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1 Retour sur les systèmes d’équations polynômiales

Nous revenons sur notre système d’équations polynomiales

X :


F1(X1, . . . , Xn) = 0
F2(X1, . . . , Xn) = 0

...
Fp(X1, . . . , Xn) = 0

Ici, les Fi sont des polynômes à n variables à coefficients dans Z. On rappelle que l’on a défini :

1. Un espace topologique des solutions complexes X̄(C) ⊂ Pn(C).

2. Des ensembles finis X̄(Fq) ⊂ Pn(Fq) et leur cardinal N(X, q).

Pour relier (1) et (2) ci-dessus on cherche un ”espace” X̄ qui est tel que :

1. X̄ voit les nombres de Betti de X̄(C).

2. On a un Frobenius
Fr : X̄ −→ X̄

dont les points fixes sont en bijections avec les ensembles X̄(Fq).

Dans des cas très rares le Frobenius existe sur l’espace X̄(C), et on peut alors prendre pour X̄
l’espace X̄(C) lui-même. Par exemple, c’est le cas pour X̄(C) = Pn(C). Le Frobenius est donné en
coordonnées homogènes par

(x0, . . . , xn) 7→ (xp0, . . . , x
p
n)

et élève les coordonnées à la p-ème puissance.
L’action du Frobenius sur H∗(Pn(C)) ' Q[u]/un+1 est donnée par u 7→ pi.ui. En effet, pour H2

il suffit de voir cela pour n = 1. Mais Fr : P1(C) −→ P1(C) est alors un endomorphisme de degré p
de la sphère de Riemann, et son action sur le π2 est donc la multiplication par p. On utilise alors la
compatibilité avec la structure d’algèbre sur H∗(Pn(C)) pour voir que l’action du Frobenius envoie
ui sur piui.

Dans ce cas la formule des traces montre que la fonction Zêta de Pn(C) pour l’endomorphisme
Fr est donnée par

Z(Pn(C), F r, T ) =
∏

0≤i≤n

(1− piT ).
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Dans ce cas on observe la formule

deg(Z(Pn(C), F r, T )) = χ(Pn(C))) = n+ 1.

Cependant, en général l’objet X̄ n’existe pas dans la catégorie des espaces (ni même dans
Ho(Top)) et il est nécessaire d’étendre la notion d’espaces à celle de topos afin de pouvoir le construire.

Avant de passer à la définition formelle de topos, nous pouvons examiner le cas C∗, vu comme
une variété algébrique d’équation XY − 1 = 0. On sait que H1(C∗) ' Z et donc b1(C∗) = 1.

Topologiquement on peut incarner ce nombre de Betti par le revêtement universel

exp : C −→ C∗

qui est un revêtement de groupe Z. Cependant, si l’on souhaite décrire la topologie de C∗ en restant
dans la catégorie algébrique, c’est à dire en ne s’autorisant uniquement des applications polynomiales,
on ne peut plus considérer la fonction exponentielle. Au mieux on peut contempler les revêtements
finis

C∗ −→ C∗

donnés par x 7→ xn. Lorsque n → ∞ il est raisonnable de penser que ces revêtements approximent
le revêtement universel.

Cela suggère que nous ayons besoin d’une notion d’espaces pour laquelle les applications du type
x 7→ xn soient des voisinages. On souhaite donc que les ”ouverts” soient possiblement en dehors de
l’espace que l’on considère (i.e. ne soient plus des sous-ensembles). La formalisation de cette idée
mène à la notion de sites et topologies de Grothendieck (voir [SGA4-1, Exp. II]). Nous n’irons pas
dans cette direction et allons introduire directement les topos.

2 Une caractérisation de la catégorie des ensembles

De manière intuitive, un topos est ”une catégorie qui ressemble à la catégorie Ens des ensembles.”
Pour se chauffer nous allons donner une caractérisation interne de la catégorie des ensembles.

On rappelle que la catégorie Ens des ensembles possède des limites et des colimites. Icelles peuvent
être explicitées. Soit X∗ : I −→ Ens un foncteur. La limite du foncteur X∗ est donnée par

lim
i∈I

Xi = {(xi)i ∈
∏
i

Xi / u(xi) = xj ∀u : i→ j dans I} ⊂
∏
i

Xi

De manière duale co limi∈I Xi est le quotient de
∐

iXi par la relation d’équivalence engendrée
par : (xi, i) ∼ (xj, j) s’il existe xk ∈ Xk et u : k → i v : k → j tel que u(xk) = xi et v(xk) = xj.

co lim
i∈I

Xi = (
∐
i

Xi)/ ∼

Par construction, co limi∈I Xi vient avec des applications naturelles Xi → co limi∈I Xi (induite par
l’inclusion de la composante Xi dans

∐
iXi). De même, limi∈I Xi vient avec des projections naturelles

limi∈I Xi −→ Xi.
Dans Ens les colimites et les limites possèdent certaines compatibilités caractéristiques. Il s’agit

de deux faits suivants, appelés lois de distributivité.
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1. Pour toute catégorie I, tout diagramme X∗ : I −→ Ens de colimite X = co limi∈I Xi, et toute
application Y −→ X, l’application canonique

co lim
i∈I

(Y ×X Xi) −→ Y

est un isomorphisme.

2. Pour toute catégorie I, tout morphisme de diagrammes

f : Y∗ −→ X∗

qui est équifibré, pour tout j ∈ I le carré suivant

Yj //

��

Xj

��
co limi∈I Xi

// co limi∈I Yi

est cartésien.

Rappelons dans la notion ci-dessus que équifibré signifie que pour tout morphisme u : i→ j dans
I, la carré suivant

Yi //

��

Xi

��
Yj // Xj

est cartésien.
On peut alors montrer le théorème suivant, qui affirme que les lois de distributivités ci-dessus

caractérisent la catégorie des ensembles si l’on suppose de plus que l’objet final est générateur.

Proposition 2.1 Une catégorie C est équivalente à Ens si et seulement si elle vérifie les conditions
suivantes.

1. C possède des limites et colimites (+ une condition ensembliste de présentabilité que nous
n’expliciterons pas ici, voir [Ad-Ro]).

2. La catégorie C vérifie les lois de distributivité ci-dessus.

3. L’objet final ∗ de C est générateur : un morphisme f : x→ y de C est un isomorphisme si et
seulement si l’application induite C(∗, x) → C(∗, y) est bijective. De plus les objets finaux et
initiaux ne sont pas isomorphes.

La proposition précédente se démontre en utilisant l’adjonction suivante

G : Ens� C : C(∗,−)

où l’adjoint à gauche G envoie un ensemble X sur l’objet
∐

X ∗ dans C. Le fait que cette adjonction
soit en réalité une équivalence se déduit alors des lois de distributivité.

En théorie des Topos la catégorie Ens joue le rôle de l’espace ponctuel. Toute catégorie vérifiant
les deux premières conditions de la proposition 2.1 mais pas nécessairement la dernière sera appelée
un topos.
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3 Topos

Définition 3.1 Un topos est une catégorie vérifiant (1) et (2) de la proposition 2.1.

Nous donnons aussi la définition de morphismes de topos.

Définition 3.2 Un morphisme f : T −→ T ′ entre deux topos T et T ′ est un foncteur qui admet un
adjoint à gauche f ∗ : T ′ −→ T qui est exact (i.e. commute aux limites finies). Les morphismes entre
topos forment donc une catégorie, les morphismes étant les transformations naturelles de foncteurs.

Préfaisceaux. Soit I une catégorie. On note Î = Fun(Io, Ens). C’est un topos, appelé topos des
préfaisceaux sur I.

Par exemple, si G est un groupe on peut considérer I = BG, la catégorie avec un unique objet ∗
et End(∗) = G. Alors B̂G est un topos, appelé le topos classifiant du groupe G. La catégorie B̂G est
la catégorie des ensembles munis d’une G-action.

Pour tout topos T les morphismes T −→ B̂G sont en correspondance avec les G-fibrés principaux
internes à T . Lorsque T = Ens, ces morphismes Ens −→ B̂G sont les points de T , et sont en
correspondance avec les G-ensembles principaux homogènes. La catégorie des points de B̂G est alors
équivalente à la catégorie BG : un unique objet et G comme automorphisme. En d’autres termes il
existe un unique morphisme Ens −→ B̂G à isomorphisme près, et le groupe des automorphismes de
ce foncteur est G.

Espaces topologiques. Soit X un espace topologique. Nous allons définir un topos Sh(X) des
faisceaux sur X. La construction X 7→ Sh(X) définit alors un foncteur de la catégorie des espaces
topologiques dans la 2-catégorie des topos.

La catégorie Sh(X) est définie de la manière suivante. On note Ouv(X) la catégorie des ouverts
de X : ses objets sont les ouverts et ses morphismes sont les inclusions. La catégorie Sh(X) est alors

la sous-catégorie pleine de Ôuv(X) formée des foncteurs

F : Ouv(X)o −→ Ens

vérifiant la conditions de descente suivante : pour tout ouvert U et tout recouvrement ouvert U =
∪iUi, l’application canonique ci-dessous est bijective

F (U) −→ lim

(∏
i

F (Ui) ⇒
∏
i,j

F (Ui,j)

)

où l’on note Ui,j = Ui∩Uj. La catégorie Sh(X) ainsi définie est un topos, appelé le topos des faisceaux
sur X.

La catégorie Sh(X) est aussi définissable par une propriété universelle. On considère les catégories
C avec colimites et un foncteur F : Ouv(X) −→ C. On dira que F a la propriété de recollement si
pour tout ouvert U et tout recouvrement ouvert U = ∪iUi le morphisme naturel dans C

co lim

(∐
i,j

F (Ui,j) ⇒
∐
i

F (Ui)

)
−→ F (U)
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est un isomorphisme dans C. Alors, il existe un foncteur avec la propriété de recollement (induit par
Yoneda)

Ouv(X) −→ Sh(X)

et ce dernier est universel : pour toute catégorie C avec colimites et tout foncteur avec la propriété
de recollement Ouv(X) −→ C, il existe une factorisation unique à isomorphisme unique près

Ouv(X) //

&&

Sh(X)

∃!
��
C.

4 Le petit topos étale d’un anneau commutatif

Commençons par le cas d’un corps K. On définit une catégorie Ket dont les objets sont les K-
algèbres (commutatives) de la forme

∏
iKi, produit fini d’extensions de corps K ↪→ Ki finies et

séparables. Les morphismes dans Ket sont les morphismes de K-algèbres.

On définit un topos Sh(Ket) comme sous-catégorie pleine de (̂Ket)o. Il s’agit de la sous-catégorie
des foncteurs

F : Ket −→ Ens

qui vérifient la descente galoisienne. Il s’agit des deux conditions suivantes :

1. F (
∏

iKi) '
∏

i F (Ki) pour toute famille finie d’extension finies séparables K ↪→ Ki.

2. Pour tout extension finie et séparable K ↪→ K ′ ↪→ K ′′ le morphisme naturel

F (K ′) −→ lim (F (K ′′) ⇒ F (K ′′ ⊗K′ K ′′))

est bijectif.

La condition (2), lorsque K ′ ↪→ K ′′ est de plus galoisienne de groupe G, affirme que F (K ′) est
en bijection naturelle avec F (K ′′)G, l’ensemble des points fixes de G sur F (K ′′).

Le topos Sh(Ket) est appelé le petit topos étale de K. On peut de plus le décrire entièrement
en termes du groupe de Galois absolu de K. Le contenu de la proposition suivante est ce que l’on
appelle parfois ”la théorie de Galois de Grothendieck”.

Proposition 4.1 Soit Ksp une clôture séparable de K et GK = Gal(Ksp/K) le groupe de Ga-
lois absolu de K muni de sa topologie profinie usuelle. Il existe alors une équivalence canonique de
catégories

Sh(Ket) ' GK − Ensct,

où GK −Ensct est la catégorie des ensembles munis d’une action continue de GK. Cette équivalence
est induite par le foncteur

F 7→ F (Ksp) = co limF (K ′)

où K ′ parcours les sous-extensions finies de K ⊂ Ksp.
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Une conséquence importante de la propriété précédente est le fait suivant. Nous pouvons composer
l’équivalence avec le foncteur d’oubli GK − Ensct −→ Ens, qui oublie l’action de GK . Le foncteur
obtenu ainsi

ω : Sh(Ket) −→ Ens

est appelé le foncteur fibre (associé au choix de Ksp). Le corollaire de la proposition est alors la
formule suivante

GK ' aut(ω).

Pour terminer nous généralisons la construction du topos Sh(Ket) au cas où K est remplacé par
un anneau commutatif quelconque A.

Pour cela on rappelle qu’un morphisme d’anneaux A −→ B est plat, si le foncteur de changement
de bases

−⊗A B : A−Mod −→ B −Mod

est exact (i.e. préserve les suites exactes de modules).

Définition 4.2 Un morphisme d’anneaux commutatifs A −→ B est étale si

1. B est de présentation finie sur A (i.e. de la forme A[X1, . . . , Xn]/(F1, . . . , Fk)).

2. A −→ B est plat.

3. Pour tout corps K et tout morphisme d’anneaux A→ K, la K-algèbre B⊗AK est isomorphe
à un produit fini

∏
iKi d’extensions finies et séparables de corps K ↪→ Ki.

On dit de plus qu’un morphisme A −→ B est un recouvrement étale s’il est étale si et si pour
tout corps K et tout morphisme d’anneaux A→ K, la K-algèbre B ⊗A K est non-nulle.

On pose alors Aet la catégorie des A-algèbres étales. Notons qu’un morphismes A′ −→ A′′ entre
A-algèbres étales est automatiquement lui-même un morphisme étale (attention c’est faux pour les
morphismes plats). On revoit à [Mi] pour plus sur les morphismes plats et étales.

On définit alors le topos Sh(Aet) comme étant la catégorie des foncteurs

F : Aet −→ Ens

vérifiant les deux propriétés suivantes.

1. F (
∏

iBi) '
∏

i F (Bi) pour toute famille finie de A-algèbres étales A→ Bi.

2. Pour tout recouvrement étale B −→ B′ de A-algèbres étales, le morphisme naturel

F (B) −→ lim (F (B′) ⇒ F (B′ ⊗B B
′))

est bijectif.

Le topos Sh(Aet) est appelé le petit topos étale de A.
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