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1 Retour sur les systemes d’équations polynomiales
Nous revenons sur notre systeme d’équations polynomiales

Fl(Xl,...,Xn> =0
X: FQ(Xl,...‘,Xn):O
Fy(Xy,...,X,) =0

Ici, les F; sont des polynomes a n variables a coefficients dans Z. On rappelle que I'on a défini :
1. Un espace topologique des solutions complexes X (C) C P*(C).
2. Des ensembles finis X (F,) C P*(F,) et leur cardinal N(X, q).

Pour relier (1) et (2) ci-dessus on cherche un ”espace” X qui est tel que :

1. X voit les nombres de Betti de X(C).
2. On a un Frobenius B B
Fr: X —X
dont les points fixes sont en bijections avec les ensembles X (F,).

Dans des cas tres rares le Frobenius existe sur 'espace X (C), et on peut alors prendre pour X
I'espace X (C) lui-méme. Par exemple, c’est le cas pour X (C) = P"(C). Le Frobenius est donné en
coordonnées homogenes par

(oo xn) = (xf,...,20)

et éleve les coordonnées a la p-eme puissance.

L’action du Frobenius sur H*(P"(C)) ~ Q[u]/u™*! est donnée par u — p'.u’. En effet, pour H?
il suffit de voir cela pour n = 1. Mais Fr : P}(C) — P!(C) est alors un endomorphisme de degré p
de la sphere de Riemann, et son action sur le 7y est donc la multiplication par p. On utilise alors la
compatibilité avec la structure d’algebre sur H*(IP"(C)) pour voir que 'action du Frobenius envoie
u® sur pu’.

Dans ce cas la formule des traces montre que la fonction Zéta de P"(C) pour I'endomorphisme
F'r est donnée par

Z(P(C), Fr,T) = [[ @ -pD).

0<i<n



Dans ce cas on observe la formule
deg(Z(P"(C), Fr,T)) = x(P"(C))) = n + L.

Cependant, en général l'objet X n’existe pas dans la catégorie des espaces (ni méme dans
Ho(Top)) et il est nécessaire d’étendre la notion d’espaces a celle de topos afin de pouvoir le construire.

Avant de passer a la définition formelle de topos, nous pouvons examiner le cas C*, vu comme
une variété algébrique d’équation XY — 1 = 0. On sait que H;(C*) ~ Z et donc b, (C*) = 1.
Topologiquement on peut incarner ce nombre de Betti par le revétement universel

exp: C— C*

qui est un revétement de groupe Z. Cependant, si I’on souhaite décrire la topologie de C* en restant
dans la catégorie algébrique, c’est a dire en ne s’autorisant uniquement des applications polynomiales,
on ne peut plus considérer la fonction exponentielle. Au mieux on peut contempler les revétements
finis
cCt—C

donnés par x — x™. Lorsque n — oo il est raisonnable de penser que ces revétements approximent
le revetement universel.

Cela suggere que nous ayons besoin d’une notion d’espaces pour laquelle les applications du type
x +— x" soient des woisinages. On souhaite donc que les ”ouverts” soient possiblement en dehors de
I'espace que l'on considere (i.e. ne soient plus des sous-ensembles). La formalisation de cette idée
mene a la notion de sites et topologies de Grothendieck (voir [SGA4-1, Exp. II]). Nous n’irons pas
dans cette direction et allons introduire directement les topos.

2 Une caractérisation de la catégorie des ensembles

De maniere intuitive, un topos est "une catégorie qui ressemble a la catégorie Ens des ensembles.”
Pour se chauffer nous allons donner une caractérisation interne de la catégorie des ensembles.

On rappelle que la catégorie Ens des ensembles possede des limites et des colimites. Icelles peuvent
étre explicitées. Soit X, : I — Ens un foncteur. La limite du foncteur X, est donnée par

liier?Xi ={(z;); € HXZ/U(%) =x;Vu:i— jdansl} C HXi

De maniere duale colim;e; X; est le quotient de [[, X; par la relation d’équivalence engendrée
par : (x;,1) ~ (x;,j) 'l existe z, € Xy et u: k —iv:k— jtel que u(zy) = z; et v(zy) = ;.

co 1116151 X; = (H X;)/ ~
(2
Par construction, colim;c; X; vient avec des applications naturelles X; — colim;c; X; (induite par
I'inclusion de la composante X; dans [ [, X;). De méme, lim;c; X; vient avec des projections naturelles
lim;e; X; — X
Dans Ens les colimites et les limites possedent certaines compatibilités caractéristiques. Il s’agit
de deux faits suivants, appelés lois de distributivité.



1. Pour toute catégorie I, tout diagramme X, : I — Ens de colimite X = colim;c; X;, et toute
application Y — X, I'application canonique

co liIIIl(Y xx X;) —Y
1€

est un isomorphisme.

2. Pour toute catégorie I, tout morphisme de diagrammes
f:Y,—X,

qui est équifibré, pour tout j € I le carré suivant

Y; X;

| !

colim;e; X; ——colim;e; Y
est cartésien.

Rappelons dans la notion ci-dessus que équifibré signifie que pour tout morphisme u : ¢ — j dans
I, la carré suivant
Y — X;

Jl

Y, —X,

est cartésien.
On peut alors montrer le théoréeme suivant, qui affirme que les lois de distributivités ci-dessus
caractérisent la catégorie des ensembles si I’on suppose de plus que 'objet final est générateur.

Proposition 2.1 Une catégorie C' est équivalente a Ens si et seulement si elle vérifie les conditions
sutvantes.

1. C posséde des limites et colimites (+ une condition ensembliste de présentabilité que nous
n’expliciterons pas ici, voir [Ad-Ro]).
2. La catégorie C vérifie les lois de distributivité ci-dessus.

3. L’objet final x+ de C' est générateur : un morphisme f : x — y de C' est un isomorphisme si et
seulement si lapplication induite C(x,z) — C(x,y) est bijective. De plus les objets finauz et
mittaux ne sont pas isomorphes.

La proposition précédente se démontre en utilisant ’adjonction suivante
G:Ens=C:C(x,—)

ou l'adjoint & gauche G envoie un ensemble X sur l'objet [ [ * dans C. Le fait que cette adjonction
soit en réalité une équivalence se déduit alors des lois de distributivité.

En théorie des Topos la catégorie Ens joue le role de 'espace ponctuel. Toute catégorie vérifiant
les deux premieres conditions de la proposition 2.1 mais pas nécessairement la derniere sera appelée
un topos.



3 Topos
Définition 3.1 Un topos est une catégorie vérifiant (1) et (2) de la proposition 2.1.
Nous donnons aussi la définition de morphismes de topos.

Définition 3.2 Un morphisme [ : T — T" entre deux topos T et T’ est un foncteur qui admet un
adjoint a gauche f*:T" — T qui est exact (i.e. commute aux limites finies). Les morphismes entre
topos forment donc une catégorie, les morphismes étant les transformations naturelles de foncteurs.

Préfaisceaux. Soit I une catégorie. On note 1= Fun(I°, Ens). C’est un topos, appelé topos des
préfaisceaux sur I.

Par exemple, si G est un groupe on peut considérer I = BG, la catégorie avec un unique objet *
et End(x) = G. Alors BG est un topos, appelé le topos classifiant du groupe G. La catégorie BG est
la catégorie des ensembles munis d’'une G-action.

Pour tout topos T' les morphismes 7" — BG sont en correspondance avec les G-fibrés principauz
internes a T. Lorsque T' = Ens, ces morphismes Ens — BG sont les points de T, et sont en
correspondance avec les G-ensembles principaux homogenes. La catégorie des points de BG est alors
équivalente a la catégorie BG : un unique objet et G comme automorphisme. En d’autres termes il
existe un unique morphisme Ens — BG a isomorphisme pres, et le groupe des automorphismes de
ce foncteur est G.

Espaces topologiques. Soit X un espace topologique. Nous allons définir un topos Sh(X) des
faisceaux sur X. La construction X + Sh(X) définit alors un foncteur de la catégorie des espaces
topologiques dans la 2-catégorie des topos.

La catégorie Sh(X) est définie de la maniere suivante. On note Ouv(X) la catégorie des ouverts
de X : ses objets sont les ouverts et ses morphismes sont les inclusions. La catégorie Sh(X) est alors

la sous-catégorie pleine de Om) formée des foncteurs
F: Ouv(X)° — Ens

vérifiant la conditions de descente suivante : pour tout ouvert U et tout recouvrement ouvert U =
U,;U;, I'application canonique ci-dessous est bijective

F(U) — lim (HF :;HF iy )

ou l'on note U; ; = U;NU;. La catégorie Sh(X) ainsi définie est un topos, appelé le topos des faisceauz
sur X.

La catégorie Sh(X) est aussi définissable par une propriété universelle. On considere les catégories
C' avec colimites et un foncteur F': Quv(X) — C. On dira que F' a la propriété de recollement si
pour tout ouvert U et tout recouvrement ouvert U = U;U; le morphisme naturel dans C'

colim (]_[ F(U;) = HF(U,-)) — F(U)
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est un isomorphisme dans C'. Alors, il existe un foncteur avec la propriété de recollement (induit par
Yoneda)

Ouv(X) — Sh(X)

et ce dernier est universel : pour toute catégorie C' avec colimites et tout foncteur avec la propriété
de recollement Ouv(X) — C, il existe une factorisation unique a isomorphisme unique pres

Ouv(X) — Sh(X)

\ lal

C.

4 Le petit topos étale d’un anneau commutatif

Commengons par le cas d'un corps K. On définit une catégorie K., dont les objets sont les K-
algebres (commutatives) de la forme [[. K;, produit fini d’extensions de corps K — K; finies et
séparables. Les morphismes dans K, sont les morphismes de K-algebres.

On définit un topos Sh(K) comme sous-catégorie pleine de (K)°. Il s’agit de la sous-catégorie
des foncteurs

F: K., — Ens

qui vérifient la descente galoisienne. 1l s’agit des deux conditions suivantes :
1. F(I[, Ki) ~ 1, F(K;) pour toute famille finie d’extension finies séparables K — K.

2. Pour tout extension finie et séparable K < K’ < K" le morphisme naturel
F(K') — lim (F(K") = F(K" @k K"))

est bijectif.

La condition (2), lorsque K’ < K" est de plus galoisienne de groupe G, affirme que F(K') est
en bijection naturelle avec F(K”)“, I'ensemble des points fixes de G sur F(K").

Le topos Sh(K.;) est appelé le petit topos étale de K. On peut de plus le décrire entierement
en termes du groupe de Galois absolu de K. Le contenu de la proposition suivante est ce que 'on
appelle parfois ”la théorie de Galois de Grothendieck”.

Proposition 4.1 Soit K* une cléture séparable de K et Gx = Gal(K*/K) le groupe de Ga-
lois absolu de K muni de sa topologie profinie usuelle. Il existe alors une équivalence canonique de
catégories

Sh(Ke) ~ Gk — Ensg,

ou G — Ensy est la catégorie des ensembles munis d’une action continue de G . Cette équivalence
est induite par le foncteur

F i+ F(K®) = colim F(K')

ot K" parcours les sous-extensions finies de K C K*P.



Une conséquence importante de la propriété précédente est le fait suivant. Nous pouvons composer
I’équivalence avec le foncteur d’oubli G — Ens; — Ens, qui oublie 'action de Gi. Le foncteur
obtenu ainsi

w: Sh(Ke) — Ens

est appelé le foncteur fibre (associé au choix de K*P). Le corollaire de la proposition est alors la
formule suivante
Gk ~ aut(w).

Pour terminer nous généralisons la construction du topos Sh(K) au cas ou K est remplacé par
un anneau commutatif quelconque A.
Pour cela on rappelle qu'un morphisme d’anneaux A — B est plat, si le foncteur de changement
de bases
—®aB:A—Mod — B — Mod

est exact (i.e. préserve les suites exactes de modules).

Définition 4.2 Un morphisme d’anneauxr commutatifs A — B est étale si
1. B est de présentation finie sur A (i.e. de la forme A[Xy,..., X,|/(F1,..., Fy)).
2. A — B est plat.

3. Pour tout corps K et tout morphisme d’anneaur A — K, la K-algébre B® 4 K est isomorphe
a un produit fini [ [, K; d’extensions finies et séparables de corps K — K;.

On dit de plus qu’un morphisme A — B est un recouvrement étale s’il est étale si et si pour
tout corps K et tout morphisme d’anneaux A — K, la K-algébre B ® 4 K est non-nulle.

On pose alors A, la catégorie des A-algebres étales. Notons qu'un morphismes A” — A” entre
A-algebres étales est automatiquement lui-méme un morphisme étale (attention c¢’est faux pour les
morphismes plats). On revoit a [Mi] pour plus sur les morphismes plats et étales.

On définit alors le topos Sh(A.) comme étant la catégorie des foncteurs
F: A, — Ens

vérifiant les deux propriétés suivantes.

1. F(I], Bi) ~ I1, F(B;) pour toute famille finie de A-algebres étales A — B;.

2. Pour tout recouvrement étale B — B’ de A-algebres étales, le morphisme naturel
F(B) — lim (F(B') = F(B' ®p B"))

est bijectif.
Le topos Sh(Ae) est appelé le petit topos étale de A.
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