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Algebraic geometry, categories and trace formula




Topology of algebraic varieties

Homogeneous polynomials Fi, ..., F, € C[Xy, ..., X,]
X :={(xo,..-,x:)/Fi(x) =0} C PL.

Problem: read the topology of X in terms of the F;'s.
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Topology of algebraic varieties

Typical answers in low dimension

@ (n=1,p=1): X finite set of cardinality deg(F;) counted
with multiplicities.

@ (n=2and p=1): X is a compact Riemann surface and

(d—1)(d —2)

g(X) = 5 d = deg(F1)

(g(X) is the arithmetic genus if X not smooth).
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Euler characteristic of algebraic
varieties

Simple topological invariant: Euler characteristic x(X)

X(X) = (~1)/dim H'(X,Q).
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Euler characteristic of algebraic
varieties

Simple topological invariant: Euler characteristic x(X)

X(X) = (~1)/dim H'(X,Q).

i

Theorem

X(X) =D (~1)"dim H?(X, Q).

p.q

Here: QF is the sheaf of holomorphic differential g-forms on
X. The right hand side can be determined purely in terms of
the F; ("GAGA” theorem).



Euler characteristic of algebraic
varieties

X(X) = (—1)"dim HP(X, Q5).

p.q

topological invariant = algebraic invariant
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Euler characteristic of algebraic
varieties

The theorem follows from the existence of the Hodge
decomposition

H(X,Q)@C~ @ H(X.QY).

ptq=i
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Euler characteristic of algebraic
varieties

The theorem follows from the existence of the Hodge
decomposition

H(X,Q)@C~ @ H(X.QY).

ptq=i

But, it has also an independent proof:

(GB) v(X) = /X Coon(X)

(HRR) /Ctop(X):Z(—l)”“’dimHP(X,Qj().

pq
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Euler characteristic of algebraic
varieties

Gauss-Bonnet and Hirzebruch-Riemann-Roch are both true
over arbitrary fields.
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Euler characteristic of algebraic
varieties

Gauss-Bonnet and Hirzebruch-Riemann-Roch are both true
over arbitrary fields.
Homogeneous polynomials Fq, .. ., F, € k[Xo, ..., Xa] (k an

algebraically closed field) X := {(xo, ..., x,)/Fi(x) =0} C Py.

X(X) =D (=1)/dim Hi,(X,Q¢) = > (—1)""dim H?(X, Q)

i p,q

H:.(X,Qy) are the (-adic cohomology groups introduced by
Grothendieck. HP(X, Q%) sheaf cohomology for the Zariski
topology.
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Euler characteristic of algebraic
varieties

Gauss-Bonnet and Hirzebruch-Riemann-Roch are both true
over arbitrary fields.
Homogeneous polynomials Fi, ..., F, € k[Xo, ..., X,] (k an

algebraically closed field) X := {(xo, ..., x,)/Fi(x) =0} C Py.
X(X) 1= S0 dim Hiy (X, Q1) = 37 (~1)7*dim HP(X. 0%)

i p,q

H!.(X, Q) are the (-adic cohomology groups introduced by
Grothendieck. HP(X, Q%) sheaf cohomology for the Zariski
topology.

Warning: In general H.,(X,Q;) and @, ,—iHP(X, Q%) dont
have the same dimension !



The trace formula for algebraic
varieties

The formula is a special case of the trace formula: f & X
algebraic endomorphism of X.

> (=1)Trace(f : HL(X, Q) = [[+.Ax]

i
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The trace formula for algebraic
varieties

The formula is a special case of the trace formula: f & X
algebraic endomorphism of X.

Z(-1)"Trace(f CHL(X, Q) = [[r.Ax]

[[£.Ax] is the intersection number of the graph of f with the
diagonal inside X x X. The case f = id recovers the formula
for x(X).
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Topology of degeneration of algebraic
varieties

Algebraic varieties naturally arise in family, and tend to
degenerate to varieties with singularities.
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Topology of degeneration of algebraic
varieties

Algebraic varieties naturally arise in family, and tend to
degenerate to varieties with singularities.

@ Moduli theory: moduli of varieties are non-compact.
Compactification by adding singular varieties at infinity (e.g.
Mg.n C Mg,n).

@ Arithmetic geometry: algebraic varieties defined over rings of
integers in number fields. Bad reduction at some prime.
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Topology of degeneration of algebraic
varieties

Homogeneous polynomials Fi, ..., F, € A[Xo, ..., X,] where
A = O(S)=ring of functions on the parameter space S.

X :={(x0,.-,X%n5)/Fi(x,s) =0} CP" x S.

Family of algebraic varieties parametrized by S. For a point
s €S, we have X; C PZ(S) an algebraic variety defined over

k(s)=residue field of s.

10 / 32



Topology of degeneration of algebraic

varieties

S is taken to be a "small disk” := henselian trait. Typical
examples:

@ S = Spec C[[t]] formal holomorphic disk.
@ S = Spec k|[[t]] formal disk over an algebraically closed field.

@ S = SpecZ, formal p-adic disk.
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Topology of degeneration of algebraic

varieties

S is taken to be a "small disk” := henselian trait. Typical
examples:

@ S = Spec C[[t]] formal holomorphic disk.
@ S = Spec k|[[t]] formal disk over an algebraically closed field.
@ S = SpecZ, formal p-adic disk.

S = Spec A for A a complete d.v.r. Two points in S:

@ The special point 0 € S (k := k(s) = A/m is the residue
field).

@ The generic point n € S (K := k(n) = Frac(A) the fraction
field).
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Topology of degeneration of algebraic
varieties

X = {(x0,...,Xn,5)/Fi(x,s) =0} CP" x S.

Two algebraic varieties:

@ The special fiber X.

@ The generic fiber Xj.
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Topology of degeneration of algebraic
varieties

X = {(x0,...,Xn,5)/Fi(x,s) =0} CP" x S.

Two algebraic varieties:

@ The special fiber X.

@ The generic fiber Xj.

Variational problem: understand the change of topology
between Xz and X:.
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Euler characteristic of degeneration of
algebraic varieties

Variational problem: evaluate x(Xz) — x(Xx) in terms of an
algebraic construction.
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Euler characteristic of degeneration of
algebraic varieties

Variational problem: evaluate x(X;) — x(Xx) in terms of an
algebraic construction.

When X — S is a submersion, X3 and Xz smooth and the
topology is constant:

x(Xz) — x(Xg) = 0.
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Euler characteristic of degeneration of
algebraic varieties

Variational problem: evaluate x(X;) — x(Xx) in terms of an
algebraic construction.

When X — S is a submersion, X3 and Xz smooth and the
topology is constant:

x(Xz) — x(Xg) = 0.

We assume X is smooth and Xj possibly singular.
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Euler characteristic of degeneration of
algebraic varieties: charac. 0

Easy solution for characteristic zero case (A = C[[t]]): twisted

de Rham complex. t defines a function on X and we have

Theorem (Milnor, Kapranov, Saito, ...)

N(XR) = X(Xk) = S (~1) dim HI(X, (@, AdF)).

i
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Euler characteristic of degeneration of
algebraic varieties: charac. 0

Easy solution for characteristic zero case (A = C[[t]]): twisted

de Rham complex. t defines a function on X and we have

Theorem (Milnor, Kapranov, Saito, ...)

X(Xe) = x(Xk) = Y _(=1)'dim H'(X, (Q. Adf)).

i

(e, AdF) : Ox —L- QL 29 g2 Adf,

Case where Xz has only isolated singularities: Milnor formula
(dimension of Jacobian ring).
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Euler characteristic of degeneration of
algebraic varieties: Bloch’s formula

Without characteristic zero: more complicated due to
arithmetic aspects.

Conjecture (Deligne 67, Bloch 85)
If the scheme X is regular and k perfect.

X(Xz) — x(Xg) = [Ax.Ax]o + Sw(Xg).
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@ [Ax.Ax]o is the degree of a 0-cycle on X; that measures the
singularities (Bloch's localized intersection number).
Generalization of the different in algebraic number theory.
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Euler characteristic of degeneration of
algebraic varieties: Bloch’s formula

Without characteristic zero: more complicated due to
arithmetic aspects.

Conjecture (Deligne 67, Bloch 85)
If the scheme X is regular and k perfect.

X(Xz) — x(Xg) = [Ax.Ax]o + Sw(Xg).

@ [Ax.Ax]o is the degree of a 0-cycle on X; that measures the
singularities (Bloch's localized intersection number).
Generalization of the different in algebraic number theory.

® Sw(Xjy) is the Swan conductor which measures wild
ramifications: action of Gal(K/K) on H}(Xx).
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Euler characteristic of degeneration of
algebraic varieties: Bloch’s formula
The Bloch's formula is a theorem when:
@ Characteristic 0: Milnor, Kapranov, M. Saito.
@ Equicharacteristic p > 0 (A = k[[t]]): T. Saito (2017).

@ Semi-stable case: X3 C X is (supported by) a simple normal
crossing divisor (Kato-Saito 2001).

@ Degenerate case: Xj = () (recovers formula for x(X)).

@ Family of curves (Bloch), and finite ramified cover X — S
(standard formula for the different).
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Euler characteristic of degeneration of
algebraic varieties: Bloch’s formula
The Bloch's formula is a theorem when:
@ Characteristic 0: Milnor, Kapranov, M. Saito.
@ Equicharacteristic p > 0 (A = k[[t]]): T. Saito (2017).

@ Semi-stable case: X3 C X is (supported by) a simple normal
crossing divisor (Kato-Saito 2001).

@ Degenerate case: X7 = () (recovers formula for x(X)).

@ Family of curves (Bloch), and finite ramified cover X — S
(standard formula for the different).

Mixed characteristic case (e.g. A =Z,) is open: in particular
isolated singularities (Deligne-Milnor formula).
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Conjecture = x(Xz) — x(Xg) = [Ax.Ax]o + Sw(Xz).

Algebraic geometry, categories and trace formula




Bloch’s conductor formula

Conjecture : x(Xz) — x(Xg) = [Ax.Ax]o + Sw(Xx).

We want to make progress on this conjecture by introducing a
new point of view:

@ Degenerate case Xj = () is the commutative case.

@ General case involves a . the function
7 € A, a choice of uniformizer on S.

17 / 32



Bloch’s conductor formula

Conjecture : x(Xz) — x(Xg) = [Ax.Ax]o + Sw(Xx).

We want to make progress on this conjecture by introducing a
new point of view:

@ Degenerate case Xj = () is the commutative case.

@ General case involves a . the function
7 € A, a choice of uniformizer on S.

For this: find a non-commutative variety such that
X(47) = x(Xz) = x(Xk) and apply a
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Non-commutative varieties

Definition
A non-commutative variety over some base
commutative ring k is a k-linear (dg-)category.
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Non-commutative varieties

Definition
A non-commutative variety over some base
commutative ring k is a k-linear (dg-)category.

Reminder: a (dg-)category is
@ a set of objects

@ for two objects x and y a (complex of) k-module Hom(x, y)

@ compositions Hom(x, y) ® Hom(y,z) — Hom(x, z)
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Non-commutative varieties

Definition
A non-commutative variety over some base
commutative ring k is a k-linear (dg-)category.

Reminder: a (dg-)category is
@ a set of objects
@ for two objects x and y a (complex of) k-module Hom(x, y)
@ compositions Hom(x,y) ®x Hom(y,z) — Hom(x, z)

Dg-categories are considered up to Morita equivalences
(" generate the same triangulated categories”).
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Non-commutative varieties: examples

Very weak definition = plenty of examples !

© Algebras: A a k-algebra, D(A) = dg-category of complexes of
A-modules.

© Schemes over k: as above + gluing = D(X).

© Other examples: Quivers, topology, symplectic manifolds.
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Geometry of non-commutative
varieties

Very weak definition = hard to believe the notion is
interesting ! No true geometry (no notions of opens, no
topology, no points).
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Geometry of non-commutative
varieties

Very weak definition = hard to believe the notion is
interesting ! No true geometry (no notions of opens, no
topology, no points).

Good surprise: non-commutative schemes have reasonable
notions of

o differential forms (Hochschild homology)

@ /(-adic cohomology (recent construction, see below).

20/ 32



Hochschild homology (differential
forms)
For a k-algebra B we have a Hochschild complex
HH(B) = ...B®" ——=pB®r-Y) . -B®2__.PB
with differential

d(by®@- - ®by) = (1) ' ®...bi_1®bib1 @ @b,

i

+(=1)"bby @ by @ -+ @ b,_1.
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Hochschild homology (differential
forms)

For a k-algebra B we have a Hochschild complex
HH(B) = ...B®" ——=pB®r-Y) . -B®2__.PB
with differential

d(by®@- - ®by) = (1) ' ®...bi_1®bib1 @ @b,
+(=1)"bpby @ b, @ -+ - @ by_1.

This extends to dg-algebras and dg-categories: for any
non-commutative scheme T we have a Hochschild complex
HH(T).
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Hochschild homology (differential
forms)

Theorem (Hochschild-Kostant-Rosenberg, Keller)

For X a smooth algebraic variety over k, considered as a
non-commutative scheme D(X) we have

HH,(D(X)) ~ €D HP(X. Q).

p—q=n
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Hochschild homology (differential
forms)

Theorem (Hochschild-Kostant-Rosenberg, Keller)

For X a smooth algebraic variety over k, considered as a
non-commutative scheme D(X) we have

HH,(D(X)) ~ €D HP(X. Q).

p—q=n

In particular we have

V(HH(D(X))) = S (~1)P*9dim HP(X, 0% ).

psq
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Hochschild homology (differential
forms)

There is a version with coefficients in f & T HH(T, f).
Hochschild-Kostant-Rosenberg becomes

HH(D(X), f) ~ R (X x X, O, @ Oa,).
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Hochschild homology (differential
forms)

There is a version with coefficients in f & T HH(T, f).
Hochschild-Kostant-Rosenberg becomes

HH(D(X), f) ~ R (X x X, O, @ Oa,).
In particular

X(HH(D(X), f)) = [['r.Ax].
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/-adic cohomology

Theorem (Blanc, Robalo, T., Vezzosi)

For all non-commutative scheme T, and of a prime { invertible
in k, it is possible to define a Q,-vector space H*( T, Q). For
T =D(X) we have

H™(T, Q) = € H*+7(X, Qu(1).

1
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/-adic cohomology

Theorem (Blanc, Robalo, T., Vezzosi)

For all non-commutative scheme T, and of a prime { invertible
in k, it is possible to define a Q,-vector space H*(T,Qy). For
T =D(X) we have

(T, Q) ~ @HM" (X, Qe(1))-

Construction: approximation of T by commutative algebraic
varieties + homotopy theory of schemes of Voevodsky-Morel.
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/-adic cohomology

Theorem (Blanc, Robalo, T., Vezzosi)

For all non-commutative scheme T, and of a prime { invertible
in k, it is possible to define a Q,-vector space H*(T,Qy). For
T =D(X) we have

(T, Q) ~ @HM” (X, Qe(1))-

Construction: approximation of T by commutative algebraic
varieties + homotopy theory of schemes of Voevodsky-Morel.
In particular, we can define Euler characteristic in the
non-commutative situation

X(T) := dimH°(T,Q,) — dimH (T, Q,) € Z
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The non-commutative trace formula

Definition
A non-commutative scheme T is saturated (also smooth and
proper) if it has a dual T".
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By definition, the dual T" comes equipped with
coev:1—TxTY ev: TRTY —1

+ usual properties (T——=T R T T—T =id).
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The non-commutative trace formula

Definition
A non-commutative scheme T is saturated (also smooth and
proper) if it has a dual T".

By definition, the dual T" comes equipped with
coev:1—TxTY ev: TRTY —1

+ usual properties (T——=T R T T—T =id).
D(X) is saturated <= X is proper and smooth. Then
D(X)Y ~ D(X) (Poincaré duality). ev and coev are
non-commutative maps which do not exists in the
commutative setting !

25 /32



The non-commutative trace formula

Theorem (Vezzosi, T.)

Let T be a saturated non-commutative variety T + technical
condition called admissibility. For f C T
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The non-commutative trace formula

Theorem (Vezzosi, T.)

Let T be a saturated non-commutative variety T + technical
condition called admissibility. For f C T

Tr(f : H*(T,Qy)) = x(HH.(T,f)).

@ For T = D(X) gives back the trace formula of Grothendieck.

@ Also extends to non-commutative schemes T over
non-commutative base B.
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Bloch’s formula and non-commutative

schemes

Back to X C P" x S. We fix a uniformizer m of A, which
defines a function 7 on X.
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schemes

Back to X C P" x S. We fix a uniformizer m of A, which
defines a function m on X. A matrix factorisation for 7
consists of

@ two vector bundles Ep, E; on X
@ two morphisms
Eo—2~E 2> E

such that 92 = x.
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Bloch’s formula and non-commutative

schemes

Back to X C P" x S. We fix a uniformizer m of A, which
defines a function m on X. A matrix factorisation for 7
consists of

@ two vector bundles Ep, E; on X
@ two morphisms
Eo—2~E 2> E
such that 0% = xr.
Matrix factorizations form a (dg-)category MF(X, 7).
Definition

The non-commutative scheme of singularities of X/S is
defined to be ', .= MF(X, ).
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Two examples

@ X a vector space, m = g a quadratic form on X.
~ D(Ciff(q))

where Ciff(q) is the Clifford algebra of (X, q). sees
arithmetic aspects.
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arithmetic aspects.

© Over C, and X, with an isolated singularity we have
(Dyckerhoff)

HHo( X)) ~ Jac(m) = Ox x/(07/0x;).

sees algebraic aspects.
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Two examples

@ X a vector space, m = g a quadratic form on X.
~ D(Ciff(q))

where Ciff(q) is the Clifford algebra of (X, q). sees

arithmetic aspects.

© Over C, and X, with an isolated singularity we have
(Dyckerhoff)

HHo( X)) ~ Jac(m) = Ox x/(07/0x;).
sees algebraic aspects.

In general MF(X, ) concentrated on singularities
MF (X, f) = 0 when X is smooth over S.
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Bloch’s formula and non-commutative
schemes
Theorem (T., Vezzosi)

@ The non-commutative scheme X, is saturated over some
funny non-commutative base ring B.

©Q x(HH(Xz)) = [Ax.Ax]o
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Bloch’s formula and non-commutative
schemes
Theorem (T., Vezzosi)

@ The non-commutative scheme X, is saturated over some
funny non-commutative base ring B.

©Q x(HH(Xz)) = [Ax.Ax]o

© If the monodromy acts unipotently on H.,(Xg,Qy) then

X(H* (X7, Qo)) = x(Xz) — x(Xg)-
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Bloch’s formula and non-commutative
schemes
Theorem (T., Vezzosi)

@ The non-commutative scheme X, is saturated over some
funny non-commutative base ring B.

©Q x(HH(Xz)) = [Ax.Ax]o

© If the monodromy acts unipotently on H.,(Xg,Qy) then

X(H* (X7, Qo)) = x(Xz) — x(Xg)-

Corollary

The Bloch’s conductor conjecture is true when the
monodromy is unipotent.
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schemes

What about Sw(Xy) ?

Algebraic geometry, categories and trace formula
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Bloch’s formula and non-commutative
schemes

What about Sw(Xj) ?
Appears in
X ®p S;T

for S’/S ramified finite covering of S.
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Bloch’s formula and non-commutative
schemes

What about Sw(Xj) ?
Appears in
X ®p S;T

for S’/S ramified finite covering of S. How this implies the
general case of the Bloch's formula is still under investigation.
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A final comment

The non-commutative scheme .\, sees many interesting
aspects

@ Topological: H*( X, Qy).
@ Algebraic: HH(X;).

© Arithmetic: X ®p S..
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A final comment

The non-commutative scheme sees many interesting
aspects

@ Topological: H*( X, Q).
@ Algebraic: HH(X;).

© Arithmetic: X; ®p S..

The (3) above recovers the whole action of Galois group Gk
on HX,(X,v) = vanishing cohomology.
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A final comment

The non-commutative scheme sees many interesting
aspects

@ Topological: H*( X, Q).
@ Algebraic: HH(X;).

© Arithmetic: X, ®p S..

T

The (3) above recovers the whole action of Galois group Gk
on HX,(X,v) = vanishing cohomology. X is surely useful
beyond the Bloch's formula.
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