Cours magistral 6 : Fonctions hyperboliques, cosinus hyperbolique et sinus hyperbolique

Pour $x \in \mathbb{R}$, le *cosinus hyperbolique* et le *sinus hyperbolique* sont respectivement :

$$ch x = \frac{e^{x} + e^{-x}}{2}$$
 et $sh x = \frac{e^{x} - e^{-x}}{2}$

La fonction ch est paire et la fonction sh impaire. En exploitant les propriétés de la fonction exp, on obtient immédiatement que les fonctions cosinus hyperbolique et sinus hyperbolique sont définies, continues et dérivables sur \mathbb{R} .

Quelques propriétés

Proposition

Démonstration.

Pourquoi ces noms?

Exercice

Géométriquement, une courbe paramétrée est donc l'ensemble des points M du plan de coordonnées (x(t),y(t)) avec $t\in I$. On vous propose de dessiner les courbes paramétrées $t\mapsto (\cos t,\sin t)$ et $t\mapsto (\cosh t,\sinh t)$ en utilisant Géogébra.

Tableaux de variations

Exercice

Dressons les tableaux de variations des fonctions ch et sh.

Question de réciproque?

Question : La fonction $\mathrm{ch}:\mathbb{R}\to\mathbb{R}$ est :

- Ni injective, ni surjective
- 2 Injective mais non surjective
- 3 Surjective mais non injective
- Bijective (injective et surjective)
- 5 J'ai réfléchi mais je ne sais pas répondre.

Question de réciproque pour sh?

 $\textbf{Question}: \ \mathsf{La} \ \mathsf{fonction} \ \mathsf{sh}: \mathbb{R} \to \mathbb{R} \ \mathsf{est}:$

- Ni injective, ni surjective
- 2 Injective mais non surjective
- 3 Surjective mais non injective
- Bijective (injective et surjective)
- 5 J'ai réfléchi mais je ne sais pas répondre.

Question de réciproque pour ch?

Question: La fonction $ch: A \rightarrow B$ est bijective lorsque:

$$\mathbf{P} A = \mathbb{R} \text{ et } B = [1; +\infty[$$

$$A = \mathbb{R}^+ \text{ et } B = \mathbb{R}^+$$

$$A = [1; +\infty[\text{ et } B = \mathbb{R}^+]$$

$$A = \mathbb{R}^+ \text{ et } B = [1; +\infty[$$

$$A = \mathbb{R}^+ \text{ et } B = \mathbb{R}$$

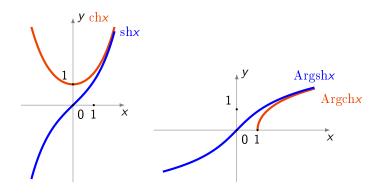
J'ai réfléchi mais je ne sais pas répondre

Argsh et Argch.

La fonction $sh: \mathbb{R} \to \mathbb{R}$ est une bijection, sa réciproque est $Argsh: \mathbb{R} \to \mathbb{R}$.

La fonction $\operatorname{ch}:\mathbb{R}^+ \to [1;+\infty[$ est une bijection, sa réciproque est

Argch: $[1, +\infty[\to \mathbb{R}^+]$.



Propriété de Argsh

Proposition

- lacksquare Argsh: $\mathbb{R} \to \mathbb{R}$ est strictement croissante et continue.
- Argsh est dérivable et Argsh' $x = \frac{1}{\sqrt{x^2+1}}$.

Démonstration.

Propriété de Argch

Exercice

Démontrer que :

- Argch est dérivable sur]1, $+\infty$ [et pour tout x > 1, Argch' $x = \frac{1}{\sqrt{x^2-1}}$.
- Pour tout $x \ge 1$, $\operatorname{Argch} x = \ln (x + \sqrt{x^2 1})$.

Tangente hyperbolique

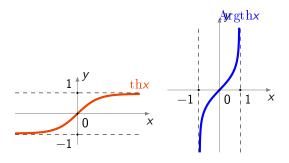
On définit la *tangente hyperbolique* ainsi :

$$th x = \frac{\sinh x}{\cosh x}$$

La fonction ${\rm th}$ est définie, continue et dérivable sur $\mathbb R$. Calculons sa dérivée puis déterminons son tableau de variations :

Argth

La fonction $\operatorname{th}:\mathbb{R}\to]-1,1[$ est une bijection, on note $\operatorname{Argth}:]-1,1[\to\mathbb{R}$ sa bijection réciproque.



Un mini formulaire

Proposition

$$ch(a+b) = ch a \cdot ch b + sh a \cdot sh b \quad ch(2a) = ch^2 a + sh^2 a$$

$$sh(a+b) = sh a \cdot ch b + sh b \cdot ch a \quad sh(2a) = 2 sh a \cdot ch a$$

$$th(a+b) = \frac{th a + th b}{1 + th a \cdot th b}$$

Démonstration.

