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of disruption imposed and the likely period over which the interventions can be maintained. In this 

scenario, interventions can limit transmission to the extent that little herd immunity is acquired – 

leading to the possibility that a second wave of infection is seen once interventions are lifted 

 

Figure 2: Mitigation strategy scenarios for GB showing critical care (ICU) bed requirements. The black line 
shows the unmitigated epidemic. The green line shows a mitigation strategy incorporating closure of schools 
and universities; orange line shows case isolation; yellow line shows case isolation and household quarantine; 
and the blue line shows case isolation, home quarantine and social distancing of those aged over 70. The blue 
shading shows the 3-month period in which these interventions are assumed to remain in place.  

Table 3 shows the predicted relative impact on both deaths and ICU capacity of a range of single and 

combined NPIs interventions applied nationally in GB for a 3-month period based on triggers of 

between 100 and 3000 critical care cases. Conditional on that duration, the most effective 

combination of interventions is predicted to be a combination of case isolation, home quarantine and 

social distancing of those most at risk (the over 70s). Whilst the latter has relatively less impact on 

transmission than other age groups, reducing morbidity and mortality in the highest risk groups 

reduces both demand on critical care and overall mortality.  In combination, this intervention strategy 

is predicted to reduce peak critical care demand by two-thirds and halve the number of deaths. 

However, this “optimal” mitigation scenario would still result in an 8-fold higher peak demand on 

critical care beds over and above the available surge capacity in both GB and the US.  

Stopping mass gatherings is predicted to have relatively little impact (results not shown) because the 

contact-time at such events is relatively small compared to the time spent at home, in schools or 

workplaces and in other community locations such as bars and restaurants.  

Overall, we find that the relative effectiveness of different policies is insensitive to the choice of local 

trigger (absolute numbers of cases compared to per-capita incidence), R0 (in the range 2.0-2.6), and 

varying IFR in the 0.25%-1.0% range.   
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Doubling times in China …
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… and Europe

0 10 30 50

0.
0

1.
0

2.
0

3.
0

Abruzzo

0 10 30 50

0.
0

0.
5

1.
0

1.
5

2.
0

Basilicata

0 10 30 50

0.
0

1.
0

2.
0

3.
0

P.A. Bolzano

0 10 30 50

0.
0

1.
0

2.
0

Calabria

0 10 30 50

0.
0

1.
0

2.
0

3.
0

Campania

0 10 30 50

1.
0

2.
0

3.
0

4.
0

Emilia−Romagna

0 10 30 50

0.
0

1.
0

2.
0

3.
0

Friuli Venezia Giulia

0 10 30 50

0.
5

1.
5

2.
5

3.
5

Lazio

0 10 30 50

0.
0

1.
0

2.
0

3.
0

Liguria

0 10 30 50

2.
0

3.
0

4.
0

Lombardia

0 10 30 50

0.
0

1.
0

2.
0

3.
0

Marche

0 10 30 50

0.
0

0.
5

1.
0

1.
5

2.
0

Molise

0 10 30 50

0.
5

1.
5

2.
5

3.
5

Piemonte

0 10 30 50

0.
0

1.
0

2.
0

3.
0

Puglia

0 10 30 50

0.
0

1.
0

2.
0

Sardegna

0 10 30 50

0.
0

1.
0

2.
0

3.
0

Sicilia

0 10 30 50

0.
0

1.
0

2.
0

3.
0

Toscana

0 10 30 50

0.
0

1.
0

2.
0

3.
0

P.A. Trento

0 10 30 50

0.
0

1.
0

2.
0

3.
0

Umbria

0 10 30 50

0.
0

1.
0

2.
0

Valle d'Aosta

0 10 30 50

1.
5

2.
5

3.
5

Veneto



Luca Ferretti

An epidemiological classification  
of transmission modes for SARS-CoV-2

• Symptomatic (after symptom onset) 

• Pre-symptomatic (before symptom onset) 

• Asymptomatic (no symptom onset, or very mild symptoms) 

• Environmental (fomites, ventilation systems…) 

Decomposition of infectiousness (versus time post infection):
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~40% but low infectiousness ?
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An epidemiological classification  
of transmission modes for SARS-CoV-2

• Symptomatic (after symptom onset) 

• Pre-symptomatic (before symptom onset) 

• Asymptomatic (no symptom onset, or very mild symptoms) 

• Environmental (fomites, ventilation systems…) 

Decomposition of infectiousness (versus time post infection):

~40% but low infectiousness ?

~10-20% ?
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Incubation period and generation time

• Incubation period:  

    how long it takes to develop symptoms 

versus 

• Generation time (serial interval): 

    how long it takes to transmit the disease
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Inference of generation time distribution
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Pre-symptomatic transmission

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

time since infection � (days)

pr
ob

ab
ilit

y 
de

ns
ity

Probability that transmission occurred before symptoms

nu
m

be
r o

f t
ra

ns
m

iss
io

n 
pa

irs

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

0

2

4

6

8

0.00 0.25 0.50 0.75
RP/(RP+RS)

po
st

er
io

r d
en

si
ty

About 30-45%  
of all transmissions  

from symptomatic cases  
are pre-symptomatic



Luca Ferretti

How to reach epidemic control:  
the reproduction numbers R0 and Reff

• R0 : average number of infections caused by an 
infected individual in a naive population 

• Reff : average number of infections caused by an 
infected individual in the presence of interventions 

The critical condition to control the epidemic is Reff<1 
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Euler-Lotka equation

period of exposure and onset of symptoms for each case. In detail: for each transmission event,
the likelihood Ltrans(⇥!) described above can be decomposed as

Ltrans = Lpre + Lpre (5)

where the pre-symptomatic term Lpre includes only the cases with ti,2 < ts,1 and the symp-
tomatic term Lsym includes all other cases. In the Main Text we assume a prior probability
ppre = 1 � psym = 0.5 for pre-symptomatic and symptomatic transmission, while in Supple-
mentary we also include di↵erent prior beliefs (ppre = 0.25 and ppre = 0.75). Then, for each
transmission event, we can obtain the posterior probability of pre-symptomatic transmission
via a Bayesian approach:

P [presymptomatic transmission] =
ppreLpre(⇥̂!)

ppreLpre(⇥̂!) + psymLsym(⇥̂!)
(6)

where all likelihoods are evaluated at the parameters ⇥̂! that maximise the composite likelihood.
The distribution of the fraction of transmissions that occurred before onset of symptoms can

be estimated by assigning each event as pre-symptomatic or symptomatic at random according
to its posterior probability. The empirical distribution of this quantity is obtained from 10,000
random extractions from the posterior, shown in the left panel of Supplementary Figure 6.

�(⌧) and the renewal equation

In an epidemic which is growing exponentially, in a deterministic manner, driven by human-to-
human1 transmission, the incidence I(t) can be described by the renewal equation:

I(t) =

Z 1

0
I(t� ⌧)�(⌧)d⌧, (7)

In words, Equation 7 says that the incidence now is set by the rate at which people were
infected at all previous times, weighted by how infectious those people are now. �(⌧) is the
mean rate at which an individual infects others a time ⌧ after being infected itself. Here we
take �(⌧) to be independent of the stage of the epidemic (calendar time t): we neglect depletion
of susceptible individuals through acquired immunity, changing contact patterns etc. over the
timescale of the data informing our estimations of �(⌧). After �(⌧) has been determined, we
may consider how to change it through interventions to reduce infectiousness. If one’s direct
and indirect infectiousness is certain to be zero after having been infected for a time T say, we
only need consider the previous time window T of the epidemic – replacing the upper limit of
the integral in Equation 7 by T for convenience. We take T to be infinite for generality, with
�(⌧) tending to zero at large times. Substituting into Equation 7 an exponentially growing
incidence, I(t) = I0ert, gives the condition

1 =

Z 1

0
e�r⌧�(⌧)d⌧, (8)

�(⌧) can be written as the product of two things: R0 and the unit-normalised function w(⌧)

�(⌧) = R0w(⌧), with R0 =

Z 1

0
�(⌧)d⌧ (9)

1Equation 7 describes only human-to-human transmission (though this may be indirectly via the environ-
ment, as we clarify). Excluding vector-borne diseases, zoonosis events do not scale with the number of people
currently infected, and so become a negligible contribution after human-to-human transmission has begun driving
exponential growth.

3

w(⌧) is the generation time distribution – the probability density function for the time between
an individual becoming infected and their subsequent onward transmission events. R0 is the
basic reproduction number. If the exponential growth rate r and the generation time distribution
w(⌧) have been estimated, R0 is determined by Equation 8, i.e.

R0 = 1/

Z 1

0
e�r⌧w(⌧)d⌧, (10)

We decompose �(⌧) without any loss of generality into the following distinct contributions:

• Direct transmissions from asymptomatic individuals – those who never develop symp-
toms. The degree to which individuals show symptoms is of course a continuum, but a
threshold can be defined for clinical purposes (i.e. sub-clinical and clinical infections) or
for epidemiological purposes. We define Pa as the proportion of such individuals among
all infected individuals, and �a(⌧) as their mean infectiousness at age-of-infection ⌧ .

• Direct transmissions from pre-symptomatic individuals (currently without symptoms, but
who will develop symptoms later). We define �p(⌧) as the mean infectiousness of these
individuals at age-of-infection ⌧ , conditional upon their being pre-symptomatic, which has
probability 1 � s(⌧) where s(⌧) is the cumulative distribution function of the incubation
period distribution.

• Direct transmissions from symptomatic individuals (including those who have stopped
showing symptoms, in general, if infectiousness may outlast symptoms), with infectious-
ness �s(⌧) conditional on having started symptoms.

• Indirect transmission via the environment. We define �e(⌧) as the mean rate of contami-
nating one’s environment (with the mean being over all asymptomatic, pre-symptomatic
and symptomatic individuals at age-of-infection ⌧). Let E(l) be the rate at which contam-
inated environment infects new individuals a time lag l after having been contaminated.
The environmentally mediated infectiousness of an individual infected a time ⌧ ago is given
by the total e↵ect of their previous environmental contamination now:

R ⌧
l=0 �e(⌧�l)E(l)d⌧ .

We therefore have, in general,

�(⌧) = Pa�a(⌧) + (1� Pa)(1� s(⌧))�p(⌧) + (1� Pa)s(⌧)�s(⌧) +

Z ⌧

l=0
�e(⌧ � l)E(l)dl (11)

Integrating each of these terms separately gives their respective contribution to R0:

R0 = Ra +Rp +Rs +Re (12)

We make the following simplifying assumptions about the contributions described above,
compared to the general case.

• Asymptomatic individuals are assumed to have an infectiousness proportional to that of
symptomatic individuals: �a(⌧) = xa�s(⌧).

• Pre-symptomatic individuals are assumed to have an infectiousness equal to that of symp-
tomatic individuals at the same age of infection: �p(⌧) = �s(⌧)

• The rate at which individuals contaminate their environment, �e(⌧) is assumed to be
proportional to the direct infectiousness of symptomatic individuals �s(⌧). The propor-
tionality constant can be absorbed into the function E(l) which multiplies �e(⌧), so that
we have �e(⌧) = �s(⌧).

4

Classical renewal equation

Classical Euler-Lotka equation

Exponential ansatz with growth rate r

Infectiousness

Generation time distribution
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An epidemiological classification  
of transmission modes for SARS-CoV-2

• Symptomatic (after symptom onset) 

• Pre-symptomatic (before symptom onset) 

• Asymptomatic (no symptom onset, or very mild symptoms) 

• Environmental (fomites, ventilation systems…) 

Decomposition of infectiousness (versus time post infection):The �(⌧) we consider is therefore

�(⌧) = Paxa�s(⌧)| {z }
asymptomatic

+(1� Pa)(1� s(⌧))�s(⌧)| {z }
pre-symptomatic

+(1� Pa)s(⌧)�s(⌧)| {z }
symptomatic

+

Z ⌧

l=0
�s(⌧ � l)E(l)dl

| {z }
environmental

(13)

We solved for the form of �(⌧) above first by fitting the shape of the pre-symptomatic plus
symptomatic contributions to our inferred generation time interval: these functions are propor-
tional to each other when the transmission pairs analysed for the generation time distribution
represent pre-symptomatic and symptomatic exposure in the proportion representative of over-
all epidemic spread. We make that assumption here. This assumption would be violated by
biased selection of transmission pairs for sampling. For example if the infector being in a later,
symptomatic stage of infection makes identification of the pair more likely, then a data set of
identified pairs will be undersampled for pre-symptomatic exposure and will overestimate the
typical generation time. The next step in solving the model was calculating the relative scaling
constant of the environmental contribution to �(⌧) to give the required RE/R0, and finally the
overall scaling constant of �(⌧) is determined to reproduce the observed exponential growth
rate.

To determine uncertainty, we drew 10,000 input parameter sets from the uncertainties shown
in main text Table 2. For the data-driven parameters, these uncertainties are likelihoods,
which can be interpreted as posteriors if one’s prior is an improper uniform distribution; we
fit lognormal distributions to the 95% CIs and central estimates in order to obtain the full
distribution. For the other parameters, the uncertainty distributions are pure priors.

Derivation of the impact of interventions

To calculate the impact of contact tracing and isolation, we followed the mathematical treatment
of (9). One di↵erence in notation is that we use s(⌧) here to denote the probability of having
started showing symptoms, corresponding to their (1� S(⌧)).

Prelude: describing epidemic growth with no intervention

Let Y (t, ⌧, ⌧ 0) be the number2 of individuals at time t who were infected at a time t � ⌧ by
individuals who were in turn infected at a time t � ⌧ 0. Y satisfies Y (t + dt, ⌧ + dt, ⌧ 0 + dt) =
Y (t, ⌧, ⌧ 0), ‘translational invariance’, because incrementing all three arguments by exactly the
same value means following exactly the same cohort of individuals through to a di↵erent moment
in time. Equivalently,

@Y (t, ⌧, ⌧ 0)

@t
+

@Y (t, ⌧, ⌧ 0)

@⌧
+

@Y (t, ⌧, ⌧ 0)

@⌧ 0
= 0 (14)

In the absence of any intervention, Y (t, ⌧, ⌧ 0) satisfies the generalised Kermack-McKendrick
equations (also referred to as the Von Foerster equations):

Y (t, 0, ⌧) = �(⌧)

Z 1

⌧ 0=⌧
Y (t, ⌧, ⌧ 0)d⌧ 0 (15)

In words, equation 15 says that the incidence of newly infected individuals at time t due to
individuals who were themselves infected a time ⌧ ago is given by the current infectiousness

2Technically Y is a double-density: one must integrate it over a range of ⌧ values and a range of ⌧ 0 values to
get an actual number of people at time t.

5
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Generalised Euler-Lotka equation  
for contact tracing

The �(⌧) we consider is therefore

�(⌧) = Paxa�s(⌧)| {z }
asymptomatic

+(1� Pa)(1� s(⌧))�s(⌧)| {z }
pre-symptomatic

+(1� Pa)s(⌧)�s(⌧)| {z }
symptomatic

+

Z ⌧

l=0
�s(⌧ � l)E(l)dl

| {z }
environmental

(13)

We solved for the form of �(⌧) above first by fitting the shape of the pre-symptomatic plus
symptomatic contributions to our inferred generation time interval: these functions are propor-
tional to each other when the transmission pairs analysed for the generation time distribution
represent pre-symptomatic and symptomatic exposure in the proportion representative of over-
all epidemic spread. We make that assumption here. This assumption would be violated by
biased selection of transmission pairs for sampling. For example if the infector being in a later,
symptomatic stage of infection makes identification of the pair more likely, then a data set of
identified pairs will be undersampled for pre-symptomatic exposure and will overestimate the
typical generation time. The next step in solving the model was calculating the relative scaling
constant of the environmental contribution to �(⌧) to give the required RE/R0, and finally the
overall scaling constant of �(⌧) is determined to reproduce the observed exponential growth
rate.

To determine uncertainty, we drew 10,000 input parameter sets from the uncertainties shown
in main text Table 2. For the data-driven parameters, these uncertainties are likelihoods,
which can be interpreted as posteriors if one’s prior is an improper uniform distribution; we
fit lognormal distributions to the 95% CIs and central estimates in order to obtain the full
distribution. For the other parameters, the uncertainty distributions are pure priors.

Derivation of the impact of interventions

To calculate the impact of contact tracing and isolation, we followed the mathematical treatment
of (9). One di↵erence in notation is that we use s(⌧) here to denote the probability of having
started showing symptoms, corresponding to their (1� S(⌧)).

Prelude: describing epidemic growth with no intervention

Let Y (t, ⌧, ⌧ 0) be the number2 of individuals at time t who were infected at a time t � ⌧ by
individuals who were in turn infected at a time t � ⌧ 0. Y satisfies Y (t + dt, ⌧ + dt, ⌧ 0 + dt) =
Y (t, ⌧, ⌧ 0), ‘translational invariance’, because incrementing all three arguments by exactly the
same value means following exactly the same cohort of individuals through to a di↵erent moment
in time. Equivalently,

@Y (t, ⌧, ⌧ 0)

@t
+

@Y (t, ⌧, ⌧ 0)

@⌧
+

@Y (t, ⌧, ⌧ 0)

@⌧ 0
= 0 (14)

In the absence of any intervention, Y (t, ⌧, ⌧ 0) satisfies the generalised Kermack-McKendrick
equations (also referred to as the Von Foerster equations):

Y (t, 0, ⌧) = �(⌧)

Z 1

⌧ 0=⌧
Y (t, ⌧, ⌧ 0)d⌧ 0 (15)

In words, equation 15 says that the incidence of newly infected individuals at time t due to
individuals who were themselves infected a time ⌧ ago is given by the current infectiousness

2Technically Y is a double-density: one must integrate it over a range of ⌧ values and a range of ⌧ 0 values to
get an actual number of people at time t.

5

of those individuals infected a time ⌧ ago, multiplied by how many of those individuals there
are: integrating their number over all possible times that their infector was infected. Since
the number of infected individuals is self-renewing, we anticipate exponential dependence on t.
Together with translational invariance, this implies the general form

Y (t, ⌧, ⌧ 0) = y(⌧ 0 � ⌧)er(t�⌧) (16)

Substituting equation 16 into equation 15 gives

y(⌧)ert = �(⌧)

Z 1

⌧ 0=⌧
y(⌧ 0 � ⌧)er(t�⌧)d⌧ 0 (17)

y(⌧) = e�r⌧�(⌧)

Z 1

⌧ 0=⌧
y(⌧ 0 � ⌧)d⌧ 0 (18)

= e�r⌧�(⌧)

Z 1

⇢=0
y(⇢)d⇢ (19)

The solution to equation 19 is, for any value of the constant y0,

y(⌧) = y0e
�r⌧�(⌧), with the constraint

Z 1

⇢=0
e�r⇢�(⇢)d⇢ = 1 (20)

Decomposing �(⌧) into two factors – its integral R0, and the unit-normalised generation time
interval w(⌧) – the constraint above gives the relationship between r, R0 and w(⌧). Substituting
this solution for y(⌧) back into equation 16 gives

Y (t, ⌧, ⌧ 0) = y0e
�r(⌧ 0�⌧)�(⌧ 0 � ⌧)er(t�⌧) (21)

= y0e
r(t�⌧ 0)�(⌧ 0 � ⌧) (22)

The impact of case isolation, contact tracing and quarantine

In the presence of case isolation of e�cacy ✏I and contact tracing plus quarantine of e�cacy ✏T ,
equation 15 is modified (see Fraser, Riley et al. 2004) to

Y (t, 0, ⌧) = �(⌧) (1� ✏Is(⌧))

Z 1

⌧

✓
1� ✏T + ✏T

1� s(⌧ 0)

1� s(⌧ 0 � ⌧)

◆
Y (t, ⌧, ⌧ 0)d⌧ 0 (23)

Note that we take the upper limit of the integral here to be 1 rather than t (so that the
epidemic is solved exactly by exponential growth, instead of beginning according to specific
boundary conditions and then tending toward exponential growth as the boundary conditions
are forgotten). Translational invariance together with exponential growth with t imply the
same general form as previously – equation 16 – but with a di↵erent functional form for y(⌧).
Substituting equation 16 into equation 23 gives the ‘next-generation’ equation for y:

y(⌧) = e�r⌧�(⌧) (1� ✏Is(⌧))

Z 1

⌧ 0=⌧

✓
1� ✏T + ✏T

1� s(⌧ 0)

1� s(⌧ 0 � ⌧)

◆
y(⌧ 0 � ⌧)d⌧ 0 (24)

= e�r⌧�(⌧) (1� ✏Is(⌧))

Z 1

⇢=0

✓
1� ✏T

s(⇢+ ⌧)� s(⇢)

1� s(⇢)

◆
y(⇢)d⇢ (25)

redefining the integration variable to be ⇢ = ⌧ 0�⌧ for convenience. Hence, the growth rate after
the interventions corresponds to the value of r for which the functional linear ‘next-generation’
operator

Nry = e�r⌧�(⌧) (1� ✏Is(⌧))

Z 1

0

✓
1� ✏T

s(⇢+ ⌧)� s(⇢)

1� s(⇢)

◆
y(⇢)d⇢ (26)

6

The generalised (functional) Euler-Lotka equation 

corresponds to the eigenvalue equation (with eigenvalue 1) for this operator:


Kermack-McKendrick equations for chains of infections with contact tracing:

(Fraser el al PNAS 2004)

of those individuals infected a time ⌧ ago, multiplied by how many of those individuals there
are: integrating their number over all possible times that their infector was infected. Since
the number of infected individuals is self-renewing, we anticipate exponential dependence on t.
Together with translational invariance, this implies the general form

Y (t, ⌧, ⌧ 0) = y(⌧ 0 � ⌧)er(t�⌧) (16)

Substituting equation 16 into equation 15 gives

y(⌧)ert = �(⌧)

Z 1

⌧ 0=⌧
y(⌧ 0 � ⌧)er(t�⌧)d⌧ 0 (17)

y(⌧) = e�r⌧�(⌧)

Z 1

⌧ 0=⌧
y(⌧ 0 � ⌧)d⌧ 0 (18)

= e�r⌧�(⌧)

Z 1

⇢=0
y(⇢)d⇢ (19)

The solution to equation 19 is, for any value of the constant y0,

y(⌧) = y0e
�r⌧�(⌧), with the constraint

Z 1

⇢=0
e�r⇢�(⇢)d⇢ = 1 (20)

Decomposing �(⌧) into two factors – its integral R0, and the unit-normalised generation time
interval w(⌧) – the constraint above gives the relationship between r, R0 and w(⌧). Substituting
this solution for y(⌧) back into equation 16 gives

Y (t, ⌧, ⌧ 0) = y0e
�r(⌧ 0�⌧)�(⌧ 0 � ⌧)er(t�⌧) (21)

= y0e
r(t�⌧ 0)�(⌧ 0 � ⌧) (22)

The impact of case isolation, contact tracing and quarantine

In the presence of case isolation of e�cacy ✏I and contact tracing plus quarantine of e�cacy ✏T ,
equation 15 is modified (see Fraser, Riley et al. 2004) to

Y (t, 0, ⌧) = �(⌧) (1� ✏Is(⌧))

Z 1

⌧

✓
1� ✏T + ✏T

1� s(⌧ 0)

1� s(⌧ 0 � ⌧)

◆
Y (t, ⌧, ⌧ 0)d⌧ 0 (23)

Note that we take the upper limit of the integral here to be 1 rather than t (so that the
epidemic is solved exactly by exponential growth, instead of beginning according to specific
boundary conditions and then tending toward exponential growth as the boundary conditions
are forgotten). Translational invariance together with exponential growth with t imply the
same general form as previously – equation 16 – but with a di↵erent functional form for y(⌧).
Substituting equation 16 into equation 23 gives the ‘next-generation’ equation for y:

y(⌧) = e�r⌧�(⌧) (1� ✏Is(⌧))

Z 1

⌧ 0=⌧

✓
1� ✏T + ✏T

1� s(⌧ 0)

1� s(⌧ 0 � ⌧)

◆
y(⌧ 0 � ⌧)d⌧ 0 (24)

= e�r⌧�(⌧) (1� ✏Is(⌧))

Z 1

⇢=0

✓
1� ✏T

s(⇢+ ⌧)� s(⇢)

1� s(⇢)

◆
y(⇢)d⇢ (25)

redefining the integration variable to be ⇢ = ⌧ 0�⌧ for convenience. Hence, the growth rate after
the interventions corresponds to the value of r for which the functional linear ‘next-generation’
operator

Nry = e�r⌧�(⌧) (1� ✏Is(⌧))

Z 1

0

✓
1� ✏T

s(⇢+ ⌧)� s(⇢)

1� s(⇢)

◆
y(⇢)d⇢ (26)
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Efficiency of isolation / contact tracing & quarantine
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Is the COVID-19 epidemic controllable 
via realistic contact tracing?
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Why instant contact tracing matters?
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Why instant contact tracing matters?
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Isolation and contact tracing can stop the epidemic  
only with high efficiency and short response times
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Why digital solutions?

Tools of classical epidemiology against COVID-19:

• Physical distancing/isolation/quarantine

• Either insufficient or high social&economic costs

• Mass screening/testing + contact tracing

• Hard to scale for a rapid response (HR, lab capacity)

• Vaccination

• Development/trial phase + time to scale production

Alternative digital technologies are needed for a fast, scalable response
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A mobile app for instant contact tracing
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Useful at all phases of the epidemic

• Prevent initial spread  

• “Smart lockdown” to keep to economy afloat 

• “Smart exit” from lockdown to prevent a second peak 

• Control residual spread
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Challenges
• Limitations in smartphone coverage and contact technologies 

(Bluetooth Low Energy). Integration of multiple approaches? 

• >50% uptake required at population level 

• Compliance with app recommendation to “stay at home” is key 

• Scale-up of diagnostic testing across Europe is needed 

• Some degree of physical distancing could still be required for 
the fast-growing European epidemic  

• Iterative improvements of app back-end and front-end, as 
well as the science and technology behind app tracing
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Ethical issues
• Building trust and confidence at every stage 

• privacy and data usage concerns at the forefront 

• adopting a transparent and auditable algorithm 

• careful consideration of digital deployment 
strategies to support specific groups, such as 
health care workers, the elderly and the young 

• deployed with individual consent 
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Challenges: voluntary uptake
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Recent developments
• Many privacy-preserving projects across the world - now 

mostly concentrated in two main consortia for Europe and 
North America (PEPP-PT and TCN) 

• Bluetooth Low Energy as common choice of technology 
(hence interoperability/roaming possible) 

• Much movement at European level, different countries at 
different stages 

• Recent Google/Apple announcement: embedding contact 
tracing APIs in the OS. Technical and political pros and cons.
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What can you do?
• App-based contact tracing could potentially control the epidemic                        

and should be at the core of epidemic response.                                        
Optimised contract-tracing algorithms? Learning from contact networks? 

• It should not be a stand-alone solution!                                                                  
Must be part of an integrated strategy (with epidemiological surveillance, risk 
forecast, geolocation of hot spots, local lockdowns…).                                                     
Interplay with other interventions? 

• Widespread diagnostic testing is critical 

• Physical distancing still important 

• Please support European governments and institutions                                             
in their efforts towards app-based contact tracing                                                
within an integrated strategy of epidemic control
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Based on: Ferretti, Wymant et al, Science 2020 

Find out more about our research here: 

http://www.coronavirus-fraser-group.org  


