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Derived Algebraic Geometry and Defor-

mation Quantization

Bertrand Toën

Abstract. This is a report on recent progress concerning the interactions between derived
algebraic geometry and deformation quantization. We present the notion of derived
algebraic stacks, of shifted symplectic and Poisson structures, as well as the construction
of deformation quantization of shifted Poisson structures. As an application we propose a
general construction of the quantization of the moduli space of G-bundles on an oriented
space of arbitrary dimension.

1. Introduction

Quantization is an extremely vast subject, particularly because it has a long-
standing physical origin and history. Even from the more restrictive point of
view of a pure mathematician, quantization possesses many facets and connects
with a wide variety of modern mathematical domains. This variety of interactions
explains the numerous mathematical incarnations that the expression quantiza-
tion finds in the existing literature, though a common denominator seems to be a
perturbation of a commutative structure into a non-commutative structure. For a
commutative object X (typically a commutative algebra or a manifold), a quanti-
zation is most often realized as a family X~, of objects depending on a parameter
~, which recovers X when ~ = 0 and which is non-commutative for general values
of ~. The existence of the family X~ is in most cases related to the existence of
certain additional geometric structures, such as symplectic or Poisson structures.

The purpose of this manuscript is to present a new approach to quantization, or
more specifically to the construction and the study of interesting non-commutative
deformations of commutative objects of geometrico-algebraic origins. This new ap-
proach is based on the derived algebraic geometry, a version of algebraic geometry
that has emerged in the last decade (see [To1, To2]), and which itself consists of
a homotopical perturbation of algebraic geometry. Derived algebraic geometry not
only leads to a unified geometric interpretation of most of the already existing
quantum objects (e.g. it treats the quantum group and deformation quantization
of a Poisson manifold on an equal footing), but also opens up a whole new world
of quantum objects which, as far as we know, have not been identified in the past
even though they seem to appear naturally in algebraic geometry, algebraic topol-
ogy, or representation theory.
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Convention: All varieties, algebras, schemes, stacks, algebraic groups etc
. . . will be over a ground field k of characteristic zero.

2. Quantization as deformed categories: three mo-

tivating examples

In this first section we briefly recall three well known important examples of
”quantization in action” in different domains: quantum groups, skein algebras
and Donaldson-Thomas invariants. We identify the natural moduli spaces behind
each of these examples and explain how they all can be considered from the unified
point of view of deformations of categories and monoidal categories of sheaves.

Quantum groups. Probably the most famous and most fundamental of quan-
tum objects are quantum groups. For an algebraic group G, with lie algebra g,
and a choice of a G-invariant element p ∈ Sym2(g), Drinfeld constructs a quantum
group (see [Dr]). Algebraically the quantum group is a deformation of the Hopf
algebra A = O(G) of functions on G, into a non-commutative Hopf algebra A~.

Skein algebras. Skein algebras appear in low dimensional topology (see [Tu]).
They are associated with a given Riemann surface Σ, and are explicitly defined in
terms of generators and relations. The generators are given by simple curves traced
on the surface Σ, and the relations are given by the so-called skein relations, which
possess natural deformations by a parameter q = e2iπ~. The skein algebra associ-
ated with Σ, K~(Σ), is a non-commutative deformation of the ring of functions on
the character variety of Σ for the group Sl2 (i.e. the affine algebraic variety whose
points describe Sl2-representations of the fundamental group π1(Σ)).

Donaldson-Thomas invariants. For X a Calabi-Yau algebraic variety of di-
mension 3, we denote by MX the moduli space of stable vector bundles with fixed
numerical invariants. It is a singular variety in general but with a very specific
local structure. Indeed, it is known that locally around each point, X embeds into
a smooth ambient variety Z as the critical points of a function f : Z → A1. Each
of these locally defined functions f define a (perverse) sheaf νf of vanishing cycles
on X , which under an orientability assumption glue to a globally defined perverse
sheaf E on X (see [Be-Br-Bu-Jo, Br-Bu-Du-Jo-Sz, Bu] for more on the subject).
The sheaf E is a quantization of the space X , in the sense that it can be seen to be
a deformation of the line bundle of virtual half forms on X (we refer here to the
next section for more about virtual structures). This deformation is again a non-
commutative deformation, but this time in a dramatic way as the multiplicative
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structure itself is lost and E only exists as a sheaf of (complexes of) vector spaces
on X .

Despite their different origins and differences in appearance these three exam-
ples of quantization can be considered in a striking unified way: they all are de-
formations of categories of sheaves on natural moduli spaces, where the categories
eventually come equipped with monoidal structures. More is true, these deforma-
tions are all induced by the same type of structures on the corresponding moduli
spaces, at least when they are appropriately viewed as derived algebraic stacks as
we will explain later. The moduli spaces related to these three examples are easy
to guess: they are respectively the moduli space BunG(∗) of G-bundles on a point
∗, the moduli space BunSl2(Σ) of Sl2-bundles on the surface Σ, and the moduli
space MX of algebraic Gln-bundles on X , also denoted BunGln(X). In the case
of the quantum group, there is no non-trivial G-bundles on a point, but the trivial
G-bundle possesses many automorphisms. The moduli space BunG(∗) is thus triv-
ial from the point of view of algebraic varieties but can be realized as a non-trivial
algebraic stack BG. Quasi-coherent sheaves on BG are nothing else than linear
representations of G, QCoh(BG) = Rep(G). The quantum group A~ can then be
realized as a deformation of QCoh(BG) considered as a braided monoidal category.
For the case of skein algebras, we already mentioned that K~=0(Σ) is the ring of
functions on the moduli space χ(Σ) = BunSl2(Σ). The moduli space BunSl2(Σ) is
an affine algebraic variety and thus its category of quasi-coherent sheaves is equiv-
alent to modules over its ring of functions, QCoh(BunSl2(Σ)) = K~=0(Σ)−Mod.
The deformation K~(Σ) can thus be realized as a deformation of the category
QCoh(BunSl2(Σ)), simply considered as a linear category. Finally, the perverse
sheaf E on MX can itself be considered as a deformation of a natural object

ω
1/2,virt
X , of virtual half top forms on X , which is almost a quasi-coherent sheaf on

X (it is a complex of such). The quantized object E is thus not a deformation of
QCoh(X), but is rather a deformation of one of its objects.

To summarize, all of the three examples discussed above have an interpretation
in terms of deformations of categories, possibly with monoidal structures, of quasi-
coherent sheaves on certain moduli spaces. Monoidal categories can be organized
in a hierarchy, corresponding to the degree of symmetry imposed on the monoidal
structure. For instance, a monoidal category can come equipped with a braiding, or
a symmetry constraint. Monoidal categories will be referred to as 1-fold monoidal
categories, braided monoidal categories as 2-fold monoidal categories, and symmet-
ric monoidal categories as ∞-fold monoidal categories. We will moreover see that
when categories are replaced by ∞-categories there is a notion of n-fold monoidal
∞-categories for 2 < n < ∞ (also called En-monoidal ∞-categories), interpolat-
ing between braided and symmetric monoidal categories. When n = 0, a 0-fold
category can be defined to simply be a category, a (−1)-monoidal category can
be declared to be an object in a category, and a (−2)-monoidal category can be
defined as an endomorphism of an object in a category. This hierarchy is rather
standard in the setting of higher category theory in which a monoidal category is
often considered as a 2-category with a unique object, and a braided monoidal cat-
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egories as a 3-category with unique object and unique 1-morphism (see for instance
[Si1, §V-25]).

In our examples above, quantum groups are deformations ofQCoh(BunG(∗)) as
a 2-fold monoidal category. Skein algebras are deformations of QCoh(BunSl2(Σ))
as 0-fold monoidal categories. Finally, the perverse sheaf E is a deformation of
QCoh(BunGln(X)) considered as (−1)-fold monoidal category. The purpose of
the present paper is to explain that this is only a very small part of a bigger
coherent picture, which we present here as a key principle.

Principle 2.1. For any oriented manifold of dimension d (understood either in the
topological or in the algebraic sense), and any reductive group G, the moduli space
of G-bundles on X, BunG(X), possesses a quantization which is a deformation of
QCoh(BunG(X)) considered as an (2− d)-fold monoidal ∞-category.

We will see how this principle can becomes a theorem, after a suitable interpre-
tation of BunG(X), QCoh(BunG(X)), and a suitable understanding of (2−d)-fold
monoidal structures. We will also see how this principle follows from the general
framework of symplectic and poisson structures in derived algebraic geometry, and
a general quantization procedure.

3. Moduli spaces as derived stacks

The concept of an algebraic variety is not quite enough to encompass all the aspects
of the moduli problems appearing in algebraic geometry. Starting in the 50’ and
continuing until this day, several successive generalizations of algebraic varieties
were introduced in order to understand more and more refined aspects of moduli
spaces. As a first step nilpotent functions have been allowed as it is well known
that many interesting moduli spaces are non-reduced and must be considered as
schemes instead of algebraic varieties. Secondly algebraic stacks have been intro-
duced in order to take into account the fact that in most examples, moduli spaces
classify objects only up to isomorphisms, and in many situations non-trivial auto-
morphisms prevent the existence of any reasonable moduli spaces. Unfortunately
algebraic stacks are still not enough to capture all aspects of moduli problems,
as even though they see non-trivial automorphisms the so-called higher structures
remain invisible. We will explain in this section what the higher structures are and
how the notion of derived algebraic stacks is needed in order to incorporate them
as part of the refined moduli space.

3.1. Higher structures I: higher stacks. A first type of higher struc-
ture concerns higher homotopies, which appear naturally each time objects are
classified not only up to isomorphism but up to a weaker notion of equivalences. A
typical example is the extension of the moduli space of vector bundles on a given
smooth and projective algebraic variety X , by also allowing complexes of vector
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bundles, now considered up to quasi-isomorphism1. The moduli space of vector
bundles on X can be realized as an algebraic stack, but the moduli of complexes
of vector bundles taken up to quasi-isomorphism can not be represented by an
algebraic stack in the sense of [Ar]. The reason for this is the existence of higher
homotopies between maps between complexes, which is reflected in the fact that a
complex E on X can have non-trivial negative self extension groups Ext−i(E,E).
The vector spaces Ext−i(E,E) for i > 0 are higher analogues of automorphism
groups of vector bundles and their existence prevent the representability by an
algebraic stack for the exact same reason that the existence of non-trivial auto-
morphisms of vector bundles prevent the representability of the moduli problem
of vector bundles on X by a scheme. In his manuscript ”Pursuing stacks”, A.
Grothendieck brought forward the idea of higher stack, which is an extension of
the notion of stacks of groupoids usually considered in moduli theory to a higher
categorical or higher homotopical setting. This idea has been made concrete in
[Si2] by the introduction of a notion of algebraic n-stacks (see also [To1]). These
algebraic n-stacks behave in a very similar way to algebraic stacks, and most of
the standard notions and techniques of algebraic geometry remain valid in this
new setting (they have derived categories, cohomology, tangent spaces, dimensions
. . . ). Fundamental examples of algebraic n-stacks include the Eilenberg-McLane
stacks of the form K(A, n), for A a commutative algebraic group, which are higher
analogues of classifying stacks BG. Another important example for us are the
so-called linear stacks: for a scheme X and a complex of vector bundles E∗ on
X concentrated in degrees [−n, 0], there is a linear stack V(E∗) −→ X , which is
a generalization of the total space of a vector bundle. Finally, for X a smooth
and projective variety, there is an algebraic n-stack of complexes of vector bundles
on X , which also possesses many possible non-commutative generalizations (see
[To1, To2] for more on the subject).

3.2. Higher structures II: derived algebraic stacks. A second
type of higher structure attached to moduli problems is called the derived struc-
ture. These derived structures are somehow dual to the higher homotopies we have
just mentioned and exist even in absence of any stacky phenomenon (i.e. even when
there are no non-trivial automorphisms). They have been introduced through the
eye of deformation theory and originally were only considered at the formal level
of moduli spaces. The derived deformation theory, also referred to as DDT, is a
collection of ideas going back to the 80’s, stipulating that moduli spaces, formally
around a given fixed point, can be described in terms of Mauer-Cartan elements in
a suitable dg-Lie algebra associated to this point. The most famous example is the
deformation theory of a given smooth projective variety X , for which the natural
dg-Lie algebra is C∗(X,TX), the cochain complex computing the cohomology of
the tangent sheaf, endowed with its dg-Lie structure coming from the bracket of
vector fields. This example is not special, and in fact all possible moduli problems

1This appears typically in Donaldson-Thomas theory for which moduli spaces of objects in
the bounded coherent derived category Db

coh
(X) must be considered.
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come with natural dg-Lie algebras describing their formal completions.

A striking consequence of the DDT is the existence of virtual sheaves on mod-
uli spaces. Indeed, according to the DDT, for a point x ∈ M in some moduli
space M, we can find a dg-Lie algebra gx controlling the formal local ring of
M at x. There is moreover an explicit formula reconstructing formal functions

at x: ÔM,x ≃ H0(C∗(gx)) ≃ H0(gx, k), where C∗(gx) = Ŝymk(g
∗
x[−1]) is the

(completed) Chevalley complex of gx, which also computes the cohomology of
k considered as a the trivial gx-module. An important observation is that the
Chevalley complex C∗(gx) is a commutative dg-algebra which can have non triv-
ial cohomology in non-positive degrees. These cohomology groups, Hi(C∗(gx))
for i < 0, provide non-trivial coherent sheaves over the formal neighborhood of x,
which are by definition the derived structures of M around x. These local coherent
sheaves are quite important, as they control for instance the smoothness defect of
the moduli space M, and lead to the so-called virtual fundamental class (see [Ko]).
Incorporating these higher structures as an intrinsic part of the moduli space itself
has lead to the theory of derived algebraic geometry, and to introduction of derived
schemes and derived algebraic (n−)stacks as the correct geometrico-algebraic no-
tion to fully represent moduli problems in algebraic geometry.

3.3. Derived schemes and derived algebraic stacks. The founda-
tions of the theory of derived algebraic geometry can be found in [To-Ve1, To-Ve2]
and [Lu1]. We will not give precise definitions here, as the details easily become
technical, and will rather concentrate on some basic definitions and basic facts.

3.3.1. Derived schemes. As objects derived schemes are rather easy to define
and understand. We display below one possible definition of derived schemes (spe-
cific to the characteristic zero case, recall that everything is over a base field k of
zero characteristic).

Definition 3.1. A derived scheme (over the field k) consists of a pair (X,OX),
where X is a topological space and OX is a sheaf of commutative differential graded
k-algebras on X, satisfying the following conditions.

• The sheaves Hi(OX) vanish for i > 0.

• The ringed space (X,H0(OX)) is a k-scheme.

• For all i, Hi(OX), considered as a sheaf of H0(OX)-modules, is a quasi-
coherent sheaf.

The above definition makes derived schemes look as rather simple objects,
but things get more sophisticated when morphisms between derived schemes are
introduced. The sheaf of dg-algebras OX must only be considered up to quasi-
isomorphisms, and quasi-isomorphic derived schemes have to be considered as
equivalent. Therefore, there is a derived category of derived schemes, which is non-
linear analogue of the derived category of a ring, and for which quasi-isomorphic
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sheaves of dg-algebras define the same derived scheme. There are two possible
constructions of the category of derived schemes, a first one relies on model cat-
egory structures and includes the quasi-isomorphisms as the weak equivalences
of a certain model category. A more modern approach, powerful in practice but
more demanding in terms of foundations, is to use ∞-categories, and to define
the category of derived schemes directly as an ∞-category (see for instance [Si1]).
Concretely this means that morphisms between two given derived schemes do not
form a set anymore but are topological spaces, or a simplicial sets. This allows
to consider homotopies between morphisms of derived schemes, and thus to de-
fine equivalences between derived schemes as morphisms having inverses up to
homotopy. The ∞-category dSch of derived schemes is then defined so that quasi-
isomorphisms become homotopy equivalences in dSch. We refer to [To2, §2.1] for
more details on these two approaches, and we will consider dSch as an ∞-category
in what follows.

There have been a certain number of works on the notion of derived schemes,
making many of the basic aspects of scheme theory available in the derived set-
ting. Derived schemes behave in a very similar fashion to schemes, they have a
notion of (quasi-coherent) sheaves, cohomology, smooth, flat and étale maps etc
. . . . Special among the derived schemes are the affine derived schemes, which are
completely characterized by their functions, which themselves form a non-positively
graded cdga. There is a Spec construction, sending a cdga A to an affine derived
scheme SpecA, whose underlying space is SpecH0(A) and whose structure sheaf
is given by the various localizations A[f−1] in a very similar manner as for un-
derived schemes. The Spec functor produces a full embedding of the (opposite)
∞-category of cdga into dSch. Here the ∞-category of cdga can be presented
concretely as the category whose objects are quasi-free cdga together with the
standard simplicial sets of morphisms Map(A,B)2. A general derived scheme X
is locally equivalent to SpecA for some cdga A, and many of the notions defined
for cdga can be extended to arbitrary derived scheme by sheafification. This is for
instance the case for the notions of smooth, flat and étale maps, as well as for the
notion of cotangent complexes of derived schemes, etc.

3.3.2. Derived algebraic stacks. The reader should have already guessed that
derived schemes are not quite enough for our purpose and that we will need the
notion of derived algebraic stacks (including derived higher stacks in some cases).
These are defined in a similar fashion as algebraic stacks and higher algebraic
stacks (see [To-Ve2, To2] for details). In a nutshell a derived algebraic stack is
given by a quotient of a derived scheme X by an action of a smooth groupoid.
Concretely a derived algebraic stack is associated to a simplicial object X∗ made
of derived schemes satisfying some smooth Kan lifting conditions (see [Pr]). A
typical example is the action of an algebraic group G on a derived scheme Y , for
which the simplicial objects is the standard nerve of the action ([n] ∈ ∆) 7→ Y ×Gn,

2Whose set of n-simplicies is Hom(A,B ⊗k DR(∆n)), where DR(∆n) is the algebraic de
Rham complex of the algebraic n-dimensional simplex {

∑
xi = 1} ⊂ An+1.
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where the face maps are defined by the action of G on Y and the multiplication
on G, and the degeneracies are induced by the unit in G. The derived algebraic
stack obtained this way will be denoted by [Y/G], and it should be noted that
already some interesting derived algebraic stacks are of this form (but these are
not enough to represent all moduli problems).

Derived algebraic stacks are good objects to do algebraic geometry with, and
many of the standard notions and results known for underived algebraic stacks can
be extended to the derived setting. One construction of fundamental importance
for us is the (dg-)category (see [Ke]) of quasi-coherent complexes on a given derived
algebraic stack. For an affine derived scheme X = SpecA, the quasi-coherent
complexes over X are declared to be the A-dg-modules. The A-dg-modules form
a nice k-linear dg-category L(A), for which one explicit model consists of the dg-
category of quasi-free A-dg-modules. For a general derived algebraic stack X the
dg-category of quasi-coherent complexes is defined by approximating X by affine
derived schemes

L(X) := lim
SpecA→X

L(A),

where the limit is taken inside a suitable ∞-category of dg-categories (see [To4]),
or equivalently is understood as a homotopy limit inside the homotopy theory of
dg-categories of [Ta1].

Another important notion we will use is the cotangent complex. Any derived
algebraic stack possesses a canonically defined object LX ∈ L(X), which is the
derived version of the sheaf of Kalher 1-forms. When X is a smooth scheme
then LX is the vector bundle Ω1

X considered as an object in the quasi-coherent
derived category of X . When X = SpecA is an affine derived scheme, LA is
the A-dg-module representing the so-called André-Quillen homology, and can be
defined as the left derived functor of A 7→ Ω1

A. For a scheme X , LX coincides with
Illusie’s cotangent complex. For a general derived algebraic stack X the cotangent
complex LX ∈ Lqcoh(X) is obtained by gluing the cotangent complexes of each
stage in a simplicial presentation, but can also be characterized by a universal
property involving square zero extensions (see [To2, §3.1]). The dual object TX :=
HomOX

(LX ,OX) ∈ Lqcoh(X) is called the tangent complex of X and is a derived
version of the sheaf of derivations.

To finish with general facts about derived algebraic stacks, we would like to
mention a specific class of objects which are particularly simple to describe in
algebraic terms, and which already contains several non-trivial examples. This
class consists of derived algebraic stack of the form X = [Y/G], where Y is an
affine derived scheme and G a linear algebraic group acting of Y . The derived
affine scheme Y is the spectrum of a commutative dg-algebra A, which up to a
quasi-isomorphism can be chosen to be a cdga inside the category Rep(G) of linear
representations of G (and A can even be assumed to be free as a commutative
graded algebra). The cdga A, together with its strict G-action, can be used in
order to describe Lqcoh(X) as well as LX ∈ Lqcoh(X). A model for the dg-category
Lqcoh(X) is the dg-category of cofibrant and fibrant A-dg-modules inside Rep(G),
where here fibrant refers to a model category structure on the category of complexes
of representations of G (and fibrant means K-injective complex of representations).
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In particular the homs in the dg-category Lqcoh(X) compute G-equivariant ext-
groups of A-dg-modules. The object LX ∈ Lqcoh(X) can be described as follows.
The G-action on A induces a morphism of A-dg-modules LA −→ g

∨ ⊗k A, where
g is the Lie algebra of G, which is a morphism of A-dg-modules inside Rep(G).
The cone of this morphism, or more precisely a cofibrant and fibrant model for
this cone, is a model for LX as an object in Lqcoh(X).

3.4. Representability of derived mapping stacks. As for the case
of derived schemes, derived algebraic stacks form an∞-category denoted by dArSt

(where ”Ar” stands for ”Artin”). This ∞-category is itself a full sub-∞-category
of dSt, the ∞-category of (possibly non-algebraic) derived stacks. The objects of
dSt are ∞-functors F : cdga −→ S satisfying étale descent conditions, and are
also called derived moduli problems. The derived moduli problems can sometimes
be represented by schemes, by derived schemes, or by derived algebraic stacks, in
the sense that there exists a derived algebraic stack X together with functorial
equivalences F (A) ≃ MapdArSt(SpecA,X). Proving that a given derived moduli
problem is representable is in general not a trivial task, and the following theorem
provides a way to construct new derived algebraic stacks.

Theorem 3.2. ([To-Ve2, Thm. 2.2.6.11]) Let X be a smooth and proper scheme
and Y a derived algebraic stack which is locally of finite presentation over the
base field k. Then, the derived moduli problem A 7→ MapdSt(X × SpecA, Y ) is
representable by a derived algebraic stack denoted by Map(X,Y ).

One important aspect of the theorem above lies in the fact that the (co-)tangent
complexes of the derived mapping stacks Map(X,Y ) are easy to compute: there is

a diagram of derived algebraic stacks Y X ×Map(X,Y )
ev

oo
p

// Map(X,Y ),

where ev is the evaluation map and p is the natural projection, and we have

TMap(X,Y ) ≃ p∗ev
∗(TY ) ∈ Lqcoh(Map(X,Y )). (1)

At a given point f ∈ Map(X,Y ), corresponding to a morphism f : X −→ Y ,
the formula states that the tangent complex at f is C∗(X, f∗(TY )), the cochain
complex of cohomology ofX with coefficients in the pull-back of TY by f . This last
formula is moreover compatible with the dg-Lie structures: the formal completion
of Map(X,Y ) corresponds, via the DDT correspondence, to the dg-Lie algebra
C∗(X, f∗(TY ))[−1] (here TY [−1] is equipped with its natural dg-Lie structure, see
[He]). This provides a nice and efficient way to understand the derived moduli
space Map(X,Y ) at the formal level.

The above theorem also possesses several possible variations, which often can
be reduced to the statement 3.2 itself. For instance X can be replaced by a finite
homotopy type (e.g. a compact smooth manifold), or by formal groupoids such
as XDR or XDol (see [Si3, §9]). This provides existence of derived moduli stacks
for maps X −→ Y understood within different settings (e.g. locally constant
maps, maps endowed with flat connections or with a Higgs field etc . . . ). The
formula for the tangent complex remains correct for these variants as well, with a
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suitable definition of the functors p∗ and ev∗ involved. Pointwise this is reflected in
the fact that C∗(X, f∗(TY )) is replaced with the appropriate cohomology theory
(cohomology with local coefficients when X is a finite homotopy type, algebraic de
Rham cohomology for XDR etc . . . ).

The main examples of applications of theorem 3.2 will be for us when Y = BG,
the classifying stack of G-bundles, in which case Map(X,BG) is by definition the
derived moduli stack ofG-bundles onX . Other interesting instances of applications
arise when Y = Perf is the derived stack of perfect complexes (in which case
Map(X,Y ) is the derived moduli stack of perfect complexes on X), or when Y is
the total space of a shifted total cotangent bundle (see below).

4. Symplectic and Poisson structures in the de-

rived setting

In the previous section we saw why and how moduli problems can be represented
by derived schemes and derived algebraic stacks. In the sequel we will be further
interested in the representability of derived mapping stacks provided by our the-
orem 3.2, as well as the formula for their tangent complexes. This formula is the
key for the construction of symplectic structures on derived mapping stacks, by
using cup products in cohomology in order to define pairing on tangent complexes.
This brings us to the notions of shifted symplectic structures, and of shifted pois-
son structures, of major importance in order to achieve the goal proposed by our
principle 2.1.

4.1. Algebraic de Rham theory of derived algebraic stacks.
Let X be a derived algebraic stack locally of finite presentation over our ground
field k. We have seen that X possesses a cotangent complex LX , which is a quasi-
coherent complex on X . In our situation LX is moreover a perfect OX -module (see
[To-Ve2, Def. 1.2.4.6]) because of the locally finite presentation condition, and is
thus a dualizable object in Lqcoh(X). Its dual (dual here as an OX -module), is the
tangent complex TX := L∨

X . A p-form on X is simply defined as an element in
H0(X,∧p

OX
LX), or equivalently as a homotopy class of morphisms w : ∧p

OX
TX −→

OX in Lqcoh(X). More generally, if n ∈ Z, a p-form of degree n on X is an element
in Hn(X,∧p

OX
LX), or equivalently a homotopy class of morphisms w : ∧p

OX
TX −→

OX [n] in Lqcoh(X). For p fixed, p-forms of various degrees form a complex of k-
vector spaces Ap(X) = Γ(X,∧p

OX
LX)3, whose n-th cohomology space is the space

of p-forms of degree n.

The total complex of differential forms on X is defined as an infinite product

A(X) :=
∏

i≥0

Ai(X)[−i],

3Here and in the sequel Γ(X,−) stands for the ∞-functor of global sections, and thus computes
hyper-cohomology on X.
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and except in the very special case where X is a smooth scheme, this infinite
product does not restrict to a finite product in general (i.e. Ap(X) 6= 0 for ar-
bitrary large p’s in general). The complex A(X) can be shown to carry an extra
differential called the de Rham differential and denoted by dR4. The differential
dR commutes with the cohomological differential, and the complex A(X) will be
always considered endowed with the corresponding total differential. When X is a
smooth scheme A(X) is simply the algebraic de Rham complex of X . When X is
a singular scheme A(X) is the derived de Rham complex of X , which is known to
compute the algebraic de Rham cohomology of X (see [Bh]). When X is a derived
algebraic stack the complex A(X) is by definition the (algebraic and derived) de
Rham complex of X , and it can be shown to compute the algebraic de Rham co-
homology of the underlying algebraic stack, and thus the Betti cohomology of its
geometric realization when k = C.

The de Rham complex comes equipped with a standard Hodge filtration, which
is a decreasing sequence of sub-complexes F pA(X) ⊂ F p−1A(X) ⊂ A(X), where
F pA(X) consists of the sub-complex

∏
i≥p A

i(X)[−i] ⊂
∏

i≥0 A
i(X). The complex

F pA(X)[p] is also denoted by Ap,cl(X) and is by definition the complex of closed
p-forms on X . We note here that an n-cocycle in Ap,cl(X) consists of a formal
series

∑
i≥0 ωi · t

i, where ωi an element of degree n − i in Ap+i(X), and satisfies
the infinite number of equations

dR(ωi−1) + d(ωi) = 0 ∀ i ≥ 0,

where dR is the de Rham differential, d is the cohomological differential and ωi is
declared to be 0 when i < 0. With this notation, ω0 is the underlying p-form and
the higher forms ωi are the closeness structures, reflecting that ω0 is closed up to
homotopy.

By definition a closed p-form of degree n on X is an element in Hn(Ap,cl(X)).
Any closed p-form

∑
i≥0 ωi · t

i of degree n has an underlying p-form ω0 of degree

n, and thus defines a morphism ∧p
OX

TX −→ OX [n] in Lqcoh(X). We note here
that a given p-form of degree n can come from many different closed p-forms of
degree n, or in other words that the projection map Ap,cl(X) −→ Ap(X), sending∑

i≥0 ωi · t
i to ω0, needs not be injective in cohomology. This aspect presents a

major difference with the setting of differential forms on smooth schemes, for which
a given p-forms is either closed or not closed. This aspect can also be understood
in the setting of cyclic homology, as differential forms on X can be interpreted as
elements in Hochschild homology of X (suitably defined to encode the eventual
stackyness of X), and closed forms as elements in negative cyclic homology.

4.2. Shifted symplectic structures.

Definition 4.1. ([Pa-To-Va-Ve, Def. 1.18]) An n-shifted symplectic structure on
X consists of a closed 2-form of degree n whose underlying morphism

∧2
OX

TX −→ OX [n]

4The existence of this differential is not a trivial fact because of the stackyness of X, see
[Pa-To-Va-Ve].
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is non-degenerate: the adjoint map TX −→ LX [n] is an equivalence of quasi-
coherent complexes on X.

There are some basic examples of n-shifted symplectic structures which are the
building blocks of more evolved examples. A 0-shifted symplectic structure on a
smooth scheme is simply a symplectic structure understood in the usual sense.
For a reductive algebraic group G, the 2-shifted symplectic structures on the stack
BG are in one-to-one correspondence with non-degenerate and G-invariant scalar
products on the Lie algebra g of G. Such a structure always exists and is even
unique up to a constant when G is a simple reductive group. When G = Gln, there
is a canonical choice for a 2-shifted symplectic structure on BG by considering the
standard invariant scalar product on the space of matrices given by (A,B) 7→
Tr(A.B).

Another source of examples is provided by shifted cotangent bundles. For X
a derived algebraic stack and n an arbitrary integer we define the n-shifted total
cotangent derived stack of X by

T ∗X [n] := V(LX [n]) = Spec (SymOX
(TX [−n])),

as the linear derived algebraic stack over X determined by the perfect complex
LX [n]. The derived algebraic stack T ∗X [n] comes equipped with a standard Liou-
ville 1-form of degree n5, whose de Rham differential provides an n-shifted sym-
plectic structure on X . This is already interesting for X a smooth scheme as
it provides instances of n-shifted symplectic structures for arbitrary values of n.
Note here that when X is a smooth scheme, then T ∗X [n] is either a smooth (and
thus non-derived) algebraic n-stack if n ≥ 0, or a derived scheme when n < 0.
Another interesting and useful example is when X = BG and n = 1, as T ∗X [1]
is then identified with the quotient stack [g∗/G], for the co-adjoint action of G.
The quotient stack [g∗/G] is thus equipped with a canonical 1-shifted symplectic
structure, which sheds new light on symplectic reduction (we refer to [Ca, §2.2] for
more on the subject). A third important example is the derived algebraic stack of
perfect complexes Perf (see [Pa-To-Va-Ve, §2.3]), which is a generalization of the
stack BGln (BGln sits as an open in Perf ).

More evolved examples of shifted symplectic structures can be constructed by
means of the following existence theorem. This result can be seen as a geometrico-
algebraic counter part of the so-called AKSZ formalism.

Theorem 4.2. ([Pa-To-Va-Ve, Thm. 2.5]) Let X be either a connected compact
oriented topological manifold of dimension d, or a connected smooth and proper
scheme of dimension d equipped with a nowhere vanishing top form s ∈ Ωd

X . Let Y
be a derived algebraic stack endowed with an n-shifted symplectic structure. Then
the derived algebraic stack Map(X,Y ) is equipped with a canonical (n− d)-shifted
symplectic structure.

An important special case is when Y = BG for G a reductive algebraic group,
equipped with the 2-shifted symplectic structure corresponding to a non-degenerate

5This form represents the universal 1-form of degree n on X.
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element in Sym2(g∗)G. We find this way that the derived moduli stack of G-
bundles on X , BunG(X) := Map(X,BG) carries a canonical (2− d)-shifted sym-
plectic structure, which is a first step towards a mathematical formulation of our
principle 2.1.

Corollary 4.3. With the above notations, BunG(X) carries a canonical (2 − d)-
shifted symplectic structure.

When d = 2 the above corollary recovers the well known symplectic structures
on moduli spaces of G-local systems on a compact Riemann surface and of G-
bundles on K3 and abelian surface. However, even in this case, the corollary is
new and contains more as the 0-shifted symplectic structure exists on the whole
derived moduli stack, not only on the nice part of this moduli stack which is a
smooth scheme (see for instance our comments in §6.1).

In dimension 3 the corollary states that BunG(X) is equipped with a natu-
ral (−1)-shifted symplectic structure. The underlying 2-form of degree −1 is an
equivalence of perfect complexes TBunG(X) ≃ LBunG(X)[−1]. When restricted to
the underived part of the moduli stack this equivalence recovers the symmetric ob-
struction theory used in Donaldson-Thomas theory (see [Bu, Def. 1.1]). However,
here again the full data of the (−1)-shifted symplectic structure contains strictly
more than the underlying symmetric obstruction theory, essentially because of the
fact that a shifted symplectic structure is not uniquely determined by its underly-
ing 2-form (see [Pa-Th]).

Finally, when the dimension d is different from 2 and 3 the content of the corol-
lary seems completely new, thought in dimension 1 it essentially states that [G/G]
is 1-shifted symplectic, which can be used in order to provide a new understanding
of quasi-hamiltonian actions (see [Ca, §2.2]).

The idea of the proof of theorem 4.2 is rather simple, and at least the underlying
2-form can be described explicitly in terms of the formula for the tangent complexes
(formula (1) of §3.4). We define a pairing of degree (n− d) on this complex by the
composition of the natural maps and the pairing of degree n on TY

∧2p∗(ev
∗(TY )) // p∗(ev

∗(∧2TY )) // p∗(O)[n] // O[n− d],

where the last map comes from the fundamental class in Hd(X,OX) ≃ k. This de-
fines a non-degenerate 2-form on Map(X,Y ), and the main content of the theorem
4.2 is that this 2-form comes from a canonically defined closed 2-form of degree
(n− d).

For variants and generalizations of theorem 4.2 we refer to [Pa-To-Va-Ve, Ca,
To2] in which the reader will find non-commutative generalizations as well as ver-
sions with boundary conditions, but also several other possible admissible sources.

4.3. Derived critical loci. To finish the part on n-shifted symplectic struc-
tures let us mention critical loci and their possible generalizations. We have al-
ready seen that for a given derived algebraic stack X the shifted cotangent T ∗X [n]
carries a canonical n-shifted symplectic structure. Moreover, the zero section
X −→ T ∗X [n] has a natural Lagrangian structure (see [Pa-To-Va-Ve, Def. 2.8]).
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More generally, if f ∈ Hn(X,OX) is a function of degree n onX , its de Rham differ-
ential dR(f) defines a morphism of derived algebraic stacks dR(f) : X −→ T ∗X [n]
which is also equipped with a natural Lagrangian structure. Therefore, the inter-
section of the zero section with the section dR(f) defines a natural (n− 1)-shifted
derived algebraic stack (see [Pa-To-Va-Ve, Thm. 2.9]) denoted by RCrit(f) and
called the derived critical locus of f . When f = 0 the derived critical locus
RCrit(f) is simply T ∗X [n− 1] together with its natural (n− 1)-shifted symplectic
structure. When X is a smooth scheme and f is a function of degree 0 (i.e. simply
a function X −→ A1), then the symplectic geometry of RCrit(f) is closely related
to the singularity theory of the function f . From a general point of view derived
critical loci provide a nice source of examples of n-shifted symplectic derived al-
gebraic stacks, which contain already examples of geometric interests. It is shown
in [Br-Bu-Jo, Bo-Gr] that every (−1)-shifted symplectic derived scheme is locally
the derived critical locus of a function defined on a smooth scheme.

Derived critical loci are important because they are easy to describe and their
quantizations can be understood explicitly. Moreover, derived critical loci and
their generalizations can be used to provide local models for n-shifted symplectic
structures by means of a formal Darboux lemma we will not reproduce here (see
for instance [Be-Br-Bu-Jo, Br-Bu-Jo, Bo-Gr]).

4.4. Shifted polyvector fields and poisson structures. The no-
tion of shifted Poisson structure is the dual notion of that of shifted symplectic
structure we have discussed so far. The general theory of shifted Poisson structures
has not been fully settled down yet and we will here present the basic definitions
as well as its, still hypothetical, relations with shifted symplectic structures. They
are however a key notion in the existence of quantization that will be presented in
the next section.

4.4.1. Shifted polyvectors on derived algebraic stacks. A derived algebraic
stack X (as usual assumed locally of finite presentation over the ground field k)
has a tangent complex TX , which is the OX -linear dual to the cotangent complex.
The complex of n-shifted polyvector fields on X is defined by

Pol(X,n) :=
⊕

i

Γ(X,Symi
OX

(TX [−1− n])).

The complex Pol(X,n) has a natural structure of a graded commutative dg-
algebra, for which the piece of weight i is Γ(X,Symi

OX
(TX [−1−n])) and the multi-

plication is induced by the canonical multiplication on the symmetric algebra. We
note here that depending of the parity of n we either have Symi

OX
(TX [−1−n]) ≃

(∧iTX)[−i− ni] (if n is even), or Symi
OX

(TX [−1− n]) ≃ (SymiTX)[−i− ni] (if n

is odd). When X is a smooth scheme and n = 0, Pol(X, 0) = ⊕iΓ(X,∧iTX)[−i]
is the standard complex of polyvector fields of X . When n = 1, and still X a
smooth scheme, Pol(X, 1) coincides with Γ(T ∗X,OT∗X), the cohomology of the
total cotangent space of X with coefficients in O. In general, Pol(X,n) can be in-
terpreted as the graded cdga of cohomology of the shifted cotangent derived stack
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T ∗X [n+ 1] with coefficients in O (that is ”functions” on T ∗X [n+ 1]).
When X is a smooth scheme, TX is a sheaf (say on the small étale site of

X) of k-linear Lie algebras with the bracket of vector fields. This extends easily
to the case where X is a derived Deligne-Mumford stack, TX can be made into
a sheaf of k-linear dg-Lie algebras for the bracket of dg-derivations. Therefore,
polyvector fields Pol(X,n) can also be endowed with a k-linear dg-Lie bracket of
cohomological degree −1 − n, making it into a graded Poisson dg-algebra where
the bracket has cohomological degree (−1 − n) and weight (−1). In particular
Pol(X,n)[n+1] always comes equipped with a structure of a graded dg-Lie algebra
over k. It is expected that this fact remains valid for a general derived algebraic
stack X , but there is no precise construction at the moment. One complication
when considering general algebraic stacks comes from the fact that vector fields can
not be pulled-back along smooth morphisms (as opposed to étale maps), making
the construction of the Lie bracket on Pol(X,n) much more complicated than
for the case of a scheme. For a derived algebraic stack of the form [SpecA/G],
for G linear, there are however two possible constructions. A first very indirect
construction uses natural operations on the derived moduli stacks of branes (see
[To3]). A more direct construction can be done as follows. We can take A to be a
cofibrant and fibrant cgda inside the category of representations Rep(G). We let
TA be the A-dg-module of dg-derivations from A to itself. The action of G on A
induces a morphism of dg-Lie algebras g⊗kA −→ TA representing the infinitesimal
action of G on A. We consider the co-cône T of the morphism g ⊗k A −→ TA.
The complex T is obviously a k-linear Lie algebra for the bracket induced from
the brackets on TA and on g, but this lie structure is not compatible with the
cohomological differential and thus is not a dg-Lie algebra. However, its fixed
points by G (assume G reductive for simplicity) is a dg-Lie algebra over k, which
is a model for Γ(X,TX) where X = [SpecA/G]. This construction can be also
applied to the G-invariant of the various symmetric powers of shifts of T in order
to get the desired dg-Lie structure on Pol(X,n)[n+ 1] in this special case.

4.4.2. Shifted Poisson structures. Let X be a derived algebraic stack and fix
an integer n ∈ Z. We can define n-shifted Poisson structures as follows. We let
Pol(X,n)[n+1] be the shifted polyvector fields on X , endowed with the structure
of a graded dg-Lie algebra just mentioned. We let k(2)[−1] be the graded dg-Lie
algebra which is k in cohomological degree 1, with zero bracket and k is pure of
weight 2. An n-shifted Poisson structure on X is then defined to be a morphism
of graded dg-Lie algebras

p : k(2)[−1] −→ Pol(X,n)[n+ 1].

Here, a morphism of graded dg-Lie algebras truly means a morphism inside the
∞-category of graded dg-Lie algebras, or a morphism in an appropriate homo-
topy category. Using the dictionary between dg-Lie algebras and formal mod-
uli problems (see [Lu2]), such a morphism p is determined by a Mauer-Cartan
element in Pol(X,n)[n + 1] ⊗ tk[[t]], which is of weight 2 with respect to the
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grading on Pol(X,n). Such an element can be described explicitly as a formal
power series

∑
i≥1 pi · t

i, where pi is an element of cohomological degree n+ 2 in

Γ(X,Symi+1(TX [−1− n])), and satisfies the equations

d(pi) +
1

2
·
∑

a+b=i

[pa, pb] = 0 ∀i ≥ 1.

As we already mentioned, shifted Poisson structures can be developed along the
same lines as shifted symplectic structures (e.g. there is a notion of co-isotropic
structures on a map with an n-shifted Poisson target, and a Poisson version of
the existence theorem 4.2), but at the moment this work has not been carried out
in full details. It is believed that for a given X and n ∈ Z, there is a one-to-one
correspondence between n-shifted symplectic structures on X and n-shifted Pois-
son structures on X which are non-degenerate in an obvious sense. However, this
correspondence has not been established yet, except in some special cases, and
remains at the moment an open question for further research (see §6.2).

5. Deformation quantization of n-shifted Poisson

structures

In this section we finally discuss the existence of quantization of n-shifted Poisson
structures, a far reaching generalization of the existence of deformation quanti-
zation of Poisson manifolds due to Kontsevich. For this we first briefly discuss
the output of the quantization, namely the notion of deformation of categories
and iterated monoidal categories, which already contains some non-trivial aspects.
We then present the formality conjecture, which is now a theorem except in some
very particular cases, and whose main corollary is the fact that every n-shifted
Poisson structure defines a canonical formal deformation of the En-monoidal cat-
egory of quasi-coherent complexes. We also discuss the case n < 0 by presenting
the red shift trick consisting of working with a formal parameter ~ living in some
non-trivial cohomological degree.

5.1. The deformation theory of monoidal dg-categories. As we
have seen in §2, a derived algebraic stack X has a dg-category of quasi-coherent
complexes L(X). It is a k-linear dg-category which admits arbitrary colimits. We
will assume in this section that L(X) is a compactly generated dg-category, or
equivalently that it can be realized as the category of dg-modules over a small
dg-category. More generally we will assume that X is a perfect derived algebraic
stack, in the sense that perfect complexes on X are compact generators of L(X).
This is known to be the case under the assumption that X can be written as a
quotient [SpecA/G] for a linear algebraic G acting on a cdga A.
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5.1.1. Deformations of dg-categories. We let T0 := L(X) and we would like
to study the deformation theory of T0. For this, we define a first naive deformation
functor Defnaive(T0) : dg− art∗ −→ S, from the ∞-category of augmented local
artinian cdga to the ∞- category of spaces as follows. To A ∈ dg− art∗ we
assign the ∞-category Dgc(A), of cocomplete and compactly generated A-linear
dg-categories and A-linear colimit preserving dg-functors (see [To4, §3.1]). For a
morphism of dg-artinian rings A → B, we have a base change ∞-functor −⊗̂AB :
Dgc(A) −→ Dgc(B). We then set

Defnaive(T0)(A) := Dgc(A) ×Dgc(k) {T0}.

Here Dgc(A) ×Dgc(k) {T0} is the fiber taken at the point T0 of the ∞-functor

−⊗̂Ak induced by the augmentation A → k. As is, Defnaive(T0)(A) is an ∞-
category, from which we extract a space by taking the geometric realization of
its sub-∞-category of equivalences (i.e. taking the nerve of the maximal sub-∞-
groupoid). Intuitively, Defnaive(T0)(A) is the classifying space of pairs (T, u),
with T a compactly generated A-linear dg-category and u a k-linear equivalence
u : T ⊗̂Ak ≃ T0.

As already observed in [Ke-Low] the ∞-functor Defnaive(T0) is not a formal
moduli problem, it does not satisfies the Schlessinger conditions of [Lu2], and thus
can not be equivalent to the functor of Mauer-Cartan elements in a dg-Lie alge-
bra. This bad behavior of the ∞-functor Defnaive(T0) has been a longstanding
major obstacle preventing the understanding of the deformation theory of dg-
categories. There have been several tentative modifications of Defnaive(T0) at-
tempting to overcome this problem, for instance by allowing curved dg-categories
as possible deformations, however none of these were successful. We propose here
a new solution to this problem which provides the only complete understand-
ing of deformations of dg-categories that we are aware of. For this, we intro-
duce Def(T0) : dg − art∗ −→ S, which is the universal ∞-functor constructed
out of Defnaive(T0) and satisfying the Schlessinger conditions of [Lu2] (in other
words it is the best possible approximation of Defnaive(T0) by an ∞-functor as-
sociated to a dg-Lie algebra). By construction there is a natural transformation
l : Defnaive(T0) −→ Def(T0), as well as a dg-Lie algebra L such that Def(T0)
is given by A 7→ MC∗(L ⊗ mA) (where as usual mA ⊂ A is the augmentation
dg-ideal in A, and MC∗ denotes the space of Mauer-Cartan elements). Moreover
the natural transformation l is universal for these properties, and in particular the
dg-Lie L is uniquely determined and only depends on Defnaive(T0).

The following theorem is folklore and known to experts. It appears for instance
in a disguised form in [Pre].

Theorem 5.1. Let T0 be a compactly generated dg-category.

1. The dg-Lie algebra associated to the formal moduli problem Def(T0) is HH(T0)[1],
the Hochschild cochains on T0 endowed with its usual Gerstenhaber bracket
(see e.g. [Ke, §5.4]).

2. The space Def(T0)(k[[t]]) is naturally equivalent to the classifying space of
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k[β]-linear structures on T0, where k[β] is the polynomial dg-algebra over k
with one generator β in degree 2.

The above theorem subsumes the two main properties of the formal moduli
problem Def(T0), but much more can be said. The formla for the k[[t]]-points
of Def(T0) can be generalized to any (pro-)artinian augmented dg-algebra A, by
using BA-linear structures on T0, where now BA is the E2-Koszul dual of A (see
[Lu2], and the E2-Koszul dual of k[[t]] is of course k[β]). By construction we have a
map of spaces Defnaive(T0)(A) −→ Def(T0)(A). This map is not an equivalence
but can be shown to have 0-truncated fibers (so it induces isomorphisms on πi for
i > 1 and is injective on π1). It is interesting to note here that not only Def(T0)
contains more objects thanDefnaive(T0) but also contains more morphisms. There
are natural conditions one can impose on T0 in order to make Defnaive(T0) closer
to Def(T0). It is for instance believed that they coincide when T0 is a smooth
and proper dg-category, as well as for dg-categories of complexes in Grothendieck
abelian categories. In our situation, T0 = L(X), with X a derived algebraic stack
which is not smooth in general, it is not reasonable to expect any nice assumptions
on T0, and the above theorem is probably the best available result in order to
understand formal deformations of L(X).

5.1.2. Deformations of monoidal dg-categories. Theorem 5.1 also possesses
monoidal and iterated monoidal versions as follows. First of all the ∞-category
Dgc(A) of compactly generated A-linear dg-categories is equipped with a tensor
product ⊗̂A, making it into a symmetric monoidal ∞-category. It is therefore
possible to use the notion of an En-monoid in Dgc(A) of [Lu3], in order to de-
fine En-monoidal A-linear dg-categories (also called n-fold monoidal A-linear dg-
categories). In a nutshell, an En-monoidal A-linear dg-category consists of a com-
pactly generated A-linear dg-category T together with morphisms

µk : En(k)⊗ T ⊗̂A k −→ T,

where the tensor by the space En(k) and the tensor products are taken in the
symmetric monoidal ∞-category Dgc(A), and together with compatibilty con-
ditions/structures. For our derived algebraic stack X , the dg-category L(X)
is equipped with a symmetric monoidal structure and thus is naturally an En-
monoidal dg-category for all n ≥ 0, where by convention an E0-monoidal dg-
category simply is a dg-category.

For a cdga A, we set DgcEn
(A) for the ∞-category of compactly generated En-

monoidal A-linear dg-categories. Here compactly generated also means that the
compact objects are stable by the monoidal structure, so objects in DgcEn

(A) can
also be described as dg-categories of dg-modules over small A-linear En-monoidal
dg-categories. Morphisms in DgcEn

(A) must be defined with some care as they
involve higher dimensional versions of Morita morphisms between algebras. For
two En-monoidal dg-categories T and T ′ in DgcEn

(A), the dg-category of A-linear

colimit preserving dg-functors can be written as T∨⊗̂AT
′, where T∨ is the dual
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of T (i.e. we take the opposite of the sub-dg-category of compact generators).
The A-linear dg-category T∨⊗̂AT

′ is a new object in DgcEn
(A), and in particu-

lar it makes sense to consider En-algebras inside the dg-category T∨⊗̂AT
′. From

the point of view of dg-functors these correspond to En-lax monoidal A-linear
colimit preserving dg-functors T → T ′. For two En-algebras M and N inside
T∨⊗̂AT

′, we can form a new En-algebra Mop ⊗ N . The A-linear dg-category of
Mop ⊗ N -modules inside T∨⊗̂AT

′ is then En−1-monoidal, so the process can be
iterated. We can consider two En−1-algebras inside Mop ⊗ N -modules, say M ′

and N ′, as well as their tensor product M ′op ⊗N ′ and the A-linear dg-category of
M ′op ⊗N ′-modules, which is itself En−2-monoidal . . . and so on and so forth. We
are describing here DgcEn

(A) as an (∞, n+1)-category (see [Si1]), whose objects are
En-monoidal compactly generated A-linear dg-categories, whose 1-morphism from
T to T ′ are En−1-algebras inside T∨⊗̂AT

′, whose 2-morphisms between M ′ and
N ′ are En−2-algebras inside M ′op ⊗N ′-modules, etc . . . . The (∞, n+1)-category
DgcEn

(A) produces a space by considering the geometric realization of its maximal
sub-∞-groupoid (i.e. realizing the sub-∞-category of equivalences).

For T0 = L(X), assuming that L(X) is compactly generated and that its com-
pact objects are the perfect complexes, we define a naive deformation functor
Defnaive

En
(T0), of T0 considered as an En-dg-category, by sending an augmented

dg-artinian ring A ∈ dg − art∗ to the fiber at T0 of the restriction map

−⊗̂Ak : DgcEn
(A) −→ DgcEn

(k).

The space Defnaive
En

(T0) is the space of pairs (T, u), where T is an En-monoidal

compactly generated A-linear dg-category, and u : T ⊗̂Ak ≃ T0 an equivalence
in DgcEn

(k). Similar to the case n = 0 we already discussed, the ∞-functor

Defnaive
En

(T0) does not satisfy the Schlessinger’s conditions, and the bigger n is,
the more this fails. We denote by DefEn

(T0) the formal moduli problem generated
by Defnaive

En
(T0). The following theorem is the generalization of 5.1 to the iterated

monoidal setting.

Theorem 5.2. Let T0 be a compactly generated En-monoidal dg-category.

1. The dg-Lie algebra associated to the formal moduli problem DefEn
(T0) is

HHEn+1(T0)[n+ 1], the En+1-Hochschild cochains on T0 of [Fr].

2. The space DefEn
(T0)(k[[t]]) is naturally equivalent to the classifying space

of k[βn]-linear structures on T0, where k[βn] is the commutative polynomial
dg-algebra over k with one generator βn in degree 2 + n.

Theorems 5.1 and 5.2 provides a way to understand the relations between
(higher) Hochschild cohomology and formal deformations of dg-categories and it-
erated monoidal dg-categories. They state in particular that the correct manner
to define a formal deformation of a given dg-category T0, parametrized by k[[t]], is
by considering k[β]-linear structures on T0, and similarly for the iterated monoidal
setting with k[βn]-linear structures. In the sequel, we will freely use the expres-
sion ”formal deformation of the dg-category L(X) considered as an En-monoidal
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dg-category”, by which we mean an element in DefEn
(L(X))(k[[t]]), and thus a

k[βn]-linear structure on T0. We however continue to think of these deformations
as actual deformations of L(X) over k[[~]] for a formal parameter ~, even thought
they are not quite as naive objects.

5.2. The higher formality conjecture. We have just seen that formal
deformations of a given En-monoidal compactly generated dg-category T0 is con-
trolled by its higher Hochschild cochain complexHHEn+1(T0)[n+1], endowed with
its natural structure of a dg-Lie algebra. We now turn to the specific case where
T0 = L(X), the quasi-coherent dg-category of a derived algebraic stack X . We
continue to assume that X is nice enough (e.g. of the form [SpecA/G]) so that
L(X) is compactly generated by the perfect complexes). The higher Hochschild co-
homology of T0 can then be described in geometric terms as follows. We let n ≥ 0,
and let Sn = ∂Bn+1 be the topological n-sphere considered as a constant derived
stack. We consider the derived mapping stack L(n)(X) := Map(Sn, X), also called
the n-dimensional derived loop stack of X . There is a constant map morphism
j : X −→ L(n)(X), and thus a quasi-coherent complex j∗(OX) ∈ L(L(n)(X)). The
En+1-Hochschild cohomology of the dg-category L(X) can be identified with

HHEn+1(X) ≃ EndL(L(n)(X))(j∗(OX)).

Note that when n = 0 and X is a scheme this recovers the description of the
Hochschild complex of X as the self extension of the diagonal. Because of the
stackyness of X this definition can be modified by replacing L(n)(X) by its formal

completion ̂L(n)(X) along the map X −→ L(n)(X), which is called the formal
n-dimensional derived loop space (when X is a derived scheme the formal and
non-formal versions of the derived loop stacks coincide). We then have the formal
version of Hochschild complex

ĤH
En+1

(X) ≃ End
L( ̂L(n)(X))

(j∗(OX)).

Note that we have a natural morphism ĤH
En+1

(X) −→ HHEn+1(X).

The complexe ĤH
En+1

(X) has a structure of an En+2-algebra, as predicted
by the so-called Deligne’s conjecture which is now a theorem (see [Fr, Lu3]). In

particular ĤH
En+1

(X)[n + 1] is a dg-Lie algebra. The formality conjecture as-

serts that the dg-Lie algebra ĤH
En+1

(X)[n+ 1] can be described in simple terms
involving shifted polyvector fields.

Conjecture 5.3. (Higher formality) For a nice enough derived algebraic stack

X, and n ≥ 0, the dg-Lie algebra ĤH
En+1

(X)[n + 1] is quasi-isomorphic to
Pol(X,n)[n + 1]. The quasi-isomorphism is canonical up to a universal choice
of a Drinfeld associator.

Note that when X is a smooth scheme and n = 0 the conjecture 5.3 is the so-
called Kontsevich’s formality theorem. The conjecture has been proven in already
many cases.
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Theorem 5.4. ([To3, Cor. 5.4]) The above higher formality conjecture is true for
all n > 0 and for all derived algebraic stacks X of the form [SpecA/G] for G a
linear algebraic group acting on the cdga A. When X is a derived Deligne-Mumford
stack it is also true for n = 0.

The theorem above provides many cases in which conjecture 5.3 is satified.
We believe it is also true in the remaining case when n = 0 and for non Deligne-
Mumford stacks. We also believe that the restriction for X being of the form
[SpecA/G] in the theorem 5.4 is not necessary, and that the theorem should be
true for a large class of derived higher algebraic stacks as well.

5.3. Existence of deformation quantization. We finally arrive at
the existence of quantization of derived algebraic stacks X endowed with n-shifted
Poisson structures, and its consequence: the mathematical incarnation of our prin-
ciple 2.1. Let X be a derived algebraic stack, and n ≥ 0 to start with (the case
of negative values will be treated below). We assume that X is nice enough and
that the conjecture 5.4 is satisfied (e.g. under the hypothesis of theorem 5.4). Let
p be an n-shifted Poisson structure on X . By definition it provides a morphism
of dg-Lie algebras p : k[−1] −→ Pol(X,n+ 1)[n+ 1]. Using the conjecture 5.4 we

find a morphism of dg-Lie algebras p : k[−1] −→ ĤH
En+1

(X), which composed

with the natural morphism ĤH
En+1

(X) −→ HHEn+1(X) provides a morphism of
dg-Lie algebras

p : k[−1] −→ HHEn+1(X).

The derived deformation theory (see [Lu2]) and theorem 5.2 tell us that the mor-
phism p provides a formal deformation of L(X) as an En-monoidal dg-category,
denoted by L(X, p). This is the deformation quantization of the pair (X, p).

Assume now that n < 0 and thatX is equipped with an n-shifted Poisson struc-
ture p such that the conjecture 5.4 is satisfied for X and −n. The n-shifted Poisson
structure p is a morphism of graded dg-Lie algebras k(2)[−1] −→ Pol(X,n)[n+1]
where k(2)[−1] is the abelian dg-Lie algebra which is k in cohomological degree
1 and pure weight 2. The category of Z-graded complexes has a tensor auto-
equivalence, sending a complex E pure of weight i to E[−2i] again pure of weight
i. This auto-equivalence induces an auto-equivalence of the ∞-category of graded
dg-Lie algebras, and sends Pol(X,n)[n+1] to Pol(X,n+2)[n+3] and k(2)[−1] to
k(2)[−3]. Iterated n times, the morphism p goes to a new morphism of dg-Lie al-
gebras p′ : k(2)[−2n− 1] −→ Pol(X,−n)[−n+1], which by conjecture 5.3 induces
a morphism of dg-Lie algebras

p′ : k[−2n− 1] −→ HHE−n+1(X)[−n+ 1].

The abelian dg-Lie algebra k[−2n− 1] corresponds to the formal derived scheme
Speck[[~2n]], where now ~2n has cohomological degree 2n. By the general DDT
and theorem 5.2 we do find a formal deformation of L(X), considered as an E−n-
monoidal dg-category, over k[[~2n]]. This deformation will be denoted by L(X, p).
This trick to deal with cases where n < 0 is called the red shift trick. It is not new,
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and already appears in the conjecture [Ka, Page 14] where Z/2-graded derived
categories are considered instead of Z-graded derived categories, and canceling out
the red shift.

Definition 5.5. The formal deformation L(X, p) constructed above is the defor-
mation quantization of (X, p). It is a formal deformation of L(X) considered as an
En-monoidal dg-category if n ≥ 0, and a formal deformation of L(X) considered
as an E−n-dg-category over k[[~2n]] if n < 0.

Definition 5.5 applies in particular to the case X = BunG(Y ), making our
principle 2.1 into a mathematical statement.

6. Examples and open questions

We present here some examples as well as some further questions.

6.1. Three examples. We start by coming back to the three situations we
mentioned in §2.

Quantum groups. We letX = BG, for G reductive. We have seen thatX has
a 2-shifted symplectic structure given by the choice of non-degenerate G-invariant
scalar product on g. The dg-category L(X) here is the dg-category of complexes
of representations of G. Our quantization is then a formal deformation of L(X) as
an E2-monoidal dg-category, and is simply realized by taking the dg-category of
complexes of representations of the quantum group.

Skein dg-algebras. We now let X = BunG(Σ) be the derived moduli stack of
G-bundles on a compact oriented surface Σ. We know that X carries a natural 0-
shifted symplectic structure (depending on a choice of a non-degenerateG-invariant
scalar product on g), whose quantization L(X, p) in our sense is a deformation of
the dg-category L(X)6. The dg-category L(X, p) is an interesting refinement of the
skein algebra of Σ which, as far as the author is aware, has not been considered
before. The structure sheaf OX ∈ L(X) deforms to a uniquely defined object

ÕX ∈ L(X, p), whose endormophisms form a dg-algebra B~ = End(ÕX) over
k[[~]], which is a deformation of OX(X) the dg-algebra of functions on X . The
skein algebra is recovered asH0(B~), but B~ is not cohomologically concentrated in
degree 0 in general and contains strictly more than K~(Σ). The higher cohomology
groups of B~ are directly related to the non-trivial derived structure of X , which
is concentrated around the singular points corresponding to G-bundles with many
automorphisms. Outside these bad points the dg-category L(X, p) is essentially
given by complexes of K~(Σ)-modules. Formally around a given singular point ρ ∈
X , the dg-category L(X, p) has a rather simple description as follows. The formal
completion of X at ρ is controlled by the formal dg-Lie algebra Lρ := H∗(Σ, gρ),
where gρ is the local system of Lie algebras associated to the G-bundle ρ. The
dg-Lie algebra Lρ is endowed with a non-degenerate pairing of degree 2 induced

6Note however that here n = 0 and the formality conjecture 5.3 is not established yet, so this
situation is still conjectural at the moment.
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by the choice of a G-invariant scalar product on g which defines a non-degenerate
pairing p : L∨

ρ [−1]∧L∨
ρ [−1] −→ k. The pairing p defines itself a Poisson structure

on the completed Chevalley complex ÔX,ρ ≃ Ŝymk(L
∨
ρ [−1]), which is the cdga of

formal functions on X around ρ. The quantization of this Poisson cdga, which
can be described in simple terms as the Weyl dg-algebra associated to Lρ with the
pairing p, is the quantization of X around ρ and can be used to describe the full
sub-dg-category of L(X, p) generated by objects supported at ρ.

Donaldson-Thomas theory. We now turn to the case where X = BunG(Y )
for a Calabi-Yau 3-fold Y , which is endowed with a (−1)-shifted symplectic form.
Our quantization L(X, p) here is a formal deformation of L(X) as a monoidal dg-
category with a formal parameter ~−2 of degree −2. To simplify a bit we can
consider this as a formal deformation of LZ/2(X), the 2-periodic dg-category of
quasi-coherent complexes on X , considered as a monoidal dg-category and with
a formal parameter ~ sitting now in degree 0. Locally, X is essentially given as
the critical locus of a function f , whose category of matrix factorizations MF (f)
provides a natural L(X, p)-module (i.e. MF (f) is enriched over the monoidal
dg-category L(X, p)). In a precise sense, MF (f) can be viewed as an object
M in the quantization of X7. The object M only exists locally, but when X
is endowed with orientation data we can expect more and maybe an existence
globally on X (for instance, the class of M in a suitable Grothendieck group has
been constructed in [Ko-So]). This suggests a possible relation with the perverse
sheaf E we mentioned in §2, as E should be somehow the Betti realization of the
sheaf of dg-categories M. Our quantization should thus refine and reinterpret
some already known constructions in Donaldson-Thomas theory.

6.2. Further questions. We finish by a sample of further possible research
directions.

Symplectic to Poisson and formality for n=0. As already mentioned in
the text the precise way to obtain an n-shifted Poisson structure out of an n-shifted
symplectic structure is not clear at the moment, except in some special case (e.g.
for derived scheme for which a version of the Darboux lemma holds and can be
used, see [Br-Bu-Jo, Bo-Gr]). Also recall that our conjecture 5.3 remains open for
non Deligne-Mumford derived algebraic stacks.

Quantization of Lagrangian morphisms. For a morphism between derived
algebraic stacks, the correct analog of a shifted symplectic structure is that of a
Lagrangian structure (see [Pa-To-Va-Ve]). These are the maps that are candidates
to survive after the deformation quantization. For this a version of the formality
conjecture 5.3 must be stated and proved (if at all true). The basic idea here is
that a Lagrangian morphim f : X −→ Y , with Y n-shifted symplectic (n > 0),

7This is so when monoidal dg-categories are considered through their (∞, 2)-category of mod-
ules.
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should deform L(X) as an En−1-monoidal dg-category enriched over the defor-
mation quantization of L(Y ). According to [Ca], fully extended TQFT should
be obtained this way, by quantization of fully extended TQFT with values in a
certain category of n-shifted symplectic derived algebraic stacks and Lagrangian
correspondences between them.

Quantization for n = −1,−2. When n = −1, and n = −2 the output
of our quantization is respectively a monoidal dg-category and braided monoidal
dg-category. There are other possible interpretations of the quantization in these
two specific cases, as the expression ”E−1-monoidal dg-category” can be under-
stood as ”an object in a dg-category”, and ”E−2-monoidal dg-category” as ”an
endomorphism of an object in a dg-category”. In particular, the quantization
of a derived algebraic stack X endowed with a (−1)-shifted (resp. (−2)-shifted)
Poisson structure could also be interpreted as the construction of a deformation
of an object in L(X) (resp. the deformation of an endomorphism in L(X)).
For n = −1 this is the point of view taken by Joyce and his coauthors (see
[Be-Br-Bu-Jo, Br-Bu-Du-Jo-Sz, Bu]). Note that in this setting the existence of
quantization is predicated on the existence of orientation data which may not
exist. The precise relations with the quantization of 5.5 remains to be investi-
gated, and at the moment there is no precise explanations of the construction of
the constructible sheaf of [Be-Br-Bu-Jo, Br-Bu-Du-Jo-Sz, Bu] in term of derived
deformation theory.

Motivic aspects. Deformation quantization possesses an interesing interac-
tion with the motivic world. This is particularly clear when n = −1 (e.g. in
the setting of Donaldson-Thomas theory): DT are made ”motivic” in [Ko-So],
and the constructible sheaf E we mentioned above is expected to be the Betti
realization of a certain ”motive” over BunG(X). Because of deformation quanti-
zation these motives most probably are instances of ”non-commutative motives”
over non-commutative schemes (”E2-schemes” in the setting of DT theory). For
commutative base schemes non-commutative motives have been studied in [Ro],
for which the constructions of [Bl] provides a possible Betti realization functor.
From a general point of view, the specific example of Donaldson-Thomas theory
suggests the notion of En-motives, related to our deformation quantization for
arbitrary values of n, as well as En-motives over a base En−1-scheme (or stack),
which is worth studying along the same lines as [Ro, Ta2]

Geometric quantization. Only deformation quantization has been consid-
ered in this text. However, derived algebraic geometry can also interact nicely with
geometric quantization, a direction currently investigated in [Wa].
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[To2] Toën, B. Derived Algebraic Geometry. Preprint arXiv:1401.1044.
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