and of the idea of boundary conditions of Chapter 4.

In Section 1.5, we recall the tools from non-semisimple skein theory and [DGG+22]
TQFTs. Again we emphase the idea that they are boundary conditions to the (3+1)-
TQFTs defined in Chapter 3. To this end, we prove Theorem 1.5.10 which relates DGGPR
state spaces to admissible skein modules, and which is new.

1.1 Kauffman Bracket Skein Theory

Kauffman introduced in 1987 [Kau87] a state model for the Jones polynomial. It is
an invariant of unoriented framed links that one can compute from a link diagram by
iteratively reducing this diagram using the Kauffman bracket skein relations

= q +q−1 and = (−q2 − q−2) .

These relations are local, they change a small part of the link, and, on top of allowing
one to compute the Jones polynomial easily, they are very straightforward to generalize
for links not living in S3.

1.1.1 Kauffman Bracket Skein Modules and Algebras
The Kauffman bracket skein modules, introduced in [Prz91,Tur88] have been studied

extensively and are still an active research subject [GJS23, Kin, DKS]. Their integral
version are even richer, but we will mainly focus on the skein module over a field in this
manuscript.
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Definition 1.1.1: Let M be an oriented 3-manifold. Let Link(M) denote the Z[q, q−1]-
module freely generated by isotopy classes of unoriented framed links in M , i.e. smooth
closed sub-1-manifolds equipped with a trivialization of their normal bundle. For every
oriented embedding ϕ : D3 ↪→ M and framed link L in M intersecting the image of ϕ
exactly in the form or (with blackboard framing), we introduce the relations

= q +q−1 and = (−q2 − q−2) .

where the left hand side represents L ∈ Link(M) and the right hand side another linear
combination of links in M , which are as depicted inside the image of ϕ, and coincide with
L outside. The Kauffman Bracket Skein Module Sk(M) of M is the quotient of Links(M)
by these relations.
When M = S3, using these relations every link reduces to a scalar times the empty link,
and this scalar is uniquely defined. Hence, Sk(S3) is isomorphic to Z[q, q−1], generated by
the empty link. The Kauffman bracket link invariant is the quotient map Links(S3) →
Sk(S3) ≃ Z[q, q−1].
When M = Σ × (0, 1) is a thickened surface, its skein module has a natural algebra
structure given by superposition Σ× (0, 1)⊔Σ× (0, 1) ↪→ Σ× (0, 1) induced on the height
coordinate by (0, 1) ⊔ (0, 1) ≃ (1

2 , 1) ⊔ (0, 1
2) ↪→ (0, 1). We denote this algebra Sk(Σ), the

skein algebra of the surface Σ.
When M is a manifold with boundary, its skein module is naturally a module over the
skein algebra of its boundary. ♢

Proposition 1.1.2 (Corollary 4.1 in [SW07]): The Z[q, q−1]-module Sk(Σ) is free
with basis the set of isotopy classes of simple unoriented framed links (without double
points nor trivial circles) in Σ.

Contrary to skein modules of thickened surfaces that are not finitely generated, Witten
predicted that the skein module of a closed 3-manifold seen over Q(q) is finite dimensional.
This was recently proven in [GJS23]:

Theorem 1.1.3 (Gunningham–Jordan–Safronov): Let M be an oriented closed
3-manifold. The Q(q)-vector-space Sk(M,Q(q)) := Sk(M) ⊗

Z[q,q−1]
Q(q) is finite-

dimensional.

However, computing the exact dimension of skein modules is still a difficult problem.
Recent developments in this direction can be found in [Kin,DKS].
A similar behavior is expected for 3-manifolds with boundary. The following is sometimes
called the Detcherry conjecture.

Conjecture 1.1.4: Let M be an oriented compact 3-manifold with boundary. Then
Sk(M,Q(q)) is finitely generated over the skein algebra of its boundary.
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1.1.2 Stated skein algebras
Algebra presentations for skein algebras are not known except for a few examples,

despite the computation of a basis as modules. Their representation theory is a diffi-
cult and active subject, see [Korb] for a survey. Stated skein algebras generalise skein
algebras for tangles on a marked surface with boundary, see [BW11], [Mul] and [Lê18].
These tangles can be cut and stated skein algebras satisfy nice excision properties, which
makes computations much simpler in stated skein algebras. In particular, for a non-closed
connected surface, one can chunk it into triangles, and embed the skein algebra into a
quantum torus [BW11]. This is very fruitful to obtain representations of skein algebras.
We will recall here the approach of [CL22]. Stated skein algebras can be defined over
integral rings of coefficients, but we will work over the field k being either Q(q 1

2 ) or C
with q

1
2 ∈ C× generic, as our proofs in Chapter 5 only hold in this context.

Definition 1.1.5: A marked surface is a compact oriented surface with boundary S with
a finite set P ⊆ ∂S of boundary points, called marked points. We write S = S∖ P and
call this the marked surface. We write ∂PS the boundary components of S that contains
a point of P and ∂S := ∂PS ∖ P . Namely we only consider boundary components of
S that contain a marked point, which we remove in S, so all components of ∂S are
intervals. The circular boundary components are discarded and give punctures in S. The
boundary structure of stated skein algebras will depend on a way to cut out a bigon out
of a boundary edge, and that of internal skein algebras on a way to insert one from a
boundary edge. To avoid choices, we suppose that marked surfaces come equipped with
a thickening of their boundary edges inside the surface.
A stated tangle α on S is an unoriented, framed, compact, properly embedded 1-submanifold
of S× (0, 1) whose boundary ∂α ⊆ ∂S× (0, 1) has positively vertical framing and comes
equipped with a state st : ∂α → {+,−}. We call height the (0, 1)-coordinate of a point,
and require that all boundary points of α lying over a same component of ∂S have dis-
tinct heights. An isotopy of stated tangles is an isotopy with values in stated tangles, in
particular preserving the height order over a same boundary component. A stated tan-
gle in S × (0, 1) can always be represented as a diagram with blackboard framing in S,
with its under/over crossing information, such that the height order of boundary points
corresponds to a given orientation on the boundary edges, see [BW11, Section 3.5]. ♢

Definition 1.1.6 (Section 2.5 in [CL22]): The stated skein algebra S (S) of a marked
surface S is the k-vector space generated by isotopy classes of stated tangles on S modulo
usual skein relations:

= q + q−1 , = (−q2 − q−2)

and the boundary skein relations:

> +
− = q−

1
2

> , > +
+ = >−

− = 0 and >−
+ = q2 > +

− +q− 1
2

>

where the arrows on the boundary edges represent the relative height order of the two
points.
It is an algebra with product given by vertical superposition and unit the empty link.

We denote by Cµ
ν the coefficient such that > µ

ν
= Cµ

ν

> , namely C+
+ = C−− = 0,
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C+
− = q−

1
2 and one can compute C−+ = −q− 5

2 , see [CL22, Lemma 2.3 (13)]. We also write
C(ν) := C−ν

ν . ♢

Proposition 1.1.7 (Lemmas 2.3 and 2.4 in [Lê18]): These relations express equiv-

alently with the boundary at the left, namely: >

ν
µ = µ

ν C

> , where +
+ C= −

− C= 0,

+
− C= −q 5

2 and −+ C= q
1
2 , and > = q−

1
2

>

−
+ −q− 5

2

>

+
− .

Remark 1.1.8: It is easy to check that S (S ⊔S′) ≃ S (S)⊗k S (S′) since all relations
happen in a connected disk. 3

Definition 1.1.9 (see Section 3.1 in [Lê18] for details): Let S be a marked surface
and c an ideal arc on S, joining two marked points in S. Denote by Cutc(S) the marked
surface obtained by cutting S along c.
Given a stated tangle α on S, one can cut it along c and get a tangle Cutc(α) on Cutc(S).
This tangles has new boundary points, two lifts per points of α∩ c, and we may give any
state to these points. The obtained stated tangle is called a lift of α if the two lifts of a
point of α ∩ c have same state. ♢

This definition is not perfectly innocent and it seems that one could have chosen different
state-matching patterns for lifts, see Remark 5.3.34.

Theorem 1.1.10 (Theorem 3.1 in [Lê18]): Let S be a marked surface and c an ideal
arc. The map ρc : S (S) → S (Cutc(S)), α 7→

∑
lifts

α̃ is well-defined (it only depends

on the isotopy class of α) and is an injective algebra morphism. Moreover, the splitting
morphisms ρc and ρc′ associated to two disjoint ideal arcs c and c′ commute.

1.2 Reshetikhin–Turaev skein theory
Following Witten’s description of Chern–Simons theory as a Topological Quantum

Field Theory [Wit89], in the modern point of view on skein theory every strand of a
tangle should be colored by a representation of the gauge group of the Chern–Simons
theory. More generally, one colors by an object of some linear “ribbon” category. This
theory was developed mathematically by Reshetikhin and Turaev [RT91].

1.2.1 Graphical calculus
In the following, we fix some monoidal category C and develop a graphical calculus for

C. We will add conditions and structure on C for this calculus to be well-defined.
We want to represent objects by points on a line, and tensor product of objects by jux-
taposition of points. We think of the drawing • • •

V1 V2 V3
as representing V1 ⊗ V2 ⊗ V3.

Any drawings linking two sets of points (read from bottom to top) represents a mor-

phism between the associated objects. In particular, a bunch of straight lines • • •
V1 V2 V3

• • •
V1 V2 V3

> > >
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represents the identity. There may be inserted coupons • • •
V1 V2 V3

• • •
V1 W2 W3

f

, colored by cor-

responding morphisms, here f : V2 ⊗ V3 → W2 ⊗ W3. One may also twist and braid

the strands representing every object:

•
V1 •

V2 •
V3 •

V4

•
V1

•
V3

>

<

<

Composition is represented by

vertical superposition.
Graphical calculus is very handy to represent various compositions of morphisms be-

tween tensor product of objects, but it not clear that it is well-defined, i.e. that there is
always one and only one way to interpret a drawing as a morphism. Reshetikhin–Turaev
theory is precisely about this point. A good survey on graphical calculus can be found
in [Sel11].

The golden standard of a category admitting a graphical calculus is the category of
drawings themselves.

Definition 1.2.1: A framed tangle α in a 3-manifold with boundary M is an oriented
framed compact properly embedded 1-sub-manifold of M . Remember that a framing is
a trivialisation of the normal bundle of the submanifold α. Its boundary ∂α ⊆ ∂M is a
finite set of points. Given a finite set of oriented framed points in ∂M , one can consider
the set of tangles that have this fixed boundary and whose framing matches the framing
of the given boundary points. For the orientation, one also needs to specify whether the
boundary is incoming or outgoing, in which case one want the orientation of the boundary
points with inward or with outward normal to match the orientation of the tangle. ♢

Note that when we work up to isotopy, framed tangles are equivalent to ribbon tangles,
by slightly thickening them in the direction of the framing.

Definition 1.2.2: The category Tanfr of framed tangles in R2 × [0, 1] has objects finite
sets of oriented framed points of the form [n] = {1, . . . , n} × {0} ⊆ R2 with upward
vertical framing (in the second coordinate). An object of Tanfr is described by a finite
sequence η⃗ of +’s and −’s, which we identify with the set of oriented framed points in R2

it represents.
Morphisms from η⃗ to µ⃗ are given by isotopy classes of framed tangles in R2 × [0, 1] with
boundary the union of η⃗ ⊆ R2 ↪→ R2 × {0} and µ⃗ ⊆ R2 ↪→ R2 × {1}. This imposes that
a strand coming out of a positively oriented point should be oriented upward, and of a
negatively oriented downward. In the definition above, we orient R2× [0, 1] by saying that
R2 × {0} has inward normal and R2 × {1} has outward normal.
Composition is given by vertical juxtaposition, and contraction [0, 1]⊔ [0, 1]

[ 1
2 ,1]⊔[0, 1

2 ]
−→ [0, 1],

see Figure 1.1. Identities are given by n straight lines [n]× [0, 1]. ♢

The category Tanfr is monoidal with tensor product given by horizontal juxtaposition,
see Figure 1.2. On objects, we get concatenation η⃗ ⊗ µ⃗ = η⃗µ. The unit object is the
empty set.

Definition 1.2.3: A braided category is a monoidal category C⊗ equipped with a natural
isomorphism c : ⊗ → ⊗op called the braiding. Its (U, V )-component is denoted cU,V =
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•+ •+ •− •−

•
+
•
−

>

<

<

◦

+• •−

−
• •

+

<

<

=

•+ •+ •− •−<

−
• •

+
<

<

Figure 1.1: Example of composition in Tanfr

• • • •

• •

>

<

<

⊗

• •

• •
<

<

=

• • • •

• •

>

<

<

• •

• •
<

<

Figure 1.2: Example of tensor product in Tanfr

VU . The braiding should satisfy:

cU⊗V,W =
WU ⊗ V

=
WU V

= (cU,W ⊗ IdV ) ◦ (IdU ⊗ cV,W ).

It is called symmetric if cX,Y ◦ cY,X = IdX⊗Y for all objects X, Y ∈ C. ♢

The category Tanfr is braided with cη⃗,µ⃗ =
•

•

•

•

•

•

•

•

•

•

η⃗ µ⃗

with blackboard framing (coming

out of the page) and appropriate orientation. It is natural by sliding tangles across the
intersection.

Definition 1.2.4: A rigid category is a monoidal category C⊗ with both left and right
duals for every object.
A left dual for an object V ∈ C is an object V ∗ together with two morphisms

ev = : V ∗ ⊗ V → k and coev = : k → V ⊗ V ∗

satisfying the so-called snake identities:

(ev ⊗ IdV ∗) ◦ (IdV ∗ ⊗ coev) = = = IdV ∗ and

(IdV ⊗ ev) ◦ (coev ⊗ IdV ) = = = IdV .

These identities imply (by pre or post-composing with ev and coev) that − ⊗ V is left
adjoint to −⊗ V ∗, and that V ∗ ⊗− is right adjoint to V ⊗−.
The left dual is unique up to canonical isomorphism. It is functorial (contravariant) with

f ∗ := f .

There is a similar notion of right dual ∗V with ev = : V ⊗ ∗V → k and coev = :
k → ∗V ⊗ V satisfying = and = . The right dual of the left dual of V
is canonically identified with V . ♢
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The category Tanfr is rigid with both left and right duals given by taking the opposite
signs, and mirroring the sequence, (−→η )∗ =←−−η. Evaluation is • •• •• • and coevaluation is

•• •• ••
with blackboard framing and appropriate orientations. The identities =

and = hold as we take isotopy classes of tangles.
Note that in a braided category C⊗ there is always a naive way to obtain right duals

from left duals by setting:

=
<

= ◦ cV,V ∗ and = < = c−1
V,V ∗ ◦ .

In Tanfr however, this naive ways doesn’t quite match the drawings we gave above, and
it differs by a twist in the framing.
Definition 1.2.5: A twist on a braided category C⊗ is a natural isomorphism θ : IdC ⇒
IdC compatible with the braiding: θV⊗W = θV ⊗ θW ◦ cW,V ◦ cV,W . A braided category
endowed with a twist is called balanced.
A ribbon category is a rigid balanced category C whose twist is compatible with duality:
θV ∗ = (θV )∗. ♢

Remark 1.2.6: The category Tanfr with twist < is ribbon. The compatibility condi-

tions are = and = . 3

We showed that the category of drawings satisfies certain properties, namely it is ribbon.
The main theorem of this section is that being ribbon is exactly what is needed for
graphical calculus to make sense.

Theorem 1.2.7 (Theorem 2.5 in [Tur94]): Let C be a ribbon category and V an ob-
ject of C. There exists a unique monoidal functor, called the Reshetikhin–Turaev functor,

RTV : Tanfr → C

such that on objects RTV (+) = V and RTV (−) = V ∗ and on morphisms RTV ( ) =

cV,V , RTV ( ) = ev, RTV ( ) = coev and RTV ( < ) = θV .

Remark 1.2.8: Here, the right duality morphisms are mapped to

RTV ( ) = RTV

 <

θ

 = evV ◦ cV,V ∗ ◦ (θV ⊗ IdV ∗)

and

RTV ( ) = RTV

 θ−1

<

 = (IdV ∗ ⊗ θ−1
V ) ◦ c−1

V,V ∗ ◦ coevV .
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Remark 1.2.9: A framed link in R3 can be seen as an endomorphism of the empty se-
quence of points in Tanfr. Under the functor above, it maps to an endomoprhism of
the monoidal unit 1C of C. We therefore get an invariant of framed links with values in
EndC(1C). 3

Definition 1.2.10: Let U be the 0-framed unknot and V ∈ C. We call qdim(V ) :=
RTV (U) ∈ k the quantum dimension of V . ♢

The theorem above can be thought of as giving some graphical calculus, as we have a way
to interpret any tangle as a morphism in C. But it is a bit restrictive, as we will only see
the object V appearing, and braidings of V with itself and so on. We want to generalise
a little this graphical calculus. The object V here is called the color, and one can extend
this constructions to tangles whose strands are colored with different colors.
Definition 1.2.11: The category Tanfr

C of C-colored tangles has objects finite sets X̄
of colored points, namely framed oriented points of the form [n] endowed with a color
which is an object of V . Objects are described by finite sequences (V⃗ , η⃗) of pairs (Vi, ηi),
Vi ∈ C, ηi ∈ ±. It has morphisms from X̄ to Ȳ isotopy classes of colored tangles from X̄
to Ȳ , i.e. framed oriented tangles with each strand colored by an object of C, and such
that the two extremity points of a (non-circular) strand have same color as the strand.♢
Finally, one can add morphisms of V that are not compositions and tensor products
of identities, braidings, duality morphisms and twists, namely which are not necessarily
represented by a tangle. Concretely, one adds coupons which are colored by morphisms
of V .
Definition 1.2.12: A C-colored ribbon graph between colored points is a colored framed
tangle with coupons. A coupon is an embedding of a little square [0, 1]2 in R2×(0, 1), and
the endpoints of a framed strand may be glued to either a point (X,±), respecting the
framing, or to a part of the top or bottom edge of a coupon, with horizontal framing. One
marks the end of a framed strand glued to a coupon with + if it is going upward, and − if
it is going downward in the coupon. Each framed strand is colored by an object of C and
each coupon with framed strands coming from the bottom face ((X1,±), . . . , (Xn,±)),
in this order, and from the top face ((Y1,±), . . . , (Ym,±)) is colored by a morphism f :
X±1 ⊗ · · · ⊗X±n → Y ±1 ⊗ · · · ⊗ Y ±m , where X+ = X and X− = X∗. See Figure 1.3. ♢

(X, +) (Y,−) (Y,−)

> > >

>

T

(Z, +) (Z,−)

<
<
X

f : X ⊗ Y ∗ → X∗ g : Y ∗ ⊗ T → X ⊗ T

⌟

Figure 1.3: A C-colored ribbon graph

Definition 1.2.13: The category RibC of C-colored ribbon graphs has objects finite sets
of colored points and morphisms the k-vector space generated by isotopy classes of C-
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colored ribbon graphs. It is monoidal by juxtaposition, and rigid, braided and ribbon by
the usual morphisms (without use of coupons). ♢

Theorem 1.2.14 (Theorem 2.5 in [Tur94]): Let C be a k-linear ribbon category,
there is an essentially unique k-linear monoidal functor

RTC : RibC → C

such that RT((X,±)) = X±, RT(X Y ) = cX,Y , RT(X∗ X) = evX , RT(X X∗) =
coevX , RT( <

X) = θX and RT( f ) = f .

Definition 1.2.15: Let U□ be the 0-framed unknot with a single coupon. For V ∈ C
and f : V → V , denote U f

V the closed ribbon graph U• with strand colored by V and
coupon by f . We call trace of f the scalar tr(f) := RTC(U f

V ). ♢

1.2.2 Skein categories
The skein theory for tangles in R2 × [0, 1] can be extended to any 3-manifold. It

generalizes the ideas of skein and stated skein algebras and modules that were introduced
in the case of the Kauffman bracket skein theory. Skein categories were first introduced
by Kevin Walker, though informally and the only written reference is the incomplete
draft [Walb]. They were first defined in [Joh21], where they were studied as being (con-
jecturally) the values on surfaces of a fully extended skein 4-TQFT. This is the point of
view we will adopt later in this manuscript. They were also studied in [Coo23] and shown
to coincide with Factorization Homology of [AFT17], itself known to form a fully extended
2-TQFT [Sch14a]. This result was independently proven in [KT22] in the semisimple case.
Definition 1.2.16: Let M be a compact oriented 3-manifold, possibly with boundary,
and whose boundary is oriented (each connected component has the choice of having
orientation induced by the inward or outward normal). A C-colored ribbon graph T in M
is a framed tangle with coupons embedded in M such that the endpoints of every framed
strand is either at the top or bottom face of a coupon, or at the boundary of M . The
strands and coupons are colored by objects and morphisms as before. The boundary data
T ∩ ∂M of T is a finite set X of framed colored oriented points in ∂M . Given such a
set X, we denote by RibC(M,X) the vector space freely generated by isotopy classes of
C-colored ribbon graphs in M with boundary data X. ♢

Definition 1.2.17: The skein relation on RibC(M,X) is the equivalence relation gener-
ated by:
a linear combination of C-colored ribbon graphs ∑i λiTi is equivalent to 0 if there exists a
little cube ϕ : R2× [0, 1] ↪→M such that all of the Ti’s coincide outside its image, intersect
ϕ(R2 × [0, 1]) on either the top or the bottom face, transversely, at a finite set of points
of the form [n] and give the zero morphism in C after evaluation under RTC on this little
cube. More precisely, every ϕ−1(Ti ∩ imϕ) gives a C-colored ribbon graph in R2 × [0, 1],
namely a morphism in RibC. As the Ti’s coincide outside the cube, they all have same
source and target. The skein relation holds if ∑i λi RTC(ϕ−1(Ti ∩ imϕ)) = 0.
Put differently, let T be a ribbon graph and ϕ a little cube of M such that G := T ∩ imϕ
is a (possibly complicated) ribbon graph. Then RTC(G) is a morphism in C, and we allow
ourselves to replace G with a single coupon colored by this morphism.
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The skein module SkC(M,X) of M with boundary data X is the quotient of RibC(M,X)
by the skein relations. ♢

Definition 1.2.18: Let Σ be a compact oriented surface possibly with boundary. The
k-linear category RibC(Σ) has objects finite sets of framed colored oriented points in Σ.
Orient Σ × [0, 1] by saying that Σ × {0} has inward normal and Σ × {1} has outward
normal. Morphisms from X to Y is the vector space RibC(Σ× [0, 1], X ×{0} ∪ Y ×{1}).
Composition is given by gluing along the [0, 1]-coordinate. Identity is given by the ribbon
graph X × [0, 1].
The skein category SkC(Σ) has same objects as RibC(Σ) and morphisms from X to Y the
quotient of HomRibC(Σ)(X, Y ) by skein relations. Namely HomSkC(Σ)(X, Y ) = SkC(Σ ×
[0, 1], X × {0} ∪ Y × {1}). ♢

Remark 1.2.19: There are many equivalent ways of defining skein modules and skein
categories. One can require the strands to be actual ribbons, and the endpoints to be
small intervals as is done in [Joh21, Tur94] or small embedded disks as in [GJS23]. We
preferred to only remember the “direction of thickening” and work with framed tangles
and framed points. As we work up to isotopy, one can make a ribbon arbitrarily thin, and
the resulting vector spaces RibC(M,X) and SkC(M,X) are isomorphic for every choice.
The analogous skein categories are equivalent. Similarly, we chose to work with coupons,
but one could shrink the coupons arbitrarily small, and work with embedded framed
graphs (with the vertices colored by morphisms). One still needs to remember how the
strands came into the coupon, and it is sufficient to remember the cyclic ordering of the
strands, as is done in [KT22]. Again, the resulting skein theories are equivalent. 3

Remark 1.2.20: In the definitions of RibC(Σ) and SkC(Σ) in the special case where Σ =
R2, we allow any finite set of framed points as objects. However, in our initial discussion
on tangles in R2 × [0, 1], and in the definition of RibC, we did not allow points to be
anywhere in R2, but only to be of the form [n]. This simplifies the construction of the
Reshetikhin–Turaev functor. Clearly, RibC forms a full subcategory of RibC(R2), and
its quotient by the skein relation is a full subcategory of SkC(R2). These categories are
actually equivalent, with equivalence given by the inclusion, but it is not trivial to choose
a quasi-inverse. One has to choose an isomorphism from each object of SkC(R2) to one
of the form [n]. This can be done for example by giving lexicographical order on R2 and
pushing all points in good position while preserving this order, then turning the framing
clockwise until it is vertical.
Once this choice has been made (we make the one above), we can see that the Reshetikhin–
Turaev evaluation gives a monoidal functor RTC : SkC(R2)→ C. It induces an equivalence
there. Its quasi-inverse is given by the inclusion of C in SkC(R2) as objects with a single
point, and morphisms a single straight line, possibly with a coupon in the middle. 3

Remark 1.2.21: Note that this inclusion is monoidal but not strictly
monoidal. The isomorphism from the two framed points [2] respectively col-
ored by V and W to the framed point [1] colored by V ⊗W is the three-legged
graph with a single coupon IdV⊗W as shown at the right.

V
• •

W

•V ⊗W

> >
>

IdV⊗W
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Remark 1.2.22: In any skein category, the identity coupon IdX∗ : X∗ → X∗

with entry a downward oriented X-colored ribbon and output an upward
oriented X∗-colored ribbon depicted at the right gives an identification
(X,−) ≃ (X∗,+).

(X,−)

(X∗, +)

IdX∗

<
>

1.2.3 Quantum groups
Quantum groups, or Hopf algebras, provide very interesting and well-studied examples

of ribbon categories. We will see that the algebraic structures match naturally. Coalge-
bras give abelian categories, bialgebras give monoidal categories, Hopf algebras give rigid
categories, coquasitriangular Hopf algebras give rigid braided categories and finally corib-
bon Hopf algebras give ribbon categories. There is a sort of converse, given a fibre functor,
see [EGNO15]. We discuss categories of comodules here, but there is an analogous story
with categories of modules, see [Maj95]. Let k be a field.
Definition 1.2.23: A coalgebra is a k-vector space C equipped with:

a coproduct ∆ = : C → C ⊗ C which we denote ∆(x) = x(1) ⊗ x(2) with implicit
summation and

a counit ε = • : C → k, satisfying:

(IdC ⊗∆) ◦∆ = = = (∆⊗ IdC) ◦∆ (coassociativity)

(IdC ⊗ ε) ◦∆ = • = = IdC = • = (ε⊗ IdC) ◦∆ (counit)

A right C-comodule is a k-vector space V equipped with a coaction

∆V = •
CV

: V → V ⊗ C

such that •

CC
V

= •

V
•

C
C

(coassociativity) and •
V • =

V

= IdV (counit).
We denote C–comod the category of right C-comodules, with morphisms the linear maps
f : V → W preserving the coaction, namely ∆W ◦ f = (f ⊗ IdC) ◦ ∆V . We denote
C–comodfin the full subcategory spanned by finite dimensional comodules. ♢

Definition 1.2.24: A bialgebra is an algebra (A,m = ,1 = • ) equipped with a
coalgebra structure (A,∆, ε) such that ∆ and ε are algebra morphisms, namely:

= (the crossing represents the flip of tensors), and • • = •

The category A–comod of comodules over a bialgebra A is monoidal with ⊗ = ⊗k with
coaction on tensor product given by:

V ⊗k W
∆V ⊗∆W−→ (V ⊗ A)⊗ (W ⊗ A) flip−→ V ⊗W ⊗ A⊗ A IdV ⊗IdW⊗m−→ V ⊗W ⊗ A

Definition 1.2.25: A Hopf algebra is a bialgebra H equipped with an antipode

S = S : H → H
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such that S = = S . We moreover assume that S is invertible. It is slightly unusual
but is true in general as soon as H is finite dimensional or (co)-quasi-triangular.
The category H–comodfin is rigid. Given a comodule V , its dual has underlying vector-
space V ∗. The H-coaction on a form f : V → k is the element ∆f ∈ V ∗ ⊗ H ≃
Hom(V,H) described, for v ∈ V , by ∆f(v) = f(v(1)) ⊗ Sh(2) for the left dual, and by
∆f(v) = f(v(1))⊗ S−1h(2) for the right dual. ♢

Definition 1.2.26: A co-quasi-triangular Hopf algebra H is a Hopf algebra equipped
with a co-R-matrix, or R-form, R : H ⊗ H → k which is invertible by convolution, i.e.
there exists R−1 : H ⊗H → k such that

∀a, b ∈ H, R(a(1) ⊗ b(1))R−1(a(2) ⊗ b(2)) = ε(a)ε(b)

satisfying
b(1).a(1).R(a(2) ⊗ b(2)) = R(a(1) ⊗ b(1)).a(2).b(2) ,

R(ab⊗ c) = R(a⊗ c(1)).R(b⊗ c(2)) and

R(a⊗ bc) = R(a(1) ⊗ c).R(a(2) ⊗ b).

The category H–comod is braided with braiding cV,W : V ⊗ W → W ⊗ V given by
cV,W (v ⊗ w) = w(1) ⊗ v(1).R(v(2) ⊗ w(2)). ♢

Definition 1.2.27: A coribbon Hopf algebra is a co-quasi-triangular Hopf algebra H
equipped with a coribbon functional, i.e. a map θ : H → k such that :
(1) θ is invertible by convolution: there exists θ−1 : H → k such that θ(a(1))θ−1(a(2)) =
θ−1(a(1))θ(a(2)) = ε(a),
(2) θ is central: θ(a(1))a(2) = a(1)θ(a(2)),
(3) compatibility with product: θ(ab) = R(b(1) ⊗ a(1))θ(b(2))θ(a(2))R(a(3) ⊗ b(3)) and
(4) compatibility with antipode: θ ◦ S = θ.
The category H–comod of comodules over a coribbon Hopf algebra H is balanced with
twist on a H-comodule V given by θV : V ∆V→ V ⊗H IdV ⊗θ→ V . The category H–comodfin

is ribbon. ♢

Remark 1.2.28: In the literature the coribbon functional is often defined to be θ−1 in our
definition. The compatibility condition are hence deformed. 3

1.2.4 The coribbon Hopf algebra Oq2(SL2)

On can recover the Kauffman bracket link invariant, and its skein relations, from a
particular example of a coribbon Hopf algebra associated with SL2.

Definition 1.2.29: Let k = C(q 1
2 ). The coribbon Hopf algebra Oq2(SL2) is the k-algebra

with: (one should read the matrix equations component-wise, and the tensor product of
matrices should be computed as a usual matrix product with tensor products of coeffi-
cients instead of products)
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generators : a, b, c, d

relations : ca = q2ac, db = q2bd, ba = q2ab, dc = q2cd,
bc = cb, ad− q−2bc = 1 and da− q2cb = 1

coproduct : ∆
(
a b
c d

)
=
(
a b
c d

)
⊗
(
a b
c d

)

counit : ε

(
a b
c d

)
=
(

1 0
0 1

)

antipode : S

(
a b
c d

)
=
(

d −q2b
−q−2c a

)

co-R-matrix : R


a⊗ a a⊗ b b⊗ a b⊗ b
a⊗ c a⊗ d b⊗ c b⊗ d
c⊗ a c⊗ b d⊗ a d⊗ b
c⊗ c c⊗ d d⊗ c d⊗ d

 =


q 0 0 0
0 q−1 q − q−3 0
0 0 q−1 0
0 0 0 q


coribbon functional : θ

(
a b
c d

)
=
(
−q3 0

0 −q3

)
♢

Remark 1.2.30: Note that we use here an unusual coribbon functional. It is studied in
[Tin] where the author proves that it gives precisely the Kauffman-bracket relation under
the Reshetikhin–Turaev functor, whereas the usual coribbon functional gives relations
which differ by a sign, and give the Jones polynomial after writhe renormalisation. 3

Definition 1.2.31: The quantum plane A2
q2 is the free k-algebra generated by x and y

modulo the relation yx = q2xy. It is an Oq2(SL2)-comodule algebra with

∆
(
x y

)
=
(
x y

)
⊗
(
a b
c d

)

on generators.
Its subspace of homogeneous polynomials of degree n forms a sub-comodule which we
denote Vn.
In particular the generators span the comodule V1 which we abbreviate V and call the
standard co-representation of Oq2(SL2). It is more conventional to call its basis v+ = x
and v− = y. This comodule is self dual. The left dual V ∗ of V has basis v∗+ and v∗−, and

one has an isomorphism of Oq2(SL2)-comodules φ :


V → V ∗

v+ 7→ −q 5
2v∗−

v− 7→ q
1
2v∗+

. ♢

Proposition 1.2.32 (see VII.7.1 and VII.5.1 in [Kas95]): For n ≥ m ∈ N, the
comodule Vn ⊗ Vm splits as the direct sum

Vn ⊗ Vm ≃ Vn+m ⊕ Vn+m−2 ⊕ · · · ⊕ Vn−m .

Proposition 1.2.33: The Oq2(SL2)-comodules Vn, n ∈ N, are all the simple Oq2(SL2)-
comodules. Moreover, the categories Oq2(SL2)–comod and Oq2(SL2)–comodfin are semi-
simple, namely any Oq2(SL2)-comodule splits as a direct sum of Vn’s.

Proof : The statement for finite comodules is classical, see [KS97, Section 4.2.1]. The
extension to all comodules simply comes from the fact that any element of a comodule
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lives in a finite dimensional subcomodule [Swe69, Theorem 2.1.3 b)] and thus in a direct
sum of simples. Finally, a module is semi-simple if and only if it is the (non-direct) sum
of its simple submodules, see [AF92, Theorem 9.6]. □

Using the Proposition 1.2.32 we can show that the comodule V ⊗n has one simple compo-
nent isomorphic to Vn . Hence the standard co-representation V generates all comodules
Vn and hence all comodules under tensor product, direct summand and direct sum. These
results are sometimes better known in the Uq2(SL2)-modules point of view.
Definition 1.2.34: The Hopf algebra Uq2(SL2) is the k-algebra with:
generators : E,F,K

relations : KE = q4EK, KF = q−4FK and EF − FE = K −K−1

q2 − q−2

coproduct : ∆(K) = K ⊗K, ∆(E) = 1⊗ E + E ⊗K, ∆(F ) = K−1 ⊗ F + F ⊗ 1
counit : ε(K) = 1 and ε(E) = ε(F ) = 0
antipode : S(K) = K−1, S(E) = −EK−1 and S(F ) = −KF ♢

Definition 1.2.35: The left Uq2(SL2)-module V±,n is the vector space of dimension n+1

on which Uq2(SL2) acts asK = ±


q2n 0 · · · 0
0 q2(n−2) . . . ...
... . . . . . . 0
0 · · · 0 q−2n

, E =


0 [n]q2 0

. . . . . .
... . . . [1]q2

0 · · · 0



and F = ±


0 · · · 0

[1]q2
. . . ...
. . . . . .

0 [n]q2 0

, where [n]q2 = q2n − q−2n

q2 − q−2 .

The modules of the form V+,n are called of type 1, and the others are discarded here. The
module V+,1 is denoted V and called the standard representation of Uq2(SL2). ♢

Definition 1.2.36: An Uq2(SL2)-module W is called locally finite if for each w ∈ W , its
orbit Uq2(SL2) · w forms a finite dimensional vector space. In other words, if W is the
union of its finite dimensional submodules. ♢

Proposition 1.2.37 (Theorem VII.2.2 in [Kas95]): The Uq2(SL2)-modules
V±,n, n ∈ N are all the locally finite simple Uq2(SL2)-modules. Moreover, the
categories of finite and locally finite left Uq2(SL2)-modules are semi-simple.

Their full subcategories generated by direct sums of simple modules of type 1 are still semi-
simple, and closed under tensor product. We denote Uq2(SL2)–modlf and Uq2(SL2)–modfin

will represent these full subcategories of respectively locally finite and finite modules of
type 1.
Definition 1.2.38: We can define a dual paring, namely a non-degenerate bilinear form
⟨·, ·⟩ : Uq2(SL2)⊗Oq2(SL2)→ k satisfying

⟨x, y.y′⟩ = ⟨x(1), y⟩⟨x(2), y
′⟩ ,

⟨x.x′, y⟩ = ⟨x, y(1)⟩⟨x′, y(2)⟩ ,
⟨x, 1⟩ = ε(x) ,
⟨1, y⟩ = ε(y) and
⟨S(x), y⟩ = ⟨x, S(y)⟩ .
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It is given on generators by
〈
K,

(
a b
c d

) 〉
=
(
q2 0
0 q−2

)
,
〈
E,

(
a b
c d

) 〉
=
(

0 1
0 0

)

and
〈
F,

(
a b
c d

) 〉
=
(

0 0
1 0

)
.

A right Oq2(SL2)-comodule structure on some vector space W induces a left Uq2(SL2)-
module structure by x · w = w(1).⟨x,w(2)⟩ , x ∈ Uq2(SL2), w ∈ W . ♢

Proposition 1.2.39: This correspondence induces equivalences of categories
Oq2(SL2)–comodfin ≃ Uq2(SL2)–modfin and Oq2(SL2)–comod ≃ Uq2(SL2)–modlf

between right Oq2(SL2)-comodules and type 1 locally finite left Uq2(SL2)-modules.
The simple comodules Vn are mapped on the simple modules V+,n.

Proof : The equivalence between locally finite modules on a Hopf algebra and comodules
on its restricted dual is given in [Abe80, (3.3) p.126] and the link between Oq2(SL2) and
the restricted dual Uq2(SL2)◦ of Uq2(SL2) is given in [Tak02, Theorem 7.9]. Namely,
Oq2(SL2) is a sub-Hopf-algebra of Uq2(SL2)◦. The standard co-representation is mapped
on the standard representation and the simple comodules Vn on the simple modules V+,n,
see [Kas95, VII.5.1]. The correspondence preserves direct sums (it is the identity on vector
spaces) hence maps direct sums of Vn’s to direct sums of V+,n’s. □

Note that this correspondence also preserves the monoidal (and actually ribbon) structure.
We are now ready to study the skein theory associated with V = Oq2(SL2)–comodfin.

In this case, we have seen in Definition 1.2.31 that the standard corepresentation V is
isomorphic to its dual V ∗ in V by φ. Thus one gets an identification (V,+) ≃ (V,−) by
the coupon φ in the skein category of any surface. Sliding this coupon along a strand
changes the orientation of the strand. Consequently, one can switch signs of points and
orientations of strands. In this example, we can stop mentioning orientations and talk
about unoriented framed tangles. The Reshetikin–Turaev functor is still well-defined on
unoriented framed tangles, see [Tin, Theorem 4.2]. An unoriented tangle gives a ribbon
graph by choosing an arbitrary orientation, coloring every strand by V and replacing V ∗’s
imposed on the boundary points by V ’s using φ or φ−1. For example, for the unoriented
cap ∩ one can orient it either as pointing to the left or to the right, so one has to check
that RT ( ) ◦ (φ ⊗ IdV ) = RT ( ) ◦ (IdV ⊗ φ). Note that this would not hold with
the “standard” coribbon element in Oq2(SL2), and our choice is important.

Proposition 1.2.40: Let RTV : Tanfr,unoriented → Oq2(SL2)–comodfin be the functor
with RTV (+) = V the standard co-representation given in Theorem 1.2.7 and [Tin,
Theorem 4.2]. Then,

RTV
•

• •

•
= q.RTV

•

•

•

•
+q−1.RTV

••

••
and

RTV = (−q2 − q−2).RTV .

In particular, the invariant of framed links obtained from RTV is the Kauffman bracket.
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Proposition 1.2.41 ( [MM92, ALZ15] or Theorem 3.3.4 in [CFS95]): The alge-
bra HomV(V ⊗n, V ⊗n) is isomorphic to the Temperley-Lieb algebra TLn, as defined in
[Tur94, Section XII.3]. The full subcategory of V of objects of the form V ⊗n, n ∈ N, is
equivalent to the category Temperley–Lieb TL, defined in [Tur94, Section XII.2].

In the following, we will call this full subcategory TL.

Theorem 1.2.42: Let n.V and m.V be two objects of SkV(Σ) given respectively by n
and m points colored by V . Any morphism in HomSkV (Σ)(n.V,m.V ) can be represented
by a linear combination of unoriented tangles. Moreover, two linear combinations of
unoriented tangles represent the same morphism in HomSkV (Σ)(n.V,m.V ) if and only if
one can get from one to another by a sequence of isotopies and Kauffman bracket skein
relations.
Said differently, the category SkT L(Σ) is a full subcategory of SkV(Σ).

Proof : In the case of Σ = R2, one has SkV(R2) ≃ V and n.V ≃ V ⊗n, and the result
follows from the proposition above.
On a general surface Σ, on each connected component one can pull every coupon of a
given ribbon graph inside a disk on Σ, so there are only strands outside this disk. The
color W of such a strand embeds in some V ⊗n and adding the coupons W ↪→ V ⊗n ↠ W
and sliding the second across the strand, one can have only strands colored by V ⊗n outside
the disk. Finally the part on the disk can be represented by a tangle by the result on R2.
For the second part, we want to say that all relations happen in R2, where we know
that the only relations are isotopies and Kauffman bracket skein relations. Skein relations
happen in R2×[0, 1] by definition, and isotopies (which, in our smooth setting are ambient
isotopies) can be decomposed into a composition of “local” isotopies, each supported over
a disk [EK71, Corollary 1.3]. □

1.3 Topological Quantum Field Theories
A Quantum Field Theory in physics is a model that should associate to a space M

(which we think of as our universe) a vector space Z(M) (actually a Hilbert space) of
physical states on M , and to a space-time W linking two spaces M and M ′, a time-
evolution operator Z(W ) : Z(M) → Z(M ′). The precise notion of a Quantum Field
Theory is not figured out mathematically yet, but we have a definition when we assume
that the theory is topological, i.e. Z(W ) depends on W only up to diffeomorphism.
Definition 1.3.1: Let M and M ′ be closed oriented n-manifolds. A cobordism from M
to M ′ is a compact oriented (n + 1)-manifold W together with a decomposition of its
boundary into two unions of connected components ∂+W,∂−W , an orientation reversing
diffeomorphism ∂−W →M and an orientation preserving diffeomorphism ∂+W →M ′.
A diffeomorphism between two cobordism W,W ′ from M to M ′ is a diffeomoprhism
φ : W → W ′ preserving the identifications of the boundary with M and M ′. ♢

Definition 1.3.2 ( [Ati88]): An (n+ 1)-TQFT is a symmetric monoidal functor

Z : Cob⊔n+1 → Vect⊗k .
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where Cobn+1 is the category whose objects are closed oriented n-manifolds M,M ′, . . .
and whose morphisms M → M ′ are diffeomorphism classes of cobordisms. The identity
cobordism is the cylinder M × [0, 1] and composition is given by gluing, which admits a
unique smooth structure up to diffeomorphism. It is symmetric monoidal with disjoint
union. Vectk is the category of vector spaces over a fixed field k and linear maps. It is
symmetric monoidal with tensor product. ♢

Remark 1.3.3: The index n+ 1 in Cobn+1 is subject to some disagreements in the liter-
ature. In particular our notation disagrees with the one of [Juh18] which we will refer to
extensively in the rest of this section. We make the consistent choice of always referring
to the highest dimension present. We will also sometimes say 4-TQFT for (3+1)-TQFT,
and such. 3

Example 1.3.4: Fix λ ∈ k×. The Euler characteristic TQFT assigns the vector space k
to every n-manifold M and the linear map which is multiplication by the scalar λχ(W )−χ(M)

to a cobordism W : M →M ′. ♢

In the non-semisimple case, we will sometimes need a notion of partially-defined TQFT.
Definition 1.3.5: The category of non-compact cobordisms Cobnc

n+1 is the subcategory of
Cobn+1 with the same objects and with morphisms the cobordisms that have non-empty
incoming boundary in every connected component (said differently, π0(∂−W ) → π0(W )
is surjective). It is still symmetric monoidal with disjoint union.
A non-compact (n+ 1)-TQFT is a symmetric monoidal functor Z : Cobnc

n+1 → Vectk. ♢

1.3.1 Diffeomorphisms and handle attachments as cobordisms
There are two particular kinds of cobordisms that, we will see, generate every cobor-

dism: mapping cylinders of diffeomorphisms and handle attachments.
Definition 1.3.6: Let f : M → M ′ be an orientation-preserving diffeomorphism. The
mapping cylinder of f is the cobordism Cf = M × [0, 1] with boundary decomposition
∂−Cf = M × {0} IdM≃ M and ∂+Cf = M × {1} f

≃M ′.
The gluing of two such mapping cylinders is diffeomorphic to the mapping cylinder of the
composition of the diffeomorphism. Hence this construction gives a symmetric monoidal
functor Mann → Cobn+1, where Mann is the category of oriented closed n-manifolds
and diffeomorphisms. This functor is constant on isotopy classes. ♢

Definition 1.3.7 (Definition 1.2 of [Juh18]): Let M be a closed oriented n-manifold
and 0 ≤ k ≤ n+ 1. A framed (k− 1)-sphere in M is an orientation preserving embedding
S : Sk−1 ×Dn+1−k ↪→M . The k-handle attachment along S is the cobordism

W (S) = M × [0, 1] ∪S D
k ×Dn−k

with ∂−W (S) = M × {0} and ∂+W (S) is the complement in the boundary, denoted
M(S). It can be endowed with a smooth structure unique up to diffeomorphism (see for
instance [Mil65, Theorem 3.13]). We call M(S) the surgery of M along S. It is obtained by
removing the image of S in M and gluing Dk×Sn−k at the created Sk×Sn−k boundary.♢

1.3.2 Presentation of the (n+ 1)-cobordism category
A generator and relation presentation of the (n + 1)-cobordism category is given in

[Juh18]. The (3+1)-TQFT constructions given in Chapter 3 will use this work.
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Let G be the directed graph with vertices closed oriented n-manifolds and with edges an
edge ed : M → M ′ for every diffeomorphism d : M → M ′ and an edge eM,S : M → M(S)
for every framed (k − 1)-sphere S in M .
Let Gnc be the subgraph of G obtained by removing the edges eM,S where S is a −1-sphere
(so removing 0-handles). Let F(G) (resp. F(Gnc)) be the free category generated by G
(resp. Gnc). It is symmetric monoidal with disjoint union.

In [Juh18, Definition 1.4] Juhász considers a set of relations R in F(G) which we
recall now. If w and w′ are words consisting of composing arrows, then we write w ∼ w′

if (w,w′) ∈ R.

(R1) For composable diffeomorphisms d and d′ we have the relation ed◦d′ ∼ ed ◦ ed′ . For
d : M →M a diffeomorphism isotopic to the identity we have ed ∼ IdM , where IdM

is the empty word.

(R2) If d : M → M ′ is an orientation preserving diffeomorphism between 3-manifolds
and S a framed sphere in M then let S′ = d ◦ S be the framed sphere in M ′; then
let dS : M(S) → M ′(S′) be the induced diffeomorphism. Then the commutativity
of the following diagram defines a relation:

M

ed

��

eM,S //M(S)
e

dS

��
M ′ eM′,S′//M ′(S′).

(R3) If S,S′ are disjoint framed sphere in an oriented 3-manifold M then M(S)(S′) =
M(S′)(S) and we denote this 3-manifold by M(S,S′). The commutativity of the
following diagram defines a relation:

M

eM,S′

��

eM,S //M(S)
eM(S),S′

��
M(S′)

eM(S′),S//M(S,S′).

(R4) Let S be a framed k-sphere in M and S′ a framed k′-sphere in M(S). If the attaching
sphere S′(Sk′ × {0}) ⊂ M(S) intersects the belt sphere {0} × S−k+2 ⊂ M(S) once
transversally, then there is a diffeomorphism (well defined up to isotopy) ϕ : M →
M(S,S′) (defined in Definition 2.17 of [Juh18]) and the following is a relation:

eM(S),S′ ◦ eM,S ∼ eϕ.

(R5) If S : Sk × D3−k ↪→ M is a framed k-sphere then there is a relation eM,S ∼ eM,S̄
where S̄ is the framed k-sphere given by S̄(x, y) = S(rk+1(x), r3−k(y)) with x ∈ Sk ⊂
Rk+1, y ∈ D3−k ⊂ R3−k and rm(x1, x2, . . . , xm) = (−x1, x2, . . . , xm).

Let Rnc be the subset of R consisting of relations where all involved edges are in Gnc.
Recall that given a category C and a set of relations ∼ on its morphisms, the quotient
category C/ ∼ has the same objects as C and equivalence classes of morphisms of C as
morphisms.
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Theorem 1.3.8 (Theorem 1.7 of [Juh18]): The functor c : F(G) → Cobn+1 which
is the identity on objects and maps an edge ed to the mapping cylinder Cd and an edge
eM,S to the handle attachment W (S) induces an isomorphism of symmetric monoidal
categories

F(G)/R → Cobn+1 .

Theorem 1.3.9: The restriction of the same functor c : F(Gnc)→ Cobnc
n+1 induces an

isomorphism of symmetric monoidal categories

F(Gnc)/Rnc → Cobnc
n+1.

Proof : This follows from Juhász’s argument using parameterized Cerf decomposition.
The fact that 0–1-handle cancellations can be avoided so that one only needs to consider
the equivalence relation generated by Rnc is stated in [Juh18, Theorem 2.24]. For an
argument directly based on the statements of Juhász’s theorems one can easily translate
in dimension 4 the one made in dimension 3 of [CGPVb, Corollary 4.3]. □

1.4 Semisimple skein TQFTs
We recall here the constructions of skein-theoretic TQFTs coming from semisimple

ribbon categories [RT91, Tur94, CY93, CKY97]. We use a slightly unusual point of view
to emphasize the relation between Crane–Yetter and Witten–Reshetikhin–Turaev TQFTs
associated with the same ribbon category. Most proofs are special cases of the non-
semisimple cases that will be studied in greater detail in Chapter 3, and we do not
rewrite them. Note that, even though we refer to our work for the proofs, the semisimple
constructions preexisted.

1.4.1 Algebraic data
Let k be an algebraically closed field and let C be a ribbon fusion k-linear category

in the sense of [EGNO15]: a finite semisimple abelian ribbon category which is k-linear,
whose tensor product is bilinear, and such that EndC(1) = k. Id1. We denote by O(C) the
set of isomorphism classes of simple objects of C. By assumption, it is finite, and every
object of C is isomorphic to a finite direct sum of simple objects.
Definition 1.4.1: Let C be a ribbon fusion category and S1, . . . , Sn be representatives of
O(C). We set G := ⊕iSi and call it the generator. We define

c = ⊕i qdim(Si) IdSi
: G→ G

and call it the Kirby color. We call global dimension of C the scalar

d(C) :=
∑

1≤i≤n

qdim(Si)2 = tr(c).

We call C chromatic-non-degenerate if d(C) ̸= 0. It is automatically true if k is of charac-
teristic 0 by [EGNO15, Theorem 7.21.12].
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We call Gauss sums of C the scalars ∆± := tr(θ±G ◦ c). We call C twist-non-degenerate if
they are both non-zero.
We call C modular if the matrix S = (tr(c−1

Sj ,Si
◦ cSi,Sj

))0≤i,j≤n is invertible. This implies
chromatic-non-degenerate by [EGNO15, Proposition 8.14.2] and twist-non-degenerate by
[EGNO15, Proposition 8.15.4].
We call an object X ∈ C transparent if for every Y ∈ C we have c−1

Y,X ◦ cX,Y = IdX⊗Y . We
call Müger center Mü(C) the full subcategory of transparent objects of C. By [EGNO15,
Proposition 8.20.12] C is modular if and only if it has trivial Müger center, namely every
transparent object is isomorphic to a direct sum of the unit 1, so Mü(C) ≃ Vectfd

k . ♢

Definition 1.4.2: Let X, Y be objects of C. We have a non-degenerate pairing

HomC(X, Y )⊗ HomC(Y,X) → k
(f , g) 7→ tr(f ◦ g)

We denote ΩX,Y ∈ HomC(X, Y )⊗ HomC(Y,X) the associated copairing, namely

ΩX,Y =
∑

j

ϕj ⊗ ϕj

for some pair of dual basis (ϕj)j of HomC(X, Y ) and (ϕj)j of HomC(Y,X). We abbreviate
ΩX := ΩX,1.

1.4.2 Crane–Yetter (3+1)-TQFTs
Let C be a chromatic-non-degenerate ribbon fusion category. We define a (3+1)-TQFT

CYC : Cob3+1 → Vectk by using Theorem 1.3.8. We do not give the historical state sum
definition of Crane and Yetter [CY93] (extended to possibly non-modular categories later
in [CKY97]), but a skein-theoretic one. Both approaches match using Robert’s chain-mail
construction, see [Tha21] for an account in this context.
We start by defining the state spaces.
Definition 1.4.3: Let M be a closed oriented 3-manifold. The C-skein module SkC(M)
of M is the vector space generated by isotopy classes of C-colored framed ribbon graphs
in M modulo skein relations, namely the skein module with empty boundary conditions
from Definition 1.2.17. ♢

Skeins, as embedded ribbon graphs, transport naturally under a diffeomoprhism M →M ′.
The relations being local, one can easily check that SkC(M1⊔M2) ≃ SkC(M1)⊗SkC(M2).
This construction gives a symmetric monoidal functor SkC : Man3 → Vectk. We now
simply have to describe maps associated to handle attachments.
Definition 1.4.4 (The 0-handle): Let S : ∅ ↪→ M be a framed −1-sphere. The 0-
handle is the cobordism W (S) = D4 ⊔M × [0, 1] : M → S3 ⊔M . We set

CYC(W (S)) : SkC(M) → SkC(S3) ⊗ SkC(M)
T 7→ d(C).∅ ⊗ T

where ∅ denotes the empty skein. ♢

Definition 1.4.5 (The 1-handle): Let S : S0 × D3 ↪→ M be a framed 0-sphere. The
1-handle is a cobordism W (S) : M →M(S) where M(S) is obtained from M by removing
the two balls S and joining them by a [0, 1]× S2. For T ∈ SkC(M), one can isotope T so
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that it does not intersect S. This gives a skein in SkC(M ∖S). As M ∖S is a submanifold
of M(S), it transports to a skein T ′ ∈ SkC(M(S)). See Figure 1.4. We set

CYC(W (S))(T ) = 1
d(C)T

′.

This process is well-defined because two skeins avoiding S that are isotopic in M are also
isotopic by an isotopy in M ∖ S. ♢

S

T T7−→ 1
d(C)

M(S)M

Figure 1.4: The 1-handle

Definition 1.4.6 (The 2-handle): Let S : S1 × D2 ↪→ M be a framed 1-sphere. The
2-handle is a cobordism W (S) : M →M(S) where M(S) is obtained by doing surgery on
M along S, namely removing S and gluing back another solid torus but switching meridian
and longitude. We call l = S(S1 × 1) ⊆ ∂(M ∖ S) the longitude and m = S(1 × S1) ⊆
∂(M ∖S) the meridian. The meridian (in red in Figure 1.5) bounds a disk in M , but may
not bound one in M(S), and the opposite is true for the longitude (in dark purple).
Again a skein T can be pushed to a skein T ′ disjoint from S, and is mapped to itself union
a copy mc

G of the meridian colored by the generator G and with a single coupon colored
by the chromatic morphism c, see Figure 1.5. So

CYC(W (S))(T ) = T ′ ∪mc
G .

This process is well-defined by Proposition 3.4.2, in the special case of a semisimple
category. ♢

Definition 1.4.7 (The 3-handle): Let S : S2 × I ↪→ M be a framed 2-sphere. The
3-handle is a cobordism W (S) : M → M(S) where M(S) is obtained by cutting S at the
middle sphere S2 × {1

2}, and filling both sides with a 3-ball.
This time in general a skein cannot pushed to be disjoint from S, as it may go through
it. It can however be isotoped to be transverse to S2 × {1

2}, and (fusing tensor products)
to have only one strand going through it.
A skein T ⊂ M with only one transverse intersection with S2 × {1

2} at a strand colored
by an object X is mapped to a linear combination of skeins obtained from T by cutting
the strand X and adding two coupons on either sides. These coupons are colored by ΩX .
Writing ΩX = ∑

j ϕj ⊗ ϕj as in Definition 1.4.2, we set

CYC(W (S))(T ) =
∑

j

T cut
j
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•

7−→

M(S)M

T T

c

Figure 1.5: The 2-handle

where T cut
j is the skein T , cut at T ∩ S2 × {1

2}, filled with two coupons (so now living in
M(S)) couloured by ϕj and ϕj, see Figure 1.6.
This process is well-defined by Proposition 3.4.3, in the special case of a semisimple
category. ♢

ϕj

ϕj

>X

TT 7−→
∑

j

M M(S)

Figure 1.6: The 3-handle

Definition 1.4.8 (The 4-handle): Let S : S3 ↪→M be a framed 3-sphere. It has to be a
connected component of M diffeomorphic to S3. So up to diffeomorphism we can consider
that M = S3⊔M ′. The 4-handle is the cobordism W (S) = D4⊔M ′×[0, 1] : S3⊔M ′ →M ′.
We set

CYC(W (S)) : SkC(S3) ⊗ SkC(M ′) → SkC(M ′)
T ⊗ T ′ 7→ RTC(T ).T ′

where RTC is the Reshetikhin–Turaev evaluation. ♢

Theorem 1.4.9 (special case of Theorem 3.4.4): There exists a unique TQFT,
called the Crane–Yetter TQFT associated with C,

CYC : Cob3+1 → Vectk

which coincides with SkC on Man3 and with the definitions of CYC(W (S)) given above
on handle attachments.
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The fact it does coincide with the usual definition of the Crane–Yetter TQFT using
state sums is shown in Theorem 3.5.1 using Robert’s chain-mail construction as detailed
in [Tha21].
Remark 1.4.10: It is strongly expected [Walb,Joh21,BJS21,Tha21] that the Crane–Yetter
theory extends down and assigns values to surfaces (and actually 0 and 1-manifolds)
and is functorial with respect to 3-cobordisms and 4-cobordisms with corner. A more
precise notion of extended TQFT will be introduced in Chapter 2. The expected values
of the Crane–Yetter theory on surfaces are skein categories described in Section 1.2.2.
3-dimensional cobordisms induce some kind of bimodule between skein categories via the
skein module functor construction [Walb,GJS23,Tha21].

1.4.3 Witten–Reshetikhin–Turaev (2+1)-TQFTs
In this section we pick a ribbon fusion category C which is modular. In this case, it is

known that the Crane–Yetter TQFT described above is very simple: every state space is
one-dimensional, and the scalar invariants associated with 4-manifolds depend only on the
Euler characteristic χ and the signature σ, see Theorem 3.4.8 and [CKY97, Proposition
6.2]. However, there is still an interesting theory living “at its boundary”. Again, this
point of view is not the historical definition of [RT91,Tur94], but was developed later by
Kevin Walker to understand the anomaly of Witten–Reshetikhin–Turaev theories.
Remark 1.4.11: In every state space SkC(M) of the Crane–Yetter TQFT, there is a
canonical vector given by the empty skein, denoted ∅. 3

Definition 1.4.12: LetM be an oriented closed 3-manifold andW a bounding 4-manifold.
We define a scalar invariant of pairs (M,W ) as:

WRTC(M,W ) := CYC(W )(∅)

To obtain a (2+1)-TQFT we expect an invariant of closed 3-manifold, not depending on
the data of a bounding 4-manifold. It is possible to renormalize the contribution of the
4-manifold W because the Crane–Yetter TQFT is very simple for a modular category C.

Theorem 1.4.13 (special case of Theorems 3.3.2 and 3.3.3): Let M be an ori-
ented connected closed 3-manifold. It is obtained from S3 as surgery on some link L.
Denote Ẇ : M → S3 the 4-cobordism obtained by composing the 2-handles described
by the link L. Denote W : M → ∅ the 4-cobordism obtained by composing Ẇ with the
4-handle D4 : S3 → ∅. Choose D a square root of d(C). Then

WRTC(M) := D−1

∆
χ(W )+σ(W )−1

2
+ ∆

χ(W )−σ(W )−1
2

−

CYC(W )(∅)

= D−χ(W )
(

∆+
D

)−σ(W )
CYC(W )(∅)

is a well-defined invariant of 3-manifolds, and does not depend on the choice of L and
hence of W . (Note that χ(W )+σ(W )−1

2 and χ(W )−σ(W )−1
2 are integers)

Remark 1.4.14: We have added a factor D−1−b1(M) to the definition of Theorem 3.3.2
so that our invariant coincides with the usual definition of [Tur94, Theorem 2.2.2]. The
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first expression emphasizes that the choice of D is unnecessary to define the 3-manifold
invariant (and is not made in Theorem 3.3.2).

The second expression emphasizes that the factor in front of CYC(W )(∅) is here to
renormalize the contribution of the choice of W . Since in this case the Crane–Yetter 4-
manifold invariant depends only on the Euler characteristic χ and the signature σ, we only
need these two factors λχµσ. Indeed for any two choices W and W ′ of bounding manifolds
for M , the maps CYC(W ) and CYC(W ′) differ by a scalar λχ(W )−χ(W ′)µσ(W )−σ(W ′), so that
λ−χ(W )µ−σ(W )CYC(W ) is independent of the choice of W .

Note that there are no closed 4-manifolds with signature 0 and Euler characteristic
1 (they always have same parity) so we cannot find the appropriate coefficients λ and
µ simply by evaluating the Crane–Yetter TQFT on some 4-manifolds and one needs to
make a choice of square root. For example, taking W ′ = W ⊔ S4 above we obtain that
λ2 = CYC(S4) = d(C) and taking W ′ = W ⊔ CP 2 we obtain that λ3µ = CYC(CP 2) =
d(C)∆+, but we cannot get any other condition. These condition will determine an index
2 lattice for the values of χ and σ, and we have the choice of a square root for λ2 = d(C).3

The WRT TQFT is then usually obtained from this 3-manifold invariant through a
process called the universal construction, see [Tur94, BHMV95]. We can describe them
alternatively using the expected extension of the Crane–Yetter theory to dimension 2 by
skein categories.
Remark 1.4.15: In every skein category SkC(Σ) there is a canonical object given by the
empty set of points. 3

Definition 1.4.16: Let Σ be a closed oriented surface and M a bounding 3-manifold.
We define the state space as the relative skein modules defined in Definition 1.2.17

WRTC(Σ,M) := SkC(M, ∅)

Again, these vector spaces depend only mildly on the bounding manifold M , and any two
choices give isomorphic state spaces. However, one needs to track these isomorphisms,
and there is no purely canonical way of defining WRTC(Σ) as there was for the scalar
invariant above. The WRT TQFT will in fact not be a TQFT in the usual sense, but
be anomalous. It is sometimes said that the Crane–Yetter TQFT is the anomaly of the
WRT TQFT. We will not recall in detail how to fix this anomaly. The following theorem
follows from [Tur94]. For a more modern treatment closer to the point of view we have
used here see [De 17, Chapter 1].

Theorem 1.4.17: There exists a symmetric monoidal functor

WRTC : C̃ob2+1 → Vectk

where C̃ob2+1 is the category of surfaces equipped with a Lagrangian in their first ho-
mology group, and 3-cobordisms equipped with an integer. Composition is given by usual
composition and adding the integers plus the Maslov index of the three featured La-
grangians.
It satisfies that for a closed 3-manifold M equipped with the integer 0, the scalar
WRTC(M, 0) coincides with WRTC(M) defined above, and for a closed surface Σ equipped
with a Lagrangian L, the vector space WRTC(Σ, L) is isomorphic to WRTC(Σ,M) for
any choice of bounding 3-manifold M .

49



a higher algebraic approach to non-semisimple quantum invariants

Remark 1.4.18: From our point of view, we can interpret the extra data in the definition
of C̃ob2+1 as coming from bounding manifolds, though we only remember the data needed
to renormalize the contribution of the bounding manifold. This way, Lagrangians L ⊆
H1(Σ) correspond to the choice of a bounding 3-manifold M with L = ker(H1(Σ) →
H1(M)). The integer that 3-cobordisms are equipped with corresponds to the data of
the signature of a bounding 4-manifold. The reason we have to keep track of this data is
that two 4-manifold with corners with signature 0, glued on a corner surface, may give a
4-manifold of non-zero signature. The Maslov index computes precisely this defect. On
the other hand, the Euler characteristic glues very nicely, and actually the whole Crane–
Yetter TQFT can be twisted to not depend on the Euler characteristic, see Proposition
3.4.7. 3

Remark 1.4.19: The observation that WRT can be obtained from Crane–Yetter in this
way is due to Kevin Walker, though the full construction is not formalized yet. Chapter
4 is an attempt towards a formalization. 3

1.5 Non-semisimple skein theory
When the category C is no longer supposed to be semisimple, a lot of the techniques

above fall apart. One can check that if C is ribbon tensor and not semisimple, then the unit
1 is not projective [EGNO15, Corollary 4.2.13]. Every projective object has 0 quantum
dimension [GKP11, Corollary 4.4.2 with J = 1]. The Reshetikhin–Turaev invariant of any
closed C-colored ribbon graph containing some projective color is zero [GKP11, Theorem
1.4.1 (2) with J = 1] and the trace pairing is degenerate. There is however a way of
obtaining information from these graphs with projectives, which we present here.

1.5.1 Non-degenerate modified traces
We use the notation and terminology of [CGP]. Let C be a ribbon tensor category.

Recall that in [EGNO15] a tensor category is defined as a locally finite k-linear abelian
rigid monoidal category with EndC(1) ∼= k.
Definition 1.5.1: Let Proj be the ideal of projective objects of C. A non-degenerate
m-trace on Proj is family of linear maps t = {tP : EndC(P ) → k}P∈Proj satisfying the
following properties:

1. Cyclicity: For all U, V ∈ Proj and morphisms V f−→ U, U
g−→ V , we have tV (gf) =

tU(fg).

2. Right partial trace: If U ∈ Proj and W ∈ C, then for any f ∈ EndC(U ⊗W ),

tU⊗W (f) = tU

(
(IdU ⊗

−→evW )(f ⊗ IdW ∗)(IdU ⊗
←−coevW )

)
. (1.1)

3. non-degeneracy: For any P ∈ Proj, the pairing HomC(1, P ) ⊗k HomC(P,1) → k
given by (x, y) 7→ tP (x ◦ y) is non-degenerate. ♢

Note since C is ribbon the m-trace also satisfies the left partial trace property similar to
Equation (1.1).
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Definition 1.5.2: Let Ribadm
C be the subset of all closed C-colored ribbon graphs in S3

obtained as the braid closure of a (1,1)-ribbon graph TP whose open edge is colored with
an object P ∈ Proj. Equivalently it is the set of C-colored ribbon graphs in S3 with at
least one edge colored by a projective object. The elements of Ribadm

C are called admissible
ribbon graphs in S3. ♢

Recall that RTC is the Reshetikhin-Turaev functor from the category RibC of C-colored
ribbon graphs in R2 × [0, 1] to C.

Theorem 1.5.3 (see [GPT09, GP18]): The assignment

F ′ : Ribadm
C → k given by F ′(L) = tP (RTC(TP ))

is an isotopy invariant of C-colored ribbon graphs L in S3.

Definition 1.5.4: A category is unimodular if its unit object has a self dual projective
cover. ♢

Theorem 1.5.5 (Corollary 5.6 in [GKP22]): If T is unimodular and pivotal then it
has a unique (up to scalar) non-degenerate m-trace on Proj.

1.5.2 Admissible skein modules
The invariant of ribbon graphs defined above is only defined for graphs that have at

least one projective color: the elements of Ribadm
C . We can define the appropriate notion

of skein relations and skein modules for these admissible graphs.
Definition 1.5.6: Let M be a compact oriented 3-manifold. An admissible ribbon graph
in M is a C-colored ribbon graph in M where each connected component of M contains
at least one edge colored with a projective object.
A projective skein relation is a skein relation as in Definition 1.2.17, namely a linear
combination of admissible ribbon graphs ∑i λiTi is equivalent to 0 if they agree outside a
cube ϕ and evaluate to 0 inside the cube, but with the extra condition that each Ti must
have some projective-colored strand not entirely inside the cube ϕ.
The quotient of Ribadm

C (M) by projective skein relations is called the admissible skein
module SC(M) of M1. ♢

Theorem 1.5.7: If C is finite, for any oriented compact 3-manifold M the vector space
SC(M) is finite dimensional.

Proof : In the case of surfaces this theorem is [CGP, Theorem 5.10]. Let M be a
connected 3-manifold, decomposed into one 0-handle, g index 1 handles, and some index
2 and 3 handles. Then SC(M) is generated by admissible skeins in the genus g handlebody
Hg formed by the handles of index 0 and 1. Then we conclude by observing that Hg =
Σ × [−1, 1] for some orientable surface Σ, therefore dim SC(Hg) = dim SC(Σ) < ∞.

1Since we only work with the ideal of projective objects, in this manuscript, we denote by SC the
skein module SProj of [CGP].
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Finally for non connected manifolds the skein modules are tensor products of those of the
connected components. □

By [CGP, Proposition 2.2] the assignment M → SC(M) extends to a functor

SC : Embn → Vectk
where Embn is the category whose objects are oriented n-dimensional manifolds and
morphisms are isotopy classes of orientation preserving proper embeddings.

1.5.3 DGGPR (2+1)-TQFTs
A (2+1)-TQFT was built in [DGG+22] using some of the techniques introduced above.

They are expected to be related to the non-semisimple TQFTs of [BCGP16], and they
share similar features. These TQFTs are anomalous in the same way WRT TQFTs
are. They are not defined on the usual category of cobordism but on a category of
cobordisms with extra structure which corresponds to the data needed to renormalize
the contribution of a bounding manifold. In the semisimple case this contribution was
noticed to correspond to the Crane–Yetter TQFT by Kevin Walker, but the analogous
(3+1)-TQFT for non-semisimple categories was only introduced later in [CGHP] (and is
the subject of Chapter 3). The [DGG+22] and [BCGP16] TQFTs are also non-compact.
This means that they are not defined on the whole category of cobordisms, but only for
some class of admissible 3-cobordisms.
Definition 1.5.8: The category C̃ob

nc

2+1 is the subcategory of C̃ob2+1 containing every
object and only those 3-cobordisms that have incoming boundary in every connected
component. Said differently, M : Σ → Σ′ in C̃ob2+1 belongs to C̃ob

nc

2+1 if and only if
π0(Σ)→ π0(M) is surjective. ♢

Theorem 1.5.9 ( [DGG+22]): Let C be a finite ribbon tensor category which is modu-
lar in the sense that it’s Müger center is trivial. Then there exists a symmetric monoidal
functor

DGGPRC : C̃ob
nc

2+1 → Vectk

We can identify part of their construction as in Theorem 1.4.17:

Theorem 1.5.10: The state space DGGPRC(Σ) on a closed surface Σ is isomorphic to
the admissible skein module SC(H) where H is a bounding handlebody.

Note that a surjection π : SC(H) ↠ DGGPRC(Σ) was already constructed in [DGG+22,
Proposition 4.11] (in our case bichrome graphs can be turned blue by [DGG+22, Lemma
4.5]). We give another isomorphism below, but our proof in particular implies that π is
an isomorphism.
We will first need a lemma which gives a more explicit description of SC(H).

Lemma 1.5.11: Let C be a ribbon tensor category and H a genus-g handlebody. Then
there is a vector space isomorphism

SC(H) ≃
( ⊕

(Pi)i∈Projg
HomC(P1 ⊗ P ∗1 ⊗ · · · ⊗ Pg ⊗ P ∗g ,1)

)
/⟨(f, Id) ∼ (Id, f ∗), f : Pi → P ′i ⟩
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where for f : Pi → P ′i and ψ : P1⊗P ∗1 ⊗ · · ·⊗P ′i ⊗P ∗i ⊗ · · ·⊗Pg⊗P ∗g → 1 , the relation
(f, Id) ∼ (Id, f ∗) denotes the usual “coend” relation

ψ ◦ (Id⊗ · · · ⊗ f ⊗ IdP ∗i
⊗ · · · ⊗ Id) ∼ ψ ◦ (Id⊗ · · · ⊗ IdPi

⊗f ∗ ⊗ · · · ⊗ Id) .

Proof : Denote by Eg the vector space on the right hand side.
Observe that H is a thickening of a g-punctured disk Dg, hence SC(H) ≃ SC(Dg) as

defined in [CGP]. Choose disjoint arcs γ1, . . . , γg joining each puncture to the boundary.
Cutting along these arcs gives a disk D = Dg ∖ (∪iγi).

There is a map Eg → SC(Dg) which maps a morphism φ to a unique coupon in
D colored by φ with g pairs of strand coming out of it, each going around one of the
punctures, so intersecting γi once, and colored by Pi, as shown below.

• • . . . •

φ

P1 > P2< Pg

>

γ1 γ2
γg

It is well-defined because the relations (f, Id) ∼ (Id, f ∗) are satisfied by isotopy and skein
relations in SC(Dg). We now construct its inverse.

An admissible ribbon graph in Dg is said to be in good position if it intersects each
γi transversely and along at least one projective edge.
From an admissible ribbon graph T in Dg in good position we can obtain an element of
Eg as follows. Let Pi denote the tensor product of the colors of the edges crossing γi. It is
projective by our assumption. Then, cutting T along the γi’s, we obtain a ribbon graph
T ′ in D which can be evaluated to a single coupon φ. The morphism φ has source the
tensor product of the boundary point of T ′ and target 1, namely

φ : P1 ⊗ P ∗1 ⊗ · · · ⊗ Pg ⊗ P ∗g → 1 .

We need to put every admissible ribbon graph in good position and study the relations
between them.
Consider the vector space Ribadm

C (Dg) freely generated by admissible ribbon graphs in Dg

which intersect the arcs γi transversely. It is enough to consider these because generically
every ribbon graph intersects the arcs transversely. The admissible skein module it its
quotient by isotopy and admissible skein relations.
Moreover, generically every isotopy can be decomposed into a serie of isotopies of the
form: 1) isotopies in D, 2) a coupon crossing a γi and 3) a cup or a cap crossing a γi.
Finally, up to isotopy, every admissible skein relation can be supposed to happen in D.
In other words, SC(Dg) is the quotient of Ribadm

C (Dg) by the equivalence relation generated
by the three isotopy moves described above and admissible skein relations in D.

Now let us produce an admissible ribbon graph in good position from an admissible
ribbon graph T in Ribadm

C (Dg). Find a projective strand of T in D and, doing a snake
move and adding a coupon, produce a strand colored by Q := P ⊗ P ∗ coming out of the
P -strand, and ending with a coupon coevP : Q→ 1. One could equivalently use the trick
of [DGG+22, Figure 8] to produce a P1 strand ending with a coupon ε. Then drag this
strand to the boundary of Dg crossing above every other edge (using braiding coupons)
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and go around the whole boundary, intersecting every γi. The resulting ribbon graph is
in good position and can therefore be interpreted as an element of Eg.

We need to show that this process is well-defined on Ribadm
C (Dg). Suppose you have

chosen a different projective strand colored by P ′, or indeed the same strand at a dif-
ferent place, and that you joined the boundary using a different path. Then one can do
both operations, and have two projective strands going through every γi. Now one can
undo either of these operations, isotoping the Q or Q′ strand back in its initial position,
and the ribbon graph will stay in good position throughout because there is always the
other projective. This isotopy is obtained as a sequence of relations in Eg whenever the
coevaluation coupon crosses a γi, and the map Ribadm

C (Dg)→ Eg is well-defined.
Now we can check it descends to SC(Dg). Admissible skein relations and isotopies in

D do not affect φ. Coupons, cups and caps crossing a γi are relations in Eg, up to doing
the operation above to ensure that there is always projective intersecting γi.

It is clear from the definition that these two maps are inverses to each other, and we
get the isomorphism. □

Proof (of Theorem 1.5.10): The description above can now more easily be related
to the coend used in [DGG+22]. Remember that the coend L is defined as the colimit

L =
∫ X∈C

X ⊗X∗ =
(
⊕X∈C X ⊗X∗

)
/⟨(f, Id) ∼ (Id, f ∗), f : X → Y ⟩

We only consider projectives in our case, but this does not change this colimit, and
L ≃

∫ P∈Proj P ⊗ P ∗ by [KL01, Proposition 5.1.7]. Note that by [KL01, Corollary 5.1.8],
the infinite nature of this colimit is unnecessary, and we could allow only P = G the
projective generator. We will still denote it

∫ P∈Proj, but it will be useful to remember
that everything is finite.
It is shown in [DGG+22, Proposition 4.17 and Lemma 4.1 at V = 1] that

DGGPRC(Σ) ≃
(

HomC(L ⊗g,1)
)∗
.

Using the definition of the colimit, the vector space HomC(L ⊗g,1) is obtained as a limit:
the subspace of the product Π HomC(P1⊗P ∗1⊗· · ·⊗Pg⊗P ∗g ,1) of the collection that satisfy
the (f, Id) ∼ (Id, f ∗) relations. The dual of this limit is then (using the fact everything is
finite) the colimit

DGGPRC(Σ)≃
( ⊕

(Pi)i∈Projg
HomC(P1⊗P ∗1⊗· · ·⊗Pg⊗P ∗g ,1)∗

)
/⟨(f, Id) ∼ (Id, f ∗), f : Pi → P ′i ⟩

This is almost the same as the formula we gave for SC(H), though there are duals. We
have an isomorphism HomC(P1⊗P ∗1 ⊗· · ·⊗Pg⊗P ∗g ,1)∗ ≃ HomC(P1⊗P ∗1 ⊗· · ·⊗Pg⊗P ∗g ,1)
given by the modified trace paring, and noticing that by design P1⊗P ∗1 ⊗· · ·⊗Pg⊗P ∗g is
self-dual up to isomorphism. These isomorphisms preserve the (f, Id) ∼ (Id, f ∗) relations,
and induce an isomorphism on the quotient. Hence the result. □

The TQFT of [DGG+22] is actually defined on a bigger category of cobordisms where
cobordisms have embedded colored graphs. In this case, they give invariants of closed 3-
manifolds M equipped with an admissible ribbon graph T ⊆M . We will see in Theorem
3.3.3 that this invariant coincides, up to a factor D−1−b1(M), with the one given in Theorem
3.3.2 for the same C.
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Chapter 2

Higher Algebra

In this second preliminary chapter we will review the higher-algebraic tools that we
intend to use to describe and classify skein-theoretic Topological Quantum Field Theories.
We will recall the general notion of fully extended TQFT and their classification by the
cobordism hypothesis, mostly following [Lur09b].

This uses a fair amount of higher algebra and we will recall as much as is feasible.
The reader unfamiliar with higher category theory may still find interest in the study
of presentable cocomplete categories in Section 2.3.1 and in the explicit descriptions of
objects and higher morphisms of BrTens in Section 2.3.4.

In Section 2.1, we define complete n-fold Segal space, our model for higher categories,
in detail. We give some standard constructions there, in particular the notion of dualiz-
ability in Section 2.1.6. However, we will only give a quick overview of the definition of
higher functors, which relies on model category theory.

In Section 2.2, we recall the broad lines of the construction of the symmetric monoidal
complete n-fold Segal space Bordn. We state the cobordism hypothesis, and its oriented
version.

In Section 2.3, we recall the definition of even higher Morita categories Alg2(Pr)
by [Hau17, JS17]. We only sketch Haugseng’s construction of higher Morita categories
which relies on Lurie’s ∞-categories and the straightening-unstraightening equivalence.
Note that Haugseng identifies his construction quite well, which we recall. We give in
detail Johnson-Freyd–Scheimbauer’s extension to “even higher” Morita categories. We
recall the explicit description of Alg2(Pr) under the name BrTens from [BJS21]. We
prove in Theorem 2.3.29 that this description does recover the underlying bicategories of
Alg2(Pr). Finally we recall the known dualizability results in BrTens.

2.1 Higher categories
Higher category theory is a recent and still under development field. Its starting point

is the study of structures that have coherences up to homotopy, or more generally whose
coherences represent some extra data that should itself be subject to higher coherences.
The initial example is the space of based loop ΩX on a topological space X. It has a
product given by concatenation of loops, which is associative up to homotopy, namely
there is a path in ΩX joining any two way of parenthesizing a product of loops. Moreover
these associativity-paths are themselves coherent: on a product of many loops, there are
multiple ways to link two parenthesizings, but all resulting associativity-paths are homo-
topic. We say that ΩX is an A∞-algebra in the category of topological spaces.
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Now this implicitly uses some extra structure on the category of topological spaces: ho-
motopies. We want to make sense of an equally true statement: the complex of singular
chains Sing(ΩX) on ΩX forms an A∞-algebra in the category of chain complexes. But
what is a homotopy in the category of chain complexes? We do know how to make sense
of this (it is a degree 1 map of chain complexes), but these are just examples and we
want to develop a general theory. What is a category with homotopies? How do we say
that a functor (e.g. Sing above) preserves homotopies? One approach that has been
more pursued in the context of algebraic topology described above is the notion of model
categories, where one makes sense abstractly of homotopies and weak equivalences. An
approach which will be more fruitful in our context is to consider that homotopies are
extra data of morphisms between morphisms. In a higher category, there are objects,
morphisms between these objects, morphisms between theses morphisms and so on.
A first model of higher category is that of a topological category. A topological category
C is a category enriched in topological spaces, namely every Hom space HomC(X, Y ) be-
tween two objects X and Y is equipped with the structure of a topological space, and
composition maps HomC(X, Y )×HomC(Y, Z)→ HomC(X,Z) are continuous. Homotopies
(morphisms between morphisms) are then by definition paths in these spaces, and so on.
This notion, though equivalent (in the sense of model categories) to the following, is not
ideal to work with. A better-accepted definition of higher category has been developed
by Lurie in [Lur09a]. It is based on simplicial complexes, hence is more combinatorial by
nature and reflects well the idea of having a combinatorial data of objects, 1-morphisms
between objects, 2-morphisms between 1-morphisms and so on.
Lurie’s notion of ∞-category, though important in what follows, does not encapsulate
every example we will be interested in. It is clear in the topological setting: every 2-
morphism (by definition, homotopy) is invertible up to higher homotopy (as a homotopy
can be read both ways). We will be very interested in the case where there are non-
invertible higher morphisms.
We say that a model for higher categories is a model for (∞, n)-categories if every k-
morphism for k > n is invertible. We will say it is a model for (m,n)-categories if
moreover every k-morphism for k > m is an identity. In this terminology, topological
categories, and Lurie’s notion of an ∞-category, are models for (∞, 1)-categories. There
is a combinatorial model for (2,2)-categories: bicategories, which we will use to describe
dualizability. However, for greater m and n, we quickly run short of combinatorial mod-
els. We will describe below Barwick’s notion of complete n-fold Segal spaces [Bar05],
which is a model for (∞, n)-category, and will be our definition of (∞, n)-category in this
manuscript. We will mostly follow [Lur09b], [Sch14a] and [CS19].

2.1.1 Segal spaces

A Segal space is a model for an (∞, 1)-category, developed in [Rez01]. As for most
constructions of models for higher categories, the definition of a Segal space starts with
some usual construction for strict categories, and tries to weaken some conditions and
add some structure to get a category which is only associative up to homotopy.

Definition 2.1.1: Let C be a category. Its nerve N(C) is the simplicial set with N(C)0 =
Ob(C) and N(C)k is the set of tuples of k composable arrows in C. The face maps are given
by either forgetting the first or last arrow, or composing two of them. The degeneracy
maps are given by adding an identity. ♢
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Example 2.1.2: An element of N(C)3 : X
f→ Y

g→ Z
h→ T . ♢

Proposition 2.1.3: The simplicial set N(C) satisfies the strict Segal condition: the
canonical map, called the Segal map,

N(C)n → N(C)1 ×N(C)0 · · · ×N(C)0 N(C)1 ,

given by including every (k, k + 1)-edge, 0 ≤ k ≤ n− 1, in ∆n, is a bijection.
Moreover, any simplicial space X• satisfying the strict Segal condition is isomorphic to
some N(C).

Proof : The first statement is simply the definition of N(C)n as tuples of n composable
arrows.
For the second, we construct C as follow:
Its objects are given byX0, and its morphisms byX1. The source and target of a morphism
is known from the two face maps X1

→
→ X0, and the identities by the degeneracy map

X0 → X1. The composition law is read in X2. A pair of composable arrows is exactly
an element of X1 ×X0 X1 ≃ X2. Then two of the face maps X2

→
→
→ X1 are the given

two morphisms, the third one defines their composition. Unity of identities is given by
degenerate elements of X2, and associativity is read in X3. □

In an (∞, 1) category, we want more structure than in a category, higher morphisms, but
in a controlled manner. Every Hom set should now be an (∞, 0)-category, namely a space.
We denote Space ⊆ sSet the full subcategory of Kan complexes [Kan57, Definition 1.1]
inside the category of simplicial sets. To avoid confusion with the other types of simplicial
structure, we will often consider them as topological spaces. The set of 0-simplices of a
space X is called its set of points.
Definition 2.1.4 (Definition 1.4 in [CS19]): A Segal space is a simplicial space X• :
∆op → Space satisfying the Segal condition: the canonical map

Xn → X1 ×h
X0 · · · ×

h
X0 X1,

is a weak equivalence. ♢

Remark 2.1.5: Note the homotopy fiber product above. By definition, the inclusion of the
(k, k+1)-edges in ∆n induces a map Xn → X1×X0 · · ·×X0X1. There is always a canonical
map from the usual fiber product to the homotopy fiber product (a homotopy fiber product
X×h

Y Z can be described as the space of pairs of objects of X and Z together with a path
between their images in Y , the usual fiber product includes as the space of trivial paths).
The map displayed above is the composition Xn → X1×X0 · · ·×X0X1 → X1×h

X0 · · ·×
h
X0X1.

Note that the second map between the usual and homotopy fiber products would always
be a weak equivalence under the Reedy fibrant hypothesis in [Rez01]. However, following
[Lur09b] and [CS19], we dropped this hypothesis. 3

The idea is the same as above, X0 is the space of objects of the category, and X1 the space
of morphisms. Source, target, identities are given by structure maps. The composition
law is given by X2 and uses an inverse to the weak equivalence above, so it is only well-
defined up to equivalence. Unity and associativity are no longer strict, but are controlled
through all of the Xn’s. All the higher constraints are encoded there.
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Definition 2.1.6: A morphism of Segal spaces is a morphism of simplicial spaces. One
can check that on the strict version a functor is indeed the data of a morphism of simplicial
sets between the nerves. ♢

Definition 2.1.7: Let X be a Segal space and x, y two point of X0, their Hom space is

HomX(x, y) := {x} ×h
X0 X1 ×h

X0 {y}.

Note that we allow paths in X0 as morphisms by this homotopy fiber product.
One can extract a usual category from a Segal space X: its homotopy category h1(X).
Its set of objects is the set of points of X0, and is has morphisms from x to y the set

Homh1(X)(x, y) := π0(HomX(x, y)).

A morphism f ∈ X1 is said to be invertible if it is in h1(X). We denote X inv
1 the subspace

of invertible morphisms. ♢

Remark 2.1.8: In the definition above, we see that whether two objects x, y ∈ X0 are
isomorphic cannot be read entirely inside X0: they may be isomorphic by an isomorphism
in X1 which is not realized as a path in X0. This raises a problem. In a Segal space, there
are two ways to encode an isomorphism: as a path in X0, or as an invertible element of
X1. Therefore, there might be two Segal paces that have non-equivalent spaces of objects
and of morphisms, that actually represent the “same” higher category. The appropriate
notion of equivalence is the following. 3

Definition 2.1.9: A morphism of Segal spaces f : X → Y is called a Dwyer–Kan equiv-
alence if it induces an equivalence of categories h1(X) → h1(Y ) and weak equivalences
between Hom spaces HomX(x, y)→ HomY (f(x), f(y)) for every x, y ∈ X0. ♢

Remark 2.1.10: It is unpleasant that the homotopy types of the Xn’s are ill-defined up
to Dwyer–Kan equivalences, and in every construction on Segal spaces one would have to
be very careful about whether the construction is invariant under such equivalences. A
good solution is to decide how isomorphisms should be described, instead of leaving the
choice between paths in X0 and elements of X inv

1 . In the following definition, our solution
is to ask that every isomorphism comes from a path in X0. 3

Definition 2.1.11 (Section 6 of [Rez01]): A Segal space X• is called complete if the
degeneracy map (i.e. the identities) X0 → X inv

1 is a weak equivalence. ♢

In other words this demands that every invertible morphism is homotopic to an identity
in a coherent way, which is the case for paths. Informally, X inv

1 should look like the space
of free paths in X0, which is indeed homotopy equivalent to X0.

Theorem 2.1.12 (Section 14 in [Rez01]): For every Segal space X, one can con-
struct a complete Segal space X̂ together with a Dwyer–Kan equivalence X → X̂ which
is universal among maps to a complete Segal space.

Remark 2.1.13: The completion X̂ is constructed very explicitly in [Rez01, Section 14].
The space X̂0 is taken to have 0-cells (which we call points) the same points as X0, but
1-cells of X̂0 consist of 1-cells in the space X inv

1 of invertible 1-morphisms. They include
in particular both 1-cells in X0 (using the identities), and points of X inv

1 (seen as constant
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paths). k-cells are taken to be k-cells in the space of k-tuples of invertible 1-morphisms.
To describe the spaces X̂n, one has to make sense of “invertible morphism of n-simplices”
and this is encoded as morphism out of a product ∆n × E(1) where E(1) is the nerve of
the walking isomorphism. In general, the set X̂k

n of k-cells in X̂n is defined to be

X̂k
n := HomsSet(∆n × E(k), Xk

• )

where E(k) is the nerve of the walking k-tuple of isomorphisms. We use exponents for
the spacial simplicial structure to avoid confusion with the (soon to be n-uple) categorical
simplicial structure. 3

Remark 2.1.14: The theory of model categories describes how to deal with a notion
of equivalences in a category, as we did above. It suggests to replace every object by
an equivalent “nice” objects (called fibrant). In our case, there is a model structure
on Fun(∆op, sSet) whose fibrant objects are the complete Segal spaces. The completion
procedure we described above is called a fibrant replacement in this context. See [CS19,
Section 1.4] and [JS17, Appendix A] for a more detailed account on how complete Segal
spaces appear from model category theory. 3

2.1.2 n-fold Segal spaces
We now have a tool to create a recursive model for (∞, n)-categories. We first define

n-uple Segal spaces, then correct this definition to n-fold Segal spaces.
Tentative definition: A Segal object in an∞-category C with finite limits is a simplicial
C-object X : ∆op → C satisfying the Segal condition: the canonical map Xn → X1 ×h

X0

· · · ×h
X0 X1 is a weak equivalence.

An n-uple Segal space is a Segal object in the ∞-category of (n− 1)-uple Segal spaces.♢
There are two problem with this definition. The first is that we did not describe higher

morphisms between Segal spaces, but this can be done using model category theory. The
second is that this definition allows morphisms between morphisms that have different
sources and targets. Let us see this in more detail, and try to correct it.
Example 2.1.15 (2-uple Segal space): We want a functor X : (∆op)×2 → Space,
which is indeed equivalent to a functor ∆op → Fun(∆op, Space). It should satisfy first
that for every first index k, the simplicial space Xk,• is a Segal space, and second that
the X•,• satisfy the Segal condition in the first variable. This second condition has to be
checked levelwise, and is equivalent to asking that for every index l, the simplicial space
X•,l is a Segal space.
Now, as one can expect, X0,0 is the space of objects, but there are two spaces X1,0 and
X0,1 of “vertical” and “horizontal” morphisms. An element of X1,1 is now a 2-morphism,
but its “boundary” is a square: 2 vertical morphisms with possibly different sources and
targets, and two horizontal morphisms linking these sources and targets, see Figure 2.1.
This encodes the notion of a “double category”, with these two directions of morphisms
and squares between them, but it is not exactly what we want for (∞, n)-categories. So we
ask there to be no horizontal morphisms but identities, which should solve the problem.♢
Definition 2.1.16: An n-fold Segal space is an n-uple simplicial topological space X•,...,• :
(∆op)×n → Space satisfying:

∀k1, . . . ,
∨
ki, . . . , kn, Xk1,...,•,...,kn is a Segal space (2.1)
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A A′

B B′

v ∈ X0,1

w ∈ X0,1

f ∈ X1,0 g ∈ X1,0h ∈ X1,1

Figure 2.1: A 2-morphism in a 2-uple Segal space

∀k1, . . . , ki−1, Xk1,...,ki−1,0,•,...,• is essentially constant (2.2)
where essentially constant means level-wise weakly equivalent to a constant (n − i)-uple
simplicial object.
A map of n-fold Segal spaces is a map of n-uple simplicial objects. We denote by SeSpn

the category of n-fold Segal spaces.
An element of X0,...,0 is called an object of X, and an element of X1,...,1,0,...,0, with k 1’s,
a k-morphism of X. The face maps give two source and target maps from k-morphisms
to (k − 1)-morphisms. The degeneracy map gives a map in the other direction, and we
denote the image of a (k − 1)-morphism x by Idx. ♢

The higher indices encode composition laws and coherence conditions, e.g. associativity.
By the Segal condition, the spaceX1,2,0,... is described by pairs of composable 2-morphisms,
and the third face map gives “horizontal” composition for 2-morphisms, see Figure 2.2.

A A A

B B B

f1 f2 f3⇒
h

⇒
h′

Figure 2.2: Horizontal composition of 2-morphisms

The space X2,0,...,0 is described by pairs of composable arrows, but is has a third face map:
their composition. The space X2,1,0,... is described by pairs of 2-morphisms whose sources
and targets are composable, and the third face map gives their “vertical” composition,
see Figure 2.3. We sometimes call it composition of 2-morphisms in the direction of
1-morphisms.

A A

B B

C C

f

g

f ′

g′

⇒
h1

⇒
h2

Figure 2.3: Vertical composition of 2-morphisms

Definition 2.1.17: Let X be an n-fold Segal space and 1 ≤ j ≤ k ≤ n. Choose a
quasi-inverse of the Segal map

(f0,1, f1,2) : X1,...,1,2,1...,1,0...,0 → X1,...,1,1,1...,1,0...,0 ×h

X1,...,1,0,1...,1,0...,0
X1,...,1,1,1...,1,0...,0

where there are k 1’s in the right hand terms, and the 2 is in position j in the left hand-
side.
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Let f, g ∈ X1,...,1,0...,0 be k-morphisms in X with compatible sources and targets (if j = k,
we ask t(f) = s(g)) so that (f, g) is in the left hand-side above. We call composition of
f and g in the direction of j-morphisms the k-morphism g ◦j f obtained as the image of
(f, g) under the map

X1,...,1,1,1...,1,0...,0 ×h

X1,...,1,0,1...,1,0...,0
X1,...,1,1,1...,1,0...,0

(f0,1,f1,2)−1

−→ X1,...,1,2,1...,1,0...,0
f0,2−→ X1,...,1,2,1...,1,0...,0

where f0,2 is the face map obtained by the inclusion {0 < 1} → {0 < 1 < 2}
0, 1 7→ 0, 2 .

Note that the composition is not well-defined on the nose, as it depends on the choice of
a quasi-inverse, but it is well-defined up to coherent isomorphism. ♢

Definition 2.1.18: An n-by-m-fold Segal space is an (n + m)-uple simplicial space X
satisfying Segal conditions and partial essentially constancy conditions:

for fixed k1, . . . , kn, Xk1,...,kn,•,...,• is an m-fold Segal space

for fixed kn+1, . . . , kn+m, X•,...,•,kn+1,...,kn+m is an n-fold Segal space
In particular a 1-by-1-fold Segal space is a 2-uple Segal space as described in the example
above. ♢

Definition 2.1.19 (Definition 1.5.3 of [Sch14a]): Let C be an n-fold Segal space, and
x, y ∈ C0,...,0 be two objects of C. The (n − 1)-fold Segal space HomC(x, y) of morphisms
from x to y is defined as:

HomC(x, y)•,··· ,• = {x} ×h
C0,•,··· ,• C1,•,··· ,• ×h

C0,•,··· ,• {y}.

Inductively, we can define an (n−k−1)-fold Segal space HomC(x, y) between k-morphisms
x, y ∈ C1,...,1,0...,0 (with k 1’s) with s(x) = s(y) and t(x) = t(y) where s and t are the two
face maps C1,...,1,1,0...,0 → C1,...,1,0,0...,0. We set HomC(x, y) := HomHomC(s(x),t(x))(x, y). Note
that for HomC(s(x), t(x)) to be defined, we need s(s(x)) = s(t(x)) and t(s(x)) = t(t(x)),
which is given by essential constancy of C1,...,1,0,•,0...,0.
If C has a distinguished object x, we denote ΩC := HomC(x, x) the loop (n− 1)-fold Segal
space. It itself has a distinguished objects Idx, and this construction can be iterated. In
general if C is monoidal the distinguished object x will be the monoidal unit. ♢

Definition 2.1.20 (Definition 2.12 in [CS19]): Let C be an n-fold Segal space. We
define its homotopy 1-category h1(C) inductively. We denote h0(C) the set of isomorphism
classes of objects of h1(C). The case n = 1 is Definition 2.1.7. For general n we set the
objects of h1(C) to be the underlying set of C0,...,0, the objects of C. Morphisms between
objects x and y are isomorphism classes of morphisms from x to y in h1(HomC(x, y)), i.e:

Homh1(C)(x, y) = h0(HomC(x, y))

where HomC(x, y) is the (n − 1)-fold Segal space defined above, and h0(HomC(x, y)) is
defined by induction. Composition is given by Definition 2.1.17. ♢

Dwyer–Kan equivalences between n-fold Segal spaces can be defined inductively:
Definition 2.1.21: A map of n-fold Segal space f : C → D is a Dwyer–Kan equiv-
alences if it induces an equivalence of categories h1(f) : h1(C) → h1(D) and Dwyer–
Kan equivalences of (n − 1)-fold Segal spaces between Hom (n − 1)-fold Segal space
HomC(x, y)→ HomD(f(x), f(y)) for every objects x, y of C. ♢
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Definition 2.1.22: An n-fold Segal space X•,··· ,• is said complete if for every k1, . . . , ki−1,
the Segal space Xk1,...,ki−1,•,0,...,0 is complete. ♢

Applying iteratively Rezk’s completion, one can construct the completion X̂ of an n-fold
Segal space X with a Dwyer–Kan equivalence X→̃X̂ which is universal among maps to
a complete n-fold Segal space [CS19, Definition 2.14].
Remark 2.1.23: Again, there is a model structure on Fun((∆×n)op, sSet) whose fibrant
objects are complete n-fold Segal spaces. They behave well with Dwyer–Kan equivalences
in the sense that a Dwyer–Kan equivalence between two fibrant objects is a level-wise weak
equivalence. In particular, the levels of a complete n-fold Segal space are well-defined up
to weak equivalences. The completion procedure is again fibrant replacement. 3

Definition 2.1.24: An (∞, n)-category, which we will often abbreviate as n-category, is
a complete n-fold Segal space. An n-functor is a map of n-fold Segal spaces. We denote
CSSn the category of complete n-fold Segal spaces. ♢

Remark 2.1.25: The notion of n-functors F : C → D is both incomplete and imper-
fect. It is incomplete because we only have a set Hom(C,D) but, because the category
Fun((∆op)×n, sSet) is sSet-enriched, these are only the points of a simplicial set of mor-
phisms maps(C,D). It is imperfect because it may give non-equivalent outputs on equiv-
alent inputs (and the mapping spaces just mentioned may fail to be spaces). The right
notion of derived mapping space mapsh(C,D) is defined in [JS17, Definition 2.11] using
model category theory. 3

2.1.3 Standard constructions
We recall the notion of derived mapping spaces, internal Homs, nerves, truncation,

and extension.
We will need some model category theory, which we do not recall in detail. See [Toë14,

§2.1] for a survey and [Hov99] for details. We will recall just enough to make Remark
2.1.25 explicit. The following is very well explained in [JS17, Appendix A]. We use their
projective model structure.

There are two model category structures on Fun((∆op)×n, sSet) whose fibrant objects
are respectively complete n-fold Segal spaces and complete n-uple Segal spaces. They
have the same cofibrant objects.

The notion of derived mapping spaces mapsh(C,D) is defined by taking usual mapping
spaces from a cofibrant replacement C̃→̃C to a fibrant replacement D→̃D̂, i.e:

mapsh(C,D) := maps(C̃, D̂) .

In particular we have a map maps(C,D)→ mapsh(C,D).
As cofibrant objects agree in the two model structures, the derived mapping space

between two complete n-fold Segal spaces agrees with the one computed in complete n-
uple Segal spaces. To avoid confusion, we will nevertheless write mapsh

uple in the latter
case.

To compute derived mapping spaces we have to find a cofibrant replacement for the
source C. This is not easy, but we know one family of examples: given an object [k1] ×
· · ·× [kn] of ∆×n, the representable presheaf Hom∆×n(−, [k1]×· · ·× [kn]) seen as a discrete
simplicial set is always cofibrant. This is exploited in [JS17, Remarks 3.2 and 3.4 and
Example 5.13] to compute some examples of derived mapping spaces.
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There is yet another notion, using the fact that the model category in question is
monoidal. Given two n-categories C and D, their internal Hom n-category is the n-
category Fun(C,D) defined by the universal property

mapsh(B,Fun(C,D)) ≃ mapsh(B × C,D)

following [JS17, Definition 5.14] and [Lur09b, Notation 2.4.1].
Definition 2.1.26: A strict n-category is defined inductively as a category enriched in
strict (n− 1)-category. A strict n-functor is a functor of enriched categories. We denote
Catstr

n the category of strict n-categories. ♢

Unsurprisingly, they can bee seen as special cases of n-categories as defined above.
Let k1, . . . , kn ≥ 0. There is a strict n-category Θk1...,kn freely generated by k1 × · · · × kn

n-morphisms on a k1 × · · · × kn grid, see [JS17, Definition 5.1]. Let us recall the precise
definition for n = 2.
Definition 2.1.27 (Definition 5.1 of [JS17] for i = 2): Let k, l ≥ 0, the strict bicat-
egory Θk,l has k+ 1 objects {v0, . . . , vk}, l+ 1 1-morphisms {ea,b

0 , . . . , ea,b
l } from va to any

vb for b > a (otherwise it has none or only the identity ea,a
0 ) and a unique 2-morphism ba,b

i,j

from ea,b
i to ea,b

j if i ≤ j (and none otherwise).
Said differently, it is the strict 2-category freely generated by the morphisms displayed in
Figure 2.4. ♢

• • · · · •

• • · · · •

... ... · · · ...

• • · · · •

1

1

2 k

2

l

Figure 2.4: The 2-category Θk,l is a grid of k-by-l squares

These categories can be used to implement a higher (strict) nerve construction. The
following mirrors the definition of [Ara14] in the context of n-quasi-categories.
Definition 2.1.28: Let S be a strict n-category. Its strict nerve N str(S) is the (discrete)
n-fold Segal space with levels the sets

N str(S)k1,...,kn := HomCatstr
n

(Θk1,...,kn , S)

with simplicial structure induced by the maps between the Θk1,...,kn ’s as in [JS17, Section
5]. The strict Segal condition is satisfied, and coincides with the Segal condition with
homotopy fiber products because every space is discrete. The strict constancy condition
is verified, because it is on the Θk1,...,kn ’s. ♢

We will usually still write S when we want to see it as an n-fold Segal space, even though
we mean N str(S). Note that N str(S) is almost never complete, and we will often have
to complete it. One exception is the nerves of the Θk,ls, which are complete because the
Θk,ls are gaunt (have no non-trivial isomorphisms).
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Definition 2.1.29 (Remark 5.4 in [JS17]): The underlying n-fold Segal space UfoldC
of a complete n-uple Segal space C has levels

(UfoldC)k1,...,kn := mapsh
uple(Θk1,...,kn , C)

with simplicial structure induced by the maps between the Θk1,...,kn ’s. ♢

Definition 2.1.30 (Sections 2.4.1 and 2.4.2 in [CS19]): One can obtain an (n−1)-
fold Segal space from an n-fold Segal space by setting the last coordinate to 0. This
process is called truncation. Let C be an n-fold Segal space. For m ≤ n its m-truncation
τmC is the m-fold Segal space with

(τmC)k1,...,km := (C)k1,...,km,0,...,0.

This process does not give equivalent results from (Dwyer–Kan) equivalent inputs if the
n-fold Segal space C is not supposed to be complete. To avoid this issue, one has to always
complete C before taking its truncation.
In the other direction, one can extend an n-fold Segal space to an (n+ 1)-fold Segal space
with only invertible (n+ 1)-morphisms. This process is called extension. We set

(εC)k1,...,kn,kn+1 := (C)k1,...,kn .

It sends complete n-fold Segal spaces to complete (n+1)-fold Segal space by [CS19, Lemma
2.16]. It is left adjoint to τn. ♢

Remark 2.1.31: If one sees two n-categories as (n+ 1)-categories, their (n+ 1)-category
of functors is actually an n-category and is the usual one. More precisely, given C,D two
n-categories,

Fun(εC, εD) ≃ εFun(C,D) .

More generally, if a functor F :M→N between two model categories has a left adjoint
G that preserves finite products, then for any two objects C and D, one has

Fun(C, FD) ≃ F Fun(GC,D)

Indeed, using the defining universal property of internal Hom’s,

mapsh(B,Fun(C, FD)) ≃ mapsh(B × C, FD) ≃ mapsh(G(B × C),D)
≃ mapsh(GB ×GC,D) ≃ mapsh(GB,Fun(GC,D)) ≃ mapsh(B, F Fun(C,D))

If moreover F is fully faithful, or if the counit GF ⇒ Id is an equivalence, then F preserves
inner Hom’s, i.e. for any two objects C and D, one has

Fun(FC, FD) ≃ F (Fun(C,D))

The example above is F = ε : CSSn → CSSn+1 whose left adjoint is the ”inverting” η
from [CS19, Section 2.4.3]. Here η preserves finite products as geometric realization does,
and the counit ηε⇒ Id is an equivalence.
We will also consider F = τn : CSSn+1 → CSSn whose left adjoint is ε. Now ε does
preserve finite products, but the counit is not an equivalence (this time the unit is). 3
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2.1.4 Symmetric monoidal structures
We recall the notion of symmetric monoidal n-category following [Sch14a, Section 1.6]

and [CS19, Section 3].

Definition 2.1.32: Segal’s category Γ has objects the pointed finite sets

⟨m⟩ = {∗, 1, . . . ,m} , m ≥ 0,

and morphisms from ⟨m⟩ to ⟨n⟩ maps of sets preserving the pointing. For every m ≥ 0
and every 1 ≤ j ≤ m we call Segal morphism the map γm

j ⟨m⟩ → ⟨1⟩ which maps j to 1
and every other element to ∗. ♢

Definition 2.1.33: A symmetric monoidal n-fold Segal space X is a functor

X : Γ→ SeSpn

from Segal’s category Γ to the category of n-fold Segal spaces such that for every m ≥
0, the Segal morphisms induce an equivalence X(∏j γ

m
j ) : X(⟨m⟩) → ∏

j X(⟨1⟩). By
abuse, we sometimes call X(⟨1⟩) the symmetric monoidal n-fold Segal space, and X is
the symmetric monoidal structure.
A symmetric monoidal n-category is a symmetric monoidal n-fold Segal space with values
in complete n-fold Segal spaces.
A symmetric monoidal n-functor is a map of Γ-objects. ♢

Remark 2.1.34: The notion above is surprisingly strict, one would expect a much laxer
one where symmetry is verified only up to coherent isomorphisms. Why this notion
suffices is explained in [CS19, Section 3.1]. However symmetric monoidal n-functors, just
like n-functors before, may behave badly. As before, one should consider derived mapping
spaces in the model category of [JS17, Example A.11]. See also [CS19, Definition 3.6]. We
will denote Fun⊗(C,D) the symmetric monoidal n-category defined as the internal Hom
in this model category as in [Lur09b, Variant 2.4.3]. 3

Remark 2.1.35: The completion of a symmetric monoidal n-fold Segal space yields to a
symmetric monoidal n-category, see [Sch14a, Lemma 1.6.6]. 3

Remark 2.1.36: There is another way of describing monoidal n-fold Segal space, as cat-
egories of endomorphisms of an object in an (n + 1)-fold Segal space. One expects (or
defines [CS19, Section 3.2]) that a monoidal n-fold Segal space C is the same data as an
(n + 1)-fold Segal space BC with only one object, such that ΩBC ≃ C. A 2-monoidal
(read braided monoidal) n-fold Segal space C is the same data as an (n + 2)-fold Segal
space B2C with only one object and one 1-morphism such that Ω2B2C ≃ C, and so on.
This formalism is described in [CS19, Section 3.2.2].
One could now define a symmetric monoidal n-category to be an∞-monoidal n-category,
i.e. an infinite tower of (n+k)-categories BkC such that ΩBk+1C ≃ BkC and B0C = C. It
is expected, similarly to [Lur, Corollary 5.1.1.5], that this notion is equivalent to that of
Γ-object given above, and it is shown in [CS19, Section 3.3] that a Γ-object induces such
an infinite tower. In particular if an n-fold Segal space C is symmetric monoidal (in the
sense of Γ-objects), there exists a delooping (n + 1)-fold Segal space BC with essentially
one object such that C ≃ ΩBC. We will use this delooping (n + 1)-fold Segal space to
define dualizability later. 3
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2.1.5 Underlying bicategories
In the description above we saw that the definition of an n-category is not as nice and

combinatorial as the definition of a bicategory where one simply gives a list of objects,
1-morphism and 2-morphisms, some composition rules and identities, and checks some
coherences between them. However, we will see that an n-category induces a “chain” of
bicategories at every level. The n-category is not clearly determined by it, but dualizability
in the n-category, a notion we will extensively study in this manuscript, is.
Definition 2.1.37 (Section 5 of [Rom], sketched in Def. 1.4.1 in [Sch14a]): Let C
be an n-fold Segal space. Its homotopy bicategory h2(C) has objects points of C0,...,0 the ob-
jects of C. The category of morphisms between objects x and y is the homotopy category
of the (n− 1)-fold Segal space of morphisms from x to y:

Homh2(C)(x, y) := h1
(

HomC(x, y)
)

Compositions are given by Definition 2.1.17. ♢

Remark 2.1.38: If C is complete, then taking isomorphism classes of objects can be seen
at the level of the space C0,...,0, and does not involve C1,0,...,0. Namely, h0(C) = π0(C0,...,0).
Similarly, h1(C) depends only on C•,0,...,0 and h2(C) on C•,•,0,...,0. If C is not complete, we
need all levels to determine whether a given morphism is an isomorphism (it must have a
weak inverse, such that the composition is isomorphic to the identity, but this “isomor-
phic” needs even higher morphisms to make sense, and so on). From this remark we see
that it would be difficult to define the notion of invertibility in an (∞,∞)-category. 3

Remark 2.1.39: The definition above is pleasant because it is very explicit and natural.
However, it is difficult to show that this construction by hand indeed gives a bicategory,
with expected associativity and unit conditions. This was done very recently in [Rom].
Note that the notion of homotopy bicategory could already be defined, see for example
[Cam20], if one is happy to use equivalent models of higher categories, in this case 2-quasi-
categories. Its properties there are well-understood, and they construct its right adjoint,
a nerve construction, which will be used in Remark 2.3.18. 3

Remark 2.1.40: Given an n-fold Segal space C we can extract a chain of bicategories:

• the bicategory h2(C)

• a bicategory h2(HomC(x, y)) for every pair of objects x, y ∈ C0,...,0

• a bicategory h2(HomC(f, g)) for every pair of morphisms f, g : x→ y

• · · ·

• a bicategory h2(HomC(α, β)) for every pair of k-morphisms α, β with same source
and target.

We will see that this “näıve” data is sufficient to describe dualizability in C. 3

Proposition 2.1.41: A Dwyer–Kan equivalence f : C → D between two n-fold Segal
spaces induces equivalences of bicategories

h2(f) : h2(C)→ h2(D)
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and
h2(HomC(α, β))→ h2(HomD(f(α), f(β)))

for every pair of k-morphisms α, β with same source and target in C.

Proof : By definition f induces an equivalences h1(C) → h1(D), so h2(f) is essentially
surjective. Given any pair of objects x, y ∈ C0,...,0, it induces a Dwyer–Kan equivalence

HomC(x, y)→ HomD(f(x), f(y)),

hence an equivalence

h1(HomC(x, y))→ h1(HomD(f(x), f(y))).

So h2(f) is fully faithful, and an equivalence of bicategories.
By definition a Dwyer–Kan equivalence induces a Dwyer–Kan equivalence of (n− k− 1)-
fold Segal spaces HomC(α, β) → HomD(f(α), f(β)), hence an equivalence of bicategories
between their homotopy bicategories by the paragraph above. □

In particular, the näıve data described above of an n-fold Segal space X is equivalent to
the one of its completion X̂.

2.1.6 Dualizability in higher categories
We recall the notion of higher dualizability and of fully dualizable objects in a higher

category.
Definition 2.1.42: Let C be a bicategory, and f : x → y a 1-morphism in C. A right
adjoint for f is a morphism fR : y → x together with two 2-morphisms ε : f ◦ fR ⇒ Idy

called the counit and η : Idx ⇒ fR ◦ f called the unit, satisfying the so-called snake
identities:

x

x

Idx

y

f

x

y

x

f

fR

y
f

x

y

f

y

Idy

η

ε

=

=

x

y

f

x

y

f≃ ≃ = Idf and,

y

x

x

Idy

fR
x

y

x

y

f

fR

fR

y

y

x

fR

Idy

η

ε

=

=y

x

fR

y

x

fR≃ ≃ = IdfR .

We say that f has a right adjoint fR and that fR has a left adjoint f .
This definition extends to higher categories. Let C be an n-category, 2 ≤ k ≤ n and
f : x→ y a k-morphism between two k − 1-morphisms x, y : a→ b in C. A right adjoint
for f is a right adjoint for f seen as a 1-morphism in the bicategory h2(HomC(a, b)). If
k = 1 then we demand a right adjoint of f in h2(C). If k = 0 and C is a monoidal category
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then we demand a right adjoint of f in h2(BC), where BC is the delooping (n + 1)-
fold Segal space with essentially one object with endomorphisms C and composition the
monoidal structure of C from Remark 2.1.36.

Definition 2.1.43: Let C be a symmetric monoidal n-category. It is said to have duals
up to level m if every k-morphism of C, 0 ≤ k < m, has both a left and a right adjoint.
It is said to have duals if it has duals up to level n.
An object X ∈ C is called m-dualizable if it lies in a sub-n-category with duals up to level
m. It is called fully dualizable if it is n-dualizable.
We denote Cfd the maximal sub-n-category of C that has duals. Its objects constitute of
the fully dualizable objects of C. ♢

Proposition 2.1.44: Let F : C → D be a functor between n-categories and f a k-
morphism in C which has a right adjoint. Then F (f) has a right adjoint in D.
In particular if F is a symmetric monoidal functor between symmetric monoidal n-
categories, it maps fully dualizable objects to fully dualizable objects.

Proof : The image under F of the adjoint, unit and counit of f in C form adjoint, unit
and counit for F (f) in D. □

One may also define a notion of m-dualizability for k-morphisms.
Definition 2.1.45: A k-morphism f of C is called m-dualizable if it lies in a sub-n-
category with duals up to levelm+k. It is called fully dualizable if it is (n−k)-dualizable.♢
However, we will see later that this definition is very strong (in particular, it demands
dualizability of the source and target of f), and that one may relax it.

2.2 Fully extended TQFTs and the Cobordism Hy-
pothesis

A fully extended TQFT is a symmetric monoidal functor from the n-category Bordn

of bordisms of dimension up to n to some target n-category C. The target is left to be
determined, but in general it will be of linear nature and satisfy h1(Ωn−1C) ≃ Vectk. Fully
extended TQFTs are classified by the cobordism hypothesis in terms of fully dualizable
objects in C. The goal of this section is to give a precise meaning to these sentences.

2.2.1 The n-category of bordisms
The construction of the n-category of cobordism is done in [Lur09b] and precised

in [CS19]. We recall the broad ideas here.
We want to define an n-fold Segal space, so an n-uple simplicial space Bordn : (∆op)n →
Space. For indices k1, . . . , kn, (Bordn)k1,...,kn should be a space of n-manifolds M that
are obtained as compositions of k1 bordisms in the first direction, k2 in the second and so
on. We can represent this by asking that the n-manifold M lives over a “grid” in (0, 1)n

defined by k1 − 1 hyperplanes orthogonal to the first direction, k2 − 1 orthogonal to the
second and so on. The part of M which lives over one of the hyperplanes should behave
nicely (to allow to describe M as a gluing there), while the part over the “cubes” is free
and is where the cobordism happens, see Figure 2.6.
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An n-fold Segal space of such grids is described in [CS19, Section 4].
Definition 2.2.1: The simplicial space Int• is defined as follows. Its underlying simplicial
set of points int• : ∆op → Set is defined with

intk =
{

(a0, b0, . . . , an, bn) ∈ (0, 1)2n, ∀i ai < bi,
0 = a0 ≤ a1 ≤ · · · ≤ an,
b0 ≤ b1 ≤ · · · ≤ bn = 1

}
.

We think of them as increasing sequences of k+ 1 intervals Ik = [ak, bk]. We will typically
represent them as disjoint small intervals over which the composition happen, but [CS19]
makes the point that they should be allowed to overlap. The simplicial structure is given
by forgetting or doubling one of intervals, and if necessary restriction and rescaling (0, 1).
Every level intk is the set of points of a space Intk whose higher simplices are defined by
considering only smooth deformations of 2n-uples of points, see [CS19, Section 4.2].
The n-uple simplicial space of n-grids Gridn is (Int•)×n. A (k1, . . . , kn)-grid is a point of
(Gridn)k1,...,kn . ♢

The grids there are thickened to ensure that the gluings are collar gluings, and might
overlap. There are two thickened hyperplanes “at infinity” describing source and target,
see Figure 2.5. The Segal condition (2.1) is satisfied because we asked that M behave

time 2

tim
e 1

Figure 2.5: A (2,3)-grid. Here k1 = 2 and k2 = 3.

nicely over an hyperplane and is obtained as a gluing. To ensure the essential constancy
requirement (2.2), we need to ensure that M is particularly simple over the ki-hyperplanes
for small i’s, see Figure 2.6.
Definition 2.2.2 (Definition 5.1 of [CS19]): Let N ≥ 1. The n-uple simplical space
P BordN

n is defined as follows. The space (P BordN
n )k1,...,kn has points oriented n-manifolds

M ⊆ RN × (0, 1)n such that the projection M → (0, 1)n is proper, together with a
(k1, . . . , kn)-grid ((I i

0, . . . , I
i
ki

))1≤i≤n. They must satisfy that the projection over the i’th
coordinate pi : M → (0, 1) has no critical point over any of the thickened kj-hyperplanes,
so on p−1

j (Ij
k), 0 ≤ k ≤ kj for j ≤ i. Note that this means that there are much more

conditions on the p−1
j (Ij

k) for small j’s (all the pi’s, i ≥ j, must be submersive). See Figure
2.6.
The higher simplices are again given by considering smooth deformations in the Whitney
C∞-topology on embeddings of M in RN × (0, 1)n, see [CS19, Section 5.2.1].
The face maps are given by forgetting a thickened hyperplane, or restricting (0, 1)n (and
therefore M above it), see [CS19, Definition 5.15]: ♢

Proposition 2.2.3 (Proposition 5.19 in [CS19]): The n-uple simplicial spaces
P BordN

n are n-fold Segal spaces.
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Figure 2.6: A manifold living over a (2,3)-grid. Over the k1-hyperplanes, it is trivial.
Over the k2-hyperplanes, it is trivial in one direction, and maybe not in the other.

Definition 2.2.4 (Definitions 5.22 and 5.24 in [CS19]): The n-fold Segal space P Bordn

is the homotopy colimit over N of the n-fold Segal spaces P BordN
n . In particular, its

levels are obtained as (P Bordn)k1,...,kn := hocolimN((P BordN
n )k1,...,kn).

It may not be complete for large n [Lur09b, Warning 2.2.8] and the n-category Bordn is
defined to be its completion. ♢

Remark 2.2.5: One may give a similar definition for framed manifolds denoted Bordfr
n ,

or indeed for manifolds equipped with any kind of tangential structure [CS19, Section
9]. 3

The symmetric monoidal structure on Bordn is given by disjoint union [CS19, Section 7.1].
Remember that in Definition 2.1.33 of symmetric monoidal structures, we do not explicitly
build the disjoint union of two cobordisms, we instead give the space of cobordisms that
happen to be disjoint unions, and we have to check a Segal property.
Definition 2.2.6: Let m,N ≥ 0. The space (P BordN

n ⟨m⟩)(k1,...,kn) has points m-uples of
oriented manifolds (M1, . . . ,Mm) each living in RN × (0, 1)n together with a (k1, . . . , kn)-
grid Ī such that each (M, Ī) is a point of (P BordN

n )(k1,...,kn) and all the Mi’s are disjoint
in RN × (0, 1)n. The higher simplices and simplicial structures are given similarly.
The space (P Bordn⟨m⟩)(k1,...,kn) is the homotopy colimits of the spaces (P BordN

n ⟨m⟩)(k1,...,kn).
They arrange into an n-fold Segal space P Bordn⟨m⟩.
The n-fold simplicial spaces P Bordn is symmetric monoidal with

Γ → SeSpn

⟨m⟩ 7→ P Bordn⟨m⟩

Functoriality and the fact that Segal morphisms induce an equivalence are shown in [CS19,
Proposition 7.2]. The n-category Bordn is then symmetric monoidal by [Sch14a, Lemma
1.6.6]. ♢
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Definition 2.2.7: A fully extended n-dimensional Topological Quantum Field Theory (or
fully extended n-TQFT) with values in a symmetric monoidal n-category C is a symmetric
monoidal n-functor

Z : Bordn → C ♢

Remark 2.2.8: By universality of the completion, and as C is assumed to be complete,
one could equivalently consider P Bordn above. 3

Proposition 2.2.9 (Proposition 2.5.1 in [Sch14a]): There is an equivalence of
symmetric monoidal categories

h1(Ωn−1 Bordn) ≃ Cobn

Therefore, a fully extended TQFT Z induces in particular an ordinary TQFT

h1(Ωn−1Z) : Cobn → h1(Ωn−1C).

2.2.2 The cobordism hypothesis
The cobordism hypothesis describes fully extended Topological Quantum Field The-

ories with values in a higher category C in terms of fully dualizable objects of C. It was
formulated in [BD95]. A sketch of proof was given in [Lur09b], a more formal version
is work in progress of Schommer-Pries. An independent proof of a more general result
is proposed in [GP]. Another independent proof using factorization homology is work in
progress, see [AF].

Conjecture 2.2.10 (The Cobordism Hypothesis, Theorem 2.4.6 in [Lur09b]):
Let C be a symmetric monoidal n-category. Fully extended framed n-TQFTs
Fun⊗(Bordfr

n , C) form an n-category which happens to be an ∞-groupoid, there-
fore a space.
Evaluation at the point induces a weak equivalence of spaces

Fun⊗(Bordfr
n , C) ≃ (Cfd)∼

between framed fully extended n-TQFTs with values in C and the underlying ∞-groupoid
of the subcategory of fully dualizable objects of C, (Cfd)∼ := (Cfd)0,...,0.

For X ∈ C a fully dualizable object, we denote ZX (a choice of representant of) the
associated fully extended framed n-TQFT.
Remark 2.2.11: Often enough, we will be interested in the case where C is actually an m-
category for m > n. Then Fun(Bordfr

n , C) is defined by seeing Bordfr
n as an m-category

using the extension from Definition 2.1.30. By Remark 2.1.31, one has an equivalence

Fun(εBordfr
n , C) ≃ εFun(Bordfr

n , τnC)

and the cobordism hypothesis as stated above applies. 3
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Remark 2.2.12: The group O(n) acts on the n-category Bordfr
n by changing the fram-

ing. Therefore it acts on Fun⊗(Bordfr
n , C) and by the Cobordism Hypothesis on (Cfd)∼.

Oriented theories are fixed points under the SO(n)-action. The oriented cobordism hy-
pothesis claims a converse. 3

Conjecture 2.2.13 (The oriented CH, Theorem 2.4.26 in [Lur09b]): Let C be a
symmetric monoidal n-category. Fully extended n-TQFTs Fun⊗(Bordn, C) form an n-
category which happens to be an ∞-groupoid, therefore a space.
Evaluation at the point induces a weak equivalence of spaces

Fun⊗(Bordn, C) ≃ ((Cfd)∼)hSO(n)

between fully extended n-TQFTs with values in C and homotopy fixed points under the
SO(n)-action on (Cfd)∼.

Remark 2.2.14: Note that the oriented cobordism hypothesis cannot be stated without
first stating the framed version. Indeed the SO(n)-action on (Cfd)∼ is very non-trivial
to define and is given by the framed cobordism hypothesis. It is explained in [Lur09b,
Warning 2.4.13] that it does not extend to an SO(n)-action on the n-category Cfd: it is
only defined on the underlying ∞-groupoid. It is therefore unsurprisingly very difficult
to exhibit an SO(n)-homotopy fixed fully dualizable object in a given n-category C. 3

2.3 Even Higher Morita Category of Braided Tensor
Categories

We will work in the even higher Morita category Alg2(Pr) of E2-algebras in a bi-
category of cocomplete categories which we study in Section 2.3.1. The higher Morita
(n + 1)-category of En-algebras in an ∞-category S was introduced in [Hau17] using a
combinatorial/operadic description which we briefly recall in Section 2.3.2. A pointed
version was introduced in [Sch14a] using very geometric means, namely factorization al-
gebras. This geometric description allows for a good description of dualizability but the
pointing prevents any higher dualizability, see [GS]. Even higher Morita categories are
defined in [JS17, Section 8], for pointed and unpointed versions, which we recall in Section
2.3.3. They form an (n + k)-category Algn(S) for S a symmetric monoidal k-category.
We will always use the strong version of even higher Morita categories of [JS17], and
never mention lax and oplax versions. All of these construction assume that the monoidal
structure of S behaves well with colimits, more precisely that S is ⊗-sifted cocomplete
in [Sch14a], that it has good relative tensor products in [Hau17], and that S strong is ⊗-
sifted cocomplete in [JS17, Definition 8.3]. It is shown in [JS17, Example 8.11] that Pr
satisfies all of these conditions. We consider the unpointed even higher Morita 4-category
Alg2(Pr). This formal description of a 4-category is technical, and for studying dualiz-
ability we only need the “näıve” data of all the bicategories of Remark 2.1.40. This data is
described more explicitly in [BJS21], under the name BrTens, which we recall in Section
2.3.4.
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2.3.1 Cocomplete categories
We begin by recalling some properties of the bicategory Pr. Let k be a field of

characteristic zero.
Definition 2.3.1: The bicategory Catk has objects small k-linear categories, 1-morphisms
k-linear functors and 2-morphisms natural transformations. It is symmetric monoidal with
tensor product described by Ob(C ⊗D) := Ob(C )×Ob(D) and HomC⊗D((c, d), (c′, d′)) :=
HomC (c, c′)⊗k HomD(d, d′). It is characterized by:

HomCatk(A ⊗B,C ) ≃ HomCATk(A ,HomCatk(B,C )).

where we write CATk when the categories involved are not necessarily small. The unit is
the one object category whose endomorphisms are k.

The bicategory Pr has objects cocomplete locally presentable k-linear categories [AR94,
Defintion 1.17] of [BCJ15, Definition 2.1]. These are cocomplete (cocomplete means have
all colimits) categories that are generated under λ-filtered colimits by a small subcate-
gory of λ-compact objects for some cardinal λ. It has 1-morphisms k-linear cocontinuous
functors between them (cocontinuous means preserve colimits), and 2-morphisms natural
transformations. It is symmetric monoidal with the Kelly tensor product ⊠ for cocomplete
categories, which is characterized by:

HomPr(A⊠ B, C) ≃ HomPr(A,HomPr(B, C)) ≃ Cocont(A,B; C),

see [Kel05, Section 6.5] and [Ram17, Theorem 2.45]. The unit is Vectk. ♢

Definition 2.3.2: The free cocompletion of a small k-linear category C is a cocomplete
category Free(C ) ∈ Pr together with a functor i : C → Free(C ) which is initial among
functors to a cocomplete category. Namely, i∗ : HomPr(Free(C ),D) → HomCATk(C ,D)
is an equivalence of categories for any D ∈ Pr. The free cocompletion Free(C ) is unique
up to essentially unique equivalence. A standard choice for the free cocompletion is the
presheaf category HomCatk(C op,Vectk), in which C embeds by the Yoneda embedding,
see [Dug, Section 2.2]. We will often forget mentions of i and consider C as a subcategory
of its free cocompletion.
With this description it is easy to see that free cocompletions arrange into a functor

Free = HomCatk((−)op,Vectk) : Catk → Pr .

We denote Bimodk its essential image. Note that one can always take the tensor product
of a presheaf P with a vector space V by taking pointwise tensor product. Moreover, V
is a coproduct of copies of k and the presheaf V ⊗ P is a coproduct of copies of P . ♢

We now aim to show that the free cocompletion is characterized by the fact that it is
cocomplete, contains C as a full subcategory, every object is a colimit of objects of C ,
and objects of C are compact projective.

Lemma 2.3.3 (co-Yoneda): Let P ∈ Free(C ) be a presheaf. Then P is a colimit of
objects of C . This colimit is explicitly obtained as the coend

P ≃
∫ C∈C

HomFree(C )(C,P )⊗ C .
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Definition 2.3.4: An object C ∈ C is called compact-projective (which we abbreviate
cp) if the functor HomC(C,−) : C → Vectk is cocontinuous. The category C is said to
have enough compact projectives if its full subcategory Ccp of compact projective objects
generates C under colimits. A monoidal category C is called cp-rigid if it has enough cp
and all its cp objects are left and right dualizable. ♢

Lemma 2.3.5: Any object C ∈ C is compact-projective in Free(C ).

Proof : Colimits are computed pointwise in a presheaf category. □

The last two lemmas show that Free(C ) has enough cp. The following is shown in [BCJ15,
Proposition 2.2].

Proposition 2.3.6: Let C ∈ Pr. The following are equivalent:

1. C has enough cp,

2. the canonical functor Free(Ccp) → C induced by the universal property of the free
cocompletion along the inclusion Ccp ⊆ C is an equivalence, and

3. C lies in Bimodk

Proof : For the non-trivial implication 1 ⇒ 2, suppose C has enough cp. The functor
F : Free(Ccp)→ C is characterized by F |Ccp = IdCcp and F is cocontinuous. It is essentially
surjective because C is generated by colimits of cp objects. For C,D ∈ Free(Ccp), write
C = colimi ci and D = colimj dj with ci, dj ∈ Ccp. Then:

HomC(F (C), F (D)) = F cocont≃ HomC(colimi F (ci), colimj F (dj))
ci cp
≃ colimi limj HomC(F (ci), F (dj))

F |Ccp =IdCcp

≃ colimi limj HomCcp(ci, dj)
cp
≃ HomFree(Ccp)(C,D)

and F is fully faithful. □

Proposition 2.3.7: Let C,D ∈ Bimodk, and write C ≃ Free(C ) and D ≃ Free(D).
There is an equivalence of categories

HomPr(C,D) ≃ HomCatk(C ⊗Dop,Vectk)

mapping a cocontinuous functors F : C → D to the “bimodule”

FF : C ⊗Dop → Vectk
(C,D) 7→ HomD(D,F (C)) .

Proof : It follows from:

HomPr(C,D) i∗≃ HomCATk(C ,D)
≃ HomCATk(C ,HomCatk(Dop, V ectk))
≃ HomCatk(C ⊗Dop,Vectk)

74
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using universality of free cocompletions and the characterization of tensor product in
Catk. □

For f : C → D a k-linear functor, we denote Ff : C ⊗Dop → Vectk
(C,D) 7→ HomD(D, f(C)) the

bimodule associated with Free(f). They form a subset of all morphisms from C to D
that will be characterized in Proposition 2.3.8. In topos theory they get called “essential
geometric morphisms”.

One can describe composition of cocontinuous functors at the level of bimodules.
Given A F→ B G→ C, we want to describe FG◦F (A,C) = HomC(C,G ◦ F (A)) for A ∈ A
and C ∈ C . The problem is that F (A) in general is not in B, but is obtained as a colimit of
such by the co-Yoneda lemma: F (A) ≃

∫ B∈B

HomB(B,F (A))⊗B. Then by cocontinuity

of G we obtain that G(F (A)) =
∫ B∈B

HomB(B,F (A))⊗G(B) and because C is compact

projective, that HomC(C,G ◦ F (A)) =
∫ B∈B

HomB(B,F (A)) ⊗ HomC (C,G(B)). This

adds up to the formula FG◦F (−,−) =
∫ B∈B

FF (−, B) ⊗ FG(B,−), which we denote
FF ⊠

B
FG.

Proposition 2.3.8: Let F : C → D be a 1-morphism in Pr between two categories that
have enough compact projectives. Let C = Ccp and D = Dcp. Then the following are
equivalent:

• F has a right adjoint in Pr

• The right adjoint of F in CATk is cocontinuous

• F preserves compact projective objects

• F is the cocontinuous extension of a functor f : C → D

When these hold, the right adjoint of F is given by the bimodule

FF : (C )op ⊗D → V ectk
(C,D) 7→ HomD(F (C), D) (2.3)

with unit induced by F , and counit induced by composition in D.

Proof : The first two and last two points are immediately equivalent.
If FR is cocontinuous then for C ∈ C and D = colimi Di obtained as a colimit,

HomD(F (C), D) ≃ HomC(C,FR(D))
F R cocont≃ HomC(C, colimi F

R(Di))
C cp
≃ colimi HomC(C,FR(Di)) ≃ colimi HomD(F (C), Di)

and F (C) is compact projective, so F preserves cp.
The other direction is a classical construction, see [BDSV, Lemma 2.10], which we recall
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here. The unit goes: η : IdC ⇒ Ff ◦ Ff = Ff ⊠
D
Ff where

Ff⊠
D
Ff :

 C op ⊗ C → Vectk
(C,C ′) 7→

∫ D∈D

HomD(f(C), D)⊗ HomD(D, f(C ′)) ≃ HomD(f(C), f(C ′))

and is given by

ηC,C′ :
{
IdC (C,C ′) = HomC (C,C ′) → Ff ⊠

D
Ff (C,C ′) = HomD(f(C), f(C ′))

g 7→ f(g)
.

The counit goes ε : Ff ◦ Ff = Ff ⊠
C
Ff ⇒ IdD , where

Ff ⊠
C
Ff :

 Dop ⊗D → V ectk

(D,D′) 7→
∫ C∈C

HomD(D, f(C))⊗ HomD(f(C), D′)

and is given by

εD,D′ :
{ ∫ C∈C HomD(D, f(C))⊗ HomD(f(C), D′) → HomD(D,D′)

g ⊗ h 7→ h ◦ g .

which is well-defined on the coend because the composition in D is associative. □

In general, given a cocontinuous functor F : C → D, the bimodule FF of (2.3) makes
sense, and is associated with a cocontinuous functor D → C. It coincides with the right
adjoint of F on the compact projectives, but it is cocontinuous and may not agree with
FR on all of D (it does when FR is cocontinuous). We call it the “renormalization” of
FR and denote it F̃R. It is used when FR is not cocontinuous.

Proposition 2.3.9: The free cocompletion functor Free : Catk → Pr is symmetric
monoidal.

Proof : For A ,B ∈ Catk and C ∈ Pr, we have:
HomPr(Free(A ) ⊠ Free(B), C) ≃ HomPr(Free(A ),HomPr(Free(B), C))

≃ HomCATk(A ,HomCATk(B, C))
≃ HomCATk(A ⊗B, C)
≃ HomPr(Free(A ⊗B), C)

and Free(A ) ⊠ Free(B) satisfies the universal property for Free(A ⊗B). □

2.3.2 The higher Morita category algn(S)
We recall the construction of higher Morita categories of En-algebras in an∞-category

S introduced in [Hau17], see also [Hau].
Note that they actually describe an n-uple Segal object in ∞-categories, from which one
can extract an (n+ 1)-uple Segal space, take its underlying (n+ 1)-fold Segal space, and
complete to an (n + 1)-category. Here ∞-category is understood in the sense developed
in [Lur09a]. We do not recall this notion, but it is well-known [JT07] to be (Quillen)
equivalent to the notion of complete Segal space we introduced in Section 2.1.1. Moreover,
we will not consider the full construction of [Hau17] but truncate these ∞-categories
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to their underlying groupoids. We describe the n-fold Segal space algn(S) which is a
truncation of the (n + 1)-fold Segal space USegiALGn(S) defined in [Hau17, Definition
5.33]. This is the notion needed in [JS17] to define even higher Morita categories.

Let us recall the broad lines of the construction.
They introduce a notion of generalized ∆n-∞-operad in [Hau17, Definition 5.8] as some
particular class of functors from some ∞-category M into (∆n)op. The notion of a ∆n-
monoidal ∞-category S is a particular case [Hau17, Definition 5.1]. The relation with
the more usual notion of n-times monoidal ∞-category is done by Lurie’s straightening
equivalence [Lur09a, Section 3.2], see [Hau17, Corollary A.31]. We will only be interested
in the special cases of monoidal and symmetric monoidal (2,1)-categories. The∞-category
Algn

M(N ) of M-algebras in N is defined in [Hau17, Definition 5.12] for arbitrary ∆n-
∞-operads M and N . Given integers k1, . . . , kn, the slice category (∆/[k1])op × · · · ×
(∆/[kn])op gives a generalized ∆n-∞-operad with the forgetful functor [Hau17, Lemma
5.14].
Definition 2.3.10: Let S be a ∆n-monoidal∞-category with good relative tensor prod-
ucts. The level (ALGn(S))k1,...,kn of the n-uple simplicial ∞-category ALGn(S) is de-
fined [Hau17, Definition 5.21] to be a sub-∞-category of Algn

(∆/[k1])op×···×(∆/[kn])op(S) of
so-called composite bimodules. ♢

For every 0 ≤ i ≤ j ≤ k, the map [1] i,j−→ [k] gives an object (i, j) of ∆/[k]. Therefore an
element M of Algn

(∆/[k1])op×···×(∆/[kn])op(S) associates an object M(i1, j1, . . . , in, jn) of S to
a sequence (0 ≤ i1 ≤ j1 ≤ k1, . . . , 0 ≤ in ≤ jn ≤ kn). It is explained in [Hau17, Section
2.1 and 2.2] why these objects have algebra structures when il = jl and are bimodules
over these algebras in general. It is explained in [Hau17, Corollary 4.20] that composite
bimodules are those for which the M(i1, j1, . . . , in, jn) are obtained as relative tensor
products of the M(l1, l1 + 1, . . . , ln, ln + 1)’s for various l’s. This property is what ensures
the Segal condition.
The n-fold simplicial structure is given by Lurie’s straightening equivalence and [Hau17,
Theorem 5.31]. The Segal condition is shown in [Hau17, Corollary 5.25].
Definition 2.3.11: The n-fold Segal space algn(S) is the underlying n-fold Segal space
of the n-uple Segal space (ALGn(S))∼ whose levels (ALGn(S))∼k1,...,kn

are the underlying
groupoids of the ∞-categories (ALGn(S))k1,...,kn .
The higher Morita n-category âlgn(S) is its completion. ♢

The input data of a ∆n-monoidal ∞-category is identified with the more usual notion
of an En-algebra in the symmetric monoidal ∞-category Cat×∞ endowed with carthesian
monoidal structure in [Lur, Proposition 2.4.2.5, Example 2.4.2.4 and Definition 2.1.2.13]
and [Hau17, Corollary A.31].

The spaces of objects and morphisms of the higher Morita category algn(S) are well-
identified.

Theorem 2.3.12 (Section 5.2 and Corollary A.26 of [Hau17]): Let S be a ∆n-
monoidal ∞-category, seen as an En-monoidal ∞-category. There is an equivalence
of ∞-categories

(ALGn(S))0,...,0 := Algn
(∆n)op(S) ≃ Alg/En(S)

between the ∞-category of objects of ALGn(S) and the ∞-category of En-algebras in the
En-monoidal category S as defined in [Lur, Definition 2.1.3.1].
In particular, their underlying groupoids are equivalent.
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Remark 2.3.13: We will only be interested in two special cases of En-algebras in a En-
monoidal∞-category S. The first is when n = 2 and S happens to be symmetric monoidal
(which is a special case of E2-monoidal, for example using [Lur, Corollary 5.1.1.5]). It is
shown in [Lur, Example 5.1.2.4] that if S is a subcategory of Cat∞ consisting of (nerves
of usual) categories, then an E2-algebra structure on an object in S consists exactly of a
structure of braided category.
The second is when n = 1. Then S is a homotopy-associative algebra object in Cat∞
and an E1-algebra in S is a homotopy-associative algebra object in S in the usual sense,
see [Lur, Example 5.1.0.7]. 3

Definition 2.3.14 (Section 4.5 in [Hau17]): Let S be a ∆1-monoidal∞-category. We
denote Bimod(S) := Alg1

(∆/[1])op(S) the ∞-category of bimodules in S. The inclusions
0, 1 : ∆ ↪→ ∆/[1] induce two functors s, t : Bimod(S)→ Ass(S) := Alg1

∆op(S).
Let A,B be objects of Ass(S). The∞-category BimodA,B(S) is the fiber of Bimod(S)→
Ass(S)×2 at (A,B). ♢

It is shown in [Hau17, Corollary 5.45] that when S is ∆n-monoidal with good relative
tensor products and A,B are ∆n-algebra objects, then BimodA,B(S) inherits a ∆n−1-
monoidal structure.

Proposition 2.3.15 (Propositions 4.53, 5.44 and Corollary A.77 in [Hau17]):
Denote ⊗ the monoidal structure on S. The monoidal structure on BimodA,B(S) is
given on two objects M,N by the relative tensor product

M ⊗
A,B

N := A ⊗
A⊗A

(M ⊗N) ⊗
B⊗B

B.

It is shown in [Hau17, Lemma 5.46] that BimodA,B(S) has good relative tensor product.

Theorem 2.3.16 (Theorem 5.49 in [Hau17]): Let A,B be objects of algn(S). Then
there is a Dwyer–Kan equivalence of (n− 1)-fold Segal spaces

Homalgn(S)(A,B) ≃ algn−1(BimodA,B(S)).

2.3.3 The even higher Morita 4-category Alg2(Pr)
We recall the extension of Haugseng’s higher Morita categories into even higher Morita

categories from [JS17] for S = Pr.
They define a 2-by-2-fold Segal space alg2(Pr strong

•,• )•,• and define Alg2(Pr) to be the
underlying 4-fold Segal space of its completion.
We are working in the particular case where S = Pr is a strict bicategory. It can be seen
as a particular case of 2-fold Segal space where every level is discrete by the discrete nerve
construction.
Definition 2.3.17 (Definition 5.14 of [JS17]): Let k, l ≥ 0. The symmetric monoidal
(2,1)-category Pr strong

k,l is the bicategory Fun(Θk,l,Pr) of bifunctors, strong natural trans-
formations and invertible modifications from Θk,l to Pr (remember that the Θk,l’s were
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defined above following [JS17, Definition 5.1]). It can be seen as a symmetric monoidal
∞-category via Duskin’s nerve [Dus02] and one can apply Haugseng’s construction on
it. ♢

Remark 2.3.18: The definition above is a slight abuse. In [JS17], the (∞, 2)-category
Fun(Θk,l,Pr) is defined as an internal Hom in complete 2-fold Segal spaces, not in bi-
categories. One has to show that the naive way of computing internal Hom between
bicategories described above does coincide with the one defined by seeing these bicate-
gories as (∞, 2)-categories. I am very thankful to Bertrand Toën for pointing out the
following argument to me.

There exists a nerve functor N : Bicat → CSS2 which satisfies that for C,D two
bicategories,

FunCSS2(N(C), N(D)) ≃ N(FunBicat(C,D))
Moreover, for C a strict 2-category, this nerve is weakly equivalent to the strict nerve,
N str(C) ≃ N(C).

The first statement is explained in [Cam20] when (∞, 2)-categories are understood
as 2-quasi-categories. They construct N in [Cam20, Corollary 5.11]. They construct its
right adjoint, taking homotopy bicategories, in [Cam20, Theorem 6.29]. They show it
preserves finite products in [Cam20, Lemma 6.27]. They show that N is fully faithful
in [Cam20, Corollary 5.13]. Hence N satisfies the conditions from Remark 2.1.31 and
preserves inner Hom’s.

We can conclude in our context using well-known Quillen equivalences between differ-
ent models for (∞, n)-categories, namely [Ara14, Theorem 8.4] relating n-quasi-categories
to Rezk Θn-spaces and [BR20, Corollary 7.3] relating Rezk Θn-spaces to complete n-fold
Segal spaces. Such Quillen equivalences in particular preserve internal Hom’s.

The second statement is [Cam20, Theorem 10.10], again for N with values in 2-quasi-
categories, and strict nerve understood in a sense very close to ours, by taking functors out
of the strict bicategories Θ2([n;m]) see [Ara14, Section 5.8]. These bicategories contain
the Θk,l’s as the Θ2([k; (l . . . , l)])’s. Tracking down the equivalences above, we see that
the equivalence of [BR20, Corollary 7.3] precisely restricts a presheaf on Θ2 to the objects
of the form Θk,l and [Ara14, Theorem 8.4] takes discrete spaces. Therefore Ara’s strict
nerve maps to ours, and Campbell’s result applies. 3

Definition 2.3.19 (Section 8 in [JS17]): The 4-uple simplicial space

alg2(Pr strong
•,• )•,• :

(∆×4)op → Space
(p, q, k, l) 7→ alg2(Pr strong

k,l )p,q

is obtained by applying Haugseng’s construction to various (2,1)-categories Pr strong
k,l . It’s

simplicial structure is given by Haugseng’s construction for the first two coordinates,
and the maps between the Θk,l bicategories together with functoriality of Haugseng’s
construction for the last two coordinates. ♢

Theorem 2.3.20 (Theorem 8.5 in [JS17]): The 4-uple simplicial space
alg2(Pr strong

•,• )•,• is a 2-by-2-fold Segal space, and is complete in the last two coor-
dinates.
In particular, the 4-uple simplicial space âlg2(Pr strong

•,• )•,• is a complete 2-by-2-fold Segal
space.
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We have a 2-fold simplicial diagram of 2-fold Segal spaces as in Figure 2.7. It is already
complete in the simplicial directions displayed, and its completion is the component-wise
completion in this diagram.

alg2(Fun(Θ0,0,Pr)) alg2(Fun(Θ0,1,Pr)) . . .

alg2(Fun(Θ1,0,Pr)) alg2(Fun(Θ1,1,Pr)) . . .

alg2(Fun(Θ2,0,Pr)) alg2(Fun(Θ2,1,Pr)) . . .

. . . . . . . . .

∼
∼

Figure 2.7: The 2-by-2-fold Segal space alg2(Prstrong
•,• )•,•

Definition 2.3.21 (Definition 8.6 in [JS17]): The even higher Morita 4-category

Alg2(Pr) := Ufoldâlg2(Pr strong
•,• )•,•

is the underlying 4-fold Segal space of âlg2(Pr strong
•,• )•,•. ♢

Remember that by definition [JS17, Remark 5.4] taking underlying 4-fold Segal space
means that

Alg2(Pr)p,q,k,l := mapsh(Θp,q,k,l, alg2(Pr strong
•,• )•,•),

where Θp,q,k,l are defined in [JS17, Definition 5.1]. To compute the derived mapping
spaces here we need to find a (projectively) cofibrant replacement of Θp,q,k,l. The (nerves
of the) Θp,q,k,l’s are indeed not cofibrant (for pq ̸= 0) but they are obtained as colimits
of representable presheaves which are. Morphisms out of them are therefore obtained as
homotopy limits.

We adopt [JS17] convention to not write the last chain of 0’s in the indices, and we
drop comas. For example, C11 denotes C1,1,0,0.

Proposition 2.3.22: Let C be a complete 2-by-2-fold Segal space. Then we have equiv-
alences

mapsh(Θ1,1,0,0, C) ≃ C11
mapsh(Θ1,1,1, C) ≃ C1 ×h

C101
C111 ×h

C101
C1

mapsh(Θ1,1,1,1, C) ≃ C1 ×h

C1011
C1111 ×h

C1011
C1

Proof : The first statement is [JS17, Remark 3.4]. We recall the proof to apply it to

the other two cases. The bigon Θ1,1 : • • (or more formally, its strict nerve) is
obtained as a quotient of the square by the two vertical edges

• • = • ∪
•
•

• •

• •
∪
•
•

• (2.4)
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Here the square is the presheaf represented by [1]× [1], the vertical edges are represented
by [0] × [1], and the points by [0] × [0]. As argued in [JS17, Remark 3.2], as the map
from two vertical arrow to the square is an inclusion, a cofibrant replacement for Θ1,1 can
be computed as the associated homotopy pushout. Finally, by the universal property of
homotopy pushouts we can compute the derived mapping space into any complete 2-uple
Segal space C as

mapsh(Θ1,1, C) ≃ C0 ×h

C01
C11 ×h

C01
C0

In particular, if C•• is already essentially constant one has mapsh(Θ1,1, C) ≃ C11 as claimed.

Similarly, Θ1,1,1 = • • is obtained as a quotient of the cube by collapsing its

top and bottom face to an edge and collapsing its left and right face to a point. However,
doing these operations successively, it is not true anymore that the left and right square
faces inject into the partially collapsed cube. Indeed, only vertical bigons remain. For the
arguments above to hold, we need injectivity and we have to write bigons instead. We
represent only the 1-dimensional part, but everything below is filled.

• ∪
•

•


• • ∪

• •
• •

• •

• •

• •

• •

∪ • •
• •
• •


∪
•

•

• (2.5)

Again, this is a homotopy pushout. We have:

mapsh(Θ1,1,1, C) ≃ holim



C0 C1 C0

C001 C101 C001

C0 C011 C111 C011 C0

C001 C101 C001

C0 C1 C0

δ

s

δ

t

δ

s t

δ

∼

∼

s t

∼

∼

δ

s t

δ

s

δ

t

δ



(2.6)

If one first computes the homotopy limits on columns, the resulting homotopy limit is
exactly the one we get by the presentation of Θ1,1,1 as a homotopy pushout above. Indeed
the homotopy limit of the central column corresponds to the big parenthesis in (2.5), and
the columns on its side to the vertical bigons by the same argument as for Θ1,1.
By our 2-by-2-fold assumption, we have the displayed four equivalences. Now a cone on
this diagram is equivalent to a cone on the central column, and therefore this homotopy
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limit can also be computed as

mapsh(Θ1,1,1, C) ≃ C1 ×h

C101
C111 ×h

C101
C1

as claimed.
Finally, Θ1,1,1,1 can be obtained as a quotient of the hypercube in the same way. We

obtain a homotopy limit similar to (2.6), but now living on a 3-dimensional grid. Under
our 2-by-2-fold assumption, the new direction is already essentially constant, and the
homotopy limit reduces to that on the 2-dimensional grid, namely

mapsh(Θ1,1,1,1, C) ≃ holim



C0 C1 C0

C0011 C1011 C0011

C0 C0111 C1111 C0111 C0

C0011 C101 C0011

C0 C1 C0

δ

s

δ

t

δ

s t

δ
∼

∼

s t

∼

∼

δ

s t

δ

s

δ

t

δ



(2.7)

which for the same reason as above gives the claimed formula. □

2.3.4 BrTens and Alg2(Pr)
We recall the explicit description of the underlying bicategories of Alg2(Pr) from

[BJS21]. We use the name BrTens for their description, and include a comparison theo-
rem with the original definition of Alg2(Pr) that was left implicit.
We follow conventions from [BJS21], which means that we illustrate with drawings from
factorization algebras though we use the formalism from [Hau17,JS17], and that the draw-
ings are a 90 degree rotation from [GS]. So 1-morphisms read top-down and 2-morphisms
read left-to-right. It will not appear in this chapter, but we follow the convention that
a 3-manifold seen as a cobordism is read bottom-up. They all arrange in a nice picture,
and the usual drawings are different 2 dimensional projections. We will mostly work in
the (1,2)-plane in Figure 2.8.

Let us recall the description of BrTens from [BJS21].
Definition 2.3.23 (Section 2.4 in [BJS21]): An object V of BrTens is a locally pre-
sentable cocomplete k-linear braided monoidal category. We call these braided tensor
categories here, even though this name has many uses. Equivalently, it is an E2-algebra
in Pr. ♢

Remark 2.3.24: There are many equivalent descriptions of the same objects:

1. E2-algebras in Pr,

2. E1-algebras in E1-algebras in Pr, used in [Hau17],
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•

⋆

1-m
orp

his
ms

2-morphisms

3-
m

or
ph

ism
s

Figure 2.8: How to read morphism directions in BrTens

3. locally constant factorization algebras on (0, 1)2 with values in Pr, used in [Sch14a],

4. braided tensor categories.

The equivalence between 1. and 2. is Dunn’s additivity [Lur, Section 5.1.2]. The equiv-
alence between 1. and 3. is [Sch14a, Theorem 3.2.20] or [Lur, Theorem 5.4.5.9]. Now
specifically for Pr, a sketch of the equivalence between 3. and 4. is given in [BJS21, Fig-
ure 1]. The equivalence between 2. and 4. is [Lur, Example 5.1.2.4].
Let us briefly recall one direction of this last equivalence that will be useful to keep in
mind. For an E1-algebra in E1-algebras V one has both vertical and horizontal monoidal
structures ⊗v and ⊗h on V , with natural isomorphisms µX,Y,Z,T : (X ⊗h Y ) ⊗v (Z ⊗h

T )→̃(X ⊗v Z)⊗h (Y ⊗v T ) satisfying higher compatibilities. However, a braided category
has only one monoidal structure ⊗ and a braiding. One can obtain the description above
by setting ⊗h = ⊗v = ⊗. On the drawings, we take the top elements and push them
at the left to have everything on a line. The natural isomorphism µ is induced by the
braiding as in Figure 2.9. 3

(X ⊗h Y )

(Z ⊗h T )
⊗v

 X
⊗v

Z


 Y
⊗v

T

⊗h

X XY YZ ZT T

∼

σY,Z

Figure 2.9: Braided categories are algebra objects in monoidal categories

Let us turn to 1-morphisms. In the factorization algebra picture , one can read
that a 1-morphism between two braided tensor categories V (in red) and W (in blue)
is a monoidal category A ∈ Pr (the horizontal line) with a top V-action and a bottom
W-action that commute with respect to each other and that commute with the monoidal
structure of A in a coherent way. Note that as A is monoidal, such an V-action � is
determined by a monoidal functor V → A that maps V to V � 1A. See [BJS21, Figure
2].
Definition 2.3.25 (Definition-Proposition 3.2 in [BJS21]): A 1-morphism between
V and W in BrTens is a V-W-central algebra A. Namely, it is an monoidal category
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A ∈ Pr equipped with a braided monoidal functor

(FA, σA) : V ⊠Wσop → Z(A)

to the Drinfeld center of A.
Remember that the Drinfeld center of A has objects pairs (y, β) where y is an object of
A and β : − ⊗ y ⇒̃ y ⊗ − is a natural isomorphism. Here FA gives the object and σA

gives the half braiding. We denote V � A := FA(V )⊗ A and A� V := A⊗ FA(V ). ♢

Composition of 1-morphism is relative tensor product over the corresponding braided
tensor category, see [BJS21, Section 3.4]

Again in the factorization algebra picture • , a 2-morphismM between two V-W-
central algebras A and B is a A-B-bimodule category where V (resp. W) acts similarly
when acting through A or through B.
Definition 2.3.26 (Definition 3.9 in [BJS21]): A 2-morphism between A and B in
BrTens is a V-W-centered A-B-bimodule category. Namely, it is an A-B-bimodule cate-
gory M equipped with natural isomorphisms

ηv,m : FA(v) �m →̃ m� FB(v) , v ∈ V , m ∈M ,

satisfying coherences with tensor product in V and with the half braidings in A and B.♢
Horizontal and vertical composition are again relative tensor product over the correspond-
ing monoidal category.
Definition 2.3.27 (Section 3.6 in [BJS21]): A 3-morphism F :M→N is a functor
of A-B-bimodules categories that preserves the V-W-centered structure.
A 4-morphism η : F ⇒ G is a natural transformation of bimodule functors. ♢

Note that we have not defined a 4-category BrTens in this section, merely collections
of 0–4 morphisms and ways to compose them, but this is enough to define a chain of
bicategories analogous to Remark 2.1.40. The following is a slight abuse of notation to
make our point clearer.
Definition 2.3.28: The bicategory h2(BrTens) has objects braided tensor categories, 1-
morphisms central algebras, and 2-morphisms equivalence classes of centered bimodules.
Given braided tensor categories V ,W , the bicategory h2(HomBrTens(V ,W)) has objects V-
W-central algebras, 1-morphisms centered bimodules and 2-morphisms equivalence classes
of centered bimodule functors.
Given V-W-central algebras A,B the bicategory h2(HomBrTens(A,B)) has objects A-B-
centered bimodules, 1-morphisms centered bimodule functors and 2-morphisms bimodule
natural transformations. ♢

The main theorem of this section is the following.

Theorem 2.3.29: There is an equivalence of bicategories

h2(BrTens) ≃ h2(Alg2(Pr)) .

Given braided tensor categories V ,W, seen as objects of Alg2(Pr) by the equivalence
above, one has:

h2(HomBrTens(V ,W)) ≃ h2(HomAlg2(Pr)(V ,W)) .
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Given V-W-central algebras A,B, seen as 1-morphisms of Alg2(Pr) by the equivalence
above, one has:

h2(HomBrTens(A,B)) ≃ h2(HomAlg2(Pr)(A,B)) .

In particular the definition BrTens := Alg2(Pr) is consistent with the definitions above.

We will need a few lemmas before proving this theorem. We will begin by identifying
the homotopy bicategories of the three essential 2-categories alg2(Pr strong

0,0 ), alg2(Pr strong
1,0 )

and alg2(Pr strong
1,1 ) that build morphisms in Alg2(Pr). Then we will look at the procedure

of taking underlying 4-fold Segal space.
The homotopy bicategory of alg2(Pr strong

0,0 ):
Here Pr strong

0,0 := Fun(Θ0,0,Pr) is simply the underlying (2,1)-category of Pr.

Lemma 2.3.30: One has an equivalence of bicategories

h2(BrTens) ≃ h2(alg2(Pr)) .

Proof : By Theorem 2.3.12, objects of alg2(Pr) are E2-algebras in Pr. By Theorem
2.3.16, the Hom 1-fold Segal space between two objects V andW is alg1(BimodV,W(Pr)).
The monoidal structure on the∞-category BimodV,W(Pr) is relative tensor product over
V and W by Proposition 2.3.15 which agrees with [BJS21, Proposition 2.37].
Now, alg1(BimodV,W(Pr)) has objects algebra-objects A,B in BimodV,W(Pr), which is
shown to be equivalent to the notion of V-W-central algebras in [BJS21, Definition-
Proposition 3.2]. Isomorphism classes of morphisms fromA to B are given by isomorphism
classes of A-B-bimodules internal to BimodV,W(Pr), which is shown to be equivalent to
the notion of V-W-centered A-B-bimodules in [BJS21, Proposition 3.10]. Compositions
of 1 and 2-morphisms are defined to be relative tensor products in [BJS21, Sections 3.4
and 3.5] as in [Hau17, Corollary 4.20]. □

The homotopy bicategory of alg2(Pr strong

1,0 ):
The (2,1)-category Pr strong

1,0 has objects arrows Cs
P→ Ct in Pr, 1-morphisms squares

Cs Ct

Ds Dt

P

Rs Rt

Q

η

∼
and 2-morphisms commuting thickened bigons

Cs Ct

Ds Dt

P

Q

. There

are two symmetric monoidal functor s, t : Pr strong
1,0 → Pr that remembers only the part

labelled “s” or “t”, induced by the two functors Θ0,0 → Θ1,0.

Lemma 2.3.31: Objects of alg2(Pr strong
1,0 ) are equivalent to arrows

Vs
F→ Vt

where Vs and Vt are braided tensor categories and F is a braided monoidal functor.
1-morphisms of alg2(Pr strong

1,0 ) from Vs
F1→ Vt to Ws

F2→Wt are equivalent to arrows

As
G→ At
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where As is a Vs-Ws-central algebra, At is a Vt-Wt-central algebra and G is a central
monoidal functor.

2-morphisms in h2(alg2(Pr strong
1,0 )) from As

G1→ At to Bs
G2→ Bt are equivalent to iso-

morphism classes of arrows
Ms

H→Mt

where Ms is a Vs-Ws-centered As-Bs-bimodule, Mt is a Vt-Wt-centered At-Bt-bimodule
and H is a centered bimodule functor.

The bicategory h2(alg2(Pr strong
1,0 )) is equivalent to the bicategory of arrows as described

above where every composition is given by relative tensor product.

Note that none of the functors described above will be composable, they always go
from the ”source” side to the ”target” side. Composition of functors will be given by
Pr strong

2,0 .

Proof : By Theorem 2.3.12, objects of alg2(Pr strong
1,0 ) are equivalent to E2-algebras F in

Pr strong
1,0 . Such an F is an arrow Vs

F→ Vt endowed with an E2-monoidal structure.
The images s(F) = Vs and t(F) = Vt are therefore equipped with E2-monoidal structures,
and are braided tensor categories. More generally, the source and target parts of each
statement is given by Lemma 2.3.30.

The product F ⊠F → F is a square
Vs ⊠ Vs Vt ⊠ Vt

Vs Vt

F⊠F

⊗s ⊗t

F

exhibiting F as a monoidal

functor (compare with [JS17, Example 8.8]). Similarly the unit of F shows that F is unital.
The braiding isomorphism ⊗F⇒̃⊗op

F coming from its E2-monoidal structure exhibits F as
a braided monoidal functor.

By Theorem 2.3.16, a 1-morphism between two E2-algebras F1 and F2 in alg2(Pr strong
1,0 )

is an E1-algebra internal to F1-F2-bimodules. Such a G is an arrow As
G→ At with

compatible monoidal and bimodule structures. A bimodule structure

F1 ⊠ G ⊠ F2
�F1−�F2−→ G , i.e.

Vs ⊠As ⊠Ws Vt ⊠At ⊠Wt

As At

F1⊠G⊠F2

act act

G

(2.8)

endows As (resp. At) with a Vs-Ws- (resp. Vt-Wt-) bimodule structure and exhibits G
as a bimodule functor. A monoidal structure G ⊠

F
G → G in F1-F2-bimodules is the data

of a monoidal structure G ⊠ G → G in Pr strong
1,0 which is balanced. It endows As and At

with a structure of monoidal categories, and exhibits G as a monoidal functor, as above.
Compatibility between these two structures demands an isomorphism (we only write one

“F”)
F ⊠ G ⊠ G F ⊠ G

G ⊠ G G

⊗G

�F �F

⊗G

whereas a balancing is
G ⊠ F ⊠ G F ⊠ G

G ⊠ G G

�F

�F ⊗G
⊗G

. They

are equivalent, using the unit of F , to asking
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Benjamin Häıoun CHAPTER 2. HIGHER ALGEBRA

F ⊠ F ⊠ G ⊠ G F ⊠ G

G ⊠ G G

⊗F⊠⊗G

�F⊠�F �F

⊗G

, i.e.

Vs ⊠ Vs ⊠As ⊠As Vt ⊠ Vt ⊠At ⊠At

As ⊠As At ⊠At

Vs ⊠As Vt ⊠At

As At

�

⊗

F⊠F⊠G⊠G

�

⊗

Js

⊗

G⊠G

Jt

⊗

�

F⊠G

�
G

(2.9)

The natural isomorphisms Js and Jt, using units of V and A, exhibit As and At as central
algebras. The missing natural isomorphisms are those described above exhibiting G as
a monoidal and bimodule functor. Commutativity of the cube shows that G is a central
monoidal functor.

A 2-morphism H : G1 → G2 is an arrow Ms
H→Mt with a bimodule structure

G1 ⊠H⊠ G2
�G−→ H , i.e.

As ⊠Ms ⊠ Bs At ⊠Mt ⊠ Bt

Ms Mt

G1⊠H⊠G2

� �

H

(2.10)

exhibiting H as a bimodule functor. Demanding that these are F1-F2-balanced and
internal to F1-F2-bimodules demands a F1-F2-bimodule structure on H (which will have
to agree with the ones obtained by acting through either G’s by the following) and an
isomorphism as above (we still write only one “F”):

F ⊠ F ⊠ F ⊠ G1 ⊠H⊠ G2 F ⊠H

G1 ⊠H⊠ G2 H

⊗F⊠�G

�F⊠�F⊠�F �F

�G

, i.e.

Vs ⊠ Vs⊠ Vs ⊠As⊠ Ms ⊠ Bs Vt ⊠ Vt ⊠ Vt ⊠At⊠ Mt ⊠ Bt

As ⊠Ms ⊠ Bs At ⊠Mt ⊠ Bt

Vs ⊠Ms Vt ⊠Mt

Ms Mt

�F

�G

�F
�G

ηs

�G

G1⊠H⊠G2

ηt

�G

�F

F⊠H

�F
H

(2.11)
Here the natural isomorphisms ηs and ηt (using units of A, B and V) give the centered
structure on Ms and Mt, and commutativity of the cube demands that H is a centered
bimodule functor.
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Finally, compositions in every directions in alg2(Pr strong
1,0 ) are defined to be relative tensor

products. □

The homotopy bicategory of alg2(Pr strong

1,1 ):

The (2, 1)-category Pr strong
1,1 has objects bigons Cs Ct

Pu

Pd

η , 1-morphisms commuting

thickened bigons (in the opposite direction from before)
Cs Ct

Ds Dt

Rs Rt
. A 2-morphism

is only the data of a natural transformation in the source and the target side, commuting
with rest of the diagram. There are now multiple notion of source and target. There
are two inclusions Θ0,0 → Θ1,1 and we still denote s, t : Pr strong

1,1 → Pr the induced
symmetric monoidal functors. There are also two inclusion Θ1,0 → Θ1,1 and we denote
u, d : Pr strong

1,1 → Pr strong
1,0 the “up” side and the “down” side.

Lemma 2.3.32: Objects of alg2(Pr strong
1,1 ) are equivalent to bigons

Vs Vt

Fu

Fd

ν

where Vs and Vt are braided tensor categories, Fu and Fd are braided monoidal functors
and ν is a monoidal natural transformation.

1-morphisms of alg2(Pr strong
1,1 ) are equivalent to bigons

As At

Gu

Gd

α

where As (resp. t) is a Vs-Ws-central algebra, Gu (resp. d) is a central monoidal functor
and α is a monoidal natural transformation.

2-morphisms of h2(alg2(Pr strong
1,1 )) are equivalent to isomorphism classes of bigons

Ms Mt

Hu

Hd

η

where Ms (resp. t) is a Vs-Ws-centered As-Bs-bimodule, Hu (resp. d) is a centered
bimodule functor and η is a bimodule natural transformation.

The bicategory h2(alg2(Pr strong
1,1 )) is equivalent to the bicategory of bigons as described

above where every composition is given by relative tensor product.

Proof : The proof is very similar. The source and target parts of the statements are
Lemma 2.3.30, and the up and down parts are Lemma 2.3.31. But except for objects,
there is nothing else that the source, target, up and down parts, because there are no
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3-morphisms in Pr. Therefore an algebra or module structure will be no extra structure,
and non-trivial conditions coming only from the 1-morphisms.

A product on a bigon Vs Vt

Fu

Fd

ν is given by

Vs ⊠ Vs Vt ⊠ Vt

Vs Vt

⊗s

Fu⊠Fu

Fd⊠Fd

⊗t

ν⊠ν

Fu

Fd

ν

(2.12)

where the unlabelled natural isomorphisms are those exhibiting Fu and Fd as monoidal
functors. Commutativity of this diagram, together with the analogous diagram for the
unit, demands that ν is a monoidal natural transformation.
The diagram is the same for 1-morphism, and similar for 2-morphisms. □

Proof (of Theorem 2.3.29): The first statement follows immediately from Lemma
2.3.30. Indeed, the 2-truncation of Alg2(Pr) is simply

Alg2(Pr)•,•,0,0 := mapsh(Θ•,•,0,0, âlg2(Pr strong
0,0 )•,•) ≃ âlg2(Pr)•,•

itself as it is already essentially constant, see [JS17, Remarks 3.4], and Pr strong
0,0 ≃ Pr.

Now

h2(Alg2(Pr)) := h2(Alg2(Pr)•,•,0,0) ≃ h2(âlg2(Pr)•,•) ≃ h2(alg2(Pr)•,•) ≃ h2(BrTens)

because completion does not affect homotopy bicategories.
The bicategory of 1, 2 and 3 morphisms:

Let V and W be two braided tensor categories, seen as objects of Alg2(Pr) by the
equivalence above. We want to identify h2(HomAlg2(Pr)(V ,W)). Its objects and mor-
phisms are also identified (up to isomorphism) by the equivalence above. We need to
understand its 2-morphisms

Let A and B be V-W-central algebras and M, N two V-W-centered A-B-bimodules.
An element H of HomAlg2(Pr)(M,N ) is an element of

Alg2(Pr)1,1,1,0
2.3.22≃ Alg2(Pr)1 ×h

âlg2(Pr strong
1 )1

âlg2(Pr strong
1 )11 ×h

âlg2(Pr strong
1 )1

Alg2(Pr)1

together with paths between its different sources and targets and V ,W ,A,B,M and N .
Therefore, H is a centered bimodule functor as in Lemma 2.3.31. The essential constancy
condition will require that its source and target (denoted G1 and G2 there) are degenerate,
i.e. are identity monoidal functors, and so are their sources and targets (denoted F1 and
F2 there). Actually, we are given isomorphisms with degenerate morphisms, but because
isomorphisms can be seen as bimodule we can simply compose H with these isomorphism
and say H has degenerate source and target. Compatibility with V and W demands
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F1 = IdV and F2 = IdW . Compatibility with A and B demands G1 = IdA and G2 = IdB.
Compatibility with M and N demands that the source and target “sides” of H agree
with M and N .
The bicategory of 2, 3 and 4 morphisms:

Let us identify h2(HomAlg2(Pr)(A,B)) between two V-W-central algebras. Again, we
know objects and morphisms up to isomorphism by the result above, and we need to
identify 2-morphisms.

Fix F1, F2 : M → N two centered bimodule functors. Again we use Proposition
2.3.22, the definition of Hom spaces, and Lemma 2.3.32. A morphism between F and G

is a 2-morphism in âlg2(Pr strong
1,1 )1,1, i.e. a bimodule natural transformation η, with twice

degenerate source and target α ≃ IdIdA and β ≃ IdIdB , so νu ≃ IdIdV and νd ≃ IdIdW
(using compatibility with V ,W ,A and B). Compatibly withM,N , F1 and F2 gives that

up to composing with the given isomorphisms, we have M N
F1

F2

η . □

We have identified all the the bicategories mentioned in Remark 2.1.40 and can now
describe dualizability in BrTens := Alg2(Pr).

2.3.5 Dualizability in BrTens
Dualizability in the (pointed) factorization-algebra model of higher Morita categories

is completely determined in [GS].

Theorem 2.3.33 (Theorems 5.1 and 6.1 in [GS]): For any ⊗-sifted cocomplete
symmetric monoidal k-category S, the (n + k)-category Algpointed

n (S) has duals up to
level n.
However, the pointing prevents any higher dualizability, and every (n + 1)-dualizable
object is equivalent to the unit.

If a bimodule has an adjoint as a pointed bimodule, in particular it has an adjoint
as an unpointed one, simply by forgetting the pointing of the adjoint, unit and counit.
Therefore one expects at least n-dualizability in Algn(S).

We now turn to n = 2 and S = Pr. That Pr is ⊗-sifted cocomplete and has good rel-
ative tensor products is shown in [JS17, Example 8.11]. There one can check by hand that
the dualizability data exhibited in [GS] gives dualizability data in BrTens. More gener-
ally, sufficient conditions for m-dualizability in BrTens were given in [BJS21, BJSS21].
Explicit subcategories with duals up to level m = 3, 4 are exhibited in [BJS21]. We recall
some consequences of their results that will be useful in this manuscript.
Definition 2.3.34: A monoidal category in Pr is called rigid finite semisimple if it is
cp-rigid, semisimple and has finitely many isomorphism classes of simple objects. It is
called fusion if it moreover has a simple unit. Note that these correspond to the free
cocompletion (or the Ind-completion which agree in this semisimple case) of the usual
notions of (not cocomplete) rigid finite semisimple and fusion categories. ♢

Theorem 2.3.35 (Theorems 5.16 and 5.21 in [BJS21]): Let V ∈ Pr be a braided
tensor category. Then:
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1. V is 2-dualizable,

2. if V is cp-rigid, it is 3-dualizable, and

3. if V is fusion, it is 4-dualizable.

Let V ,W be braided tensor categories and A a V-W-central algebra. Then:

1. A is 1-dualizable,

2. if V ,W ,A are cp-rigid, then A is 2-dualizable, and

3. if V ,W ,A are fusion, then A is 3-dualizable.

Invertible objects were studied in [BJSS21]. In particular, they exhibit the first examples
of non-semisimple fully dualizable objects.
Definition 2.3.36: A braided tensor category is called finite if is is equivalent to A-
mod for some finite dimensional algebra A. It is called modular if it has no non-trivial
transparent object. ♢

Note that this corresponds to the Ind-completion (see e.g. [KS06] for a definition) of the
usual notion of (possibly non-semisimple) modular category, or the free cocompletion of
the subcategory of projective objects (though usually we also assume that our category
is ribbon, which we do not here).

Theorem 2.3.37 (Theorem 3.20 in [BJSS21]): Let V ∈ Pr be a (possibly non-
semisimple) finite modular tensor category. Then V is invertible, and in particular fully
dualizable, in BrTens.
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Chapter 3

Non-semisimple skein (3+1)-TQFTs

This chapter follows the paper [CGHP] written in collaboration with Francesco Costantino,
Nathan Geer and Bertrand Patureau-Mirand. There are some changes in the exposition,
but the results are the same.

Using skein theory very much in the spirit of the Reshetikhin–Turaev constructions, we
define a (3 + 1)-TQFT associated with possibly non-semisimple finite unimodular ribbon
tensor categories. State spaces are given by admissible skein modules, and we prescribe
the TQFT on handle attachments. The reader may want to compare with the easier
semisimple case described in Section 1.4.

In Sections 3.1 and 3.2, we define chromatic morphisms and gluing morphisms and
give their skein properties (e.g. that the chromatic morphism can be used as a Kirby
color). We define the notions of chromatic non-degenerate, chromatic compact and twist
non-degenerate unimodular finite ribbon tensor categories for which our constructions
below exist.

In Section 3.3, we show that a twist non-degenerate category C gives rise to a 3-
manifold invariant. We show that this construction recovers the modified Lyubashenko
invariants of [Lyu95,DGG+22] and in particular the Hennings and WRT invariants. This
section is independent to the next.

In Section 3.4, we build non-compact (3 + 1)-TQFTs from chromatic non-degenerate
categories and (3 + 1)-TQFTs from chromatic compact categories, see Theorem 3.4.4.
Here non-compact means we only consider 4-cobordisms with incoming boundary in every
connected component. As a by-product, we obtain an invariant of 4-manifolds equipped
with a ribbon graph in their boundary. We show in Theorem 3.4.8 that the (3+1)-TQFT
is invertible if and only if C is modular.

In Section 3.5 we study some examples. We show that we recover Crane–Yetter–
Kauffman TQFTs in the semisimple case. We study finite dimensional versions of quan-
tum sl(2) at roots of unity which give chromatic compact and possibly twist-degenerate
examples. We conclude with a toy example in characteristic p which gives a chromatic
non-degenerate category which is not chromatic compact.

3.1 Algebraic setting

We fix an algebraically closed field k and a strict finite unimodular ribbon k-linear
tensor category C, see the definitions of Section 1.5.1 and [EGNO15]. By [GKP22, Corol-
lary 5.6], it admits a non-degenerate m-trace, unique up to scalar. Finiteness implies the
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existence of a chromatic morphism for a non-zero projective generator, two notions we
define below.

We will be interested in cases where C satisfied some additional non-degeneracy con-
ditions, see Section 3.1.4.

In [CGHP], we did not require C to be abelian, but it appears that this generalization
does not yield to new TQFTs or 3-manifold invariant. We restrict to this easier setting
here.

3.1.1 Copairing
In this chapter we denote F = RTC the Reshetikhin–Turaev functor and F ′ the renor-

malized invariant of closed admissible ribbon graphs from Theorem 1.5.3. We suppose we
have chosen a non-degenerate m-trace t on Proj, as in Section 1.5.1.
Definition 3.1.1: For any P ∈ Proj, we set
ΩP =

∑
i

xi⊗kxi ∈ HomC(P,1)⊗k HomC(1, P ) and ΛP =
∑

i

xi ◦xi ∈ EndC(P ), (3.1)

where {xi}i and {xi}i are basis of HomC(P,1) and HomC(1, P ) which are dual with respect
to the m-trace, that is, such that tP (xi ◦ xj) = δi,j. Clearly, ΩP and ΛP are independent
of the choice of such dual basis. ♢

The properties of the m-trace translate to the copairings ΩP as follows:

Lemma 3.1.2:

1. Duality: If ΩP = ∑
i x

i ⊗ xi, then ΩP ∗ = ∑
i x
∗
i ⊗ (xi)∗ ∈ HomC(P ∗,1) ⊗k

HomC(1, P ∗).

2. Naturality: If f : P → Q is a morphism in Proj, ΩP = ∑
i x

i ⊗ xi, and ΩQ =∑
i y

i ⊗ yi, then∑
i

xi ⊗ (f ◦ xi) =
∑

i

(yi ◦ f)⊗ yi ∈ HomC(P,1)⊗k HomC(1, Q).

3. Rotation: If V ∈ C and ΩP⊗V = ∑
i z

i ⊗ zi then ΩV⊗P = ∑
i z̃

i ⊗ z̃i where

z̃i = (Id⊗ −→evV )◦(Id⊗zi⊗Id)◦( ←−coevV ) and z̃i = (←−evV )◦(Id⊗zi⊗Id)◦(Id⊗ −→coevV ).

Proof : The duality and rotation properties follow since we apply transformations that
send dual bases to dual bases. The naturality can be checked by applying tP (xk ◦ ) ⊗
tQ( ◦ yℓ) to both side then the equality reduces to the cyclic property of the m-trace:
tQ(f ◦ xk ◦ yℓ) = tP (xk ◦ yℓ ◦ f). □

We fix a projective cover of the unit P1 (which can be chosen as any indecomposable
summand of P ∗ ⊗ P on which ←−evP is non-zero for any object P ∈ Proj) and a non-zero
morphism ε : P1 → 1. Then since the m-trace is non-degenerate, there exist η : 1 → P1
such that tP1(η ◦ ε) = 1. (If C is semi-simple, we choose P1 = 1 and ε = η = Id1). Let Γ0
be the closed ribbon graph

Γ0 =
η

ε

>P1 .
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Then F ′(Γ0) = tP1(η ◦ ε) = 1.

3.1.2 Chromatic morphisms
We define what will play the role of the Kirby color in the non-semisimple setting. We

have shaped Definition 1.4.1 to be analogous to the following.
Definition 3.1.3: A projective generator of C is projective object such that any projective
object is a retract of G⊕n for some n ∈ N. It always exists in a finite tensor category.

A chromatic morphism for a projective generatorG is a map c ∈ EndC(G⊗G) satisfying

cΛG⊗G∗ = . (3.2)

More generally, a chromatic morphism based on P ∈ Proj for a projective generator G is
a map cP ∈ EndC(G⊗ P ) such that for all V ∈ C, we have

cPΛV ⊗G∗ = that is
∑

i

cP

xi

xi

V PG

G

=
V P

, (3.3)
♢

where {xi}i and {xi}i are any dual bases.
Clearly, a chromatic morphism based on G is a chromatic morphism. Conversely, any
chromatic morphism gives rise to chromatic morphisms based on projective objects:

Lemma 3.1.4 (Lemma 1.2 of [CGPVb]): Let c ∈ EndC(G⊗G) be a chromatic mor-
phism and P ∈ Proj. Pick any non-zero morphism εG : G → 1 and a morphism
eP,G : P → G ⊗ P such that IdP = (εG ⊗ IdP ) ◦ eP,G (such morphisms always exist).
Then the map

cP = (IdG⊗εG) ◦ c ◦ (IdG⊗eP,G) ∈ EndC(G⊗ P ) (3.4)
is a chromatic morphism based on P .

Definition 3.1.5: A chromatic category is a k-linear pivotal category C endowed with a
non-degenerate m-trace on Proj, in which there exist a non-zero projective generator and
a chromatic map. ♢

3.1.3 Gluing morphisms
We will prove the following lemma in Section 3.1.5:

Lemma 3.1.6: There exists scalars ∆+,∆− ∈ k and a family of {∆P
0 ∈

HomC(P, P )}P∈Proj, such that for any chromatic morphisms cP1, cP based on P1 and
P respectively, one has

F

 G

P1

cP1

ε
 = ∆+ε, F

 G

P1

cP1

ε
 = ∆−ε, and F


P

G
cP

P

 = ∆P
0 .
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Definition 3.1.7: A gluing morphism is an endomorphism

g ∈ EndC(P1) such that g ◦∆P1
0 = ΛP1 , i.e.

P1

P1

G

g

cP1

= ΛP1

P1

.

♢

We also postpone to Section 3.1.5 the proof of the following:

Proposition 3.1.8: The category C admits a gluing morphism g ∈ EndC(P1) if and
only if ∆P1

0 ̸= 0.

3.1.4 Statement of main results
Definition 3.1.9: We say that

1. C is twist non-degenerate if ∆+∆− ̸= 0,

2. C is chromatic non-degenerate if ∆P1
0 ̸= 0, i.e. if C admits a gluing morphism,

3. C is chromatic compact if there exists a scalar ζ ∈ k∗, called the global dimension
of C, such that ∆P1

0 = ζΛP1 ,

4. C is modular if there exists a scalar ζ ∈ k∗ such that for any projective P , ∆P
0 = ζΛP .

♢
We will see in Section 3.1.6 that the notion of modular and twist non-degenerate coincide
with the usual ones given for example in [DGG+22]. We called these categories “factor-
izable” and not modular in [CGHP], but under our standing assumption that C is finite,
the name modular seems more appropriate. Remember that in [DGG+22] a category is
called modular if it is finite and factorizable. The global dimension ζ is called modu-
larity parameter in [DGG+22]. It does depend on the choice of the modified trace, see
Proposition 3.4.7.

Clearly, modular =⇒ chromatic compact (with the same scalar ζ) =⇒ chromatic
non-degenerate. We will also see in Lemma 3.2.4 that modular =⇒ twist non-degenerate
with ∆+∆− = ζ.

The main constructions of this chapter are the following:
1. If C is twist non-degenerate, there exists 3-manifold invariants BC and B′C (see The-

orem 3.3.2) that generalize many quantum invariants defined through link surgery.

2. If C is chromatic non-degenerate, there exists a non-compact (3+1)-TQFT SC (see
Theorem 3.4.4) whose vector spaces are the admissible skein modules of 3-manifolds.

3. If C is chromatic compact, then SC extends to a full (3+1)-TQFT (see Theorem
3.4.4).

4. C is modular if and only if SC is an invertible (3+1)-TQFT (see Theorem 3.4.8).
Remark 3.1.10: The name chromatic compact refers to the fact that SC extends from a
non-compact TQFT (i.e. one defined only cobordisms whose components have non-empty
source) to a full TQFT, i.e. one defined on all cobordisms. 3

95



a higher algebraic approach to non-semisimple quantum invariants

3.1.5 Existence of gluing morphisms
The proof of the existence of a gluing morphism as stated in Proposition 3.1.8 is a

direct consequence of the last statement of the following lemma:

Lemma 3.1.11: If C is a finite ribbon tensor category that admits a non-degenerate
m-trace, we have:

1. For any non-zero morphism P
f−→ 1 where P is projective, there exists an epimor-

phism f̃ : P → P1 with f = ε ◦ f̃ .

2. P1 ≃ P ∗1 , i.e. C is unimodular.

3. HomC(P1,1) = kε and HomC(1, P1) = kη.

4. ΛP1 = η ◦ ε.

5. For any f ∈ End(P1), f is nilpotent if and only if ΛP1 ◦ f = 0.

6. For any non-zero endomorphism f ∈ EndC(P1), there exists g ∈ EndC(P1) with
g ◦ f = ΛP1.

Proof : First remark that since k is algebraically closed (so k is the unique finite di-
mensional division k-algebra) and since P1 is indecomposable, then by the Fitting Lemma
(see [DK94]) we have Endk(P1) = k Id⊕J where J is the Jacobson radical which is a
nilpotent ideal formed by the nilpotent endomorphism of P1.

1. For any nilpotent n ∈ EndC(P1), if ε◦n ̸= 0, then ε◦n is an epimorphism and since
P1 is projective, ε factors through it: ε = ε ◦ n ◦ g for some g ∈ EndC(P1). But
n ◦ g belongs to J which is nilpotent thus ε = ε ◦ (n ◦ g)dimk(J) = 0 and we have a
contradiction. Then the kernel of ε ◦ : EndC(P1)→ HomC(P1,1) contains J which
is a maximal left ideal so it is equal to J . Now if ε′ : P → 1 is non-zero, then it is an
epimorphism and since P, P1 are projective, there exist P f−→ P1, P1

g−→ P such that
ε′ = εf , ε = ε′g = εfg. In particular since fg is not nilpotent, it is an isomorphism
and so f is an epimorphism which is split since P1 is projective.

2. Apply the previous to P ∗1
η∗−→ 1 implies that P1 is a direct summand of P ∗1 which is

indecomposable so P1 ≃ P ∗1 .

3. If ε′ : P1 → 1 is non-zero, then there is a split isomorphism P1
f−→ P1 such that

ε′ = εf . Write f = λ Id +n with n nilpotent and λ ∈ k then, ε′ = λε + εn = λε.
Hence Hom(P1, ε) = kε. Then HomC(1, P1) ≃ HomC(P ∗1 ,1) ≃ HomC(P1,1) also
has dimension 1 so it is generated by η.

4. This follows since {ε} and {η} are dual basis.

5. From the proof of (1), we have for any f ∈ End(P1), f is nilpotent if and only if
ε ◦ f = 0. Since η is a monomorphism, f is nilpotent if and only if η ◦ ε ◦ f = 0.

6. The symmetric pairing (f, g) 7→ tP1(fg) is non-degenerate on EndC(P1). From (5),
kΛP1 is the orthogonal of J . Recall that J is nilpotent and let k = max{n ∈ N :
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Jnf ̸= 0} and let g ∈ Jk be such that gf ̸= 0. Then Jgf = 0 thus gf is orthogonal
to J and gf ∈ k∗ΛP1 . Up to rescaling g, we thus have gf = ΛP1 . □

3.1.6 Existence of chromatic morphisms

In this subsection we discuss existence of chromatic maps as well as some cases where
C is chromatic compact.

In [CGPVa], a more general notion of “left” and “right” chromatic maps is defined
and proven to exist for general rigid finite tensor categories. We provide a sketch of proof
for the special case of interest below:

Theorem 3.1.12: If C is a finite unimodular ribbon tensor category then it admits a
chromatic morphism.

Proof (Sketch of proof.): The finite tensor category C has a coend L =
∫ V ∈C V ∗⊗

V with dinatural transformations iV : V ∗ ⊗ V → L . The coend is a Hopf algebra
object in C and every object V ∈ C has a structure of right L -comodule given by ı̃V =
(V

←−coevV ⊗ Id−−−−−−→ V ⊗ V ∗ ⊗ V Id⊗iV−−−→ V ⊗ L ) compatible with the monoidal structure: the
product mL : L ⊗L → L is used to define the coaction on a tensor product. Moreover,
the coend is known to have (unique up to a scalar) right integrals λ : 1 → L and
Λ : L → 1 with Λ ◦ λ = Id1 (since C is unimodular, Λ is a two-sided integral). It is
shown in [CGPVa] that for a good choice of Λ, we have for any projective P ∈ C:

(IdP ⊗Λ) ◦ ı̃P = ΛP (3.5)

where ΛP is defined in Equation 3.1 with the copairing of the m-trace. Let G be a
projective generator, then the map iG is an epimorphism thus the map λ ◦ εG : G → L
factors through it and there exists a map fλ : G→ G∗ ⊗G such that

λ ◦ εG = iG ◦ fλ . (3.6)

Let f̃λ = (−→evG⊗IdG)◦(IdG⊗fλ) and fix any map e : G→ G⊗G such that (εG⊗IdG)◦e =
IdG. Then the map

c = (f̃λ ⊗ IdG) ◦ (IdG⊗e) (3.7)

is a chromatic map. Indeed, the integral property of λ is that mL ◦ (λ⊗ IdL ) = εL ⊗ λ
where mL and εL are the product and counit of L . Then we make a graphical proof:
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cΛG⊗G∗ =
c

ΛG⊗G∗ (3.5)

=
(3.7)

fλ

e

Λ

ı̃ı̃

mL

(3.6)=

e

εG

λ

mL

ı̃

Λ

=

e

εG

λ ı̃

Λ

εL

=
G G

The first equality comes from the duality property of Ω (see Lemma 3.1.2); the second is
expressing ΛG⊗G∗ as the coaction of Λ. This coaction on a tensor product is given by the
product of the coactions. The third equality is the defining property of fλ and the fourth
is the integral property of λ. □

The coend in a ribbon tensor category C also gives an alternative description of the
morphisms ∆0 and ∆± as follows: Let θ : L → L be defined by θ ◦ iV = iV ◦ (IdV ∗ ⊗θV ).
Then ∆± = εL ◦ θ±1 ◦ λ. Let ω : L ⊗L → 1 be the Hopf pairing defined by

ω ◦ (iU ⊗ iV ) = (←−evU⊗
←−evV ) ◦ (IdU∗ ⊗(cV ∗,U ◦ cU,V ∗)⊗ IdV )

and let ∆0 = ω ◦ (λ⊗ IdL ) : L → 1. Then for any projective object P ,

∆P
0 = (IdP ⊗∆0) ◦ ı̃, indeed

∆P
0

P

=
cP

G =

cP

ı̃

ı̃

ω

=

e

ı̃εG

λ

ω

=
ı̃

∆0

.

Thus, C is modular if and only if ∆0 = Λ which is equivalent (see [DGG+22, Lemma
2.7]) to the non-degeneracy of ω. We thus recover the usual notion of modular and twist
non-degenerate given for example in [DGG+22].

Hopf algebras. A particular example is when C is the category of finite dimensional
left modules over a finite dimensional unimodular ribbon Hopf algebra H. By Theorem
1 of [BBG21] it has a non-degenerate left m-trace on Proj, which is also a right m-trace
since H is ribbon. The module H with its left regular action is a projective generator and
the map ΛH⊗H∗ is the action of the two sided cointegral. Indeed, as a Hopf algebra, L
can be indentified with H∗ where the multiplication is twisted by the braiding of C. An
explicit formula for a chromatic morphism c : H ⊗H → H ⊗H is given by

x⊗ y 7→ λ(S(y(1))gx)y(2) ⊗ y(3) (3.8)
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where g is the pivotal element, λ is the right integral, S is the antipode, and y(1)⊗y(2)⊗y(3)
is the double coproduct of y (see [CGPT20, Lemma 6.3]). In this case the morphism ∆P

0
is given by the action of the element ∆0 = λ ⊗ IdH(R21R12), where R ∈ H ⊗ H is the
R-matrix of H. Note that ∆0 being non-zero is one of the two conditions for H −mod to
be called 3-modular in [Lyu95, Theorem 3.7.3].

When working with Hopf algebras, it may seem more natural to express everything
in terms of H and avoid mentioning P1. One can define a gluing morphism for H as an
endomorphism gH : H → H satisfying gH ◦ ∆H

0 = ΛH . Writing P1 as an idempotent
i ◦ p in H, it is easy to see that the existence of a gluing morphism gH for H implies the
existence of a gluing morphism g := p ◦ gH ◦ i. Similarly, the existence of g implies that
of gH := i ◦ g ◦ p (there is up to automorphism a unique indecomposable summand of P1
in H which contains the unique left ideal kΛ isomorphic to 1). However, the existence of
gH is a priori not equivalent to ∆0 being non-zero.

Fusion categories. Recall that the global dimension of a ribbon fusion category C is
the sum of the squares of the dimensions of its simple objects . It is shown in [EGNO15,
Theorem 7.21.12] that it is non-zero when k has characteristic zero.

Proposition 3.1.13: A ribbon fusion (possibly non-modular) category C with non-zero
global dimension is chromatic compact.

Proof : We recover the definitions of Definition 1.4.1 as P1 = 1. Let {Si}i∈I be a set
of representatives of the isomorphism classes of simple objects of C, then G = ⊕i∈ISi is a
generator of Proj = C and the quantum trace t = qTrC is a non-degenerate m-trace on C.
It follows that {

xi = 1
qdim(Si)

←−coevSi

}
i∈I

and
{
yi =−→evSi

}
i∈I

are dual bases of HomC(1, G⊗G∗) and HomC(G⊗G∗,1), respectively. Using the expansion
ΩG⊗G∗ = ∑

i∈I xi ⊗k yi, it is straightforward to check that

cP = (⊕i∈I qdim(Si) IdSi
)⊗ IdP

is a chromatic morphism for G based on P (it is essentially the Kirby color tensor the
identity of P ).
Let d(C) = ∑

i∈I qdim(Si)2 be the global dimension of C. As P1 = 1, the morphism ∆P1
0

is multiplication by d(C), so C is chromatic compact with ζ = d(C). A gluing morphism
is given by 1

d(C)Id1. □

In particular the parameter ζ we called global dimension coincides with the usual notion
in the semisimple case and for the usual quantum trace.

Symmetric categories. It seems that having semi-simple Müger center is a good
criterion for being chromatic compact in characteristic 0. On one extreme, we have seen
above that if C has trivial Müger center (i.e. is modular) then it is chromatic compact.
We consider the other extreme, the symmetric case, below:

Proposition 3.1.14: Suppose C is symmetric monoidal and char(k) = 0. Then the
following are equivalent: C is chromatic non-degenerate, C is chromatic compact, C is
semi-simple.
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Proof : First, let us observe that C admits a fiber functor. By Deligne’s theorem,
see [EGNO15, Theorem 9.11.4], it is enough to check that C has sub-exponential growth.
Find C ∈ N such that G ⊗ G ⊆ G⊕C and let L be the length of G. Then the length of
G⊗n is at most (C.L)n and C has sub-exponential growth.
Using Tannakian reconstruction, C ≃ H −modfd for some Hopf algebra H. (Note that,
despite the fact C is symmetric, it is not clear that H is cocommutative as it might be a
super-Hopf algebra). We use the chromatic map from Equation 3.8 (it does not matter
which chromatic map we use by Lemma 3.2.1). We can ignore the double braiding in the
definition and compute ∆H

0 (1) = λ(1)1. If C is chromatic non-degenerate it has to be
non-zero, hence λ(1) ̸= 0. This is equivalent to semisimplicity of H∗ by [Rad12] which is
equivalent to semisimplicity of H in characteristic 0 by [LR88].
To conclude, we have seen in Proposition 3.1.13 that semi-simple implies chromatic com-
pact, and it is immediate that chromatic compact implies chromatic non-degenerate. □

3.2 Skein relations and algebraic properties

Throughout this chapter, all manifolds are smooth and oriented and all diffeomor-
phisms are orientation preserving, unless otherwise stated.

3.2.1 Blue, red and green graphs

We consider graphs whose edges are colored by one of the colors blue, red or green
each representing different structures: the blue part will be a C-colored ribbon graph with
coupons in the sense of Turaev. The red part is an unoriented framed link in M which is
not C-colored. Graphs made of the disjoint union of a blue C-colored ribbon graph and
a red set of non-oriented framed circles are called bichrome graphs, see [CGPT20]. The
green is an unoriented framed link which is used as a notation for the topology of M .
This means that M is identified with the result of the S1-surgery on the green link, see
Figure 3.1.

V

f
V

f

Figure 3.1: The graph on the left is a ribbon graph T in S2 × S1 where the green circle
represents the topology of S2 × S1. The graph on the right is a bichrome graph in S3

which after surgery on the red circle produces the graph on the left.

Sliding a blue or red edge on an green circle should be thought as an isotopy in M .
For a disconnected 3-manifolds M , we will use the symbol ⊔ to separate the different
components of M .

A bichrome graph in a manifold M is admissible if every connected component of
M contains a blue edge colored by a projective object. A red to blue modification of a
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bichrome graph is an operation in an annulus given by

P

−→ cP

G

P

, (3.9)

where cP is any chromatic morphism based on a projective object P . Here we allow the
P -colored edge to be replaced by several parallel strands with at least one colored by a
projective object (indeed if P ∈ Proj and V,W ∈ C are any objects, then V ⊗ P ⊗W ∈
Proj).

3.2.2 Sliding for chromatic morphisms
We show that the chromatic map behaves as expected, e.g. that the red-to-blue

operation does not depend on the choice of a chromatic morphism, and that one can slide
over red components. Remember the definition of admissible skein modules from Section
1.5.2. A bichrome graph is called admissible if its blue part is.

The following lemmas are from [CGPVb], for completeness we restate them here in a
slightly different language.

Lemma 3.2.1: Let L be an admissible bichrome graph in M and let L1 and L2 be two
C-ribbon graphs each obtained by using red to blue modifications to change every red
component of L to blue. Then L1 and L2 are projective skein equivalent.

Proof : In this proof, we write T =̇T ′ if T and T ′ are projective skein equivalent graphs
in M . We need to show that two red to blue modifications of a red circle at different places
with different chromatic morphisms are projective skein equivalent. Let cP ∈ EndC(G⊗P )
and cQ ∈ EndC(G′ ⊗ Q) be two chromatic morphisms based on P and Q, respectively,
where G and G′ are projective generators.

Suppose that we have two modifications of the type “red to blue” which are made on
different blue strands and using opposite orientations for the red circle. Then we have
(with implicit summation):

cPQ =̇ cP

cQ

xi

xi

=̇
cQ

cP

xi

xi

=̇
cQ

cP

x̃i

x̃i

=̇

cQ
P

where x̃i and x̃i are the dual basis obtained from xi and xi by the rotation property of
Lemma 3.1.2. If the two modifications are happening on the same side of the red circle,
then by the above argument they are both equal to a third modification happening on
the opposite side of the red circle. □
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Lemma 3.2.2: Let L be an admissible bichrome graph in M and let L′ be the admissible
bichrome graph obtained by sliding a red or blue edge of L over a red circle of L (via a
Kirby II move, see Equation 3.12). If L1 and L2 are ribbon graphs obtained by applying
a red to blue modification on each red component of L and L′ respectively, then L1 and
L2 are projective skein equivalent.

Proof : We first consider the case of sliding a blue edge colored by P ∈ Proj on a red
circle:

P

=̇

cP

=̇

cP

cP ∗

xi

xi

=̇

cP

cP ∗

x∗i

x∗
i

=̇
cP

cP ∗

x∗i

x∗
i =̇

cP ∗

=̇

P

where x∗i and x∗i are the dual basis defined by x∗i = (xi)∗ ◦ (ϕG ⊗ IdP ∗⊗G∗) and x∗i =
(ϕ−1

G ⊗ IdP ∗⊗G∗) ◦ (xi)∗. Notice this implies a red circle can be made blue then slid over a
red circle. Now if we want to slide a blue edge colored by V ∈ C we can fuse it with an
edge colored with a projective Q to this edge creating an edge colored by V ⊗Q (which is
projective) and two coupons. Then we can slide the V ⊗Q-colored edge as in the above
computation. After moving one of coupons along the red circle to the other coupon we
can remove both coupons and then unslide the edge colored with Q. □

3.2.3 Properties of the morphisms of a chromatic category
Next we prove Lemma 3.1.6.

Proof (Proof of Lemma 3.1.6): By Lemma 3.2.1 we can give a meaning to the
evaluation by F of F ′ of admissible ribbon graphs with red components as the value of
any red to blue modification of it, see Equation (3.9). Thus we have that

∆+ε = F

(
ε
)
∈ kε, ∆−ε = F

(
ε
)
∈ kε and ∆P

0 = F

 P
 ∈ EndC(P )

does not depend on the choice of any chromatic map. □

Lemma 3.2.3: The morphisms ∆P
0 is a natural morphism in P ∈ Proj (that is f ◦∆P

0 =
∆Q

0 ◦ f for any P f−→ Q ∈ Proj) and (∆P
0 )∗ = ∆P ∗

0 for any P ∈ Proj.

Proof : Since ∆P
0 = F

(
P
)
∈ EndC(P ), the morphism ∆P

0 is clearly natural in P ∈

Proj. Finally, since the red circle is not oriented,

(∆P
0 )∗ = F


P

 = F


P

 = F


P

 = ∆P ∗

0 .
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Lemma 3.2.4: If C is modular, then it is twist non-degenerate and ∆+∆− = ζ.

Proof : We have
ζε =

ε

= ∆+∆−ε (3.10)

where the left equality is obtained by making the 1-framed component blue, applying the
factorizability condition and then using the defining property of the chromatic morphism.
The right equality is obtained by sliding the 0-framed red unknot on the 1-framed red
one. □

Proposition 3.2.5: The dual of a gluing morphism is conjugate to a gluing morphism
by any isomorphism P1 ≃ P ∗1 .

Proof : For the existence: since ∆P1
0 ̸= 0 by Lemma 3.1.11(6) there exist g ∈ EndC(P1)

such that ∆P1
0 g = ΛP1 . Since ∆P1

0 is central, g∆P1
0 = ΛP1 and taking the dual we get

(ΛP1)∗ = ΛP ∗1
= (∆P1

0 )∗g∗ = (∆P ∗1
0 )g∗ (where the first equality is due to Lemma 3.1.2 and

the last to Lemma 3.2.3). Now if we conjugate by an isomorphism ψ : P1 → P ∗1 we get
ΛP1 = ψ ◦ ΛP ∗1

◦ ψ−1 = ∆P1
0 (ψ−1g∗ψ) where the last equality follows by Lemma 3.2.3. □

Lemma 3.2.6: The category C has a gluing morphism which is an isomorphism of P1
if and only if

∆P1
0 = ζΛP1 for some scalar ζ ∈ k∗ (i.e. iff C is chromatic compact).

In this case, ζ−1 IdP1 +n is a gluing morphism for any nilpotent n ∈ End(P1).

Proof : Let g be an invertible gluing morphism. Then g−1 = ζ Id +n for some n nilpo-
tent and ζ ∈ k∗. Then ∆P1

0 = g−1ΛP1 = ζΛP1 . □

3.3 3-manifold invariant
In this section we assume C is twist non-degenerate.

3.3.1 Surgery presentation of 3-manifolds containing ribbon graphs
It is well known that any closed 3-manifold can be represented by surgery along a link

in S3 and that two such presentations of the same manifold are related by the following
two moves. A Kirby I move which replaces a link L with itself disjoint union a unknot
U± with framing ±1:

L ←→ L ⊔ U± (3.11)
and a Kirby II move which replaces a component Li of a link with a connected sum of Li

with a parallel copy of a different component Lj:

←→ . (3.12)
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The result of surgery along a link L is a 3-manifold S3(L) uniquely defined up to dif-
feomorphism. If L and L′ are related by a Kirby move, it induces a diffeomorphism
S3(L) ∼→ S3(L′) canonical up to isotopy.

Now given a pair (M,T ) where M is a closed 3-manifold containing an admissible
C-colored ribbon graph T . We say the ribbon graph L∪ T ⊂ S3 is a surgery presentation
of (M,T ) if L is a link surgery presentation representing M , and T is identified by T ⊆
S3 ∖L ⊆M . The components of L are called the surgery components of L∪ T . We have
the following theorem (see [CGP14]).

Theorem 3.3.1: For i = 1, 2, let Li∪Ti be a surgery presentation in S3 of a 3-manifold
Mi containing a C-colored ribbon graph Ti. Let f : M1 →M2 be an orientation preserving
diffeomorphism such that f(T1) = T2 as C-colored ribbon graphs. Then L1 ∪ T1 and
L2 ∪ T2 are related by a sequence of orientation changes of the surgery components,
Kirby I moves away from Ti, Kirby II moves on the surgery components and Kirby II
moves obtained by sliding an edge of Ti on a component of the surgery link such that the
induced diffeomorphism between M1 and M2 is isotopic to f .

3.3.2 Existence of the invariant
Recall the definition of the scalars ∆± given in Section 3.1.2.

Theorem 3.3.2: Let (M,T ) be a pair where M is a closed 3-manifold containing an
admissible C-colored ribbon graph T . Let L∪T ⊂ S3 be a surgery presentation of (M,T ).
If Lblue is a C-colored ribbon graph obtained by making each red component of T ∪L blue
using a red to blue modification then

B′C(M,T ) = F ′(Lblue)
∆r

+∆s
−

(3.13)

only depends on the diffeomorphism class of (M,T ), where (r, s) is the signature of the
linking matrix of L and F ′ is as in Theorem 1.5.3.

Proof : Lemma 3.2.1 implies that any choice of making a surgery presentation blue only
depends on the surgery presentation. This lemma also implies that using a red to blue
modification on a unknot with ±1 framing with any chromatic morphism produces the
same the scalar ∆±. Thus, it is enough to show the invariant is well defined for any two
surgery presentations which are related by a Kirby I or II move as in Theorem 3.3.1.
Lemma 3.2.2 implies any of the Kirby II moves in Theorem 3.3.1 hold. Finally, since
the category is twist non-degenerate then the normalization in Equation (3.13) implies
invariance under any Kirby I move. □

When T is not necessarily admissible, and M is connected define BC(M,T ) = B′C(M,T ⊔
Γ0) where

Γ0 =
η

ε

>P1
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is contained in a ball in M . If (M,T ) and (M ′, T ′) are 3-manifolds with C-colored ribbon
graphs such that T ′ is admissible then

B′C((M,T )♯(M ′, T ′)) = BC(M,T )B′C(M ′, T ′), (3.14)

where ♯ stands for the connected sum along balls not intersecting T nor T ′.

3.3.3 Identification of the invariant
Let DGGPRC denote the renormalized Lyubashenko invariant defined in [DGG+22].

It is normalized using a choice of square root D of ∆+∆−.

Theorem 3.3.3: If C is twist non-degenerate, M is a closed connected 3-manifold and
T is a admissible closed C-colored bichrome graph inside M then

DGGPRC(M,T ) = D−1−b1B′C(M,T )

where b1 is the first Betti number of M .

Proof : Let L ∪ T be a surgery presentation of (M,T ). Let FΛ be the extension to
bichrome graphs of the RT functor [DGG+22, Proposition 3.1] and let F ′Λ be its renor-
malization with the m-trace [DGG+22, Theorem 3.3]. From [DGG+22, Theorem 3.8] we
have

DGGPRC(M,T ) = D−1−ℓδ−σ(L)F ′Λ(L ∪ T )

where σ(L) = r − s is the signature linking matrix of a surgery presentation L of M ,
δ = ∆+

D
= D

∆− and ℓ is the number of components of L. The main property of the map F ′Λ
is that it gives a well defined meaning to a red circle that can be made blue [DGG+22,
Lemma 4.5]. Now [CGPVa, Section 3.4] shows that the red-to-blue operation using the
chromatic morphism is exactly the red-to-blue operation of [DGG+22, Lemma 4.5]. Thus,
with the notation of Theorem 3.3.2 it follows that F ′Λ(L ∪ T ) = F ′(Lblue).
Finally, it is easy to show that ℓ = b1 + r + s and D−1−ℓδ−σ(L) = D−1−b1

∆r
+∆s
−

for a surgery
presentation L. □

Similarly, comparing Equation (3.14) and [DGG+22, Proposition 3.11] one sees that
BC(M, ∅) recovers Lyubashenko’s invariant defined in [Lyu95] up to the same factor
D−1−b1 .

In particular, let C be the category of finite dimensional left H-modules over a finite
dimensional unimodular ribbon Hopf algebra with right integral λ. The modified trace on
C is induced by λ [BBG21, Theorem 1]. Then BC(M, ∅) recovers the Hennings invariant
defined in [Hen96] and B′C(M,T ) recovers its renormalized version defined in [DGP18] up
to the same factor.

If C is semisimple modular then B′C and BC agree and recover the Witten-Reshetikhin-
Turaev invariant associated to C up to the same factor.

3.4 The (non-compact) (3+1)-TQFT
In this section we assume that C is chromatic non-degenerate.
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3.4.1 Construction of TQFT and 4-dimensional invariants
We extend the functor SC : Man → Vect to a functor SC : F(Gnc) → Vect (respec-

tively SC : F(G) → Vect if C is chromatic compact) by assigning to each S-surgery a
linear map between skein modules.

Let M be a closed 3-manifold. For k = 0, ..., 4, recall from Section 1.3.2, the cobordism
W (Sk−1) which is given by gluing a k-handle on M × [−1, 1]. Its domain and target are
related by a index k-surgery (along a framed sphere Sk−1) which can be described using
green circles as follows (in what follows the links L and L′ are all green and describe two
distinct components of M by surgery):

1. index 0-surgery: M →M ⊔ S3.

2. index 1-surgery: if the gluing S0 is not contained in a single component of M :
L ⊔ L′ → L ∪ L′ ; else : L→ L ∪O.

3. index 2-surgery: L → L ∪ “green knot” arbitrarily linked with L. Alternatively,
since the result of a S1-surgery on a 3-manifold is invertible by another S1 surgery,
then for a well chosen representation of the domain of W (S1), its target can be
represented as its domain with a green knot removed.

4. index 3-surgery: if the glueing S2 disconnects a component of M : L ∪ L′ → L ⊔ L′
where L and L′ live in two different hemispheres of S3; else: L 7→ L \ O where the
green unknot bounds a disc disjoint from the other components.

5. index 4-surgery: M ⊔ S3 →M .

For k ∈ {0, ..., 4}, given a framed sphere Sk−1 in M we define a morphism

χM,Sk−1 : SC(M)→ SC(M(Sk−1))

which will be assigned to the morphism SC(eM,Sk−1) as follows.

0-handle: We only consider 0-handles when C is chromatic compact and so g = ζ−1 IdP1

is a gluing morphism. Let S−1 : ∅ ↪→ M be a framed −1-sphere. Recall Γ0 is the ribbon
graph with a unique edge from a coupon colored with η to a coupon colored by ε (see the
r.h.s. of Figure 3.2). Then there exists a birth map:

χM,S−1 : SC(M)→ SC(M ⊔ S3)

sending a skein in M to its disjoint union with (S3, ζΓ0), see Figure 3.2.

(M,T ) 7→ (M,T ) ⊔ (S3, ζ
η

ε

>P1 )

Figure 3.2: The birth map χM,S−1 augments a skein by adding a disjoint union of S3

containing ζΓ0.

1-handle: Given a framed sphere S0 in M there exists a gluing map:

χM,S0 : SC(M)→ SC(M(S0))
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Benjamin Häıoun CHAPTER 3. NON-SEMISIMPLE SKEIN (3+1)-TQFTS

η

ε

P1

P1

7−→ g

P1

or
A

ε

P1

⊔
B

η

P1

7−→

B

g

A

P1

P1

Figure 3.3: The gluing map χM,S0 is depicted by two different representations depending
if S0 is embedded in a unique connected component of M (left) or not (right).

which glues two edges terminating on coupons colored by η and ε by a gluing morphism
as represented in Figure 3.3. Let us describe this morphism in more detail. Let x, y be
two distinct points of a 3-manifold M . Let Bx, By be neighborhood of x and y both
oriented and parameterized by B3 and let S0 be the framed 0-sphere Bx ⊔ By. Let
M ′ = M \ (Bx ⊔By) i

↪→M be the inclusion and C ≃ S2× [0, 1] be the cylinder such that
M(S0) = M ′ ∪∂ C. We put in this cylinder a skein Γg with a single coupon colored by
any gluing morphism g and an incoming and an outgoing edge parallel to (1, 0, 0)× [0, 1],
framed in the direction (0, 0, 1). We will say that a skein T in M is in good position with
respect to S0 if Bx∩T consists of a planar ribbon graph in R+×R×{0}∩Bx consisting of
a unique edge oriented from (1, 0, 0) ∈ ∂Bx towards a coupon colored by ε and if By ∩ T
consists of a planar ribbon graph in R+×R×{0}∩By consisting of a unique edge oriented
from a coupon colored by η towards (1, 0, 0) ∈ ∂By. The map χM,S0 assigns to a skein T
in good position with respect to S0 the skein (M ′, T ∩M ′) ∪∂ (C,Γg).

Proposition 3.4.1: The linear map χM,S0 is well defined and does not depend on the
ordering of {x, y} nor on the gluing morphism g.

Proof : First we note that the admissible skein module is generated by skeins in M
where every component of M contains a coupon colored by ε and a coupon colored by
η. Indeed, consider a box containing a part of an edge colored by P ∈ Proj whose image
by the RT-functor is ←−evP and apply Lemma 3.1.11(1) to show that a skein relation can
be used to make appear a coupon colored by ε : P1 → 1. Let us choose an isomorphism
ψ : P1 → P ∗1 normalized so that η∗ ◦ψ = ε then a coupon colored by ε is skein equivalent
to a graph with two coupons colored by ψ and η. So applying this procedure twice we can
ensure the presence of a ϵ-colored coupon and of a η-colored coupon in each connected
component of M .

Now, up to isotopy of the skein, the definition of χM,S0 only depends a priori on the
choice of the two coupons colored by ε and η, and on the choice of a gluing morphism g:
we will now prove independence on these data. Let g′ be an other gluing morphism and
consider the element obtained by using g′ instead of g and two different coupons colored
with ε and η. Then we have if S0 is embedded in a unique connected component,

η

ε

P1

P1

η

ε

P1

P1

7−→
η

ε

g =
g′ g

=
g′ g

= g′
η

ε
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where the first and last equalities are skein equivalences given by definition of gluing
morphisms and the middle one is an isotopy of the red circle in the belt 2-sphere created
by gluing the 1-handle. Similarly, if the surgery is connecting two different components
of M , the representation of the equivalence is similar without the green circles but with
the separating belt 2-sphere represented by the horizontal plane.

The map χM,S0 preserves skein relations as we can always choose coupons ε and η
outside a fixed box.

Finally reversing the orientation of the sphere S0 that is interchanging x and y does
not change the map since η = ψ−1ε∗, ε = ψη∗ and ψ−1g∗ψ is also a gluing morphism. □

2-handle: Given a framed sphere S1 in M there exists a knot-surgery map:

χM,S1 : SC(M)→ SC(M(S1))

adding a red circle along the meridian of the surgery knot, see the r.h.s. of Figure 3.4.
Let C = −B2×S1 where the sign of B2 means reversing orientation and Or ⊂ C be a red

7−→ and 7−→

Figure 3.4: The knot-surgery map χM,S1 , two alternative representations: on the left we
choose a representation of M where S1 is a meridian of a green knot; a presentation for
M(S1) is then obtained by forgetting the green knot in the presentation of M , but the
map on skeins consists of adding a red component along that S1. On the right, the surgery
presentation of M(S1) is obtained by adding the green circle (which is S1) and the map
on skeins consists in adding also its red meridian.

ribbon knot of the form [−0.1, 0.1]×{0}×S1. Let S1 ≃ S1×B2 be a framed knot in M ,
M ′ = M \(S1×B2) and M ′′ = M ′∪∂C. Let SC(M ′) i−→ SC(M) and SC(M ′) i′′−→ SC(M ′′)
be the maps induced by the inclusions. We define χM,S1 to be the map that sends a skein
i(T ) to i′′(T ) ∪Or. Observe that this map is defined on all SC(M) because each skein in
M can be isotoped off C .

Proposition 3.4.2: The linear map χM,S1 is well defined.

Proof : If T1, T2 ∈ SC(M ′) are such that i(T1) = i(T2) then T1 and T2 differ by isotopies
in M ′, slidings through meridian discs of C and skein relations which, up to isotopy, can
be supposed to be supported in a box disjoint from C. Then i′′(T1) ⊔Or and i′′(T2) ⊔Or

differ by isotopies in i′′(M ′), skein relations in i′′(M ′) and sliding of edges on the created
red component Or, which by Lemma 3.2.2 preserves the class in SC(M ′′). □

3-handle: Given a framed sphere S2 in M there exists a cutting map:

χM,S2 : SC(M)→ SC(M(S2))

sending parallel strands passing through the cutting sphere S2 to the copairing Ω, see Fig-
ure 3.5. We say that the skein is in standard position with respect to S2 if its intersection
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· · ·

A

B

7−→
∑

i

xi

· · ·

B
⊔

xi

· · ·

A
or

· · ·

7−→
∑

i

xi

· · ·

xi

· · ·

Figure 3.5: The cutting map χM,S2 : two representations depending if S2 is a separating
(left) or a non-separating sphere in M (right).

consists in n parallel edges in a rectangle (i.e. a disc of the form α× [0, 1] ⊂ S2× [0, 1] for
some simple arc α ⊂ S2) with at least one edge colored by a projective module (see Figure
3.5). We now consider a skein in standard position. Then the image by the RT-functor
of this rectangle is the identity of P for some P ∈ Proj. The cutting map χM,S2 replaces
the framed sphere by the sums of graphs in two balls each containing a unique coupon
colored with the dual basis of HomC(P,1) and HomC(1, P ).

Proposition 3.4.3: The linear map χM,S2 is well defined.

Proof : We refer here to the proof of [CGPVb, Lemma 3.3] which is completely similar.
The main idea is that the naturality of Ω implies that the images of isotopic skeins are
skein equivalent. □

4-handle: Given a framed sphere S3 in M , the map χM,S3 corresponding to filling of a
3-sphere of M = M ′ ⊔ S3 is given by

(M,Γ) 7→ F ′(Γ ∩ S3)(M ′,Γ ∩M ′) ∈ SC(M ′).

Theorem 3.4.4: There exists a unique symmetric monoidal functor

SC : Cobnc → Vect

extending SC : Man→ Vect such that SC(eΣ,S) = χΣ,S.
If C is chromatic compact, then the functor extends to a symmetric monoidal functor on
Cob:

SC : Cob→ Vect.

Proof : We only need to prove that the relation (R1)–(R5) are satisfied by SC.

(R1) Since SC : Man → Vect is functorial we have SC(ed◦d′) = SC(ed) ◦SC(ed′). Also,
since elements of SC(M) are defined by ribbon graphs up to isotopy we clearly have
SC(ed) = Id if d is isotopic to IdΣ.

(R2) Since the construction of the maps χM,S are local, they are covariant under diffeo-
morphisms of the pair (M,S).

(R3) Again, since the construction of the maps χM,S are local, they commute for disjoint
framed spheres.
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(R4) The 2-3-handle cancellations reduces to the chromatic identity (3.3) as shown in
Figure 3.6. Indeed since the attaching framed 2-sphere of the 3-handle intersects
the belt circle of the 2-handle once, the attaching circle for the 2-handle bounds a
disc in the intermediate 3-manifold. This is why we can represent the green circle
in Figure 3.6 as an unknot.
The 1-2-handle cancellations reduces to the defining property of the gluing map.
Indeed the sphere S2 created by the 1-handle can’t be separating since it is inter-
sected once by the attaching S1 of the 2-handle. This means that we can represent
the map χM,S1 as in the left hand-side of Figure 3.3 and the map χM,S2 is then the
left hand-side of Figure 3.4 turning the green unknot into red.
The 3-4-handle cancellation relies on the fact that evaluating F ′ on a cut 3-ball is a
skein relation.
Finally, in the compact case, the 0-1-handle cancellation is obvious since we can
choose g = ζ−1 IdP1 as gluing morphism.

(R5) The maps χM,S do not depend on the orientation of S. □

· · · ε

P1

7−→

· · ·

ε

P1

=̇
· · ·

cP1

ε

P1

7−→

· · ·
xi

xi

cP1

ε

P1

=̇ · · · ε

P1

Figure 3.6: The cancellation of a 2-handle by a 3-handle.

We now extract (even in the non-compact case) two scalar invariants of 4-manifolds:
SC(W,T ) for manifolds with an admissible graph in the boundary and ṠC(W ) for con-
nected closed 4-manifolds.
Definition 3.4.5: LetW be an oriented compact 4-manifolds with no closed components.
A C-ribbon graph T ⊂ (−∂W ) is admissible if for each component M of −∂W , T ∩M is
admissible i.e. if T represents an admissible skein of SC(−∂W ) (where the minus sign is
for opposite orientation). If T ⊂ (−∂W ) is admissible then define the invariant

SC(W,T ) = SC(W̃ )(T )

where W̃ is W seen as a cobordism from −∂W to ∅. ♢

Definition 3.4.6: Let W be a connected closed 4-manifold. Define

ṠC(W ) = SC(Ẇ ,Γ0) ∈ k

where Ẇ = W \B4 is a once punctured W . ♢

If C is chromatic compact, by definition of the maps χM,S0 (see Figure 3.2), we have for
any closed connected 4-manifold W :

SC(W ) = ζṠC(W ) Idk . (3.15)

For example, ṠC(S4) = 1 whereas SC(S4) = ζ Idk is the global dimension.
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3.4.2 Properties

Remember that in this section we are assuming that C is chromatic non-degenerate so
that in particular it has an m-trace t, chromatic morphism c and gluing morphism g.

Proposition 3.4.7: Let κ ∈ k∗, then

1. t′ := κt is a non-degenerate m-trace on Proj,

2. its associated copairing is given by Ω′P = 1
κ
ΩP , and Γ′0 = 1

κ
Γ0,

3. c′ = κc is a chromatic morphism associated to t′,

4. g′ = 1
κ2 g is a gluing morphism, and in the compact case ζ ′ = κ2ζ.

Finally the TQFT S ′
C associated to t′ satisfies S ′

C(W ) = κχ(W )SC(W ) where χ is the
Euler characteristic.

Proof : The first four points are immediate from the definitions. In the compact case,
the 0-handle map becomes χ′M,S−1 = κχM,S−1 , as ζ ′Γ′0 = κζΓ0. The 1-handle map becomes
χ′M,S0 = 1

κ
χM,S0 as it maps a Ω′P1 to a g′. The 2-handle map becomes χ′M,S0 = κχM,S0 as

c′ = κc. The 3-handle map becomes χ′M,S0 = 1
κ
χM,S0 as Ω′P = 1

κ
ΩP . The 4-handle map

becomes χ′M,S0 = κχM,S0 as t′ = κt.
Therefore for a 4-bordism W decomposed using ni i-handles, 0 ≤ i ≤ 4, one has:

S ′
C(W ) = κn4−n3+n2−n1+n0SC(W ) = κχ(W )SC(W ). □

Theorem 3.4.8: The TQFT SC is invertible if and only if C is modular.

Proof : First we prove the necessity of the theorem: recall that SC(S3) ≃ k is generated
by the skein (S3,Γ0). Let G be a projective generator with a unique indecomposable factor
P1

i−→ G
p−→ P1. Then by naturality of Λ and since G contains a single copy of P1, we have

ΛG = iΛP1p. Consider the subspace of SC(S2 × S1) generated by graphs {Of}f∈EndC(G)
with a unique coupon colored by f ∈ EndC(G) and a unique edge of the form {pt} × S1.
Consider the two cobordisms W2,W3 : S2 × S1 → S3 given by gluing a 2-handle (resp. a
3-handle) to S2×S1× [0, 1] respectively along {pt}×S1×{1} and S2×{pt}×{1}. Then
SC(W2)(Of ) = tG(∆G

0 f) ∈ k ≃ SC(S3) and SC(W3)(Of ) = tG(ΛGf) ∈ k ≃ SC(S3).
In particular, for the gluing morphism g, SC(W2)(Oigp) = 1 = SC(W3)(OId) = 1 so the
two maps are non-zero. If SC is invertible, dimk(S2 × S1) = 1 and there exists ζ ∈ k∗
such that SC(W3) = ζSC(W2). Then for any f ∈ EndC(G), tG(∆G

0 f) = SC(W3)(Of ) =
ζSC(W2) = ζtG(ΛGf). Finally, by non-degeneracy of the m-trace, ∆G

0 = ζΛG.
Now we prove the sufficiency of the theorem: we suppose C is modular and we show

that for any connected 3-manifold M , dimk(SC(M)) = 1. This is true because the image
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of any 1-surgery given by a 2-handle can be inverted:

χM,S1
7−→

χM′,S1
7−→

= = =̇ ζ .

Here the first map is the image of any S1-surgery on M and the second is the image of an
appropriate second S1-surgery; the first equality is an isotopy in the manifold obtained by
sliding the second red curve along the first green curve, the second equality comes from
the fact that topologically on the level of the 3-manifolds, a surgery along a meridian
of a S1-surgery component cancels both components and the last equivalence is a skein
equivalence due to the factorizability of C.

Then we check that every cobordism induces an isomorphism. It is immediate from
the definition that 0-handles and 4-handles are isomorphisms. The proof for 2-handles
is given above. Note that a 1-handle followed by a 3-handle glued on the belt sphere
created by the 1-handle is a scalar times the identity. Indeed, the 1-handle will introduce
a gluing morphism (which is a scalar times the identity of P1 by assumption) from a pair
of coupons ε and η. Then the 3-handle will cut it, turning it back to a pair of coupons
ε and η. This shows that 1-handles are injective and 3-handles surjective. Because every
skein module is 1-dimensional, they are also bijective. □

Theorem 3.4.9: Assume C is twist non-degenerate and chromatic non-degenerate and
let M be a closed connected 3-manifold. Fix any connected bordism W with ∂W = −M
such that the cobordism W : M → ∅ is made by gluing 2-handles and a unique 4-handle
on M × [0, 1]. Let (r, s) be the signature of −W then for any admissible skein T in M ,

SC(W,T ) = ∆r
+∆s
−B′(M,T ) ∈ k, (3.16)

(where B′ is defined in Subsection 3.3.2).

Proof : Let −W = B4 ∪N(L)=⊔n
i=1(∂B2)×B2 (⊔n

i=1B
2 × B2) : ∅ → M where N(L) is a

tubular neighborhood of a n component link L in S3. Then Lred ∪ T is a link presen-
tation in S3 of the pair (M,T ) while Lgreen ∪ T represents T in the manifold M . Now
SC(Ẇ )(M,T ) = SC(Ẇ )(Lgreen ∪ T ) = Lred ∪ T ⊂ S3. Thus SC(W,T ) = F ′(Lblue ∪ T )
where (Lblue ∪ T ) is obtained from Lred ∪ T by doing red to blue modifications. Fi-
nally (see [GS99, Proposition 4.5.11]) the linking matrix of L is the intersection form on
H2(−W ) so the signature of −W is (r, s). □

Proposition 3.4.10: Behavior under connected sums:

• The invariant of closed connected 4-manifolds ṠC(W ) is multiplicative under con-
nected sum.
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• If W is a closed connected 4-manifold and W ′ : M ′ → N ′ ∈ Cobnc (resp. W ′ ∈
Cob if C is chromatic compact), both non-empty, then

SC(W#W ′) = ṠC(W )SC(W ′) ∈ Homk(SC(M ′),SC(N ′)).

• For non-empty 4-manifolds W,W ′ containing admissible graphs T, T ′ in their
boundaries,

SC(W#W ′, T ∪ T ′) =
∣∣∣∣∣ ζ−1SC(W,T )SC(W,T ) if C is chromatic compact,

0 else;

• If C is chromatic compact, for two non-empty 4-cobordisms W : M → N and
W ′ : M ′ → N ′,

SC(W#W ′) = ζ−1SC(W )⊗SC(W ′) : SC(M)⊗SC(M ′)→ SC(N)⊗SC(N ′).

Proof : The admissible skein module SC(S3) is one dimensional and generated by

Γ0 =
η

ε

>P1 . For a closed connected 4-manifold W the twice punctured cobordism SC(Ẅ ) :

SC(S3) → SC(S3) acts as multiplication by the scalar ṠC(W ). Composition corre-
sponds to connected sum for the twice-punctured cobordisms, and to multiplication for
the scalars. The second point is obtained by adding a cancelling pair of 3 and 4-handles
to W ′. Then connected sum with W precomposes by SC(Ẅ ) before the 4-handle, hence
simply multiplies by ṠC(W ).
Let P : S3 ⊔ S3 → S3 be the three dimensional pair of pants, namely a 3-punctured S4

which can be seen as a unique 1-handle. The cobordism ˙(W#W ′) : (−∂W )⊔(−∂W ′)→ S3

factors as ˙W#W ′ = P ◦ (Ẇ ⊔ Ẇ ′).
The map SC(P ) : k ⊗ k = k → k is a scalar morphism which sends Γ0 ⊗ Γ0 to

the unique graph with 3 coupons colored by η, g and ε. Since ε ◦ g = 0 unless g
is invertible (i.e. C is chromatic compact by Lemma 3.2.6), the second case follows.
Let’s now assume that C is chromatic compact and let us use g = ζ−1 IdP1 for the glu-
ing morphism. Then SC(W#W ′, T ∪ T ′) = SC(W,T )SC(W ′, T ′)F ′(SC(P )(Γ0 ⊗ Γ0)) =
ζ−1SC(W,T )SC(W ′, T ′).

For the last statement, since every object of Cob is dualizable we can suppose that
N = N ′ = ∅. Then the statement follows from the previous identity since for any T⊗T ′ ∈
SC(M)⊗SC(M ′) ∼= SC(−∂(W ⊔W ′)), we have SC(W#W ′)(T ⊗ T ′) = SC(W#W ′, T ∪
T ′). □

Proposition 3.4.11: The category C is chromatic compact if and only if

ṠC(S1 × S3) ̸= 0 .

Proof : A handle decomposition of the punctured bordism ˙S1 × S3 : S3 → ∅ is given
by a 1-handle followed by a 3-handle glued on its belt sphere and a closing 4-handle. The
skein Γ0 is sent to a circle with a coupon g in SC(S2 × S1) which is then cut into the
closure of g ◦ΛP1 in SC(S3). This is non-zero if and only if g is invertible. The statement
follows then by Lemma 3.2.6. □
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Proposition 3.4.12: If C is twist non-degenerate or if ṠC(S2 × S2) ̸= 0 then SC does
not distinguish exotic pairs of cobordisms.

Proof : Since ṠC(±CP2) = ∆±, the category is twist non-degenerate if and only if
ṠC(CP2)ṠC(−CP2) ̸= 0. As said in the introduction, Gompf ( [Gom84]) showed that two
homeomorphic compact orientable 4-manifolds (possibly with boundary) become diffeo-
morphic after some finite sequence of connected sums with S2 × S2; the same is true for
connected sums with complex projective planes (or their opposites) since (S2×S2)#CP2

is diffeomorphic to CP2#CP2#(−CP2). The statement then follows from Proposition
3.4.10. □

Proposition 3.4.13: Let C be non-semisimple and chromatic compact then SC(B2 ×
S2,Γ0) = 0 (where Γ0 is the graph of the r.h.s. Figure 3.2, contained in a ball in
∂B2 × S2). Equivalently, the skein O ∪ Γ0 is zero in SC(S3) (where O denotes a red
unknot).

Proof : As C is chromatic compact, ∆P1
0 = ζΛP1 for some ζ ∈ k∗. Therefore O ∪ Γ0 =

ζΓ0⊔Γ0 which is zero by the skein relation which evaluates only one Γ0 via the RT functor.
This proves the second statement. The first follows by observing that B2×S2 is obtained
by gluing a 2-handle to S1 × S2 × [−1, 1] along S1 ×B2 × {1} and then filling the result
by a 4-handle. Then we present (S1 × S2,Γ0) as O ∪ Γ0 and the first operation consists
of changing O to O.

3.5 Examples and relations with other works

3.5.1 Semisimple case
Using the chain-mail construction of [Rob95], we can rewrite our construction in the

semi-simple case as a state sum. We then recover the Crane–Yetter–Kauffman 4-manifold
invariant associated with a semi-simple fusion category C. The chain mail construction
has been carried out for the state spaces in [Tha21] in characteristic 0 and we will use
this description.

The state-sum 4-manifold invariant was defined for all fusion categories in [CKY97]. It
was first only defined in the modular case by Crane and Yetter, and mentioned to extend
to a TQFT there. It is well-known that in the modular case the TQFT is invertible, and
the associated 4-manifold invariant is classical, namely only depends on the signature and
Euler characteristic, see [CKY97, Proposition 6.2]. Note however that given the extra
data of a boundary condition, which corresponds to the empty skein in our description,
this TQFT recovers the Reshetikhin–Turaev invariants of 3-manifolds. It was shown
in [BB18] that when the category C is not modular, i.e. has non-trivial Müger center,
it is no longer true that the 4-manifold invariants depend only on the signature and the
Euler characteristic, but at least also on the fundamental group. It is however still almost
trivial on simply connected manifolds, see [BB18].
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Theorem 3.5.1: Let C be a fusion category over an algebraically closed field of charac-
teristic 0. Choose t = qTr the standard categorical trace. Then the TQFT SC coincides
with the Crane–Yetter–Kauffman TQFT.

Proof : In the semi-simple case, the admissible skein modules are the usual skein mod-
ules.
Let us describe the TQFT SC in this setting. Let {Si}i∈I be a set of representatives of
the isomorphism classes of simple objects of C. We described in Proposition 3.1.13 the
chromatic map cP = (⊕i∈I qdim(Si) IdSi

) ⊗ IdP and the gluing morphism g = 1
d(C)Id1,

hence ζ = d(C).

0. A 0-handle introduces d(C) · ∅ in the created S3.

1. A 1-handle on a skein disjoint from the attaching sphere multiplies by 1
d(C) without

affecting the skein.

2. A 2-handle introduces a Kirby-colored circle along the attaching sphere.

3. A 3-handle cuts the strands passing through the canceling 2-handle represented by
the green arc by introducing a copairing.

4. A 4-handle does Reshetikhin–Turaev evaluation on a skein in S3.

This is exactly the description of [Tha21, Definition 5.11]. The only non-trivial check
is for the 3-handle. Let V denote the color of the strand passing trough the green arc.
In the description there, one splits V as a direct sum of simples, and only keeps the 1

components. In our construction, we choose a basis {fj}j of HomC(V,1) and the dual basis
{f ⋆

j }j of HomC(1, V ) with respect to the m-trace. Then indeed f ⋆
j ◦ fj is an idempotent

of V corresponding to a 1-component, and the two constructions agree.
It is shown in [Tha21, Sections 5.2 and 3.4] that the TQFT of skein modules and the
construction above coincides with the Crane–Yetter TQFT. Skein modules are introduced
there in Definition 5.6, and the linear maps induced by 4-manifolds in Definition 5.11.
The Crane–Yetter state spaces (as outlined by Yetter, see also [BB18, Section 7.1]) are
introduced in Proposition 3.50, and the linear maps induced by 4-manifolds in Definition
3.46. The fact that this recovers the Crane–Yetter invariants is proven in Theorem 3.61.
The isomorphism between the skein and Crane–Yetter state spaces is given in Lemmas
5.22 and 5.24. The fact that this isomorphism is natural and respects 4-cobordisms is
Theorem 5.26. □

3.5.2 The example of sl2

We study the category of modules over a partially unrolled version of the small quan-
tum group associated with sl2, at roots of unity. Varying the parameters, this gives exam-
ples of possibly non-modular and possibly twist-degenerate chromatic compact categories.
In particular, our construction applies and gives a plain (3+1)-TQFT SC. We expect this
TQFT to be similar to the construction of [BD23, Section 9.2] on 2-handlebodies. In
particular, we expect that a result similar to [BD, Theorem 8.1] applies, and that the
associated invariant of closed connected 4-manifolds only depends on the Euler charac-
teristic, signature and (in the twist-degenerate case) spin status. The whole TQFT might
be of greater interest though.
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Definition 3.5.2: Let k = C and m,n, r be positive integers such that n|m and r ≥ 2.
Let q be a primitive 2r-th root of unity and choose q 2

mn a primitive mnr-th root of unity.
Note that (q 2

mn )m
n is a primitive n2r-th root of unity. Let H := um,n

q (sl2) be the C-algebra
presented as

C⟨E,F, k |Er = F r = 0, kmnr = 1, kE = q
2
mEk, kF = q−

2
mF k, EF − FE = K −K−1

q − q−1 ⟩

whereK = km. The algebraH can be given the structure of a Hopf algebra with coproduct
∆, counit ε and antipode S defined by

∆(E) = 1⊗ E + E ⊗K, ε(E) = 0, S(E) = −EK−1,

∆(F ) = K−1 ⊗ F + F ⊗ 1, ε(F ) = 0, S(F ) = −KF,
∆(k) =k⊗ k, ε(k) = 1, S(k) = k−1. ♢

Note that H contains a version of the small quantum group at even root of unity as
the sub-Hopf-algebra generated be E,F and K. Let C = H − mod be the category of

finite dimensional left H-modules. For i ∈ Z/mnrZ, denote ki = 1
mnr

mnr−1∑
j=0

q
−2ij
mn kj. Then

kki = q
2i

mn ki, kikj = δi,jki,
mnr−1∑

i=0
ki = 1, Eki = ki+nE, and F ki = ki−nF.

Namely, ki acts as the projection on the q 2i
mn eigenspace of k.

Proposition 3.5.3: The Hopf algebra H = um,n
q (sl2) is ribbon where the R-matrix and

twist are given by:

R =
mnr−1∑

i,j=0
q

2ij

n2 ki ⊗ kj

 .(r−1∑
k=0

{1}2k

{k}! q
k(k−1)

2 Ek ⊗ F k

)
,

θ = Kr−1
r−1∑
k=0

{1}2k

{k}! q
k(k−1)

2 S(F k)
(

mnr−1∑
i=0

q
−2i2

n2 ki

)
Ek.

Proof : We first sketch the proof when q = exp(iπ/r) and q
2

mn = exp(2iπ/mnr). Then
H is a sub-quotient of the topological unrolled quantum group (see [GHP22]). The R-
matrix factors R = HŘ where Ř is the quasi R-matrix. Then R is an R-matrix since H
satisfies the following relations: ∀x, y ∈ H, H(x⊗y)H−1 = xK |y|/2⊗K |x|/2y where |x|, |y|
are the integral weights of x and y; ∆ ⊗ Id(H) = H13H23; and Id⊗∆(H) = H13H12.
Similarly the fact that θ is a twist follows since T = ∑mnr−1

i=0 q
−2i2

n2 ki = m ◦ (S ⊗ Id)(H21)
satisfies S(T ) = T .

Finally for the general case, we remark that the Q(q 2
mn ) subalgebra generated by E,F

and k is also ribbon since it is isomorphic through a Galois isomorphism to a sub Hopf
algebra of the previous case which contains the R-matrix and the twist. □

The cointegral is Λ = ck0E
r−1F r−1 for some scalar c ∈ k× and the right integral is

λ(kiEnF k) = mnr
c
δi,m(1−r)δn,r−1δk,r−1. In particular λ(kiF

r−1Er−1) = 1
c
q

2i(r−1)
n .
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Proposition 3.5.4: The category C = H −mod is chromatic compact. It is modular if
and only if m = n and both n and r are odd. It is twist degenerate if and only if n is
odd and r is a multiple of 4.

Proof : As discussed in Section 3.1.6, ∆P
0 is given by the action of the central element

∆0 = (λ⊗ Id)(R21R12). One can compute:

∆0 = (λ⊗ Id)(R21R12)
= (λ⊗ Id)( ∑

i,j,p,s,k,l

{1}2k+2l

{k}!{l}! q
k(k−1)+l(l−1)

2 q
2ij+2ps

n2 kpki−nlF
lEk ⊗ kskj+nlE

lF k)

Each summand is 0 unless p = i− nl and s = j + nl, and after applying λ they are also
0 unless k = l = r − 1. We use that {r − 1}! = qr(r−1)/2r.

(λ⊗ Id)(R21R12) =
mnr−1∑
i,j=0

{1}4(r−1)

cr2 q
2ij+2(i−n(r−1))(j+n(r−1))

n2 q
2(i−n(r−1))(r−1)

n kj+n(r−1)E
r−1F r−1

= {1}4(r−1)

cr2 q2(r−1)
mnr−1∑

j=0
q
−2(r−1)j

n

(
mnr−1∑

i=0
q

4i(j+n(r−1))
n2

)
kj+n(r−1)E

r−1F r−1

The term in parenthesis is mnr if j + n(r − 1) is a multiple of n2r
gcd(n2r,2) and 0 otherwise.

Let m′ = m gcd(n2r,2)
n

. Finally,

(λ⊗ Id)(R21R12) = mn{1}
4(r−1)

cr

m′−1∑
j=0

(−1)
−2jn(r−1)
gcd(n2r,2) k jn2r

gcd(n2r,2)
Er−1F r−1.

Then gH given by multiplication on the right by c2r
mn{1}4(r−1) k0 is a gluing morphism for

H, i.e.:
gH ◦∆H

0 (1) = (λ⊗ gH)(R21R12) = k0E
r−1F r−1 = Λ = ΛH(1)

Write P1 as an idempotent eP1 = iP1 ◦ πP1 in H such that ε ◦ πP1 is the counit. The
morphism g = πP1 ◦ gH ◦ iP1 is a gluing morphism by naturality of the ∆P

0 ’s and the ΛP ’s.
Hence C is always chromatic non-degenerate. Actually, ε◦ = ε◦πP1◦(−· c2r

mn{1}4(r−1) k0)◦iP1 =
c2r

mn{1}4(r−1) ε as the counit is multiplicative and is 1 on k0. By Lemma 3.1.11, g is invertible,
and by Lemma 3.2.6 C is chromatic compact.

As discussed in Section 3.1.6, C is modular if and only if (λ⊗ Id)(R21R12) is a scalar
times Λ. This happens if and only if m′ = 1, so if and only if m = n and n and r are odd.

Let us check for twist non-degeneracy:

∆− = ∆+ = λ(θ) = λ

(
Kr−1

r−1∑
k=0

{1}2k

{k}! q
k(k−1)

2 S(F k)
(

mnr−1∑
i=0

q
−2i2

n2 ki

)
Ek

)

= {1}2(r−1)

cr

mnr−1∑
i=0

(−1)r−1q
−2i2

n2 λ(K2r−2F r−1kiE
r−1)

= {1}2(r−1)

(−1)r−1cr

mnr−1∑
i=0

q
1

n2 (−2i2+6n(r−1)(i−n(r−1)))

= {1}2(r−1)

(−1)r−1cr
q−6(r−1)2

mnr−1∑
i=0

q
2i
n2 (−i+3n(r−1))

This is a quadratic Gauss sum at a n2r-th root of unity. They are well-studied, we are
computing G(1,−3n(r − 1), n2r) in the notations of [BD23, Appendix B]. It is recalled
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there that if 3n(r−1) is even, this vanishes if and only if n2r ≡ 2[4] which never happens.
If 3n(r − 1) is odd, this vanishes if and only if 4|n2r. Hence C is twist degenerate if and
only if n is odd and 4|r. □

The algebraic input in the following example is a generalization of the one used in [BD]
where analogous computation was performed:

Proposition 3.5.5: For n odd and 4|r, the (3+1)-TQFT SC distinguishes the closed
4-manifolds S2 × S2 and CP 2#CP 2, which have same signature, Euler characteristic
and fundamental groups but different spin status. One has:

SC(S2 × S2) = m3n gcd(nr, 2){1}8(r−1)

c4r2 and SC(CP 2#CP 2) = 0

Proof : Both 4-manifolds can be obtained by a single 0 handle, two 2-handles and a
single 4-handle. For S2× S2 the 2-handles form a Hopf link, whereas for CP 2#CP 2 they
are two disjoint ±1-framed unknots. The 0-handle gives the skein ζΓ0. Adding a red
±1-framed unknot multiplies by ∆±, so by 0 here, and SC(CP 2#CP 2) = 0. Adding a red
Hopf link multiplies by (λ⊗λ)(R21R12) which is m2gcd(nr,2){1}4(r−1)

c2r
. The 4-handle evaluates

Γ0 to 1. So SC(S2 × S2) = ζ.(λ⊗ λ)(R21R12) = m3n gcd(nr,2){1}8(r−1)

c4r2 . □

3.5.3 Characteristic p

We give an example of a category which is chromatic non-degenerate but not chromatic
compact, and therefore gives a non-compact TQFT. The example we give is very simple
and unlikely to give interesting 4-manifold invariant, but the TQFT already shows some
very interesting features. Its associated algebra on S2 × S1 is non-semisimple, so it does
not fall under Reutter’s theorem [Reu23] showing that semi-simple TQFTs cannot detect
exotic structures.

The proof of Proposition 3.1.14 hints at this example. In characteristic p, one may
find a cocommutative Hopf algebra H which is non-semisimple but such that H∗ is semi-
simple. This gives a symmetric monoidal, non-semisimple and chromatic non-degenerate
category, therefore with non-semisimple Müger center.

Definition 3.5.6: Let k be an algebraically closed field of characteristic p, and H =
k[Z/pZ]. Denote α the generator of Z/pZ. Let C = H-modfd be the symmetric monoidal
category of finite dimensional left H-modules. ♢

Proposition 3.5.7: The category C is chromatic non-degenerate, but not chromatic
compact. It gives a non-compact TQFT SC.

Proof : The cointegral is Λ = ∑p−1
i=0 α

i, and the right integral is λ = 1∗ in the basis
(1, α, . . . , αp−1). We observe indeed that ε(Λ) = p = 0 whereas λ(1) = 1 ̸= 0, so H∗ is
semi-simple whereas H is not. One computes the central element ∆0 = λ(1)1 = 1 ∈ H,
thus ∆P

0 = IdP for any projective. Therefore, the gluing morphism g is given by ΛP1

which is not invertible as C is non-semisimple. □
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Note that g = ΛP1 means that the 1-handle map does not affect the skein. Similarly,
C being symmetric and λ(1) = 1 implies that a homotopically-trivial red links can be
ignored.
As explained in [Reu23], the vector space SC(S2 × S1) has a natural algebra structure
induced by the cobordism

...

S3 × S1 where
...

S3 is the thrice-punctured sphere. Note that
this algebra is non-unital as the TQFT is non-compact.

Proposition 3.5.8: The non-unital algebra SC(S2 × S1) is non-semisimple (i.e. it is
non-semisimple if one freely adjoins a unit).

Proof : For f : P → P an endomorphism of a projective object, denote Of the skein
{pt}×S1 ⊆ S2×S1 colored by P with a single coupon f . The skein module of S2×S1 is
generated by the Of ’s. As the braiding and twist are trivial, the only relation is cyclicity:
Of◦g = Og◦f for f : P → Q and g : Q→ P . A handle decomposition of

...

B3 × S1 is given
by a single 1-handle and a single 2-handle, both of which doesn’t affect the skeins. The
algebra structure is given by Of .Og = Of⊗g.
As H is a projective generator of the category, one can restrict to P = H for the generators
of SC(S2×S1). Furthermore endomorphisms of H are right multiplications by elements of
H, so since H is commutative, the cyclic relations are trivial. So SC(S2×S1) is isomorphic
to EndC(H) ≃ H as a vector space, with basis the Oi := O−.αi ’s. To compute their
product, we need to decompose H ⊗H = ⊕p−1

k=0H.(1⊗ αk). Then Oi.Oj is multiplication
by αi ⊗ αj on H ⊗H. It maps 1 ⊗ αk to αi ⊗ αk+j which is in the k + j − i summand.
We get Oi.Oj = ∑p−1

k=0 δi,jOi = pδi,jOi = 0.
If one freely adjoins a unit to SC(S2×S1) one gets the non-semisimple (p+1)-dimensional
algebra k[O0, O1, . . . , Op−1]/(Oi.Oj = 0). □
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Chapter 4

Anomalous Theories

This chapter is based on [Häı]. There are some changes, mostly that the confusion
around dependence of choices of representants for ZV and RV in Section 4.3 is fixed, see
Corollary 4.1.17.

The inclusion of the unit in a braided tensor category V induces a 1-morphism in the
Morita 4-category of braided tensor categories BrTens described in Section 2.3. We give
criteria for the dualizability of this morphism.

When V is a semisimple (resp. non-semisimple) modular category, we show that the
unit inclusion induces under the Cobordism Hypothesis a (resp. non-compact) relative
3-dimensional topological quantum field theory. Following Jordan–Safronov, we conjec-
ture that these relative field theories together with their bulk theories recover Witten–
Reshetikhin–Turaev (resp. [DGG+22]) TQFTs, in a fully extended setting. In particular,
we argue that these theories can be obtained by the Cobordism Hypothesis.

In Section 4.1 we recall the definition of the oplax arrow category BrTens→ and the
various notions of dualizability for a 1-morphism. We give some general results dualiz-
ability data. Finally, we recall different versions of the cobordism hypothesis, associated
with arrows, and explain how to extract a non-compact version from [Lur09b]. We define
the associate notion of non-compact-n-dualizable.

In Section 4.2 we define bimodules associated with functors, and study their dualizabil-
ity. We define Aη the 1-morphism in BrTens induced by the unit inclusion η : Vectk → V
in Definition 4.2.2. We give its adjunctibility data explicitly, see Figure 4 using the nota-

tion
morphism

counit | unit counit | unit
Right adjointLeft adjoint .

Aη

| |MT MηMη MT

T |η η̃R|TR Tbal|T TR|TR
bal T

R|TR
bal Tbal|T η̃R|TR T |η

AηAη

MT MT
Mη MηMη

Mη MT MT

Figure 4.1: Adjunctibility data of the unit inclusion. The whole description (including
gray) holds for V cp-rigid, see Proposition 4.2.20, and the black subset holds when V has
enough compact-projectives, see Theorem 4.2.12.

Using this explicit dualizability data we derive the main results in Theorems 4.2.14 and
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4.2.15. In particular, we obtain that the unit inclusion in a modular category induces a
possibly non-compact relative 3-TQFT RV . We compute its value on the circle.

In Section 4.3 we study the examples of interest to recover Witten–Reshetikhin–
Turaev-type TQFTs. In Section 4.3.1 we define the category Bordfilled

3 of filled cobordisms
(equipped with a bounding higher manifold) and compare it to the usual “augmented”
category of cobordisms C̃ob3 on which WRT theories are defined. We explain how to
compose RV and ZV to obtain a theory AV : Bordfilled

3 → Tens := Ω BrTens. In Section
4.3.2 we recall the main results giving different tastes of extended TQFTs from a modular
tensor category, and give conjectures to compare them. We also conjecture on sufficient
data to induce orientation structures on ZV and RV .

4.1 Relative and Non-compact TQFTs

In this chapter we will study the dualizability of a 1-morphism. What exact kind of
dualizability we are interested in is dictated by the relative cobordism hypothesis: we
want a 1-morphism that will induce a relative TQFT. It turns out that there are multiple
notions of relative TQFTs, and therefore multiple interesting notions of dualizability for
a 1-morphism.

Throughout, we will use the expression n-category to mean (∞, n)-category as de-
scribed in Section 2.1. For j ≥ k, we write ◦k for the composition of j-morphisms in the
direction of k-morphisms. We write Idk

f for taking k-times the identity of f .

4.1.1 Review of relative TQFTs

We recall the notions of relative TQFTs that will be our motivation. Let C be a
symmetric monoidal n-category. We distinguish two flavors.

The first is purely topological. Lurie defines a new category Bordrel
n of bipartite

cobordisms with two different colors for the bulk and interfaces between them, see [Lur09b,
Example 4.3.23]. There are in particular manifolds with only one color and without
interfaces. This induces two inclusions Bordn → Bordrel

n .

Definition 4.1.1 (Lurie): A domain wall between two theories Z1,Z2 : Bordn → C is
a symmetric monoidal functor Bordrel

n → C that restricts to Z1 and Z2 on manifolds with
one color. ♢

In particular, the interval with an interface point in the middle induces a morphism
Z1(pt) → Z2(pt). Freed and Teleman describe a notion of relative TQFT by means of
such morphisms for every values of Z1 and Z2 on manifolds of dimension strictly less than
n, see [FT14]. They mention it should be equivalent.

The second notion focuses on the algebraic flavour of Freed–Teleman’s description.
One can drop the assumption that Z1 and Z2 are well defined on n-manifolds because
these don’t appear. Johnson-Freyd and Scheimbauer define three different notions of an
n-category of arrows in an n-category. We will focus on the oplax one C→.

Definition 4.1.2 (sketch, see Definition 5.14 in [JS17]): Let C be a symmetric monoidal
n-category. The symmetric monoidal n-category C→ of oplax arrows in C is defined as
follows:
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objects : triples f = (sf , tf , f
#) where sf and tf are objects of C and f# :

sf → tf is a 1-morphism
1-morphisms
f → g

: triples h = (sh, th, h
#) where sh : sf → sg and th : tf → tg are

1-morphisms, and h# : g# ◦ sh ⇒ th ◦ f# is a 2-morphism
...

k-morphisms
a→ b

: triples f = (sf , tf , f
#) where sf : sa → sb and tf : ta → tb are

k-morphism in C, and f# is a k + 1-morphism in C from the compo-
sition of some whiskerings of b# and sf to the composition of some
whiskerings of tf and a#.

It has two symmetric monoidal functor s, t : C→ → C.
A 1-morphism f of C can therefore be seen as an object of C→. To avoid confusion, we
will denote it f ♭ when it is seen as an object of C→, with (f ♭)# = f . ♢

Definition 4.1.3 (Definition 5.16 in [JS17]): Let C be a symmetric monoidal n-category
and Z1,Z2 : Bordn−1 → C two categorified (n − 1)-TQFTs. An oplax-Z1-Z2-twisted
(n− 1)-TQFT is a symmetric monoidal functor

R : Bordn−1 → C→

such that s(R) = Z1 and t(R) = Z2. ♢

The name and strategy come from [ST11].
We will use the formalism of Johnson-Freyd and Scheimbauer in this chapter. For

application, see Section 4.3, we are interested in the case where Z1 is the trivial theory and
Z2 is well defined on n-manifolds. The two notions should then agree. The only argument
we aware of to prove this relies on the cobordism hypothesis, and will be discussed below.
If Z : Bordn → C is defined on n-manifolds, we will say oplax-Z-twisted theory for
oplax-Triv-Z|Bordn−1-twisted theory.

4.1.2 Dualizability data
Let us first recall multiple notions of dualizability and adjunctibility for morphisms in

a symmetric monoidal n-category C.
Following [Lur09b], where one often assumes C to have duals, one defines:
Definition 4.1.4: A k-morphism f of C is said m-dualizable if it lies in a sub-n-category
with duals up to level m+ k. It is called fully dualizable if it is n− k-dualizable. ♢

Following [JS17] one gets a few more notions. For simplicity we focus on 1-morphisms.
Definition 4.1.5: A 1-morphism f : X → Y of C is said m-oplax-dualizable if it is m-
dualizable as an object f ♭ of C→. It is said m-lax-dualizable if it is m-dualizable as an
object of C↓, where C↓ is the category of lax arrows defined in [JS17, Definition 5.14]. ♢
Definition 4.1.6: A k-morphism f is said to be left (resp. right) adjunctible if it has
a left (resp. right) adjoint, and adjunctible if it has arbitrary left and right adjoints
((fL)L, (fR)R and so on...). It is said to be m-times (resp. left, right) adjunctible if it
is m − 1-times (resp. left, right) adjunctible and every unit/counit witnessing this are
themselves (resp. left, right) adjunctible. We sometimes abbreviate m-times adjunctible
as m-adjunctible. ♢

Note that being (left, right) adjunctible is only a condition on the morphism while
being (lax, oplax) dualizable is also a condition on its source and target.
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Theorem 4.1.7 (Theorem 7.6 in [JS17]): A 1-morphism f : X → Y of C is m-
oplax-dualizable if and only if X and Y are both m-dualizable and f is m-times right
adjunctible.
Similarly, it is m-lax-dualizable if and only if X and Y are both m-dualizable and f is
m-times left adjunctible.

Similarly, a 1-morphism f : X → Y is m-dualizable if and only if it is m-times
adjunctible and its source and targets are m+ 1-dualizable. Indeed we only have to check
that the subcategory generated by the dualizability data of f , X and Y still has duals up
to level m + 1. Put differently, that the various compositions of adjunctible morphisms
stays adjunctible.

Redundancy in the dualizability data

The dualizability data of a morphism grows very fast: there are four units/counits
for the left and right adjunctions, and this does not consider taking the right adjoint of
the right adjoint and so on. In particular, checking n-adjunctibility of a morphism seems
tedious. It turns out that there is a lot of redundancy in this data, especially if we are
only interested in dualizability properties.

Let us begin with some notations. Let f be a k-morphism in an n-category. We say
that Radj(f) (resp. Ladj(f)) exists if f has a right (resp. left) adjoint, in which case we
denote this adjoint Radj(f) (resp. Ladj(f)), and the unit and counit of the adjunction
Ru(f) and Rco(f) (resp. Lu(f) and Lco(f)).

We write
f

Rco(f)|Ru(f)
Radj(f) (resp.

f

Lco(f)|Lu(f)
Ladj(f) ). Note that these are only defined up to

some isomorphisms, and the notation stands for any choice.
Definition 4.1.8: We say that two k-morphisms f and g have same dualizability prop-
erties, which we denote f .= g, if for every finite sequence

(ai)i∈{1,...,m}, ai ∈ {Radj, Ladj, Ru, Rco, Lu, Lco},
am(. . . a2(a1(f)) . . . ) exists if and only if am(. . . a2(a1(g)) . . . )exists,

and this for any choice of adjoints, units and counits. ♢

We will show that dualizability properties are preserved by isomorphisms and “higher
mating” defined in Definition 4.1.10. Let us describe formally this second notion.

Proposition 4.1.9: Let f : x → y be a k-morphism in an n-category C with adjoint
(fR, ε, η). Then for any other k-morphisms g : z → x and h : z → y, one has an
equivalence of n− k − 1-categories of k + 1-morphisms:

Φf
g,h :


HomC(f ◦k g, h) →̃ HomC(g, fR ◦k h)
N : f ◦k g → h 7→ (IdfR ◦k N) ◦k+1 (η ◦k Idg)

k + j-morphism α 7→ (Idj
fR ◦k α) ◦k+1 (Idj−1

η ◦k Id
j
g)


Similarly, for any g : x→ z and h : y → z, one gets an equivalence:

Ψf
g,h = (− ◦k Idf ) ◦k+1 (Idg ◦k η) : HomC(g ◦k f

R, h)→̃HomC(g, h ◦k f)
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Proof : Its inverse is given by:

(Φf
g,h)−1 :


HomC(g, fR ◦k h) →̃ HomC(f ◦k g, h)
M : g → fR ◦k h 7→ (ε ◦k Idh) ◦k+1 (Idf ◦k M)
k + j-morphism β 7→ (Idj−1

ε ◦k Id
j
h) ◦k+1 (Idj

f ◦k β)


The composition Φf

g,h ◦ (Φf
g,h)−1 (resp. (Φf

g,h)−1 ◦ Φf
g,h) is post- (resp. pre-) composition

by a snake identity. Similarly, (Ψf
g,h)−1 = (Idg ◦k ε) ◦k+1 (− ◦k IdfR). □

Definition 4.1.10: For a k+1-morphism N : f ◦k g → h, we say that N and Φf
g,h(N) are

mates. For a higher morphism α in HomC(f ◦k g, h), we say that α and Φf
g,h(α) are higher

mates. Similarly, for N, α in HomC(g ◦k f
R, h) we call N and Ψf

g,h(N) mates, and α and
Ψf

g,h(α) higher mates. More generally we say that N and M are mates (resp. α and β
are higher mates) if they can be linked by a chain of matings (resp. higher matings) and
isomorphisms.
For a k-morphism f , we say that g is obtained from f by whiskering if it can be written
as a composition of f with identities of lower morphisms. Note that if α and β are higher
mates, their are both obtained from the other by whiskering. ♢

Proposition 4.1.11: Let f and g be k-morphisms in an n-category. Then:

1. f .= f .

2. If f φ
≃ g are isomorphic, then f

.= g.

3. If f = g ◦k h for an isomorphism h, then f
.= g.

4. If f and g are higher mates, then f
.= g.

Proof : What we have to prove for point 1 is that existence of higher adjoints in the
adjunctibility data does not depend on the choices made in the adjunctions. It is an
a inductive consequence of the following, and the fact that adjoints are unique up to
isomorphism, and counits/units by pre/post composing with this isomorphism.

2. If f φ
≃ g are isomorphic, then f has a right (resp. left) adjoint if and only if g does,

in which case one can choose Radj(g) = Radj(f), Ru(g) = (IdRadj(f)◦kφ)◦k+1Ru(f)
and Rco(g) = (φ−1 ◦k IdRadj(f)) ◦k+1 Rco(f).

3. If f = g ◦k h is obtained as a composition, then f has a right (resp. left) adjoint as
soon as g and h do, in which case one can choose Radj(f) = Radj(h) ◦k Radj(g),
Ru(f) = (IdRadj(h) ◦k Ru(g) ◦k Idh) ◦k+1 Ru(h) and Rco(f) = (Idg ◦k Rco(h) ◦k

IdRadj(g)) ◦k+1 Rco(h). In particular, if h is an isomorphism, then g ≃ f ◦k h
−1, and

f has a right (resp. left) adjoint if and only if g does.

4. If f = g ◦j h is obtained as a composition in the direction of j-morphisms for
j < k, then f has a right (resp. left) adjoint as soon as g and h do, in which
case one can choose Radj(f) = Radj(g) ◦j Radj(h), Ru(f) = Ru(g) ◦j Ru(h) and
Rco(f) = Rco(g) ◦j Rco(h). In particular, if h is an identity of a lower morphism,
then f has a right (resp. left) adjoint as soon as g does. So, if f and g are higher
mates, they both can be obtained as composition of the other with identities of
lower morphisms, and f has a right (resp. left) adjoint if and only if g does.
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Every point follows by induction. □

We can now describe the redundancy in the dualizability data:

Proposition 4.1.12: Let f be a k-morphism in an n-category C, suppose that
Radj(f), Radj(Rco(f)) and Radj(Ru(f)) exist, then:

1. f is 1-adjunctible, and one can choose Ladj(f) = Radj(f), Lu(f) = Radj(Rco(f))
and Lco(f) = Radj(Ru(f)).

2. Rco(Ru(f)) .= Ru(Rco(f)).

Suppose moreover than Radj(Lco(f)) and Radj(Lu(f)) exist, then:

3. f is 2-adjunctible, and Rco(f) .= Radj(Radj(Rco(f))) and Ru(f) .=
Radj(Radj(Ru(f))).

In particular if f = X is an object in a symmetric monoidal n-category, then:

4. X is 1-adjunctible if and only if it has a dual. It is 2-adjunctible if and only if
evX := Rco(X) and coevX := Ru(X) have right adjoints. More generally, it is
m-adjunctible if and only if Radj(Rcok(Rum−1−k(X))) exist for all 0 ≤ k ≤ m−1.

Proof : Point 1 is [Lur09b, Remark 3.4.22], or [Sch14b, Lemma 20.1]. One directly
checks that the right adjoints of the right counit and unit satisfy the snake relations
(because taking right adjoints behaves well with composition) and exhibit Radj(f) as the
left adjoint of f .
Point 2 is [Lur09b, Proposition 3.4.21]. It is shown that Rco(Ru(f)) and Ru(Rco(f)) are
higher mates, so in particular Rco(Ru(f)) .= Ru(Rco(f)).
Point 3 is [JS17, Lemma 7.11]. One applies point 1 twice and observes a redundancy: we
have two right adjunctions for f , which are therefore isomorphic.
Point 4 is [JS17, Corollary 7.12] and point 2. It uses the fact that C is symmetric, and
therefore the right and left adjoints of an object agree. Point 3 applies automatically,
and point 1 enables to move right adjunctibility to left adjunctibility properties. Using
point 2, we know that Ru and Rco commute as far as existence of adjoints is concerned,
so there are only m different m − 1-morphisms whose adjunctibility should be checked,
Rcok(Rum−1−k(X)), 0 ≤ k ≤ m− 1. □

Oplax dualizability data

We investigate the proof of Theorem 4.1.7 and explain how to get from adjunctibility
data in C to dualizability data in C→.

Theorem 4.1.13 (Johnson-Freyd–Scheimbauer): Let f = (sf , tf , f
#) : a =

(sa, ta, a
#) → b = (sb, tb, b

#) be a k-morphism in C→ so sf : sa → sb and tf : ta → tb
are k-morphism in C, and f# is a k + 1-morphism in C from the composition of some
whiskerings of b# and sf to the composition of some whiskerings of tf and a#. Then:

f has a right adjoint in C→ if and only if sf , tf and f# have right adjoints in C.

In this case:
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• Radj(f) = (Radj(sf ), Radj(tf ), g) where g is a mate of Radj(f#),

• Ru(f) = (Ru(sf ), Ru(tf ), u) where u is a higher mate of Rco(f#), and

• Rco(f) = (Rco(sf ), Rco(tf ), v) where v is a higher mate of Ru(f#).

In particular, if we only look at the right dualizability data, and only take right adjoints
once, then:

∀i, j ∈ N, Radj(Rcoi(Ruj(f))) exists if and only if Radj(Rcoi(Ruj(sf ))),
Radj(Rcoi(Ruj(tf ))) and Radj(Rui(Rcoj(f#))) exist.

Proof : The description of the right adjunctibility of a morphism in C→ is [JS17, Propo-
sition 7.13], in the oplax case.
For the last statement, we use that higher mates have same dualizability properties. Note
that we can only take right adjoints once, because mates do not. □

Example 4.1.14 (k = 0): An object f = (X, Y,A : X → Y ) of C→ is dualizable if and
only if X and Y are dualizable, and A has a right adjoint Radj(A). Then:

• f ∗ = (X∗, Y ∗, Radj(A)∗ := (IdY ∗ ⊗ evX) ◦ (Id∗Y ⊗Radj(A)⊗ IdX∗) ◦ (coevY ⊗ IdX∗)),

• coevf = (coevX , coevY , (Rco(A)⊗ IdIdY ∗ ) ◦1 IdcoevY
), and

• evf = (evX , evY , IdevX
◦1 (Ru(A)⊗ IdIdX∗ )).

A surprising consequence of this is that if f is 2-dualizable, the right counit and unit of
A are biadjoints up to isomorphisms and mating. A drawing for this is given in Figure
4.3. ♢

4.1.3 Cobordism Hypotheses
The cobordism hypothesis described in Section 2.2.2 generalizes in various directions.

We recall relative versions that describes relative TQFTs, and a non-compact version that
describes partially-defined TQFTs.

The relative Cobordism Hypothesis

Lurie proposes a result classifying his notion of domain wall.

Conjecture 4.1.15 (Theorem 4.3.11 and Example 4.3.23 in [Lur09b]): Let C
be a symmetric monoidal n-category with duals and X, Y ∈ C. There is a bijection
between isomorphism classes of framed domain walls between ZX and ZY and isomor-
phism classes of 1-morphisms f : X → Y , given by evaluation at the interval with an
interface point in the middle. Here ZX and ZY are the fully extended framed TQFTs
associated with X and Y , which are fully dualizable as we assumed that C has duals.
In particular if one drops the assumption that C has duals, then a 1-morphism
f : X → Y induces a framed domain wall as soon as it is fully dualizable.
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There is an oriented version asking that f preserves orientation structures.
On the other hand, [JS17]’s notions of a twisted quantum field theory are already classified
by the usual Cobordism Hypothesis. Note however that [JS17, Definition 5.16] is surpris-
ingly strict because it demands that the source and target of the functorR : Bordn−1 → C
agree strictly with Z1 and Z2. Equivalently, we could have asked that R comes equipped
with isomorphisms s(R) ≃ Z1 and t(R) ≃ Z2. In both cases, it is clear that the Cobor-
dism Hypothesis does not apply on the nose. The fix is easy.
Definition 4.1.16: Let C be a symmetric monoidal n-category and X, Y ∈ C. Denote
(C→)∼X,Y the homotopy pullback

(C→)∼X,Y (C→)∼

∗ (C∼)×2

⌟h
s,t

X,Y

.

Similarly, for Z1,Z2 : Bordfr
n−1 → C denote Fun⊗(Bordfr

n−1, C→)Z1,Z2 the homotopy pull-
back

Fun⊗(Bordfr
n−1, C→)Z1,Z2 Fun⊗(Bordfr

n−1, C→)

∗ (Fun⊗(Bordfr
n−1, C))×2

⌟h
s,t

Z1,Z2

called the space of framed oplax-Z1-Z2-twisted-(n− 1)-TQFTs.
Note that both are also strict pullbacks as taking source and target induces a fibration of
spaces. ♢

Corollary 4.1.17 (of the Cobordism Hypothesis): Let C be a symmetric monoidal
n-category and X, Y ∈ C. Choose ZX ,ZY : Bordfr

n−1 → C two TQFTs associated with
X and Y by the cobordism hypothesis. Evaluation at the point induces an equivalence

Fun⊗(Bordfr
n−1, C→)ZX ,ZY

≃ (C→)∼X,Y .

Proof : The cobordism hypothesis on C and C→ gives a commutative diagram of hori-
zontal equivalences

Fun⊗(Bordfr
n−1, C→) (C→)∼

(Fun⊗(Bordfr
n−1, C))×2 (C∼)×2

∗ ∗

s,t

evpt

s,t

evpt×evpt

ZX ,ZY X,Y

inducing an equivalence between homotopy pullbacks. □

Remark 4.1.18: There is an oriented version as well. The maps s, t : Fun⊗(Bordfr
n−1, C→)→

Fun⊗(Bordfr
n−1, C) are SO(n − 1)-equivariant because SO(n − 1) acts on the source

Bordfr
n−1. Therefore the maps s, t : (C→)∼ → C∼ are also equivariant, and descend

to maps between the SO(n− 1)-homotopy-fixed-points s, t : (C→)∼,SO(n−1) → C∼,SO(n−1).
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Given two objects X, Y ∈ C equipped with SO(n−1)-homotopy-fixed point structure, one
can reproduce exactly the whole paragraph above and define (C→)∼,SO(n−1)

X,Y as a pullback.
We get

Fun⊗(Bordn−1, C→)ZX ,ZY
≃ (C→)∼,SO(n−1)

X,Y

by the same proof, using the oriented cobordism hypothesis. 3

Remark 4.1.19: To appear results of Will Stewart show that if we assume that the source
and target objects X and Y are fully dualizable then a morphism f : X → Y is (n− 1)-
oplax dualizable if and only if it is (n − 1)-dualizable. In particular, if we restrict the
notion of oplax twisted TQFTs to the case where the “twisting” theories Z1 and Z2 extend
to Bordn, then this notion, using the cobordism hypothesis twice, is equivalent to Lurie’s
notion of domain walls. 3

Non-compact TQFTs

To study non-semisimple variants of Witten–Reshetikhin–Turaev TQFTs, we will be
interested in theories defined on a restricted class of cobordisms, namely where top-
dimensional cobordisms have non-empty outgoing boundary in every connected compo-
nent.
Lurie’s sketch of proof of the cobordism hypothesis is done by induction on the handle
indices allowed. One starts with only opening balls, then allows more and more complex
cobordisms. Eventually one allows every cobordisms but closing balls, namely cobordisms
with outgoing boundary in every connected component. Finally one allows every cobor-
dism, and obtain a TQFT. We call it a non-compact TQFT when we stop at this ante-last
step. Lurie’s proof then gives an algebraic criterion classifying these.
We follow [Lur09b, Section 3.4] and state the results there in a form fitted for our use. It
should be noted that the proofs of the statements below are not very formal.

Definition 4.1.20: Let Bordfr,nc
n ⊆ Bordfr

n denote the subcategory where n-dimensional
bordisms have non-empty outgoing boundary in every connected component.
A framed fully extended non-compact n-TQFT with values in a symmetric monoidal n-
category C is a symmetric monoidal functor Z : Bordfr,nc

n → C. ♢

Lurie defines in [Lur09b, Definition 3.4.9] an n-category Fk of ≤ n-dimensional bordisms
where all n-manifolds are equipped with a decomposition into handles of index ≤ k. Here
bordisms are actually equipped with a framed function without certain kinds of critical
points.
We denote αm

k = Dk × Dm−k : Sk−1 × Dm−k → Dk × Sm−k−1 the m-dimensional index
k handle attachment, seen as an m-morphism in Bordfr

m , or in Fk if m = n. Let x =
Sk−2×Dn−k, y = Dk−1×Sn−k−1 seen as n−2-morphisms ∅ → Sk−2×Sn−k−1 in Bordfr

n−1.
Note that for 1 ≤ k ≤ n, αn−1

k−1 : x → y and αn−1
n−k : y → x. Then, αn

k−1 can be
seen (up to higher mating) as a morphism Idx → αn−1

n−k ◦ αn−1
k−1 and αn

k as a morphism
αn−1

k−1 ◦ αn−1
n−k → Idy, and they form a unit/counit pair in Fk, see [Lur09b, Claim 3.4.17].

Namely, Radj(αn−1
k−1) = αn−1

n−k, Ru(αn−1
k−1) = αn

k−1 and Rco(αn−1
k−1) = αn

k , or

αn−1
k−1

αn
k | αn

k−1

αn−1
n−k

.

By induction, Rcok(Rum−k(pt)) = αm
k .
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Conjecture 4.1.21 (Index-k cobordism hypothesis, Lurie): A symmetric
monoidal functor Z0 : Bordfr

n−1 → C extends to Z : Fk → C, 1 ≤ k ≤ n, if and
only if the images of every n − 1-dimensional handle of index ≤ k − 1 is right
adjunctible. This extension is essentially unique.

Proof (Sketch): For k = 0, one can extend Z0 : Bordfr
n−1 → C with any n-morphism

Z(αn
0 ) : 1→ Z0(Sn−1), see [Lur09b, Claim 3.4.13] (note that Lurie works in the unoriented

case there, and demands on O(n)-equivariant morphism, and we look at the framed case).
Now, for 1 ≤ k ≤ n, a symmetric monoidal functor Z0 : Fk−1 → C extends to Z : Fk → C
if and only if αn

k−1 is mapped to a unit of an adjunction between αn−1
k−1 and αn−1

n−k, see
[Lur09b, Proposition 3.4.19]. In this case, the extension is essentially unique, and αn

k is
mapped to the counit of the adjunction.
For k = 1, this gives little choice for the n-morphism Z(αn

0 ), it has to be the unit of an
adjunction. Then, αn

1 will be sent to the counit.
For k ≥ 2, we want Z(αn

k−1), which is so far defined as the counit of the adjunction
between Z(αn−1

k−2) and Z(αn−1
n−k+1), to be also the unit of the adjunction between Z(αn−1

k−1)
and Z(αn−1

n−k). This in particular implies that the n − 1-dimensional handle of index
k − 1 is right adjunctible, as stated in the conjecture. For the converse, we use [Lur09b,
Proposition 3.4.20] which states that provided the adjunction exists, αn

k−1 must map to
the unit. This exploits some redundancy in the dualizability data, namely Proposition
4.1.12 point 2. □

Definition 4.1.22: Let C be a symmetric monoidal n-category. An object X in C is said
(n, k)-dualizable if it is n− 1-dualizable and the k following n− 1-morphisms Run−1(X),
Rco(Run−2(X)), . . . , Rcok−1(Run−k(X)) have right adjoints. We say X is non-compact-
n-dualizable if it is (n, n− 1)-dualizable.
For example, for n = 3, k = 2, we want X to have a dual (X∗, evX , coevX), both its
evaluation and coevaluation maps to have right adjoints (evR

X , a, b) and (coevR
X , c, d), and

the unit and counit of the right adjunction of the coevaluation to have right adjoints cR

and dR. ♢

Conjecture 4.1.23 (Non-compact Cobordism Hypothesis): Let C be a symmet-
ric monoidal n-category. There is a bijection between isomorphism classes of framed
fully extended non-compact n-TQFTs with values in C and isomorphism classes of non-
compact-n-dualizable objects of C, given by evaluation at the point.

Proof (Sketch): We apply the index-k cobordism hypothesis for k = n − 1, and
obtain a symmetric monoidal functor Fn−1 → C. This is not exactly what we want, as
Fn−1 is indeed Bordfr,nc

n but with the extra data of a framed function whose critical
point have index < n. Lurie proves that the forgetful functor Fn = Bordff

n → Bordfr
n

is an equivalence, see [Lur09b, Section 3.5]. The same proof should apply to Fn−1 →
Bordfr,nc

n . □

4.2 Dualizability of the unit inclusion
Remember the definition of Alg2(Pr) from Section 2.3 and its explicit description

under the name BrTens. Let V ∈ BrTens be a braided tensor category. We consider
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the inclusion of the unit η : Vectk → V . It is a braided monoidal functor and we define an
associated Vectk-V-central algebra Aη, which is simply the category V seen as the regular
right V-module, see Definition 4.2.2. We study the dualizability of this 1-morphism in
BrTens. First, we recall some context and develop some properties of bimodules induced
by functors. Then we describe all the dualizability data explicitly and give criteria for
dualizability.

Let us recall previously known results about the dualizability of Aη. The following
is [GS, Theorem 5.1], [BJS21, Theorem 5.16] and [BJS21, Theorem 5.21] respectively.

Theorem 4.2.1: The 1-morphism Aη is always 1-dualizable. It is 2-dualizable as soon
as V is cp-rigid, and 3-dualizable as soon as V is fusion.

Note that the requirement fusion can easily be relaxed to rigid finite semisimple (with-
out the assumption that the unit is simple), see the proof of Theorem 4.2.16.

4.2.1 Bimodules induced by functors
We give basic definitions and facts about bimodules induced by (braided) monoidal

functors, and show how to compute their adjoints.

Definition and coherence

We show that the notion of bimodules induced by functors behaves as expected in
BrTens. Namely, the Morita category, whose morphisms are bimodules, extends the
category whose morphisms are functors.
Definition 4.2.2: Let A and B be two objects of BrTens. A braided monoidal functor
F : A → B induces an A-B-central algebra AF which is given by B as a monoidal category
on which A acts on the top using F (−)⊗− and B acts on the bottom using −⊗−. More
formally its structure of A-B-central algebra is given by:

A⊠ Bσop → Z(B)
(A,B) 7→ (F (A)⊗B, (IdF (A) ⊗ σ−1

B,−) ◦ (σ−,F (A) ⊗ IdB))

where σ is the braiding in B. It is braided monoidal because F is braided monoidal.
It also induces a B-A-central algebra AF which is also given by B as a monoidal category
on which A acts on the bottom using −⊗ F (−) and B acts on the top using −⊗−.
When the functor F is understood, we may write ABB for AF and BBA for AF ♢

AF =
B

F ( A )
B AF =

B

F ( A )
B

Figure 4.2: The 1-morphisms AF and AF

Proposition 4.2.3: The above induced-central-algebra construction preserves composi-
tion. Given two braided monoidal functors F : A → B and G : B → C, one has
AG ◦ AF ≃ AG◦F and AF ◦ AG ≃ AG◦F .
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Proof : We want to prove that ABB ⊠
B B
CC ≃ ACC. This is true on the underlying

categories as B⊠
B
C Φ≃ C with equivalence given on pure tensors by Φ(B⊠C) = G(B)⊗C.

This assignment is balanced as G is monoidal:

Φ((B ⊗B′) ⊠ C) = G(B ⊗B′)⊗ C ≃ G(B)⊗G(B′)⊗ C = Φ(B ⊠ (G(B′)⊗ C)).

It is monoidal (the monoidal structure on the relative tensor product is described in
[BJS21, Definition-Proposition 3.6]) by:

Φ(B⊠C)⊗Φ(B′⊠C ′) = G(B)⊗C⊗G(B′)⊗C ′
σC,B′−→
∼

G(B)⊗G(B′)⊗C⊗C ′ ≃ Φ((B⊠C)⊗(B′⊠C ′)).

The bottom action of C is unchanged, and the top action of A is preserved by Φ:

A�(B⊠C) := (A�1)⊗(B⊠C) = (F (A)⊗B)⊠C Φ7→ G(F (A))⊗G(B)⊗C = A�Φ(B⊠C).

Finally, let us show that Φ preserves the central structure. The central structure in the
composed bimodule AF ⊠

B
AG is given by:

(B⊠C)�A := (B⊠C)⊗(F (A)⊠1C) = (B⊗F (A))⊠C
σB

B,F (A)⊠IdC

−→
∼

(F (A)⊗B)⊠C = A�(B⊠C)

This maps under Φ, using that G is braided monoidal, to σCG(B),G(F (A)) ⊗ IdC . And
indeed, the following diagram, where the horizontal arrows are the central structures and
the vertical arrow monoidality of Φ, commutes:

Φ((A� 1)⊗ (B ⊠ C))Φ((B ⊠ C)⊗ (1� A))

Φ(A� 1)⊗ Φ(B ⊠ C)Φ(B ⊠ C)⊗ Φ(1� A)
σC(G(B)⊗C),G(F (A))

IdG(B) ⊗ σCC,G(F (A))
σCG(B),G(F (A)) ⊗ IdC

Id

The A case is similar. □

Definition 4.2.4: Let C and D be A-B-central algebras, i.e. 1-morphisms of BrTens. A
bimodule monoidal functor F : C → D preserving the A-B-central structures induces an
A-B-centered C-D-bimodule MF which is given by D as a category on which C acts on
the left using F (−)⊗− and D act on the right using −⊗−. The A-B-centered structure
on MF is induced by the A-B-central structure of D, and the fact that F is a bimodule
functor:

F (A� 1C �B)⊗M ≃ (A� 1D �B)⊗M σD≃ M ⊗ (A� 1D �B)

It also induces an A-B-centered D-C-bimodule MF which is again given by D as a
monoidal category on which C acts on the right using − ⊗ F (−) and D act on the left
using −⊗−.
When the functor F is understood, we may write CDD for MF and DDC for MF ♢

Proposition 4.2.5: The above induced-bimodule construction preserves:
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1. horizontal composition:
Given two A-B-bimodule monoidal functors F : C → D and G : D → E preserving
central structures, one has MG ◦MF ≃MG◦F and MF ◦MG ≃MG◦F ,

2. vertical composition:
Given C and D two A1-A2-central algebras, C ′ and D′ two A2-A3 central algebras,
F : C → D an A1-A2-bimodule monoidal functor and F ′ : C ′ → D′ an A2-A3-
bimodule monoidal functor preserving central structures, one has MF ⊠

A2
MF ′ ≃

MF ⊠
A2

F ′ and MF ⊠
A2
MF ′ ≃MF ⊠

A2
F ′.

Proof : The first point is similar to the last proposition. We proved that CDD ⊠
D D
EE

Φ≃
CEE , as bimodules. Recall from [BJS21, Definition-Proposition 3.13] that the centered
structure on the composition of bimodules D ⊠

D
E is given by the composition of the

centered structure and a balancing. In our case on some A, D, E, this is:

D ⊠ (E ⊗ A)
IdD⊠σEE,A−→
∼

D ⊠ (A⊗ E) ≃ (D ⊗ A) ⊠ E
σDD,A⊠IdE

−→
∼

(A⊗D) ⊠ E

which maps by Φ to (G(σDD,A)⊗ IdE) ◦ (IdG(D) ⊗ σEE,A). The centered structure of CEE is
given by σEG(D)⊗E,A. They coincide as G preserves central structures.
The second point is not surprising either. We want CDD ⊠

A2
C′D′D′ ≃ C ⊠

A2
C′D ⊠

A2
D′D ⊠

A2
D′ ,

which is true on the underlying categories. Because F and F ′ are bimodule functors, the
functor F ⊠ F ′ : C ⊠ C ′ → D ⊠ D′ ↠ D ⊠

A2
D′ is B-balanced and descends to the relative

tensor product C ⊠
A2
C ′. We then see that the left C ⊠

A2
C ′-action is the one induced by

F ⊠F ′ on the relative tensor product, namely action by F ⊠
A2
F ′. The centered structures

are both given by the central structure of D ⊠
A2
D′ and coincide. □

Dualizability

Given a braided monoidal functor F : A → B, we will prove that both adjoints of AF

are given by AF . For the right adjunction, the counit should go:

AF ◦ AF = BBA ⊠
A A
BB → IdB = BBB.

We actually have a functor going this way, the tensor product T in B, which is A-balanced
and descends to the relative tensor product. We denote it Tbal : B ⊠

A
B → B, and it is

indeed a B-B-bimodule monoidal functor. The central structures on both sides are given
by braiding in B, which is preserved by T . Hence we can construct a B-B-centered
BBA ⊠

A A
BB-BBB-bimodule MTbal

using Definition 4.2.4.
The unit should go:

IdA = AAA → AF ◦ AF = ABB ⊠B BBA ≃ ABA.

Again we have a functor F : A → B which is an A-A-module monoidal functor. The
central structure on the left is given by braiding in A, and on the right by braiding in B.
The first is sent on the latter because F is braided monoidal, and the central structures
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Benjamin Häıoun CHAPTER 4. ANOMALOUS THEORIES

are preserved. Therefore we also have an A-A-centered AAA-ABA-bimodule MF .
Note also that the identity of AF is the bimodule induced by IdB seen as an A-B-bimodule
monoidal functor.

Proposition 4.2.6: The 1-morphism AF has right adjoint given by AF , with counit
MTbal

and unit MF . Its left adjoint is also given by AF , with counit MF and unit
MTbal

.

Proof : We directly check the snake. We repeatedly use Proposition 4.2.5:
A

A
AAA

B
ABB

A

B

A

ABB

BBA

B
ABB

A

B
ABB

B
BBB

MF
MIdB

MTbalMIdB

A

B

ABB

A

B

ABB≃ ≃

≃
A

A
AAA

B
ABB

A

B

A

ABB

BBA

B
ABB

A

B
ABB

B
BBB

MF⊠
A

IdB MIdB⊠
B

Tbal

A

B

ABB

A

B

ABBM1A⊠− M−⊗−

which is the bimodule induced by the composition:
B A⊠

A
B B ⊠

B
B ⊠
A
B B ⊠

B
B B

X (1A, X) (1B,1B, X) (1B, X) X7→ 7→ 7→ 7→

which is indeed the identity.
Every other snake identity is very similar, with functors going in the other direction for
the left adjunction. □

Proposition 4.2.7: Let F : C → D be an A-B-bimodule monoidal functor. The bi-
module MF has right adjoint given by MF , with counit Tbal : D ⊠

C
D → D seen as a

D-D-bimodule functor and unit F seen as a C-C-bimodule functor.

Proof : The proof is the same as above, except that the horizontal morphisms are now
the functors instead of the bimodules induced by the functors. The snake identities read:

(IdD ⊠
D
Tbal) ◦ (F ⊠

C
IdD) ≃ IdMF

and (Tbal ⊠D
IdD) ◦ (IdD ⊠

C
F ) ≃ IdMF

(4.1)

as has been used above. Here IdD is seen alternatively as a C-D-bimodule functor and as
a D-C-bimodule functor. □

We would like to apply Proposition 4.1.12.1, to have the left adjoint of MF . We need F
and Tbal to have right adjoints in BrTens. There is a well-known sufficient condition for
this.
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Proposition 4.2.8 ( [BJS21, Proposition 4.2 and Corollary 4.3]): Let
F : M → N be an A-B-centered C-D-bimodule functor, so a 3-morphism in
BrTens. Suppose that M and N have enough cp, that A, B, C, D are cp-rigid, and
that F preserves cp. Then FR : N →M is an A-B-centered C-D-bimodule functor, and
is the right adjoint of F in BrTens.

All we need to check is that both F and Tbal preserve cp.

Lemma 4.2.9: Let M and N be right and left modules over C and F : M ⊠ N → P
be a cocontinuous C-balanced functor. Suppose M and N have enough cp, C is cp-rigid
and F preserves cp. Then the induced functor Fbal :M⊠

C
N → P preserves cp.

In particular, if A and B are cp-rigid, then Tbal : B ⊠
A
B → B preserves cp.

Proof : Following the proof of closure under composition of 1-morphisms [BJS21, Sec-
tion 4.2], the cp objects ofM⊠

C
N are generated by pure tensors of cp objects. These are

sent to cp objects in P .
For the second point, Tbal is induced by T which preserves cp as B is cp-rigid. □

We can summarize the result as follows:

Proposition 4.2.10: Let F : C → D be an A-B-bimodule monoidal functor which
preserves cp, where A, B, C, D are cp-rigid. The bimodule MF has left adjoint given
by MF , with counit FR seen as a C-C-bimodule functor and unit TR

bal seen as a D-D-
bimodule functor.

4.2.2 Unit inclusion
We give explicitly the dualizability data of the 1-morphism induced by the unit in-

clusion in a braided tensor category V , and criteria for dualizability when V has enough
cp.
Definition 4.2.11: Let V ∈ BrTens be an E2-algebra in Pr. We denote by T : V⊠V →
V its monoidal structure, and η : Vectk → V the inclusion of the unit. The functor η
is braided monoidal and induces a Vectk-V-central algebra Aη, namely a 1-morphism in
BrTens. Remember that we denote by A♭

η ∈ BrTens→ the associated object in the oplax
arrow category. ♢

Theorem 4.2.12: The 1-morphism Aη is both twice left and twice right adjunctible,
with adjunctibility data as displayed:

Aη

| |MT MηMη MT

T |η Tbal|T Tbal|T T |η

AηAη

MT MηMη MT
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where Tbal : V ⊠
V⊠V
V → V is induced by T on the relative tensor product

Proof : We use the results of Section 4.2.1. By Proposition 4.2.6, the 1-morphism Aη

has left and right adjoints given by Aη, with units and counits as displayed in the second
line above, with η : Vectk → V now seen as a Vectk-Vectk-bimodule monoidal functor,
and T : V ⊠

Vectk
V → V the tensor product balanced over Vectk so not balanced.

Then by Proposition 4.2.7 each of these bimodules has either a left or a right adjoint,
with units and counits as displayed, with Tbal :MT ⊠

V⊠V
MT = V ⊠

V⊠V
V → V induced by

T . □

Corollary 4.2.13: The object A♭
η is 2-dualizable in BrTens→, and :

Ru(Ru(A♭
η)) has a right adjoint if and only if both Tbal and Ru(Ru(V)) do.

Rco(Ru(A♭
η)) has a right adjoint if and only if both T and Rco(Ru(V)) do.

Rco(Rco(A♭
η)) has a right adjoint if and only if both η and Rco(Rco(V)) do.

Proof : For 2-dualizability, we use the criterion of [JS17, Theorem 7.6], we know that
V is 2-dualizable by [GS, Theorem 5.1] and Aη is twice right adjunctible by the theorem
above. The rest is Theorem 4.1.13 on the right dualizability data of Aη. □

Theorem 4.2.14: Suppose that V has enough cp, then A♭
η is 3-dualizable if and only if

V the free cocompletion of a small rigid braided monoidal category.

Proof : The heart of the proof is to notice that T appears in the dualizability data, and
by [BJS21, Proposition 4.1] when V has enough cp, it is cp-rigid if and only if T has a
bimodule cocontinuous right adjoint.
If A♭

η is 3-dualizable then Ru(Ru(A♭
η)), Rco(Ru(A♭

η)) and Rco(Rco(A♭
η)) have right ad-

joints, so Tbal, T and η have bimodule cocontinuous right adjoints. The functors T and η
preserving cp mean that they are well-defined on V := Vcp and endow it with a monoidal
structure, and V is rigid as V is cp-rigid. Therefore V is the free cocompletion of a small
rigid braided monoidal category.
On the other hand if V is the free cocompletion of a small rigid braided monoidal cate-
gory then it is cp-rigid and hence 3-dualizable, [BJS21, Theorem 5.16]. The functors T
and η, and also Tbal by Lemma 4.2.9, preserve cp, and have bimodule cocontinuous right
adjoints by Proposition 4.2.8. We get that Aη is 3-times right adjunctible and its source
and targets are 3-dualizable, so A♭

η 3-dualizable by [JS17, Theorem 7.6]. □

Theorem 4.2.15: Suppose that V has enough cp, then A♭
η is non-compact-3-dualizable

if and only if V is cp-rigid.

Proof : If V is cp-rigid, then V is 3-dualizable and T and Tbal have right adjoints in
BrTens. By Corollary 4.2.13, A♭

η is non-compact-3-dualizable.
Suppose now A♭

η non-compact-3-dualizable, then T has a bimodule cocontinuous right
adjoint, and V is cp-rigid. □
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Theorem 4.2.16: Let V be a braided tensor category with enough cp. Then the follow-
ing are equivalent:

1. Aη is 3-dualizable,

2. Aη is 3-adjunctible, and

3. V is rigid finite semisimple.

Proof : The implication 1 ⇒ 2 is immediate: for a 1-morphism 3-dualizable demands
3-adjunctible and 4-dualizablility of the source and target.
The implication 3⇒ 1 is essentially [BJS21, Theorem 5.21]. If V is fusion, then V and Aη

lie BrFus which has duals. Now fusion demands simplicity of the unit, which may not
be the case here. This is easily solved by noticing that coproduct agrees with product in
Pr and ought to be called direct sum [BCJ15, Remark 2.5], and that braided rigid finite
semisimple categories are direct sums of fusion categories [EGNO15, Section 4.3].
Let us prove 2 ⇒ 3. If Aη is 3-adjunctible then Mη and Mη, which are respectively
Ru(Aη) and Lco(Aη) by Theorem 4.2.14, must be 2-adjunctible. Hence their composite
Mη ⊠V

Mη has to be 2-adjunctible in the symmetric monoidal 2-category ΩΩ BrTens ≃
Pr. This composition is just V ⊠

V
V ≃ V as a category, and by our assumption that it has

enough cp, it actually lies in the full subcategory Bimodk ⊆ Pr. By [BDSV, Theorem
A.22], the 2-dualizable objects of Bimodk are finite semisimple categories. We already
saw that V has to be cp-rigid, so Vcp is rigid finite semisimple, and so is V ≃ Free(Vcp).□

Remark 4.2.17: A very similar result one categorical dimension down, in Alg1(RexC), is
proven in [FT21, Theorem B]. The proof is similar too, but we couldn’t directly use their
result on Mη as we work in Bimodk and not in RexC. 3

Remark 4.2.18: Both results need full adjunctibility of Aη: oplax dualizability does not
imply semisimplicity (take the free cocompletion of a non-semisimple ribbon category
in Theorem 4.2.14). Semisimplicity is not needed for 4-dualizability either, as proven
in [BJSS21]. However, if we assume that V is 4-dualizable and Aη is 3-oplax-dualizable,
which is the case of interest for Section 4.3, then to-appear work of Will Stewart shows
that Aη is 3-adjunctible. This has an interesting consequence: the free cocompletion
of a ribbon category which is not semisimple cannot be 4-dualizable. Indeed if it were
Stewart’s result would apply and V would have to be semisimple. This justifies that,
given a non-semisimple ribbon tensor category as in Chapter 3, we want to work with its
Ind-completions, and not its free cocompletion. 3

Remark 4.2.19: Being dualizable for a morphism is both a condition on its adjunctibility
and on the dualizability of its source and target. However, we saw in the proof of Theorem
4.2.14 that Aη 3-right-adjunctible ⇔ Aη 3-oplax-dualizable, and in the Theorem above
that Aη 3-adjunctible ⇔ Aη 3-dualizable. This phenomenon seems to be specific to the
unit inclusion. 3

Proposition 4.2.20: Suppose that V is cp-rigid, then Aη is 2-adjunctible with the fol-
lowing adjunctibility data in BrTens:
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Aη

| |MT MηMη MT

T |η η̃R|TR Tbal|T TR|TR
bal T

R|TR
bal Tbal|T η̃R|TR T |η

AηAη

MT MT
Mη MηMη

Mη MT MT

where η̃R is the essentially unique cocontinuous functor that agrees with ηR on cp objects.

Proof : The snake for TR and η̃R comes from the following. Denote V = Vcp.
TR is the coend TR(1V) =

∫ (V,W )∈V ⊗2

(V ⊠W )⊗HomV(V ⊗W,1V) ≃
∫ V ∈V

V ⊠V ∗, and

more generally TR(X) ≃
∫ V ∈V

(X⊗V )⊠V ∗ ≃
∫ V ∈V

V ⊠ (V ∗⊗X). For X cp, the snake
goes

(η̃R ⊠
Vectk

IdV) ◦ (IdV ⊠V T
R)(X) ≃

∫ V ∈V

η̃R(X ⊗ V ) ⊠ V ∗

=
∫ V ∈V

Hom(1V , X ⊗ V )⊗ V ∗

≃
∫ V ∈V

Hom(V ∗, X)⊗ V ∗ ≃ X

The part with TR and TR
bal is given by Proposition 4.2.10. Indeed T , and hence Tbal,

preserves cp as V is cp-rigid.
The fact that this is sufficient for 2-adjunctibility is [JS17, Lemma 7.11]. □

Remark 4.2.21: Using Theorem 4.2.12 we can also see that Aη is always 2-lax-dualizable,
and it is 3-times left adjunctible if and only if η, T and Tbal have left adjoints in BrTens.
Using the proposition above, we can also get another characterisation of adjunctibility:
every morphism appearing there must have a right adjoint. If V has enough cp, then Aη

is 3-adjunctible if and only if V is cp-rigid and η, ηR, TR and TR
bal preserve cp. 3

We studied the unit inclusion, but the same arguments work in greater generality. We
loose that they are criteria though, because T no longer appears in the dualizability data,
only some balanced version does.

Theorem 4.2.22: Let F : V → W be a braided monoidal functor between two objects
of BrTens. Then the object A♭

F ∈ BrTens→ induced by the 1-morphism AF is 2-
dualizable. It is non-compact-3-dualizable as soon as V and W are cp-rigid. In this case,
it is 3-dualizable if and only if F preserves cp.

Proof : We know that Radj(AF ) = AF with Ru(AF ) =MF and Rco(AF ) =MTV−bal

by Proposition 4.2.6, where TV−bal : W ⊠
V
W → W is induced by the monoidal structure

on W .
Then, Radj(MTV−bal

) = MTV−bal
with Ru(MTV−bal

) = TV−bal and Rco(MTV−bal
) = T2bal

by Proposition 4.2.7, where T2bal :W ⊠
W⊠
V
W
W →W is induced by the monoidal structure

on W .
Similarly, Radj(MF ) =MF with Ru(MF ) = F and Rco(MF ) = TV−bal.
We know by Theorem 4.1.13 that the existence and right adjunctibility of Ru(Ru(A♭

F )),
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Rco(Ru(A♭
F )) and Rco(Rco(A♭

F )) is equivalent to that of respectively T2bal, TV−bal and
F , and of the same units/counits of the source and target. So A♭

F is non-compact-3-
dualizable if and only if TV−bal and T2bal have right adjoints in BrTens, and both V and
W are non-compact-3-dualizable. This is true as soon as V andW are cp-rigid by Lemma
4.2.9 and [BJS21, Theorem 5.6].
It is 3-dualizable if and only if F , TV−bal and T2bal have right adjoints and V and W are
3-dualizable. If V and W are cp-rigid, this is true if and only if F preserves cp. □

4.2.3 The relative theory on the circle

We compute the value on the circle of the relative TQFT RV induced by A♭
η under

the cobordism hypothesis, for any V . Namely, we write S1
nb = evpt ◦ coevpt, compute the

images of evpt and coevpt under RV , which are evA♭
η

and coevA♭
η
, and compose them. Note

that it is S1 with non-bounding framing that we are computing. We need the symmetric
monoidal structure of C to compose evX : 1→ X⊗X∗ and coevX : X⊗X∗ ≃ X∗⊗X → 1.
We know that the evaluation and coevaluation for A♭

η are mates of the unit and counit
for the right adjunction of Aη, namely Mη and MT . It might sound surprising that one
can compose them, but indeed up to whiskering and mating they are composeable, see
Figure 4.3.

•
Mη •

MT

Aη

m
ating

Aη

Vectk V

Figure 4.3: The unit and the counit compose up to mating

We know from [BJSS21, Theorem 2.19] that the evaluation and coevaluation for V are
respectively V⊠VσopVVectk and VectkVVσop⊠V . Then, Example 4.1.14 gives:

RV(evpt) =

Vectk V ⊗ Vσop

Vectk Vectk

Aη ⊗ (Aη)∗

Vectk

Id evVMη and RV(coevpt) =

Vectk Vectk

Vectk V ⊗ Vσop

Vectk

Aη ⊗ (Aη)∗

Id coevV

(MT
⊗ IdVσop ) ◦1 IdcoevV

Their composition is vertical stacking and gives that RV(S1
nb) is:
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Vectk Vectk Vectk Vectk Vectk

Vectk Vectk Vectk Vectk Vectk

V

V Vectk⊗

V Vσop V⊗ ⊗

Vectk V⊗

V Vσop⊗

Vectk

V Vσop⊗

Id

Aη

Aη

Aη

Id coevV

IdevV

Aη

coevV

Aη

Aη

Id

evV

ZV(S1
nb)

Mη

⇒ snake≃
sym.
≃

sym.
≃

IdcoevV

◦1
(MT ⊗ IdVσop)

◦1
IdevV⇒

Note that every bimodule above is induced by a functor as displayed here:
Vectk V ⊠

V
V (V ⊗ V) ⊠

V⊗Vσop⊗V
(V ⊗ V) V ⊠ V

Vectk⊗Vσop
V ⊠ V
V⊗Vσop

k 1⊠ 1 (1⊗ 1) ⊠ (1⊗ 1) 1⊠ 1 1⊠ 1

η ∼ ∼ IdV ⊠ (T ⊗ Id) ⊠ IdV

So RV(S1
nb) is induced by the monoidal functor given by inclusion of the unit in ZV(S1

nb).

4.3 Non-semisimple WRT relative to CY
We can now state the conjectures which are the main motivation for the study above.

The main idea is that the Witten–Reshetikhin–Turaev theories and their non-semisimple
variants can be obtained in a fully extended setting from a 3D theory relative to an
invertible 4D anomaly. In particular, they are defined in a setting where the cobordism
hypothesis applies, and can be rebuilt out of their value at the point. These would be a
(not necessarily semisimple) modular tensor category for the invertible 4-TQFT and the
1-morphism induced by the inclusion of the unit for the relative 3-TQFT. As exposed
above, in the non-semisimple case the unit inclusion is only partially dualizable, and
induces a non-compact TQFT.
These conjectures follow ideas of Walker [Walb], Freed and Teleman [Fre] in the semisimple
case, of Jordan and Safronov in the non-semisimple case. We do not know of a formal
statement in the existing literature and propose one here.

4.3.1 Bulk+Relative=Anomalous
Remember that the WRT theories, and their non-semisimple variants, are defined on a

category of cobordisms equipped with some extra structure. They morally come from the
data of a bounding higher manifold. 3-manifolds come equipped with an integer, which
corresponds to the signature of the bounding 4-manifold, and surfaces come equipped
with a Lagrangian in their first cohomology group, which corresponds to the data of the
contractible curves in a bounding handlebody. In this setting, this extra structure is used
to resolve an anomaly, and is due to Walker. We describe below how this kind of extra
structure arises in the setting of relative field theories.
Definition 4.3.1: The (n− 1)-category of filled bordisms

Bordfilled
n−1 ⊆ Bord→n

is the sub-(n − 1)-category of bordisms that map to the empty under the target functor
Bord→n → Bordn and to Bordn−1 under the source functor. These are k-bordisms,
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k ≤ n− 1, equipped with a bounding k + 1-bordism which we call the filling. We denote

Hollow : Bordfilled
n−1 → Bordn−1

the functor that forgets the filling, namely the source functor.
The (n− 1)-category of non-compact filled bordisms

Bordnc,filled
n−1 ⊆ Bord→n

is the sub-(n − 1)-category of bordisms that map to the empty under the target functor
and to Bordnc

n−1 under the source functor. ♢

Definition 4.3.2: An n-relative pair (Z,R) is the data of:

an n-TQFT Z : Bordn → C

an oplax-Z-twisted-(n − 1)-TQFT R : Bordn−1 → C→, namely an oplax transfor-
mation Triv⇒ Z|Bordn−1 .

It is called a non-compact n-relative pair if R is a non-compact theory. ♢

Given an n-relative pair (Z,R) one has two symmetric monoidal functors Bordfilled
n−1 →

C→. One is given by applying functoriality of (−)→ on Z, namely applying Z to any
diagram in Bordn to get a diagram of the same shape in C. It has trivial target and gives
an oplax transformation

Z→1 : Z|Bordn−1 ◦ Hollow⇒ Triv

between functors Bordfilled
n−1 → C.

The other one is given by applying the relative field theory on the hollowed out bordism,
it is an oplax transformation

R ◦ Hollow : Triv⇒ Z|Bordn−1 ◦ Hollow .

Definition 4.3.3: The anomalous (n−1)-theory A induced by the n-relative pair (Z,R)
is the composition Z→1◦(R◦Hollow) of these two oplax transformations. It gives an oplax
ransformation Triv ⇒ Triv which by [JS17, Theorem 7.4 and Remark 7.5] is equivalent
to a symmetric monoidal functor

A : Bordfilled
n−1 → (ΩC)odd opp ,

where odd opp means we take opposite of k-morphisms for k odd, and ΩC := EndC(1) is
the delooping (n− 1)-category.
If (Z,R) is a non-compact n-relative pair, the same construction on the appropriate
subcategories gives an anomalous theory A : Bordnc,filled

n−1 → (ΩC)odd opp. ♢

For comparison with WRT theories, we will need to restrict to a once extended the-
ory, namely look at endomorphisms of the trivial in Bordfilled

n−1 , and to check that the
anomalous theory descends to the quotient where one only remembers signatures and La-
grangians out of the fillings. We will also move this odd opposite to the source category.
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Definition 4.3.4: The bicategory of simply filled 3-2-1-cobordisms Cobfilled
321 is the sub-

category of h2(Ω Bordfilled, odd opp
3 ) where circles can only be filled by disks, and surfaces

by handlebodies. Taking the opposite orientation for 1- and 2-manifolds (which will have
the effect of switching the source and target of a 3-bordism), one can identify this bicat-
egory as:

Cobfilled
321 ≃


objects : (⊔nS1,⊔nD2 : ⊔nS1 → ∅), n ∈ N

1-morphisms : (Σ : ⊔n1S1 → ⊔n2S1, H : ∅ → (⊔n1D2) ∪ Σ ∪ (⊔n2D2))
2-morphisms : (M : Σ1 → Σ2,W : H1 ∪M ∪H2 → ∅)

The analogous definition in the non-compact case Cobnc,filled
321 ⊆ h2(ΩBordnc,filled, odd opp

3 )
will require 3-bordism to have non-empty incoming boundary in every connected compo-
nent, as source and targets of 3-manifolds are switched. To facilitate comparison with the
existing literature, we also require that all surfaces have non-empty incoming boundary,
although in our setting this is purely artificial. ♢

This is to be compared with:

Definition 4.3.5: The bicategory C̃ob321 (resp. C̃ob
nc

321) is the bicategory of circles,
surfaces bordisms (resp. surface bordisms with non-empty incoming boundary) equipped
with a Lagrangian subspace in their first homology group, and 3-bordisms (resp. 3-
bordisms with non-empty incoming boundary) equipped with an integer. Composition is
given by usual composition on the underlying bordisms, plus:

taking the sum of the Lagrangian subspaces for composition of surfaces,
adding the integers plus some Maslov index for composition of 3-bordisms,
just adding the integers for composition of 3-bordisms in the direction of 1-morphisms.

See [De 21, Section 3] and references therein for a precise definition. The bordisms there
are decorated by objects of a ribbon category, and we are looking at the subcategory where
every decoration is empty. The category C̃ob

nc

321 corresponds to admissible bordisms
there. ♢

Proposition 4.3.6: The assignment

π321 :


Cobfilled

321 → C̃ob321
(⊔nS1,⊔nD2) 7→ ⊔nS1

(Σ, H) 7→ (Σ, ker(i∗ : H1(Σ)→ H1(H)))
(M,W ) 7→ (M,σ(W ))

is a symmetric monoidal functor.

Proof : For composition of 1-morphisms we want to show that the kernel of a gluing is
the sum of the kernels. One inclusion is immediate and the other one follows by dimensions
since both are Lagrangians, see [De 17, Propositions B.6.5 and B.6.6].
For composition of 2-morphisms we use Wall’s theorem, see [De 17, Theorem B.6.1] for a
statement in our context.
For composition of 2-morphisms in the direction of 1-morphisms we use that filled surfaces
only glue on disks, hence filled 3-manifolds on 3-balls, so the signature of the filling simply
adds. □

Similarly, one can restrict to non-compact cobordisms and get

πnc
321 : Cobnc,filled

321 → C̃ob
nc

321 .
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If we restrict C̃ob321 to surfaces equipped with Lagrangians that are induced by some
handlebody, these functors are essentially surjective, hence the name.

4.3.2 Conjectures
We want to relate the Witten–Reshetikhin–Turaev theories and their non-semisimple

variants to the ones induced by the cobordism hypothesis. We want to say that the
anomalous theory induced the relative pair (ZV ,RV) factors through C̃ob321 and recovers
WRT and DGGPR theories.
A closer look at the WRT construction from [Tur94] shows that Witten–Reshetikhin–
Turaev theories extend to the circle. Once-extended 3-TQFTs are classified in the preprint
[BDSV, Theorem 3], and the following result can be obtained from it (in our case the unit
is simple). We give the statement of [De 17] restricted to trivially decorated bordisms.

Theorem 4.3.7 (Theorem 1.1.1 in [De 17]): For a semisimple modular tensor cate-
gory V with a chosen square root of its global dimension, the Witten–Reshetikhin–Turaev
TQFT extends to the circle as a symmetric monoidal functor

WRTV : C̃ob321 → Ĉatk

where Ĉatk is the category of Cauchy-complete categories.

Similarly, restricting the statement of [De 21] to trivially decorated bordisms:

Theorem 4.3.8 (Theorem 1.1 in [De 21]): For a non-semisimple modular tensor
category V with a chosen square root of its global dimension, the non-semisimple TQFT
from [DGG+22] extends to the circle as a symmetric monoidal functor

DGGPRV : C̃ob
nc

321 → Ĉatk

On the other hand, using the Cobordism Hypothesis:

Theorem 4.3.9 (Brochier–Jordan–Safronov–Snyder): For a semisimple or non-
semisimple modular tensor category V , its Ind-cocompletion V ∈ BrTens is 4-dualizable
and induces under the Cobordism Hypothesis a 4-TQFT ZV : Bordfr

4 → BrTens.

The main result of this chapter can be stated in this context.

Theorem 4.3.10: For a semisimple modular tensor category V , the arrow A♭
η ∈

BrTens→ induced by the unit inclusion η : Vectk → V := Ind(V ) is 3-dualizable and
induces under the Cobordism Hypothesis a framed oplax-ZV-twisted 3-TQFT

RV : Bordfr
3 → BrTens→ .

For a non-semisimple modular tensor category V , A♭
η is not 3-dualizable but is non-

compact-3-dualizable and induces under the non-compact Cobordism Hypothesis a framed
non-compact oplax-ZV-twisted 3-TQFT

RV : Bordfr,nc
3 → BrTens→ .
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Proof : If V is semisimple, V = Ind(V ) = Free(V ) and Theorem 4.2.14 applies. If
V is not semisimple, the unit is not projective in V , nor in V = Ind(V ), so A♭

η is not
3-dualizable. But V is cp-rigid and Theorem 4.2.15 applies. □

To compare the two sides, we need all theories to be oriented. We assume the following:

Conjecture 4.3.11: The ribbon structure of V induces an SO(3)-homotopy-fixed-point
structure on V.
The ribbon structure of η induces an SO(3)-homotopy-fixed-point structure on A♭

η.

The first statement is expected by experts. The second one follows [Lur09b, Example
4.3.23]. Note that in the second statement we actually mean an SO(3)-homotopy-fixed-
point structure compatible with the one on V , as in Remark 4.1.18.

Remark 4.3.12: The fact that the anomalous theory AV would factor through C̃ob321 is
not too surprising. As was pointed to me by Pavel Safronov, we know from [BJSS21] that
V is not only 4-dualizable, but invertible, and hence 5-dualizable. But BrTens has no
non-trivial 5-morphisms, and hence the 5-theory induced by V is trivial on 5-bordisms.
This means that ZV should give the same value on cobordant 4-manifolds. If this story
can be made oriented, it means it depends only on the signature of 4-manifolds.
It was observed by Walker [Walb, Chapter 9] in the semisimple case that there is a scalar
choice of ways to extend ZV from Bordor

3 to Bordor
4 , namely ZV(B4), and that exactly

two of these scalars yield to a theory which is cobordant-invariant on 4-manifolds. These
scalars are exactly the two square roots of the global dimension among which one has to
choose when defining WRT theories. This motivates the following conjecture. In the non-
semisimple case, it is supported by the fact that the constructions of the (3+1)-TQFTs
of Chapter 3 need exactly the choice of a modified trace. 3

Conjecture 4.3.13: A choice of modified trace on V induces an SO(4)-homotopy-fixed-
point structure on V.
A modified trace induces an SO(5)-homotopy-fixed-point structure on V if and only if
SV (S4) = 1 with this choice of modified trace in the construction of Chapter 3.

In particular, we conjecture that every modular tensor category has an SO(5)-homotopy-
fixed-point structure. Indeed let V be a modular tensor category and choose t a modified
trace on V (which exists by [GKP22, Corollary 5.6]). Choose a square root D of its global
dimension ζ = ∆+∆− = SV ,t(S4) as defined in Chapter 3. Then the modified trace D−1t
satisfies SV ,D−1t(S4) = 1 by Proposition 3.4.7.

Corollary 4.3.14 (of conjectures): Both ZV and RV give oriented TQFTs by the ori-
ented cobordism hypothesis.

We now assume that this corollary is true, that a the choice of modified and square
root of global dimension has been made, and that ZV and RV are oriented.

In the semisimple case, the relative pair

(ZV : Bord4 → BrTens,RV : Bord3 → BrTens→)
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induces an anomalous theory

AV : Bordfilled, odd opp
3 → Tens := ΩBrTens .

Its restriction on Cobfilled
321 gives a 2-functor

A321
V : Cobfilled

321 → ΩTens ≃ Pr .

Conjecture 4.3.15: For a semisimple modular tensor category V , the anomalous the-
ory induced by (ZV ,RV) recovers the Witten–Reshetikhin–Turaev theory. Namely:

Cobfilled
321

C̃ob321 Ĉatk

Pr

π321

A321
V

WRTV

Free
commutes up to isomorphism.

In the non-semisimple case, the relative pair

(ZV : Bord4 → BrTens,RV : Bordnc
3 → BrTens→)

induces an anomalous theory

AV : Bordnc,filled, odd opp
3 → Tens := ΩBrTens .

Its restriction on Cobnc,filled
321 gives a 2-functor

A321
V : Cobnc,filled

321 → ΩTens ≃ Pr .

Conjecture 4.3.16: For a non-semisimple modular tensor category V , the non-
compact anomalous theory induced by (ZV ,RV) recovers the De Renzi–Gainutdinov–
Geer–Patureau-Mirand–Runkel theory. Namely:

Cobnc,filled
321

C̃ob
nc

321 Ĉatk

Pr

πnc
321

A321
V

DGGPRV

Free
commutes up to isomorphism.

We know how to check these conjectures on the circle. We have WRTV (S1) = V whose
free cocompletion is equivalent to V because V is semisimple. Similarly, DGGPRV (S1) =
Proj(V ) whose free cocompletion is equivalent to V . On the other side, we know that
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in dimension two ZV coincides with factorization homology, and we computed RV(S1) in
Section 4.2.3. So:

A321
V (S1,D2) = RV(S1) ⊠

ZV (S1)
ZV(D2) ≃ VectkZV(S1) ⊠

ZV (S1)
VVectk ≃ VectkVVectk

Computing the values of the theories induced by the Cobordism Hypothesis on higher
dimensional bordisms comes down to computing some adjoints in BrTens and compose
them in various ways. This will be carried out in future work.

Corollary 4.3.17 (of conjectures): Both WRTV and DGGPRV extend to S0.

Proof : Indeed, the anomalous theory AV is really defined as a functor between the 3-
categories Bordfilled

3 → Tens (or Bordnc,filled
3 → Tens in the non-semisimple case). The

two points S0 are bordant, by a cap, and therefore give an object (S0,∩) ∈ Bordfilled
3 (or

Bordnc,filled
3 ).

It is easy to compute the value of the anomalous theory on this object, namelyAV(S0,∩) =
RV(S0) ◦ ZV(∩) = (Aη ⊠ (Aη)∗) ⊠

V⊠Vσop
V ≃ V seen as a Vectk-Vectk-central algebra. □

Remark 4.3.18: This is to be compared with results of [DSS20] which shows that WRTV

extends to the point if and only if V ≃ Z(C ) is a Drinfeld center, in which case the point
is mapped to C . In the modular case, the Drinfeld center Z(C ) is isomorphic to C ⊗C σop,
and the two descriptions agree on S0. Therefore it appears that WRTV always extends
to S0, and extends to the point if and only if one can find a “square root” for its value on
S0. This is also related to ongoing work of Freed, Teleman and Scheimbauer.
Note however that the statement above is a bit informal, because it is really Free ◦WRTV ◦π321
that extends to S0, so WRT indeed but with different source and target. In particular,
the results of [DSS20] do not apply directly in this context. 3
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Chapter 5

Stated versus internal skein algebras

This chapter is based on [Häı22].
We give an explicit correspondence between stated skein algebras, which are defined

via explicit relations on stated tangles in [Lê18], and internal skein algebras, which are
defined as internal endomorphism algebras in free cocompletions of skein categories in
[BBJ18a,GJS23].

In Section 5.1 we recall the structure on stated skein algebras and skein categories
induced by a boundary edge. The first gives an Oq2(SL2)-comodule algebra structure on
stated skein algebras, which enables one to express their gluing properties [CL22]. The
second gives a structure of module categories on skein categories, which enables one to
express gluing properties too, and to define [BBJ18a,GJS23]’s internal skein algebras.

In Section 5.2, we explicitly give the natural isomorphism St exhibiting the stated skein
algebra as the (left) internal endomorphism algebra of the empty set in the skein category
associated with V = Oq2(SL2)–comodfin ≃ Uq2(sl2)–modfin, without relying on excision
properties. On an object of the Temperley-Lieb category, this natural isomorphism simply
expresses that assigning states to a tangle defines an Oq2(SL2)-comodule morphism from
some tensor product of the fundamental representation to the stated skein algebra.

In Section 5.3, we complete the picture. We extend in a straightforward manner the
definition of internal skein algebras to surfaces with multiple boundary edges, labelled
either left or right. The left and right actions differ by rotating the picture by 180
degrees, which is homotopic to the identity by the half twist . We give an explicit way
to compare internal skein algebras obtained from right and left edges using the half twist,
which induces a braided opposite algebra structure, see Proposition 5.3.6. In Section
5.3.4, we describe the action of the half twist in the context of stated skein algebras, i.e.
on Oq2(SL2)–comodfin. There are multiple choices, but as we explain ours is imposed
by conventions from stated skein algebras. We extend the main theorem to surfaces
with multiple boundary edges, and appropriate braided opposites inserted, see Theorem
5.3.28. Finally we compare excision properties. We prove excision properties of internal
skein algebras for any ribbon category in Theorem 5.3.32. We prove that this recovers the
usual statements for stated skein algebras for our choice of half-twist. This sheds light on
the choice in the definition of stated skein algebras. Indeed it is shown in [Lê18, Section
3.4] there is essentially no choice for the boundary skein relations, if we want the cutting
morphism to be well-defined. We claim there is choice in how to write this cutting
morphism, which corresponds to the choice of the half-twist, see Remark 5.3.34.
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5.1 Boundary structure and gluing properties

We recall the extra structure on stated skein algebras [CL22] and skein categories
[Coo23] that come from a boundary edge. This second structure allows us to define
internal skein algebras [BBJ18a,GJS23].

Let k be either Q(q 1
2 ) or C with q

1
2 ∈ C× generic, i.e. not a root of unity.

5.1.1 Stated skein algebras
The key player for stated skein algebras will be the stated skein algebra of the bigon.

Indeed, one can cut a bigon out of a boundary edge of any stated skein algebra, giving
an extra comodule structure for every boundary edge.

Example 5.1.1: The bigon B is the marked surface (D, {±i}), the disk with two marked

points. The algebra S (B) is generated as an algebra by the µβν =
•

•
µ ν , µ, ν ∈ {±},

and has basis the µ⃗βν⃗ = >
<

•

•

··
·

··
·

µn νn

µ1 ν1
where µ⃗ = (µ1, . . . , µn) and ν⃗ = (ν1, . . . , νn) are

decreasing sequences of signs.
It is a bialgebra with coproduct given by cutting along the “unique” arc joining the two

marked points
•

•
c , ∆ = ρc : S (B) → S (B ⊔ B) ≃ S (B) ⊗ S (B). Coassociativity

comes from the second part of Theorem 1.1.10. The counit ε : S (B) → k is defined on
the basis by ε(µ⃗βν⃗) = δµ⃗,ν⃗ .

It is a Hopf algebra with antipode S

 >
<

•

•

··
·

··
·

µm νn

µ1 ν1
β

=
>

<

•

•

··
·

··
·

−ν1 −µ1

−νn −µm

β

.
C(ν⃗)
C(µ⃗) where

C(ν⃗):=
n∏

i=1
C(νi).

It is coquasitriangular with co-R-matrix R(α⊗ β) = ε


•

>

•

<

β

α

, see [CL22, Theorem

3.5].

It is coribbon with coribbon functional θ(α) = ε


•

<•
>

α

. ♢

Proposition 5.1.2 (Thm. 4.1 in [Lê18], Sec. 2.2 in [KQ], Thm. 3.4 [CL22]):
One has an isomorphism of coribbon Hopf algebras S (B) ≃ Oq2(SL2) given on the
generators by +β+ 7→ a, −β− 7→ d, +β− 7→ b and −β+ 7→ c.

Definition 5.1.3: Consider a marked surface S and a boundary edge e of S. Let c be
an ideal arc parallel to e inside S̊, see Figure 5.1. Cutting along c splits S into a bigon
(between e and c) and a surface canonically homeomorphic to S. Therefore the splitting
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morphism along c goes

∆ = ρc : S (S)→ S (S ⊔B) ≃ S (S)⊗S (B)

and endows S (S) with right Oq2(SL2)-comodule structure. It is compatible with its
algebra structure, namely S (S) is anOq2(SL2)-comodule-algebra, see [CL22, Proposition
4.1]. ♢

•

•
ec

Figure 5.1: The comodule structure on stated skein algebras

Definition 5.1.4: Let rot : B → B be the homeomorphism of marked surfaces given by
the planar 180 degree rotation. It induces an algebra isomorphism

rot∗ : S (B)→ S (B), with rot∗

 >
<

•

•
··
·

··
·

µm νn

µ1 ν1
β

 =
<

>
•

•

··
·

··
·

ν1 µ1

νn µm

β

.

It reverses the coproduct, namely

∆ ◦ rot∗(β) =
<

>
•

•

β(2)

⊗
<

>
•

•

β(1)

= (rot∗ ⊗ rot∗) ◦∆op(β) ,

and preserves the counit, because ε(rot∗(µ⃗βν⃗)) = ε(ν⃗βµ⃗) = δν⃗,µ⃗ = δµ⃗,ν⃗ .

On Oq2(SL2), it is given by r
(
a b
c d

)
=
(
a c
b d

)
. ♢

Remark 5.1.5: If one sees the edge e at the left instead of the right of the surface, one
gets a structure of left Oq2(SL2)-comodule. One can easily get from one to another by
rotating the whole picture, see Figure 5.2. Namely, the left coaction ∆l is obtained from
the right coaction ∆r by rotating the bigon by 180 degrees. In [CL22, Proposition 4.1]
one gets

∆l = fl ◦ (IdS (S) ⊗ rot∗) ◦∆r ,

where fl denotes the flip of tensors.
Actually, one gets such a structure for each boundary edge of S, and if S has n right
boundary edges and m left, S (S) is an (Oq2(SL2)⊗n,Oq2(SL2)⊗m)-bicomodule algebra.3

Remark 5.1.6: The structure forms on S (B), such as the co-R-matrix or the coribbon
functional, are often defined using the counit on some transformation of the tangle. This
has a direct interpretation on how this form then acts on comodules:

Let φ : S (B) → k be given by some φ


•

<•
>

εn ηm

...
...

ε1 η1

α

 = ε

 •

<•
>

εn

...

s
m

(η1
...η

m
)

ε1
α Tm

, where

Tm, m ∈ N, is a family of tangles with m right and m left boundary points and sm :
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•

•
c

•

•
W E

S

N

•

•
c

•

•
WE

S

N

Figure 5.2: From left to right boundary edges for stated skein algebras

{±}m → k⟨{±}m⟩. Here, we allowed sm to have values in formal linear combination of
m-tuples of states because in the definition of the co-R-matrix for example one needs
coefficients depending on the states. What we mean by a tangle α with state a formal
linear combination of states ∑i λiη⃗i is the linear sum of stated tangles α∑

i
λiη⃗i

:= ∑
i λiαη⃗i

.
Note that the Tm’s and the sm’s should satisfy extra conditions for this to be well-defined
on S (B). Then for a marked surface S with a right edge e, the map

ΦS (S) : S (S) ∆→ S (S)⊗S (B) Id⊗φ−→ S (S)

is given by:

•

<•

ηm

...

η1
α

∆7−→ ∑
ν⃗


•

<•

νm

...
ν1

α ⊗

•

<•
>

νm ηm

...
...

ν1 η1



Id⊗φ7−→ (Id⊗ ε)

 •

<•

νm

...
ν1

α ⊗

•

<•
>

νm

...

s
m

(η1
...η

m
)

ν1
Tm



splitting=
well def

(Id⊗ ε)

 •

<•

νm

...
ν1

α Tm
⊗

•

<•
>

νm

...

s
m

(η1
...η

m
)

ν1


counit=

•

<•

s
m

(η1
...η

m
)

α Tm

The co-R-matrix isn’t exactly of this form, but the same kind of computation applies.
Remember that the braiding on S (S) ⊗ S (S) is defined using the coaction on each
S (S), the co-R-matrix on the S (B)⊗2 part thus obtained, and then flipping the two
factors, namely cS (S),S (S) = fl◦R24 ◦(∆S (S)⊗∆S (S)). The braided opposite product on
S (S) is defined as mbop := m ◦ cS (S),S (S) and it has a nice geometric depiction, namely:

mbop(α⊗ β) = m ◦ fl


•

<•

νn

...
ν1

α(1) ⊗

•

<•

µm

...

µ1
β(1) .ε


•

>

•

<

ν⃗

µ⃗

β(2)

α(2)




=

•

<•

ν⃗
µ⃗β(1)

α(1)
.ε


•

>

•

<

ν⃗

µ⃗

β(2)

α(2)

 =

•

<•
β

α
.

3
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Endowed with extra boundary structure, stated skein algebras satisfy a form of excision.
The stated skein algebra of a gluing is obtained as a from of relative tensor product of
the stated skein algebras of the two initial surfaces.
Definition 5.1.7: Let H be a Hopf algebra and M an (H,H)-bicomodule, with coprod-
ucts denoted by ∆1 : M →M ⊗H and ∆2 : M → H⊗M . The 0-th Hochschild cohomol-
ogy of M is the subalgebra of M defined as HH0(M) := {x ∈M / ∆1(x) = fl◦∆2(x)}.♢

Let S′ be a marked surface and c1 and c2 respectively a right and a left boundary edges
of S′ as in Figure 5.3. Then S (S′) has a structure of (Oq2(SL2),Oq2(SL2))-bicomodule.
We consider S = S′/c1=c2 the marked surface obtained by gluing c1 to c2, and c the
ideal arc formed by c1 = c2 in S. We have S′ = Cutc(S), and Theorem 1.1.10 gives an
injective algebra morphism ρc : S (S)→ S (S′).

•

•

c1

S′

•

•

c2

Figure 5.3: Gluing surfaces

Theorem 5.1.8 (Section 2.3 in [KQ], Theorem 4.8 in [CL22]): Consider a
marked surface S = S′/c1=c2 obtained as a gluing. Then the splitting morphism
ρc : S (S)→ S (S′) maps isomorphically S (S) onto HH0(S (S′)).

Remark 5.1.9: The formula is slightly nicer if S1 and S2 are two marked surfaces, c1
is a right boundary edge of S1, c2 a left boundary edge of S2 and S′ = S1 ⊔ S2.
Then S (S′) ≃ S (S1) ⊗k S (S2) (this is the vector space tensor product) and the 0-th
Hochschild cohomology of S (S′) corresponds to the cotensor product

S (S1)□HS (S2) := {x ∈ S (S1)⊗S (S2) / ∆1 ⊗ Id2(x) = Id1⊗∆2(x)}

of S (S1) and S (S2) over S (B). 3

5.1.2 Skein categories
Remember the definition of the coribbon Hopf algebra Oq2(SL2), the description of its

category of right comodules and its links with left Uq2(sl2)-modules from Section 1.2.4.
Remark 5.1.10 (Remark 1.7 in [Coo23]): For a general surface Σ, its skein category is
not monoidal because there is no notion of horizontal juxtaposition, which we use in R2.
However, if A = C × [0, 1] for a 1-manifold C, the category SkV(A) is monoidal with

tensor product induced by A ⊔ A
[0, 1

3 ]⊔[ 2
3 ,1]

↪→ A. 3

Remark 5.1.11 (Remarks 1.6 and 1.18 in [Coo23]): An orientation-preserving smooth em-
bedding f : Σ1 → Σ2 induces a functor SkV(f) : SkV(Σ1)→ SkV(Σ2). It maps an object
s, which is a bunch of coloured points in Σ1, to f(s), and a ribbon graph T ⊆ Σ1 × [0, 1]
to (f × Id)(T ). This defines a symmetric monoidal functor

SkV : (Manor
2 ,⊔)→ (Catk,⊗k) .
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An isotopy of smooth embeddings λ : Σ1× [0, 1]→ Σ2 between f = λ0 and g = λ1 induces
a natural isomorphism ribλ : SkV(f) ⇒ SkV(g) where ribλ,s : f(s) → g(s) is the braid
in Σ2 × [0, 1] drawn by {(λt(s), t), t ∈ [0, 1]}. Homotopic isotopies give isotopic ribbon
graphs, and this extends to a symmetric monoidal functor of (∞, 1)-categories

SkV : (Mfldor
2 ,⊔)→ (Catk,⊗k) .

It is shown in [Coo23] that this functor coincides with factorisation homology [AFT17]
with coefficients in V . 3

Remark 5.1.12 (Section 1.3 of [Coo23]): As for stated skein algebras, whenever we talk
of a boundary component C ⊆ Σ below, we mean thickened boundary component, i.e.
equipped with a trivialization of its neighborhood. This notion distinguished left and
right boundary components, equipped respectively with an embedding C × [0, 2) ↪→ Σ
and C×(−1, 1] ↪→ Σ. We denote A := C× [0, 1]. By retracting Σ away from its boundary,
we have a (canonical given the data above) embedding A ⊔ Σ→ Σ.
This embedding induces an action

� : SkV(A)⊗ SkV(Σ)→ SkV(Σ)

which endows SkV(Σ) with a structure of left or right SkV(A)-module category. 3

Skein categories satisfy a form of excision, namely the skein category of a gluing is obtained
as a relative tensor product of the skein categories of the initial surfaces.
Let Σ1 and Σ2 be two surfaces and C a curve which is both a right boundary component
of Σ1 and a left boundary component of Σ2. We denote Σ1 ∪A Σ2 the collar gluing of the
surfaces along the two embeddings of A.

Theorem 5.1.13 (Theorem 1.22 in [Coo23]): The skein category of a collar gluing
is obtained as the relative tensor product

SkV(Σ1 ∪A Σ2) ≃ SkV(Σ1) ⊗
SkV (A)

SkV(Σ2)

of the right SkV(A)-module SkV(Σ1) and the left SkV(A)-module SkV(Σ2).

Proof (sketch): Here relative tensor product may be taken to be either Tambara’s
relative tenbsor product, or the usual 2-colimit definition, which are equivalent by [Coo23,
Theorem 2.27].
One has an explicit description of the Tambara relative tensor product of two module
categories, by formally adding a balancing natural isomorphism ι. For s1, a, s2 some
sets of colored points respectively in Σ1, A, Σ2, the image of the balancing isomorphism
ιs1,a,s2 : (s1 � a, s2)→ (s1, a� s2) in SkV(Σ1 ∪A Σ2) is depicted in Figure 5.4. □

Corollary 5.1.14: Let s1 ∈ SkV(Σ1) and s2 ∈ SkV(Σ2). Then any morphism

α ∈ HomSkV (Σ1∪AΣ2)(s1 ⊔ s2, ∅)

can be decomposed in a (linear combination of) pair(s)

α1 ∈ HomSkV (Σ1)(s1, ∅� a) , α2 ∈ HomSkV (Σ2)(a� s2, ∅)
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Σ1 C× [0, 1] Σ2
×[0, 1]

•s1

•
s1 � a

•s2

•
a � s2

•

•

Figure 5.4: The skein category of the gluing is balanced

for some a ∈ SkV(A), with α = (Id∅, α2) ◦ ι∅,a,s2 ◦ (α1, Ids2).
This decomposition is unique up to balancing, namely if α2 can be written β2 ◦ (γ�Ids2),
with β2 ∈ HomSkV (Σ2)(b � s2, ∅) and γ ∈ HomSkV (A)(a, b), for some b ∈ SkV(A), then
(α1, β2 ◦ (γ � Ids2)) ∼ ((Id∅ � γ) ◦ α1, β2).

Proof : On a drawing one wants to decompose α as:

α

•s1
•s2

=
α1

α2

•s1
•s2

a � s2

∅� a
ι

which is easily done by pushing the ribbon graph happening in the middle region inside
say Σ2 leaving only straight lines (namely, ι’s) behind.
The relation (α1, β2◦(γ�Ids2)) ∼ ((Id∅�γ)◦α1, β2) is true by sliding γ along the straight
lines of ι, and this is the only relation by the theorem above. □

Note that the asymmetry in this description is purely artificial, and one could have chosen
a cup or a cap instead of a slanted line to link the left and right actions.

5.1.3 Internal skein algebras
When a surface has a boundary edge, one can push a little disk inside the surface from

this boundary edge. This process induces an action of the skein category of the disk on the
skein category of the surface. Namely, SkV(Σ) is a SkV(R2)-module category, see [Coo23,
Sections 3.2]. In this situation there is a notion of internal Hom objects that encode en-
tirely in SkV(R2) the behavior of objects of SkV(R2) seen in SkV(Σ) by the action. Namely
for fixed V,W ∈ SkV(Σ) one has HomSkV (Σ)(X�V,W ) ≃ HomSkV (R2)(X,Hom(V,W )) nat-
urally in X, see [EGNO15, Section 7.9]. However, such an object does not always exist
in SkV(R2), and actually lives in its free cocompletion. The internal skein algebra AΣ of
the surface is the internal endomorphism algebra of the empty set Hom(∅, ∅), see [GJS23]
or [BBJ18a] together with [Coo23]. This means one can understand ribbon graphs in
SkV(Σ) with boundary points on the bottom and near the boundary edge as morphisms
in (the free cocompletion of) SkV(R2) with target AΣ.
Note that in [Coo23], [BBJ18a] and [GJS23] one uses a right SkV(R2)-action and we use
a left SkV(R2)-action here. See Section 5.3 for more details.
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Definition 5.1.15 (See Section 7.9 of [EGNO15]): LetM be a A-module category
and M1,M2 in M. The A-internal Hom Hom(M1,M2) of M1 and M2 is the object of
A representing HomM(− �M1,M2) : Aop → Vectk. It comes equipped with a natural
isomorphism

η : HomM(−�M1,M2)→̃HomA(−,Hom(M1,M2)) .
It is unique up to canonical isomorphism when it exists.
When all involved internal Hom objects exist, this natural isomorphism defines

evM1,M2 : Hom(M1,M2) �M1 →M2

and
c : Hom(M2,M3)⊗ Hom(M1,M2)→ Hom(M1,M3) .

In particular, an internal endomorphism End(M) := Hom(M,M) is an algebra object in
A, with unit the morphism 1A → End(M) associated with IdM . ♢

The functor HomM(− � M1,M2) : Aop → Vectk cannot always be represented in A.
However, it is always an object of its free cocompletion.

Proposition 5.1.16: Let A ∈ Catk be a monoidal k-linear category, M an A-module
category and M1, M2 two objects of M. The presheaf

F = HomM(−�M1,M2) ∈ Free(A)

is the internal Hom object of M1 and M2 (seen as objects of Free(M) by the Yoneda
embedding) with respect to the Free(A)-module structure.

Proof : For the “small” objects A ∈ A ↪→ Free(A), the isomorphism

HomFree(A)(A,F ) ≃ F (A) := HomM(A�M1,M2)

is given by the Yoneda Lemma.
Now any object X ∈ Free(A) is obtained as a colimit of such small objects, X = colimi Ai,
Ai ∈ A, by the co-Yoneda Lemma. Then it is straightforward to check that:

HomFree(A)(X,F ) ≃ limi HomFree(A)(Ai, F ) ≃ limi HomFree(M)(Ai �M1,M2)
≃ HomFree(M)(colimi(Ai �M1),M2) ≃ HomFree(M)(X �M1,M2).

Here we kept the notation � for its essentially unique cocontinuous extention to free
cocompletions. □

We now apply the internal Hom object constructions to the case of skein categories.
We choose a k-linear ribbon category V and denote its free cocompletion E .

Definition 5.1.17: We consider an oriented surface with boundary Σ, with a “red” arc
chosen on its boundary, seen at the left. This arc can be thickened in the surface, which
gives a thick left embedding (0, 1)→ ∂Σ. In particular one has an embedding of surfaces
(0, 1)× [0, 1] ⊔ Σ ↪→ Σ as in Figure 5.5.
By Remark 5.1.12, this gives a structure of left SkV(R2)-module category on SkV(Σ). We
denote

� : SkV(R2)⊗ SkV(Σ)→ SkV(Σ)
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the action functor.
We denote SKV(−) := Free(SkV(−)) and still denote the action functor on free cocom-
pletions by

� : E ⊠ SKV(Σ)→ SKV(Σ) .

For M1 and M2 two objects of SkV(Σ), one has an internal Hom object Hom(M1,M2) ∈
E . ♢

Σ
⊔

Figure 5.5: Skein categories of punctured surfaces are module categories

Definition 5.1.18: Let Σ be a surface with boundary with a chosen thickened arc on its
boundary. The internal skein algebra AΣ := Hom(∅, ∅) is the E-internal endomorphism
algebra of ∅ ∈ SkV(Σ) ⊆ SKV(Σ).
Explicitly, AΣ comes equipped with a natural isomorphism

σ : HomSKV (Σ)(−� ∅, ∅)⇒̃HomE(−, AΣ) .

This isomorphism is determined by its restriction on V , in which case the left hand side
agrees with Hom spaces in SkV(Σ). ♢

Proposition 5.1.19: The inclusion Oq2(SL2)–comodfin ↪→ Oq2(SL2)–comod is a free
cocompletion.
In particular, if V = Oq2(SL2)–comodfin and E = Oq2(SL2)–comod in the definition
above, then AΣ is an Oq2(SL2)-comodule algebra.

Proof : Remember from Section 1.2.4 that (at generic q which we assume throughout)
the category Oq2(SL2)–comod is semisimple and its simples are finite dimensional. Hence
any Oq2(SL2)-comodule is a direct sum of these, and any colimit in Oq2(SL2)–comodfin

is simply a direct sum.
The usual monoidal structure onOq2(SL2)–comod is the free cocompletion of the monoidal
structure on Oq2(SL2)–comodfin as it extends it and commutes with direct sums in both
factors. □

One could replace Oq2(SL2)–comodfin with its full subcategory TL, as every Oq2(SL2)-
comodule is a quotient of direct sums of objects of TL. Similarly, the inclusion SkT L(Σ) ↪→
Free(SkOq2 (SL2)–comodfin(Σ)) is also a free cocompletion, see [Coo23, Theorems 2.28 and
3.27].
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Remark 5.1.20: The defining properties of AΣ describes morphisms from V � ∅ to ∅
in SkV(Σ), so where the boundary points of tangles are at the bottom. Using duality,
see [EGNO15, Proposition 7.1.6], we can describe morphisms from W � ∅ to V � ∅:

HomSkV (Σ)(W � ∅, V � ∅) ≃ HomE(W,V ⊗ AΣ).

When Σ is connected, every object of SkV(Σ) is isomorphic to one of the form V � ∅,
and the above natural isomorphism suggests that the algebra AΣ ∈ E is enough to fully
describe SKV(Σ). 3

Theorem 5.1.21 ( [BBJ18a, Theorem 5.14]): Suppose that Σ is connected, then
there is an equivalence of categories

SKV(Σ) →̃ modE − AΣ
M 7→ Hom(∅,M)

between the free cocompletion of the skein category of Σ and the category of right modules
over AΣ in E.
For M of the form V �∅, V ∈ E, which is always the case for M ∈ SkV(Σ), this functor
is given by V � ∅ 7→ V ⊗ AΣ.

Proof : For the last statement, one has Hom(∅, V � ∅) ≃ V ⊗ AΣ by Remark 5.1.20.
This is the general idea of the proof, as morphisms of AΣ-modules from W⊗AΣ to V ⊗AΣ
are equivalent to morphisms in E from W to V ⊗ AΣ, which are equivalent by the above
Remark to morphisms from W � ∅ to V � ∅ in SKV(Σ).
For the details, one uses Barr-Beck reconstruction, or more precisely its reformulation
in [BBJ18a, Theorem 4.6]. One has to check that ∅ ∈ SKV(Σ) is a progenerator.

It is projective: actR∅ = Hom(∅,−) :
{
SKV(Σ) → [Vop,Vectk] ≃ E
M 7→ HomSKV (Σ)(−� ∅,M) is cocontin-

uous because −� ∅ : V → SkV(Σ) ⊆ SKV(Σ) takes values in compact projective objects.
It is a generator: actR∅ being faithful is equivalent to −�∅ : E → SKV(Σ) being dominant
by [BBJ18a, Remark 4.9], which is the case because − � ∅ is essentially surjective on
SkV(Σ) which generate SKV(Σ) under colimits.
One gets right modules overAΣ because we considered left module categories, see [BBJ18a,
Remark 4.7]. □

Remark 5.1.22: We are in the same context as [BBJ18a] and [GJS23]. In [GJS23, Def-
inition 2.18], the internal skein algebra is defined similarly as HomSkV (Σ)(∅ � −, ∅) ∈
Free(V) for V a k-linear ribbon category whose unit 1V is simple, which is the case for
V = Oq2(SL2)–comodfin.
In [BBJ18a, Definition 5.3], the moduli algebra AΣ is defined to be the endomorphism
algebra of the distinguished object OE,Σ of the factorization homology over Σ of a pre-
sentable abelian balanced k-linear category E generated under filtered colimits by rigid
objects, with respect to the E-module structure. The factorization homology of V is
computed by SkV , see [Coo23, Theorem 2.28], and the factorization homology of E =
Free(V) by SKV = Free(SkV), see [Coo23, Theorem 3.27]. The distinguished object is
∅ ∈ SkV(Σ) ⊆ SKV(Σ), and Oq2(SL2)–comod is abelian and generated under filtered
colimit by rigid objects Oq2(SL2)–comodfin.
There is one difference with our chapter though: we consider a left E-action, and [BBJ18a,
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GJS23] consider a right E-action, with adapted definitions of internal Hom objects. In
our description, it would mean seeing the red arc on the right instead of on the left, thus
SkV(R2) acting from the right. This gives a braided opposite product, and we need left
actions to have the same product than the one on S (Σ). Right actions and more generally
multiple right/left actions and how they interact will be studied in Section 5.3. 3

5.2 The relation
We show in this section that the stated skein algebra of a surface with a single

boundary edge is isomorphic to AΣ. We consider the algebra AΣ from last section
with V = Oq2(SL2)–comodfin and E = Oq2(SL2)–comod at generic q, and prove that
S (Σ) ≃ AΣ as Oq2(SL2)-comodule algebras. Actually since AΣ is only defined up to
canonical isomorphism one may take an equality here, so we prove that S (Σ) satisfies
the defining properties of AΣ, namely that it is the internal endomorphism algebra of the
empty set in SKV(Σ) with respect to the E-module structure. This result is not new and
was stated in a weaker form in [LY22, Theorem 4.4], [LS, Theorem 9.1] and [GJS23, Re-
mark 2.21], namely as algebras in Vectk. However, in these references one considers right
E-actions and therefore the internal skein algebra is isomorphic to the braided opposite
of the stated skein algebra. The full result can still be recovered using [Fai, Theorem 5.3]
or [Kora], which give an isomorphism between the opposite of the stated skein algebras
and Alekseev–Grosse–Schomerus-algebras, which are themselves isomorphic to internal
skein algebras by [BBJ18a]. Our approach here is more direct, more explicit and uses
only skein theory.

We need a natural isomorphisms

StW : HomSKV (Σ)(W � ∅, ∅)⇒̃HomE(W,S (Σ))

for W ∈ E = Oq2(SL2)–comod. In the case where W = V ⊗n ∈ TL is a tensor product
of standard corepresentations, and the element on the left hand side is a tangle α with
n boundary points, we want a morphism V ⊗n → S (Σ) associated to it. This is done
by setting the entries, elements of V ⊗n, as states of the tangle α. Recall that V has
basis v+, v− and we identify the states + and − with these elements. As in Remark
5.1.6, we allow formal linear combination of states for stated tangles. In this context, the
defining relations of stated skein algebras correspond exactly to naturality conditions, see
Proposition 5.2.3.
This gives the idea of how to deal with the objects of the full subcategory TL ⊆ V of
objects of the form V ⊗n, and this extends to E ≃ Free(TL) by Proposition 5.1.16. Note
that one still has an action � : TL ⊗ SkT L(Σ) → SkT L(Σ) which is the restriction of
� : V ⊗ SkV(Σ)→ SkV(Σ).
Definition 5.2.1: Let W = V ⊗n ∈ TL and α ∈ HomSkT L(Σ)(W � ∅, ∅). By Theorem
1.2.42, α can be represented by a (linear combination of) tangle(s), still denoted by α,
with n ordered boundary points near the boundary edge, which is well defined up to
isotopy and Kauffman-bracket relations.

Graphically, we set StW

 α

∂Σ Σ

[0, 1]
1 · · · n

 (vε1⊗· · ·⊗vεn) :=
α

ε1

··
·

εn
, εi ∈ {±}.

For brevity we denote this last stated tangle by ε⃗α and vε⃗ = vε1 ⊗ · · · ⊗ vεn . Note that
in this figure there are two implicit sums, α is a linear combination of tangles and an
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element of V ⊗n is a linear combination of vε⃗’s. They will remain implicit in the following.
In the context of stated skein algebras one needs the boundary points of the tangle α
to be above the boundary arc though they are on the bottom at its right in the context
of morphisms in SkT L(Σ). One wants to simply push the boundary points through the
boundary edge and up above it, but without braiding the strands with one another.
Therefore we use a global diffeomorphism of Σ× [0, 1]. Consider an isotopy of the identity
on Σ × [0, 1] which is trivial far from the corner and in it pushes the bottom boundary
through and up above the edge. It results in the global automorphism ψhv of Σ × [0, 1]
which maps a tangle “from skein categories” to one “from stated skein algebras” and
preserves the order as desired, namely the bottom points on the leftmost will end up
above. We will still denote the modified tangle ψhv(α) by α. Now, it only needs states to
give an element of S (Σ).

We set StW (α) :=
{
V ⊗n → S (Σ)
vε⃗ 7→ ε⃗α; so where ε⃗α is the tangle ψhv(α) with states

ε1, · · · , εn from top to bottom. It is well defined because the tangle representing α is
well defined up to isotopy and Kauffman-bracket relations, which are quotiented out in
S (Σ). ♢

Proposition 5.2.2: Given a tangle α, the map

StW (α) : V ⊗n → S (Σ)

is an Oq2(SL2)-comodule morphism.

Proof : Note that we still see S (Σ) as a right Oq2(SL2)-comodule even though we draw
the edge at the left. Its comodule structure is given by ∆(ε⃗α) = ∑

η⃗∈{±}n η⃗α⊗ η⃗βε⃗, and here
η⃗βε⃗ is a product ∏i ηi

βεi
in S (B). The comodule structure on V ⊗n is given by ∆(vε⃗) =∑

η⃗ vη⃗⊗
∏

i xηi,εi
where xη,ε is the vη part of ∆(vε). Namely, x+,+ = a, x+,− = b, x−,+ = c

and x−,− = d. Under the isomorphism Oq2(SL2) ≃ S (B), xη,ε 7→ ηβε.
Thus ∆(StW (α)(vε⃗)) = ∆(ε⃗α) = ∑

η⃗ StW (α)(vη⃗)⊗ η⃗βε⃗ = (StW (α)⊗ IdS (B))(∆(vε⃗)). □

Proposition 5.2.3: The maps

StW : HomSkT L(Σ)(W � ∅, ∅)→ HomOq2 (SL2)–comod(W,S (Σ))

for W ∈ TL define a natural transformation

St : HomSkT L(Σ)(−� ∅, ∅)⇒ HomE(−,S (Σ))

between functors TLop → Vectk.

Proof : For g ∈ HomT L(V ⊗n, V ⊗m), α ∈ HomSkT L(Σ)(V ⊗m � ∅, ∅) and vε⃗ ∈ V ⊗n , one
needs to check that StV ⊗m(α)(g(vε⃗)) = StV ⊗n(α ◦ (g � Id∅))(vε⃗). Morphisms of TL are
generated under composition and juxtaposition by identities, caps and cups, so one only
needs to prove the result for these last two.
We will need some explicit computations of these caps and cups. Recall from Remark

1.2.22, or [Tin, Theorem 4.2], that to do so one uses the isomorphism φ :


V → V ∗

v+ 7→ −q 5
2v∗−

v− 7→ q
1
2v∗+
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of Definition 1.2.31 and sets ∩ = ◦ (φ⊗ IdV ) and ∪ = (IdV ⊗φ−1) ◦ , where
and are the usual ev and coev in Vectfin

k .
Let g = = Id⊗k

V ⊗ ∩ ⊗ Id⊗n−k
V : V ⊗n+2 → V ⊗n, α ∈ HomSkT L(Σ)(V ⊗n � ∅, ∅) and

v = (vε1 ⊗ · · · ⊗ vεk
)⊗ vµ ⊗ vν ⊗ (vεk+1 ⊗ · · · ⊗ vεn) ∈ V ⊗n+2. We want to compare:

StV ⊗n(α)(g(v)) = StV ⊗n(α)(vε⃗ . ∩ (vµ ⊗ vν)) =
α

ε1

··
·

εn
. ∩ (vµ ⊗ vν) and

StV ⊗n+2(α◦(g�Id∅))(v) = StV ⊗n+2

 α (v) =

αε1

··
·

µ
νεn

=
α

ε1

··
·

εn
.µν C

One simply needs to check that the coefficient µ
ν Cfrom the left boundary skein relations of

Proposition 1.1.7 coincides with ∩(vµ⊗vν) and indeed ∩(v+⊗v+) = ev(−q 5
2v∗−⊗v+) = 0 =

+
+ C, ∩(v− ⊗ v−) = ev(q 1

2v∗+ ⊗ v−) = 0 = −
− C, ∩(v+ ⊗ v−) = ev(−q 5

2v∗− ⊗ v−) = −q 5
2 = +

− C

and ∩(v− ⊗ v+) = ev(q 1
2v∗+ ⊗ v+) = q

1
2 = −

+ C.
Now let g = = Id⊗k

V ⊗∪⊗ Id⊗n−k
V : V ⊗n → V ⊗n+2, α ∈ HomSkT L(Σ)(V ⊗n+2 � ∅, ∅)

and v = vε1 ⊗ · · · ⊗ vεn ∈ V ⊗n. One can directly compute ∪(1) = (IdV ⊗φ−1) ◦ coev(1) =
(IdV ⊗ φ−1)(v− ⊗ v∗− + v+ ⊗ v∗+) = −q− 5

2v− ⊗ v+ + q−
1
2v+ ⊗ v−.

We want to compare:

StV ⊗n+2(α)(g(v)) = StV ⊗n+2(α)((vε1 ⊗ · · · vεk
)⊗ (−q− 5

2v− ⊗ v+ + q−
1
2v+ ⊗ v−)⊗ (vεk+1 ⊗ · · · vεn))

= −q− 5
2

α
ε1

··
·

−
+
εn

+ q−
1
2

α
ε1

··
·

+
−
εn

and

StV ⊗n(α ◦ (g � Id∅))(v) = StV ⊗n

 α (v) =

α
ε1

··
·

εn

They are equal by the last left boundary skein relation of Proposition 1.1.7. □

Recall from Proposition 5.1.16 that the E-internal endomorphism of ∅ is an object X
equipped with an isomorphism

HomSkT L(Σ)(−� ∅, ∅)⇒̃HomE(−, X)

in [TLop,Vectk]. We only need to show that St is an isomorphism.

Theorem 5.2.4: The natural transformation St is a natural isomorphism and exhibits
S (Σ) as the internal endomorphism object of the empty set. Namely one can take
AΣ = S (Σ) as Oq2(SL2)-comodule.

Proof : We exhibit an inverse to St. Let W = V ⊗n ∈ TL, which decomposes as a direct
sum of simplesWi. Let f : W → S (Σ) be a morphism in E , and denote by fi its restriction
on Wi. We want a morphism St−1

W (f) ∈ HomSkT L(Σ)(W � ∅, ∅), which is equivalent to a
collection of morphisms St−1

W (fi) ∈ HomSkV (Σ)(Wi � ∅, ∅). Each fi is determined by its
value on a single element wi ∈ Wi (pick a highest weight element for example), it extends
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to all Wi by applying the Uq2(sl2)-action (recall from Proposition 1.2.39 that Oq2(SL2)-
comodules correspond to Uq2(sl2)-modules). Choose any stated tangle ai representing the
element fi(wi) ∈ S (Σ). Denote by αi its underlying tangle, ni = |∂αi| its number of
boundary points and ε⃗i its states. This representative is well defined up to the boundary
skein relations, the usual skein relations and isotopy. The assignment wi 7→ vε⃗i

extends
to a unique Oq2(SL2)-morphism gi : Wi → V ⊗ni by applying the Uq2(sl2)-action. We
then set St−1

W (fi) = αi ◦ (gi � Id∅). Note that here αi denotes the tangle αi seen as a
morphism in SkV(Σ), so we actually mean ψ−1

hv (αi), the same tangle but with boundary
points at the bottom instead of the left. We have to check that this definition does not
depend on the representative ai. Usual skein relations and isotopy do not change αi seen
as a morphism in the skein category. The boundary skein relations are equivalent to
naturality using Proposition 5.2.3. Namely, another representative a′i has to be of the
form α′i = αi ◦ (g� Id∅), for some g ∈ TL, with states ε⃗ ′i such that g(ε⃗ ′i ) = ε⃗i. Therefore
the g′i for a′i will be such that gi = g ◦ g′i. Then we simply check that αi ◦ (gi � Id∅) =
αi ◦ (g � Id∅) ◦ (g′i � Id∅) = α′i ◦ (g′i � Id∅), and St−1

W (fi) is well defined.
For simplicity we assume that St−1

W (fi) and gi are actually defined on all W but are
0 except on Wi, namely we precompose by the projection W ↠ Wi, and thus we set
St−1

W (f) = ∑
i St−1

W (fi).
It is now easy to check that St−1

W is the inverse of StW . For vε⃗ ∈ W , suppose vε⃗ ∈ Wi0 ⊆ W
lies in a simple, or decompose it in the Wi’s, and write vε⃗ = X · wi0 , X ∈ Uq2(sl2). One
has gi0(vε⃗) = X · vε⃗i0

and for j ̸= i0, gj(vε⃗) = 0. Thus:

StW (St−1
W (f))(vε⃗) = StW (∑i αi ◦ (gi � Id∅))(vε⃗) = ∑

i StW (αi ◦ (gi � Id∅))(vε⃗)
5.2.3= ∑

i StW (αi)(gi(vε⃗)) = StW (αi0)(X · vε⃗i0
)

5.2.2= X · StW (αi0)(vε⃗i0
) = X · ai0 = X · fi0(wi0) = fi0(vε⃗) = f(vε⃗)

Symmetrically, let α ∈ HomSkT L(Σ)(W � ∅, ∅) and vε⃗ ∈ W . Set f = StW (α) : V ⊗|∂α| →
S (Σ), in the definition of St−1

W (f) one has αi = α and vε⃗i
= wi, so gi is the inclusion

Wi ↪→ W . If vε⃗ ∈ Wi ⊆ W , one has St−1
W (StW (α)) = ∑

i α ◦ (gi � Id∅) = α ◦ (IdW � Id∅) =
α. □

Proposition 5.2.5: The algebra structure inherited from the internal endomorphism
object structure on S (Σ) coincides with its usual algebra structure. Namely AΣ = S (Σ)
as Oq2(SL2)-comodule algebras.

Proof : Recall that the product on S (Σ) is given by stacking the left tangle a above
the right one b, and the product on AΣ is defined by evaluation and composition maps on
internal Hom objects, in Definition 5.1.15. Graphically, the stated tangles a and b, which
we see as morphisms α and β in SkV(Σ) with prescribed inputs vε⃗ and vη⃗, map to the
morphism α ◦ (IdV ⊗|∂α| � β) in SkV(Σ) with prescribed input vε⃗⊗ vη⃗, which we see as the
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stated tangle a above b:

α
ε1

··
·

εn
,

β
η1

··
·

ηm

α
ε1

··
·

εn
β

η1

··
·

ηm

↕ ↕

α

1 · · · n
, vε⃗,

β

1 · · · m
, vη⃗ 7−→

α

1 · · · n

β

1 · · · m
, vε⃗ ⊗ vη⃗

The evaluation map ev∅,∅ : S (Σ)�∅ → ∅ is the image under St−1 of IdS (Σ). We have not
constructed St−1 on all E above, but only on TL, and it extends by cocontinuity in Propo-
sition 5.1.16. The comodule S (Σ) decomposes as simples as S (Σ) = ⊕

α∈B+ Uq2(sl2) · α
where B+ is the set of o-ordered simple stated tangles with only + states, see [CL22, The-
orem 4.6 b)]. These stated tangles with only + states are simply a way to represent
canonically a tangle without state information, and again in the following we will see α
as a morphism in HomSkV (Σ)(V ⊗|∂α|, ∅), which is actually ψ−1

hv (α).
We denote by Wα = Uq2(sl2) · α and gα : Wα → V ⊗|∂α| the inclusion mapping α to its
states v−−−→+···+. Then:

ev∅,∅ = St−1(IdS (Σ)) = ⊕α∈B+ St−1(Wα ↪→ S (Σ)) = ⊕α∈B+α ◦ (gα � Id∅).

The composition map c : S (Σ)⊗S (Σ)→ S (Σ) is the image under St of the morphism
ev∅,∅ ◦ (IdS (Σ) � ev∅,∅) : (S (Σ) ⊗S (Σ)) � ∅ → S (Σ) � ∅ → ∅. This morphism is the
double sum:

⊕α∈B+⊕β∈B+(α◦(gα�Id∅))◦(IdS (Σ)�(β◦(gβ�Id∅))) = ⊕α∈B+⊕β∈B+α◦(IdV ⊗|∂α|�β)◦(gα�gβ�Id∅).

The product is obtained by applying St to this morphism. For a, b ∈ S (Σ), write a = X ·α
and b = Y · β with X, Y ∈ Uq2(sl2) and α, β ∈ B+. Thus a has states vε⃗ = X · v−−−→+···+ and
b has states vη⃗ = Y · v−−−→+···+. By naturality:

c(a⊗ b) := StS (Σ)⊗S (Σ)(ev∅,∅ ◦ (IdS (Σ) � ev∅,∅))(a⊗ b)
= ⊕α′∈B+ ⊕β′∈B+ St(α′ ◦ (Id

V ⊗|∂α′| � β′))((gα′ ⊗ gβ′)(a⊗ b))
= St(α ◦ (IdV ⊗|∂α| � β))((gα ⊗ gβ)(a⊗ b)) = St(α ◦ (IdV ⊗|∂α| � β))(vε⃗ ⊗ vη⃗)

which is precisely the usual product of a and b in S (Σ). □

5.3 Multi-edges

We define internal skein algebras for surfaces with more than one boundary, and pos-
sibly left or right boundary edges. We show they are isomorphic to stated skein algebras
when V = Oq2(SL2)–comodfin, and re-prove their excision properties using excision prop-
erties of skein categories.
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5.3.1 Right internal skein algebras
In order to extend the definition of internal skein algebras to surfaces with multiple

boundary edges, we would need a notion of left and right action to be able to glue surfaces
together, such that internal skein algebras satisfy excision properties, just like stated skein
algebras. One subtlety though is that one is only allowed to talk about right Oq2(SL2)-
comodules in the context of internal skein algebras, to stay in the category E (as opposed
to the stated skein algebra context).
Definition 5.3.1 (Section 3.2 in [Coo23]): Let Σ be a surface with a chosen bound-
ary interval, which we see at the right of the surface. One can make a construction similar
to Definition 5.1.17 to have a right action functor

� : SkV(Σ)⊗ SkV(R2)→ SkV(Σ) .

It differs the one � of Definition 5.1.17 only by rotating the disk by 180 degrees.
The right moduli algebra AR

Σ of [BBJ18a, Section 5.2], or right internal skein algebra
of [GJS23], is the internal endomorphism algebra of the empty set in SkV(Σ) with respect
to this SkV(R2)⊗–op-module structure. ♢

⊔

Figure 5.6: The right action of a disk on a punctured surface

Definition 5.3.2: Denote rot the diffeomorphism of the disk given by 180◦ rotation. By
Remark 5.1.11 it induces an automorphism

(−)ht := SkV(rot) : SkV(R2)→ SkV(R2)

which squares to the identity. For X ∈ SkV(R2), we call Xht := SkV(rot)(X) the half-
twisted X. One easily checks that (−)ht is anti-monoidal, namely (X⊗Y )ht = Y ht⊗Xht,
because rot reverses left-right order.
The diffeomorphism rot is isotopic to the identity by rotating from 0 to 180◦. This isotopy
induces a natural isomorphism

ht : IdSkV (R2)⇒̃(−)ht

called the half twist, which squares to the twist (the 360◦ rotation). ♢

Remember from Remark 5.1.11 that ht is given on n blackboard framed points on the real
axis by n parallelly half-twisted vertical strands, namely drawn on the half twisted ribbon

. Naturality, namely htW ◦ f ◦ ht−1
V = fht, expresses the fact that one can untwist a

top half twist and a bottom anti-half-twist by half twisting the middle. For f = htV one

161



a higher algebraic approach to non-semisimple quantum invariants

gets htV ht = htht
V . Note too that htV⊗W = (htW ⊗ htV ) ◦ cV,W by = .

Now, One can easily relate the left and right actions of the disk by rotating the whole
picture, i.e.

� = � ◦ fl ◦ ((−)ht ⊗ IdSkV (Σ))

and
� ◦ fl = � ◦ ((−)ht ⊗ IdSkV (Σ))

where fl is the flip of tensors. And indeed a left action turns into a right action under
an anti-monoidal functor. Moreover, the natural isomorphism ht : IdSkV (R2)⇒̃(−)ht gives
a natural isomorphism

ht �− := � ◦ (ht⊗ IdSkV (Σ)) : �⇒̃� ◦fl .

Remark 5.3.3: One can give an explicit relation between left and right internal skein
algebras. Internal skein algebras are only defined up to isomorphism, so this description
is just one choice. Actually, we will give another one below. Consider the internal skein
algebra AΣ defined as in Section 5.1.3 by seeing the red arc at the left, with a natural
isomorphism σ : HomSkV (Σ)(−�∅, ∅)⇒̃HomE(−, AΣ). Then one has natural isomorphisms

HomSkV (Σ)(∅� V, ∅) = HomSkV (Σ)(V ht � ∅, ∅)
σ

V ht→ HomE(V ht, AΣ) (−)ht

→ HomE(V,Aht
Σ ) .

Namely, AR
Σ ≃ Aht

Σ as object of SKV(R2), with natural isomorphism (σ(−)ht)ht. 3

Remark 5.3.4: Note that the half twist is defined on SkV(R2) and not on V , which is its
full subcategory of objects with only one coloured point, with blackboard framing. The
half twist will map such an object to a point with anti-blackboard framing, so it does not
stabilise V . The equivalence of categories SkV(R2) ≃ V preserves properties of the half
twist only up to natural isomorphism, and depends on the choice of a quasi-inverse of the
inclusion. The one described in Remark 1.2.20 will map the half twist on SkV(R2) to the
identity on V , but if we had chosen to restore the framing counter-clockwise it would map
it to the full twist. In V = Oq2(SL2)–comodfin an actual half twist exists, see [ST09],
and we will study it below. However, in general we will prefer a construction that uses
the half twist only on the disk inserted in SkV(Σ), where it is well defined, and not on
V . In particular, the above description AR

Σ ≃ Aht
Σ holds in SKV(R2) but has an unclear

meaning in E (it depends on the choice of some quasi-inverses). 3

Definition 5.3.5: There is another explicit relation between left and right internal skein
algebras using ht �− to relate the right action to the left one. Set

σR = σ ◦ (ht � ∅) : HomSkV (Σ)(∅�−, ∅)⇒̃HomE(−, AΣ)

i.e. for V ∈ V and α ∈ HomSkV (Σ)(∅�V, ∅), we have α◦(htV �Id∅) ∈ HomSkV (Σ)(V �∅, ∅)
and we set

σR
V (α) := σV (α ◦ (htV � Id∅)) . ♢
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Proposition 5.3.6: The natural isomorphism σR exhibits AΣ as the right internal skein
algebra. The algebra structure mR : AΣ ⊗ AΣ → AΣ inherited from this right internal
endomorphism object structure differs from the left one m : AΣ⊗AΣ → AΣ by a braiding:
mR = m ◦ cAΣ⊗AΣ.
In other words, the right internal skein algebras introduced in [GJS23] and [BBJ18a] are
the braided opposites of the left ones introduced in Section 5.1.3.

Proof : The σR
V ’s form a natural isomorphism: let f ∈ HomV(V,W ) and α ∈ HomSkV (Σ)(∅�

W, ∅), one checks:

σR
V (α ◦ (Id∅ � f)) = σR

V (α ◦ (fht � Id∅)) := σV (α ◦ (fht � Id∅) ◦ (htV � Id∅))
= σV (α ◦ (htW � Id∅) ◦ (f � Id∅)) = σR

W (α) ◦ f

by using naturality of σ and of ht � −. For f ∈ HomE(V,AΣ) one has (σR
V )−1(f) =

σ−1
V (f) ◦ (ht−1

V � Id∅).
Therefore (AΣ, σ

R) is the internal endomorphism object of the empty set in SKV(Σ) with
respect to the right SKV(R2)-action by Proposition 5.1.16. We now study its algebra
structure.
The evaluation map is:

evR := (σR
AΣ

)−1(IdAΣ) = σ−1
AΣ

(IdAΣ)◦(ht−1
AΣ

�Id∅) = ev◦(ht−1
AΣ

�Id∅) ∈ HomSKV (Σ)(∅�AΣ, ∅).

The product, or composition map, is:

mR := σR
AΣ⊗AΣ

(evR ◦ (evR � IdAΣ))
= σAΣ⊗AΣ(ev ◦ (ht−1

AΣ
� Id∅) ◦ IdAht

Σ
� (ev ◦ (ht−1

AΣ
� Id∅)) ◦ (htAΣ⊗AΣ � Id∅))

= σAΣ⊗AΣ(ev ◦ (IdAΣ � ev) ◦ (ht−1
AΣ
⊗ ht−1

AΣ
� Id∅) ◦ (htAΣ⊗AΣ � Id∅))

= σAΣ⊗AΣ(ev ◦ (IdAΣ � ev) ◦ (cAΣ⊗AΣ � Id∅)) = m ◦ cAΣ⊗AΣ .

The units σR
1V (Id∅) := σ1V (Id∅ ◦ (ht1V � Id∅)) = σ1V (Id∅) coincide. □

Remark 5.3.7: In SKV(R2), one has σR
V (α) := σV (α ◦ (htV � Id∅)) = σV ht(α) ◦ htV . If

one post-composes with ht−1
Aht

Σ
this is exactly (σV ht)ht. Hence the two descriptions of right

internal skein algebras we gave, (Aht
Σ , σ(−)ht

ht) in Remark 5.3.3 and (AΣ, σ ◦ (ht � −)) in
Proposition 5.3.6, are isomorphic (as they should) by ht−1

Aht
Σ

: AΣ → Aht
Σ . The product on

Aht
Σ is given by:

ht−1
Aht

Σ
◦mR ◦ htAht

Σ
⊗ htAht

Σ
= ht−1

Aht
Σ
◦m ◦ cAΣ⊗AΣ ◦ htAht

Σ
⊗ htAht

Σ

= ht−1
Aht

Σ
◦m ◦ htAΣ⊗AΣ = mht. 3

5.3.2 Multi-edges internal skein algebras
We extend the definition of internal skein algebras to the multi-edge context, and

define them as internal endomorphism algebras of the empty set in the skein category
with multiple boundary actions, as expected. We check that they still describe skein
categories well-enough.
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Definition 5.3.8: Let S be a marked surface with n boundary edges labelled either as
left (numbered 1 to k) or as right (numbered k + 1 to n) edges. Each left (resp. right)
boundary edge induces a left SkV(R2)-action (resp. left SkV(R2)⊗–op-action) on SkV(S),
which all commute, so one has a left SkV(R2)⊗k⊗(SkV(R2)⊗–op)⊗n−k-action ▷ on SkV(S).
We denote its components by

�i or �i ◦fl : SkV(R2)⊗ SkV(S)→ SkV(S), 1 ≤ i ≤ n ,

though we forget the indices when they are understood. When there are missing compo-
nents they will be implicitly filled by 1V . We may also write (V1, . . . , Vk)�∅�(Vk+1, . . . , Vn)
instead of (V1, . . . , Vn) ▷ ∅.
The internal skein algebra AS is the internal endomorphism object of the empty set in
SkV(S) with respect to the SkV(R2)⊗k ⊗ (SkV(R2)⊗–op)⊗n−k-action. It is an algebra ob-
ject in E⊠n ≃ Free(V⊗n) ≃ Free(SkV(R2)⊗n), where E⊠n has opposite tensor products on
the last n − k components. We denote this monoidal structure by ⊗. We denote by ⊗i

the tensor product on coordinate i, and adopt the same convention as with ▷ filling with
missing 1V ’s and writing (V1, . . . , Vk)⊗W ⊗ (Vk+1, . . . , Vn) instead of (V1, . . . , Vn) ⊗W .
Explicitly, AS comes equipped with natural isomorphisms

σV⃗ : HomSkV (S)(V⃗ ▷ ∅, ∅)⇒̃HomE⊠n(V⃗ , AS)

for V⃗ = (V1, . . . , Vn) ∈ V⊗n.

Remark 5.3.9: Objects and morphisms of tensor product of categories (e.g. V⊗n) are
sometimes denoted by tensor product of objects and morphisms (e.g. V1 ⊗ · · · ⊗ Vn and
f1⊗ · · · ⊗ fn). To avoid confusion with the monoidal structures on the categories (e.g. ⊗
on V), we prefer to use commas (e.g. (V1, . . . , Vn) and (f1, . . . , fn)). 3

Remark 5.3.10: A legitimate worry about this extended definition of internal skein al-
gebras is that when one has multiple boundary actions on a same connected component
one cannot keep track of where did an object come from. Namely for V ∈ V and c1, c2
two boundary edges on a same connected component of S, one has an isomorphism
V �1 ∅ → V �2 ∅ which sounds surprising because (V, 1V) and (1V , V ) are hardly isomor-
phic in V⊗2. The internal skein algebra actually keeps track of such identifications, and
one has an isomorphism (V, 1V) ⊗ AS ≃ (1V , V ) ⊗ AS. 3

Note that the above definition makes sense for n = 0, where we want endomorphisms of
the empty set in SkV(S) to be described by morphisms k → AS in E⊠0 = Vectk. For
V = Oq2(SL2)–comodfin one gets AS = S̊ (S) is the usual skein algebra. It is no longer
true, however, that all objects of SkV(S) are described as modules over AS, because the
(trivial) action of E⊠0 on ∅ is no longer dominant.
Definition 5.3.11: Let S be a marked surface and V a ribbon category. The reduced
skein category Skred

V (S) is the full subcategory of SkV(S) spanned by objects of the form
V⃗ ▷ ∅, namely in the image of the action of SkV(R2)⊗n on the empty set.
It is equivalent to SkV(S) if S has at least one boundary edge per connected component.♢
Remark 5.3.12: One can still apply Remark 5.1.20, slightly modified because for right
edges the left adjoint of − � V is given by acting by the left dual − � ∗V . For V⃗ =
(V1, . . . , Vn) ∈ V⊗n write V⃗ ∗ = (Vi

∗ or ∗Vi)1≤i≤n with right duals for left edges and left
duals for right edges. Then, as the notation suggests, V⃗ ∗ is the left dual of V⃗ in V⊗n for
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the monoidal structure ⊗, and V⃗ ▷ − has left adjoint V⃗ ∗ ▷ −. For W⃗ ∈ V⊗n, one has
natural isomorphisms:

HomSkV (S)(W⃗ ▷ ∅, V⃗ ▷ ∅) ≃ HomSkV (S)(V⃗ ∗ ▷ (W⃗ ▷ ∅), ∅)
σ

V⃗ ∗⊗W⃗→ HomE⊠n(V⃗ ∗⊗ W⃗ , AS) ≃ HomE⊠n(W⃗ , V⃗ ⊗ AS).
3

Theorem 5.3.13: There is an equivalence of categories

SKred
V (S) →̃ modE − AS

M 7→ Hom(∅,M)

between the free cocompletion SKred
V (S) of the reduced skein category and the category

of right AS-modules in E⊠n (with monoidal structure ⊗).
For M of the form V⃗ ▷ ∅, one has Hom(∅, V⃗ ▷ ∅) ≃ V⃗ ⊗ AS.

Proof : We follow the proof of Theorem 5.1.21, namely we use [BBJ18a, Theorem 4.6]
on ∅ ∈ SKred

V (S). It is projective by the same arguments and −�∅ : E⊠n → SKred
V (S) is

dominant by construction so actR∅ is faithful and ∅ is a generator. For the last statement,
one has Hom(∅, V⃗ ▷ ∅) ≃ V⃗ ⊗ AS by Remark 5.3.12. □

5.3.3 Relation for multiple left edges
Let V = Oq2(SL2)–comodfin, E = Oq2(SL2)–comod ≃ Free(V) and S be a marked

surface with all boundary edges labelled left. We show that AS ≃ S (S) as Oq2(SL2)⊗n-
comodule-algebras.

Proposition 5.3.14: There is an equivalence of categories E⊠n ≃ Oq2(SL2)⊗n–comod.

Proof : The category Oq2(SL2)⊗n–comod is semi-simple with simples tensor products of
simples Oq2(SL2)-comodules. It implies that the cocontinuous extension of ⊗n : V⊗n →
Oq2(SL2)⊗n–comod to E⊠n → Oq2(SL2)⊗n–comod is an equivalence. □

In particular Free(TL⊗n) ≃ Free(TL)⊠n ≃ E⊠n ≃ Oq2(SL2)⊗n–comod.

Theorem 5.3.15: Let S be a marked surface with all boundary edges labelled left, then
AS ≃ S (S) as Oq2(SL2)⊗n-comodule-algebras.

Proof : We give a natural isomorphism St exhibiting S (S) as the internal endomor-
phism object of ∅ ∈ SKV(S) with respect to the Oq2(SL2)⊗n–comod-module structure.
For X ∈ Oq2(SL2)⊗n–comod, we want

StX : HomSKV (S)(X � ∅, ∅)→ HomOq2 (SL2)⊗n–comod(X,S (S)) .

Let X ∈ TL⊗n (which is enough by Proposition 5.1.16) and α ∈ HomSkV (S)(X � ∅, ∅)
represented by a tangle, we set

StX(α) :
{

X → S (S)
v1

ε⃗1 ⊗ · · · ⊗ v
n
ε⃗n
7→ ε⃗1...ε⃗nα
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where ε⃗1...ε⃗nα is the tangle α with endpoints pushed over the boundary edges and states
the εi

j over the i-th edge and in j-th position from top to bottom, as in Section 5.2 but
with more than one edge.
It is an Oq2(SL2)⊗n-comodule morphism because it is an Oq2(SL2)-comodule morphism
on each coordinate by the same calculations as in Proposition 5.2.2. It is natural in TL⊗n

because it is a natural in each coordinate by the same calculations as in Proposition 5.2.3.
It is an isomorphism by the same arguments as in Theorem 5.2.4. Namely, let W =
V1 ⊗ · · · ⊗ Vn ∈ TL⊗n and f : W → S (S), split W = ⊕iWi and f = ⊕fi with Wi =
Vi,1⊗· · ·⊗Vi,n simple and choose wi ∈ Wi∖{0}. Choose ai representing fi(wi) and denote
by αi its underlying tangle and ε⃗i,1, . . . , ε⃗i,n its states. Include Wi

gi
↪→ V ⊗ni,1 ⊗· · ·⊗V ⊗ni,n

by mapping wi to vε⃗i,1 ⊗ · · · ⊗ vε⃗i,n
, and set

St−1
Wi

(fi) = αi ◦ (gi ▷ Id∅) ∈ HomSkV (S)(Wi ▷ ∅, ∅) .

Then the inverse of St is given by

St−1
W (f) = ⊕i St−1

Wi
(fi) ∈ HomSkV (S)(W ▷ ∅, ∅)

and does not depend on the choice of representative.
As in Proposition 5.2.5, because every boundary edge of S is labelled left, the product
inherited from the internal endomorphism object structure is still given by α with pre-
scribed inputs vε⃗i,1 ⊗ · · · ⊗ vε⃗i,n

times β with prescribed inputs vη⃗i,1 ⊗ · · · ⊗ vη⃗i,n
equals

α ◦ (Id ▷ β) with prescribed inputs (vε⃗i,1 ⊗ vη⃗i,1) ⊗ · · · ⊗ (vε⃗i,n
⊗ vη⃗i,n

) which is the usual
product on S (S). □

5.3.4 The half twist on Oq2(SL2)–comod
In the last subsection, we only allowed left SkV(R2)-actions. We study here how to

change from left to right actions using the half twist in the case V = Oq2(SL2)–comodfin.
Remark 5.3.16: As we saw, a half twist on V is usually not necessary to the general study
of internal skein algebras, but it is needed to relate them to stated skein algebras when
there are right edges, and to mirror their excision properties. When one sees a boundary
edge at the right instead of the left, it has very different effects on both sides. For stated
skein algebras, it does not change the vector space, nor the algebra structure, but switches
the right comodule structure to a left one using rot∗. For internal skein algebras, it does
not change the vector space, one keeps right comodules (AR

Σ is still an object of E) though
slightly changed: it is half-twisted, and the algebra structure is opposed. To make both
sides agree, one needs to switch the comodule structure of the internal skein algebra
while taking the opposite of its algebra structure. This is done very naturally by using
S. Therefor one expects that the half twist on Oq2(SL2)–comod should be the difference
between switching the comodule structure using rot∗ and switching it using S. This is
Proposition 5.3.26, but we give a more complete and algebraic definition below. 3

Definition 5.3.17 (Section 4.1 in [ST09], for categories of comodules):
A half-coribbon Hopf algebra is a coribbon Hopf algebra H equipped with a half-coribbon
functional, i.e. a map t : H → k such that:
(1) t is invertible by convolution: ∃ t−1 : H → k such that

t(a(1))t−1(a(2)) = t−1(a(1))t(a(2)) = ε(a),
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(2) t squares to the twist: t(a(1))t(a(2)) = θ(a) and
(3) compatibility with product: t(a.b) = t(b(1))t(a(1))R(a(2) ⊗ b(2)). ♢

Definition 5.3.18: The half-coribbon functional induces a half twist ht on the category
H–comod by

htV : V ∆→ V ⊗H Id⊗t−→ V .

It is an isomorphism of vector space with ht−1
V : V ∆→ V ⊗H Id⊗t−1

−→ V . The half-coribbon
functional is not supposed to be central though, and this means that htV is not an H-
comodule morphism. There is a unique comodule structure on (the target) V that makes
it a comodule morphism, namely

∆ht := (htV ⊗ IdH) ◦∆ ◦ ht−1
V .

We denote by V ht the vector space V equipped with the coaction ∆ht. Now, htV : V → V ht

is an isomorphism of H-comodules.
One has a functor

(−)ht : H–comod→ H–comod
which sends an object V to the half-twisted V ht and a morphism f : V → W to fht =
htW ◦f◦ht−1

V : V ht → W ht. It is defined so that ht : Id⇒ (−)ht is a natural isomorphism.♢

As maps of vector spaces, one simply has:

fht = (IdW ⊗ t) ◦∆W ◦ f ◦ (IdV ⊗ t−1) ◦∆V

= (IdW ⊗ t) ◦∆W ◦ (IdW ⊗ t−1) ◦ (f ⊗ IdH) ◦∆V

= (IdW ⊗ t) ◦∆W ◦ (IdW ⊗ t−1) ◦∆W ◦ f = htW ◦ ht−1
W ◦ f = f

In particular htV ht = htht
V = htV . The square of t is θ so htV ht ◦ htV = θV , and θ is central

so (V ht)ht = V , and (−)ht ◦ (−)ht = IdH–comod.
Regarding the monoidal structure, let V and W be two H-comodules. Remember that
the braiding is defined as cV,W : V ⊗W R24◦(∆V ⊗∆W )−→ V ⊗W fl→ W⊗V . The third condition
gives that

htV⊗W = htV ⊗ htW ◦ (fl ◦ cV,W )
so fl ◦ htV⊗W = htW ⊗ htV ◦ cV,W . In particular, fl : (V ⊗ W )ht → W ht ⊗ V ht is an
H-comodule isomorphism.
Definition 5.3.19: For V a ribbon category, let ht– RibV be the full subcategory of
RibV(R2) spanned by objects of the form [n] ⊆ R2 but now allowing either blackboard or
anti-blackboard framing for every point. This subcategory is still ribbon and is stable by
the functor (−)ht, and equipped with ht : Id⇒ (−)ht. It also contains the category RibV
of blackboard framed points. ♢

Theorem 5.3.20 (Theorem 4.11 in [ST09]): Let H be a half-coribbon Hopf algebra.
There is a unique monoidal functor

ht– RT : ht– RibH–comodfin → H–comodfin

extending RT and commuting with both (−)ht and ht, so preserving the “half-ribbon
structure”.

167



a higher algebraic approach to non-semisimple quantum invariants

Remark 5.3.21: This half-twisted Reshetikhin–Turaev functor also gives an equivalence
of categories SkV(R2) ≃ V but this time with much nicer properties regarding the half
twist. In the usual Reshetikhin–Turaev functor one only prescribes where to send points
with blackboard framing and well-placed on the real line. For framed points not of this
form, one has to choose an isomorphism with one of these, like in Remark 1.2.20, but
these choices are quite arbitrary. Then the half twist sends blackboard framed points
to anti-blackboard framed points which are re-identified with blackboard framed points
via these arbitrary isomorphisms. With the half-twisted Reshetikhin–Turaev functor one
also prescribes where to send anti-blackboard framed points, so one controls closely what
happens with the half twist, namely the half twist on SkV(R2) is mapped to the half twist
on V .
Note however that unlike on SkV(R2), the half twist on V is not strictly anti-monoidal
(indeed it is the identity on underlying vector spaces) but (X⊗Y )ht ≃ Y ht⊗Xht is simply
given by the flip of tensors. A bit like the R-matrix, the half twist gives the difference
between the monoidal structure on H–comod and the symmetric one on Vectk. Formally,
this error lies in the fact that the inclusion of V in SkV(R2) is only monoidal up to natural
isomorphism, and this isomorphism, given in Remark 1.2.21, maps by the half twist to
the flip of tensors. 3

In the case of Oq2(SL2), we can define a half-coribbon functional on the generators by

t

(
a b
c d

)
=
(

0 −q 5
2

q
1
2 0

)
. This tells in particular how the half twist acts on the stan-

dard corepresentation V , namely

htV (v+) = q
1
2v− = C(−)−1v− and htV (v−) = −q 5

2v+ = C(+)−1v+ .

For states η ∈ {±}, we will write htV (η) = −η.C(−η)−1.
Note that [ST09] introduces another half-coribbon element corresponding to the matrix(

0 q
3
2

−q 3
2 0

)
, but our choice is imposed by conventions from stated skein algebras.

To define it on all Oq2(SL2) we prefer a geometric description on S (B). We would like
to give the same definition as for the coribbon functional θ with a half twist instead of
a full twist, but in the definition of stated skein algebras one only allows upward-framed
boundary points, which would map to downward-framed points after the half twist. Still,
we know how to do the “global” half twist on many strands (without twisting the framing),
and we only need to add a “local” half twist on each strand, which are implicitly coloured
by V , on which we know how the half twist acts.

Proposition 5.3.22: The coribbon Hopf algebra S (B) is half-coribbon with half-
coribbon functional

t


•

<•
>

εn ηm

...
...

ε1 η1

α

 := ε


•

<•
>

εn

htV (ηm)
...

...

ε1

htV (η1)
α

 = ε


•

>

•

< η1

−ε1.C(ε1)−1

...
...

ηm

−εn.C(εn)−1

α

 .

By Remark 5.1.6, htS (B)(α) = (Id ⊗ t) ◦ ∆(α) is the stated tangle represented in the
middle, and by a left version of Remark 5.1.6, (t ⊗ Id) ◦ ∆(α) is the stated tangle
represented in the right.
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Proof : These two formulations prove that t is well defined on S (B) as it respects the
boundary relations on the left edge by the first and on the right one by the second. So
we begin by proving that these two formulations actually coincide. Let β ∈ S (B), then :

ε


•

<•
>

εn

−ηm.C(−ηm)−1

...
...

ε1

−η1.C(−η1)−1
β

 ε=ε◦S= ε


•

>

•

< −εn.C(εn)−1

ηm.C(−ηm)−1.C(−ηm)

...
...

−ε1.C(ε1)−1

η1.C(−η1)−1.C(−η1)

β



= ε


• <

•

>η1

−ε1.C(ε1)−1

...
...

ηm

−εn.C(εn)−1

β

 ε=ε◦rot∗= ε


•

>

•

< η1

−ε1.C(ε1)−1

...
...

ηm

−εn.C(εn)−1

β


where the second equality is only a change of picture representation, not of stated tangles,
coming from switching the orientation of the edges, see [BW11, Section 3.5].
The convolution inverse t−1 of t is obtained the same way as the middle term but with
the inverse half twist and ht−1

V on states. Indeed by Remark 5.1.6, (Id ⊗ t−1) ◦ ∆(α) is
α with an inverse half twist at the right and ht−1

V on right states. Thus (t ⊗ t−1) ◦ ∆ is
the counit of α with an inverse half twist and a half twist at the right, and htV ◦ ht−1

V on
right states, namely the counit of α. Similarly, (t−1 ⊗ t) ◦∆ = ε.
One directly checks that htV ◦ htV = θV = −q3IdV on the standard corepresentation.
Then (Id ⊗ t) ◦ ∆(α) is α with a half twist at the right and htV on right states, and
(t⊗ t) ◦∆(α) is the counit of α with a full twist (without framing twist) at the right and
θV on right states. This is exactly the full twist by separating the unframed full twist and
the full twists on framings:

θ(α) = ε


•

<•
>

α

 ε=(ε⊗ε)◦∆= ε


•

<•
> ν1

...
νm

α

 ε


•

<•
>

νm ηm

...
...

ν1 η1

 = ε


•

<•
> −q3η1

...
−q3ηm

α


Finally,

t(α.β) = ε


•

>

•

<

−←−ε .C(ε⃗)−1

−←−η .C(η⃗)−1

β

α

 ε=(ε⊗ε)◦∆= ε


•

<•
>

−←−ε .C(ε⃗)−1 ν⃗

µ⃗−←−η .C(η⃗)−1

 ε


•
>

•

<

ν⃗

µ⃗

β

α


ε◦m=ε⊗ε= t(β(1)).t(α(1)).R(α(2) ⊗ β(2))

□

Definition 5.3.23: Let S be a marked surface and e a boundary edge, with orientation
induced by the one of S. The inversion along the edge e is the morphism of k-vector-
spaces inve : S (S)→ S (S) given on a stated tangle α by ordering the heights according
to the orientation of e, then switching height order vertically, then taking opposite states
and some coefficients, namely:

inve


•

<•

ηm

...

η1
α

 :=

•

>•

−ηm.C(ηm)

...

−η1.C(η1)
α =

•

<•

ht−1
V (η1)

...

ht−1
V (ηm)

α .

It is well-defined by [CL22, Proposition 2.7]. Note that inve is neither an algebra morphism
nor a comodule morphism. ♢
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Proposition 5.3.24: Let er be the right edge of the bigon and α ∈ S (B), then t(α) =
ε ◦ inv−1

er
(α).

In particular, by Remark 5.1.6, for S a marked surface with a right edge e, the half twist
acts on S (S) as inv−1

e .

Proof : Indeed,

t ◦ inver(α) = t


•

<•
>

ht−1
V (η1)

...

ht−1
V (ηm)

α

 = ε


•

<•
> htV ◦ ht−1

V (η1)
...
htV ◦ ht−1

V (ηm)
α

 = ε(α).

□

Remark 5.3.25: In [CL22, Section 3.4] the counit is defined as ε = i∗◦inver , where i is the
inclusion of the bigon in the monogon. Surprisingly enough, the half coribbon functional
is then t = i∗ and is simpler to write. This suggests that there is a half twist built in the
construction of stated skein algebras. We claim this comes from the passage from right
to left comodule structure. 3

If A is a right comodule over a Hopf algebra H, it is naturally a left comodule with
∆L = fl ◦ (IdA⊗S) ◦∆, and we will consider these two as the ”same” comodule. Indeed,
one has an isomorphism of categories

(−)L : H–comod→ comod–H

which is the identity on vector spaces, switches the action as above, and is the identity on
morphisms. However, when passing from right to left edges – and comodule structures –
on stated skein algebras, one uses another way to see a right comodule A as a left, namely
with ∆l = fl ◦ (IdA ⊗ rot∗) ◦∆. Again one has

(−)l : H–comod→ comod–H

with the identity on morphisms. So we have two functors (−)L and (−)l and we claim
that the difference between them is precisely a half twist:

Proposition 5.3.26: One has (−)l = (−)L ◦ (−)ht and (−)L = (−)l ◦ (−)ht.
Equivalently, the map htl

A : Al → AL is an isomorphism of left Oq2(SL2)-comodules.

Proof : All these functors are the identity on morphisms and only change the comodule
structure. The map htl

A : Al → (Aht)l is just htA as a map of vector spaces and is an
isomorphism of vector spaces. The comodule structure on (Aht)l is the unique so that htl

A

is a comodule morphism. We show that it is a comodule morphism Al → AL, and hence
that AL = (Aht)l. Let a ∈ A, one compares

∆L ◦ htA(a) = ∆L(a(1) ⊗ t(a(2))) = Sa(2).t(a(3))⊗ a(1)

and

(Id⊗ htA) ◦∆l = (Id⊗ htA)(rot∗(a(2))⊗ a(1)) = rot∗(a(3)).t(a(2))⊗ a(1) .
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We show directly that for β ∈ S (B), we have Sβ(1).t(β(2)) = rot∗(β(2)).t(β(1)):

S ◦ (Id⊗ t) ◦∆(β) = S


•

<•
>

εn

−ηm.C(−ηm)−1

...
...

ε1

−η1.C(−η1)−1
β



=


•

>

•

< −εn.C(εn)−1

ηm.C(−ηm)−1.C(−ηm)

...
...

−ε1.C(ε1)−1

η1.C(−η1)−1.C(−η1)

β



=


• <

•

>η1

−ε1.C(ε1)−1

...
...

ηm

−εn.C(εn)−1

β

 rot2
∗=Id= rot∗


•

>

•

< η1

−ε1.C(ε1)−1

...
...

ηm

−εn.C(εn)−1

β


= rot∗ ◦ (t⊗ Id) ◦∆(β)

□

Proposition 5.3.27: Given two right Oq2(SL2)-comodules A and B one has

(A⊗B)inv = HH0(AL ⊗B) = HH0((Aht)l ⊗B) .

Proof : The first equality is true in any Hopf algebra by a direct computation, and the
second is just the proposition above. □

5.3.5 The general relation
We can now express the full correspondence between stated skein algebras and internal

skein algebras, with both right and left boundary edges.
On a single edge, by Remark 5.3.3 one gets AR

Σ = Aht
Σ = S (Σ)ht equipped with the

natural isomorphism (σ(−)ht)ht, using the half twist in Oq2(SL2)–comod. More precisely,
for α ∈ HomSkV (S)(∅� V, ∅) one has

σV ht(α)ht = ht−1
Aht

Σ
◦ σV ht(α) ◦ htV = ht−1

Aht
Σ
◦ σV (α ◦ (htV � ∅)) = ht−1

Aht
Σ
◦ σR

V (α) .

As in Remark 5.3.7 its algebra structure is

ht−1
Aht

Σ
◦mR ◦ htAht

Σ
⊗ htAht

Σ
= ht−1

Aht
Σ
◦m ◦ cAΣ⊗AΣ ◦ htAht

Σ
⊗ htAht

Σ

= ht−1
Aht

Σ
◦m ◦ fl ◦ htAΣ⊗AΣ = mht ◦ fl

so mop as maps of vector spaces.
Note that because S is an anti-algebra morphism, the functor (−)L is (almost strictly)
anti-monoidal (like the half twist, it is the identity on vector spaces but is anti-monoidal
on the comodule structure) namely fl : (V ⊗W )L → WL ⊗ V L is an isomorphism of left
H-comodules. Thus a right H-comodule algebra A induces a left H-comodule algebra AL

with AL ⊗ AL fl
≃ (A⊗ A)L m→ AL, namely with product mop.

When one has multiple edges one can switch the i-th right Oq2(SL2)-comodule structure
to a left using either S or rot∗ and we denote the associated functors by (−)Li and (−)li ,
one can take opposite product on the i-th coordinate which we denote by mopi , and there
are half twists on each coordinates, which we denote by hti.
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Theorem 5.3.28: Let S be a marked surface with n boundary edges labelled either as
left (numbered 1 to k) or as right (numbered k+ 1 to n) edges. There is an isomorphism
of (Oq2(SL2)⊗k,Oq2(SL2)⊗n−k)-bicomodules algebras

A
Lk+1,...,Ln

S ≃ S (S) .

Proof : To avoid confusion we denote the stated skein algebra of the marked surface S
by S R(S) when it is seen as a rightOq2(SL2)⊗n-comodule and by S (S) = S R(S)lk+1,...,ln

when it is seen as an (Oq2(SL2)⊗k,Oq2(SL2)⊗n−k)-bicomodule. We denote by m its prod-
uct, which is the same in both cases.
By Theorem 5.3.15, S R(S) is the internal skein algebra of S with every edge labelled as
left. Now by Remark 5.3.3 on coordinates k + 1, . . . , n one may take

AS := S R(S)htk+1,...,htn

as an object in E⊠n (which has skew monoidal structure ⊗) with algebra structure
mopk+1,...,opn .
Thus by Proposition 5.3.26 and [CL22, Proposition 4.1],

A
Lk+1,...,Ln

S := (S R(S)htk+1,...,htn)Lk+1,...,Ln = S R(S)lk+1,...,ln = S (S)

as (Oq2(SL2)⊗k,Oq2(SL2)⊗n−k)-bicomodules.
The algebra structure on A

Lk+1,...,Ln

S is (mopk+1,...,opn)opk+1,...,opn = m. □

Remark 5.3.29: A nice miracle with stated skein algebras is that the quantum group
Oq2(SL2), which is used to define the tangle invariants used to define stated skein algebras,
is re-obtained as the stated skein algebra of the bigon. One can see why this should be
true in internal skein algebras. By Definition 5.3.8, the internal skein algebra of the bigon
is an object AB ∈ Oq2(SL2)⊗2–comod together with a natural isomorphism

HomSK(B)((X, Y )�∅, ∅) = HomOq2 (SL2)–comod(X⊗Y, k)→̃HomOq2 (SL2)⊗2–comod(X⊗Y,AB)

for X, Y ∈ Oq2(SL2)–comod. We set AB = Oq2(SL2) with usual first right comodule
structure ∆1 = ∆ and with second comodule strucure its left one switched using L−1

2
namely ∆2 = fl ◦ (S−1 ⊗ Id) ◦∆. The demanded isomorphism is given by f 7→ f̃ where

f̃(x⊗ y) = x(2).f(x(1) ⊗ y) = S(y(2)).f(x⊗ y(1)) .

Its inverse is given by f̃ 7→ ε ◦ f̃ . 3

Remark 5.3.30: Despite this theorem, it is still annoying that in the simplest case one
wants to see the boundary at the right for stated skein algebras and at the left for internal
skein algebras. This should be solvable by considering the category of left (instead of right)
Oq2(SL2)-comodules as coefficients, so it is a minor issue. 3

5.3.6 Excision properties of multi-edges internal skein algebras
Let S1 ←↩ C ↪→ S2 be a right and a left thick embeddings in two marked surfaces and

S their collar gluing. Namely, C embeds as a sequence of k right boundary edges c⃗1 of
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Benjamin Häıoun CHAPTER 5. STATED VS INTERNAL SKEIN ALGEBRAS

∂S1 and as k left boundary edges c⃗2 of ∂S2, and S is the gluing S1 ∪c⃗1=c⃗2 S2. We show
how to compute AS from AS1 and AS2 .
The general idea goes as follows. In the case where S1 and S2 both have a single boundary
edge, so k = 1, one wants to describe endomorphisms α of the empty set in SkV(S). By
Corollary 5.1.14 they are described by a morphism α1 : ∅ → ∅ � V in SkV(S1) and a
morphism α2 : V � ∅ → ∅ in SkV(S2), linked by an isomorphism ιV : ∅ � V → V � ∅,
which is just a slanted skein crossing over C in SkV(S), see the idea of proof of Theorem
5.1.13. One can reconstruct α as α = (Id∅, α2)◦ιV ◦(α1, Id∅). The morphisms α1,2 are well
defined up to balancing, namely naturality of ι. Now, by definition of AS1 and AS2 , they
are described by some f1 ∈ HomE(1V , AS1⊗V ) and f2 ∈ HomE(V,AS2). Composing them
mimicking the reconstruction of α gives a morphism f = (IdAS1

⊗f2)◦f1 : 1V → AS1⊗AS2 ,
namely an invariant inside AS1 ⊗AS2 . This suggests AS ≃ (AS1 ⊗AS2)inv, which we will
prove below.
Now we need to define what we mean by invariants of a tensor product in any ribbon
category V .
Definition 5.3.31: Let V be a ribbon category, E = Free(V) and n ≥ 2. For 1 ≤ i <
j ≤ n− 1 we denote the tensor product of coordinates i and j by:

⊗i,j :
{

V⊗n → V⊗n−1

(V1, . . . , Vn) 7→ (V1, . . . , Vi−1, Vi ⊗ Vj, Vi+1, . . . , Vj−1, Vj+1, . . . , Vn) .

For k⃗1 < k⃗2 two sequences of k distinct indices we denote the tensor product of coordinates
k⃗1 with coordinates k⃗2 by ⊗k⃗1 ,⃗k2

: V⊗n → V⊗n−k. It extends to ⊗k⃗1 ,⃗k2
: E⊠n → E⊠n−k by

cocontinuity.
We denote the unit on i-th coordinate by:

ηi :
 V⊗n−2 → V⊗n−1

(V1, . . . ,
∨
Vi, . . . ,

∨
Vj, . . . , Vn) 7→ (V1, . . . , 1V , . . . ,

∨
Vj, . . . , Vn)

and the unit on k⃗1-th coordinates as ηk⃗1
: V⊗n−2k → V⊗n−k.

Let X ∈ E⊠n, we want to define its (k⃗1, k⃗2)-invariants X inv
k⃗1,k⃗2 ∈ E⊠n−2k. One only needs

to describe morphisms from any V⃗ ∈ V⊗n−2k to it. We set:

X
inv

k⃗1,k⃗2 (V⃗ ) = HomE⊠n−2k(V⃗ , X inv
k⃗1,k⃗2 ) := HomE⊠n−k(ηk⃗1

(V⃗ ),⊗k⃗1 ,⃗k2
(X)).

For X ∈ E⊠n1 ⊠ E⊠k⃗1 and Y ∈ E⊠k⃗2 ⊠ E⊠n2 we write X ⊗k⃗1 ,⃗k2
Y := ⊗k⃗1 ,⃗k2

(X, Y ). Then:

(X, Y )inv
k⃗1,k⃗2 ((Vn⃗1 , Vn⃗2)) := HomE⊠n1+n2+k((Vn⃗1 , 1V⊗k , Vn⃗2), X ⊗k⃗1 ,⃗k2

Y )
= HomE⊠n1+n2+k((Vn⃗1 , 1V⊗k)⊗k⃗1 ,⃗k2

(1V⊗k , Vn⃗2), X ⊗k⃗1 ,⃗k2
Y ).
♢

For V = Oq2(SL2)–comodfin we get a notion of invariants for bicomodules (Xi, Xj) ∈ V⊗2

where we first “merge” the two comodule structures (by the product, in the definition of
the tensor product) and then take invariants in the usual sense, namely maps k → Xi⊗Xj.

Theorem 5.3.32: Let S1 be a marked surface with n1 + k boundary edges with a se-
quence of k right boundary edges c⃗1 (numbered k⃗1 = {n1 + 1, . . . , n1 + k}) and S2 a
marked surface with n2 + k boundary edges with a sequence of k left boundary edges
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c⃗2 (numbered k⃗2 = {n1 + k + 1, . . . , n1 + 2k}). We write n⃗1 = {1, . . . , n1} and
n⃗2 = {n1 + 2k + 1, . . . , n1 + 2k + n2} the indices of the other edges of S1 and S2.
Let S = S1∪c⃗1=c⃗2 S2, then one has an isomorphism AS ≃ (AS1 , AS2)inv

k⃗1,k⃗2 in E⊠n1+n2.
Note that one has two thick embeddings S1 ←↩ C ↪→ S2 where C = ⊔k(0, 1) and S is
their collar gluing.

Proof : We describe a natural isomorphism

σ : HomSkV (S)(− ▷ ∅, ∅) ⇒̃ HomE⊠n1+n2 (−, (AS1 , AS2)inv
k⃗1,k⃗2 )

:= HomE⊠n1+n2+k(ηk⃗1
(−), AS1 ⊗k⃗1 ,⃗k2

AS2) .

We write (σ1)(Vn⃗1 ,V
k⃗1

) : HomSkV (S1)(Vn⃗1 ▷ ∅, ∅� Vk⃗1
)⇒̃HomE⊠n1+k((Vn⃗1 , 1V⊗k), AS1 ⊗k⃗1

Vk⃗1
)

for Vn⃗1 ∈ V⊗n1 and Vk⃗1
∈ V⊗k, obtained from the defining natural isomorphism of AS1

by Remark 5.3.12. We write σ2 : HomSkV (S2)(− ▷ ∅, ∅)⇒̃HomE⊠n2+k(−, AS2) the defining
natural isomorphism of AS2 .
Step 1 (decomposition in S). Let V⃗ = (Vn⃗1 , Vn⃗2) ∈ V⊗n1+n2 and α ∈ HomSkV (S)(V⃗ ▷
∅, ∅) a morphism from Vn⃗1 ▷∅ in S1 and Vn⃗2 ▷∅ in S2 to the empty set in S. By Corollary
5.1.14, α decomposes into a pair (α1, α2) as

α = (Id∅, α2) ◦ ι∅,V
k⃗

,Vn⃗2▷∅ ◦ (α1, IdVn⃗2▷∅)

with α1 ∈ HomSkV (S1)(Vn⃗1 ▷ ∅, ∅�k⃗1
Vk⃗) and α2 ∈ HomSkV (S2)(Vk⃗ �k⃗2

(Vn⃗2 ▷ ∅), ∅) for some
Vk⃗ ∈ SkV(C × (0, 1)) ≃ V⊗k, with an implicit sum. Graphically,

α1

α2

•
Vn⃗1 ▷ ∅

•
Vn⃗2 ▷ ∅

•
�V

k⃗

ι
•

V
k⃗
�

This decomposition is unique up to balancing, namely if α2 can be written β2◦(γ�IdVn⃗2�∅),
with β2 ∈ HomSkV (S2)(Wk⃗ � (Vn⃗2 ▷ ∅), ∅) and γ ∈ HomSkV (C×(0,1))(Vk⃗,Wk⃗) for some Wk⃗ in
SkV(C × (0, 1)), then:

(α1, β2 ◦ (γ � IdVn⃗2�∅)) ∼ ((Id∅ � γ) ◦ α1, β2).

Step 2 (re-composition in R2). The morphism α1 is described by a morphism

f1 = (σ1)(Vn⃗1 ,V
k⃗

)(α1) ∈ HomE⊠n1+k((Vn⃗1 , 1V⊗k), AS1 ⊗k⃗1
Vk⃗)

and α2 is described by

f2 = (σ2)(V
k⃗

,Vn⃗2 )(α2) ∈ HomE⊠n2+k((Vk⃗, Vn⃗2), AS2) .

These morphisms are well-defined (depend only on α) up to balancing, namely if α2 =
β2 ◦ (γ� IdVn⃗2�∅) with β2 described by g2 = σ2(β2) ∈ HomE⊠n2+k((Wk⃗, Vn⃗2), AS2), then by
naturality of σ1 and σ2, f2 = g2 ◦ (γ, IdVn⃗2

) and the above relation becomes

(f1, g2 ◦ (γ, IdVn⃗2
)) ∼ ((IdAS1

⊗k⃗1
γ) ◦ f1, g2) .
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Thus the map

σV⃗ (α) := (IdAS1
⊗k⃗1 ,⃗k2

f2) ◦ (f1, IdVn⃗2
) ∈ HomE⊠n1+n2+k((Vn⃗1 , 1V⊗k , Vn⃗2), AS1 ⊗k⃗1 ,⃗k2

AS2)

is well defined, because this relation is killed. Graphically,

f1

f2

•
Vn⃗1

•
Vn⃗2

•
⊗

k⃗1
V

k⃗

•
V

k⃗
⊗

k⃗2

•
AS1

•
AS1 •

AS2
⊗

k⃗1 ,⃗k2

1V⊗k

Step 3 (naturalilty). Naturality is quite obvious from the picture: one can insert
morphisms from below. For g1 ∈ HomE⊠n1 (Wn⃗1 , Vn⃗1) and g2 ∈ HomE⊠n2 (Wn⃗2 , Vn⃗2), by
naturality of σ1 and σ2, one has σ1(α1◦(g1▷Id∅)) = f1◦g1 and σ2(α2◦(g2▷Id∅)) = f2◦g2.
Now α ◦ ((g1, g2) ▷ Id∅) splits in Step 1 as

(Id∅, α2) ◦ ι∅,V
k⃗

,Vn⃗2▷∅ ◦ (α1, IdVn⃗2▷∅) ◦ (g1 ▷ Id∅, g2 ▷ Id∅)
= (Id∅, α2 ◦ (g2 ▷ Id∅)) ◦ ι∅,V

k⃗
,Wn⃗2▷∅ ◦ (α1 ◦ (g1 ▷ Id∅), IdWn⃗2▷∅).

Thus:

σ(α ◦ ((g1, g2) ▷ Id∅)) = (IdAS1
⊗k⃗1 ,⃗k2

(f2 ◦ g2)) ◦ ((f1 ◦ g1), IdWn⃗2
) = σ(α) ◦ (g1, g2).

We now construct an inverse to σ by the same steps in reverse order:
Step 2−1 (decomposition in R2). We want to decompose a morphism

f ∈ HomE⊠n1+n2+k(ηk⃗1
(V⃗ ), AS1 ⊗k⃗1 ,⃗k2

AS2) as f = (IdAS1
⊗k⃗1 ,⃗k2

f2) ◦ (f1, IdVn⃗2
)

with f1 ∈ HomE⊠n1+k((Vn⃗1 , 1V⊗k), AS1 ⊗k⃗1
Vk⃗) and f2 ∈ HomE⊠n2+k((Vk⃗, Vn⃗2), AS2).

This is easy in V⊗n1+n2+k, as all maps split on each coordinates. For A⃗1 = (An⃗1 , Ak⃗1
) in

V⊗n1+k and A⃗2 = (Ak⃗2
, An⃗2) in V⊗n2+k, a morphism

f ∈ HomV⊗n1+n2+k((Vn⃗1 , 1V⊗k , Vn⃗2), A⃗1 ⊗k⃗1 ,⃗k2
A⃗2)

is, up to a linear combination, of the form (gn⃗1 , gk⃗1
, gn⃗2) with

gn⃗1 : Vn⃗1 → An⃗1 , gk⃗1
: 1V⊗k → Ak⃗1

⊗k⃗1 ,⃗k2
Ak⃗2

and gn⃗2 : Vn⃗2 → An⃗2 .

Then, set Vk⃗ = Ak⃗2
,

f1 = gn⃗1 ⊗ gk⃗1
∈ HomV⊗n1+k((Vn⃗1 , 1V⊗k), A⃗1 ⊗k⃗1

Vk⃗)

and
f2 = IdV

k⃗
⊗ gn⃗2 ∈ HomV⊗n2+k((Vk⃗, Vn⃗2), A⃗2) .

One has
f = (IdA⃗1

⊗k⃗1 ,⃗k2
f2) ◦ (f1, IdVn⃗2

)
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as required.
This decomposition is unique up to balancing, if

f = (IdA⃗1
⊗k⃗1 ,⃗k2

f ′2) ◦ (f ′1, IdVn⃗2
)

one can split f ′2, which has to coincide with f2 on n⃗2 coordinates, and is some γ : Wk⃗ → Ak⃗2

on k⃗2 coordinates (which are now k⃗1 coordinates after the ⊗k⃗1 ,⃗k2
). Similarly, f ′1 coincides

with f1 on n⃗1 coordinates, and is some δ : 1V → Ak⃗1
⊗ Wk⃗ on k⃗1 coordinates. On k⃗1

coordinates one has (IdA
k⃗1
⊗k⃗1

γ) ◦ δ = gk⃗1
, so the only relation is

((−, (IdA
k⃗1
⊗k⃗1

γ) ◦ δ), (IdV
k⃗
,−)) ∼ ((−, δ), (γ,−)) .

Now, AS1 and AS2 are not objects of V⊗n1+k and V⊗n2+k, but are obtained as canonical
colimits of such objects, AS1 = colimi A⃗1,i and AS2 = colimj A⃗2,j, so

AS1 ⊗k⃗1 ,⃗k2
AS2 = colimi,j A⃗1,i ⊗k⃗1 ,⃗k2

A⃗2,j

by cocontinuity. The object ηk⃗1
(V⃗ ) = (Vn⃗1 , 1V⊗k , Vn⃗2) is compact projective in E⊠n1+n2+k

therefore

HomE⊠n1+n2+k(ηk⃗1
(V⃗ ), AS1 ⊗k⃗1 ,⃗k2

AS2) = colimi,j HomV⊗n1+n2+k(ηk⃗1
(V⃗ ), A⃗1,i ⊗k⃗1 ,⃗k2

A⃗2,j) .

A morphism f ∈ HomE⊠n1+n2+k(ηk⃗1
(V⃗ ), AS1 ⊗k⃗1 ,⃗k2

AS2) factorises through a single (actu-
ally, a linear combination of) A⃗1,i ⊗k⃗1 ,⃗k2

A⃗2,j as:

f : ηk⃗1
(V⃗ ) fi,j→ A⃗1,i ⊗k⃗1 ,⃗k2

A⃗2,j

can1,i⊗k⃗1,k⃗2
can2,j

−→ AS1 ⊗k⃗1 ,⃗k2
AS2 .

There it splits as fi,j = (IdA⃗1,i
⊗k⃗1 ,⃗k2

f2) ◦ (f1, IdVn⃗2
), and

f = (IdAS1
⊗k⃗1 ,⃗k2

(can2,j ◦ f2)) ◦ ((can1,i ⊗k⃗1
IdV

k⃗
) ◦ f1, IdVn⃗2

).

This fi,j is unique up to the relations in the above colimit, namely for

h1 ⊗k⃗1 ,⃗k2
h2 : A⃗1,i ⊗k⃗1 ,⃗k2

A⃗2,j → A⃗1,i′ ⊗k⃗1 ,⃗k2
A⃗2,j′

over AS1 ⊗k⃗1 ,⃗k2
AS2 one has

fi′,j′ = (h1 ⊗k⃗1 ,⃗k2
h2) ◦ fi,j

and
f = (can1,i′ ⊗k⃗1 ,⃗k2

can2,j′) ◦ fi′,j′ .

Split h2 as (hk⃗2
, hn⃗2), then f decomposes through fi′,j′ as:

f = (IdAS1
⊗k⃗1 ,⃗k2

(can2,j′ ◦ (IdV
k⃗
′ , hn⃗2) ◦ f2)) ◦ ((can1,i′ ⊗k⃗1

IdV
k⃗
′) ◦ (h1⊗k⃗1

hk⃗2
) ◦ f1, IdVn⃗2

).

Set
F1 = (can1,i ⊗k⃗1

IdV
k⃗
) ◦ f1 = ((can1,i′ ◦ h1)⊗k⃗1

IdV
k⃗
) ◦ f1

and
F2 = can2,j′ ◦ (IdV

k⃗
′ , hn⃗2) ◦ f2 = can2,j′ ◦ (IdV

k⃗
′ , hn⃗2 ◦ gn⃗2).
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The first decomposition was

(F1, can2,j ◦ f2) = (F1, can2,j′ ◦ (hk⃗2
, hn⃗2) ◦ (IdV

k⃗
, gn⃗2)) = (F1, F2 ◦ (hk⃗2

, IdVn⃗2
))

and the second is

((can1,i′ ⊗k⃗1
IdV

k⃗
′) ◦ (h1 ⊗k⃗1

hk⃗2
) ◦ f1, F2) = ((IdAS1

⊗k⃗1
hk⃗2

) ◦ F1, F2)

so the only relation is

(F1, F2 ◦ (hk⃗2
, IdVn⃗2

)) ∼ ((IdAS1
⊗k⃗1

hk⃗2
) ◦ F1, F2)

Step 1−1 (re-composition in S). We decompose f using last step as

f = (IdAS1
⊗k⃗1 ,⃗k2

f2) ◦ (f1, IdVn⃗2
)

with f1 ∈ HomE⊠n1+k((Vn⃗1 , 1V⊗k), AS1 ⊗k⃗1
Vk⃗) and f2 ∈ HomE⊠n2+k((Vk⃗, Vn⃗2), AS2).

They are described by morphisms

α1 := (σ1)−1
(Vn⃗1 ,V

k⃗
)(f1) ∈ HomSkV (S1)(Vn⃗1 ▷ ∅, ∅�k⃗1

Vk⃗)

and
α2 := (σ2)−1

(V
k⃗

,Vn⃗2 )(f2) ∈ HomSkV (S2)(Vk⃗ �k⃗2
(Vn⃗2 ▷ ∅), ∅) .

The above relation becomes

(α1, β2 ◦ (γ � IdVn⃗2�∅)) ∼ ((Id∅ � γ) ◦ α1, β2) .

The morphism
σ−1

V⃗
(f) := (Id∅, α2) ◦ ι∅,V

k⃗
,Vn⃗2▷∅ ◦ (α1, IdVn⃗2▷∅)

is well defined, because this relation is killed.
Step 4 (isomorphism). One easily checks that σ−1 defined this way is an inverse to σ.
Let α ∈ HomSkV (S)(V⃗ ▷ ∅, ∅) that decomposes as

α = (Id∅, α2) ◦ ι∅,V
k⃗

,Vn⃗2▷∅ ◦ (α1, IdVn⃗2▷∅) ,

then σV⃗ (α) := (IdAS1
⊗k⃗1 ,⃗k2

f2)◦(f1, IdVn⃗2
) is already decomposed with α1 = (σ1)−1

(Vn⃗1 ,V
k⃗

)(f1)
and α2 = (σ2)−1

(V
k⃗

,Vn⃗2 )(f2), so:

σ−1
V⃗

(σV⃗ (α)) := (Id∅, α2) ◦ ι∅,V
k⃗

,Vn⃗2▷∅ ◦ (α1, IdVn⃗2▷∅) = α.

Similarly, let f ∈ HomE⊠n1+n2+k(ηk⃗1
(V⃗ ), AS1 ⊗k⃗1 ,⃗k2

AS2) that decomposes as

f = (IdAS1
⊗k⃗1 ,⃗k2

f2) ◦ (f1, IdVn⃗2
)

then σ−1
V⃗

(f) := (Id∅, α2) ◦ ι∅,V
k⃗

,Vn⃗2▷∅ ◦ (α1, IdVn⃗2▷∅) is already decomposed with f1 =
(σ1)(Vn⃗1 ,V

k⃗
)(α1) and f2 = (σ2)(V

k⃗
,Vn⃗2 )(α2), so:

σV⃗ (σ−1
V⃗

(f)) := (IdAS1
⊗k⃗1 ,⃗k2

f2) ◦ (f1, IdVn⃗2
) = f

and σ−1 is indeed an inverse to σ. □
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Remark 5.3.33: When V = Oq2(SL2)–comodfin, with AS ≃ S (S), one obtains the same
excision properties as in Theorem 5.1.8. One uses repeatedly Theorem 5.1.8 on S1 ⊔S2
on each couple of boundary edges to glue. This gives

S (S) ≃ HH0
k⃗1,k⃗2

(S (S1)⊗S (S2))
:= {x ∈ S (S1)⊗S (S2) / ∀1 ≤ i ≤ k, ∆n1+i(x) = fl ◦∆l

n1+n2+k+i(x)} .

By Proposition 5.3.27 on all couples of edges to glue one gets

HH0
k⃗1,k⃗2

((S (S1),S (S2))) = (S R(S1)ht
k⃗1 ,S (S2))inv

k⃗1,k⃗2 .

By Theorem 5.3.28 S R(S1)ht
k⃗1 is the internal skein algebra of S1, and one obtains exactly

the formulation of Theorem 5.3.32.
Note that we described how to glue two surfaces along many edges at once and Theorem
5.1.8 describes how to glue only two edges but possibly of the same surface. The two
forms of excision are equivalent, in one way by applying it repeatedly as above and in
the other way by gluing a bigon to the two edges of the surface that one wants to glue
together. 3

Remark 5.3.34: This remark answers a natural question arising at the sight of the cutting
property of stated skein algebras: why is it not a coevaluation one sees on newly created
states when one cuts along an ideal arc? Indeed in the definition one uses ∑µ⃗ vµ⃗ ⊗ vµ⃗

though the coevaluation would give coev(1) = ∑
µ⃗ vµ⃗ ⊗ v∗µ⃗

Id⊗φ−1
7−→ ∑

µ⃗ vµ⃗ ⊗ v−←−µC(−µ⃗) in
particular matching + states to − states. The answer is that it is indeed given by a
coevaluation, but the stated skein algebra of the surface at the right is not the good
object: one must take its half-twisted version. Then the half twist re-exchanges + signs
to − signs and kills the coefficients appearing. In particular we see that there has been a
choice in the way the splitting morphism of stated skein algebras is defined, and that this
choice seems to determine both the half twist and the identification V ≃ V ∗. This is to
be put in light with the unicity of stated skein coefficients proved in [Lê18, Section 3.4].3

Remark 5.3.35: Internal skein algebras are defined for any ribbon category V , and coin-
cide with stated skein algebras when V = Oq2(SL2)–comodfin. Stated skein algebras for
SLn were very recently introduced in [LS], and one can expect to prove they coincide with
internal skein algebras for V = Oqn(SLn)–comodfin for generic q with the very same proof.
The authors actually showed it for surfaces with a single boundary interval using excision
properties with respect to gluing patterns from both theories. The constructions and ar-
guments of this chapter work more generally with any semisimple coribbon Hopf algebras
H, using the equivalence H–comod ≃ Free(H–comodfin), and are actually [GJS23]’s can-
didate for the generalisation of stated skein algebras. The results of this section show that
this generalisation extends to multiple markings, and that one obtains excision properties
immediately.
Internal skein algebras are defined more generally in [BBJ18a] for any E2-algebra A ∈ Pr
under the name moduli algebras, and the skein-theoretic description holds when A is the
free cocompletion of a ribbon category. As both moduli algebras and stated skein algebras
can be defined integrally, or at roots of unity, it would be very interesting to understand
how they compare in greater generality. So far, there is no skein-theoretic description
of the factorization homology used in the construction of moduli algebras, but it seems
credible that with extra work one could rewrite this whole theory in these integral or
non-semisimple contexts. 3
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As is, I believe, usual, once a mathematical result or insight has been known for long
enough, it has a tendency to look more and more natural and easy. Looking back at the
statements and constructions that took me years to get right, they can sometimes all seem
somewhat straightforward. Luckily, the research presented above opens to many future
directions which are all still unclear, changing, confusing and, therefore, exciting.

Define and study examples of non-semisimple (3+1)-TQFTs
This is an ongoing project with Francesco Costantino, Nathan Geer and Bertrand

Patureau-Mirand.
Few interesting examples of 4-TQFTs are known. Invertible theories associated with

modular tensor categories only depend on the signature and Euler characteristic of the 4-
manifolds. Crane–Yetter–Kauffman theories associated with ribbon fusion categories are
expected to only capture an additional dependence on the fundamental group. On simply
connected 4-manifolds it is shown to only depend on signature and Euler characteristic.
For the examples given in Chapter 3, we expect to capture an additional dependence on
spin status. It is unknown whether the construction we described could detect subtle
4-manifold topology.

Reutter showed that “semisimple” 4-TQFTs cannot detect exotic pairs, but his defi-
nition of semisimple is quite broad and encompasses most of the examples of Chapter 3,
and in particular once-extended 4-TQFTs. According to our expectation that our (3+1)-
TQFTs are fully extended, the only remaining candidates are those that do not give rise
to fully-defined TQFTs, but only to non-compact ones. In other words, we are looking
for a chromatic non-degenerate category which is not chromatic compact. We exhibited
such an example and we crucially need it to be in positive characteristic. We showed that
the resulting TQFT is indeed far from being semisimple in Reutter’s sense. The example
we give is symmetric and hence uninteresting, but it suggests that one should look at
non-trivial examples in positive characteristic.

One could look for examples whose Müger center is our symmetric example. One could
construct a ribbon category as representations of a semi-direct product of an interesting
quantum group by a finite group of order non prime with the characteristic. For this,
we need a quantum group with interesting automorphisms. In the classical example of
Uq(g) for a simple complex Lie algebra g, Hopf algebra automorphisms are described by
automorphisms of Dynkin diagrams. In characteristic 2, we could look at type A2, so
g = sl3, which has a Z/2-action. In characteristic 3, we could look at type D4 which
has a S3-action. This second example could be more interesting, because S3 has a non-
invertible irreducible representation. In the semisimple case, this is shown to be related
to having a dependence on π1 instead of on H1 in [BB18].

In another direction, super quantum groups have a representation theory which is
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rich enough to have the potential to give very interesting examples. The representation
category of SL(2|1) is not modular and non-semisimple, and this is a promising example
to study.

Describe a fully-extended version of non-semisimple WRT
We want to show the conjectures in Chapter 4.
The first and most difficult step, before discussing the relative part, is to give a skein

theoretic description of the fully extended 4-TQFT associated with a modular tensor
category V . We know natural guesses. The description in dimension 3 and 4 would
follow exactly the construction of Chapter 3, in particular admissible skein modules in
dimension 3. In dimensions 2 and lower one expects some admissible skein categories.

Note that in the semisimple case this guess in much older, but is not proven, even
as a once-extended theory. The only known part is that factorization homology form a
fully extended 2-TQFT, and that skein categories compute factorization homology in the
semisimple case.

It is a joint project with Jennifer Brown to show that admissible skein categories
compute factorization homology in the non-semisimple case.

For the rest of the TQFT, the two approaches described in the introduction still hold.
For the top-down approach, one could check that the description we give do define a
fully extended 4-TQFT. This is difficult, as defining a 4-functor is a lot of data, and that
mapping into Haugseng’s combinatorial (and not geometric) model one would need to
choose and keep track of a lot of isomorphisms.

For the bottom-up approach, one wants to use the cobordism hypothesis and identify
the induced values. The second part is tractable, one has to compute many adjoints. The
first relies on the non-proven cobordism hypothesis. It is well-accepted and one could
be happy to assume it. However, we are still left with a difficult problem, which is to
find orientation structures, i.e. one would have to show the conjectures on orientation
structures we gave. This is an ongoing project with David Jordan and Patrick Kinnear.

The second step is to carry out a similar argument, one dimension lower but in a more
complicated arrow category, for the boundary condition. We believe that this second
step will be easier. Similarly, we can guess what the values on any manifold will be, and
essentially the boundary condition always include the empty skein. This is why it is not
defined on closed 3-manifolds in the non-semisimple case. Then one should check directly
that the composition of the boundary condition with the 4-TQFT on a bounding manifold
recovers WRT and DGGPR, as claimed.

One could also give a fully-extended version of [BCGP16] TQFTs, and more generally
of non-semisimple “G-relative” TQFTs. On top of the relative layer described above in
the WRT case, one would need to see BCGP theories as a relative to the classical theory
associated with their Müger center Rep(G). Such ”twice relative” theories are quite new
and both the algebraic and the topological descriptions remain a challenge. An ambitious
application is to describe invariants of 3-manifolds equipped with a flat G-connection.
This is an ongoing project with Patrick Kinnear and David Jordan.

This fully extended description of non-semisimple WRT TQFTs brings these con-
structions into a framework where we have a standard set of tools to study them. For
example, the cobordism hypothesis with singularity entirely describes domain walls and
higher-codimensional defects between different WRT theories. The relative nature of these
theories also gives the appropriate notion for these domain walls: of course one should
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also describe how they interact with the bulk CY theories.
The very explicit requirements on input data (a 4-dualizable object V together with a

non-compact-3-dualizable morphism 1 → V) makes it very clear how to generalize these
constructions to different contexts and dimensions. One can use the same technique to
define and study derived skein modules associated with 3-dualizable E2-algebras in say
dg-categories. Note that David Ayala recently defined a notion of derived skein modules
using “beta” factorization homology which we could compare. One could also apply the
same techniques to 4-dualizable E2-algebras in bicategories. One would expect to recover
the “lasagna skein tehory” of [MWW22] associated with Khovanov homology. Indeed
they have constructions very similar to stated skein modules for 4-manifolds, and can
define analogs of skein categories associated with 3-manifolds. One can also define and
study internal skein algebras analogous to [BBJ18a,GJS23] in their context. The results
of [BBJ18a,BBJ18b] may give new results in this context.

The use of relative TQFTs to describe skein theories can be extrapolated outside the
finite realm. In particular, for representation of Uq(sl2) at generic q, we do not have a WRT
theory, but we still have a (3+ε) skein TQFT, and a boundary theory to it. I realized with
Adrien Brochier that this should be enough to give values to link complements in S3 and in
connected sums of S2×S1. This could give the missing TQFT-theoretic explanation of the
link invariants associated with 3-dualizable objects. It is also an avenue for generalization
of such link invariants. This may be the right setting to study holonomicity properties of
quantum invariants.

Study stated skein algebras via internal skein algebras
The first example of a possible application of Chapter 5 is that gluing properties of

internal skein algebras for cutting along a circle are well-known [BBJ18b]. One should be
able to express them for stated skein algebras. This idea was suggested to me by Adam
Sikora at an AIM workshop, and we indeed could guess a formula.

Now, properties of stated skein algebras for SL2 are rather well-known, and we know of
no other application there. The story changes entirely when we change SL2. Stated skein
algebras were defined by Lê and Sikora for SLn, and there less is known. In particular the
splitting morphism is not known to be injective for n ≥ 4, see [LS, Conjecture 7.12]. On
the other side, gluing properties of internal skein algebras are proven in great generality
in Chapter 5. Relating SLn stated skein algebras to internal skein algebras could be very
fruitful, and should be very similar.

Note that our relation only holds for q generic and working over a field. The correct
assumptions under which the generalization should be straightforward is that one wants
to work over the category of representations of a semisimple Hopf algebra over a field. It
would be very interesting to generalize our result outside this context.

Given a non-semisimple ribbon category V (still over a field), its “moduli algebra”
is still defined in [BBJ18a] using the Ind-completion of V . However, Cooke’s skein de-
scription of factorization homology does not hold anymore and the name “internal skein
algebra” from [GJS23] would be abusive. As mentioned, it is an ongoing project with
Jennifer Brown to extend Cooke’s result to non-semisimple settings. Then, one could
carry out the same comparison in the non-semisimple setting.

Extending this comparison to stated skein modules of 3-manifolds would also be in-
teresting. In the case of SL2 at q generic, it is rather straightforward. But recent results
of [CL] show that many surprising phenomenons happen at q a root of unity. It could be
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fruitful to study them with the algebraic tools of [BBJ18a,BBJ18b].
Finally, it would be interesting to recover the quantum trace map of [BW11] using

skein theory in a theoretical setting that makes generalizations easier. This quantum
trace map have been well studied and is known to come from a cluster structure on
stated skein algebras [Lê18,LY22], related to Fock-Goncharov coordinates. Current work
of Brown, Jordan, Schrader and Shapiro is giving a defect-skein-theoretic framework to
study them. In the SL2 case, we expect to recover reduced stated skein algebras, and the
quantum trace map is expected to be related to a defect cobordism between decorated
surfaces. Using these surfaces and cobordism with defects, one would give an intrinsic
characterization of the cluster structures on stated skein algebras. This is an ongoing
project with Jennifer Brown.
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PhD thesis, ETH ZÜRICH, 2014. http://www.scheimbauer.at/ScheimbauerThesis.pdf.

[Sch14b] Christopher J. Schommer-Pries. Dualizability in low-dimensional higher category theory. In
Topology and field theories, volume 613 of Contemp. Math., pages 111–176. Amer. Math.
Soc., Providence, RI, 2014. arXiv:1308.3574.

[Sch14c] Christopher J. Schommer-Pries. Dualizability in low-dimensional higher category theory. In
Topology and field theories, volume 613 of Contemp. Math., pages 111–176. Amer. Math.
Soc., Providence, RI, 2014.

[Seg88] G. B. Segal. The definition of conformal field theory. In Differential geometrical methods in
theoretical physics (Como, 1987), volume 250 of NATO Adv. Sci. Inst. Ser. C: Math. Phys.
Sci., pages 165–171. Kluwer Acad. Publ., Dordrecht, 1988.

[Sel11] P. Selinger. A survey of graphical languages for monoidal categories. In New structures for
physics, volume 813 of Lecture Notes in Phys., pages 289–355. Springer, Heidelberg, 2011.
arXiv:0908.3347.

[ST09] Noah Snyder and Peter Tingley. The half-twist for Uq(g) representations. Algebra Number
Theory, 3(7):809–834, 2009. arXiv:0810.0084.

[ST11] Stephan Stolz and Peter Teichner. Supersymmetric field theories and generalized cohomol-
ogy. In Mathematical foundations of quantum field theory and perturbative string theory,
volume 83 of Proc. Sympos. Pure Math., pages 279–340. Amer. Math. Soc., Providence, RI,
2011. arXiv:1108.0189.

[SW07] Adam S. Sikora and Bruce W. Westbury. Confluence theory for graphs. Algebr. Geom. Topol.,
7:439–478, 2007. arXiv:math/0609832.

[Swe69] Moss E. Sweedler. Hopf algebras. Mathematics Lecture Note Series. W. A. Benjamin, Inc.,
New York, 1969.

[Tak02] Mitsuhiro Takeuchi. A short course on quantum matrices. In New directions in Hopf algebras,
volume 43 of Math. Sci. Res. Inst. Publ., pages 383–435. Cambridge Univ. Press, Cambridge,
2002. Notes taken by Bernd Strüber.
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