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Topology of algebraic varieties

Homogeneous polynomials F1, . . . ,Fp ∈ C[X0, . . . ,Xn]

X := {(x0, . . . , xn)/Fi(x) = 0} ⊂ Pn
C.

Problem: read the topology of X in terms of the Fi ’s.
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Topology of algebraic varieties

Typical answers in low dimension

(n = 1, p = 1): X finite set of cardinality deg(F1) counted
with multiplicities.

(n = 2 and p = 1): X is a compact Riemann surface and

g(X ) =
(d − 1)(d − 2)

2
d = deg(F1)

(g(X ) is the arithmetic genus if X not smooth).
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Euler characteristic of algebraic
varieties

Simple topological invariant: Euler characteristic χ(X )

χ(X ) :=
∑
i

(−1)idim H i(X ,Q).

Theorem

χ(X ) =
∑
p,q

(−1)p+qdim Hp(X ,Ωq
X ).

Here: Ωq
X is the sheaf of holomorphic differential q-forms on

X . The right hand side can be determined purely in terms of
the Fi (”GAGA” theorem).
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Euler characteristic of algebraic
varieties

χ(X ) =
∑
p,q

(−1)p+qdim Hp(X ,Ωq
X ).

topological invariant = algebraic invariant
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Euler characteristic of algebraic
varieties

The theorem follows from the existence of the Hodge
decomposition

H i(X ,Q)⊗ C '
⊕
p+q=i

Hp(X ,Ωq
X ).

But, it has also an independent proof:

(GB) χ(X ) =

∫
X

Ctop(X )

(HRR)

∫
X

Ctop(X ) =
∑
p,q

(−1)p+qdim Hp(X ,Ωq
X ).
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Euler characteristic of algebraic
varieties

Gauss-Bonnet and Hirzebruch-Riemann-Roch are both true
over arbitrary fields.

Homogeneous polynomials F1, . . . ,Fp ∈ k[X0, . . . ,Xn] (k an
algebraically closed field) X := {(x0, . . . , xn)/Fi(x) = 0} ⊂ Pn

k .

χ(X ) :=
∑
i

(−1)idim H i
et(X ,Q`) =

∑
p,q

(−1)p+qdim Hp(X ,Ωq
X )

H i
et(X ,Q`) are the `-adic cohomology groups introduced by

Grothendieck. Hp(X ,Ωq
X ) sheaf cohomology for the Zariski

topology.
Warning: In general H i

et(X ,Q`) and ⊕p+q=iH
p(X ,Ωq

X ) dont
have the same dimension !
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The trace formula for algebraic
varieties

The formula is a special case of the trace formula: f

�

X
algebraic endomorphism of X .∑

i

(−1)iTrace(f : H i
et(X ,Q`)) = [Γf .∆X ]

[Γf .∆X ] is the intersection number of the graph of f with the
diagonal inside X × X . The case f = id recovers the formula
for χ(X ).
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Topology of degeneration of algebraic
varieties

Algebraic varieties naturally arise in family, and tend to
degenerate to varieties with singularities.

Moduli theory: moduli of varieties are non-compact.
Compactification by adding singular varieties at infinity (e.g.
Mg ,n ⊂Mg ,n).

Arithmetic geometry: algebraic varieties defined over rings of
integers in number fields. Bad reduction at some prime.
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Topology of degeneration of algebraic
varieties

Homogeneous polynomials F1, . . . ,Fp ∈ A[X0, . . . ,Xn] where
A = O(S)=ring of functions on the parameter space S .

X := {(x0, . . . , xn, s)/Fi(x , s) = 0} ⊂ Pn × S .

Family of algebraic varieties parametrized by S . For a point
s ∈ S , we have Xs ⊂ Pn

k(s) an algebraic variety defined over

k(s)=residue field of s.
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Topology of degeneration of algebraic
varieties

S is taken to be a ”small disk” := henselian trait. Typical
examples:

S = Spec C[[t]] formal holomorphic disk.

S = Spec k[[t]] formal disk over an algebraically closed field.

S = Spec Zp formal p-adic disk.

S = Spec A for A a complete d.v.r. Two points in S :

The special point o ∈ S (k := k(s) = A/m is the residue
field).

The generic point η ∈ S (K := k(η) = Frac(A) the fraction
field).
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Topology of degeneration of algebraic
varieties

X := {(x0, . . . , xn, s)/Fi(x , s) = 0} ⊂ Pn × S .

Two algebraic varieties:

The special fiber Xk̄ .

The generic fiber XK̄ .

Variational problem: understand the change of topology
between XK̄ and Xk̄ .
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Euler characteristic of degeneration of
algebraic varieties

Variational problem: evaluate χ(Xk̄)− χ(XK̄ ) in terms of an
algebraic construction.

When X → S is a submersion, Xk̄ and XK̄ smooth and the
topology is constant:

χ(Xk̄)− χ(XK̄ ) = 0.

We assume XK̄ is smooth and Xk̄ possibly singular.
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Euler characteristic of degeneration of
algebraic varieties: charac. 0

Easy solution for characteristic zero case (A = C[[t]]): twisted
de Rham complex. t defines a function on X and we have

Theorem (Milnor, Kapranov, Saito, . . . )

χ(Xk̄)− χ(XK̄ ) =
∑
i

(−1)idim H i(X , (Ω∗X ,∧df )).

(Ω∗X ,∧df ) : OX
df // Ω1

X
∧df // Ω2

X
∧df // . . .

Case where Xk̄ has only isolated singularities: Milnor formula
(dimension of Jacobian ring).
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Euler characteristic of degeneration of
algebraic varieties: Bloch’s formula

Without characteristic zero: more complicated due to
arithmetic aspects.

Conjecture (Deligne 67, Bloch 85)

If the scheme X is regular and k perfect.

χ(Xk̄)− χ(XK̄ ) = [∆X .∆X ]0 + Sw(XK̄ ).

[∆X .∆X ]0 is the degree of a 0-cycle on Xk̄ that measures the
singularities (Bloch’s localized intersection number).
Generalization of the different in algebraic number theory.

Sw(XK̄ ) is the Swan conductor which measures wild
ramifications: action of Gal(K̄/K ) on H∗et(XK̄ ).
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Euler characteristic of degeneration of
algebraic varieties: Bloch’s formula

The Bloch’s formula is a theorem when:

Characteristic 0: Milnor, Kapranov, M. Saito.

Equicharacteristic p > 0 (A = k[[t]]): T. Saito (2017).

Semi-stable case: Xk̄ ⊂ X is (supported by) a simple normal
crossing divisor (Kato-Saito 2001).

Degenerate case: Xη̄ = ∅ (recovers formula for χ(X )).

Family of curves (Bloch), and finite ramified cover X → S
(standard formula for the different).

Mixed characteristic case (e.g. A = Zp) is open: in particular
isolated singularities (Deligne-Milnor formula).
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Bloch’s conductor formula

Conjecture : χ(Xk̄)− χ(XK̄ ) = [∆X .∆X ]0 + Sw(XK̄ ).

We want to make progress on this conjecture by introducing a
new point of view: non-commutative geometry.

Degenerate case Xη̄ = ∅ is the commutative case.

General case involves a quantum parameter: the function
π ∈ A, a choice of uniformizer on S .

For this: find a non-commutative variety Xπ such that
χ(Xπ) = χ(Xk̄)− χ(XK̄ ) and apply a non-commutative trace
formula for Xπ.
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Non-commutative varieties

Definition

A non-commutative variety over some base
commutative ring k is a k-linear (dg-)category.

Reminder: a (dg-)category is

a set of objects

for two objects x and y a (complex of) k-module Hom(x , y)

compositions Hom(x , y)⊗k Hom(y , z)→ Hom(x , z)

Dg-categories are considered up to Morita equivalences
(”generate the same triangulated categories”).
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Non-commutative varieties: examples

Very weak definition ⇒ plenty of examples !

1 Algebras: A a k-algebra, D(A) = dg-category of complexes of
A-modules.

2 Schemes over k: as above + gluing ⇒ D(X ).

3 Other examples: Quivers, topology, symplectic manifolds.
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Geometry of non-commutative
varieties

Very weak definition ⇒ hard to believe the notion is
interesting ! No true geometry (no notions of opens, no
topology, no points).

Good surprise: non-commutative schemes have reasonable
notions of

differential forms (Hochschild homology)

`-adic cohomology (recent construction, see below).
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Hochschild homology (differential
forms)

For a k-algebra B we have a Hochschild complex

HH(B) := . . .B⊗ n // B⊗ (n−1) // . . . // B⊗ 2 // B

with differential

d(b1⊗ · · · ⊗ bn) =
∑
i

(−1)i−1b1⊗ . . . bi−1⊗ bibi+1⊗ · · · ⊗ bn

+(−1)nbnb1 ⊗ b2 ⊗ · · · ⊗ bn−1.

This extends to dg-algebras and dg-categories: for any
non-commutative scheme T we have a Hochschild complex
HH(T ).
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Hochschild homology (differential
forms)

Theorem (Hochschild-Kostant-Rosenberg, Keller)

For X a smooth algebraic variety over k, considered as a
non-commutative scheme D(X ) we have

HHn(D(X )) '
⊕

p−q=n

Hp(X ,Ωq
X ).

In particular we have

χ(HH(D(X ))) =
∑
p,q

(−1)p+qdim Hp(X ,Ωq
X ).
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Hochschild homology (differential
forms)

There is a version with coefficients in f

�

T HH(T , f ).
Hochschild-Kostant-Rosenberg becomes

HH(D(X ), f ) ' RΓ(X × X ,OΓf
⊗L O∆X

).

In particular

χ(HH(D(X ), f )) = [Γf .∆X ].
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`-adic cohomology

Theorem (Blanc, Robalo, T., Vezzosi)

For all non-commutative scheme T , and of a prime ` invertible
in k, it is possible to define a Q`-vector space H∗(T ,Q`). For
T = D(X ) we have

Hn(T ,Q`) '
⊕
i

H2i+n(X ,Q`(i)).

Construction: approximation of T by commutative algebraic
varieties + homotopy theory of schemes of Voevodsky-Morel.
In particular, we can define Euler characteristic in the
non-commutative situation

χ(T ) := dimH0(T ,Q`)− dimH1(T ,Q`) ∈ Z.
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The non-commutative trace formula

Definition

A non-commutative scheme T is saturated (also smooth and
proper) if it has a dual T∨.

By definition, the dual T∨ comes equipped with

coev : 1 −→ T ⊗ T∨ ev : T ⊗ T∨ −→ 1

+ usual properties ( T // T ⊗ T∨ ⊗ T // T = id).
D(X ) is saturated ⇐⇒ X is proper and smooth. Then
D(X )∨ ' D(X ) (Poincaré duality). ev and coev are
non-commutative maps which do not exists in the
commutative setting !
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The non-commutative trace formula

Theorem (Vezzosi, T.)

Let T be a saturated non-commutative variety T + technical
condition called admissibility. For f

�

T

Tr(f : H∗(T ,Q`)) = χ(HH∗(T , f )).

For T = D(X ) gives back the trace formula of Grothendieck.

Also extends to non-commutative schemes T over
non-commutative base B.
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Bloch’s formula and non-commutative
schemes

Back to X ⊂ Pn × S . We fix a uniformizer π of A, which
defines a function π on X .

A matrix factorisation for π
consists of

two vector bundles E0, E1 on X

two morphisms

E0
∂ // E1

∂ // E0

such that ∂2 = ×π.

Matrix factorizations form a (dg-)category MF (X , π).

Definition

The non-commutative scheme of singularities of X/S is
defined to be Xπ := MF (X , π).
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Two examples

1 X a vector space, π = q a quadratic form on X .

Xπ ' D(Ciff (q))

where Ciff (q) is the Clifford algebra of (X , q). Xπ sees
arithmetic aspects.

2 Over C, and Xo with an isolated singularity we have
(Dyckerhoff)

HH0(Xπ) ' Jac(π) = OX ,x/(∂π/∂xi ).

Xπ sees algebraic aspects.

In general MF (X , π) concentrated on singularities
MF (X , f ) = 0 when X is smooth over S .
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Bloch’s formula and non-commutative
schemes

Theorem (T., Vezzosi)

1 The non-commutative scheme Xπ is saturated over some
funny non-commutative base ring B.

2 χ(HH(Xπ)) = [∆X .∆X ]0

3 If the monodromy acts unipotently on H i
et(XK̄ ,Q`) then

χ(H∗(Xπ,Q`)) = χ(Xk̄)− χ(XK̄ ).

Corollary

The Bloch’s conductor conjecture is true when the
monodromy is unipotent.
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Bloch’s formula and non-commutative
schemes

What about Sw(XK̄ ) ?

Appears in
Xπ ⊗B S ′π

for S ′/S ramified finite covering of S . How this implies the
general case of the Bloch’s formula is still under investigation.
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A final comment

The non-commutative scheme Xπ sees many interesting
aspects

1 Topological: H∗(Xπ,Q`).

2 Algebraic: HH(Xπ).

3 Arithmetic: Xπ ⊗B S ′π.

The (3) above recovers the whole action of Galois group GK

on H∗et(X , ν) = vanishing cohomology. Xπ is surely useful
beyond the Bloch’s formula.
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