## Algebraic geometry, categories and trace formula

Bertrand Toën<br>(CNRS, Toulouse)

Clay Research Conference, Oxford, September 2017

## Topology of algebraic varieties

## Topology of algebraic varieties

Homogeneous polynomials $F_{1}, \ldots, F_{p} \in \mathbb{C}\left[X_{0}, \ldots, X_{n}\right]$

$$
X:=\left\{\left(x_{0}, \ldots, x_{n}\right) / F_{i}(x)=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{n}
$$

Problem: read the topology of $X$ in terms of the $F_{i}$ 's.

## Topology of algebraic varieties

Typical answers in low dimension

- $(n=1, p=1): X$ finite set of cardinality $\operatorname{deg}\left(F_{1}\right)$ counted with multiplicities.
- ( $n=2$ and $p=1$ ): $X$ is a compact Riemann surface and

$$
g(X)=\frac{(d-1)(d-2)}{2} \quad d=\operatorname{deg}\left(F_{1}\right)
$$

( $g(X)$ is the arithmetic genus if $X$ not smooth).

## Euler characteristic of algebraic varieties

Simple topological invariant: Euler characteristic $\chi(X)$

$$
\chi(X):=\sum_{i}(-1)^{i} \operatorname{dim} H^{i}(X, \mathbb{Q})
$$

## Euler characteristic of algebraic varieties

Simple topological invariant: Euler characteristic $\chi(X)$

$$
\chi(X):=\sum_{i}(-1)^{i} \operatorname{dim} H^{i}(X, \mathbb{Q})
$$

## Theorem

$$
\chi(X)=\sum_{p, q}(-1)^{p+q} \operatorname{dim} H^{p}\left(X, \Omega_{X}^{q}\right)
$$

## Euler characteristic of algebraic varieties

Simple topological invariant: Euler characteristic $\chi(X)$

$$
\chi(X):=\sum_{i}(-1)^{i} \operatorname{dim} H^{i}(X, \mathbb{Q})
$$

## Theorem

$$
\chi(X)=\sum_{p, q}(-1)^{p+q} \operatorname{dim} H^{p}\left(X, \Omega_{X}^{q}\right)
$$

Here: $\Omega_{X}^{q}$ is the sheaf of holomorphic differential $q$-forms on $X$. The right hand side can be determined purely in terms of the $F_{i}$ ("GAGA" theorem).

# Euler characteristic of algebraic varieties 

$$
\chi(X)=\sum_{p, q}(-1)^{p+q} \operatorname{dim} H^{p}\left(X, \Omega_{X}^{q}\right) .
$$

topological invariant $=$ algebraic invariant

## Euler characteristic of algebraic <br> varieties

The theorem follows from the existence of the Hodge decomposition

$$
H^{i}(X, \mathbb{Q}) \otimes \mathbb{C} \simeq \bigoplus_{p+q=i} H^{p}\left(X, \Omega_{X}^{q}\right)
$$

## Euler characteristic of algebraic varieties

The theorem follows from the existence of the Hodge decomposition

$$
H^{i}(X, \mathbb{Q}) \otimes \mathbb{C} \simeq \bigoplus_{p+q=i} H^{p}\left(X, \Omega_{X}^{q}\right)
$$

But, it has also an independent proof:

$$
(G B) \quad \chi(X)=\int_{X} C_{t o p}(X)
$$

$(H R R) \quad \int_{X} C_{\text {top }}(X)=\sum_{p, q}(-1)^{p+q} \operatorname{dim} H^{p}\left(X, \Omega_{X}^{q}\right)$.

# Euler characteristic of algebraic <br> <br> varieties 

 <br> <br> varieties}

Gauss-Bonnet and Hirzebruch-Riemann-Roch are both true over arbitrary fields.

## Euler characteristic of algebraic <br> varieties

Gauss-Bonnet and Hirzebruch-Riemann-Roch are both true over arbitrary fields.
Homogeneous polynomials $F_{1}, \ldots, F_{p} \in k\left[X_{0}, \ldots, X_{n}\right]$ ( $k$ an algebraically closed field) $X:=\left\{\left(x_{0}, \ldots, x_{n}\right) / F_{i}(x)=0\right\} \subset \mathbb{P}_{k}^{n}$.
$\chi(X):=\sum_{i}(-1)^{i} \operatorname{dim} H_{e t}^{i}\left(X, \mathbb{Q}_{\ell}\right)=\sum_{p, q}(-1)^{p+q} \operatorname{dim} H^{p}\left(X, \Omega_{X}^{q}\right)$
$H_{e t}^{i}\left(X, \mathbb{Q}_{\ell}\right)$ are the $\ell$-adic cohomology groups introduced by Grothendieck. $H^{p}\left(X, \Omega_{X}^{q}\right)$ sheaf cohomology for the Zariski topology.

## Euler characteristic of algebraic varieties

Gauss-Bonnet and Hirzebruch-Riemann-Roch are both true over arbitrary fields.
Homogeneous polynomials $F_{1}, \ldots, F_{p} \in k\left[X_{0}, \ldots, X_{n}\right]$ ( $k$ an algebraically closed field) $X:=\left\{\left(x_{0}, \ldots, x_{n}\right) / F_{i}(x)=0\right\} \subset \mathbb{P}_{k}^{n}$.
$\chi(X):=\sum_{i}(-1)^{i} \operatorname{dim} H_{e t}^{i}\left(X, \mathbb{Q}_{\ell}\right)=\sum_{p, q}(-1)^{p+q} \operatorname{dim} H^{p}\left(X, \Omega_{X}^{q}\right)$
$H_{e t}^{i}\left(X, \mathbb{Q}_{\ell}\right)$ are the $\ell$-adic cohomology groups introduced by Grothendieck. $H^{p}\left(X, \Omega_{X}^{q}\right)$ sheaf cohomology for the Zariski topology.
Warning: In general $H_{e t}^{i}\left(X, \mathbb{Q}_{\ell}\right)$ and $\oplus_{p+q=i} H^{p}\left(X, \Omega_{X}^{q}\right)$ dont have the same dimension!

## The trace formula for algebraic varieties

The formula is a special case of the trace formula: $f \subset X$ algebraic endomorphism of $X$.

$$
\sum_{i}(-1)^{i} \operatorname{Trace}\left(f: H_{e t}^{i}\left(X, \mathbb{Q}_{\ell}\right)\right)=\left[\Gamma_{f} \cdot \Delta_{x}\right]
$$

## The trace formula for algebraic varieties

The formula is a special case of the trace formula: $f \subset X$ algebraic endomorphism of $X$.

$$
\sum_{i}(-1)^{i} \operatorname{Trace}\left(f: H_{e t}^{i}\left(X, \mathbb{Q}_{\ell}\right)\right)=\left[\Gamma_{f} \cdot \Delta_{X}\right]
$$

[ $\Gamma_{f} . \Delta_{X}$ ] is the intersection number of the graph of $f$ with the diagonal inside $X \times X$. The case $f=i d$ recovers the formula for $\chi(X)$.

## Topology of degeneration of algebraic varieties

Algebraic varieties naturally arise in family, and tend to degenerate to varieties with singularities.

## Topology of degeneration of algebraic varieties

Algebraic varieties naturally arise in family, and tend to degenerate to varieties with singularities.

- Moduli theory: moduli of varieties are non-compact. Compactification by adding singular varieties at infinity (e.g. $\left.\mathcal{M}_{g, n} \subset \overline{\mathcal{M}}_{g, n}\right)$.
- Arithmetic geometry: algebraic varieties defined over rings of integers in number fields. Bad reduction at some prime.


## Topology of degeneration of algebraic varieties

Homogeneous polynomials $F_{1}, \ldots, F_{p} \in A\left[X_{0}, \ldots, X_{n}\right]$ where $A=\mathcal{O}(S)=$ ring of functions on the parameter space $S$.

$$
X:=\left\{\left(x_{0}, \ldots, x_{n}, s\right) / F_{i}(x, s)=0\right\} \subset \mathbb{P}^{n} \times S
$$

Family of algebraic varieties parametrized by $S$. For a point $s \in S$, we have $X_{s} \subset \mathbb{P}_{k(s)}^{n}$ an algebraic variety defined over $k(s)=$ residue field of $s$.

## Topology of degeneration of algebraic varieties

$S$ is taken to be a "small disk" $:=$ henselian trait. Typical examples:

- $S=\operatorname{Spec} \mathbb{C}[[t]]$ formal holomorphic disk.
- $S=$ Spec $k[[t]]$ formal disk over an algebraically closed field.
- $S=S p e c \mathbb{Z}_{p}$ formal p-adic disk.


## Topology of degeneration of algebraic varieties

$S$ is taken to be a "small disk" $:=$ henselian trait. Typical examples:

- $S=\operatorname{Spec} \mathbb{C}[[t]]$ formal holomorphic disk.
- $S=$ Spec $k[[t]]$ formal disk over an algebraically closed field.
- $S=S p e c \mathbb{Z}_{p}$ formal p-adic disk.
$S=\operatorname{Spec} A$ for $A$ a complete d.v.r. Two points in $S:$
- The special point $o \in S(k:=k(s)=A / m$ is the residue field).
- The generic point $\eta \in S(K:=k(\eta)=\operatorname{Frac}(A)$ the fraction field).


## Topology of degeneration of algebraic varieties

$$
X:=\left\{\left(x_{0}, \ldots, x_{n}, s\right) / F_{i}(x, s)=0\right\} \subset \mathbb{P}^{n} \times S .
$$

Two algebraic varieties:

- The special fiber $X_{\bar{k}}$.
- The generic fiber $X_{\bar{K}}$.


## Topology of degeneration of algebraic varieties

$$
X:=\left\{\left(x_{0}, \ldots, x_{n}, s\right) / F_{i}(x, s)=0\right\} \subset \mathbb{P}^{n} \times S
$$

Two algebraic varieties:

- The special fiber $X_{\bar{k}}$.
- The generic fiber $X_{\bar{K}}$.

Variational problem: understand the change of topology between $X_{\bar{K}}$ and $X_{\bar{k}}$.

## Euler characteristic of degeneration of algebraic varieties

Variational problem: evaluate $\chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{K}}\right)$ in terms of an algebraic construction.

## Euler characteristic of degeneration of algebraic varieties

Variational problem: evaluate $\chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{K}}\right)$ in terms of an algebraic construction.

When $X \rightarrow S$ is a submersion, $X_{\bar{k}}$ and $X_{\bar{K}}$ smooth and the topology is constant:

$$
\chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{k}}\right)=0 .
$$

## Euler characteristic of degeneration of algebraic varieties

Variational problem: evaluate $\chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{K}}\right)$ in terms of an algebraic construction.

When $X \rightarrow S$ is a submersion, $X_{\bar{k}}$ and $X_{\bar{K}}$ smooth and the topology is constant:

$$
\chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{k}}\right)=0 .
$$

We assume $X_{\bar{k}}$ is smooth and $X_{\bar{k}}$ possibly singular.

## Euler characteristic of degeneration of algebraic varieties: charac. 0

Easy solution for characteristic zero case $(A=\mathbb{C}[[t]])$ : twisted de Rham complex. $t$ defines a function on $X$ and we have

Theorem (Milnor, Kapranov, Saito, ... )

$$
\chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{K}}\right)=\sum_{i}(-1)^{i} \operatorname{dim} H^{i}\left(X,\left(\Omega_{X}^{*}, \wedge d f\right)\right) .
$$

## Euler characteristic of degeneration of algebraic varieties: charac. 0

Easy solution for characteristic zero case $(A=\mathbb{C}[[t]])$ : twisted de Rham complex. $t$ defines a function on $X$ and we have

Theorem (Milnor, Kapranov, Saito, ...)

$$
\chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{K}}\right)=\sum_{i}(-1)^{i} \operatorname{dim} H^{i}\left(X,\left(\Omega_{X}^{*}, \wedge d f\right)\right) .
$$

$$
\left(\Omega_{x}^{*}, \wedge d f\right): \mathcal{O}_{x} \xrightarrow{d f} \Omega_{x}^{1} \xrightarrow{\wedge d f} \Omega_{x}^{2} \xrightarrow{\wedge d f} \ldots
$$

Case where $X_{\bar{k}}$ has only isolated singularities: Milnor formula (dimension of Jacobian ring).

## Euler characteristic of degeneration of algebraic varieties: Bloch's formula

Without characteristic zero: more complicated due to arithmetic aspects.

Conjecture (Deligne 67, Bloch 85)
If the scheme $X$ is regular and $k$ perfect.

$$
\chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{K}}\right)=\left[\Delta_{x} \cdot \Delta_{x}\right]_{0}+\operatorname{Sw}\left(X_{\bar{K}}\right)
$$

## Euler characteristic of degeneration of algebraic varieties: Bloch's formula

Without characteristic zero: more complicated due to arithmetic aspects.

Conjecture (Deligne 67, Bloch 85)
If the scheme $X$ is regular and $k$ perfect.

$$
\chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{K}}\right)=\left[\Delta_{x} \cdot \Delta_{x}\right]_{0}+\operatorname{Sw}\left(X_{\bar{K}}\right)
$$

- $\left[\Delta_{X} \cdot \Delta_{X}\right]_{0}$ is the degree of a 0 -cycle on $X_{\bar{k}}$ that measures the singularities (Bloch's localized intersection number). Generalization of the different in algebraic number theory.


## Euler characteristic of degeneration of algebraic varieties: Bloch's formula

Without characteristic zero: more complicated due to arithmetic aspects.

Conjecture (Deligne 67, Bloch 85)
If the scheme $X$ is regular and $k$ perfect.

$$
\chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{K}}\right)=\left[\Delta_{x} \cdot \Delta_{x}\right]_{0}+\operatorname{Sw}\left(X_{\bar{K}}\right)
$$

- $\left[\Delta_{X} \cdot \Delta_{X}\right]_{0}$ is the degree of a 0 -cycle on $X_{\bar{k}}$ that measures the singularities (Bloch's localized intersection number). Generalization of the different in algebraic number theory.
- $\operatorname{Sw}\left(X_{\bar{K}}\right)$ is the Swan conductor which measures wild ramifications: action of $\operatorname{Gal}(\bar{K} / K)$ on $H_{e t}^{*}\left(X_{\bar{K}}\right)$.


## Euler characteristic of degeneration of algebraic varieties: Bloch's formula

The Bloch's formula is a theorem when:

- Characteristic 0: Milnor, Kapranov, M. Saito.
- Equicharacteristic $p>0(A=k[[t]])$ : T. Saito (2017).
- Semi-stable case: $X_{\bar{k}} \subset X$ is (supported by) a simple normal crossing divisor (Kato-Saito 2001).
- Degenerate case: $X_{\bar{\eta}}=\emptyset$ (recovers formula for $\chi(X)$ ).
- Family of curves (Bloch), and finite ramified cover $X \rightarrow S$ (standard formula for the different).


## Euler characteristic of degeneration of algebraic varieties: Bloch's formula

The Bloch's formula is a theorem when:

- Characteristic 0: Milnor, Kapranov, M. Saito.
- Equicharacteristic $p>0(A=k[[t]])$ : T. Saito (2017).
- Semi-stable case: $X_{\bar{k}} \subset X$ is (supported by) a simple normal crossing divisor (Kato-Saito 2001).
- Degenerate case: $X_{\bar{\eta}}=\emptyset$ (recovers formula for $\chi(X)$ ).
- Family of curves (Bloch), and finite ramified cover $X \rightarrow S$ (standard formula for the different).

Mixed characteristic case (e.g. $A=\mathbb{Z}_{p}$ ) is open: in particular isolated singularities (Deligne-Milnor formula).

## Bloch's conductor formula

Conjecture : $\chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{k}}\right)=\left[\Delta_{X} \cdot \Delta_{X}\right]_{0}+\operatorname{Sw}\left(X_{\bar{K}}\right)$.

## Bloch's conductor formula

Conjecture : $\chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{k}}\right)=\left[\Delta_{x} \cdot \Delta_{X}\right]_{0}+\operatorname{Sw}\left(X_{\bar{k}}\right)$.
We want to make progress on this conjecture by introducing a new point of view: non-commutative geometry.

- Degenerate case $X_{\bar{\eta}}=\emptyset$ is the commutative case.
- General case involves a quantum parameter: the function $\pi \in A$, a choice of uniformizer on $S$.


## Bloch's conductor formula

$$
\text { Conjecture : } \chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{k}}\right)=\left[\Delta_{X} \cdot \Delta_{x}\right]_{0}+\operatorname{Sw}\left(X_{\bar{K}}\right) \text {. }
$$

We want to make progress on this conjecture by introducing a new point of view: non-commutative geometry.

- Degenerate case $X_{\bar{\eta}}=\emptyset$ is the commutative case.
- General case involves a quantum parameter: the function $\pi \in A$, a choice of uniformizer on $S$.

For this: find a non-commutative variety $\mathcal{X}_{\pi}$ such that $\chi\left(\mathcal{X}_{\pi}\right)=\chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{K}}\right)$ and apply a non-commutative trace formula for $\mathcal{X}_{\pi}$.

## Non-commutative varieties

## Definition

A non-commutative variety over some base commutative ring $k$ is a $k$-linear (dg-)category.

## Non-commutative varieties

## Definition

A non-commutative variety over some base commutative ring $k$ is a $k$-linear (dg-)category.

Reminder: a (dg-)category is

- a set of objects
- for two objects $x$ and $y$ a (complex of) $k$-module $\operatorname{Hom}(x, y)$
- compositions $\operatorname{Hom}(x, y) \otimes_{k} \operatorname{Hom}(y, z) \rightarrow \operatorname{Hom}(x, z)$


## Non-commutative varieties

## Definition

A non-commutative variety over some base commutative ring $k$ is a $k$-linear (dg-)category.

Reminder: a (dg-)category is

- a set of objects
- for two objects $x$ and $y$ a (complex of) $k$-module $\operatorname{Hom}(x, y)$
- compositions $\operatorname{Hom}(x, y) \otimes_{k} \operatorname{Hom}(y, z) \rightarrow \operatorname{Hom}(x, z)$

Dg-categories are considered up to Morita equivalences
("generate the same triangulated categories").

## Non-commutative varieties: examples

Very weak definition $\Rightarrow$ plenty of examples !
(1) Algebras: $A$ a $k$-algebra, $\mathcal{D}(A)=$ dg-category of complexes of $A$-modules.
(2) Schemes over $k$ : as above + gluing $\Rightarrow \mathcal{D}(X)$.
(3) Other examples: Quivers, topology, symplectic manifolds.

## Geometry of non-commutative varieties

Very weak definition $\Rightarrow$ hard to believe the notion is interesting! No true geometry (no notions of opens, no topology, no points).

## Geometry of non-commutative varieties

Very weak definition $\Rightarrow$ hard to believe the notion is interesting! No true geometry (no notions of opens, no topology, no points).
Good surprise: non-commutative schemes have reasonable notions of

- differential forms (Hochschild homology)
- $\ell$-adic cohomology (recent construction, see below).


## Hochschild homology (differential forms)

For a $k$-algebra $B$ we have a Hochschild complex
$H H(B):=\ldots B^{\otimes n} \longrightarrow B^{\otimes(n-1)} \longrightarrow \ldots \longrightarrow B^{\otimes 2} \longrightarrow B$
with differential

$$
\begin{aligned}
d\left(b_{1} \otimes \cdots \otimes b_{n}\right) & =\sum_{i}(-1)^{i-1} b_{1} \otimes \ldots b_{i-1} \otimes b_{i} b_{i+1} \otimes \cdots \otimes b_{n} \\
& +(-1)^{n} b_{n} b_{1} \otimes b_{2} \otimes \cdots \otimes b_{n-1}
\end{aligned}
$$

## Hochschild homology (differential forms)

For a $k$-algebra $B$ we have a Hochschild complex
$H H(B):=\ldots B^{\otimes n} \longrightarrow B^{\otimes(n-1)} \longrightarrow \ldots \longrightarrow B^{\otimes 2} \longrightarrow B$
with differential

$$
\begin{aligned}
d\left(b_{1} \otimes \cdots \otimes b_{n}\right) & =\sum_{i}(-1)^{i-1} b_{1} \otimes \ldots b_{i-1} \otimes b_{i} b_{i+1} \otimes \cdots \otimes b_{n} \\
& +(-1)^{n} b_{n} b_{1} \otimes b_{2} \otimes \cdots \otimes b_{n-1} .
\end{aligned}
$$

This extends to dg-algebras and dg-categories: for any non-commutative scheme $T$ we have a Hochschild complex $H H(T)$.

## Hochschild homology (differential forms)

## Theorem (Hochschild-Kostant-Rosenberg, Keller)

For $X$ a smooth algebraic variety over $k$, considered as a non-commutative scheme $\mathcal{D}(X)$ we have

$$
H H_{n}(\mathcal{D}(X)) \simeq \bigoplus_{p-q=n} H^{p}\left(X, \Omega_{X}^{q}\right)
$$

## Hochschild homology (differential forms)

## Theorem (Hochschild-Kostant-Rosenberg, Keller)

For $X$ a smooth algebraic variety over $k$, considered as a non-commutative scheme $\mathcal{D}(X)$ we have

$$
H H_{n}(\mathcal{D}(X)) \simeq \bigoplus_{p-q=n} H^{p}\left(X, \Omega_{X}^{q}\right)
$$

In particular we have

$$
\chi(H H(\mathcal{D}(X)))=\sum_{p, q}(-1)^{p+q} \operatorname{dim} H^{p}\left(X, \Omega_{X}^{q}\right)
$$

## Hochschild homology (differential forms)

There is a version with coefficients in $f \subset T H H(T, f)$. Hochschild-Kostant-Rosenberg becomes

$$
H H(\mathcal{D}(X), f) \simeq \mathbb{R} \Gamma\left(X \times X, \mathcal{O}_{\Gamma_{f}} \otimes^{\mathbb{L}} \mathcal{O}_{\Delta_{X}}\right)
$$

## Hochschild homology (differential forms)

There is a version with coefficients in $f \propto T H H(T, f)$. Hochschild-Kostant-Rosenberg becomes

$$
H H(\mathcal{D}(X), f) \simeq \mathbb{R} \Gamma\left(X \times X, \mathcal{O}_{\Gamma_{f}} \otimes^{\mathbb{L}} \mathcal{O}_{\Delta_{X}}\right)
$$

In particular

$$
\chi(H H(\mathcal{D}(X), f))=\left[\Gamma_{f} \cdot \Delta_{X}\right] .
$$

## $\ell$-adic cohomology

Theorem (Blanc, Robalo, T., Vezzosi)
For all non-commutative scheme $T$, and of a prime $\ell$ invertible in $k$, it is possible to define a $\mathbb{Q}_{\ell}$-vector space $H^{*}\left(T, \mathbb{Q}_{\ell}\right)$. For $T=\mathcal{D}(X)$ we have

$$
H^{n}\left(T, \mathbb{Q}_{\ell}\right) \simeq \bigoplus_{i} H^{2 i+n}\left(X, \mathbb{Q}_{\ell}(i)\right) .
$$

## $\ell$-adic cohomology

## Theorem (Blanc, Robalo, T., Vezzosi)

For all non-commutative scheme $T$, and of a prime $\ell$ invertible in $k$, it is possible to define a $\mathbb{Q}_{\ell}$-vector space $H^{*}\left(T, \mathbb{Q}_{\ell}\right)$. For $T=\mathcal{D}(X)$ we have

$$
H^{n}\left(T, \mathbb{Q}_{\ell}\right) \simeq \bigoplus_{i} H^{2 i+n}\left(X, \mathbb{Q}_{\ell}(i)\right) .
$$

Construction: approximation of $T$ by commutative algebraic varieties + homotopy theory of schemes of Voevodsky-Morel.

## $\ell$-adic cohomology

## Theorem (Blanc, Robalo, T., Vezzosi)

For all non-commutative scheme $T$, and of a prime $\ell$ invertible in $k$, it is possible to define a $\mathbb{Q}_{\ell}$-vector space $H^{*}\left(T, \mathbb{Q}_{\ell}\right)$. For $T=\mathcal{D}(X)$ we have

$$
H^{n}\left(T, \mathbb{Q}_{\ell}\right) \simeq \bigoplus_{i} H^{2 i+n}\left(X, \mathbb{Q}_{\ell}(i)\right) .
$$

Construction: approximation of $T$ by commutative algebraic varieties + homotopy theory of schemes of Voevodsky-Morel. In particular, we can define Euler characteristic in the non-commutative situation

$$
\chi(T):=\operatorname{dim} H^{0}\left(T, \mathbb{Q}_{\ell}\right)-\operatorname{dim} H^{1}\left(T, \mathbb{Q}_{\ell}\right) \in \mathbb{Z} .
$$

## The non-commutative trace formula

Definition
A non-commutative scheme $T$ is saturated (also smooth and proper) if it has a dual $T^{\vee}$.

## The non-commutative trace formula

## Definition

A non-commutative scheme $T$ is saturated (also smooth and proper) if it has a dual $T^{\vee}$.

By definition, the dual $T^{\vee}$ comes equipped with

$$
\text { coev : } \mathbf{1} \longrightarrow T \otimes T^{\vee} \quad \text { ev }: T \otimes T^{\vee} \longrightarrow \mathbf{1}
$$

+ usual properties $\left(T \longrightarrow T \otimes T^{\vee} \otimes T \longrightarrow T=i d\right)$.


## The non-commutative trace formula

## Definition

A non-commutative scheme $T$ is saturated (also smooth and proper) if it has a dual $T^{\vee}$.

By definition, the dual $T^{\vee}$ comes equipped with

$$
\text { coev : } \mathbf{1} \longrightarrow T \otimes T^{\vee} \quad \text { ev : } T \otimes T^{\vee} \longrightarrow \mathbf{1}
$$

+ usual properties $\left(T \longrightarrow T \otimes T^{\vee} \otimes T \longrightarrow T=i d\right)$.
$\mathcal{D}(X)$ is saturated $\Longleftrightarrow X$ is proper and smooth. Then $\mathcal{D}(X)^{\vee} \simeq \mathcal{D}(X)$ (Poincaré duality). ev and coev are non-commutative maps which do not exists in the commutative setting !


## The non-commutative trace formula

Theorem (Vezzosi, T.)
Let $T$ be a saturated non-commutative variety $T+$ technical condition called admissibility. For $f \subset T$

$$
\operatorname{Tr}\left(f: H^{*}\left(T, \mathbb{Q}_{\ell}\right)\right)=\chi\left(H H_{*}(T, f)\right) .
$$

## The non-commutative trace formula

## Theorem (Vezzosi, T.)

Let $T$ be a saturated non-commutative variety $T+$ technical condition called admissibility. For $f \subset T$

$$
\operatorname{Tr}\left(f: H^{*}\left(T, \mathbb{Q}_{\ell}\right)\right)=\chi\left(H H_{*}(T, f)\right) .
$$

- For $T=\mathcal{D}(X)$ gives back the trace formula of Grothendieck.
- Also extends to non-commutative schemes $T$ over non-commutative base $B$.


## Bloch's formula and non-commutative schemes

Back to $X \subset \mathbb{P}^{n} \times S$. We fix a uniformizer $\pi$ of $A$, which defines a function $\pi$ on $X$.

## Bloch's formula and non-commutative schemes

Back to $X \subset \mathbb{P}^{n} \times S$. We fix a uniformizer $\pi$ of $A$, which defines a function $\pi$ on $X$. A matrix factorisation for $\pi$ consists of

- two vector bundles $E_{0}, E_{1}$ on $X$
- two morphisms

$$
E_{0} \xrightarrow{\partial} E_{1} \xrightarrow{\partial} E_{0}
$$

such that $\partial^{2}=\times \pi$.

## Bloch's formula and non-commutative schemes

Back to $X \subset \mathbb{P}^{n} \times S$. We fix a uniformizer $\pi$ of $A$, which defines a function $\pi$ on $X$. A matrix factorisation for $\pi$ consists of

- two vector bundles $E_{0}, E_{1}$ on $X$
- two morphisms

$$
E_{0} \xrightarrow{\partial} E_{1} \xrightarrow{\partial} E_{0}
$$

such that $\partial^{2}=\times \pi$.
Matrix factorizations form a (dg-)category $\operatorname{MF}(X, \pi)$.

## Definition

The non-commutative scheme of singularities of $X / S$ is defined to be $\mathcal{X}_{\pi}:=\operatorname{MF}(X, \pi)$.

## Two examples

(1) $X$ a vector space, $\pi=q$ a quadratic form on $X$.

$$
\mathcal{X}_{\pi} \simeq \mathcal{D}(\operatorname{Ciff}(q))
$$

where $\operatorname{Ciff}(q)$ is the Clifford algebra of $(X, q) . \mathcal{X}_{\pi}$ sees arithmetic aspects.

## Two examples

(1) $X$ a vector space, $\pi=q$ a quadratic form on $X$.

$$
\mathcal{X}_{\pi} \simeq \mathcal{D}(\operatorname{Ciff}(q))
$$

where $\operatorname{Ciff}(q)$ is the Clifford algebra of $(X, q) . \mathcal{X}_{\pi}$ sees arithmetic aspects.
(2) Over $\mathbb{C}$, and $X_{o}$ with an isolated singularity we have (Dyckerhoff)

$$
H H_{0}\left(\mathcal{X}_{\pi}\right) \simeq \operatorname{Jac}(\pi)=\mathcal{O}_{X, x} /\left(\partial \pi / \partial x_{i}\right)
$$

$\mathcal{X}_{\pi}$ sees algebraic aspects.

## Two examples

(1) $X$ a vector space, $\pi=q$ a quadratic form on $X$.

$$
\mathcal{X}_{\pi} \simeq \mathcal{D}(\operatorname{Ciff}(q))
$$

where $\operatorname{Ciff}(q)$ is the Clifford algebra of $(X, q) . \mathcal{X}_{\pi}$ sees arithmetic aspects.
(2) Over $\mathbb{C}$, and $X_{o}$ with an isolated singularity we have (Dyckerhoff)

$$
H H_{0}\left(\mathcal{X}_{\pi}\right) \simeq \operatorname{Jac}(\pi)=\mathcal{O}_{X, x} /\left(\partial \pi / \partial x_{i}\right)
$$

$\mathcal{X}_{\pi}$ sees algebraic aspects.
In general $\operatorname{MF}(X, \pi)$ concentrated on singularities $M F(X, f)=0$ when $X$ is smooth over $S$.

## Bloch's formula and non-commutative schemes

Theorem (T., Vezzosi)
(1) The non-commutative scheme $\mathcal{X}_{\pi}$ is saturated over some funny non-commutative base ring $B$.
(2) $\chi\left(H H\left(\mathcal{X}_{\pi}\right)\right)=\left[\Delta_{X} \cdot \Delta_{x}\right]_{0}$

## Bloch's formula and non-commutative schemes

Theorem (T., Vezzosi)
(1) The non-commutative scheme $\mathcal{X}_{\pi}$ is saturated over some funny non-commutative base ring $B$.
(2) $\chi\left(H H\left(\mathcal{X}_{\pi}\right)\right)=\left[\Delta_{X} \cdot \Delta_{X}\right]_{0}$
(3) If the monodromy acts unipotently on $H_{e t}^{i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}\right)$ then

$$
\chi\left(H^{*}\left(\mathcal{X}_{\pi}, \mathbb{Q}_{\ell}\right)\right)=\chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{k}}\right) .
$$

## Bloch's formula and non-commutative schemes

## Theorem (T., Vezzosi)

(1) The non-commutative scheme $\mathcal{X}_{\pi}$ is saturated over some funny non-commutative base ring $B$.
(2) $\chi\left(H H\left(\mathcal{X}_{\pi}\right)\right)=\left[\Delta_{X} \cdot \Delta_{X}\right]_{0}$
(3) If the monodromy acts unipotently on $H_{e t}^{i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}\right)$ then

$$
\chi\left(H^{*}\left(\mathcal{X}_{\pi}, \mathbb{Q}_{\ell}\right)\right)=\chi\left(X_{\bar{k}}\right)-\chi\left(X_{\bar{K}}\right) .
$$

## Corollary

The Bloch's conductor conjecture is true when the monodromy is unipotent.

## Bloch's formula and non-commutative schemes

What about $\operatorname{Sw}\left(X_{\bar{K}}\right)$ ?

## Bloch's formula and non-commutative schemes

What about $\operatorname{Sw}\left(X_{\bar{K}}\right)$ ?
Appears in

$$
\mathcal{X}_{\pi} \otimes_{B} \mathcal{S}_{\pi}^{\prime}
$$

for $S^{\prime} / S$ ramified finite covering of $S$.

## Bloch's formula and non-commutative schemes

What about $\operatorname{Sw}\left(X_{\bar{K}}\right)$ ?
Appears in

$$
\mathcal{X}_{\pi} \otimes_{B} \mathcal{S}_{\pi}^{\prime}
$$

for $S^{\prime} / S$ ramified finite covering of $S$. How this implies the general case of the Bloch's formula is still under investigation.

## A final comment

The non-commutative scheme $\mathcal{X}_{\pi}$ sees many interesting aspects
(1) Topological: $H^{*}\left(\mathcal{X}_{\pi}, \mathbb{Q}_{\ell}\right)$.
(2) Algebraic: $H H\left(\mathcal{X}_{\pi}\right)$.
(3) Arithmetic: $\mathcal{X}_{\pi} \otimes_{B} \mathcal{S}_{\pi}^{\prime}$.

## A final comment

The non-commutative scheme $\mathcal{X}_{\pi}$ sees many interesting aspects
(1) Topological: $H^{*}\left(\mathcal{X}_{\pi}, \mathbb{Q}_{\ell}\right)$.
(2) Algebraic: $H H\left(\mathcal{X}_{\pi}\right)$.
(3) Arithmetic: $\mathcal{X}_{\pi} \otimes_{B} \mathcal{S}_{\pi}^{\prime}$.

The (3) above recovers the whole action of Galois group $G_{K}$ on $H_{e t}^{*}(X, \nu)=$ vanishing cohomology.

## A final comment

The non-commutative scheme $\mathcal{X}_{\pi}$ sees many interesting aspects
(1) Topological: $H^{*}\left(\mathcal{X}_{\pi}, \mathbb{Q}_{\ell}\right)$.
(2) Algebraic: $H H\left(\mathcal{X}_{\pi}\right)$.
(3) Arithmetic: $\mathcal{X}_{\pi} \otimes_{B} \mathcal{S}_{\pi}^{\prime}$.

The (3) above recovers the whole action of Galois group $G_{K}$ on $H_{e t}^{*}(X, \nu)=$ vanishing cohomology. $\mathcal{X}_{\pi}$ is surely useful beyond the Bloch's formula.

## Algebraic geometry, categories and trace formula

Bertrand Toën<br>(CNRS, Toulouse)

Clay Research Conference, Oxford, September 2017

