English Version
Vitae
* Fellow of the Churchill College Cambridge UK 2010.
* Habilitation thesis « Différentes études en géométrie et en probabilités : des mathématiques vers les applications » defended on December the 17 th, 1998 in Versailles University.
Articles since 2010
* Cohen, Serge ; Emmanuel Boisssard, Thibault Espinasse and James Norris « Diffusivity of a random walk on random walks Random Structures and Algorithms, (2015) 47(2) 1295-1306
* Cohen, Serge ; Panloup, Fabien et Tindel, Samy Approximation of stationary solutions to SDEs driven by multiplicative fractional noise. Stochastic Process. Appl. 124 (2014), no. 3, 1197–1225.
* Cohen, Serge ; Alexander Lindner « A central limit theorem for the sample autocorrelations of a Lévy driven continuous time moving average process » Journal of Statistical Planning and Inference 143 (2013) 1295-1306
* Cohen, Serge ; F. Gamboa, C. Lacaux and M. Loubès « LAN property for some fractional type Brownian motion » Alea vol X (2013) 91-106
*Cohen, Serge; J. Istas Fractional Fields and Applications, Springer Verlag Mathématiques et Applications Volume 73 2013. http://link.springer.com/book/10.1007/978-3-642-36739-7/page/1
*Cohen, Serge; M. Lifshits Stationary Gaussian Random field on Hyperbolic Spaces and Euclidean Spheres ESAIM: Probability and Statistics / Volume 16 / 2012, pp 165 – 221
* Cohen, Serge A survey paper Fractional Lévy fields published in Lévy Matters II, Lecture Notes in Mathematics 2061, Springer Verlag p 1-94, 2012.
*Cohen, Serge; Sébastien Gadat Adaptive sequential design for regression on multi-resolution bases Statistics and Computing 22 (2012) 753-772
*Suzanne Varet, Sidonie Lefebvre, Gérard Durand , Antoine Roblin, Serge Cohen, Effective discrepancy and numerical experiments, Computer Physics Communications 183 (2012) 2535–2541.
* Cohen, Serge; Panloup, Fabien Approximation of stationary solutions of Gaussian driven Stochastic Differential Equations Stochastic Processes and their Applications, 121 (2011), no. 12, 2776–2801
* Cohen, Serge; Maejima, Makoto Selfdecomposability of moving average fractional Lévy processes. Statistics and Probabability Letter (2011), no. 11, 1664–1669,